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Abstract
Purpose Robotic-assisted laparoscopic surgery has become the trend in medicine thanks to its convenience and lower risk
of infection against traditional open surgery. However, the visibility during these procedures may severely deteriorate due to
electrocauterisation which generates smoke in the operating cavity. This decreased visibility hinders the procedural time and
surgical performance. Recent deep learning-based techniques have shown the potential for smoke and glare removal, but few
targets laparoscopic videos.
Method We propose DeSmoke-LAP, a newmethod for removing smoke from real robotic laparoscopic hysterectomy videos.
The proposed method is based on the unpaired image-to-image cycle-consistent generative adversarial network in which two
novel loss functions, namely, inter-channel discrepancies and dark channel prior, are integrated to facilitate smoke removal
while maintaining the true semantics and illumination of the scene.
Results DeSmoke-LAP is compared with several state-of-the-art desmoking methods qualitatively and quantitatively using
referenceless image quality metrics on 10 laparoscopic hysterectomy videos through 5-fold cross-validation.
Conclusion DeSmoke-LAP outperformed existingmethods and generated smoke-free imageswithout applying ground truths
(paired images) and atmospheric scatteringmodel. This shows distinctive achievement in dehazing in surgery, even in scenarios
with partial inhomogenenous smoke. Our code and hysterectomy dataset will be made publicly available at https://www.ucl.
ac.uk/interventional-surgical-sciences/weiss-open-research/weiss-open-data-server/desmoke-lap.
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Introduction

In laparoscopic surgery, the risks of bleeding can be reduced
using instruments with electrocauterisation capabilities, in
which a heating source is directly applied to tissue for
dissection. Such electric instruments have been adapted to
robotic-assisted surgery platforms such as the da Vinci Xi
in the context of e.g. performing cholecystectomy and hys-
terectomy.One of the challenges in electrocauterisation is the
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production of smoke that hinders the visibility of the opera-
tive site through the laparoscopic camera. This may require
the surgeon to stop any action until visibility is re-established.
As demonstrated in [1], this leads to an increase in the opera-
tion time as well as surgeon’s anxiety. Figure 1 shows sample
laparoscopic images with clear view (no smoke) and light,
medium and high density of smoke.

A substantial number of computer vision techniques
have been proposed before to restore visibility in hazy
images. These include traditional computer vision methods,
generative adversarial networks (GANs) for paired image-to-
image translation and cycle-consistent generative adversarial
networks (CycleGANs) for unpaired image-to-image trans-
lation. Traditional methods use neural networks [2] or
variational interference [3,4] for image desmoking, whose
generator is simply updated according to the provided
database. On the other hand, GAN model updates the gener-
ator by the backpropagation from discriminator, which helps
in obtaining more reliable results. Paired image-to-image
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Fig. 1 Sample laparoscopic frames showing different grades of smoke in input and desmoked output from the proposed DeSmoke-LAP method

translation GANs [5] require the same images with and with-
out ground-truth hazy conditions during training and thus rely
on synthetic training data. In contrast, GANs for unpaired
data [6,7] can be trained simply on arbitrary examples of
clear and hazy images, without the need of ground truths or
generative physical models, thus offering more flexibility in
terms of training data.

Several physical models, including atmospheric scatter-
ing model and dark channel prior, have been utilised to
model smoke parameters efficiently [2,5,8,9]. The purpose
of the atmospheric scattering model is to simulate the smoke
component by relating global atmospheric light to the trans-
mission map [2,8]. However, generated smoke cannot be
distributed uniformly and thus cannot be simply computed
by the scattering model. The dark channel prior is shown to
model haze [5], but no attempts have been done to investigate
its use within a loss function to train a dehazing model using
unpaired real data. Due to the difficulty in obtaining paired
images for real data, quantitative evaluation of thesemethods
mostly relies on synthetic data.

In this paper, we proposeDeSmoke-LAP, a dehazing tech-
nique to improve the visibility of laparoscopic scenes during
electrocauterisation. We use an unpaired surgical image
dehazing network which is based on CycleGAN [6]. Our
proposed method enhances the CycleGAN network by intro-
ducing the inter-channel discrepancies and the dark channel
prior as part of the loss function during network training.
These losses help in modelling different smoke components
and lead to smoke-free images with visually higher quality.
We created a dataset of clear view and hazy images from 10
laparoscopic hysterectomy videos and use cross-validation
for evaluation. Additionally, we perform validation on con-
tinuous clips, containing varying smoke density, from each
video to assess real operation scenarios. Since paired ground
truths are not available, we propose to utilise three exist-
ing referenceless metrics for the performance evaluation.
Through both quantitative and qualitative comparative anal-
ysis with the existing methods, we show that our proposed
method achieves better performance. Themain contributions
of this paper are as follows:

• Wedevelop enhancedCycleGANwhich focuses on smoke
removal in laparoscopic surgery using unpaired image-to-
image translation,without utilising atmospheric scattering
models or ground truths during model training.

• We introduce additional loss functions on inter-channel
discrepancies and dark channel prior that allows qualify-
ing remaining smoke component in the generated image,
aiding cycle-consistency loss and adversarial loss.

• We introduce the use of referenceless image quality met-
rics for evaluation which are designed to measure image
quality in the absence of ground truth.

• The utilised dataset that includes 6000 clear and hazy
images extracted from 10 laparoscopic videos and 10
video clips are made publicly available1, providing a
benchmark for unpaired laparoscopic image desmoking.

Proposedmethod

The proposedDeSmoke-LAPmodel is designed for unpaired
image-to-image translation in two domains based on the
architecture of CycleGAN, where two additional loss func-
tions are designed for inter-channel differences and dark
channel prior (as shown in Fig. 2). These loss functions,
added for discriminating, aim to capture the remaining smoke
covered on the generated image and promote the optimisation
of the generator in the next iteration.

Cycle-consistent generative adversarial network

CycleGAN architecture forms the backbone of our proposed
method, which is an improved GAN [10] that uses adversar-
ial and cycle-consistency losses for unpaired image-to-image
translation from source X to target Y domains. GAN is com-
posed of generator and discriminator, where the purpose of
the generator is to synthesise examples realistic enough to
fool the discriminator, while the discriminator aims to cor-
rectly distinguish between real and synthetic images. The
weights of these two models are updated dynamically to
achieve a stabilised balance. Given unpaired clear (smoke-
free) images {xi }Ni=1 where xi ∈ X and hazy images {y j }Mj=1
where y j ∈ Y , the goal is to learn the mapping between X
and Y . Two discriminators are implemented in the network,
where DX is applied to distinguish between clear images X
and translated data from hazy images F(Y ) and DY distin-

1 Code and visual comparison on video clips: https://www.ucl.ac.
uk/interventional-surgical-sciences/weiss-open-research/weiss-open-
data-server/desmoke-lap.
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Fig. 2 An overview of the proposed DeSmoke-LAP method. The inter-channel (IC) discrepancies and dark channel (DC) prior are introduced to
qualify the remaining smoke, aiding cycle-consistency and adversarial losses in smoke removal

guishes hazy images Y and translated data from clear image
F(X) (Fig. 2). The adversarial loss measures the deviation
between the translated image from one domain and the real
sample in the other domain. It is applied to both generator
and discriminator, where discriminator aims to maximise the
loss and generator aims to minimise it.

L(G, DY , X ,Y ) = Ey∼pdata(y)[log DY (y)]
+Ex∼pdata(x)[log(1 − DY (G(x)))], (1)

L(F, DX , X ,Y ) = Ex∼pdata(x)[log DX (x)]
+Ey∼pdata(y)[log(1 − DX (F(Y )))], (2)

where x ∼ pdata(x) and y ∼ pdata(y) denote the data dis-
tributions of the two domains. The objective of generative
adversarial loss is summarised as:

LGAN (G, F, DX , DY ) = min
G

max
DY

L(G, DY , X ,Y )

+min
F

max
DX

L(F, DX ,Y , X). (3)

The cycle-consistency loss is evaluated to improve the
functionality of generators, which aims to assess the dif-
ference between the real data in one domain and data that
translated forward and back to the origin domain. It judges
the recovery with two translations, forward cycle consis-
tency: x → G(x) → F(G(x)) ≈ x and backward cycle
consistency: y → F(y) → G(F(y)) ≈ y.

Lcyc(G, F) = Ex∼pdata(x)[‖x − F(G(x))‖1]
+Ey∼pdata(y)[‖y − G(F(y))‖1] (4)

DeSmoke-LAP: desmoking in laparoscopic surgery

CycleGAN alone cannot eliminate smoke from laparoscopic
video frames since it does not learn to optimise the model
using priors specific to the smoke. Therefore, we pro-
pose DeSmoke-LAP, a desmoking approach for laparoscopic
surgery that targets hazy-to-clear translation by introducing
two additional loss functions, namely, inter-channel loss and
dark channel loss, to the discriminator of each domain. These
losses allow measuring the remaining smoke components in

the generated image by evaluating the differences between
images before and after processing them through the gener-
ator.

Inter-channel (IC) Loss

Inter-channel discrepancies [11,12] describe the difference
between any two channels of a pixel in the image by the use
of absolute norm,

�(P) = ‖PR − PG‖1 + ‖PG − PB‖1 + ‖PB − PR‖1, (5)

where P denotes a pixel in the image, and PR , PG and PD ,
respectively, represent the R, G, D channel of the pixel. The
value of channels in the pixel is normalised between 0 and 1.
Thus, the loss of an image can bemeasured by themean value
of norms for all pixels in that image, where x corresponds
to the selected image and n represents the total amount of
pixels, Pi ...n ∈ X .

I IC (X) = 1

n

n∑

i=1

�(Pi ), (6)

According to the observations of He et al. [9], the inter-
channel difference of a pixel in equation 6 relates to the level
of blur and a small value is obtained when there is heavy
smoke covered on that pixel. The normalised difference will
be reflected in the discriminator and contribute to the devel-
opment of the generator. Based on the analysis on smoke in
image, a low value indicates a high level of smoke for a pixel.
Thus, we consider that use 1 as the boundary in the calcu-
lation to ensure that the function results in large impacts to
the generator if the divergence is small. Our network works
between the clear and hazy domains, when performing hazy-
to-clear translation, it is intended to generate a fake image
with less smoke, and hence, the loss detects the hazy com-
ponents. If the target of the translation is a hazy image, the
corresponding discriminator is developed by the smoke-free
sections. The inter-channel loss used in the network is given
by,
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LIC = f (I IC (G(x))) + f (I IC (F(y))), (7)

where

f (x) =
{
1 − ‖x − 1‖, clean → hazy
‖x − 1‖, hazy → clean.

(8)

Dark channel (DC) loss

Inspired by [5,9,13], we assess hazy components in the image
using the dark channel prior, which measures the intensity of
the image and reveals its luminous density. This is defined as
the minimum value in the RGB channels

I dark(x) = min
y∈�(x)

( min
c∈r ,g,b I

c(y)), (9)

where I c is a colour channel of the arbitrary image I and
�(x) is a local patch centred at x . If the image is smoke-
free, I dark → 0. We observe that most of the pixels in a
clean laparoscopic image have a low-density value, but few
smoke-free pixels still output high value due to the luminance
effect and light reflection. To fairly and reasonably access the
dark channel of the sample input, the dark channel loss of an
image is measured as the average value by looping through
all pixels, filtering out extra-high or extra-low value. Adding
the refinement stage for the dark channel by applying the
soft matting algorithm [9] helps to measure and highlight the
edge and profile of objects, maintaining more details in the
image, and the algorithm is executed in our model as well.
The DC loss is, respectively, added to the two discriminators,
and ifmost of the sample is covered by smoke, the losswill be
large, promoting the parameter optimisation of the generator.

LDC = Idark(F(y)) + Idark(G(x)) (10)

Combined loss function

The full objective of loss function for the proposedDesmoke-
LAP is given by

L(G, F, Dx , Dy) = LCycleGAN (G, F, Dx , Dy)

+α · LIC (Dx , Dy) + β · LDC (Dx , Dy), (11)

LCycleGAN (G, F, Dx , Dy) = LGAN (G, F, DX , DY )

+Lcyc(G, F). (12)

To regulate the DC loss, β is added in Eq. 11 where its value
is selected through experimentation (refer to Sect. 4.2), and
α is used to maintain the balance between IC and cycle loss.
G and F , respectively, stand for generators for domain X and
Y , and Dx and Dy are two discriminators in two domains.

Referenceless evaluationmetrics

Since all our data are unpaired and collected from real robotic
surgery, ground-truth (paired clear and hazy) images are
not available. Therefore, metrics commonly used in haze
and smoke removal evaluation such as mean squared error
(MSE), peak signal-to-noise ratio (PSNR), structural similar-
ity index measure (SSIM), etc., are not applicable. We rely
on several referenceless image quality metrics for evaluating
the performance of the resulting desmoke images, but these
metrics are designed using real-world images having differ-
ent distribution than surgical images and cannot be solely
considered as a performance evaluation criterion. Three ref-
erenceless metrics evaluate reconstructed images based on
the fog density, image blurriness and edge restoration, and
they are briefly explained below:

Fog aware density evaluator (FADE) [14] is used to com-
pute the fog density of the image, where a higher FADE
value means there is more fog covered on the image. It is
constructed in accordance with natural scene statistics (NSS)
and fog aware statistical features.

Just noticeable blurmetric (JNBM) [15] measures the per-
ceptual sharpness of the image, where a lower value results
from low sharpness. It focuses on the behaviour of the human
visual system to sharpness at different contrast levels and
accesses the blurriness of edges in the image.

Restoring edge assessment (REA) [16] assesses the edge
restoration of the image, which differentiates between the
original and the reconstructed image. A higher value of REA
indicates better restoration of the edges.

Dataset and experimental setup

Data organisation

We collected 10 robot-assisted laparoscopic hysterectomy
procedure recordings. Active instrument labels at the bottom
of the video-feed assisted in manually annotating hazy and
clear images. These videos were decomposed into frames
at 1 fps. 300 clear and 300 hazy images per video were
selected to form our dataset. In total, 3000 clear and 3000
hazy images were selected from 10 sampled videos, where
the imageswere cropped to remove video display and resized
to 720 × 540 pixel resolution while maintaining the aspect
ratio. The organised data contain both inter-patient and intra-
patient variabilities in the scene, adding diversity to the
dataset. Intra-patient variability is experienced due to the
movement of the camera in the surgical operating field. The
collected images contain various levels of haze that were
split into light, medium, heavy and partial smoke. More-
over, a sequence of 50 frames is selected as a short clip from
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Fig. 3 FADE value of clear (left) and hazy (right) images in fold 3 with
various β

Fig. 4 Log of cycle loss, DC loss and IC loss in 100 epoches

each video, such that these clips also capture frames with
motion blur. These clips are used to analyse consistency of
desmoking algorithms across frames. The dataset summary
is provided in the supplementary Sec. 1.

Training details

For all experiments, models are trained using anNvida 16GB
V100 GPU and batch size of 4. The DeSmoke-LAP utilises a
ResNet generator and a PatchGAN discriminator along with
a least-squares GANs objective for each network, following
the implementation by Zhu et al. [6]. The learning rate is set
to 0.002 for the first 50 iterations and linearly decays to 0 in
the latter 50 epochs. To test and verify the superiority of the
combined losses, the model is trained with DC and IC losses
independently. To control the effect of the dark channel prior
efficiently, testing was completed on one fold with various
values of β. The model trained with a larger β gave a lower
FADE value indicated in Fig. 3. The median FADE value
is lowest at β = 0.05, leading to outputs with less smoke,
and thus, β in equation 11 is set to 0.05. To maintain the
balance among cycle loss, IC loss and DC loss, the IC loss
is normalised in the calculation and the weight is set at 3 to
ensure that cycle and IC loss lie in the same range, while DC
loss stays at higher value resulting in a larger impact, shown
in Fig. 4.

To investigate the performance of our proposed model,
five-fold cross-validation is used, with each fold containing
image samples from 2 videos. A sequence of 50 continuous
frames from each test video aids to evaluate the network. The
data are cropped at random positions to 256×256 resolution
for data augmentation, creatingmore patches before training.

We perform quantitative and qualitative comparisons,
along with a qualitative user study, of Desmoke-LAP with

CycleGAN[6], FastCUT [17],Cycle-Dehaze [7] andColores
et al. [5] methods. FastCUT [17] improves over Cycle-
GAN by providing a faster training network for image
translation, utilising the advantages of contrastive learn-
ing. Cycle-Dehaze [7] is an enhanced CycleGAN for image
dehazing that employs cyclic perceptual-consistency loss
to maintain the original structure of the image. Colores et
al. [5] fused the dark channel prior with inputs before pass-
ing it to the generator for learning paired image-to-image
translation. Experiments were performed with hazy images
synthesised by adding smoke to the input image. Since our
data is unpaired, retraining of this model is not possible.
Therefore, we use the pre-trained Colores et al. [5] model on
our dataset.

The training and testing times have also been recorded for
further investigation (attached as Table 12 in supplementary
material). It takes more than 9 hours to train CycleGAN,
FastCut and the proposed method.

Results and discussion

Quantitative comparisonof proposedDeSmoke-LAP (IC+DC)
and the existing models using five-fold cross-validation with
average FADE, JNBM and REA metrics and their stan-
dard deviation over all folds is presented in Table 1. The
results over each fold are provided in the supplementary
material Sec. 2. It reveals that the model with both loss func-
tions outperformed on all metrics, whereas the performance
of the model with only one loss was attenuated on either
haze or contrast levels. Focusing on quantitative results,
DeSmoke-LAP performance wasmarginally lower than Col-
ores et al. [5] and Cycle-Dehaze [7], though DeSmoke-LAP
outperformed other traditional unpaired translation meth-
ods [6,17]. However, when visually analysing the methods
under comparison (Fig. 1–2 in Supplementary), we observe
that though JNBM value of Colores et al. and Cycle-
Dehaze and DeSmoke-LAP are comparable, DeSmoke-LAP
removed smoke while retaining scene semantic, i.e. without
overexposing and attenuating the image intensity. Besides,
we observe that all referenceless metrics follow the same
trend.

We also perform quantitative testing on video clips
extracted from each video, reported in supplementary mate-
rial Sec. 3, and average results over all folds and clips are
presented in Table 2. Colores et al. [5] achieved overall best
performance by referenceless metrics, whereas the proposed
method outputs fine results compared to other approaches.
Our method, Cycle-Dehaze method and Colores’s method
perform well in both clear and hazy classes on FADE value.
Delving into JNBM and REA metrics, our method falls
behind Colores’s method because of low sharpness and poor
performance of edge restoration. Since referenceless metrics
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Table 1 Quantitative comparison through five-fold cross-validation on the organised clear and hazy images dataset. Mean and standard deviation
of the 3 metrics are reported. Lower FADE, and higher JNBM and REA values are better

FADE JNBM REA

Clear Hazy Clear Hazy Clear Hazy

Input 0.41±0.14 0.85±0.53 1.71±0.24 1.13±0.30 0.00 0.00

CycleGAN [6] 0.42±0.12 0.43±0.14 1.01±0.23 1.11+0.23 1.12±0.20 1.33±0.37

FastCUT [17] 0.61±0.22 0.81±0.21 1.19±0.27 1.11±0.25 2.00±0.58 2.34±0.55

Colores et al. [5] 0.31±0.08 0.40±0.12 1.27±0.27 1.19±0.26 2.57±0.55 3.09±0.56

Cycle-Dehaze [7] 0.28±0.20 0.29±0.08 2.10±0.30 2.11±0.22 1.65±0.42 1.77±0.55

DeSmoke-LAP (IC) 0.42±0.15 0.41±0.17 0.97±0.20 1.00±0.27 1.02±0.15 1.37±0.33

DeSmoke-LAP (DC) 0.41±0.15 0.41±0.15 0.99±0.25 1.11±0.24 1.06±0.12 1.38±0.31

DeSmoke-LAP (IC+DC) 0.41±0.14 0.41±0.14 1.10±0.20 1.13±0.26 1.09±0.20 1.41±0.30

Table 2 Comparative analysis
using the video clips’ dataset,
reporting mean and standard
deviation of the 3 metrics

FADE JNBM REA

Input 0.95±0.50 2.80±1.09 0.00

CycleGAN [6] 0.40±0.2 1.05±0.15 1.37±0.35

FastCUT [17] 0.59±0.27 1.11±0.20 1.13±0.18

Colores et al. [5] 0.36±0.09 1.18±0.20 5.60±1.75

Cycle-Dehaze [7] 0.28±0.05 2.03±0.19 1.60±0.34

DeSmoke-LAP (IC) 0.38±0.77 1.00±0.19 1.70±1.17

DeSmoke-LAP (DC) 0.37±0.83 1.07±0.18 1.74±1.00

DeSmoke-LAP (IC+DC) 0.36±0.79 1.08±0.15 1.79±1.23

Lower FADE, and higher JNBM and REA values are better

are designed from natural images which are largely differ-
ent from surgical images, these may not be true indicative of
surgical images quality.

We further investigated video clips for qualitative compar-
ison (Fig. 5). The video results from these clips are available
on the provided link 1 and in the supplementary video. We
divided testing images into three main groups based on their
density of smoke, which includes light, medium and heavy.
Three samples were picked from each group for visual con-
trast (as shown in Supplementary Sec. 4), annotated with
JNBM value. We observe the density of smoke in the recov-
ered image and colour variation between the input and output.
We also considered the reliability and harmony of the recov-
ered image, meaning the synthetic data must look like real
data.

All methods showed positive effects on desmoking in
surgical images, except FastCUT [17] failed to completely
eliminate the smoke from hazy images (Fig. 5 and supple-
mentary video1). Cycle-Dehaze [7] works well on dehazing
but produced low-quality outputs. The proposed DeSmoke-
LAP visually outperformed Colores et al. [5] and took the
lead in optimisation of dark pixels where most smoke was
detected and removed (see suppl. video). In terms of JNBM,
Colores et al. appeared to be better or comparable with
the DeSmoke-LAP because sometimes it generates sharper

images clipped at lower intensities, leading to information
loss due to visually attenuated desmoked images. Refer-
enceless metrics fail in evaluating these details which are
aesthetically not appealing during visualisation.

A user study is included to access the acceptance of the
proposed method by direct end-users, i.e. surgeons who rou-
tinely perform laparoscopic surgeries. The user study focuses
on two statements related to the performance of smoke
removal and the video quality after the process. An online
video questionnaire was set up in which we showed the orig-
inal and output video from each method side-by-side and
asked the participants to rate the output video ‘statement
1: smoke is removed completely’ and ‘statement 2: video
quality is not degraded’. Three surgeons participated in this
study and showed their agreements to statements by rank-
ing from 1 to 5, where 1 indicates strongly disagree and 5
indicates strongly agree. The average score achieved by each
method on the two statements is reported in Fig. 6. From
this figure, we observe that our proposed method slightly
outperformed (score: 4) others in statement 1, followed by
cycleGAN (score: 3.67) and Colores et al. (3.33). This sug-
gests the participants visibly noticed the removal of smoke
from DeSmoke-LAP. Some residue smoke remained on the
corner of the output videos by Colores et al., but this was
overlooked by the participants. Since video quality is not
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Fig. 5 Qualitative comparison of the DeSmoke-LAP with the existing approaches using representative frames from 10 video clips where JNBM
value of each image is also displayed

Fig. 6 Qualitative analysis performed through the user study where the participants (surgeons) rated the output videos from each method based on
two statements, a overall ranking of all methods under comparison, b individual surgeon’s ranking on statement 1: smoke is removed completely,
c individual surgeon’s ranking on statement 2: video quality is not degraded

noticeably degraded in ours, Colores et al. and cycleGAN,
all these three methods received comparable rankings for
statement 2. FastCUT and Cycle-Dehaze were the worst in
both statements. We further analyse the agreement of each
surgeon in ranking the five methods under comparison using
the two statements. The results are shown in Fig. 6b and c.
This figure shows that all three surgeon participants rankings
are comparable for all fivemethods and are in agreementwith
each other. These qualitative results obtained directly from
the end-users (surgeons) suggest that our approach is accept-
able and successful in removing smoke from laparoscopic
videos while maintaining the original quality of the video.
The superior response for statement 1 also justifies the fea-
sibility of the two loss functions in the adversarial network

that we specifically added to model smoke and remove any
residual smoke.

The proposed DeSmoke-LAP showed its strength in
removing partial smoke on the image. Two loss functions
designed for desmoking in surgery domain can also be imple-
mented on other frameworks, for example FastCut, without
major alterations in the method itself. Experiments show
that IC and DC have larger effect even under non-uniform
lighting in surgery data and aid to remove smoke on dark
components. Referenceless metrics fail to describe detailed
desmoked information of the image but only summaries the
quality, thuswe have to rely on the visual evaluation, whereas
quantitative results act as the assistance. When looking at
Video 6 in Fig. 5, it shows that results by CycleGAN and
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proposed method received comparative high value as that by
Cycle-Dehaze when much smoke remained on the frame,
suggesting that presence of unremoved smoke artificially
improve referenceless metrics.When Colores et al.’s method
produced excellent quantitative outputs, only some parts
of smoke are removed perfectly. Outputs by Cycle-Dehaze
failed to achieve high-quality and vivid vision needed for
laparoscopic surgery. DeSmoke-LAP guarantees the smoke
is processed in accordance with its blur level, and the coor-
dination of the colour is not be affected dramatically. Future
work involves retaining the original resolution of the laparo-
scopic video to obtain high-quality desmoked images that
would be beneficial for clinical use and use of larger dataset
for further improving the method’s robustness.

Conclusion

Compared to traditional open surgery, laparoscopic robot-
assisted surgerymanages the operation through tiny incisions
by robot arms, finding a wide application in medicine. How-
ever, smoke generated due to electrocauterisation during
laparoscopic surgery has been a potential risk to patients
and surgeons. To address this issue, we proposed DeSmoke-
LAP, a method for virtually removing smoke in laparoscopic
surgery for enhancing intraoperative imaging. DeSmoke-
LAPperformedunpaired image-to-image translationbetween
hazy and clear images based on cycle-consistency gener-
ative adversarial network. Unlike existing image dehazing
methods, DeSmoke-LAP does not rely on synthetic paired
data and atmospheric scattering model. Instead, we intro-
duced two additional losses in the discriminator that assist
to estimate the remaining smoke in the generated image by
inter-channel discrepancies and dark channel prior.We quan-
titatively and qualitatively compared DeSmoke-LAP with
the state-of-the-art image methods through five-fold cross-
validation. Referenceless metrics have been introduced to
evaluate the generated data in surgery domain; however, these
metrics evaluate general image quality, but fail to evaluate the
smoke status, which is the main task of this paper. Thus, we
should rely on the visual evaluation since the foremost tar-
get is smoke removal, whereas the quality performance is
the secondary consideration. The trained models were also
tested on video clips, and we observed that desmoked frames
by DeSmoke-LAP appeared to be consistent and smooth
throughout the video, outperforming other methods. Accord-
ing to the user study performed to validate the level of smoke
removal and the videoquality,we found that participants (sur-
geons) were satisfied with the achievement by the proposed
method. The participants show strong agreement for our pro-
posed method, forecasting that it can be easily accepted by
surgeons and clinicians to support laparoscopic surgeries.
DeSmoke-LAP generated better quality, colour and contrast

outputs without any clipping or attenuation, leading to visu-
ally meaningful desmoked results. The dataset and code
will be made publicly available, providing a benchmark for
desmoking in laparoscopic surgery.
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