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Institute, Bijenička 54, 1000 Zagreb
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1. Introduction
To understand the dynamical behaviour of a molecular system requires a solution to the time-
dependent Schrödinger equation (TDSE) for both nuclei and electrons. The large mass difference
between nuclei and electrons facilitates a decoupled treatment of their respective dynamics.
This is provided by the adiabatic Born-Oppenheimer Approximation (BOA), which has been
fundamental to theoretical studies of chemical dynamics. The nuclei of a molecule are considered
clamped, and the diagonalisation of the electronic Hamiltonian leads to a set of eigenvalues which
depend parametrically on the nuclear (slow) coordinates. From this adiabatic potential energy
surfaces (PESs) over nuclear space [1] can be formed. These PESs are defined such that the
energetic ordering of electronic states is conserved, but in general not their physical character [2].

However, for molecular dynamics initialised on excited electronic states, there are often
breakdowns of the BOA due to the finite kinetic energy of the nuclei. By expanding the nuclear
kinetic energy operator in the electronic basis, in terms of the scalar and vector derivative
couplings with respect to the nuclear coordinates, it can be shown that the first order vector
derivative nuclear couplings between adiabatic electronic states are inversely proportional to the
energy splittings between the adiabatic PESs. The energy splittings between excited adiabatic
PESs are often comparable to, or smaller than, their corresponding non-adiabatic couplings,
leading to non-adiabatic transitions between electronic states [3].

Over the past few decades efficient computational methods to solve the time dependent
Schrödinger Equation, with the aim of modelling non-adiabatic processes, have been developed
to improve our understanding of chemical problems involving excited states. These range
from bioluminescence to electron transfer processes, with applications in renewable energy,
chemical synthesis, and bioimaging. Two main families of methods have evolved: fully-quantised
electron-nuclear dynamics such as Multi-configurational time-dependent Hartree (MCTDH), and
mixed-quantum-classical dynamics such as Trajectory Surface Hopping (TSH). MCTDH uses
discrete variable representation (DVR) grid basis sets to describe both the Hamiltonian and
wavefunction [4]. In TSH, quantum electronic amplitudes are integrated together with classical
nuclear trajectories to dictate when nuclear trajectories hop between electronic states [5]. A
third family of methods employs Gaussian basis set expansions of the wavepacket built around
trajectories that can either be treated classically or quantum mechanically. The variational Multi-
configurational Gaussian Method (vMCG) is an example of such an approach. This method
includes explicit coupling between Gaussian amplitudes, allowing the Gaussian functions to
follow quantum trajectories [6].

Each method takes a different expansion of the wavefunction. This facilitates contrasting
treatments of the molecular dynamics under different approximations, each with their own
advantages and disadvantages. MCTDH requires high-accuracy pre-calculated PESs and
nonadiabatic coupling matrices, limiting its use to comparatively small systems or reduced
dimensionality treatments of molecules. To examine molecular dynamics in full configuration
space, TSH is a potential solution. As trajectory based approaches allow for the simultaneous
calculation of required electronic structure (electronic-state energies and gradients) on-the-fly,
alongside the nuclear dynamics. However, TSH cannot be derived from first principles, and a
classical propagation of nuclear motion may fail to explain experimentally observed behaviour
[7].

In contrast, vMCG can be derived from first principles, and converges on the exact solution in
well-defined limits. Additionally, as for TSH, the travelling nature of Gaussian basis functions
facilitates direct dynamics, with ‘on-the-fly’ calculations of electronic structure quantities via
an interface between the quantum-dynamics and quantum-chemistry programs. The direct
dynamics variant of vMCG is known as Direct-dynamics variational Multi-configurational
Gaussian (DD-vMCG).

The aim of this paper is to compare a fully-quantised dynamics method (MCTDH) with
an approximate quantised method (vMCG/DD-vMCG) and a mixed quantum-classical method
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(TSH/DD-TSH) which utilises Tully’s ‘fewest switches’ algorithm to determine the probability
that nuclear trajectories hop between electronic states [8]. The main question that this paper
addresses is how well vMCG and TSH converge: how many nuclear trajectories are required,
and how do the converged mixed-quantum classical dynamics compare with analogous fully-
quantised dynamics calculated for the same systems? All calculations have been made using
the same code to ensure identical initial conditions and potential surfaces. For this we use the
QUANTICS package to provide a unified code [9,10], which has been interfaced to an independent
surface hopping code. A major difficulty for the comparison of full quantum and surface
hopping calculations is that the former are run in the diabatic picture, while the latter are in the
adiabatic picture. Transforming between them is difficult due to the global nature of the adiabatic-
diabatic transformation operator. Here we present the use of a time-dependent discrete variable
representation to efficiently evaluate this operator for large quantum dynamics calculations.

Two systems are used in the comparison: the butatriene cation, and cyclohexadiene ring-
opening. The butatriene cation is a classic molecule in non-adiabatic theory. It features a strongly
peaked conical intersection between the first two states that gives a strong signal of non-adiabatic
coupling in the photo-electron spectrum [11]. Model potentials are available [12] and it has also
been used in DD-vMCG tests [13]. The ring opening in cyclohexadiene, leading to hexatriene, is
an important motif in photochemistry [14]. It presents a more challenging test as three electronic
states joined by sloped intersections are involved in the passage of the initially excited wavepacket
to the ring-opened form. Cyclohexadiene has also been the subject of a number of theoretical and
experimental studies [15].

Both of these molecules, with 18 and 36 internal degrees of freedom respectively, are large
for quantum dynamics simulations. Cyclohexadiene, in particular, is at the edge of what can be
reasonably treated both by the nuclear dynamics and the electronic structure theory required for
the potential surfaces. The results show that there is good agreement using all three methods for
butatriene, and this size and type of system is now relatively straightforward for simulations.
For cyclohexadiene, it is not possible to obtain converged results, but the similarities between the
dynamics obtained by the different methods supports these results as qualitatively correct.

2. Background Theory
The three methods to be compared solve the TDSE for a system of distinguishable nuclei

i~ ∂
∂t
Ψ(q, t) = ĤΨ(q, t) (2.1)

to obtain the time-evolution of the wavefunction Ψ(t) for a given Hamiltonian, Ĥ and set of
initial conditions Ψ(0). All three are well-documented elsewhere and only an overview will be
given here to provide a comparison of their characteristics. Further details can be found in the
literature for MCTDH [4,16], vMCG [6,17] and TSH [18,19].

(a) The Multi-Configurational Time-Dependent Hartree Method (MCTDH)
In MCTDH, the nuclear wavefuction is expanded in a set of configurations

Ψ(q, t) =
∑
J

AJ (t)ΦJ (q, t) (2.2)

These configurations are expanded in a direct-product basis of time-dependent functions known
as single-particle functions (SPFs)

Ψ(q, t) =

n1∑
j1=1

. . .

np∑
jp=1

Aj1...jf (t)

p∏
κ=1

ϕ
(κ)
jκ

(Qκ, t) (2.3)
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which in turn are expanded using time-independent functions, known as the primitive basis

ϕ
(κ)
j (Qκ, t) =

Ndκ∑
k=1

a
(κ)
kj (t)χ

(κ)
k (Qκ) (2.4)

Note that the SPFs can be multi-dimensional, i.e. the particle coordinate Qκ can be a number of
system coordinates q. For this reason the underlying grid formed by the time-independent basis
set can be multi-dimensional, represented by the summation limit of Nd where N is the number
of grid functions and d the dimensionality of the SPF.

The TDSE is solved by propagating the SPFs and expansion coefficients using equations of
motion that are obtained from the Dirac-Frenkel variational principle [20].

iȦJ =
∑
L

〈ΦJ |H|ΦL〉AL (2.5)

iϕ̇(κ) =
(

1− P (κ)
)(

ρ(κ)
)−1
〈H〉(κ)ϕ(κ) (2.6)

Here, 〈H〉(κ) is a mean-field operator coupling the motion of the “particles”, ρ(κ) is a reduced
density matrix for the particle and P (κ) is a projector onto the space spanned by the SPFs.

The memory requirements of MCTDH are dominated by the wavefunction. This can be written
schematically as

memory∝ np + pnNd (2.7)

where n is the number of SPFs for the p particles, which in a real calculation will be different for
each particle. The first term is the storage required for the expansion coefficients and the second
for the SPFs. The effort is mostly due to the need to build the mean-fields at each step, which
requires

effort∝ rp2n(p+1) (2.8)

where r is the number of terms in the Hamiltonian. The number of coefficients and effort exhibits
the exponential growth with system size that provides the major bottleneck for all numerically
exact solutions to the TDSE. The power of MCTDH comes from balancing this growth with the
memory and effort required to propagate the SPFs, allowing much larger systems to be treated
than grid-based methods expanded directly in terms of the time-independent primitive basis.

The MCTDH method can be thought of as a tensor contraction scheme, reducing the
representation on a multi-dimensional grid to an expansion in low-dimensional functions. For
even larger systems this contraction can be increased by using a multi-layer scheme in which the
SPFs are expanded in layers of multi-dimensional functions using the MCTDH form [21,22]. This
has been used to treat wavefunctions with more than 1000 degrees of freedom.

The main restriction of the MCTDH method is the requirement for a global potential that must
be known before the propagation takes place. For efficiency the potential must also be in the form
of a sum of products of low-dimensional operators to allow easy evaluation of the matrix elements
required to build the mean-fields and Hamiltonian. The building of a suitable model Hamiltonian
thus requires the careful choice of coordinates and functional form for the potential for an accurate
representation of a system. This may restrict the dynamics that can be simulated, for example low-
order polynomial fits may not include the coupling or potential forms for long-range motions and
long time-scales.

(b) The variational Multi-Configurational Gaussian Method (vMCG)
If one or more of the grid-based SPFs of the MCTDH ansatz, Eq. (2.3), are replaced with
parameterised Gaussian functions, the G-MCTDH method is obtained [23]. The equations of
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motion for the parameters of the multi-dimensional Gaussian basis functions (GBFs),

gj(Q, t) = exp
(
QT ζjQ + QT ξj + ηj

)
(2.9)

are also obtained using the Dirac-Frenkel variational principle. When all basis functions are
replaced by GBFs, the vMCG wavefunction is obtained, a simple superposition of GBFs.

Ψ(q, t) =
∑
j

Ajgj(q, t) (2.10)

The equations of motion for the vMCG method can be written

iȦj =
∑
lk

S−1jk 〈gk |H |gl〉Al −
p∑

κ=1

nκ∑
l=1

iS−1jk 〈gk|
∂

∂t
gl〉AJκl (2.11)

iΛ̇ = C−1Y

where S is the GBF overlap matrix, Λ is a vector containing the GBF parameters, while C and Y

contain GBF matrix elements of Gaussian moments and the Hamiltonian respectively.
The GBFs can also be written in the form of Gaussian Wavepackets (GWPs) [24]

g(q, t) = exp[−(q− q0)Tα(q− q0) + ip0
T(q− q0) + iγ] (2.12)

where α is the width, γ the phase, and q0, p0 the position and momentum of the centre of the GWP.
It can then be shown that the center of the basis functions, that will be referred to as GWPs in the
following, follow a trajectory that has a “quantum coupling” in addition to the classical trajectory
[6]. Other methods that use GWPs as a basis to solve the TDSE, such as multiple spawning [25,26]
and coherent coupled states [27] allow the basis functions to follow just the classical trajectory.
The equivalence of the approaches has been shown [28]. In vMCG, for stability and simplicity, the
width parameter is kept fixed and frozen GWPs are used.

The first advantage of vMCG over MCTDH is that the small parameter set makes for a very
compact wavefunction. For simplicity and stability, the GWPs are taken to be separable with
time-independent widths. The memory required for a wavefunction is then

memory∝ n+ fn (2.13)

The number of coefficients is given by the number of configurations, n, and each GWP requires
one complex number per degree of freedom (λaj =−2αjq0,aj + ip0,aj ) as the phase can be
incorporated into the expansion coefficient. The effort has 2 main terms

effort∝ (fn)3 + nf3 (2.14)

where the first term is due to the inversion of the C matrix, and the second term is due to the
integrals that need to be calculated, assuming the potential surfaces are represented by a local
harmonic approximation (LHA) [6].

In MCTDH, the reduced density matrices give a measure of how close to convergence a
calculation is as they can be related to the importance of the basis functions. Unfortunately with
vMCG there is no way of knowing how many configurations are required for convergence: one
simply has to add more functions until the property of interest no longer changes. In comparison
to other GWP (or trajectory) based methods, the variational nature of vMCG does guarantee that
adding more functions will improve the result, and it will converge as fast as possible. It also
means that, as in MCTDH, as long as the initial conditions are satisfied, placement of the initial
GWPs does not affect the final result.

For large systems, while the memory requirements remain small, the effort unfortunately
quickly becomes large. To alleviate this it is possible to break the problem into smaller parts.
Returning to the original MCTDH ansatz, instead of replacing the SPFs by GWPs, it is more
fruitful to consider the GWPs as a time-dependent primitive basis set and expand the SPFs in
terms of these [6]. This leads naturally to a multi-layer version able to treat many degrees of
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freedom [29,30]. In the present work, however, we will stick to the single layer ansatz Eq. (2.3)
and expand the SPFs

ϕ
(κ)
j (Qκ) =

Ndκ∑
k=1

a
(κ)
kj (t)g

(κ)
k (Qκ, t) (2.15)

If the GWPs are frozen and separable, it can be easily shown that this approach still uses a
superposition of GWPs for the wavefunction ansatz

Ψ(q, t) =

n1∑
j1=1

. . .

np∑
jp=1

Aj1...jf (t)

p∏
κ=1

 Ndκ∑
kκ=1

a
(κ)
kκjκ

(t)g
(κ)
kκ

(Qκ, t)


=

N1∑
k1=1

. . .

Np∑
kp=1

Bk1...kf (t)

p∏
κ=1

g
(κ)
kκ

(Qκ, t)

with a basis set of Np multi-dimensional GWPs. Here, however, they are now correlated at the
particle level, i.e. due to interaction between the particles, whereas in vMCG all the GWPs are
correlated only at the configuration level, i.e. by the motion of the different configurations.

If the number of GWPs for each particle is the same as the number of SPFs used (i.e. N = n),
then the equations of motion are

iȦJ =
∑
L

〈ΦJ |H |ΦL〉AL (2.16)

iȧkj = −
∑
lm

S−1kl τlmamj

iΛ̇k = C−1k Yk

The wavefunction expansion coefficients are now an orthonormal vector, which improves
stability over the original vMCG equations of motion, and the SPF coefficients evolve due to
the GWP motion. The equations of motion for the GWPs have the same form as before, but now
the Y vector contains mean-field terms coupling the GWPs in different particles. The full form
of the terms is given in the literature [29,30]. The Hamiltonian now has to be written in a form
that is separable between the particles. This is straightforward for a vibronic coupling model that
is a polynomial expansion, but the Shepard interpolated potentials used in DD-vMCG must be
reformulated with a separate polynomial expansion for each configuration. This leads to a large
number of terms in the Hamiltonian.

In the following, to emphasize the connection to vMCG, this approach will be termed
multi-mode vMCG (MMvMCG) rather than the formally correct name of 1-ML-GMCTDH. By
introducing this effective partitioning of the vMCG basis functions, the memory requirements
for the wavefunction are increased to

memory∝ np + nf (2.17)

due to the number of configurations. Concurrently the effort becomes

effort∝ rp2n(p+1) +

(
f

p
n

)3

+ n

(
f

p

)3

(2.18)

Here, the first term is due to the re-introduction of mean-fields (r is again the number of terms
in the Hamiltonian), while the other terms are reduced from the vMCG effort due to the smaller
number of degrees of freedom in each set of GWPs ( fp ). As always with MCTDH based methods,
a play off between number of configurations against size of particles is required for optimum
efficiency.
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(c) Trajectory Surface Hopping
The classical trajectory surface hopping method is based on a mean-field separation of classical
and quantum motions, as adopted in the Ehrenfest method. Nuclei are treated by a classical
discretisation of the nuclear wavepacket. The electronic Hamiltonian matrix is then separated,
leading to coupled partial differential equations for the electronic state amplitudes which can
be used to derive a “hopping probability” for a molecule along a trajectory to change electronic
state. [5]

Firstly, the total wavefunction is expanded as a sum over electronic states:

Ψ (r,R, t) =
∑
i

Φi (r,R)Ωi (R, t) (2.19)

This multiconfiguration expansion ensures that every electronic quantum state i is described
by a different nuclear wavefunctionΩi (R, t). The electronic basis functions Φi (r,R) are assumed
to be orthonormal, whilst the nuclear basis functions are not; the integral over R of |Ωi (R, t) |2

gives the population of state i at time t.
By substituting equation 2.19 into the TDSE, premultiplying by Φ∗j (R, t) and integrating over

the electronic coordinates, coupled differential equations for the time evolution of the nuclear
basis functions are obtained:

i~
∂Ωj
∂t

=−~2

2

∑
α

M−1α ∇2
RαΩj +

∑
i

HjiΩi −
~2

2

∑
α,i

M−1α DαjiΩi − ~2
∑
α,i6=j

M−1α dαji∇RαΩi

(2.20)
where dαji =

∫
Φj∇RαΦidr and Dαji =

∫
Φj∇2

RαΦidr are the first and the second order
nonadiabatic coupling elements.

By substituting the phase formulation of the nuclear wavepacket [31]

Ωj (R, t) =Aj (R, t) exp

(
i

~
Sj (R, t)

)
(2.21)

into Equation 2.20, separating imaginary and real terms (under the premise that the amplitude,
Aj (R, t), and phase, Sj (R, t), are real-valued), “creative” partitioning of the diagonal and off-
diagonal electronic Hamiltonian matrix, and taking a classical limit ~ = 0, equations 2.22 and 2.24
are obtained.

The first is an equation describing nuclear motion on electronic PES Hjj :

∂Sj
∂t

+
∑
α

1

2
M−1α

(
∇RαSj

)2
+Hjj = 0 (2.22)

Equation 2.22 closely resembles the classical Hamilton-Jacobi Equation if Si (t) is defined as the
classical action and its derivative related to the nuclear momentum

Si (t) =

∫ t
0

Li(t
′)dt′ ;

∂Ri
∂t

=M−1α,i∇RαSj (2.23)

The second equation describes the transport of flux between PESs governed by the non-adiabatic
coupling vector dαij , and off-diagonal terms of the electronic Hamiltonian Hij .

∂Aj
∂t

+
∑
α

M−1α ∇RαAj∇RαSj +
∑
α

1

2
M−1α Aj∇2

RαSj+

∑
i 6=j

Ai

(∑
α

∂Ri,α
∂t

dαji +
i

~
Hji

)
exp

− i
~

∫ t
0

(
Hii −Hjj

)
dt′

= 0

(2.24)

In TSH, the nuclear wavefunctions are discretised into a set of particle-like trajectories,
represented by phase space points that are propagated over electronic potential energy surfaces.
Since in the trajectory picture each distinct, classical, phase space point is defined universally over
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all electronic quantum states and the same nuclear kinetic energy is associated with all electronic
quantum states. Accordingly, it can be shown that

exp

(
− i
~

∫ (
Hii −Hjj

)
dt

)
= exp

(
i

~
(
Si − Sj

))
(2.25)

Therefore, Equation 2.24 is analogous to Liouville’s classical diffusion equation governing the
continuity of nuclear flux in phase space. The amplitude of the nuclear functions Ωj (R, t),
Ai (R, t) can be identified with time dependent basis function amplitudes for the electronic
wavepacket in Ehrenfest’s Classical Mean Field approach. These electronic basis functions
can either be in the adiabatic or diabatic representation (as long as they are orthonormal).
However, TSH typically employs the adiabatic electronic representation, because in the
adiabatic representation, off diagonal terms in the electronic Hamiltonian, Hij = 0, justifying the
partitioning described to obtain equations 2.22 and 2.24.

In this way, hopping of the nuclear trajectories between electronic PESs is governed by the
electronic expansion coefficients. However, the coupling terms in equation 2.24 make direct
solutions for the electronic populations difficult to obtain when the nuclear wavepacket is
discretised. The “fewest switches” algorithm (FS) maintains correct electronic state populations
by a variational solution of equation 2.24 that minimises the number of hops of the nuclear
trajectories between electronic PESs. FS uses a stocastic approach to branch nuclear trajectories
in a way that achieves the correct statistical distribution of electronic state populations. For a two-
electronic-state model, such as the butatriene cation, the probability of a hop from state 1 to state
2 during incremental timestep ∆t is given by

P1→2 =−d(log|A1 (t) |2)

dt
(2.26)

If P1→2 < 0 then no hop occurs. A major deficiency of this hopping algorithm is that occasionally,
non-zero probabilites are determined for trajectory hops that are forbidden by classical energy
conservation.

The big advantage of TSH is that the system is being modelled by a set of independent classical
trajectories and the effort for one of these scales linearly with the number of degrees of freedom.
However, the stochastic nature of the method means that many trajectories may be needed for a
converged result, and the approximations made mean that it is not guaranteed to converge on the
solution to the TDSE. For example, when the nuclei are able to visit multiple distinct regions of
high derivative coupling, off-diagonal quantum density matrix elements of individual trajectories
can become much larger than the exact quantum coherence. This leads to unwarranted trajectory
hopping between adiabatic PESs. To overcome this, a range of decoherence corrections have been
proposed [19,32–34], including one recently derived from an exact factorisation of the molecular
wavefunction [35].

Over-coherence can be exacerbated by the way the momentum is rescaled after a trajectory
hops between adiabatic electronic PESs. The difference in electronic potential energy between
states at the transition point is accommodated by an ad hoc rescaling of the nuclear momentum in
strict accordance with classical energy conservation. However, rescaling the nuclear momentum
for this purpose has no rigorous foundation based on first principles [36], and the manner in
which it is done is non-unique and is a subject of debate. Two common methods are isotropic
velocity rescaling, and rescaling solely along the non-adiabatic coupling vector (NACV) [35].
Whilst rescaling along the NACV is believed to be more justified theoretically from semi-
classical arguments [37–39], both approaches have been recently shown to violate the principle
of conservation of angular momentum [40]. In addition, NACV momentum rescaling means only
kinetic energy along the NACV is available, and this can result in poorer internal consistency. For
instance, NACV momentum rescaling generally results in more rejected (known as “frustrated”)
hops, where the classical nuclear trajectory does not have enough kinetic energy to surmount the
energy barrier presented by the difference in potential energy between adiabatic electronic states.
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3. Computational Methods
All dynamics calculations were made using the QUANTICS Package [9,10]. Both MCTDH and
vMCG are part of the core implementation of the code. The surface hopping calculations used
an interface between QUANTICS and a general surface hopping code written by Sapunar and
Došlić [41], referred to here as ZAGREB SH. The QUANTICS code is able to generate a range of
initial wavefunctions and links to a number of potential routines that can be input as text files for
analytical functions, such as the vibronic coupling Hamiltonian used here. The QUANTICS-Zagreb
SH interface means that the MCTDH, vMCG and TSH calculations can be started with identical
starting conditions and use the same potential surfaces.

The TSH calculations used the classic “fewest switches” algorithm [8], along with the
decoherence correction of Granucci and Persico [34]. A time-step of 0.1 fs was used. Hopping
probabilities have been computed from analytically obtained nonadiabatic couplings and
isotropic velocity scaling is used to conserve energy. While it was not needed here, in cases when
the non-adiabatic couplings are not available or cannot be computed with sufficiently small time
steps due to the cost of the underlying electronic structure calculation, it is advantageous to
evaluate the hopping probabilities from overlaps of wave functions computed at each step of
the nuclear dynamics. This can be done either in the adiabatic basis using, for instance, norm
preserving interpolation [42,43] or in the locally diabatic basis [44,45]. For comparison of these
methods see Xie et al. [41,45].

QUANTICS has an interface to a range of quantum chemistry codes to generate surfaces during
on-the-fly calculations. Surfaces are stored as points in a Quantum Chemistry (QC) database.
Full details of how the QC database is generated are given in Refs. [6,46]. In brief, points are
added to the database when the centre of a GWP (or point on a trajectory) is further than
a specified distance from any point in the database. A QC calculation provides the energies,
gradients and derivative couplings at this point, and the Hessians are obtained using a Hessian
updating scheme. The potential surfaces used in the propagation are then obtained using Shepard
interpolation between the points in the database.

For DD-vMCG, the surfaces must be in the diabatic picture, and this representation is also
better for the Shepard interpolation as the surfaces are smoother. The QC data is transformed
to the diabatic picture using a global diabatisation scheme [13], in which the adiabatic-diabatic
transformation matrix is propagated using the calculated derivative couplings. This scheme has
been shown to provide globally consistent surfaces for a 2-state system [46]. The QC database can
also be either generated or used by either DD-TSH or DD-vMCG calculations. For DD-TSH, the
surfaces used are the adiabatic potentials and derivative couplings obtained from the interpolated
surfaces.

The calculations here model a vertical excitation from the vibronic ground-state wavefunction
in the harmonic approximation. All calculations were run in dimensionless (mass-frequency
scaled) normal mode coordinates. As Zagreb SH runs Newtonian trajectories in Cartesian
coordinates, QUANTICS made the required coordinate transformation. In the coordinates used,
the initial wavepacket is a separable Gaussian function with a width of 1√

2
along each coordinate.

The GWP basis functions for the vMCG calculations have the width of the ground-state function,
and the initial wavefunction is an exact representation with only one function populated. All
GWPs have the same initial coordinate, the Franck-Condon point, but different momenta. The
initial conditions for the TSH calculations were generated using random sampling of the Wigner
distribution associated with the ground-state wavefunction. The sampling retains the symmetry
of the distribution by always adding 4 points for each random selection, one in each quadrant of
phase space. At the end of a TSH calculation, QUANTICS combines the data from the trajectories
to allow analysis by its suite of analysis programs.
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4. The Systems to be Studied

(a) Vibronic Coupling Model: Butatriene Cation
Initial simulations were made using the well-known vibronic coupling model [47,48] for the
lowest two states of the butatriene cation. This model system is chosen as a representative but
simple example of a two-state, single, peaked conical intersection.

The vibronic coupling model assumes a diabatic basis and makes a Taylor expansion of the
potential surfaces and diabatic coupling aroung the Franck-Condon point. For the butatriene
cation model used here, the expansion of the diabatic potentials is made to second order, and
the couplings to first order. The Hamiltonian matrix can be written

H = H0 + W(0) + W(1) + W(2) (4.1)

where H0 is a zero-order Hamiltonian. As the coordinates are the neutral ground-state mass-
frequency scaled normal-modes, this is composed of the kinetic energy operator and the
neutral ground-state potentials in the harmonic approximation. It is thus diagonal with identical
elements:

H0 =H01 ; H0 =
∑
α

1

2

∂2

∂q2α
+

1

2
ωαq

2
α (4.2)

where 1 is the unit matrix. The W(i) matrices add corrections at the different orders of the
expansion: W(0) contains the energies of the states at the Frank-Condon point, W(1) the linear
terms (gradient and non-adiabatic coupling), etc. The parameters for the Taylor expansion terms
in the higher order matrices are obtained by fitting to electronic structure calculations and
experimental data to reproduce the photo-electron spectrum and are contained in Ref. [12]. This
model is able to describe the strongly peaked conical intersection coupling the cation X̃ and Ã

states.

(b) Direct Dynamics: Butatriene and Cyclohexadiene
The electronic ground state of the butatriene cation hasB2g symmetry (X2B2g-state) and the first
excited state hasB2u symmetry (A2B2u-state). The electronic structure for these states was treated
using a state-averaged complete active space self consistent field (SA-CASSF) wavefunction with
5 electrons in the 6 π orbitals. A small 3-21G* basis set was used for speed. This is known to
adequately describe the conical intersection between the two states. All calculations were made
using the Gaussian09 program [49].

Cyclohexadiene has two low-lying electronic states: S1(1B1) and S2(1A1) which have ππ∗

character. The former is a singly excited state while the latter is a mixture of single and double
excitations. The conventional mechanism after photo-excitation to the bright S1 state is a fast
crossing to the 1A1 state followed later by a crossing to the ground state at a conical intersection,
which leads to the ring opening.

For this molecule the electronic structure was treated to balance accuracy with efficiency. The
complete active space with perturbation theory (CASPT2) method, with 6 electrons in 6 orbitals
and a 6-31G* basis set, was chosen as it is known that CASSCF incorrectly orders the key first
and second excited states and CASPT2 corrects this. The CAS comprised the σ and σ∗ orbitals
of the C–C bond that breaks to form hexatriene from cyclohexadiene, and the 4 π-orbitals. A 3-
state state-averaged calculation formed the basis for the CASPT2 correction. The extended multi-
state multi-reference variant, XMS-CASPT2 [50], as implemented in Molpro2015 program [51]
was used. Energies, gradients and the initial Hessians were taken from the CASPT2 calculations
but the derivative couplings were calculated at the CASSCF level as these are not implemented at
the CASPT2 level in Molpro2015. We note that derivative couplings have been implemented for
XMS-CASPT2 in the BAGEL code [52] and used successfully in the TSH simulations of CHD by
Poliak et al. [15]
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Figure 1. Diabatic state populations from vMCG simulations on the butatriene vibronic coupling model (a) 2D (b) 5D (c)

18D. Different numbers of GWP basis functions were used, as listed in the key for each plot. For (c) 18D, MM-vMCG

is used to partition the SPF basis into 2 sets of 9D GWPs, and the key lists the total number of configurations used to

describe the wavefunction.

The direct dynamics database was constructed calculating new structures if any atom deviated
more than 0.25 Bohr from any structure in the database. As CASPT2 calculations can be unreliable
close to a conical intersection, if the calculated surfaces are found to have an energy gap of less
than 0.05 eV, the diabatic surfaces at the new point are obtained by extrapolation from the nearest
point in the database rather than by transformation of the quantum chemistry adiabatic energies.
Extrapolation of the diabatic surfaces are also used if the CASSCF reference fails to converge.

5. Analytical Surfaces: The Butatriene Model
The starting point for the investigation is to show the convergence properties of the vMCG
method. In Fig. 1 the diabatic populations of two-dimensional, five-dimensional and 18-
dimensional models obtained by MCTDH and vMCG calculations are shown. The 2D model
includes the most important coupling mode withAu symmetry (mode 5), and the most important
totally symmetric Ag tuning mode (mode 14). The 5D model includes all five vibrational modes
that couple linearly to the electronic states. This comprises all the totally symmetric (tuning) Ag

modes (modes 8, 12, 14 and 15) and the coupling mode with Au symmetry (mode 5), which is
the torsional vibration. The 18D model is of the complete system. In all cases a fast population
transfer between the diabatic states is seen. The 2D model is converged with 62 GWPs, the 5D
model with 100 GWPs, while the 18D model was still not fully converged on the MCTDH result
with 3600 configurations (60 GWPs for each particle). More details on the computational effort is
given in the Supplementary Information.

TSH was then employed to study the dynamics of the butatriene cation using the same
analytical surfaces as the MCTDH and vMCG calculations above. Up to 2001 trajectories were run
in each case, and the populations do not change significantly after 401 trajectories. Both vMCG
and MCTDH use a diabatic representation of the electronic wavefunction to allow numerically
tractable simulations. In contrast, TSH calculations are run in the adiabatic picture. The state
populations obtained in the two pictures are complementary: diabatic populations show the
rate of transfer between the electronic configurations used to define the basis, while adiabatic
populations show the rate of relaxation between the energy ordered states.

In order to compare the vMCG and MCTDH calculations with TSH, it is necessary to have
populations in the same representation. Ideally adiabatic populations should be obtained from
the full quantum dynamics methods to provide a benchmark. This, however, requires a non-
trivial transformation as the adiabatic-diabatic transformation operator is only defined globally.
To obtain adiabatic populations from MCTDH propagations in the past, Monte-Carlo integration
of the transformation integral has been used. This, however, becomes unfeasible for more than
8-10 degrees of freedom as the occupied part of the huge configuration space is tiny, making the
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Figure 2.

Panel 1: Adiabatic electronic state populations for the butatriene model calculated (a) TSH (b) MCTDH. Panel 1, 2D

model. Panel 2, 5D model. Panel 3, 18D model. For MCTDH, the populations calculated with TDDVR are in red and with

the CDVR correction in black. For the 2D and 5D calculations the CDVR results are identical to the full solution.

sampling very inefficient. As a new approach used here, we use a time-dependent DVR (TDDVR)
based on the single-particle function basis, including the correlated DVR (CDVR) extension
known to be important for accurate integrals [53]. For vMCG, a saddle-point approximation was
used, evaluating the integrals at the centres of the GWP basis functions. More details on how the
adiabatic populations are obtained is in the Supplementary Information.

Figure 2 shows the adiabatic electronic state populations obtained from the TSH calculations,
alongside the results from the MCTDH simulations. The adiabatic state populations for MCTDH
on analytical PESs are comparable, albeit the details are different. Both TSH and MCTDH predict
the crossing of adiabatic state populations at roughly the same time (ca. 5 fs), with the system
then ending up almost entirely on the ground state. The main effect of including more modes is,
as expected, a decrease in the strength of population recurrences at long times. For the MCTDH
results, the TDDVR approximation fails badly for both the 5D and 18D models. In the latter cases,
the adiabatic populations obtained are similar to the diabatic ones in Fig. 1 ending with roughly
50% of the population in each state. This is because TDDVR is simply unable to calculate good
integrals due to the small number of points created relative to the space to be covered: for the 2D
model there are 144 TDDVR points for a full grid of 442 points, while for the 18D model there are
1.3M TDDVR points, but the full grid is 4× 1016 points.

6. Direct-Dynamics: Butatriene and Cyclohexadiene
Direct dynamics using both DD-vMCG and DD-TSH were run on the butatriene cation. As for
the analytical model, simulations were made on 2D, 5D and 18D models, freezing the unwanted
modes at their equilibrium geometry. For the first time the multi-mode vMCG formalism was
used on the 18D system and shown to provide better convergence at much less computational
expense.

Figure 3 shows the adiabatic populations from these runs. With the exception of the 18D DD-
vMCG simulation, the qualitative behaviour is the same for all calculations, with a fast change in
adiabatic state at around 10 fs. The 2D and 5D DD-vMCG calculations mirror closely the analytical



13

rsta.royalsocietypublishing.org
P

hil.
Trans.

R
.S

oc.
A

0000000
..................................................................

 0

 0.2

 0.4

 0.6

 0.8

 1

P
o
p
u
l
a
t
i
o
n

Trajectories
49
101
401
2001

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

P
o
p
u
l
a
t
i
o
n

Time [fs]

Gaussians
5
20
40
60
80

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

P
o
p
u
l
a
t
i
o
n

Time [fs]

Gaussians
20
40
80
100
140

 0

 0.2

 0.4

 0.6

 0.8

 1

P
o
p
u
l
a
t
i
o
n

Trajectories
49
101
401
2001

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

P
o
p
u
l
a
t
i
o
n

Time [fs]

Configurations
400
900
1600

 0

 0.2

 0.4

 0.6

 0.8

 1

P
o
p
u
l
a
t
i
o
n

Trajectories
49
101
401
2001

(1a)

(1b)

(2a)

(2b)

(3a)

(3b)

1

Figure 3. Adiabatic electronic state populations for the butatriene cation calculated using direct dynamics with potential

surfaces at the CASSCF level and (a) TSH (b) DD-vMCG. Panel 1, 2D system. Panel 2, 5D system. Panel 3, 18D

system. For (3b) DD-MM-vMCG is used to partition the SPF basis into 2 sets of 9D GWPs, and the key lists the total

number of configurations used to describe the wavefunction. For DD-vMCG and DD-MM-vMCG, all diabatic-adiabatic

transformations were calculated using saddle-point integration.

model during this crossing, whereas the TSH has a longer crossing time. At later times, there is
also a difference seen with the DD-vMCG populations looking as though they are equilibrating,
whereas the TSH remains on the lower state. As with the analytical model using the TDDVR
approximation, it seems that obtaining integrals using only the centres of the GWPs in the saddle-
point approximation obtains populations that are closer to the diabatic populations.

Finally, the populations from DD-vMCG and DD-TSH calculations on cyclohexadiene are
shown in Fig. 4. A database with 1898 points was obtained from a series of full-dimensional
(36D) calculations using 8, 16 and finally 32 GWPs, representing the potential surfaces required
to describe the first 150 fs of dynamics. This database was then used for a simulation with a
wavefunction partitioned into two 18D particles which used 32 GWPs for each. The partitioning
was done on the basis of an analysis from the initial runs, determining the key vibrations, and
these were put together in one particle. A DD-TSH simulation with 200 trajectories was also
run on the surfaces provide by the database. A vertical excitation of the ground-state vibrational
wavefunction in the harmonic approximation was modelled.

Both calculations show similar timescales for the population relaxation, with population
initially crossing from S1 to S2 before relaxing to the S0 state. As both crossings are sloped it
is not surprising that the adiabatic and diabatic populations are more similar than in the case
of butatriene. However, the marked similarity between two pictures for the DD-vMCG results
indicates that again the saddle point scheme used is not able to produce a good result due to
the small number of configurations. Further analysis of the dynamics needs to be performed in
order to obtain detailed information as to when and how the state crossings occur. In addition to
improving the diabatic-adiabatic transformation in vMCG calculations, a possible approach for
this comparison would be the computation of the diabatic populations in TSH simulations. While
ways for doing this have been proposed [41,54], a systematic implementation is not yet available.

A simple search through the database for regions where the surfaces become degenerate found
two conical intersections. These are shown in Fig. 5 as cuts through the potential surfaces along
linear vectors from the Franck-Condon point to the intersection. The crossing between S1 and
S2 is close to the FC point and can be easily reached, as shown by the early population transfer.
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Figure 4. State populations from cyclohexadiene simulations starting on S1. (a) DD-vMCG diabatic populations (b) DD-

vMCG adiabatic populations (c) DD-TSH adiabatic populations
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Figure 5. Cuts through the adiabatic surfaces from the quantum chemistry database collected during DD-vMCG

simulations on cyclohexadiene. (a) From the Franck-Condon point to the S1/S2 intersection. (b) From the Franck-Condon

point to the S1/S2/S3 ring-opened intersection.

The second crossing looks like a 3-state intersection between all three states, hence is responsible
for crossing to the ground-state. It is at a ring-opened geometry, in agreement to earlier studies,
and can thus lead to hexatriene. While this intersection looks to be directly accessible from the
FC point, it may not be accessed in the early stages of the dynamics as it requires the excitation
of out-of-plane vibrations, none of which are activated directly by the initial photo-excitation. A
small barrier is seen on the S1 state, while a larger barrier on the S2 surface can be observed.
However, this feature may be indicative of a problem with the CASSCF calculations, as seen in
recent DD-vMCG calculations on phenol which were solved by including higher lying states [55].

A final note can be made on computational effort. For these calculations the quantum
chemistry is a major bottleneck. Each single point calculation of energies, gradients and derivative
couplings took over 3 hours on the compute cluster used. If the DD-TSH calculations were run
in the usual way with the electronic structure calculated at every step, the 200 trajectories would
have required 300,000 calculations as the step size for the trajectories was 0.1 fs. The database filled
by the DD-vMCG calculations, however, contains only 1898 structures. The use of the database
and interpolation scheme thus saved a significant amount of computational effort by calculating
points only as required. While the size of the database needed will be very molecule specific,
depending on the range of motions seen during the dynamics. This saving will generally be the
case as some regions, such as around the Franck-Condon point, are visited by many trajectories
and effort is wasted recalculating similar structures.
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7. Conclusion
The three methods for non-adiabatic dynamics presented here are complementary. For accurate
simulations when an analytic potential surface is available MCTDH is the most efficient. vMCG
provides a compact, trajectory-based representation of the wavefunction and converges much
quicker than TSH. This makes it particularly suitable for generating potential surfaces using direct
dynamics. TSH is able to provide adiabatic populations for large systems that are still not possible
with either MCTDH or vMCG.

Further investigations are needed to provide deeper insight into the differences between
the results from the 3 methods and how to best use them. The QUANTICS package provides
a convenient platform for such investigations. In particular, the database generated during a
direct dynamics simulation can be re-used in further calculations without having to re-run the
quantum chemistry calculations. By using interpolation on a minimal number of points it also
saves significant effort.

Non-adiabatic simulation methods are still under development but, as demonstrated here,
they are presently able to provide information on medium sized molecules of varying complexity.
As a result they provide a key tool in the understanding of photo-activated processes where the
nuclear-electronic interactions must be treated at a quantum level.

Data Accessibility. The QUANTICS Package is opensource code, hosted on Gitlab and accessible by request
to the corresponding author. The data from the simulations is likewise available on request.
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