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Abstract— Positivity and Perron-Frobenius theory provide
an elegant framework for the convergence analysis of linear
consensus algorithms. Here we consider a generalization of
these ideas to the analysis of nonlinear consensus algorithms
on the circle and establish tools for the design of consensus
protocols that monotonically converge to target formations on
the circle.

I. INTRODUCTION

Consensus problems and collective dynamics have been
the subject of significant interest in the control community
in recent decades with applications to cooperative and dis-
tributed control. Seminal works include [1], [2], [3], [4]. See
[5] for a survey and [4] for some examples of applications.
More recently, there has been growing interest in the study of
consensus algorithms defined on nonlinear spaces such as Lie
groups [6], [7], [8], the n-sphere [9], Grassmannians [10],
and Stiefel manifolds [11]. Consensus problems on nonlinear
spaces give rise to behaviours and global convergence issues
that are not observed in linear models [12]. They are relevant
for a number of engineering applications including the design
of spatial coordinated motions [13]. Geometric consensus
algorithms can be formulated intrinsically on a Riemannian
manifold or extrinsically when the manifold is embedded in
a Euclidean space . Most intrinsic consensus algorithms are
based on the concepts of Riemannian distances, gradients,
geodesics, and means. A fundamental challenge presented
by consensus in nonlinear spaces is due to non-uniqueness
of geodesics and topological properties of the underlying
space, which result in problems that are fundamentally more
complex and interesting than Euclidean analogues. Here,
we will use an approach based on positivity theory and
monotonicity to study consensus on the circle. In particular,
we seek an answer to the following question: Can monotone
system design be used to construct consensus algorithms that
converge to a given target formation and collective motion
on the circle?

Positivity theory plays an important role in the theory of
dynamical systems with numerous applications to control
engineering including to stabilization [14], [15], observer
design [16], and distributed control [17], as well as the
modelling of biological systems [18]. Linear positive systems
are systems that leave a cone invariant. According to Perron-
Frobenius theory, a linear system that is strictly positive, in
the sense that it maps the boundary of a pointed convex
solid cone into its interior, has a dominant one-dimensional
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eigenspace within the cone, which asymptotically attracts
all trajectories inside the cone. A natural generalization of
positivity to nonlinear systems is provided by the notion of
differential positivity, which is the property of systems whose
linearizations along trajectories are positive with respect to a
cone field [19] and is closely related to monotonicity. Strictly
differentially positive systems infinitesimally contract a cone
field along trajectories, constraining the asymptotic behavior
to be one-dimensional under suitable technical conditions
[19], [8], [20]. See [21] for the closely related notion of
p-dominance and its applications to differential dissipativity
theory.

In this paper, we address the problem of designing con-
sensus algorithms for a network of agents on the circle that
converge to prescribed target formations. The solution is
based on the design of a monotone system that guarantees
convergence to a limit cycle corresponding to phase-locking
behavior. In Section II, we review the relevant technical
background on linear positivity, consensus, and differential
positivity. In Section III, we consider the application of
differential positivity to consensus on the circle and describe
conditions that guarantee convergence to phase-locked for-
mations. In Section IV, we provide a solution to our main
problem of designing systems that converge to prescribed
target formations. We conclude with simulations and a brief
discussion.

II. POSITIVITY, MONOTONICITY, AND CONSENSUS

A. Linear positivity and consensus

A linear system ẋ = Ax on a vector space V is said to be
positive with respect to a pointed convex solid cone K ⊆ V
if eAtK ⊆ K, for all t > 0, where eAtK := {eAtx : x ∈ K}.
Continuous-time linear consensus algorithms take the form
ẋ = A(t)x, where A = (aij) is a matrix whose rows sum
to zero and whose off-diagonal elements are non-negative:
A(t)1 = 0, and aij ≥ 0 for i 6= j. Such continuous-
time linear protocols arise from dynamics of the form ẋi =∑
j:(i,j)∈E aij(xj − xi) generated by N agents exchanging

information via a communication graph G with vertices and
edges (N , E), and are strictly positive with respect to the
positive orthant K := RN+ in RN for a strongly connected
graph. The projective distance to 1 given by the Hilbert
metric of the positive orthant provides the Lyapunov function

V (x) = log
maxi xi
mini xi

= max
i

log xi −min
i

log xi,

which coincides with the well-known Tsitsiklis Lyapunov
function in log coordinates. The Tsitsiklis Lyapunov func-
tion is non-increasing along solutions and the proof that it
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decreases strictly over a uniform horizon under appropriate
assumptions can be established via elementary calculations
[22]. The non-quadratic nature of the Tsitsiklis Lyapunov
function is an essential feature of the convergence analy-
sis of asymmetric and time-varying consensus algorithms.
Indeed, [23] provides examples of matrices that satisfy the
assumptions of a linear consensus algorithm but fail to admit
a common time-invariant quadratic Lyapunov function.

B. Differential positivity

Differential positivity can be defined on a manifold M
equipped with a smooth cone field K(x) ⊂ TxM. A
continuous-time dynamical system Σ is said to be differ-
entially positive with respect to K if

dψt|xK(x) ⊆ K(ψt(x)), ∀x ∈M, ∀t ≥ 0, (1)

where ψt(x) is the flow at time t from initial condition x
and dψt|x denotes the differential of ψt at x. The definition
can be extended to strict differential positivity and uniformly
strict differential positivity in obvious ways [8].

Interestingly, differential positivity can be thought of as
the local characterization of monotonicity [8], [20]. Recall
that a dynamical system Σ on a vector space V endowed
with a partial order � induced by some cone K ⊆ V is
said to be monotone if for any x1, x2 ∈ V the trajectories
ψt satisfy ψt(x1) �K ψt(x2) whenever x1 �K x2, for all
t > 0. If (x(·), δx(·)) denotes a trajectory of the prolonged
or variational system δΣ, then Σ is monotone if and only
if it is differentially positive. In other words, the system
is monotone if and only if for all t > 0, δx(0) ∈ K ⇒
δx(t) ∈ K. The infinitesimal characterization suggests a
natural generalization to Lie groups, requiring differential
positivity with respect to an invariant cone field [8], [20].

In [19], the authors provide a generalization of Perron-
Frobenius theory to nonlinear systems within a differential
framework, whereby the Perron-Frobenius eigenvector of lin-
ear positivity theory is replaced by a Perron-Frobenius vector
field w(x) whose integral curves shape the attractors of the
system. The main result on closed differentially positive
systems is that the asymptotic behavior is either captured by a
Perron-Frobenius curve γ such that γ′(s) = w(γ(s)) at every
point on γ or is the union of the limit points of a trajectory
that is nowhere aligned with the Perron-Frobenius vector
field. For the purposes of this paper, the characterization
provided by the following theorem will suffice [24].

Theorem 1: Let Σ be a uniformly strictly differentially
positive system with respect to a cone field K(x) in a
compact and forward invariant region C ⊆ M. If there exists
a complete vector field w satisfying w(x) ∈ intK(x) \ {0}
such that lim supt→∞ |dψt|xw(x)|ψt(x) < ∞, and for all
x ∈ C and t ≥ 0:

w(ψt(x)) =
dψt|xw(x)

|dψt|xw(x)|ψt(x)
, (2)

then there exists an integral curve of w(x) whose image is
an attractor for all the trajectories of Σ from C.

III. CONSENSUS ON THE CIRCLE

Consider a network of N agents evolving on the circle S1

according to

θ̇i = ωi +
∑

j:(i,j)∈E

fij(θj − θi), (3)

where θi ∈ S1 represents the phase of agent i, ωi ∈ R are
prescribed ‘intrinsic’ frequencies, and fij denotes an odd
coupling function on the domain (−π, π) extended to R in
such a way so as to make it 2π-periodic. Note that fij and
fji need not be the same function. Let θ = (θ1, . . . , θN )
denote an element of the N -torus TN and consider the
N -tuple of vector fields

(
∂
∂θ1 , . . . ,

∂
∂θN

)
, which defines a

basis of left-invariant vector fields on TN . Assuming that
the coupling functions fij are differentiable and strictly
monotonically increasing on (−π, π), then it can be shown
that the linearization δ̇θ = A(θ)δθ of the system given by
(3) is uniformly strictly differentially positive on the set
TNπ = {θ ∈ TN : |θj − θi| 6= π, (i, j) ∈ E} with respect to
the cone field

KTN (θ) :=

{
δθ ∈ TθTN : δθi ≥ 0, δθ =

∑
i

δθi
∂

∂θi

}
,

for any strongly connected communication graph. Further-
more, the Perron-Frobenius vector field of the system on
TNπ is the left-invariant vector field 1(θ) = (1, . . . , 1) ∈
TθTN , where the vector representation is given with re-
spect to the basis defined by

(
∂
∂θ1 , . . . ,

∂
∂θN

)
. Moreover,

if we denote the flow of (3) by ψt, then the condition
A(θ)1(θ) = 0 implies that dψt|θ1θ = 1ψt(θ), which ensures
that lim supt→∞ |dψt|θ1(θ)|ψt(θ) <∞ for any flow confined
to TNπ . If we add the requirement that the coupling functions
fij and fji be barrier functions on (−π, π) so that fij(α)→
∞ and fji(α) → ∞ as α → π, then the flow ψt will be
forward invariant on TNπ , resulting in the following theorem
[8].

Theorem 2: Consider a network of agents on S1 commu-
nicating via a connected communication graph according
to (3). If the coupling functions fij satisfy fij(0) = 0,
fij(α) → ∞ as α → π, and f ′ij(α) > 0 on (−π, π), then
every trajectory from TNπ converges to an integral curve of
the vector field 1 = 1(θ).

Remark 1: Convergence to an integral curve of 1 on
TN corresponds to phase-locking behavior, whereby the
collective motion asymptotically converges to movement in
a fixed formation with frequency synchronization among the
agents. Further details may be found in [8].

Remark 2: The coupling functions in Theorem 2 corre-
spond to attractive couplings with barriers at π separation of
connected agents. Since differential positivity only requires
f ′ij(α) > 0, a similar result would hold for coupling
functions that are odd, 2π-periodic and differentiable on
(0, 2π), and satisfy fij(π) = 0, f ′ij(α) > 0 for α ∈ (0, 2π)
and fij(α)→ −∞ as α→ 0+. In this model, all agents ϑk
repel each other with strengths that monotonically decrease
on (0, π) and grow infinitely strong as the separation between
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Fig. 1. Attractive (blue) and repulsive (red) coupling functions fij with
the required monotonicity and barrier properties noted in Theorem 2 and
Remark 2.

any pair of connected agents approaches 0. See Figure 1 for
examples of attractive and repulsive coupling functions with
the specified properties. Indeed, one would retain differen-
tial positivity by mixing attractive and repulsive couplings.
Forward invariance would be guaranteed provided that both
directions associated with each connection are of the same
type, i.e. attractive or repulsive, resulting in barriers at
separations of 0 or π between connected agents.

A. Forward invariance and bidirectionality

The limits fij(α)→∞ as α→ π− for attractive coupling
functions and fij(α) → −∞ as α → 0+ for repulsive
coupling functions are imposed to ensure forward invari-
ance of differentially positive dynamics on the torus. We
note however that this is only guaranteed if the connection
between any pair of connected agents is bidirectional along
the communication edge and of the same type. That is,
we require for each (i, j) ∈ E that θi and θj interact via
either attractive or repulsive couplings in either direction,
even though this interaction need not be symmetric. If the
communication graph is directed, we can construct examples
where such coupling functions fail to ensure forward invari-
ance in a region of differentially positive dynamics. This is
best illustrated in the example of Figure 2, where the agents
are connected via a strongly connected directed graph and
repel each other only in the direction of the arrows with a
coupling function that grows infinitely strong at zero separa-
tion. If agents 3 and 4 move towards agent 1 with intrinsic
frequencies of the opposite sign, they will cross the “barrier”
corresponding to agent 1. At the point of intersection, the
infinite repulsions on agent 1 from agents 3 and 4 cancel,
allowing the crossing to occur. Such pathological cases are
avoided when the communication graph is bidirectional and
of the same type along a given connection.

B. Counting disconnected regions

Repulsive and attractive coupling functions that ensure for-
ward invariance of the consensus dynamics in TN0 and TNπ ,
respectively, generally split the torus into a finite number of
disconnected components determined by the communication
graph. Given almost any initial configuration on the torus,
the trajectory is attracted to a limit cycle that is unique to
the particular disconnected component corresponding to the

12

3

4

Fig. 2. Directed connectivity graph for barrier-crossing example in which
agents 3 and 4 cross agent 1 and consequently interchange positions.
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Fig. 3. Single edge constraints between two agents, for repulsive (left) and
attractive coupling (right). M such constraints together have the effect of
carving up TN0 and TNπ , respectively, into disconnected regions.

initialization. Thus, even though the conditions of Theorem
2 guarantee almost global convergence to a limit cycle, the
particular limit cycle may not be unique. The number of such
behaviors is given by the number of disconnected compo-
nents defined by the barrier functions and the communication
graph topology. In this section, we address the problem of
counting the number of such components.

Let G be an undirected communication graph with vertices
and edges (N , E), where each i ∈ N represents an agent
and an edge (i, j) ∈ E denotes that agents i and j are
communicating; |N | = N and |E| = M . Each agent i has
dynamics θi ∈ S1, so we can define the configuration space
of G to be the torus TN .

1) Repulsive Case: In the case of repulsive communica-
tion, coupling functions are required to grow infinitely strong
at 0 separation, so that for any edge (i, j) ∈ E , |θi−θj | 6= 0.
This restricts TN to TN0 ≡ {θ ∈ TN : |θi−θj | 6= 0,∀(i, j) ∈
E}. Here we investigate the number of disconnected regions
R0(G) in TN0 for general graphs G.

Proposition 1: For tree graphs T and circular graphs CN ,
R0(T ) = 1 and R0(CN ) = N − 1.

Proof: Consider first a single edge (i, j) of G, which
places constraint |θi − θj | 6= 0. First we treat each coordinate
as lying in I1 ≡ [0, 2π] rather than in S1. The constraint
produces two disconnected regions {+,−} ⊂ I2, as shown
in Figure 3, which merge to a single region after compacti-
fication to T2.

The full connectivity graph puts M such constraints on
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Fig. 4. A simple illegal graph labelling in the repulsive coupling case:
agent γ cannot simultaneously satisfy θγ > θβ and θγ < θα if θβ > θα.

TN , or IN prior to compactification. Any point in IN

then has a well-defined label {+,−}M , enumerated by
some ordering of the graph edges. Let us assume for the
moment that all such labellings are permitted, and corre-
spond to physically-realizable configurations of agents. IN

then contains 2M unique disconnected regions. However,
for compactification to proceed, each of the N pairs of
(N − 1)-faces corresponding to θi = 0 and θi = 2π
must be identified, which may cause previously disconnected
regions to become connected. In our graph labelling, this
identification corresponds to reversing the labelling of all
edges adjoined to θi, as the barriers for each of these edges
must all be crossed to travel from 0 to 2π or vice-versa, while
all other edge barriers run perpendicular to the (N −1)-face
in question.

The set of (N − 1)-face identification operators may
be treated as members of an M -dimensional vector space
over the field with two elements, FM2 , which span some
subspace H ⊆ FM2 . If all identification operators could be
freely applied to all graph labellings, H would contain all
edge labellings which are path-connected to the zero-label
OM , and D = FM2 /H would be isomorphic to the set of
equivalence classes of disconnected labellings. From this and
the linear dependence identity

∑
i Âi = 0M , the simple

relation R0(G) = |D| = 2M−N+1 would hold. Unfortu-
nately, each graph labelling permits only a restricted subset
of identification operators on its vertices, corresponding to
those agents in the configuration which can be translated
across θ = 0 without colliding with another edge-adjacent
agent (note that two agents which are not in communication
may collide without consequence).

To address this, we must first address our unfounded
assumption from earlier in this argument, that all connec-
tivity graph labellings {+,−}M were permitted. This was
excessively bold, as many labellings describe arrangements
of agents which are not self-consistently ordered. This is
most easily seen by assigning an orientation to our graph in
place of a two-labelling, where the directed arrow of an edge
points from α → β if θα < θβ . The simplest such example
is shown in Figure 4, where angle θγ cannot be placed on
the circle such that it satisfies both θγ > θβ and θγ < θα.
Of course, vertex γ is not responsible for the problem –
reversing the direction of any edge would make this graph
permissible.

In order to avoid such clashes in ordering, the orientation
of the graph is required to be acyclic. The enumeration of

acyclic orientations is solved for all graphs, and is given
by NA(G) = |χG(−1)| = 2M − NC(G), where χG is the
chromatic polynomial of G [25]. While χG is known and
takes simple forms for many graphs, it must be computed
algorithmically for unknown graphs, and this problem is #P-
hard [26].

We may now make use of orientations to characterize
the set of identification operators permissible for each graph
labelling. Any vertex α which is unobstructed from crossing
θ = 0 must have either θα < θβi

or θα > θβi
for all

edge-connected vertices βi. In an acyclic orientation, such
vertices are known as sources and sinks; for every acyclic
orientation of any graph, Nsources ≥ 1 and Nsinks ≥ 1,
and orientations with one of each are known as bipolar ori-
entations. Therefore, only the set of identification operators
at the source and sink vertices of a graph orientation may
be applied to that labelling. Equivalence classes of labellings
may be constructed by applying the permitted operators to all
acyclic orientations of G; the quantity of equivalence classes
is then R0(G).

For tree graphs T , the situation is fortunately simple: all
orientations must be acyclic, so NC(T ) = 0. Furthermore, all
orientations lie in the same equivalence class. The outermost
vertices of the tree must always be source or sinks, and so
their identification operator may be freely applied to flip the
direction of the outermost edges. This, in turn, allows all
second-to-outermost vertices to be transformed into sources
or sinks, and by iteration, the entire tree may be freely
reoriented. Thus R0(T ) = 1.

Lemma 1: For circle graphs CN , all orientations with
P clockwise-directed edges and N − P counterclockwise-
directed edges form a unique, closed equivalence class under
source-sink identification operators.

Proof: A vertex lies between a clockwise- and a
counterclockwise-directed edge if and only if it is a source
or a sink; without loss of generality, consider a source.
Acting on this vertex with its identification operator can
be thought of as shifting the clockwise-directed edge in the
counterclockwise direction along CN , and vice versa. If a
neighboring vertex was previously a sink, it will become
neutral; otherwise, it will become a source. Therefore, any
orientation in the class can be transformed into any other
desired orientation by moving all clockwise-directed edges
into the desired position, one step at a time. Furthermore,
by the binomial theorem, there are

(
N
P

)
labellings in this

equivalence class.
Enumerating by the number of clockwise edges, and

rejecting the NC(CN ) = 2 cyclic orientations, we have
R0(CN ) = N −1. The partitioning of all graph labellings is
confirmed by noting that

∑N
P=0

(
N
P

)
= 2N .

Proposition 2: For complete graphs KN , R0(KN ) =
(N − 1)!.

Proof: As all vertices are adjacent in a complete
graph, no agent may collide with any other agent. Therefore
R0(KN ) reduces to the number of distinct circular permuta-
tions of N items, which is (N − 1)!. We may also interpret



this case through the above source-sink formalism. Acyclic
orientations of complete graphs are always bipolar [27], and
the source of the orientation corresponds to the agent with
smallest θ. Acting on this source vertex with its identification
operator causes it to become a sink, and the next smallest-θ
vertex to become the new source; iterating, every equivalence
class under the identification operators must contain N
labellings. Furthermore, NA(KN ) = χKN

(−1) = N !, so
R0(KN ) = N !/N = (N − 1)!.

2) Attractive Case: In the case of attractive communica-
tion, coupling functions instead must satisfy |θi−θj | 6= π, re-
stricting TN to TNπ ≡ {θ ∈ TN : |θi − θj | 6= 0,∀(i, j) ∈ E}.
In this case, a single constraint produces three disconnected
regions {+, O,−} ⊂ I2, as shown in Figure 3. We do not
attempt here a complete discussion of the attractive case, but
point out some qualitative differences in treatment from the
repulsive case.

A formalism of edge-labellings and vertex compactifica-
tion operators, as was developed in the repulsive case, may
once again be applied. It is suspected but unconfirmed that
this labelling may be reduced to an oriented two-coloring of
the undirected graph, as + and − labellings may not appear
edges adjacent to the same vertex. Even within this scheme,
it appears that the ±-colored subgraph must be connected
and bipartite in order to correspond to a physical formation,
leading to a complex counting problem for general graphs,
even before compactification is considered.

IV. SHAPING CONSENSUS TO A TARGET FORMATION

Now, we consider the problem of shaping consensus; given
a connected graph G = (N , E), a set of intrinsic frequencies
{ωi}N , and a formation {∆ij}E , i.e., a phase difference
given for each edge, find a common frequency ω̄, a set of
attractive undirected edges Ea, a set of repulsive undirected
edges Er, a set of attractive coupling functions {fij(·)}Ea ,
and a set of repulsive coupling functions {gij(·)}Er such that
the given formation represents a limit cycle governed by the
equation

ω̄ = ωi +
∑
j∈Na

i

fij(∆ij) +
∑
j∈N r

i

gij(∆ij), i ∈ N , (4)

to which the system described by

θ̇i(t) = ωi +
∑
j∈Na

i

fij (θj(t)− θi(t))

+
∑
j∈N r

i

gij (θj(t)− θi(t)) , i ∈ N
(5)

converges. Here, N := {1, . . . , N}, Ni := {j ∈ N : (i, j) ∈
E}, N a

i and N r
i denote the subsets of nodes connected to

agent i by attractive and repulsive couplings, respectively,
and f∗(·) : R→ R, g∗(·) : R→ R are 2π-periodic functions
that are twice differentiable on (−π, π), (0, 2π) respectively
such that f∗(0) = 0, g∗(π) = 0, f ′∗(α) > 0 for all α ∈

(−π, π), and g′∗(α) > 0 for all α ∈ (0, 2π). In particular,

lim
t→(2n+1)π+

f∗(t) = −∞ and lim
t→(2n+1)π−

f∗(t) =∞

lim
t→2nπ+

g∗(t) = −∞ and lim
t→2nπ−

g∗(t) =∞

for all n ∈ N.
In this section, we first present a necessary and sufficient

condition for this problem to be solvable. Then, we illustrate
how to choose a subgraph that minimizes the number of
connections. Finally, by restricting the coupling functions
to take a prototypical shape, we derive a minimum energy
solution. An additional remark on using only the attractive
coupling is also provided.

Now, first note that a necessary condition for this problem
to be solvable is simply that there exists no edge (i, j) ∈
E such that ∆ij = 0, π mod 2π. This comes from our
freedom to choose between attractive and repulsive coupling
for each edge. Our claim is that this is also sufficient.

Theorem 3: Given a connected graph G = (N , E), a set
of intrinsic frequencies {ωi}N , and a formation {∆ij}E ,
assume that ∆ij 6= 0, π mod 2π for all (i, j) ∈ E . Then,
there exists a common frequency ω̄, a set of attractive
undirected edges Ea, a set of repulsive undirected edges
Er = E\Ea, a set of attractive coupling functions {fij(·)}Ea ,
and a set of repulsive coupling functions {gij(·)}Er such
that (4) is satisfied.

Proof: Note first that if we can find a common
frequency ω̄ and a set Ea such that for each i ∈ N , there
exists j ∈ N a

i := {j ∈ Ni : (i, j) ∈ Ea} satisfying

∆ij ∈
{

(0, π) mod 2π, if ω̄ > ωi,

(−π, 0) mod 2π, if ω̄ < ωi,

or j ∈ N r
i := {j ∈ Ni : (i, j) ∈ Er := E \ Ea} satisfying

∆ij ∈
{

(0, π) mod 2π, if ω̄ < ωi,

(π, 2π) mod 2π, if ω̄ > ωi,

then we can find a set of attractive coupling func-
tions {fij(·)}Ea and a set of repulsive coupling functions
{gij(·)}Er such that (4) is satisfied. To see this note that if,
for instance, such j ∈ N a

i exists, then we can always find
fik(·) for k ∈ N a

i , k 6= j and gik(·) for k ∈ N r
i such that

fik(∆ik) and gik(∆ik) are sufficiently small so that

|ω̄ − ωi| >
∑

k∈Na
i ,k 6=j

|fik(∆ik)|+
∑
k∈N r

i

|gik(∆ik)|

and therefore, we can find fij(·) such that

fij(∆ij) = ω̄ − ωi −
∑

k∈Na
i ,k 6=j

fik(∆ik)−
∑
k∈N r

i

gik(∆ik).

Now, we can show that for any common frequency ω̄ ∈
(mini ωi,maxi ωi) such that ω̄ 6= ωi, i ∈ N , there exists a
set Ea that satisfies the above condition. In particular, pick
any such common frequency ω̄ and let Nlarge := {i ∈ N :
ωi > ω̄} and Nsmall := {i ∈ N : ωi < ω̄}. Now, for
each subgraph that corresponds to Nlarge and Nsmall, there
will be multiple connected components. But, these should



be connected to at least one of the connected components
on the other side. So, for all of these edges, say (i, j) ∈ E ,
i ∈ Nsmall, j ∈ Nlarge, if ∆ij ∈ (0, π) mod 2π, then let
(i, j) ∈ Ea. Otherwise, if ∆ij ∈ (π, 2π) mod 2π, then let
(i, j) ∈ Er. By this construction, those agents in Nsmall, that
have neighbors in Nlarge, satisfy the above condition, and
vice versa for those agents in Nlarge.

For the remaining edges that are associated with each
connected component, if this corresponds to Nsmall, then
starting from the agents that have a connection with the other
side, define as above the attractiveness and the repulsive-
ness by considering the starting agents as Nlarge and their
neighbors as Nsmall, and repeat. Analogously, for connected
components corresponding to Nlarge, start from the agents
that have a connection with the other side and define as
above the attractiveness and the repulsiveness by considering
the starting agents as Nsmall and their neighbors as Nlarge,
and repeat. In this way, all of the agents satisfy the above
condition.

Now, having shown that we have a mild necessary and
sufficient condition, a direct conclusion can be made about
the choice of a subgraph that minimizes the number of
connections.

Corollary 1: Given a connected graph G = (N , E), any
undirected spanning tree of the original graph G has the
minimum number of edges among all the subgraphs that still
allow the problem to be solvable.

On the other hand, under this necessary and sufficient
condition, given a common frequency ω̄, a set of attractive
undirected edges Ea, and a set of repulsive undirected edges
Er = E \ Ea, if we restrict our coupling functions to be the
scaled version of a single function, i.e., fij(·) = αijf

∗(·) and
gij(·) = βijg

∗(·), then the problem of finding an appropriate
set of coupling functions becomes algebraic, as f∗(∆ij) and
g∗(∆ij) are constants. In particular, we only have to find
real {αij > 0}Na

i
, {βij > 0}N r

i
such that

ω̄ − ωi =
∑
j∈Na

i

αijf
∗
ij +

∑
j∈N r

i

βijg
∗
ij (6)

for each i ∈ N , where f∗ij := f∗(∆ij) and g∗ij := g∗(∆ij).
In this respect, a minimum energy solution, in the sense of

minimizing
∑
i∈N

∑
j∈Na

i
α2
ij +

∑
j∈N r

i
β2
ij , can be found

as follows.
Theorem 4: Under the necessary and sufficient condition,

let us assume that a common frequency ω̄, a set of attractive
undirected edges Ea, and a set of repulsive undirected edges
Er = E \ Ea are given such that for each i ∈ N the index
set N+

i := N a,+
i ∪N r,+

i is non-empty, where

N a,+
i := {j ∈ N a

i : sgn(ω̄ − ωi) = sgn(f∗ij)},
N a,−
i := {j ∈ N a

i : sgn(ω̄ − ωi) = −sgn(f∗ij)},
N r,+
i := {j ∈ N r

i : sgn(ω̄ − ωi) = sgn(g∗ij)},
N r,−
i := {j ∈ N r

i : sgn(ω̄ − ωi) = −sgn(g∗ij)}.

Then, we have a set {αij > 0}Na
i

and {βij > 0}N r
i

such that (6) is satisfied. Among which, an almost minimum

energy solution with arbitrary precision can be found as

αij =

ε, if j ∈ N a,−
i ,

|ω̄−ωi||f∗ij|∑
j∈Na,+

i
(f∗ij)

2
+
∑

j∈Nr,+
i

(g∗ij)
2 , if j ∈ N a,+

i ,

βij =

ε, if j ∈ N r,−
i ,

|ω̄−ωi||g∗ij|∑
j∈Na,+

i
(f∗ij)

2
+
∑

j∈Nr,+
i

(g∗ij)
2 , if j ∈ N r,+

i ,

with arbitrarily small ε > 0.
Proof: Note that the increase of αij and βij for j ∈ Ni\

N+
i necessarily increases the energy, as it acts in opposition

to the goal of satisfying (6). Now, we have the following
simple inequality that proves our claim.

|ω̄ − ωi|2 =

∑
j∈Na

i

αijf
∗
ij +

∑
j∈N r

i

βijg
∗
ij

2

≤

 ∑
j∈Na,+

i

αijf
∗
ij +

∑
j∈N r,+

i

βijg
∗
ij

2

≤

 ∑
j∈Na,+

i

α2
ij +

∑
j∈N r,+

i

β2
ij

×
 ∑
j∈Na,+

i

(
f∗ij
)2

+
∑

j∈N r,+
i

(
g∗ij
)2

where the first inequality follows for sufficiently small ε > 0,
and the second inequality is simply the consequence of
the Cauchy-Schwarz inequality, where only the proposed
solution satisfies the equality.

A. Using only attractive coupling

If we are restricted to use only attractive couplings, then
some minor changes apply to our solution. First of all,
our necessary condition becomes stronger. In particular, a
necessary condition for this problem to be solvable is that 1)
there exists no edge (i, j) ∈ E such that ∆ij = π mod 2π
and that 2) there exists ω̄ such that for each i ∈ N the index
set N+

i is non-empty, where N+
i is defined as{

j ∈ Ni : ∆ij ∈
{

(0, π) mod 2π, if ω̄ > ωi,

(−π, 0) mod 2π, if ω̄ < ωi.

}
.

This is also sufficient according to the proof of Theorem 3.
On the other hand, the choice of a subgraph that minimizes

connections becomes more complicated as follows.
Theorem 5: Given a connected graph G = (N , E), a set

of intrinsic frequencies {ωi}N , and a formation {∆ij}E ,
assume that there exists a common frequency ω̄ such that
for each i ∈ N the index set N+

i is non-empty. Then, the
minimum number of edges of a subgraph G′ that still allows
the problem to be solvable is

N + C − 1 +

C∑
k=1

(nk − 1)



where C is the number of connected components of a graph
Ḡ = (N , Ē), Ē := {(i, j) ∈ E : j ∈ N+

i or i ∈ N+
j } and

nk, k = 1, . . . , C is the number of independent strongly
connected components (iSCCs) of a directed graph Gk =
(N k, Ek), where N k corresponds to the indices of each
connected component of Ḡ and Ek := {(i, j) ∈ E : j ∈
N+
i , i ∈ N k}.

Proof: First of all, note that to satisfy the necessary
and sufficient condition for the subgraph G′, for each i ∈ N ,
we have to select at least one edge (i, j) such that j ∈ N+

i .
Moreover, we have to select additional edges to maintain
connectivity of the network G′.

In this sense, it is necessary to have these connected
components connected by an edge contained in E \ Ē .
Therefore, we additionally need at least C − 1 edges. Now,
for each connected component, we should find a subgraph
with a minimal number of connections that satisfies the above
conditions. To achieve this, the subgraph for each connected
component should at least have an edge for each of its
elements, combined with edges connecting its nk iSCCs, for
a total no less than |N k| + nk − 1. Therefore, we prove
our claim, so long as we can construct a subgraph that has
exactly the number of edges described here.

Since the original graph G is connected, we can always
find such C − 1 edges. In particular, if we construct a new
graph, where each connected component is considered as a
single node, then it should be connected, and thus, we can
find an undirected spanning tree. We just have to pick any
single edge that corresponds to an edge of this spanning tree.

Now, for each connected component, a network with a
minimal number of connections can be found as follows.
Take any agent in the iSCC, and find a spanning tree that has
its root as the agent, then simply connect one edge coming
from any other agent to the root agent. For the remaining
agents, we construct a network step by step. First, we connect
all agents that have as neighbor a member of any iSCC with
only one edge per agent. Then, we connect all the agents that
have their neighbor as a member of this first layer by only
one edge per agent and repeat. If there is a remaining agent,
then it is not connected to any of the agents thus far. But,
this means that when considering the undirected graph that
is obtained by making the edges symmetric, it is no longer
a single connected component, which is a contradiction.

The minimum energy solution is identical to what was
presented in Theorem 4.

B. Simulations

Simulations of consensus dynamics on the circle were
performed in C++, using the classic Runge-Kutta method
for discrete time steps and prototype attractive coupling
function f∗(θ) = tan(θ/2). The performance of least
communication solutions are demonstrated here for tree
graphs containing seven agents, and with attractive couplings
only. A “balanced” target formation is constructed with all
neighboring ∆ij = 2π/7, and a “clustered” formation is
defined with ∆12 = 0.1, ∆23 = 1.3, ∆34 = ∆45 = 0.2,
∆56 = 1.3, ∆67 = 0.1, both of which are represented in
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3

4

5

6 7

Fig. 5. Target formations on the circle for balanced (left) and clustered
(right) formations.

Fig. 6. Position (relative to agent 2) of seven evolving agents for balanced
(left) and clustered (right) target formations with dynamics given by the
least communication solution.

Figure 5. Pseudorandom initial positions were chosen, in
accordance with the almost-everywhere convergence prop-
erty for tree graphs. For both simulations a target frequency
of ω̄ = 0.1 was selected, with intrinsic frequencies ωi =
{−0.6,−0.4,−0.2, 0, 0.2, 0.4, 0.6} chosen to demonstrate a
nontrivial frequency convergence.

As shown in Figure 6, simulations converge to the target
formations with similar convergence times. The coupling
coefficients computed for each solution are given below.
For the simulations shown, arbitrarily small ε = 0.01 was
inserted where necessary to ensure bidirectionality, and was
confirmed to have a negligible impact on dynamics.

[αij ]
balanced

=



0 0 0.558 0 0 0 0
0 0 1.038 0 0 0 0
ε ε 0 0.623 0 ε 0
0 0 ε 0 0.208 0 0
0 0 0 0.208 0 0 0
0 0 0.068 0 0 0 ε
0 0 0 0 0 1.038 0



[αij ]
clusters

=



0 0 0.831 0 0 0 0
0 0 0.658 0 0 0 0
ε ε 0 2.990 0 ε 0
0 0 ε 0 0.997 0 0
0 0 0 0.997 0 0 0
0 0 0.264 0 0 0 ε
0 0 0 0 0 9.991 0





V. CONCLUSION

We have presented a natural generalization of the
positivity-based convergence analysis of linear consensus
algorithms to target formations on the circle. The approach
is based on monotonicity and uses barrier functions to
ensure forward invariance of differentially positive dynamics,
thereby guaranteeing almost global convergence to limit
cycles. By using coupling functions that guarantee conver-
gence of the dynamics, the problem of shaping the collective
nonlinear dynamics to a target formation reduces to one of
algebra and graph theory. In future work, we hope to relax the
barrier conditions on the coupling functions and determine
criteria for achieving forward invariance for prescribed sets
of initial conditions. Partial relaxations of the monotonicity
requirement and analysis of the effects of isolated points of
non-smoothness in the dynamics in the absence of forward
invariance remain as open problems.
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