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Abstract
Purpose The use of synthetic or simulated data has the potential to greatly improve the availability and volume of training
data for image guided surgery and other medical applications, where access to real-life training data is limited.
Methods By using the Unity game engine, complex intraoperative scenes can be simulated. The Unity Perception package
allows for randomisation of paremeters within the scene, and automatic labelling, to make simulating large data sets a trivial
operation. In this work, the approach has been prototyped for liver segmentation from laparoscopic video images. 50,000
simulated images were used to train a U-Net, without the need for any manual labelling. The use of simulated data was
compared against a model trained with 950 manually labelled laparoscopic images.
Results When evaluated on data from 10 separate patients, synthetic data outperformed real data in 4 out of 10 cases. Average
DICE scores across the 10 cases were 0.59 (synthetic data), 0.64 (real data) and 0.75 (both synthetic and real data).
Conclusion Synthetic data generated using thismethod is able tomake valid inferences on real data, with average performance
slightly below models trained on real data. The use of the simulated data for pre-training boosts model performance, when
compared with training on real data only.
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Introduction

For researchers working on machine learning/AI applica-
tions in Image Guided Surgery (IGS), the lack of application
specific training data is a perennial issue. In addition, the
time-consuming process of manually labelling data is espe-
cially challenging for medical data, as labelling complex
intraoperative scenes or radiological data typically requires
the expertise of a trained clinician.

The use of synthetic data for model training has benefited
the wider computer vision community [1,2], but there have
been limited applications in the IGS field. The application of
image to image transfer, and video style transfer [3,4] are a
promising approach to generate fully labelled data, but large
amounts of data are required to train these networks initially,
which limits their use to applications where training data is
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already available, and it is difficult to introduce variance into
the data that is not present in the training data.

An alternative approach, described here, is to generate
synthetic data, with little or no input form existing clini-
cal data sets. The approach makes use of the Unity (https://
unity.com/) games engine, and in particular theUnity Percep-
tion package (https://github.com/Unity-Technologies/com.
unity.perception). Perception provides a framework for gen-
erating large datasets, by randomising parameters (model
size/shape/position, textures, lighting etc.) and automatic
labelling of the scene. Combined with Unity’s state of the
art functionality for rendering, lighting, particle systems and
animation this provides an excellent platform for researchers
to rapidly generate large datasets for model development.

In this work, an initial application of this approach to
the problem of liver segmentation from laparoscopic video
images is considered. This was chosen due to the availability
of a well-labelled dataset of real surgical images for compar-
ative purposes, but the approach could easily be extended to
other organs and labelling scenarios.
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Fig. 1 Texture generation process. A sample patch is cropped from a relevant image (Source: Wikipedia), converted to a tileable pattern and a
normal map generated. Texture variety is increased further by randomisation of RGB parameters at simulation time

Fig. 2 Sample synthetic data and liver segmentation

Fig. 3 Normal, depth and contour labels can be generated in Unity

Method

A Unity scene was created to mimic a simplified intraopera-
tive view of the liver, comprising a liver model, layer of fat
surrounding the liver, a laparascopic tool and a Unity spot
light to represent the scope light source, all enclosed within
a torso shaped background surface.
To demonstrate that suitable data can be generated without
requiring application specific training data to act as a start-
ing point, all models and textures used for simulation were
acquired from online stores/repositores.

A liver model, complete with 8k textures was purchased
from the TurboSquid model store (https://www.turbosquid.
com). All other models were created using 3D primitives in
Unity/Blender.

Additional textures for the liver, fat and background were
either sourced from existing texture libraries (https://www.
texturecan.com/) or synthesised from relevant images to cre-
ate a tileable pattern (Fig. 1). Where normal maps were not
available for textures, these were generated using Crazy-
Bump.

The following parameters were randomly varied during
simulation—liver texture and normal map; tiling and RGB
offset of liver texture; background texture and normal map;
position of laparoscopic tool; intensity (500–1500), range
(0.75–1.25) and outer angle (50–90) of spot light; camera
position and orientation within the torso, distortion (0–0.65)

Table 1 Mean DICE score per
patient, for the three training
scenarios

P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 Mean

Syn 0.74 0.75 0.70 0.56 0.83 0.71 0.32 0.37 0.32 0.57 0.59

Real 0.85 0.91 0.91 0.68 0.68 0.48 0.51 0.64 0.22 0.53 0.64

Both 0.87 0.92 0.92 0.78 0.88 0.79 0.56 0.69 0.38 0.75 0.75

Bold indicates the highest DICE score, between Synthetic and Real data
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and motion blur (0–0.5). Apart from the textures/normal
maps, whichwere taken from a discrete set, all variableswere
linearly sampled from a continuous distribution. Quoted fig-
ures give the range of values used for the respective Unity
parameters. Relevant code is available at https://github.com/
UCL/Synthetic_Liver_IPCAI_2022.

Model training

A dataset of 1835 images of laparascopic liver surgery in
20 patients were manually segmented to identify the liver.
This was split into training (10 patients, 950 images) and
evaluation (10 patients, 885 images) sets. Fifty thousand
synthetic images were generated in Unity (time required
for generation time was in the order of 10 min), with a
corresponding segmentation image in each case (Fig. 2)
Additional examples can be viewed online (https://youtu.
be/JVsyZRoHxz8), and the full dataset is available at weiss-
develop.cs.ucl.ac.uk/liver-ipcai-2022/synthetic-liver-images.
zip. For demonstration purposes, labels were generated for
the liver contour, depth map and normal map (Fig. 3).
Three different training scenarios were run—(1) Train on
the 50,000 synthetic images only. (2) Train on the 950 sur-
gical images only. (3) Pre-train on synthetic data, post-train
on real surgical images.

In each case, the network was evaluated using the 10
patients in the evaluation set, using a U-Net (https://github.
com/milesial/Pytorch-UNet) over 10 epochs, learning rate
of 0.001, batch size of 10, with RMSProp optimizer.

Results

DICE scores were calculated per patient in the validation set,
for the three approaches (Table 1). Trainingwith bothdatasets
always produces better results, butwhen comparing synthetic
only and real only training, the best approach varied, with
synthetic data performing best in 4 out of 10 cases.

Discussion

The presented work demonstrates that the generated syn-
thetic data can be used in its own right to make valid
predictions, outperforming real data in some cases, and that
it can also be used to pre-train a model for increased perfor-
mance. Ongoing work in this area is looking into modelling
additional organs, evaluating performance with different
deep learning algorithms, evaluating trained models in clin-
ical scenarios, and into incorporating Unity functionality to

render particles (e.g. blood) and soft body physics effects for
added realism.
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