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Individuals with prodromal Alzheimer’s disease show considerable variability in rates of cognitive decline, which hampers the ability to
detect potential treatment effects in clinical trials. Prognostic markers to select those individuals who will decline rapidly within a trial
time frame are needed. Brain network measures based on grey matter covariance patterns have been associated with future cognitive
decline in Alzheimer’s disease. In this longitudinal cohort study, we investigated whether cut-offs for grey matter networks could be de-
rived to detect fast disease progression at an individual level. We further tested whether detection was improved by adding other bio-
markers known to be associated with future cognitive decline [i.e. CSF tau phosphorylated at threonine 181 (p-tau181) levels and
hippocampal volume]. We selected individuals with mild cognitive impairment and abnormal CSF amyloid β1–42 levels from the
Amsterdam Dementia Cohort and the Alzheimer’s Disease Neuroimaging Initiative, when they had available baseline structural MRI
and clinical follow-up. The outcome was progression to dementia within 2 years. We determined prognostic cut-offs for grey matter
network properties (gamma, lambda and small-world coefficient) using time-dependent receiver operating characteristic analysis in
the Amsterdam Dementia Cohort. We tested the generalization of cut-offs in the Alzheimer’s Disease Neuroimaging Initiative, using
logistic regression analysis and classification statistics. We further tested whether combining these with CSF p-tau181 and hippocampal
volume improved the detection of fast decliners. We observed that within 2 years, 24.6% (Amsterdam Dementia Cohort, n=244) and
34.0% (Alzheimer’s DiseaseNeuroimaging Initiative, n=247) of prodromal Alzheimer’s disease patients progressed to dementia. Using
the grey matter network cut-offs for progression, we could detect fast progressors with 65% accuracy in the Alzheimer’s Disease
Neuroimaging Initiative. Combining grey matter networkmeasures with CSF p-tau and hippocampal volume resulted in the best model
fit for classification of rapid decliners, increasing detecting accuracy to 72%. These data suggest that single-subject grey matter connect-
ivity networks indicative of a more random network organization can contribute to identifying prodromal Alzheimer’s disease indivi-
duals who will show rapid disease progression.Moreover, we found that combined with p-tau and hippocampal volume this resulted in
the highest accuracy. This could facilitate clinical trials by increasing chances to detect effects on clinical outcome measures.
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Graphical Abstract

Introduction
Alzheimer’s disease starts with the aggregation of amyloid-β
(Aβ) in the brain, after which it can take up to 20 years for an
individual to develop dementia.1,2 It has been proposed that
Alzheimer’s disease clinical trials are most likely to be effect-
ive when individuals have biomarker evidence for the pres-
ence of Aβ pathology and do not yet show large-scale
irreversible neuronal damage.3,4 ThismakesAβ positive indi-
viduals with mild cognitive impairment (MCI), i.e. pro-
dromal Alzheimer’s disease, a well-suited population for
disease-modifying therapies in Alzheimer’s disease clinical
trials. However, a challenge faced in secondary prevention
trials is that individuals with prodromal Alzheimer’s disease
show substantial heterogeneity in clinical progression rates.5

This heterogeneity hampers the ability to detect treatment ef-
fects on cognitive outcomes within a typical 1–2-year clinical
trial.6 Biomarkers are needed that can help to distinguish

individuals with prodromal Alzheimer’s disease who will
show rapid disease progression from those who will remain
stable within a trial time frame.

Previous work has found that disrupted brain grey matter
(GM) network measures, reflecting covariance patterns in
GMmorphology, are related to increased risk of cognitive de-
cline and progression to Alzheimer’s disease dementia.7–10

Across those studies, disruptedwhole-brain networkmeasures
gamma (i.e. normalized values of the clustering coefficient) and
small-world, i.e. indicative of an increasingly random network
and reduction in small-world organization,weremost robustly
associatedwith cognitive decline, adding information tohippo-
campal volume (HV) and/orCSF taumeasures.However, it re-
mains unknown to what extent GM networks can be used to
identify single individuals who will show fast progression.

Here we studied this question in individuals with prodromal
Alzheimer’s disease from two independent cohorts, i.e. we first
established cut-offs in theAmsterdamDementiaCohort (ADC)

2 | BRAIN COMMUNICATIONS 0000: Page 2 of 9 W. Pelkmans et al.

mailto:b.tijms@amsterdamumc.nl


and then tested whether these GM network cut-offs could pre-
dict if prodromal Alzheimer’s disease subjects remained stable
or progressed to dementia within 2 years in the Alzheimer’s
Disease Neuroimaging Initiative (ADNI). We then compared
the performance of the GM network markers with two other
biomarkers known to be associated with the decline in pro-
dromal Alzheimer’s disease [i.e. HV and CSF phosphorylated-
tau (p-tau) levels],11,12 anddeterminedanoptimalmodel forde-
tecting fast progressors. Finally,we calculated if stratificationof
prodromal Alzheimer’s disease subjects by abnormal GM net-
work markers would reduce sample size requirements in a
hypothetical randomized control trial.

Materials and methods
Participants
We studied two cohorts: the ADC and ADNI. The ADC is a
memory clinic-based cohort where participants are re-
evaluated on a 6-month basis as part of regular care.13 The pa-
tients in the present study visited the memory clinic between
November 2003 and July 2019. ADNI is an ongoing longitu-
dinal research cohort, for which criteria are described in more
detail at http://adni.loni.usc.edu/. It was launched in 2003 as a
public–private partnership, led by Principal Investigator
Michael W. Weiner, MD. The primary goal of ADNI has
been to testwhether serialMRI, PET, other biologicalmarkers
and clinical and neuropsychological assessment can be
combined to measure the progression of MCI and early
Alzheimer’s disease. For up-to-date information, see www.
adni-info.org. The data used in the present study were col-
lected betweenDecember 2005 andApril 2016. The diagnosis
was evaluated at 3–12-month intervals. For both cohorts, we
selected individuals who fulfilled the consensus criteria for
MCI as described by Refs.14,15, had abnormal levels of CSF
Aβ(1–42), anavailable baseline structuralMRI scan, andat least
one follow-up neuropsychological assessment. In ADNI, con-
version fromMCI to Alzheimer’s disease is reviewed by a cen-
tral review committee that applies the NINCDS-ADRDA
diagnostic criteria16 for diagnosis of Alzheimer’s disease de-
mentia. In the ADC, Alzheimer’s disease dementia is also de-
fined according to the NINCDS-ADRDA diagnostic
criteria16 and from 2011 on the NIA-AA criteria were ap-
plied.17,18 Disease-modifying trials recruiting prodromal
Alzheimer’s disease individuals typically have a trial duration
of 24 months or less (Supplementary Table 1),19 therefore,
we defined individuals as fast progressors when they pro-
gressed to dementia within 2 years. In both ADNI and ADC,
all participants gave written informed consent for participa-
tion in the study and for reuse of the data. Ethical approval
was given by the regional ethics committees.

MRI acquisition and preprocessing
InADC, structuralT1-weighted imageswere acquiredonnine
different scanners, using a standardized protocol as part of

routine patient care, of which the acquisition parameters are
described in detail in the Supplementary material. In ADNI,
T1-weighted scans were performed on 1.5 or 3 T scanners
usingpreviously described standardized protocols,20 typically
a sagittal 3D MP-RAGE with a voxel size of 1.2 mm3. All
images were segmented intoGM,whitematter andCSF using
the Statistical Parametric Mapping (SPM12, https://www.
fil.ion.ucl.ac.uk/spm/software/spm12/) running in MATLAB
(v2011a). The segmented GM images were resliced to
2× 2× 2 mm isotropic voxels to reduce the dimensionality
of the data. Total intracranial volume (TIV) was computed
as the sum of GM, white matter and CSF volumes. The auto-
mated anatomical labelling atlas was used to obtain hippo-
campal GM volume estimates.21 A previously determined
cut-off was applied to determine hippocampal abnormality
in ADNI with a mean HV corrected for TIV of .3.68 ml.22

All GM segmentations were visually checked for quality.

Single-subject GM networks
Single-subject GM networks were constructed from the na-
tive GM images as described in the freely available
MATLAB scripts: https://github.com/bettytijms/Single_
Subject_Grey_Matter_Networks and in more detail in
Tijms et al.23 For each individual, a network was determined
from the native space GM segmentations. First, nodes were
defined as cubes of 3× 3× 3 voxels (6 mm× 6 mm×
6 mm) using an atlas-free approach. The nodes keep the
3D structure of the cortex intact, and thereby contain infor-
mation on GM intensity as well as spatial information be-
tween the voxels. Next, connections were defined when
nodes showed structural similarity as determined with the
Pearson correlation coefficients across corresponding voxels.
In order to find the maximum correlation value with a target
cube across the curved cortex, each cube was rotated by an
angle with multiples of 45° over all axes. The resulting simi-
larity matrix containing all pairwise correlations was binar-
ized using a threshold that reduced the chance of spurious
correlations in the network to 5%. This corresponds to a sig-
nificance level of P,0.05 corrected for multiple compari-
sons using a permutation-based procedure.24

For each individual GM network, we calculated normal-
ized clustering coefficient (γ), normalized path length (λ)
and the small-world coefficient (σ), as our previous studies
showed that these measures are most robustly associated
with cognitive decline.7–9 Briefly, γ quantifies how a net-
work’s clustering coefficient (the fraction of a node’s neigh-
bours that are also neighbours of each other) deviates from
a random network. λ quantifies how a network’s path length
(the shortest path length between all pairs of nodes in the net-
work) deviates from a random network. In more detail, we
divided the average clustering coefficient and path length va-
lues by those values of five randomized reference networks of
identical size and degree distribution.25 The ratio of γ to λ, is
defined as the small-world coefficient, indicative of the opti-
mal balance between information segregation and integra-
tion. The network measures were computed with scripts
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from the Brain Connectivity Toolbox (https://sites.google.
com/site/bctnet/),26 modified for large-scale networks.

CSF analysis
Lumbar puncture was performed as described in Mulder
et al.27 and Engelborghs et al.28 for ADC, and for ADNI ac-
cording to the ADNI procedures manual (http://www.adni-
info.org/). CSF concentrations of Aβ(1–42) and tau phos-
phorylated threonine 181 were measured using sandwich
ELISAs (Innotest, Innogenetics, Belgium), at the
Neurochemistry laboratory of the Department of Clinical
Chemistry of the Amsterdam University Medical Center
(ADC), and for ADNI with the multiplex xMAP Luminex
platform (Luminex Corp, Austin, TX, USA) and
INNO-BIA AlzBio3 (Innogenetics, Ghent, Belgium) im-
munoassay kit-based reagents. The cut-offs for CSF Aβ(1–42)
and p-tau abnormality have previously been determined
and were 813 and 52 pg/ml for ADC,27,29 and 192 and
23 pg/ml for ADNI.30 Because CSF p-tau was used as one
of the predictors for decline, we only used an amyloidmarker
to define prodromal Alzheimer’s disease.

Statistical analysis
Prognostic cut-offs for GM network measures (γ, λ and σ) to
predict progression to dementia within 2 years were deter-
mined in the ADC cohort through time-dependent receiver op-
erating characteristic (tROC) analysis from censored survival
data using nearest neighbour estimation.31 The advantage of
tROC analyses over standard ROC is that tROC takes the
time to an event into account when calculating the sensitivity,
specificityandareaunder thecurve (AUC)fora specificmarker.
For each network measure, we determined the optimal cut-off
value in the ADC that best separated prodromal Alzheimer’s
disease patients with a high or low risk for fast clinical de-
cline at 2 years post-baseline. We then used these cut-offs
in ADNI to evaluate detecting of fast progressors using lo-
gistic regression analysis, and reported accuracy, sensitivity
and specificity. We further evaluated whether GM network
measures provide additive information to more commonly
used biomarkers for Alzheimer’s disease, CSF p-tau and
HV, by adding the latter markers to the logistic regression
model and compared model fit using the Akaike’s
Information Criterion (AIC). Analyses were initially per-
formed without covariates as such a model would be easiest
to apply in practice. We repeated the analyses adding sex,
age, education and MRI scanner as covariates. Next, we
tested the extent to which one, two or three abnormal bio-
markers (small-world, p-tau, HV) could predict who pro-
gressed to dementia within 2 years using logistic
regression. Finally, sample sizes were estimated for a hypo-
thetical 2-year randomized-controlled trial with two arms,
showing an expected treatment effect of 25% reduction of
decline on the Mini-Mental State Examination (MMSE)32

and the Clinical Dementia Rating scale—Sum of Boxes
(CDR-SB),33when stratifying forGMnetwork abnormality

using the following formula:

Sample size / arm = 2(z1−a/2 + z1−b)
2 x (s2

b

+ s2
e /

∑
(ti–tmean)

2) /D2

where α is equal to the Type I error of a two-sided signifi-
cance test set at 0.05, and the power (1− β) is 80%. From
the linear mixed model, σb

2 and σe
2 are the variance in ran-

dom subject slopes and the residual error variance, respect-
ively. ti is the measurement at time i and tmean is the average
follow-up time, Δ is the difference in mean rate of decline in
the treatment versus control group using a 25% treatment
effect. Analyses were conducted with R version 4.1.1. using
the survival and survivalROC packages.31

Data availability
The data that support the findings of this study can be made
available on request (ADC) or are publicly available (ADNI).

Results
Study population
A total of 491 prodromal Alzheimer’s disease patients were
available for this study (Table 1). The participants from
ADNI were older and had on average more years of educa-
tion compared with ADC participants. After 2 years, 60
(24.6%) subjects in ADC and 84 (34.0%) subjects in
ADNI showed clinical progression to dementia.

Cut-points for GM network measures
First,wedetermined cut-points inADCoptimizing classification
of prodromal Alzheimer’s disease individuals who remained
stable versus those who progressed to dementia within 2 years.
Applying the tROC analysis yielded the following cut-offs:
1.627 for γ, 1.106 for λ and 1.479 for σ. These cut-offs resulted
in AUCs of 0.60 for γ (sensitivity= 64%, specificity= 54%),
0.51 for λ (sensitivity= 93%, specificity= 16%) and
0.59 for σ (sensitivity= 60%, specificity= 63%; Fig. 1).
This was comparable to the AUCs of 0.58 for p-tau (sensitiv-
ity= 72%, specificity= 44%) and 0.61 for HV (sensitivity=
70%, specificity= 52%).

Table 1 Subject characteristics

ADC ADNI

n 244 247
Age (y) 67.5 (7.4) 72.9 (7.0)
Sex (f) 113 (46.3%) 104 (42.1%)
Education (y) 11.7 (3.2) 15.8 (2.8)
MMSE 26.4 (2.4) 27.5 (1.8)
Progression to dementia (2 y) 60 (24.6%) 84 (34.0%)
APOEe4 carrier 157 (73.0%) 164 (66.4%)

Data are presented as mean (SD) or n (%); ADC, Amsterdam Dementia Cohort; ADNI,
Alzheimer’s Disease Neuroimaging Initiative; y, years; f, female; MMSE, Mini-Mental
State Examination; APOE, Apolipoprotein E.
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Predicting fast clinical progression
using GM network measures
We next performed logistic regression analysis in ADNI to
evaluate detection of fast progression using ADC determined
cut-points. GMnetworkmeasures (γ and σ) showed an accur-
acy of 65% (sensitivity= 33–42%, specificity= 77–82%)
for predicting stable versus progressing individuals.
Compared with individuals with normal γ values, those
with abnormal γ valueswere 2.4 times [95%confidence inter-
val (CI)= 1.4–4.3]more likely to progress to dementiawithin
a 2-year period (Table 2 andFig. 2). Similar odds ratios (ORs)
were observed for individuals with abnormal small-world
values [OR= 2.2 (95% CI= 1.2–4.1)], and abnormal HV
[OR= 2.9 (95% CI= 1.6–5.2); Table 2 and Fig. 2].

Individuals with abnormal λ and CSF p-tau values showed
a higher risk of progression to dementia, that is an OR of
6.5 (95% CI= 2.2–18.9) and an OR of 3.1 (95% CI= 1.0–
9.4), respectively, however, thiswas accompaniedwith larger
CIs and low accuracy values,0.5. When correcting for sex,
age, education andMRI scanner, the ORs for abnormal bio-
markers to predict progression increased (Supplementary
Table 2). In addition, the mixed model analysis showed
that individuals with abnormal GM network values showed
steeper decline on the MMSE (β+ SE, γ: −1.00+ 0.25;
λ: −0.78+ 0.30; σ: −0.92+0.26), and faster deterioration
as measured by the CDR-SB (β+ SE, γ: 0.60+ 0.15;
λ: 0.53+ 0.19; σ: 0.62+0.16), compared with individuals
with normal GM network metrics (Supplementary Fig. 1).

Optimal biomarker model to identify
fast progression
Next, we assessed in ADNI whether GM network measures
contained information on disease progression complemen-
tary to p-tau and HV. For these analyses, we assessed the
small-world coefficient only, as it can be considered a sum-
mary measure of both normalized clustering and normalized
path length. A model including only p-tau resulted in an
AUC of 0.54 (AIC= 316), adding HV improved the model
fit (AUC= 0.64; AIC= 304, P, 0.001). When adding the
small-world coefficient, the model did not improve signifi-
cantly (AUC= 0.67; AIC= 303,P= 0.082) for the classifica-
tion of rapid decliners (Supplementary Table 3). Note that
the CSF p-tau and HV cut-offs were previously established
using ADNI-specific cut-points,22,30 while the small-world
cut-off was based on the independent ADC, which suggests
that the p-tau and HV might provide over-optimistic model
performance. When the small-world cut-off was also based
on ADNI, the model did improve significantly (AUC=
0.70; AIC= 291, P, 0.001; Supplementary Table 3).

We then tested whether combining the biomarkers would
improve detection of fast progressors, by labelling individuals
as having no, one, two or three abnormal predictors. A grad-
ual increase in rapid progression risk was observed with the
number of abnormal biomarkers (Table 3 and Fig. 3).
Showing a 6.4 times increased risk of rapid clinical decline
with two abnormal prognostic biomarkers when compared
with individuals with abnormal Aβ only. This risk increased
steeply to an OR of 10.9 for three abnormal prognostic bio-
markers (Table 3 and Fig. 3). Rapid progression could be
most accurately identified for individuals with all three bio-
markers abnormal, with an accuracy of 72% (sensitivity=
88%, specificity= 61%).

Sample size estimates
We next studied if sample size estimates for clinical trials to
detect a 25% slowing in the rate of decline on theMMSE and
CDR-SB would reduce when adding network measures.
Table 4 shows for the prodromal Alzheimer’s disease cohort
(Aβ+ column) without additional markers an estimated

Figure 1 tROC analyses of prognostic biomarkers for
predicting clinical progression within 2 years in ADC. tROC
curves and corresponding areas under the curves to determine the
most optimal cut-off for GM network markers together and CSF
p-tau and normalized HV to assess accuracy when predicting clinical
progression to dementia within 2 years post-baseline in prodromal
Alzheimer’s disease individuals (n= 244).

Table 2 Odds ratios of abnormal biomarkers to predict
clinical progression in ADNI

OR (CI) Se Sp Acc P-value

Gamma 2.43 (1.38–4.29) 0.42 0.77 0.65 0.002*
Lambda 6.50 (2.24–18.88) 0.95 0.25 0.49 ,0.001*
Small-world coefficient 2.22 (1.21–4.05) 0.33 0.82 0.65 0.010*
P-tau 3.12 (1.04–9.38) 0.95 0.13 0.41 0.043*
Hippocampal volume 2.90 (1.61–5.20) 0.40 0.81 0.67 ,0.001*

ORs of logistic regression analysis for progression of prodromal Alzheimer’s disease
subjects to dementia within 2 years. GM network cut-offs were determined in ADC and
applied to ADNI. Results are shown for every abnormal biomarker with 95% CIs. CI,
confidence interval; Se, sensitivity; Sp, specificity; Acc, accuracy.
*P, 0.05.
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sample size of 729 (95% CI= 444–1364) for the MMSE,
and 486 (95% CI= 348–737) for the CDR-SB. Estimated
sample sizes were smallest when restricting enrolment to pro-
dromal Alzheimer’s disease participants with abnormal
p-tau, abnormal HV and abnormal small-world status
(Aβ+ σ+ p-tau+ HV+, Table 4).

Discussion
The main finding of the present study is that GM network
measures can aid in identifying individuals with prodromal
Alzheimer’s disease who are likely to progress to dementia
within the next 2 years.Models combining small-world coef-
ficient, p-tau and HV showed the best ability to detect pro-
gression. These findings could increase power in
Alzheimer’s disease trials by selecting those individuals
with abnormal GM network characteristics at high risk for
clinical progression within a time frame of 24 months.

Most studies so far that investigated prognostic markers in
individuals with MCI, studied also subjects with normal Aβ
values.5,34–40 Such an approach makes it difficult to

distinguish between the effects caused byAβ, tau and neuron-
al injury on cognition, as abnormalities in tau and neurode-
generation are closely related to Aβ pathology.41–43

Moreover, it can also inflate accuracy statistics, because
abnormal Aβ has a strong predictive effect of decline.44,45

Predicting progression within Aβ positive individuals is,
however, more difficult and the few longitudinal studies
that investigated prognostic markers within prodromal
Alzheimer’s disease patients have demonstrated a more

Figure 2 Kaplan–Meier curves of progression from prodromal Alzheimer’s disease to dementia within 2 years in ADNI. Lines
represent individuals with normal (blue) and abnormal (red) GM network values. GM network cut-offs were determined in ADC and applied in
ADNI.

Table 3 Combining prognostic biomarkers for
predicting rapid progression to dementia

OR (CI) Se Sp Acc P-value

One abnormal biomarker 2.40 (0.52–11.07) 0.95 0.12 32% 0.262
Twoabnormal biomarkers 6.40 (1.35–30.37) 0.94 0.29 55% 0.019*
Three abnormal
biomarkers

10.89 (1.99–59.72) 0.88 0.61 72% 0.006*

ORs of logistic regression analysis in ADNI for the combination of abnormal biomarker
predictors. Biomarker combination contains abnormal small-world coefficient, p-tau
and hippocampal volume; reference category is all normal biomarkers; Se, sensitivity; Sp,
specificity; Acc, accuracy.
*P, 0.05.

Figure 3 Kaplan–Meier curves of progression from
prodromal Alzheimer’s disease to dementia within 2 years
in ADNI. Separate lines represent individuals with zero, one, two
or three abnormal biomarkers (GM network small-world topology,
cerebrospinal fluid p-tau and hippocampal volume).
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modest predictive value over Aβ.12,46 This is also reflected by
the relatively modest AUC values in the present
study. Moreover, in contrast to previous studies showing
that a more disorganized GM network is associated with cog-
nitive decline,7,8,47 our findings indicate that an individual’s
GMnetworkmeasure can be classified as normal or abnormal
which is relevant for clinical application and inclusion of sub-
jects in therapeutic trials to select those individuals who will
show fast progression over a relatively short time frame.19

GM network measures start to change early in the disease
process: previous studies indicate that the presence of Aβ sig-
nificantly alters GM networks, and that these alterations may
precede tau and neurodegeneration,48–51 and can predict fu-
ture hippocampal atrophy.52 It could be hypothesized that
the Alzheimer’s disease neuropathological changes contribute
to the observed brain network disruptions, and represent a
close biological substrate for disease progression and cogni-
tive decline in Alzheimer’s disease. In the current study, we
show that individuals with a more random network, as re-
flected by an abnormal small-world topology, were more
than twice as likely to progress to dementia compared with
thosewith normal values. Still, single biomarkers showedmo-
dest accuracy to predict fast progression.34,53 In the present
study, we found that the highest predictive accuracy was ob-
tained when the small-world coefficient was combined with
both p-tau andHV. This resulted in anORof.10 (sensitivity
88%, specificity 61%, accuracy 72%) for progression to de-
mentiawithin 2 years for individualswith all three biomarkers
abnormal and a 46–60% reduction in required sample size to
detect at 25% treatment effect in a hypothetical 2-year trial
compared with abnormal amyloid alone. This is in line with
previous studies54–56 that showed reduced sample size esti-
mateswhen tau and/or neuronal injurymarkers are abnormal.
We show that GM network measures may further improve
predictivemodels. Together, these studies and our results pro-
vide further support for the idea that combiningmultiplemar-
kers may facilitate clinical trials by increasing chances to

detect effects on clinical outcome measures. Strengths of
this study include that GM network cut-offs were deter-
mined in one cohort and then showed to be generalizable
to an independent cohort. Secondly, our approach allows
for patient-level application. However, a follow-up study
is likely needed to further investigate the prognostic value
of the determined cut-offs in a larger sample. Another im-
portant next step would be to develop more user-friendly
software and investigate whether GM network cut-points
can be applied to challenges in a clinical setting, such as aid-
ing in short-term care planning for dementia patients.

Conclusion
In conclusion, we showed that GM networkmeasures can be
applied to identify individuals with prodromal Alzheimer’s
disease at risk for fast progression. Moreover, when com-
binedwith p-tau andHV this resulted in the highest prognos-
tic accuracy, which could contribute to detect treatment
effects in Alzheimer’s disease clinical trials.
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