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Abstract
Generalised Bayesian inference updates prior beliefs
using a loss function, rather than a likelihood, and can
therefore be used to confer robustness against possi-
ble mis-specification of the likelihood. Here we con-
sider generalised Bayesian inference with a Stein dis-
crepancy as a loss function, motivated by applications
in which the likelihood contains an intractable nor-
malisation constant. In this context, the Stein discrep-
ancy circumvents evaluation of the normalisation con-
stant and produces generalised posteriors that are either
closed form or accessible using the standard Markov
chain Monte Carlo. On a theoretical level, we show
consistency, asymptotic normality, and bias-robustness
of the generalised posterior, highlighting how these
properties are impacted by the choice of Stein dis-
crepancy. Then, we provide numerical experiments on
a range of intractable distributions, including applica-
tions to kernel-based exponential family models and
non-Gaussian graphical models.
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1 INTRODUCTION

A considerable proportion of statistical modelling deviates from the idealised approach of
fine-tuned, expertly crafted descriptions of real-world phenomena, in favour of default models
fitted to a large dataset. If the default model is a good approximation to the data-generating
mechanism this strategy can be successful, but things can quickly go awry if the default model
is misspecified. Generalised Bayesian updating (Bissiri et al., 2016), and in particular using
divergence-based loss functions (Jewson et al., 2018), has been shown to mitigate some of the risks
involved when working with a model that is misspecified. Unlike other robust modelling strate-
gies, these methods do not change the statistical model. Instead, they change how the model’s
parameters are scored, affecting how ‘good’ parameter values are discerned from ‘bad’ ones.
This is a key practical advantage, as it implies that such strategies do not require precise knowl-
edge about how the model is misspecified. This paper considers generalised Bayesian inference
in the context of intractable likelihood. An intractable likelihood, in this paper, takes the form
p𝜃(x) = q(x, 𝜃)∕Z(𝜃), where q(x, 𝜃) is an analytically tractable function and Z(𝜃) is an intractable
normalising constant, each depending on the value of the unknown parameter 𝜃 of interest. Clas-
sical Bayesian posteriors resulting from intractable likelihood models are sometimes called doubly
intractable, due to the computational difficulties they entail (Murray et al., 2006). For example,
standard Markov chain Monte Carlo (MCMC) methods cannot be used in this setting, since
they typically require explicit evaluation of the likelihood. Doubly intractable posteriors appear
in many important statistical applications, including spatial models (Besag, 1974, 1986; Diggle,
1990), exponential random graph models (Park & Haran, 2018), models for gene expression (Jiang
et al., 2021), and hidden Potts models for satellite data (Moores et al., 2020).

This paper proposes the first generalised Bayesian approach to inference for models that
involve an intractable likelihood. To achieve this, we propose to employ a loss function based on a
Stein discrepancy (Gorham & Mackey, 2015). As such, this research can be thought of as a Bayesian
alternative to the minimum Stein discrepancy estimators of Barp et al. (2019). The methodology
is developed for a particular Stein discrepancy called kernel Stein discrepancy (KSD), and we call
the resulting generalised Bayesian approach KSD-Bayes. It is shown in this paper that KSD-Bayes
(a) provides robustness to misspecified likelihoods; (b) produces a generalised posterior that is
tractable for standard MCMC, or even closed-form when an appropriate conjugate prior (which
we identify) is used together with an exponential family likelihood; (c) satisfies several desirable
theoretical properties, including a Bernstein-von Mises result which holds irrespective of whether
the likelihood is correctly specified. These results appear to represent a compelling case for the
use of KSD-Bayes as an alternative to standard Bayesian inference with intractable likelihood.
However, KSD-Bayes is no panacea and caution must be taken to avoid certain pathologies of
KSD-Bayes, which we highlight in Section 3.5.

The paper is structured as follows: Section 2 contains necessary background on generalised
Bayesian inference, Stein discrepancy, and robustness in the Bayesian context. Section 3 presents
the KSD-Bayes methodology, including conjugacy of the generalised posterior under an exponen-
tial family likelihood. Section 4 elucidates the robustness and asymptotic properties of KSD-Bayes.
Guidance for practical application of KSD-Bayes is contained in Section 5. The experimental
results and empirical assessments are outlined in Section 6, and we draw our conclusions in
Section 7. Code to reproduce all results in this paper can be downloaded from: https://github.
com/takuomatsubara/KSD-Bayes.

https://github.com/takuomatsubara/KSD-Bayes
https://github.com/takuomatsubara/KSD-Bayes
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2 BACKGROUND

First we provide a short summary of generalised Bayesian inference and Stein discrepancies,
putting in place a standing assumption on the domains in which data and parameters are
contained:

Standing Assumptions 1: The topological space , in which the data are contained, is locally
compact and Hausdorff. The set Θ ⊆ Rp, in which parameters are contained, is Borel.

2.1 Notation

Measure theoretic notation: For a locally compact Hausdorff space such as  , we let () denote
the set of all Borel probability measures on  . A point mass at x is denoted 𝛿x ∈ (). If 
is equipped with a reference measure, then we abuse notation by writing p ∈ () to indicate
that the distribution with p.d.f. p is an element of (). For P ∈ (), we occasionally over-
load notation by denoting by Lq( ,P) both the set of functions f ∶  → R for which ||f ||Lq( ,P) ∶=
(∫ |f |qdP)1∕q < ∞ and the normed space in which two elements f , g ∈ Lq( ,P) are identified if
they are P-almost everywhere equal. If P is a Lebesgue measure, we simply write Lq() instead
of Lq( ,P). Let S(Rd) be the set of all Borel probability measures P supported on Rd, admitting
an everywhere positive p.d.f. p and continuous partial derivatives x → (𝜕∕𝜕x(i))p(x).

Real analytic notation: The Euclidean norm on Rd is denoted || ⋅ ||2. The set of continuous
functions f ∶  → R is denoted C(). We denote by C1

b(R
d) the set of functions f ∶ Rd → R

such that both f and the partial derivatives x → (𝜕∕𝜕x(i))f (x) are bounded and continuous on
Rd. We also denote by C1,1

b (Rd × Rd) the set of bivariate functions f ∶ Rd × Rd → R such that
both f and the partial derivatives (x, x′) → (𝜕∕𝜕x(i))(𝜕∕𝜕x′(j))f (x, x′) are bounded and continuous on
Rd × Rd. For an arbitrary set() of functions f ∶  → R, denote by( ;Rk) the set of Rk-valued
functions whose components belong to (). Let ∇ and ∇⋅ be the gradient and the divergence
operators in Rd. For functions with multiple arguments, we sometimes use subscripts to indi-
cate the argument to which the operator is applied (e.g. ∇xf (x, y)). For f an Rd-valued function,
[∇f (x)](I,j) ∶= (𝜕∕𝜕x(i))f(j)(x) and ∇ ⋅ f (x) ∶=

∑d
i=1(𝜕∕𝜕x(i))f(i)(x). For f an Rd×d-valued function,

[∇f (x)](i,j,k) ∶= (𝜕∕𝜕x(i))f(j,k)(x) and [∇ ⋅ f (x)](i) ∶=
∑d

j=1(𝜕∕𝜕x(j))f(i,j)(x).

2.2 Generalised Bayesian inference

Consider a dataset consisting of independent random variables {xi}n
i=1 generated from P ∈ (),

together with a statistical model P𝜃 ∈ () for the data, with p.d.f. p𝜃 , indexed by a parameter of
interest 𝜃 ∈ Θ. The Bayesian statistician elicits a prior 𝜋 ∈ (Θ), which may reflect a priori belief
about the parameter 𝜃 ∈ Θ, and determines their a posteriori belief according to

𝜋n(𝜃) ∝ 𝜋(𝜃)
n∏

i=1
p𝜃(xi) = 𝜋(𝜃) exp

{ n∑
i=1

log p𝜃(xi)

}
. (1)

In the M-closed setting there exists 𝜃0 ∈ Θ for which P = P𝜃0 , and the Bayesian update is optimal
from an information-theoretic perspective (see Williams, 1980; Zellner, 1988). Optimal processing
of information is a desirable property, but in applications the assumption of adequate prior and
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model specification is often violated. This has inspired several lines of research, including (but not
limited to) strategies for the robust specification of prior belief (Berger et al., 1994), the so-called
safe Bayes approach (Grünwald, 2011, 2012; Grünwald & van Ommen, 2017; de Heide et al., 2020),
power posteriors (e.g. Holmes & Walker, 2017), coarsened posteriors (Miller & Dunson, 2019),
bagged posteriors (Huggins & Miller, 2020), 𝜌-posteriors (Baraud & Birg”e, 2020) and Bayesian
inference based on scoring rules (Giummolè et al., 2019). A particularly versatile approach to
robustness, which encompasses most of the above, is generalised Bayesian inference (Bissiri et al.,
2016) (see also the earlier work of Chernozhukov & Hong, 2003). This approach constructs a dis-
tribution, denoted 𝜋L

n , using a loss function Ln ∶ Θ → R, which may be data-dependent, and a
scaling parameter 𝛽 > 0, according to

𝜋L
n (𝜃) ∝ 𝜋(𝜃) exp {−𝛽nLn(𝜃)} . (2)

The so-called generalised posterior 𝜋L
n coincides with the Bayesian posterior 𝜋n when 𝛽 = 1

and the loss function is the negative average log-likelihood; Ln(𝜃) = − 1
n

∑n
i=1 log p𝜃(xi). As dis-

cussed in Bissiri et al. (2016); Knoblauch et al. (2019), generalised Bayesian inference admits an
optimisation-centric interpretation:

𝜋L
n = arg min

𝜌∈(Θ)

{
𝛽n E𝜃∼𝜌 [Ln(𝜃)] + KL(𝜌||𝜋)} (3)

where KL(𝜌||𝜋) denotes the Kullbac–Leibler (KL) divergence between two distributions 𝜌, 𝜋 ∈
(Θ). This perspective reveals that the standard Bayesian posterior is an implicit commitment
to a particular loss function– the negative log-likelihood– and that the weighting constant 𝛽

controls the influence of this loss relative to the prior 𝜋. In particular, under mild conditions
Ln(𝜃)

a.s.
−−−→ KL(P||P𝜃) + C as n → ∞, for a constant C independent of 𝜃, which reveals that stan-

dard Bayesian posterior concentrates around the value of 𝜃 that minimizes the KL divergence
between the data-generating distribution P and the model P𝜃 . Outside of the M-closed setting
such concentration is problematic, often leading to over-confident predictions (Bernardo & Smith,
2009).

The use of alternative, divergence-based loss functions has been demonstrated to mitigate
the negative consequences of a misspecified statistical model, as pioneered in the work on
𝛼- and 𝛽-divergences in Hooker and Vidyashankar (2014) and Ghosh and Basu (2016) and
extended to 𝛾-divergence in Nakagawa and Hashimoto (2020). See also Baraud and Birg”e
(2020). The properties of the divergence, including any potentially undesirable pathologies
associated with it, determine the properties of the generalised posterior (Jewson et al., 2018;
Knoblauch et al., 2019). These compelling theoretical results have led to considerable inter-
est in generalised Bayesian inference with divergence-based loss functions, yet the divergences
that have been considered to-date cannot be computed in the important setting of intractable
likelihood.

2.3 Stein discrepancy

In an independent line of research, Stein discrepancies were proposed in Gorham and Mackey
(2015) to provide statistical divergences that are both computable and capable of providing var-
ious forms of distributional convergence control. The approach is based on the method of Stein
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(1972), which requires the identification of a linear operator Q ∶  → L1( ,Q), depending on
a probability distribution Q ∈ () and acting on a Banach space , such that

EX∼Q[Q[h](X)] = 0 ∀h ∈ . (4)

Such an operator Q is called a Stein operator and  is called a Stein set. Given a distribution Q ∈
(), there are infinitely many operators Q satisfying (4). A convenient example is the Langevin
Stein operator (Gorham & Mackey, 2015), defined for  = Rd, Q ∈ S(Rd) and a Banach space 
of differentiable functions h ∶ Rd → Rd, as

Q[h](x) = h(x) ⋅ ∇ log q(x) + ∇ ⋅ h(x) (5)

where q is the p.d.f. of Q. Under suitable regularity conditions on ∇ log q and , the Langevin
Stein operator satisfies Equation (4); see Gorham and Mackey (2015 Proposition 1). Given P,Q ∈
() and a Stein operator Q ∶  → L1( ,Q) whose image is contained in L1( ,P), the Stein
discrepancy is defined as

SD(Q||P) ∶= sup||h||≤1

|||EX∼P

[Q[h](X)
]
− EX∼Q

[Q[h](X)
]||| = sup||h||≤1

|||EX∼P

[Q[h](X)
]||| , (6)

where the last equality follows directly from Equation (4). Under mild assumptions, Stein discrep-
ancy defines a statistical divergence between two probability distributions P,Q ∈ (), meaning
that SD(Q||P) ≥ 0 with equality if and only if P = Q; see Proposition 1 and Theorem 2 in Barp
et al. (2019). Under slightly stronger assumptions, Stein discrepancy provides convergence con-
trol, meaning that a sequence (Qn)∞n=1 ⊂ () converges in a specified sense to Q whenever
SD(Q||Qn) → 0; see Gorham and Mackey (2015 Theorem 2, Proposition 3) and Gorham and
Mackey (2017) Theorem 8, Proposition 9). An important property of Stein discrepancies that we
exploit in this work is that, unlike other divergences, Stein discrepancies can often be computed
with an un-normalised representation of Q. For example, the Stein operators in Equation (5)
depend on Q only through ∇ log q, which can be computed when q is provided in a form that
involves an intractable normalisation constant. The suitability of Stein discrepancy for use in
generalised Bayesian inference has not previously been considered, and this is our focus next.

3 METHODOLOGY

Highly structured data, or data belong to a high-dimensional domain  , are often associated
with an intractable likelihood. Moreover, the difficulty of modelling such data means that mod-
els will typically be misspecified. Thus there is a pressing need for Bayesian methods that are
both robust and compatible with intractable likelihood. To this end, in Section 3.1 we introduce
SD-Bayes, a generalised Bayesian procedure with a loss function based on Stein discrepancy.
There are numerous Stein discrepancies that can be considered, and in Section 3.2 we focus in
detail on KSD due to the possibility of performing fully conjugate inference in the context of
exponential family models, as described in Section 3.3. Non-conjugate inference and its computa-
tional cost are discussed in Section 3.4. However, all statistical divergences have their pathologies,
and one must bear in mind the pathologies of KSD when using KSD-Bayes; see the discussion
in Section 3.5.
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3.1 SD-Bayes

Suppose we are given a prior p.d.f. 𝜋 ∈ (Θ) and a statistical model {P𝜃|𝜃 ∈ Θ} ⊂ (). Let
{xi}n

i=1 be independent observations generated from P ∈ () and let Pn ∶= 1
n

∑n
i=1𝛿xi be the

empirical measure associated to this dataset. In this context, the SD-Bayes generalised posterior
can now be defined:

Definition 1 (SD-Bayes). For each 𝜃 ∈ Θ, select a Stein operator P𝜃
and denote the associated

Stein discrepancy SD(P𝜃||⋅). Let 𝛽 ∈ (0, ∞). Then the SD-Bayes generalised posterior is
defined as

𝜋D
n (𝜃) ∝ 𝜋(𝜃) exp

{
−𝛽nSD2(P𝜃||Pn)

}
(7)

where 𝜃 ∈ Θ.

Here the ‘D’ superscript stands for discrepancy. Comparing (7) to (2) confirms that SD-Bayes is
a generalised Bayesian method with loss function Ln(𝜃) = SD2(P𝜃||Pn). There is an arbitrariness to
using squared discrepancy, as opposed to another power of the discrepancy, but this choice turns
out to be appropriate for the discrepancies considered in Section 3.2, ensuring that fluctuations of
Ln(𝜃) about its expectation are (n−1∕2), analogous to the standard Bayesian loss, and permitting
tractable computation (Section 3.3) and analysis (Section 4). A discussion of how the weight 𝛽
should be selected is deferred until after our theoretical analysis, in Section 5.

3.2 KSD-Bayes

Compared to other Stein discrepancies, KSDs are attractive because they enable the supremum in
Equation (6) to be explicitly computed. To define KSD, we require the concept of a (matrix-valued)
kernel K ∶  ×  → Rd×d; the precise definition is contained in Appendix A. For our purposes
in the main text, it suffices to point out that any kernel K has a uniquely associated Hilbert
space of functions f ∶  → Rd, called a vector-valued reproducing kernel Hilbert space (v-RKHS).
This v-RKHS constitutes the Stein set in KSD, and we therefore denote this v-RKHS as . The
associated norm and inner product will respectively be denoted || ⋅ || and ⟨⋅, ⋅⟩ .

Let Q be a Stein operator and denote the action of Q on both the first and second argument1

of a kernel K as QQK. The following result is a generalisation of the original construction of
KSD (Chwialkowski et al., 2016; Liu et al., 2016) to general Stein operators.

Assumption 1 Let  be a v-RKHS with kernel K ∶  ×  → Rd×d. For Q ∈ (), let Q be
a Stein operator with domain . For each fixed x ∈  , we assume h → Q[h](x) is a
continuous linear functional on . Further, we assume that EX∼P

[QQK(X ,X)
]
< ∞.

Proposition 1 (Closed Form of Stein Discrepancy). Under Assumption 1, we have

SD2(Q||P) = KSD2(Q||P) ∶= EX ,X ′∼P

[QQK(X ,X ′)
]

where X and X ′ are independent.

1More precisely, denoting the j-th column of K(x, x′) ∈ Rd×d by K−,j(x, x′) ∈ Rd, we define
QK(x, x′) ∶= [QK−,1(x, x′), … ,QK−,d(x, x′)] ∈ Rd where QK−,j(x, x′) ∶= Q[K−,j(⋅, x′)](x) is an action of Q for the
Rd-valued function K−,j(⋅, x′) at each x′ ∈  . We further define QQK(x, x′) ∶= Q[ QK(x, ⋅) ](x′) as an action of Q

for the Rd-valued function QK(x, ⋅) at each x ∈  .



MATSUBARA et al. 7

The proof is in Appendix B.1. Note that it is straightforward to verify the assumption that
h → Q[h](x) is a continuous linear functional for each fixed x ∈  once the form of Q is speci-
fied; see Appendix B.1.2. KSD is attractive for SD-Bayes since it enables the generalised posterior
in Definition 1 to be explicitly computed:

KSD2(P𝜃||Pn) =
1

n2

n∑
i=1

n∑
j=1

P𝜃
P𝜃

K(xi, xj). (8)

The resulting generalised posterior will be referred to as KSD-Bayes in the sequel. The explicit
form of P𝜃

P𝜃
K depends on P𝜃

. The case of  = Rd and the Langevin Stein operator in
Equation (5) is given by

P𝜃
P𝜃

K(x, x′) = ∇ log p𝜃(x) ⋅ K(x, x′)∇ log p𝜃(x′) + ∇x ⋅
(
∇x′ ⋅ K(x, x′)

)
+ ∇ log p𝜃(x) ⋅

(
∇x′ ⋅ K(x, x′)

)
+ ∇ log p𝜃(x′) ⋅

(
∇x ⋅ K(x, x′)

)
(9)

where p𝜃 is a p.d.f. for P𝜃 ∈ S(Rd). Clearly, this expression is straightforward to evaluate2

whenever we have access to derivatives of the kernel and the log density. If the derivatives are
analytically tedious, the expression above is amenable to the use of automatic differentiation tools
(Baydin et al., 2018).

Whether KSD-Bayes is reasonable or not hinges crucially on whether KSD is a meaningful way
to quantify the difference between the discrete distribution Pn and the parametric model P𝜃 . Suf-
ficient conditions for convergence control have been established for the Langevin Stein operator,
under which the convergence of KSD(P𝜃||Pn) implies the weak convergence of Pn to P𝜃 (Gorham
& Mackey, 2017, Theorem 8). This provides some preliminary assurance that KSD-Bayes may
work; we present formal theoretical guarantees in Section 4. These theoretical results motivate
specific choices of K for use in KSD-Bayes, which we discuss in Section 5.

3.3 Conjugate inference for exponential family models

The generalised posterior can be exactly computed in the case of an natural exponential family
model when a conjugate prior is used. Let 𝜂 ∶ Θ → Rk and t ∶  → Rk be any sufficient statistic
for some k ∈ N and let a ∶ Θ → R and b ∶  → R. An exponential family model has p.m.f. or
p.d.f. (with respect to an appropriate reference measure on ) of the form

p𝜃(x) = exp(𝜂(𝜃) ⋅ t(x) − a(𝜃) + b(x)). (10)

This includes a wide range of distributions with an intractable normalisation constant exp (a(𝜃)),
used in statistical applications such as random graph estimation (Yang et al., 2015), spin glass

2For maximum clarity, the vector calculus notation is expanded as follows:

P𝜃
P𝜃

K(x, x′) =
d∑

i,j=1

𝜕

𝜕x(i)
log p𝜃(x)

[
K(x, x′)

]
(i,j)

𝜕

𝜕x(j)
log p𝜃(x) +

𝜕2

𝜕x(i)𝜕x′
(j)

[
K(x, x′)

]
(i,j)

+ 𝜕

𝜕x(i)
log p𝜃(x)

𝜕

𝜕x′
(j)

[
K(x, x′)

]
(i,j) +

𝜕

𝜕x′
(j)

log p𝜃(x′) 𝜕

𝜕x(i)

[
K(x, x′)

]
(i,j)
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models (Besag, 1974) and the kernel exponential family model (Canu & Smola, 2006). The model
in Equation (10) is called natural when the canonical parametrisation 𝜂(𝜃) = 𝜃 is employed.

Proposition 2 Consider  = Rd and the Langevin Stein operator P𝜃
in Equation (5), where P𝜃 is

the exponential family in Equation (10), and a kernel K ∈ C1,1
b (Rd × Rd;Rd×d). Assuming the

prior has a p.d.f. 𝜋, the KSD-Bayes generalised posterior has a p.d.f.

𝜋D
n (𝜃) ∝ 𝜋(𝜃) exp (−𝛽n{𝜂(𝜃) ⋅ Λn𝜂(𝜃) + 𝜂(𝜃) ⋅ 𝜈n}) ,

where Λn ∈ Rk×k and 𝜈n ∈ Rk are defined as

Λn ∶= 1
n2

n∑
i,j=1

∇t(xi) ⋅ K(xi, xj)∇t(xj),

𝜈n ∶= 1
n2

n∑
i,j=1

∇t(xi) ⋅ (∇xj ⋅ K(xi, xj)) + ∇t(xj) ⋅ (∇xi ⋅ K(xi, xj)) + 2∇t(xi) ⋅ K(xi, xj)∇b(xj).

For a natural exponential family we have 𝜂(𝜃) = 𝜃, and the prior 𝜋(𝜃) ∝ exp(− 1
2
(𝜃 − 𝜇) ⋅

Σ−1(𝜃 − 𝜇)) leads to a generalised posterior

𝜋D
n (𝜃) ∝ exp

(
−1

2
(𝜃 − 𝜇n) ⋅ Σ−1

n (𝜃 − 𝜇n)
)
,

where Σ−1
n ∶= Σ−1 + 2𝛽nΛn and 𝜇n ∶= Σ−1

n (Σ−1𝜇 − 𝜈n).

The proof is in Appendix B.2. That the Gaussian distribution will be conjugate in KSD-Bayes,
even in the presence of intractable likelihood, is remarkable and notably different from the
classical Bayesian case, albeit at a (n2) computational cost. Strategies to further reduce this com-
putational cost are discussed in Section 3.4. It is well known that certain minimum discrepancy
estimators, such as the score matching estimator (Hyvärinen, 2005) and the minimum KSD estima-
tor (Barp et al., 2019), have closed forms in the case of an exponential family models; it is similar
reasoning that has led us to Proposition 2.

3.4 Non-conjugate inference and computational cost

To access the generalised posterior in the non-conjugate case, existing MCMC algorithms for
tractable likelihood can be used3. The per-iteration computational cost appears to be (n2) since,
for each state 𝜃 visited along the sample path, the KSD in Equation (8) must be evaluated. How-
ever, various strategies enable this computational cost to be mitigated. For concreteness of the
discussion that follows, we consider the Langevin Stein operator, for which

(8)
+C
= 1

n2

n∑
i=1

n∑
j=1

{
∇ log p𝜃(xi) ⋅ K(xi, xj)∇ log p𝜃(xj) + ∇ log p𝜃(xi) ⋅ ∇xj ⋅ K(xi, xj)

+∇ log p𝜃(xj) ⋅ ∇xi ⋅ K(xi, xj)

}

where the equality holds up to a 𝜃-independent constant.

3For example, the Gaussian form of the data-dependent term in Proposition 2 suggests that elliptical slice sampling may
work well when the natural parametrisation of the exponential family is employed (Murray et al., 2010).
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Memoisation: The above expression depends on 𝜃 only through the terms {∇ log p𝜃(xi)}n
i=1, of

which there are(n), while all other terms involving K, of which there are(n2), can be computed
once and memoised. The double summation still necessitates (n2) computational cost but this
operation is embarrassingly parallel.

Finite rank kernel: Computational cost can be reduced from (n2) to (n) using a finite
rank kernel. A useful and important example is the rank one kernel K(x, x′) = Id, which reduces
(8) to

(8)
+C
=

‖‖‖‖‖ 1
n

n∑
i=1

∇ log p𝜃(xi)
‖‖‖‖‖

2

and is closely related to divergences used in score matching (Hyvärinen, 2005). Random finite
rank approximations of the kernel can also considered in this context (Huggins & Mackey, 2018).

Stochastic approximation: The construction of low-cost unbiased estimators for (8) is
straight-forward via sampling mini-batches from the dataset. This enables a variety of exact and
approximate algorithms for posterior approximation to be exploited (e.g. Ma et al., 2015). Alter-
natively, Huggins and Mackey (2018); Gorham et al. (2020) argued for stochastic approximations
of KSD that could be used.

3.5 Limitations of KSD-Bayes

A divergence D(Q||P) induces an information geometry (Amari, 1997), encoding a particular
sense in which Q can be considered to differ from P. As such, all divergence exhibit patholo-
gies, meaning that certain characteristics that distinguish Q from P are less easily detected. A
documented pathology of gradient-based discrepancies, including the Langevin KSD, is their
insensitivity to the existence of high-probability regions which are well-separated; see (Gorham
et al. 2019 Section 5.1) and Wenliang (2020). To see this, consider a Gaussian mixture model

p𝜃(x) =
𝜃√
2𝜋

exp
(
−(x − 𝜇)2

2

)
+ (1 − 𝜃)√

2𝜋
exp

(
−(x + 𝜇)2

2

)
(11)

where 𝜃 ∈ [0, 1] specifies the mixture ratio and 𝜇 ∈ R controls the separation between the two
components. If the two components are well-separated, that is, 𝜇 ≫ 1, the gradient ∇ log p𝜃

becomes insensitive to 𝜃 and hence a gradient-based divergence such as KSD will be insensitive to
𝜃, as demonstrated in Figure 1. For this reason, caution is warranted when gradient-based discrep-
ancies are used. However, in practice direct inspection of the dataset and knowledge of how P𝜃

is parametrised can be used to ascertain whether either distribution is multi-modal. Our applica-
tions in Section 6 are not expected to be multi-modal (with the exception of the kernel exponential
family in Section 6.3 which was selected to demonstrate the insensitivity to mixing proportions
of KSD-Bayes).

A second limitation of KSD-Bayes is non-invariance to a change of coordinates in the
dataset. This is a limitation of loss-based estimators in general. In Section 5.1 we recommend a
data-adaptive choice of kernel, which serves to provide approximate invariance to affine transfor-
mations of the dataset. As usual in statistical analyses, we recommend post-hoc assessment of the
sensitivity of inferences to perturbations of the dataset.
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(a) (b) (c)

(e) (f) (g)

(d)

(h)

F I G U R E 1 Illustrating the insensitivity to mixture proportions of KSD. anels (a-c,e-g) display the density
function p𝜃(x) from Equation (11) together with the gradient ∇ log p𝜃(x), the latter rescaled to fit onto the same
plot. Panels (d,h) display the discrepancy KSD2 (P𝜃||Pn

)
, where Pn is an empirical distribution of n = 1000

samples from the model with 𝜃 = 0.5

A third limitation of KSD-Bayes is the loss of efficiency that can occur in settings where the
data are high-dimensional. Sliced versions of KSD have been proposed to address the curse of
dimension for KSD (Gong et al., 2021), but to limit scope we do not consider the combination of
slicediscrepanciess and KSD-Bayes in this work.

Despite these limitations, KSD-Bayes represents a flexible and effective procedure for gener-
alised Bayesian inference in the context of an intractable likelihood. Our attention turns next to
theoretical analysis of KSD-Bayes.

4 THEORETICAL ASSESSMENT

This section contains a comprehensive theoretical treatment of KSD-Bayes. The main results are
posterior consistency and a Bernstei–von Mises theorem in Section 4.2, and global bias-robustness of
the generalised posterior in Section 4.3. In obtaining these results we have developed novel inter-
mediate results concerning an important V-statistic estimator for KSD; these are anticipated to be
of independent interest, so we present these in Section 4.1 of the main text. Note that all theory is
valid for the misspecified regime where P need not be an element of {P𝜃 ∶ 𝜃 ∈ Θ}. Moreover, the
results in Sections 4.1 and 4.2 hold for general data domains  . For the entirety of this section we
set 𝛽 = 1, with all results for 𝛽 ≠ 1 immediately recovered by replacing K with 𝛽K. The results of
this section motivate a specific choice for 𝛽 that is described in Section 5.

Standing Assumptions 2: The dataset {xi}n
i=1 consists of independent samples generated

from P ∈ (), with empirical distribution denoted Pn ∶= (1∕n)
∑n

i=1𝛿xi . The set Θ ⊆ Rp is open,
convex and bounded4. Assumption 1 holds with Q = P𝜃 for every 𝜃 ∈ Θ.

Notation: For shorthand, let 𝜕1, 𝜕2 and 𝜕3 denote the partial derivatives (𝜕∕𝜕𝜃(h)),
(𝜕2∕𝜕𝜃(h)𝜕𝜃(k)) and (𝜕3∕𝜕𝜃(h)𝜕𝜃(k)𝜕𝜃(l)) for h, k, l ∈ {1, … , p}, where to reduce notation the

4The assumption that Θ is bounded is used only to simplify the statement of our results. For the case where Θ is not
bounded, it is sufficient for Assumptions 2 and 3 to hold on an open, convex and bounded subset U ⊂ Θ. Then it can be
verified that Lemmas 2 and 3 hold on the bounded subset U, and that all the other results hold on Θ.
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indices (h, k, l) are left implicit. The gradient and Hessian operators are [∇𝜃](h) = (𝜕∕𝜕𝜃(h)) and
[∇2

𝜃
](h,k) = (𝜕2∕𝜕𝜃(h)𝜕𝜃(k)).

4.1 Minimum KSD estimators

First, we present novel analysis of the V-statistic KSD2(P𝜃||Pn). A related U-statistic estimator of
KSD was analysed in Barp et al. (2019) but this is only an estimate of KSD2(P𝜃||P), rendering it
unsuitable for generalised Bayesian inference, which requires losses to be lower-bounded (Jewson
et al., 2018). Furthermore, our results for the V-statistic do not depend on a specific form of P𝜃

,
in contrast to Barp et al. (2019) who considered the diffusion Stein operator, and may hence be of
independent interest.

Despite the bias present in a V-statistic, our standing assumptions are sufficient to derive the
following consistency result:

Lemma 1 (a.s. Pointwise Convergence). For each 𝜃 ∈ Θ,

KSD2(P𝜃||Pn) − KSD2(P𝜃||P) a.s.
→ 0.

The proof is contained in Appendix B.3.1. If we impose further regularity, we can obtain a
uniform convergence result. It will be convenient to introduce a collection of assumptions that
are indexed by rmax ∈ {0, 1, 2, …}, as follows:

Assumption 2 (rmax). For all integers 0 ≤ r ≤ rmax, the following conditions hold:

1. the map 𝜃 → 𝜕rP𝜃
[h](x) exists and is continuous, for all h ∈  and x ∈  ;

2. the map h → (𝜕rP𝜃
)[h](x) is a continuous linear functional on , for each x ∈  ;

3. EX∼P[sup𝜃∈Θ((𝜕rP𝜃
)(𝜕rP𝜃

)K(X ,X))] < ∞,

where (𝜕0P𝜃
) ∶= P𝜃

; note that (2) with r = 0 is implied from Standing Assumption 2.

In the expression above, the first and second (𝜕rP𝜃
) are applied, respectively, to the first and

second argument of K, as with P𝜃
P𝜃

K(x, x). These assumptions become concrete when consid-
ering a specific Stein operator; the case of the Langevin Stein operator is presented in Appendix
B.3.5.

Lemma 2 (a.s. Uniform Convergence). Suppose Assumption 2 (rmax = 1) holds. Then

sup
𝜃∈Θ

|||KSD2(P𝜃||Pn) − KSD2(P𝜃||P)||| a.s.
→ 0.

The proof is contained in Appendix B.3.2.
Our next results concern consistency and asymptotic normality of the estimator 𝜃n that

minimises the V-statistic in Equation (8).

Assumption 3 There exist minimisers 𝜃n of KSD(P𝜃||Pn) for all sufficiently large n ∈ N, and
there exists a unique 𝜃∗ s.t. KSD(P𝜃∗ ||P) < inf{𝜃∈Θ∶||𝜃−𝜃∗||2≥𝜖} KSD(P𝜃||P) for any 𝜖 > 0.

Lemma 3 (Strong Consistency). Suppose Assumptions 2 (rmax = 1) and 3 hold. Then

𝜃n
a.s.
→ 𝜃∗.
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The proof is contained in Appendix B.3.3. For the well-specified case where ∃𝜃0 s.t. P𝜃0 = P,
the uniqueness of 𝜃∗ holds automatically if KSD is a proper divergence, that is, KSD(P||Q) = 0 ⟺
P = Q. For example, if the preconditions of (Barp et al. 2019 Proposition 1) are satisfied and the
parametrisation 𝜃 → P𝜃 is injective, the minimum is uniquely attained.

Let H∗ ∶= ∇2
𝜃
KSD2(P𝜃||P)|𝜃=𝜃∗ and J∗ ∶= EX∼P[S(X , 𝜃∗)S(X , 𝜃∗)⊤], where we define the col-

umn vector S(x, 𝜃) ∶= EX∼P[∇𝜃(P𝜃
P𝜃

K(x,X))]. Asymptotic normality of 𝜃n can be established if
further regularity is imposed:

Lemma 4 (Asymptotic Normality). Suppose Assumptions 2 (rmax = 3) and 3 hold. If H∗ is
non-singular,

√
n (𝜃n − 𝜃∗)

d
→  (0,H−1

∗ J∗H−1
∗ )

where
d
→ denotes the convergence in distribution.

The proof is contained in Appendix B.3.4. These preliminaries on minimum KSD estimation
are required for our main results on KSD-Bayes, presented next.

4.2 Posterior consistency and Bernstein–von mises

Armed with the technical results of Section 4.1, we can now establish consistency of KSD-Bayes
and a Bernstein–von Mises result. Our consistency result requires a prior mass condition, similar
to that of Cherief-Abdellatif and Alquier (2020):

Assumption 4 The prior is assumed to

1. admit a p.d.f. 𝜋 that is continuous at 𝜃∗, with 𝜋(𝜃∗) > 0;
2. satisfy ∫Bn(𝛼1)

𝜋(𝜃)d𝜃 ≥ e−𝛼2
√

n for some constants 𝛼1, 𝛼2 > 0,

where we define Bn(𝛼1) ∶= {𝜃 ∈ Θ ∶ |KSD2(P𝜃||P) − KSD2(P𝜃∗ ||P)| ≤ 𝛼1∕
√

n}.

Assumption 4 specifies the amount of prior mass in a neighbourhood around the
population-optimal value 𝜃∗ that is required. This is not a strong assumption and Appendix B.7
demonstrates how each of Assumptions 2 to 4 can be verified in the case of an exponential family
model.

Theorem 1 (Posterior Consistency). Suppose Assumptions 3 and 4 hold. Let 𝜎(𝜃) ∶=
EX∼P

[P𝜃
P𝜃

K(X ,X)
]
. Then, for all 𝛿 ∈ (0, 1],

P

(||||∫Θ
KSD2(P𝜃||P)𝜋D

n (𝜃)d𝜃 − KSD2(P𝜃∗ ||P)|||| > 𝛿

)
≤ 𝛼1 + 𝛼2 + 8 sup𝜃∈Θ 𝜎(𝜃)

𝛿
√

n

where the probability is with respect to realisations of the dataset {xi}n
i=1

i.i.d.∼ P.

The proof is contained in Appendix B.4.
Next, we derive a Bernstein–von Mises result. The pioneering work of Hooker and

Vidyashankar (2014) and Ghosh and Basu (2016) established Bernstein–von Mises results for
generalised posteriors defined by 𝛼- and 𝛽-divergences. Unfortunately, the form of KSD is rather
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different and different theoretical tools are required to tackle it. Miller (2021) introduced a general
approach to deriving Bernstein–von Mises results for generalised posteriors, demonstrating how
the assumptions can be verified for several additive loss functions Ln. Our proof builds on Miller
(2021), demonstrating that the required assumptions can also be satisfied by the non-additive
KSD loss function in Equation (8).

Theorem 2 (Bernstein–von Mises). Suppose Assumption 2 (rmax = 3), 3, and part (1) of 4 hold.
Let 𝜋̂D

n the p.d.f. of the random variable
√

n(𝜃 − 𝜃n) for 𝜃 ∼ 𝜋D
n , viewed as a p.d.f. on Rp. If H∗

is nonsingular,

∫Rp

|||||𝜋̂D
n (𝜃) −

1
det(2𝜋H−1

∗ )1∕2
exp

(
−1

2
𝜃 ⋅ H∗𝜃

)||||| d𝜃
a.s.
→ 0,

where the a.s. convergence is with respect to realisations of the dataset {xi}n
i=1.

The proof is contained in Appendix B.5. These positive results are encouraging, as they indi-
cate the limitations of KSD-Bayes described in Section 3.5 are at worst a finite sample size effect.
However, we note that the asymptotic precision matrix H∗ from Theorem 2 differs to the preci-
sion matrix H∗J−1

∗ H∗ of the minimum KSD estimator from Lemma 4; this is analogous to fact
that Bayesian credible sets can have asymptotically incorrect frequentist coverage if the statistical
model is misspecified (Kleijn & van der Vaart, 2012; Müller, 2013). This point will be addressed
in Section 5.2.

Remark 1 The analysis in Sections 4.1 and 4.2 covers general domains  and Stein operators
P. Henceforth, in the main text we restrict attention to  = Rd, but the case of a dis-
crete domain  , and the identification of an appropriate Stein operator in this context, are
discussed in Appendix D.5.

4.3 Global Bias-robustness of KSD-Bayes

An important property of KSD-Bayes is that, through a suitable choice of kernel, the gener-
alised posterior can be made robust to contamination in the dataset. This robustness will now be
rigorously established.

Consider the ε-contamination model Pn,𝜖,y = (1 − 𝜖)Pn + 𝜖𝛿y, where y ∈  and 𝜖 ∈ [0, 1] (see
Huber & Ronchetti, 2009). In other words, the datum y is considered to be contaminating the
dataset {xi}n

i=1. Robustness in the generalised Bayesian setting has been considered in Hooker
and Vidyashankar (2014), Ghosh and Basu (2016) and Nakagawa and Hashimoto (2020). In what
follows we write Ln(𝜃) = L(𝜃;Pn) to make explicit the dependence of the loss function Ln on the
dataset Pn. Following Ghosh and Basu (2016), we consider a generalised posterior based on a
(contaminated) lossL(𝜃;Pn,𝜖,y)with density𝜋L

n (𝜃;Pn,𝜖,y), and define the posterior influence function

PIF(y, 𝜃,Pn) ∶=
d
d𝜖

𝜋L
n (𝜃;Pn,𝜖,y)|𝜖=0. (12)

Here the notation 𝜋L
n (𝜃;Pn,𝜖,y) emphasises the dependence of the generalised posterior on

the (contaminated) dataset Pn,𝜖,y. A generalised posterior 𝜋L
n is called globally bias-robust if

sup𝜃∈Θ supy∈ |PIF(y, 𝜃,Pn)| < ∞, meaning that the sensitivity of the generalised posterior to the
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contaminant y is limited. The following lemma provides general sufficient conditions for global
bias-robustness to hold:

Lemma 5 Let 𝜋L
n be a generalised Bayes posterior for a fixed n ∈ N with a loss L(𝜃;Pn) and a prior 𝜋.

Suppose L(𝜃;Pn) is lower-bounded and 𝜋(𝜃) is upper-bounded over 𝜃 ∈ Θ, for any Pn. Denote
DL(y, 𝜃,Pn) ∶= (d∕d𝜖)L(𝜃;Pn,𝜖,y)|𝜖=0. Then 𝜋L

n is globally bias-robust if, for any Pn,

1. sup𝜃∈Θ supy∈ |DL(y, 𝜃,Pn)|𝜋(𝜃) < ∞, and
2. ∫Θ supy∈ |DL(y, 𝜃,Pn)|𝜋(𝜃)d𝜃 < ∞.

The proof is contained in Appendix B.6.1. Note that standard Bayesian inference does not sat-
isfy the conditions of Lemma 5 in general. Indeed, when L(𝜃;Pn) is the negative log likelihood,
DL(y, 𝜃,Pn) = log p𝜃(y) −

∑n
i=1 log p𝜃(xi), and the term log p𝜃(y) can be unbounded over y ∈  .

This can occur even if the statistical model is not heavy-tailed, e.g. for a normal location model
p𝜃 on  = Rd. In contrast, the kernel K in KSD-Bayes provides a degree of freedom which can be
leveraged to ensure that the conditions of Lemma 5 are satisfied; the specific form of DL(y, 𝜃,Pn)
for KSD-Bayes is derived in Appendix B.6.2. This enables us to derive sufficient conditions on K
for global bias-robustness of KSD-Bayes, which we now present.

Theorem 3 (Globally Bias-Robust). For each 𝜃 ∈ Θ, let P𝜃 ∈ S(Rd) and let P𝜃
denote the

Langevin Stein operator in Equation (5). Let K ∈ C1,1
b (Rd × Rd;Rd×d). Suppose that 𝜋 is

bounded over Θ. If there exists a function 𝛾 ∶ Θ → R such that

sup
y∈Rd

(∇y log p𝜃(y) ⋅ K(y, y)∇y log p𝜃(y)) ≤ 𝛾(𝜃) (13)

and, in addition, sup𝜃∈Θ |𝜋(𝜃)𝛾(𝜃)| < ∞ and ∫Θ 𝜋(𝜃)𝛾(𝜃)d𝜃 < ∞, then KSD-Bayes is globally
bias-robust.

The proof is contained in Appendix B.6.3. The preconditions of Theorem 3 can be satisfied
through an appropriate choice of kernel K; see Section 5.1. A comparison of KSD-Bayes to existing
robust generalised Bayesian methodologies for tractable likelihood can be found in Appendix D.4.
The difference in performance of robust and non-robust instances of KSD-Bayes is explored in
detail in Section 6.

5 DEFAULT SETTINGS FOR KSD-BAYES

The previous section considered 𝛽 to be fixed, but an appropriate selection of 𝛽 is essential to
ensure the generalised posterior is calibrated. The choice of 𝛽 is closely related to the choice of
a Stein operator P𝜃

and kernel K; the purpose of this section is to recommend how these quan-
tities are selected. If the recommendations of this section are followed, then KSD-Bayes has no
remaining degrees of freedom to be specified.

5.1 Default settings for P𝜽
and K

For Euclidean domains  = Rd, we advocate the default use of the Langevin Stein operator P𝜃

in Equation (5) and a kernel of the form
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K(x, x′) = M(x)M(x′)⊤(
1 + (x − x′)⊤Σ−1(x − x′)

)𝛾 , (14)

where Σ is a positive definite matrix, 𝛾 ∈ (0, 1) is a constant, and M ∈ C1
b(R

d;Rd×d) will be called a
matrix-valued weighting function.5 For M(x) = Id, (14) is called an inverse multi-quadratic (IMQ)
kernel. The IMQ kernel and the Langevin Stein operator have appealing properties in the context
of KSD. First, under mild conditions on P, KSD(P||Pn) → 0 implies that Pn converges weakly to P

(Chen et al., 2019, Theorem 4). This convergence control ensures that small values of KSD(P𝜃||Pn)
imply similarity between P𝜃 and Pn in the topology of weak convergence, so that minimising
KSD is meaningful.6 Secondly, and on a more practical level, the combination of Stein operator
and IMQ kernel, with 𝛾 = 1/2, was found to work well in previous studies (Chen et al., 2019;
Riabiz et al., 2021); we therefore also recommend 𝛾 = 1/2 as a default. The weighting function
M(x) facilitates an efficiency-robustness trade-off: If global bias robustness is not required then we
recommend setting M(x) = Id as a default, which enjoys the aforementioned properties of KSD.
If global bias-robustness is required then we recommend selecting M(x) such that the supremum
in Equation (13) exists and the preconditions of Theorem 3 are satisfied; see the worked examples
in Section 6 and the further discussion in Appendix D.3.

The theoretical analysis of Section 4 assumed that K is fixed, but in our experiments we follow
standard practice in the kernel methods community and recommend a data-adaptive choice of the
matrix Σ. All experiments we report used the 𝓁1-regularised sample covariance matrix estimator
of Ollila and Raninen (2019). The sensitivity of KSD-Bayes to the choice of kernel parameters is
investigated in Appendix D.1.

5.2 Default setting for 𝜷

For a simple normal location model, as described in Section 6.1, and in a well-specified set-
ting, the asymptotic variance of the KSD-Bayes posterior with 𝛽 = 1 is never smaller than that
of the standard posterior. This provides a heuristic motivation for the default 𝛽 = 1. However,
in a misspecified setting smaller values of 𝛽 are needed to avoid over-confidence in the gener-
alised posterior, taking misspecification into account; see the recent review of Wu and Martin
(2020). Here we aim to pick 𝛽 such that the scale of the asymptotic precision matrix of the gen-
eralised posterior (H∗; Theorem 2) matches that of the minimum KSD point estimator (H∗J−1

∗ H∗;
Lemma 4), an approach proposed in Lyddon et al. (2019). This ensures the scale of the gen-
eralised posterior matches the scale of the sampling distribution of a closely related estimator
whose frequentist properties can be analysed when the statistical model is misspecified. Since P

is unknown, estimators of H∗ and J∗ are required. We propose the following default for 𝛽:

𝛽 = min (1, 𝛽n) where 𝛽n =
tr(HnJ−1

n Hn)
tr(Hn)

, (15)

where the matrix H∗ is approximated using Hn ∶= ∇2
𝜃
KSD2(P𝜃||Pn)|𝜃=𝜃n , and the matrix J∗ is

approximated using

5The use of a non-constant weighting function is equivalent to replacing the Langevin Stein operator with a diffusion
Stein operator whose diffusion matrix is M(x); see Gorham et al. (2019).
6Note that other common kernels (e.g. Gaussian or Matérn kernels) fail to provide convergence control (Gorham &
Mackey, 2017, Theorem 6).
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Jn ∶= 1
n

n∑
i=1

Sn(xi, 𝜃n)Sn(xi, 𝜃n)⊤, Sn(x, 𝜃) ∶=
1
n

n∑
i=1

∇𝜃(P𝜃
P𝜃

K(x, xi)).

The minimum of 𝛽 = 1 and 𝛽 = 𝛽n taken in Equation (15) provides a safeguard against selecting a
value of 𝛽 that over-shrinks the posterior covariance matrix — a phenomenon that we observed
for the experiments reported in Sections 6.2–6.4, due to poor quality of the approximations Hn
and Jn when n is small. The above expressions are derived for the exponential family model in
Appendix B.7.

This completes our methodological and theoretical development, and next we turn to empir-
ical performance assessment.

6 EMPIRICAL ASSESSMENT

In this section, four distinct experiments are presented. The first experiment, in Section 6.1, con-
cerns a normal location model, allowing the standard posterior and our generalised posterior
to be compared and confirming our robustness results are meaningful. Section 6.2 presents a
two-dimensional precision estimation problem, where standard Bayesian computation is chal-
lenging but computation with KSD-Bayes is trivial. Then, Section 6.3 presents a 25-dimensional
kernel exponential family model, and Section 6.4 presents a 66-dimensional exponential graphi-
cal model. The kernel exponential family model allows us to explore a multi-modal dataset and to
understand the potential limitations of KSD-Bayes in that context (c.f. Section 3.5). For all experi-
ments, the default settings of Section 5 were used. An example of KSD-Bayes applied to a discrete
dataset is presented in Appendix D.5.

6.1 Normal location model

For expositional purposes we first consider fitting a normal location model P𝜃 =  (𝜃, 1) to a
dataset {xi}n

i=1. Our aim was to illustrate the robustness properties of KSD-Bayes, and we there-
fore generated the dataset using a contaminated data-generating model where, for each index
i = 1, … , n independently, with probability 1 − 𝜖 the datum xi was drawn from P𝜃 with ‘true’
parameter 𝜃 = 1, otherwise xi was drawn from Py =  (y, 1), so that y and 𝜖 control, respectively,
the nature and extent of the contamination in the dataset. The task is to make inferences for 𝜃
based on a contaminated dataset of size n = 100. The prior on 𝜃 was  (0, 1).

The standard Bayesian posterior is depicted in the leftmost panels of Figure 2, for varying 𝜖 (top
row) and varying y (bottom row). Straightforward calculation shows that the expected posterior
mean is n

n+1
[𝜃 + 𝜖(y − 𝜃)], which increases linearly as either y or 𝜖 are increased, with the other

fixed. This behaviour is evident in the leftmost panels of Figure 2. The generalised posterior from
KSD-Bayes is depicted in the central panels of Figure 2. This generalised posterior is slightly less
sensitive to contamination compared to the standard posterior. Moreover, the variance slightly
increases whenever either 𝜖 or y are increased, as a result of estimating 𝛽 (c.f. Section 5.2). In
the rightmost panels of Figure 2 we display the robust generalised posterior using the weighting
function M(x) = (1 + x2)−1∕2, intended to bound the influence of large values in the dataset. This
choice of M(x) vanishes just fast enough as |x|→∞ to ensure that the bias-robustness conditions
of Theorem 3 are satisfied; see Appendix D.3. The effect is clear from the bottom right panel of
Figure 2, where even for y = 20 (and 𝜖 fixed to a small value, 𝜖 = 0.1) the robust generalised
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F I G U R E 2 Posteriors and generalised posteriors for the normal location model. The true parameter value
is 𝜃 = 1, while a proportion 𝜖 of the data were contaminated by noise of the form  (y, 1). In the top row y = 10 is
fixed and 𝜖 ∈ {0,0.1,0.2} are considered, while in the bottom row 𝜖 = 0.1 is fixed and y ∈ {1, 10, 20} are considered

(a) (b)

F I G U R E 3 Posterior influence function for the normal location model

posterior remains centred close to the true value 𝜃 = 1. While our theoretical results relate to y and
do not guarantee robustness when 𝜖 is increased, the top right panel in Figure 2 suggests that the
robust generalised posterior is indeed robust in this regime as well. Figure 3 displays the posterior
influence function (12) for this normal location model. This reveals that the standard Bayesian
posterior is not bias-robust, since the tails of the posterior are highly sensitive to the contaminant
y. In contrast, the tails of the generalised posterior are insensitive to the contaminant. This appears
to be the case for both weighting functions, despite only one weighting function satisfying the
conditions of Theorem 3.

6.2 Precision parameters in an intractable likelihood model

Our second experiment is a toy model due to Liu et al. (2019); an exponential family model
p𝜃(x) = exp(𝜃 ⋅ t(x) − a(𝜃) + b(x)) where 𝜃 ∈ R2 are parameters to be inferred and x ∈ R5. The
model specification is completed with
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t(x) = (tanh(x(4)), tanh(x(5))), b(x) = −0.5
5∑

i=1
x2
(i) + 0.6x(1)x(2) + 0.2

5∑
i=3

x(1)x(i).

Despite the apparent simplicity of this model, the term a(𝜃), which determines the normalisation
constant, is analytically intractable and exact simulation from this data-generating model is not
straightforward (excluding the case 𝜃 = 0). In sharp contrast, the generalised posterior produced
by KSD-Bayes is available in closed form for this model. Our aim here was to assess robustness of
the generalised posterior, focusing on the setting where y is fixed and 𝜖 is increased, since this is
the regime for which our theoretical results do not hold. A dataset of size n = 500 was generated
from the model P𝜃 with true parameter 𝜃 = (0, 0), so that P𝜃 has the form  (0,Σ) and can be
exactly sampled. Each datum xi was, with probability 𝜖, shifted to xi + y where y = (10, … , 10).
The prior on 𝜃 was  (0, 102I).

The left column in Figure 4 displays the standard posterior,7 which is seen to be sensi-
tive to contamination in the dataset, in much the same way observed for the normal location
model in Section 6.1. The generalised posterior with M(x) = Id is depicted in the middle col-
umn of Figure 4, and is seen to be more sensitive to contamination compared to the standard
Bayesian posterior, in that the mean moves further from 0 as 𝜖 is increased. Finally, in the
right column of Figure 4 we display the robust generalised posterior obtained with weighting
function

M(x) = diag
((

1 + x2
(1) + … + x2

(5)
)−1∕2

,
(
1 + x2

(1) + x2
(2)
)−1∕2

, … ,
(
1 + x2

(1) + x2
(5)
)−1∕2

)
,

which ensures the criteria for bias-robustness in Theorem 3 are satisfied. From the figure,
we observe that the robust generalised posterior remains centred close to the data-generating
value 𝜃 = 0, even for the largest contamination proportion considered (𝜖 = 0.2), with a vari-
ance that increases as 𝜖 is increased. At 𝜖 = 0, the spread of the robust generalised posterior is
almost twice that of the standard posterior, which reflects the trade-off between robustness and
efficiency.

6.3 Robust nonparametric density estimation

Our third experiment concerns density estimation using the kernel exponential family, and
explores the performance of KSD-Bayes when the dataset is multi-modal (c.f. Section 3.5). Let
q denote a reference p.d.f. on Rd, and let 𝜅 ∶ Rd × Rd → R be a reproducing kernel. The kernel
exponential family model (Canu & Smola, 2006)

p𝜃(x) ∝ q(x) exp(⟨f , 𝜅(⋅, x)⟩(𝜅)) (16)

is parametrised by f , an element of the RKHS (𝜅). The implicit normalisation constant of
Equation (16), if it exists, is typically an intractable function of f . There appears to be no Bayesian
or generalised Bayesian treatment of Equation (16) in the literature, which may be due to

7To obtain these results, the intractable normalisation constant was approximated using a numerical cubature method.
To do this, we recognise that p𝜃(x) =  (x; 0,Σ)r𝜃(x)∕C𝜃 where r𝜃(x) = exp(𝜃1 tanh(x4) + 𝜃2 tanh(x5)). Then
C𝜃 = ∫ r𝜃(x)d (x; 0,Σ), which was approximated using (polynomial order 10) Gauss-Hermite cubature in 2D.



MATSUBARA et al. 19

F I G U R E 4 Posteriors and generalised posteriors for the Liu et al. (2019) model. The true parameter value
is 𝜃 = 0, while a proportion 𝜖 of the data were contaminated by being shifted by an amount y = (10, 10)

intractability of the likelihood. As the theory in this paper is finite-dimensional, we consider a
finite-rank approximation of elements in (𝜅) of the form f (x) =

∑p
i=1𝜃(i)𝜙(i)(x), with coefficients

𝜃(i) ∈ R and basis functions 𝜙(i) ∈ (𝜅), where we will take 𝜃 to be p = 25 dimensional. Finite
rank approximations have previously been considered for frequentist learning of kernel exponen-
tial families in Strathmann et al. (2015) and Sutherland et al. (2018). In our case, the finite rank
approximation ensures that any prior we induce on f via a prior on the coefficients 𝜃(i) will be
supported on (𝜅). If one is interested in a well-defined limit as p → ∞ then one will need to
ensure a.s. convergence of the sum in this limit. If the 𝜙i are orthonormal in (𝜅), and if the 𝜃(i)
are a priori independent, then E[||f ||2(𝜅)] =

∑p
i=1E[𝜃

2
(i)] so a sufficient condition, for example, is

E[𝜃2
(i)] = O(n−1−𝛿) for some 𝛿 > 0.
Our interest is in the performance of KSD-Bayes applied to a multi-modal dataset, and to

explore these we considered the galaxy data of Postman et al. (1986) and Roeder (1990), com-
prising n = 82 velocities in km/sec of galaxies from 6 well-separated conic sections of a survey
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F I G U R E 5 Generalised posteriors for the kernel exponential family model. A proportion 𝜖 of the data (top
row) were contaminated. Samples from the generalised posteriors correspond to probability density functions,
shown as dotted curves

of the Corona Borealis. The data were whitened prior to computation, but results are reported
with the original scale restored. For the kernel exponential family we use q(x) =  (0, 32) and
the kernel 𝜅(x, y) = exp(−(x − y)2∕2), which ensures that (16) is normalisable due to Propo-
sition 2 of Wenliang et al. (2019). For basis functions we use 𝜙(i+1)(x) = (xi∕

√
i!) exp(−x2∕2),

i = 0, … , 24, which are orthonormal in (𝜅) (Steinwart et al., 2006). For our prior we let
𝜃(i) ∼  (0, 102i−1.1), which is weakly informative within the constraint of having a well-defined
p → ∞ limit. Our contamination model replaces a proportion 𝜖 of the dataset with values
independently drawn from  (y, 0.12), with y = 5, shown as black bars in the top row of
Figure 5.

The generalised posterior with M(x) = 1 is displayed in the second row of Figure 5, with the
bottom row presenting a robust generalised posterior based on the weighting function M(x) =
(1 + x2)−1∕2, which ensures the conditions of Theorem 3 are satisfied. The results we present are
for fixed y and increasing 𝜖, since this regime is not covered by Theorem 3. The generalised pos-
terior mean is a uni-modal density, which we attribute to the insensitivity of KSD to mixture
proportions discussed in Section 3.5, but multi-modal densities are evident in sampled output.
Our results indicate that the robust weighting function reduces sensitivity to contamination in
the dataset (note how the mass in the central mode of the generalised posterior decreases when
𝜖 = 0.2, when the identity weighting function is used). Whether this insensitivity of KSD to
well-separated regions in the dataset is desirable or not will depend on the application, but in this
case, it happens to be beneficial.
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6.4 Network inference with exponential graphical models

Our final example concerns an exponential graphical model, representing negative conditional
relationships among a collection of random variables W = (W1, … ,Wd), described in (Yang et al.
2015 Section 2.5). The likelihood function is

pW |𝜃(w|𝜃) ∝ exp

(
−
∑

i
𝜃(i)w(i) −

∑
i<j

𝜃(i,j)w(i)w(j)

)
, (17)

where w ∈ (0,∞)d and 𝜃(i) > 0, 𝜃(i,j) ≥ 0. The total number of parameters is p = d(d + 1)/2. Sim-
ulation from this model is challenging and the normalisation constant is an intractable integral,
so in what follows a standard Bayesian analysis is not attempted. Our aim was to fit (17) to a pro-
tein kinase dataset, mimicking an experiment presented by Yu et al. (2016) in the score-matching
context. This dataset, originating in Sachs et al. (2005), consists of quantitative measurements of
d = 11 phosphorylated proteins and phospholipids, simultaneously measured from single cells
using a fluorescence-activated cell sorter, so the parameter 𝜃 is 66-dimensional. Nine stimulatory
or inhibitory interventional conditions were combined to give a total of 7,466 cells in the dataset.
The data were square-root transformed and samples containing values greater than 10 standard
deviations from their mean were judged to be bona fide outliers and were removed. The remain-
ing dataset of size n = 7,449 was normalised to have unit standard deviation. In most cases the
measurement reflects the activation state of the kinases, and scientific interest lies in the mech-
anisms that underpin their interaction.8 These mechanisms are often summarised as a protein
signalling network, whose nodes are the d proteins and whose edges correspond to the pairs of
proteins that interact. An important statistical challenge is to estimate a protein signalling net-
work from such a dataset (Oates, 2013). However, it is known that existing approaches to network
inference are non-robust, in a general sense, with community challenges regularly highlighting
the different conclusions drawn by different estimators applied to an identical dataset (Hill et al.,
2016). Our interest is in whether networks estimated using KSD-Bayes are robust.

For our experiment the variables w(i) were re-parametrised as x(i) ∶= log(w(i)), in order that
they are unconstrained and P𝜃 ∈ S(Rd). For the contamination model, a proportion 𝜖 of the data
were replaced with the fixed value y = (10, … , 10) ∈ Rd. Parameters were a priori independent
with 𝜃(i) ∼ T(0, 1), 𝜃(i,j) ∼ T(0, 1), where T is the Gaussian distribution truncated to the posi-
tive orthant of Rp. This prior is conjugate to the likelihood, as explained in Section 3.3, and allows
the generalised posterior to be exactly computed. Generalised posteriors were produced both
without and with the exponential weighting function [M(x)](i,i) = exp(−x(i)), the latter aiming to
reduce sensitivity to large values in the dataset and coinciding with the identity weighting func-
tion at x = 0. From these, protein signalling networks were estimated using the s most significant
edges, defined as the s largest values of 𝜃(i,j)∕𝜎(i,j), where the generalised posterior marginal for
𝜃(i,j) is T(𝜃(i,j), 𝜎2

(i,j)). Results are shown in Figure 6; to optimise visualisation we report results for
s = 5, though for other values of s similar conclusions hold. It is interesting to observe little agree-
ment between the networks returned when the identity weighting function is used, which may
reflect the difficulty of the network inference task. Reduced sensitivity to 𝜖 was observed when
the exponential weighting function was used. In Figure 6 we report the number of edges that are

8There is no scientific basis to expect only negative conditional dependencies in the dataset; in this sense the model is
likely to be misspecified. Our interest is in assessing the robustness properties of KSD-Bayes only, and no scientific
conclusions will be drawn using this model.
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F I G U R E 6 Exponential graphical model; estimated protein signalling networks as a function of the
proportion 𝜖 of contamination in the dataset

consistent with the network reported in (Sachs et al. 2005 Figure 3A); the use of the exponential
weighting function resulted in more edges being consistent with this benchmark network.

7 CONCLUSION

There is little existing literature concerning robust Bayesian inference in the setting of intractable
likelihood. Existing approaches to Bayesian inference for intractable likelihood fall into three
categories: (1) likelihood-free methods such as approximate Bayesian computation and Bayesian
synthetic likelihood; Beaumont et al., 2002; Cherief-Abdellatif & Alquier, 2020; Frazier, 2020;
Marin et al., 2012; Price et al., 2018; Tavaré et al., 1997), (2) auxiliary variable MCMC (such as
the exchange algorithm and pseudo-marginal MCMC; Andrieu & Roberts, 2009; M⊘ller et al.,
2006; Murray et al., 2006; Park & Haran, 2018), and (3) approximate likelihood methods (such
as pseudo-likelihood and composite likelihood; Besag, 1974; Dryden et al., 2002; Eidsvik et al.,
2014), which are of course also applicable beyond the Bayesian context. Both (1) and (2) rely on
either the ability to (exactly or approximately) simulate from the generative model, or the abil-
ity to unbiasedly estimate the data likelihood, whilst (3) represents a collection of approaches
that are tailored to particular statistical models. These algorithms aim to approximate the stan-
dard Bayesian posterior, and do not attempt to confer robustness in situations where the model
is misspecified.

This paper proposed KSD-Bayes, a generalised Bayesian procedure for likelihoods that involve
an intractable normalisation constant. KSD-Bayes provides robust generalised Bayesian infer-
ence in this context, including a theoretical guarantee of global bias-robustness over Θ. Moreover,
and unlike existing Bayesian approaches to intractable likelihood, the generalised posterior can



MATSUBARA et al. 23

be approximated by standard sampling methods without additional levels of algorithmic com-
plexity, even admitting conjugate analysis for the exponential family model. From a theoretical
perspective, the soundness of KSD-Bayes, in terms of consistency and asymptotic normality of
the generalised posterior, was established.

Although KSD-Bayes has several appealing features, it is not a panacea for intractable likeli-
hood. The generalised posterior is not invariant to transformations of the dataset and, as discussed
in Section 3.5, KSD can suffer from insensitivity to mixture proportions, which limits its applica-
bility to models and datasets that are not ‘too multi-modal’. The selection of 𝛽 remains an open
problem for generalised Bayesian inference, and further regularisation may be required when the
parameter 𝜃 is high-dimensional relative to the size n of the dataset. These are challenging issues
for future work. In addition, our experiments focused on continuous data, though our theory was
general. The empirical performance of KSD-Bayes for discrete data remains to be assessed.
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