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Abstract
In Guaraco (J. Differential Geom. 108(1):91–133, 2018) a new proof was given of the exis-
tence of a closedminimal hypersurface in a compact Riemannianmanifold Nn+1 with n ≥ 2.
This was achieved by employing an Allen–Cahn approximation scheme and a one-parameter
minmax for the Allen–Cahn energy (relying on works by Hutchinson, Tonegawa, Wick-
ramasekera to pass to the limit as the Allen-Cahn parameter tends to 0). The minimal
hypersurface obtained may a priori carry a locally constant integer multiplicity. Here we
modify the minmax construction of Guaraco (J. Differential Geom. 108(1):91–133, 2018),
by allowing an initial freedom on the choice of the valley points between which the mountain
pass construction is carried out, and then optimising over said choice. We then prove that,
when 2 ≤ n ≤ 6 and the metric is bumpy, this minmax leads to a (smooth closed) minimal
hypersurface with multiplicity 1. (When n = 2 this conclusion also follows from Chodosh
andMantoulidis (Ann.Math. 191(1):213–328, 2020).) As immediate corollarywe obtain that
every compact Riemannian manifold of dimension n+1, 2 ≤ n ≤ 6, endowed with a bumpy
metric, admits a two-sided smooth closed minimal hypersurface (this existence conclusion
also follows from Zhou X (Ann.Math. (2), 192(3):767–820, 2020) for minmax constructions
via Almgren–Pitts theory).

Mathematics Subject Classification 53A10 · 49Q20 · 35J20 · 35J61 · 35K58 · 49Q05 ·
53C21 · 58J60

1 Introduction

Existence problems in Riemannian geometry have a long history and those concerned with
stationary points of area (and related functionals) occupy a prominent position. A min-
max approach introduced in the 70s by Almgren and Pitts has lead in the last decade to

Communicated by A. Malchiodi.

Research partially supported by the EPSRC (grant EP/S005641/1).

B Costante Bellettini
c.bellettini@ucl.ac.uk

1 University College London, London, United Kingdom

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00526-022-02261-0&domain=pdf
http://orcid.org/0000-0002-2200-4876


  149 Page 2 of 25 C. Bellettini

extraordinary developments in geometric analysis, starting with the celebrated work [18] by
Marques–Neves. More recently, an alternative minmax approach has been developed, based
on the approximation of the area functional by the Allen–Cahn energy. In particular, the exis-
tence of a closed minimal hypersurface (smoothly embedded away possibly form a singular
set of dimension at most n−7) in an arbitrary compact Riemannian manifold Nn+1 (n ≥ 2),
originally proved in [1, 25–27], has been achieved in Guaraco’s work [7] with a construction
that employs very classical mountain pass tools and completely avoids the Almgren–Pitts
machinery; it capitalises instead on the analysis carried out in Hutchinson–Tonegawa [12],
Tonegawa [31], Tonegawa–Wickramasekera [32] (to send the Allen–Cahn parameter to 0)
and on the sharp regularity result provided by Wickramasekera [35]. Both in the Almgren–
Pitts and in the Allen–Cahn approach, the minimal hypersurface is obtained as an integral
varifold, that turns out to be smooth away from a singular set of codimension ≥ 7 thanks
to the fundamental regularity/compactness theory available in each of the two settings. In
general, in both approaches, the hypersurface may a priori carry multiplicity > 1.

Very recently, Zhou [37] obtains multiplicity-1 and two-sidedness for minmax minimal
hypersurfaces constructed via the Almgren–Pitts minmaxwhen 2 ≤ n ≤ 6 and N is endowed
with a bumpy (thus generic) metric (or, also, with a metric with positive Ricci curvature).
The result applies to multi-parameter minmax, and confirms a well-known conjecture of
Marques–Neves [20, 1.2]. Previous progress in this direction had been made in [19].

A natural counterpart to Marques–Neves’s conjecture is expected to be true for minmax
constructions via Allen–Cahn. For n = 2 it follows from the work of Chodosh–Mantoulidis
[5] (valid for arbitrary solutions with finite Morse index, not necessarily minmax solutions)
that the minimal surface obtained by a (one- or multi-parameter) Allen-Cahn minmax is
two-sided with multiplicity 1 in the case of bumpy metrics (and in the case of metrics with
positive Ricci).

We point out that [37] and [5] obtain from their multi-parameter multiplicity-1 results
(combined with the Weyl Laws available respectively for Almgren–Pitts and Allen–Cahn
minmax constructions [9, 17]) the existence of infinitely many minimal hypersurfaces. In
other words, they establish, under their respective assumptions, the validity of (versions of)
the well-known Yau’s conjecture, which is established by other methods and for arbitrary
Riemannian metrics with 2 ≤ n ≤ 6 by the combined efforts of Marques–Neves [21] and
Song [28] (for generic metrics with n ≥ 7, see [16]).

When the Riemannianmetric of the compact manifold has positive Ricci curvature several
other multiplicity-1 and two-sidedness results were obtained in recent years in the case
of one-parameter minmax. For the Almgren–Pitts method, Ketover–Marques–Neves obtain
such conclusions (under the Ricci curvature assumption) in [15] for 2 ≤ n ≤ 6, relying on
previous progress from [36]. For the Allen–Cahn method, it is noted in Gaspar–Guaraco’s
work [8] (see (4) in Theorem 2.1), relying on [15, 22, 23], that, when 2 ≤ n ≤ 6 and
the metric is bumpy and has positive Ricci curvature, then the minmax hypersurfaces are
two-sided with multiplicity 1. The multiplicity-1 and two-sidedness conclusions for the one-
parameter Allen–Cahn minmax is recently shown for n ≥ 2 and any metric with positive
Ricci curvature in the author’s work [2].

The relevance of multiplicity-1 results is shared by all minmax constructions (and not
only): a minmax procedure developed by Rivière [30] for 2-dimensional surfaces in arbitrary
codimension also faces the same issue, resolved by Pigati–Rivière [24].

We obtain here a multiplicity-1 result in the case in which 2 ≤ n ≤ 6 and N has a bumpy
(thus generic) metric, for a one-parameter minmax construction (via Allen–Cahn energy) that
is a modification of the one set up in [7] (see also Fig. 1), and of which we now give a brief
overview, with details given in Sect. 2. (The minmax construction itself can be performed for
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Fig. 1 It seems reasonable to
expect that the minmax carried
out here finds the minimal
hypersurface on the left, while
the one in [7] finds the one on the
right. There is a strictly stable
minimal hypersurface between
the two unstable ones

an arbitrary Riemannian metric and in any dimension, while the multiplicity-1 conclusion
exploits the metric and dimensional restrictions.)

For each ε (the parameter of the Allen–Cahn energy Eε), instead of using the admissible
class of paths inW 1,2(N ) that join the constant−1 to the constant+1 (as in [7]), we consider
all continuous paths inW 1,2(N ) that connect two distinct strictly stable critical points v1ε , v

2
ε

of the Allen–Cahn energy. (Note that the constants−1 and+1 are possible choices of strictly
stable critical points.) For each ε and for any such v1ε �= v2ε , the minmax produces (by
a standard mountain pass lemma) an Allen–Cahn critical point u(v1ε ,v2ε ) with Morse index
at most 1, and with Allen–Cahn energy Eε(u(v1ε ,v2ε )) realizing the minmax value. Then we
consider (for each ε)

inf
v1ε ,v2ε

Eε(u(v1ε ,v2ε )),

where v1ε �= v2ε vary among all possible strictly stable critical points of Eε . We note that this
infimum is achieved by the energy of a critical point uε, that has Morse index at most 1.
Next we let ε → 0, and consider any (subsequential) varifold limit V of the family V uε ,
the varifolds associated to uε. It then follows that V �= 0 and (as in [7], using [12, 31, 32,
35]) spt ‖V ‖ is smoothly embedded except possibly for a singular set sing V of dimension
≤ n−7, and spt ‖V ‖\ sing V carries locally constant integer multiplicity. We then establish:

Theorem 1.1 Let 2 ≤ n ≤ 6 and let N be a compact manifold of dimension n+1. There exists
a set of Riemannian metrics on N that is generic in the sense of Baire category (specifically,
the bumpy metrics of [34]) such that any varifold V obtained by the minmax in Sect. 2 is the
multiplicity-1 varifold associated to a smooth (embedded) closed minimal hypersurface M.

When n = 2, Theorem 1.1 follows from the more general result in [5] (that applies under
a uniform bound on the Morse index and on the energy). The multiplicity-1 information in
Theorem 1.1 implies immediately that M in Theorem 1.1 is the common boundary of two
disjoint open sets and therefore it is a two-sided hypersurface; moreover, it has Morse index
1 (by the bumpy metric assumption). In particular, with Theorem 1.1 we implicitly obtain a
slender proof of the following geometric result (that also follows from [37], which employs
a multi-parameter Almgren–Pitts framework).

Corollary 1.1 Let 2 ≤ n ≤ 6. In any compact Riemannian manifold of dimension n + 1
endowed with a bumpy (thus generic) metric there exists a (smoothly embedded) closed,
two-sided minimal hypersurface, with Morse index 1.

Remark 1.1 It will also follow, under the assumptions of Theorem 1.1, that the critical points
uε employed in the construction of V can themselves be obtained as mountain pass solutions,
for the class of admissible paths that join two (suitably chosen) strictly stable critical points;
moreover, there is an optimal path, i.e. one for which the maximum of Eε is achieved at uε.
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In Sect. 2 we set up the minmax construction sketched above. In Sect. 3 we identify
the key estimate (Proposition 3.1) to which Theorem 1.1 can be reduced. The proof of this
estimate will be given in Sect. 5, after some preliminary work in Sect. 4. Once the minmax
in Sect. 2 has been identified and carried out, the proof of Theorem 1.1 is a variant of the one
developed by the author in [2], in which positiveness of the Ricci curvature is assumed for
compact Riemannianmanifolds of dimension 3 or higher. In the present setting, we rely on the
dimensional restriction in order to have the smoothness of the support of theminmax varifold,
and the metric assumption to have that smooth minimal hypersurfaces admit no non-trivial
Jacobi fields (these is true for the so-called bumpy metrics, proved to be generic by White in
[34]).Moreover, we rely on the recent result [10] byGuaraco–Marques–Neves,which implies
that the orientable double cover of any given smooth minmax minimal hypersurface, onto
which index-1 Allen–Cahn solutions accumulate, cannot be strictly stable (and hence it is
unstable under a bumpymetric assumption).With [10] in mind, the statement of Theorem 1.1
could be viewed as an Allen–Cahn counterpart of the one in [19,Sect. 1.6] on one-parameter
Almgren–Pitts minmax.

2 Theminmax construction

Let N be a compact Riemannian manifold of dimension n+1, n ≥ 2. For ε ∈ (0, 1) consider
the Allen–Cahn energy

Eε(u) = 1

2σ

∫
N

ε
|∇u|2
2

+ W (u)

ε

on the Hilbert space W 1,2(N ); here W is a C3 “double well” potential, with (exactly) three
critical points, two non-degenerate minima at ±1 and a local maximum at 0, with (exactly)
two zeroes of W ′′ (one between −1 and 0, one between 0 and 1) and with quadratic growth
to ∞ at ±∞; the normalisation constant σ is σ = ∫ 1

−1

√
W (t)/2 dt . A customary choice

for the potential is W (x) = (1−x2)2

4 , suitably modified (to have quadratic growth) outside
[−2, 2]. We recall that the Euler–Lagrange equation for Eε is the semi-linear elliptic PDE
ε �u− W ′(u)

ε = 0 (where� denotes the Laplace–Beltrami operator on N ), and that the second

variation of Eε at u is given by the quadratic form Eε
′′(u)(φ, φ) = 1

2σ

∫
N ε |∇φ|2 + W ′′(u)

ε φ2

for φ ∈ C∞(N ). Stability amounts to Eε
′′(u)(φ, φ) ≥ 0 for all φ, while strict stability means

Eε
′′(u)(φ, φ) > 0 for all φ �= 0.
For any continuous path inW 1,2(N ) that starts at the constant−1 and ends at the constant

+1 there exists α > 0 such that the maximum of Eε on the path is ≥ α. This is proved in
[7]. (In fact the constant α is independent of ε.) The constants ±1 are strictly stable critical
points of Eε (they are also the only global minimizers and Eε(±1) = 0).

For any strictly stable critical point v of Eε there exists a neighbourhood of v inW 1,2(N ) in
which v achieves the (strict) minimum of Eε . This follows from theMorse–Palais lemma (see
e.g. [14,Lemma 7.3.1]) for non-degenerate critical points of smooth functionals on Banach
spaces. Consider a continuous path γ : [a, b] → W 1,2(N ) such that γ (a) and γ (b) are
strictly stable critical points of Eε . Then the maximum of Eε on γ has to be strictly greater
than max{γ (a), γ (b)} + δ, where δ > 0 is independent of γ .

For any pair of strictly stable critical points v1, v2 of Eε we define the class of paths
	v1,v2 to be the collection of continuous paths γ : [a, b] → W 1,2(N ) with endpoints
γ (a), γ (b) respectively equal to v1 and v2. The previous considerations guarantee the valid-
ity of the following “mountain pass condition”: there exists a valueCv1,v2 ∈ R with Cv1,v2 >
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max{Eε(v1), Eε(v2)} and such that for every γ ∈ 	v1,v2 we have maxt∈[a,b] Eε(γt ) ≥ Cv1,v2 .
Moreover, the Palais–Smale condition is satisfied by Eε (by the argument in [7,Proposition
4.4 (ii)]). This allows the use of a standard mountain pass theorem and yields the existence of
a minmax solution to Eε

′ = 0 with Morse index ≤ 1 and whose Allen–Cahn energy realises
the minmax value minγ∈	v1,v2

maxt∈[a,b] Eε(γt ). (For example, see [29].)
Given ε ∈ (0, 1) we will denote by Sε the collection of strictly stable critical points of Eε

on N . We will consider, for any v1ε , v
2
ε ∈ Sε, v1ε �= v2ε , the admissible class of paths 	v1ε ,v2ε

:
the mountain pass theorem yields (as just described) a critical point u(v1ε ,v2ε ) (of Eε) with
Morse index ≤ 1 and with

Eε(u(v1ε ,v2ε )) = min
γ∈	

v1ε ,v2ε

max
t∈[a,b] Eε(γt ).

We now “optimise” the choice of the valley points v1ε , v
2
ε : as v1ε �= v2ε vary in Sε , we

consider the “infimum of the minmax values”, namely

inf
v1ε , v2ε ∈ Sε

v1ε �= v2ε

Eε(u(v1ε ,v2ε )) = inf
v1ε , v2ε ∈ Sε

v1ε �= v2ε

min
γ∈	

v1ε ,v2ε

max
t∈[a,b] Eε(γt );

we will now check that there exists a critical point uε of Eε such that

Eε(uε) = inf
v1ε , v2ε ∈ Sε

v1ε �= v2ε

Eε(u(v1ε ,v2ε )). (1)

Indeed, taking an infimizing sequence (v1ε , v
2
ε )
 for 
 → ∞, we have a uniform bound on

Eε(u(v1ε ,v2ε )

) along the sequence and thus a uniform W 1,2 bound on u(v1ε ,v2ε )


; we first extract

a weak W 1,2-limit of u(v1ε ,v2ε )

, as 
 → ∞, that we denote by uε; by passing to the limit in

the weak version of Eε
′ = 0 we obtain that uε is a weak solution to the Allen–Cahn equation;

then we show that the convergence to uε is strong in W 1,2 by the stationarity assumption

Eε
′
(
u(v1ε ,v2ε )


)
= 0 (the computation is again the same as in [7,Proposition 4.4 (ii)]). Elliptic

theory guarantees smoothness of uε and the fact that it solves Eε
′(uε) = 0 in the strong sense.

Moreover, the minimizing sequence u(v1ε ,v2ε )

converges (as 
 → ∞) to uε in Ck(N ) for any

k ∈ N, by elliptic estimates, and Eε(u(v1ε ,v2ε )

) → Eε(uε).

We notice that uε hasMorse index≤ 1; this follows from the Rayleigh quotient character-
isation of the eigenvalues (see e.g. [11, (3.21)]), from the strong convergence of u(v1ε ,v2ε )


to uε

and from the fact that each u(v1ε ,v2ε )

has Morse index ≤ 1 for each 
. (It suffices to check that

if f
 → f∞ in C2 and E ′
ε( f
) = 0 for 
 ∈ N ∪ {∞}, denoting by λ

f

p the p-th eigenvalue of

the Jacobi operator associated to Eε and f
, for 
 ∈ N ∪ {∞}, then lim sup
→∞ λ
f

p ≤ λ

f∞
p .)

Associated varifolds. In order to produce candidate minimal hypersurfaces (i.e. stationary
integral varifolds) we follow the construction in [12]. Given a smooth function u : N → R

we let w = �(u), where �(s) = ∫ s
0

√
W (t)/2 dt . Recall that σ denotes the normalization

constant
∫ 1
−1

√
W (t)/2 dt . Then we define the n-varifold

V u(A) = 1

σ

∫ ∞

−∞
V{w=t}(A) dt,

where A ⊂ Gn(N ) and V{w=t} denotes, for a.e. t , the varifold of integration on the (smooth)
level set {w = t}. If, for ε = ε j → 0+, the functions uε are critical points of Eε and Eε(uε) is
uniformly bounded, then the analysis in [12] gives that V uε converge subsequentially, as ε →
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0, to an integral n-varifold V with vanishing first variation. Moreover Eε(uε) → ‖V ‖(N ),
the total mass of V .
Upper and lower energy bounds.We have positive upper and lower bounds on Eε(uε) as ε →
0, for the critical points uε constructed in (1). For the upper bound this follows from the upper
bound (independent of ε) obtained in [7] for lim supε→0 cε, where cε is the minmax value
obtained by employing the class of paths 	−1,+1, together with the infimum characterisation
of uε in (1). The lower bound follows from the lower bound obtained in [7] for lim infε→0 cε,
together with the following observation.
If Eε(vε) → 0 for a sequence of critical points (Eε

′(vε) = 0) with ε = ε j → 0+, then for all
sufficiently large j we have vε ≡ −1 or vε ≡ +1.
This is proved by the following argument, as in [3]. Note, first of all, that it suffices to prove
that if Eε(vε) → 0 then {vε = 0} = ∅ for sufficiently small ε; then the maximum principle
gives the conclusion vε ≡ −1 or vε ≡ +1 (by employing constant functions as barriers).
Arguing by contradiction, we let x j ∈ {vε j = 0} for j in a subsequence. Working in normal
coordinates in a geodesic ball Bρ(x j ) centred at x j and with ρ ∈ (0, inj(N )), we define
ṽ j (y) = vε j

(
ε j y + x j

)
. The function ṽ j is defined on the ball Bρ/ε j (0) ⊂ R

n+1, which
is endowed with the pull-back metric (from Bρ(x j )). Sending j → ∞ we obtain an entire
solution v : R

n+1 → R to E ′
1(v) = 0 with v(0) = 0 and E1(v) = 0, contradiction. (Here

R
n+1 is endowed with the Euclidean metric, since the metrics on Bρ/ε j (0) converge to the

Euclidean one on any compact set).
The above observation equivalently says that there exist ε0 > 0 andC > 0 such that if vε is

a critical point of Eε for ε ≤ ε0 and vε �≡ −1, vε �≡ −1, then Eε(vε) ≥ C . For the construction
above (see the discussion preceding (1)), if ε ≤ ε0 and at least one between v1ε , v

2
ε is not

±1, then we have Eε(u(v1ε ,v2ε )) ≥ max{Eε(v
1
ε ), Eε(v

2
ε )} ≥ C > 0. If v1ε , v

2
ε are the constants

−1,+1, on the other hand, then by [7] for all sufficiently small ε we have Eε(u(−1,+1)) ≥
1
2 lim infε→0 cε > 0. Therefore a positive lower bound for lim infε→0 Eε(u(v1ε ,v2ε )) exists.
Varifold limit and regularity. Following [7] we consider any (subsequential) varifold limit of
V uε as ε → 0; for n ≥ 2 we get that spt ‖V ‖ is a smoothly embedded minimal hypersurface
except possibly for a closed singular set of dimension ≤ n − 7. This follows upon noticing
that the uniform bound on the Morse index of uε allows to reduce locally in N to the case in
which uε are stable so that the regularity results in [32, 35] apply. Note that V �= 0 by the
lower energy bound on uε. In other words,

V =
K∑
j=1

q j |Mj |, (2)

with q j ∈ N and Mj minimal and smoothly embedded away from a set of dimension≤ n−7
(|Mj | denotes the multiplicity-1 varifold of integration on Mj ).

Remark 2.1 The observation that uε has Morse index ≤ 1 simplifies the exposition, however
an alternative way to carry out the construction would be to consider a diagonal sequence
of u(v1ε ,v2ε ) as ε → 0 such that the varifolds V

u
(v1ε ,v2ε ) converge to the same limit V as the

varifolds V uε . Then the regularity of V could be obtained from the knowledge that theMorse
index of u(v1ε ,v2ε ) is ≤ 1.

The previous construction can be carried out for any n ≥ 2 and any Riemannian metric on
N . In the case n ≤ 6 that we will be interested in, all the Mj ’s obtained in (2) are completely
smooth. The scope, in the remainder of this work, is to prove that if 2 ≤ n ≤ 6 and the
metric is bumpy, then all the multiplicities q j in (2) must be equal to 1. This will establish
Theorem 1.1.
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Remark 2.2 It is also true (see Remark 5.7) that if 2 ≤ n ≤ 6 and the metric is bumpy, then
uε itself can be obtained, for all sufficiently small ε, by a minmax in the class 	v1ε ,v2ε

for a

suitable choice of v1ε �= v2ε ∈ Sε , in particular

Eε(uε) = min
v1ε , v2ε ∈ Sε

v1ε �= v2ε

Eε(u(v1ε ,v2ε )) = min
v1ε , v2ε ∈ Sε

v1ε �= v2ε

min
γ∈	

v1ε ,v2ε

max
t∈[a,b] Eε(γt ).

3 Key estimate and proof of theorem 1.1

Theorem 1.1 will follow mainly from the following key estimate (in which the dimensional
restriction is absent in view of the fact that M is assumed to be smoothly embedded).

Proposition 3.1 Let N be a compact Riemannianmanifold of dimension n+1with n ≥ 2 and
let M ⊂ N be a smoothly embedded, closed minimal hypersurface, whose oriented double
cover is unstable. There exists ς > 0 (depending only on M ⊂ N) and ε0 > 0 such that for
every ε < ε0 there exist a stable Allen–Cahn critical point vε (E ′

ε(vε) = 0, E ′′
ε(vε) ≥ 0)

and a continuous path γ : [a, b] → W 1,2(N ) with γ (a) ≡ −1 and γ (b) = vε such that

max
t∈[a,b] Eε(γ (t)) ≤ 2Hn(M) − ς.

Additionally, we will need the following lemma, whose proof (see Appendix 1) follows from
Lemma A.1 and from [10].

Lemma 3.1 Let N be a compact Riemannian manifold of dimension n + 1 with 2 ≤ n ≤ 6,
endowed with a bumpy metric. For any K > 0 there exists ε0 > 0 such that if ε ∈ (0, ε0)
and vε : N → R is a stable critical point of Eε with Eε(vε) ≤ K, then vε is strictly stable.

Proof of Theorem 1.1 assuming Proposition 3.1 and Lemma 3.1 We recall that the varifold
V = ∑

j q j |Mj | obtained in Sect. 2 satisfies ‖V ‖(N ) = lim Eε(uε) for ε = ε j → 0+.
It follows from [10] that if for some j0 the oriented double cover of Mj0 is stable, then
q j0 = 1. Indeed, since each Mj0 is smoothly embedded we can choose a tubular neighbour-
hood Tj0 of it such that spt ‖V ‖ ∩ Tj0 = Mj0 . The oriented double cover of Mj0 is strictly
stable by the bumpy metric assumption, so using [10] in Tj0 we conclude that the associated
varifolds V uε Tj0 converge with multiplicity 1. Since V uε → V = ∑

j q j |Mj | on N , we
conclude that q j0 = 1. On the other hand, Proposition 3.1 and Lemma 3.1 imply that if j0
is such that Mj0 has unstable double cover, then q j0 must be 1. Indeed, if that were not the
case, we could choose M = Mj0 in Proposition 3.1 (and K = 2Hn(Mj0) in Lemma 3.1),
obtaining, for ε < min{ε0, ε0}, the existence of a path γ ∈ 	−1,vε , for some strictly stable
vε , such that maxt∈[a,b] Eε(γ (t)) ≤ 2Hn(Mj0) − ς ; a fortiori,

min
γ∈	−1,vε

max
t∈[a,b] Eε(γ (t)) ≤ 2Hn(Mj0) − ς

for ε < min{ε0, ε0}, and
Eε(uε) = inf

v1ε , v2ε ∈ Sε

v1ε �= v2ε

min
γ∈	

v1ε ,v2ε

max
t∈[a,b] Eε(γ (t)) ≤ 2Hn(Mj0) − ς

for ε < min{ε0, ε0}. Since ‖V ‖(N ) = limε→0 Eε(uε) (where ε = ε j is any subsequence
that led to (2)) and ‖V ‖(N ) ≥ q j0Hn(Mj0) we conclude that q j0 = 1. ��
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4 Preliminary results

4.1 Truncated 1-dimensional Allen–Cahn solutions

We denote by H(r) the monotonically increasing solution to u′′ − W ′(u) = 0 such that

limr→±∞ H(r) = ±1, with H(0) = 0. (For the standard potential (1−x2)2

4 , we have H(r) =
tanh

(
r√
2

)
.) Then the functions H(−r) and H(±r + z) also solve u′′ − W ′(u) = 0 (for any

z ∈ R). The rescaled function Hε(r) = H
( r

ε

)
solves εu′′ − W ′(u)

ε = 0.
We will make use of truncated versions of Hε (see [2, 5, 33] for details that are omitted

below): for � = 3| log ε | define

H(r) = χ(�−1r) H(r) ± (1 − χ(�−1r)),

where± is chosen respectively on r > 0, r < 0 andχ is a smooth bump function that is+1 on
(−1, 1) and has support equal to [−2, 2]. With this definition, H = H on (−�,�), H = −1
on (−∞,−2�], H = +1 on [2�,∞). Moreover H solves ‖H

′′ −W ′(H)‖C2(R) ≤ C ε3, for

C > 0 independent of ε. (Note also thatH
′′−W ′(H) = 0 away from (−2�,−�)∪(�, 2�).)

For ε < 1, we rescale these truncated solutions and let H
ε
(·) = H

( ·
ε

)
. Note that H

ε

solves ‖ ε H
′′ − W ′(H)

ε ‖C2(R) ≤ C ε2 and ε H
′′ − W ′(H)

ε = 0 on (− ε �, ε �), H
ε = +1 on

(2 ε �,∞), H
ε = −1 on (−∞,−2 ε �). Using these facts and recalling that Eε(Hε) = 1

we get Eε(H
ε
) = 1 + O(ε2). (The function O(ε2) is bounded by Cε2 for all ε sufficiently

small, with C independent of ε.)
For ε ∈ (0, 1) we define the function � : R → R (for notational convenience we do not

indicate explicitly the dependence on the chosen ε in both � and �t below)

�(r) =
{

H
ε
(r + 2 ε �) r ≤ 0

H
ε
(−r + 2 ε �) r > 0

. (3)

This function is smooth thanks to the fact that all derivatives of H
ε
vanish at ±2 ε �.

Moreover let �t denote the following family of functions, with �0 = � and t ∈ [0,∞):

�t (r) :=
{

H
ε
(r + 2 ε � − t) r ≤ 0

H
ε
(−r + 2 ε � − t) r > 0

. (4)

We have �0 = �. Moreover, �t ≡ −1 for t ≥ 4 ε �. For t ∈ (0, 4 ε �) the function
�t is equal to −1 for r such that |r | ≥ 4 ε � − t . The functions �t form a family of even,
Lipschitz functions. The energy Eε(�t ) is decreasing in t : indeed, the energy contribution of

the “tails” is zero and we have Eε(�t ) = Eε(�) − 1
2σ

∫ t
−t ε

|� ′|2
2 + W (�)

ε .

4.2 Large unstable region

Let N be a Riemannian manifold of dimension n + 1 with n ≥ 2. Let M ⊂ N be a smooth
closed minimal hypersurface such that its oriented double cover M̃ is unstable. We denote
by ι : M̃ → N the minimal smooth immersion induced by the projection of M̃ onto M . Let
ν be a choice (on M̃) of unit normal to the immersion ι.
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Let ω > 0 be the semi-width of a well-defined tubular neighbourhood of M in N , with
ω < inj(N ). Define the map M̃ × [0, ω) → N given by

(p, s) → expι(p)(sν(p)),

where expι(p) denotes the exponential map at ι(p) (from a ball in the tangent to N at ι(p)

to a geodesic ball in N centred at ι(p)). This is a bijective diffeomorphism on M̃ × (0, ω)

(the map is 2 − 1 on M̃ × {0}). We will endow M̃ × [0, ω) with the pull-back metric from
N . This metric is of the form gs + ds2, where gs is a Riemannian metric on M̃ × {s}. In the
following, M̃ will be implicitly assumed to be a Riemannian n-dimensional manifold with
the metric g0. By abuse of notation we will write ι + sν in place of expι(p)(sν(p)) and also

ι + ϕν in place of expι(p)(ϕ(p)ν(p)), where 0 ≤ ϕ < ω is a smooth function on M̃ .

The quotient (M̃ × [0, ω))� ∼, where (p1, s1) ∼ (p2, s2) if and only if ι(p1) = ι(p2)
and s1 = s2 = 0, is the (open) tubular neighbhourhood of M of semi-width ω. For notational

convenience we will denote it by M̃
×∼ [0, ω). Whenever we define functions on M̃ × [0, ω)

they will be always even in (p, 0) ∈ M̃ ×{0}, so that they can be identified with functions in
M̃

×∼ [0, ω). (Lifts of functions on M are exactly even functions on M̃ . By lift of ρ : M → R

we mean the function ρ̃ on M̃ defined by ρ̃(p) = ρ(ι(p)).)
We will now consider deformations of ι with initial velocity dictated by a function ϕ ∈

C2(M̃). For ϕ ∈ C2(M̃), consider the one-parameter family of immersions ιt : M̃ → N
defined, for t ∈ (−δ0, δ0) (for some δ0 ∈ (0, ω

maxϕ )), by (p, t) → expι(p)(tϕ(p)ν(p)), for

p ∈ M̃ . The first variation of area at t = 0 is 0 because M is minimal. The second variation
of area at t = 0 is given by the well-known expression∫

M̃
|∇ϕ|2dHn −

∫
M̃

ϕ2(|A|2 + RicN (ν, ν))dHn, (5)

where A denotes the second fundamental form of ι, ∇ the gradient on M̃ (with respect to g0),
RicN the Ricci tensor of N and dHn coincides with dvolg0 .

Lemma 4.1 (unstable region) Let M ⊂ N be as above. There exist a geodesic ball D ⊂ M
with radius R0, with 0 < R0 < inj(N ), and a function φ̃ ∈ C2

c (M̃)with supp φ̃ ⊂ M̃ \ι−1(D)

and φ̃ ≥ 0, such that∫
M̃

|∇φ̃|2dHn −
∫
M̃

φ̃2(|A|2 + RicN (ν, ν))dHn < 0. (6)

Proof Let η be the first eigenfunction (suitably normalized, e.g. to have unit L2 norm) of the
Jacobi operator L (on M̃) and let λ be the associated eigenvalue:

L(η) := �η + (|A|2 + RicN (ν, ν))η = λη, λ > 0,

where � is the Laplace–Beltrami operator on M̃ . By standard theory η is smooth and never
vanishing, so we will assume that it is strictly positive on M̃ . The positiveness of λ follows
from the fact that ι : M̃ → N is an unstable minimal immersion; we have

∫
M̃ |∇η|2dHn −∫

M̃ η2(|A|2 +RicN (ν, ν))dHn = −λ
∫
M̃ η2 < 0. Pick an arbitrary b ∈ M and let {b1, b2} =

ι−1(b). By standard capacity properties, given δ > 0 arbitrary there exists ρ ∈ C∞
c (N ),

0 ≤ ρ ≤ 1, that vanishes in a neighbourhood of b and is identically one away from a (slightly
larger) neighbourhood of b and such that

∫
N |∇ρ|2 < δ. These properties of ρ imply that for

δ sufficiently small it is possible to replace η by η(1 − ρ ◦ ι) (which is still non-negative) in
the previous inequality and still obtain a negative result. Then we set φ̃ = η(1 − ρ ◦ ι). By
construction there exists a geodesic ball D ⊂ M (centred at b) contained in {1 − ρ = 0}. ��
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Remark 4.1 (choice of B) For D obtained in Lemma 4.1, we choose a (geodesic) ball B in
M centred at b and of radius R < R0

2 , where R0 is the radius of D. The choices of B and φ̃

will be kept until the end. We will write D̃ = ι−1(D) and B̃ = ι−1(B).

Remark 4.2 The geometric counterpart of Lemma 4.1 is that the minimal immersion ι is
unstable with respect to the area functional also if we restrict to deformations that leave B̃
(and B) fixed, see Remark 4.4.

4.3 Relevant immersions

We have a natural unsigned distance on M̃ × [0, ω), induced by the Riemannian metric
gs + ds2; note that the unsigned distance to M̃ of a point (p, s) ∈ M̃ × [0, ω) is given by s.

The unsigned distance to M̃ descends to the usual Riemannian distance to M in M̃
×∼ [0, ω)

and is a smooth function in
(
M̃

×∼ [0, ω)
)

\ M .

Let � denote the nearest point projection onto M , well-defined in M̃
×∼ [0, ω); with

a slight abuse of notation, we will often identify this map with �(p, s) = (p, 0), which
is defined in M̃ × [0, ω). For future purposes, we choose ω suitably small so that if x is

in M̃
×∼ [0, ω), then | |J�|(x) − 1 | ≤ 2K ′

Ad(x, M) and
∣∣∣ 1

|J�|(x) − 1
∣∣∣ ≤ 2K ′

Ad(x, M),

where d is the Riemannian distance and K ′
A is the maximum of the norm of the second

fundamental form of M .
Given an immersion ι + ϕν, where ϕ > 0 is a (positive) smooth function on M̃ , with

ϕ < ω, the image of this immersion is a two-sided embedded (closed) hypersurface, that we
will denote by Mϕ . We will always assume that the choice of normal to Mϕ is the one for
which the scalar product with ∂

∂s is positive.

Signed distance to Mϕ . We define, on
(
M̃

×∼ [0, ω)
)

\ M , the following “signed distance

to Mϕ”. Using the identification with M̃ × (0, ω), so that Mϕ is identified with the graph of
ϕ over M̃ , we say that (p, s) has negative distance to Mϕ if s < ϕ(p) and positive distance
to Mϕ if s > ϕ(p). The modulus of the signed distance is the unsigned distance to graph(ϕ)

in M̃ × (0, ω) (recall that the latter is endowed with the Riemannian metric pulled back from
N ). If (p, s) ∈ graph(ϕ) then the distance extends smoothly at (p, s) with value 0. (We do
not define the signed distance on M .) We will use the notation dist(x, Mϕ) to denote the
signed distance of x to Mϕ .

Remark 4.3 (relevant immersions) Recall the function φ̃ given by Lemma 4.1. Let c̃0 > 0
and t̃0 > 0 be constants sufficiently small so that the following immersions are well-defined
for all c ∈ [0, c̃0], t ∈ [0, t̃0] (the constants c̃0, t̃0 need to be sufficiently small to ensure that

the image of the immersions always lies in M̃
×∼ [0, ω)):

M̃ → M̃
×∼ [0, ω)

p → (p, c + t φ̃(p))
or, equivalently, ι + (c + t φ̃)ν : M̃ → N .

The image of this immersion is identified with

graph
(
(c + t φ̃)

)
⊂ M̃ × [0, ω).

(The immersion is not necessarily even in p.)
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In view of bounds needed later, we also ensure that t̃0 is sufficiently small to have
t̃0 maxM̃ η < 1

4ω, where η is the (positive and normalised) first eigenfunction considered in
Lemma 4.1.

Note, moreover, that a suitably small choice of c̃0 > 0 and t̃0 > 0 additionally guar-
antees the following (technically useful) fact: let 0 < c1 < c̃0, for every c ∈ [c1, c̃0] and
t ∈ [0, t̃0] there exists a tubular neighbourhood of semi-width c1 of the embedded separat-

ing hypersurface graph
(
(c + t φ̃)

)
. (We will use this with c1 = 6 ε | log ε | in Sect. 5.3 in

particular.)
Let B be the ball in Remark 4.1. We let M̃B = M̃ \ ι−1(B) and ιB = ι|M̃B

(note that M̃B

is a manifold with boundary). By abuse of notation we will write φ̃ also to mean φ̃

∣∣∣
M̃B

. The

immersions

M̃B → M̃
×∼ [0, ω)

p → (p, c + t φ̃(p))
or, equivalently, ιB + (c + t φ̃)ν : M̃B → N ,

are well-defined for all c ∈ [0, c̃0], t ∈ [0, t̃0]. The image of this immersion with boundary
is identified with

graph

(
(c + t φ̃)

∣∣∣
M̃B

)
.

Remark 4.4 By Lemma 4.1 and Remark 4.2 there exists t0 ∈ [0, t̃0] such that the area of the
immersion ι + t φ̃ν : M̃ → N for t ∈ [0, t0] is strictly decreasing in t (the second derivative
of area at t = 0 along the deformation ι + t φ̃ν is strictly negative). Note, moreover, that this
deformation leaves B fixed, so we equivalently have the following: the area of the immersion
with boundary ιB + t φ̃ν : M̃B → N is strictly decreasing in t for t ∈ [0, t0] (this is a
deformation of the immersion with fixed boundary; the area at t = 0 is 2Hn(M)−2Hn(B)).

Lemma 4.2 Let t0 be as in Remark 4.4. There exist c0 ∈ [0, c̃0] and τ > 0 such that

(i) for all c ∈ [0, c0] and for all t ∈ [0, t0] the area of the immersion (with boundary)
ιB + (c + t φ̃)ν : M̃B → N is ≤ 2

(
Hn(M) − 3

4Hn(B)
)
;

(ii) for all c ∈ [0, c0] the area of the immersion ι + (c+ t0φ̃)ν : M̃ → N is ≤ 2Hn(M) − τ .

Proof Let us prove that (i) holds for some c′
0 ∈ [0, c̃0] (in place of c0). Argue by contradic-

tion: if not, then there exist ci → 0 and ti ∈ [0, t0] such that the area of ιB + (ci + ti φ̃)ν

is ≥ 2
(
Hn(M) − 3

4Hn(B)
)
for all i . Upon extracting a subsequence we may assume

ti → t ∈ [0, t0] and by continuity of the area we get that the area of ιB + t φ̃ν is
≥ 2

(
Hn(M) − 3

4Hn(B)
)
. This is however in contradiction with Remark 4.4, which says

that this area is ≤ 2Hn(M) − 2Hn(B).
Next, let us prove that (ii) holds for some c′′

0 ∈ [0, c̃0] (in place of c0) and for some τ > 0.
By Remark 4.4 the area of ι + t0φ̃ν is below 2Hn(M) by a (strictly) positive amount; denote
by 2τ this positive quantity. By continuity, there exists c′′

0 > 0 such that for all c ∈ [0, c′′
0 ]

the area of the immersion ι + (c + t0φ̃)ν is smaller than 2Hn(M) − τ .
Choosing c0 = min{c′

0, c
′′
0} concludes the proof. ��

Since ι : M̃ → N is a closed smooth immersion we can find a constant KA > 0 such that:
(i) the modulus of the second fundamental form along the immersion ι + (c + t φ̃)ν is

≤ KA for all c ∈ [0, c0], t ∈ [0, t0];

123



  149 Page 12 of 25 C. Bellettini

(ii) let Mc,t be the embedded hypersurface obtained as image of ι+ (c+ t φ̃)ν; the nearest
point projection �c,t from a tubular neighbourhood of Mc,t with semi-width c, has the fol-

lowing bounds:
∣∣ |J�c,t |(x) − 1

∣∣ ≤ KAd(x, Mc,t ) and
∣∣∣ 1

|J�c,t |(x) − 1
∣∣∣ ≤ KAd(x, Mc,t ),

where d is the Riemannian distance. To simplify notation, we also assume that KA is chosen
to be larger than 2K ′

A, the constant that appeared in the estimates on J� at the beginning of
this section.

The immersions in Lemma 4.2 will represent intermediate points of the path (joining −1
to a stable critical point vε) that we will produce in Sect. 5.2, 5.3, 5.4, 5.5. The next one,
instead, will be used as a barrier for the gradient flow in Sect. 5.4.

Consider the one-parameter deformation ιt := ι + tϕν : M̃ → N for t ∈ (−δ0, δ0)

for some positive δ0 < ω
max ϕ

and for some ϕ ∈ C2(M̃). Let Ht (p) denote the scalar mean

curvature of ιt at p ∈ M̃ with respect to the choice of unit normal νt (along ιt ) that has
positive scalar product with ν. Recall that the first variation of area at time t is given by
− ∫

M̃ Htϕdvolgt (where gt is the metric induced by the pull-back via ιt ) and the second
variation of area at t = 0 is given by − ∫

M̃ L(ϕ)ϕdvolg0 . Then, using H0 ≡ 0, we get
d
dt

∣∣
t=0 Ht (p) = L(ϕ).

Let η be the (smooth, positive and normalised) first eigenfunction of the Jacobi operator
L on M̃ , and λ > 0 the associated eigenvalue (see the proof of Lemma 4.1). Choosing η in
place of ϕ in ιt we obtain

d

dt

∣∣∣∣
t=0

Ht (p) = L(η) = λη(p) > 0.

(In other words, the mean curvature vector of ιt will point away from M if we perturb by the
first eigenfunction.) From this, we see that there exists a sufficiently small z1 > 0 such that
the scalar mean curvature Ht,η of ι + tην satisfies (recall that minM̃ η > 0)

Ht,η ≥ t

2
λ min

M̃
η for all t ∈ [0, z1]. (7)

We choose z0 ∈ (0, z1] such that z0 maxM̃ η < c0, where c0 was chosen in Lemma
4.2. The embedded hypersurface graph(z0η) (more precisely, the image of the immersion

ι + z0ην, contained in M̃
×∼ [0, ω)) will be used as a barrier in Sect. 5.4, thanks to the mean

convexity property (7).

5 Proof of proposition 3.1

The upshot of the forthcoming sections is the following: given M ⊂ N as in Proposition 3.1,
prove that there exists ε0 > 0 such that for any ε < ε0 we can find a continuous path (in
W 1,2(N )) that joins the constant−1 to a stable critical point of Eε and such that themaximum
of Eε along this path is at most 2Hn(M) − δ, for some δ > 0 that only depends on M and N
(hence independent of ε).

5.1 Choice of "

Let B be as in Remark 4.1, c0, t0, τ be as in Lemma 4.2 and KA as in the remarks that
follow Lemma 4.2. The geometric quantities Hn(B) and τ are relevant in the forthcoming
construction.
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In the following sections we are going to exhibit, for every sufficiently small ε, an admis-
sible continuous path in W 1,2(N ) with Eε suitably bounded along the whole path. We will
specify now an initial choice ε < ε1, which permits the construction of the W 1,2-functions
that describe the path. When we will estimate Eε along the path, we will do so in terms of
geometric quantities (hence independent of ε) plus errors that will depend on ε. For suf-
ficiently small ε, i.e. ε < ε2 for a choice of ε2 ≤ ε1 to be specified, these errors will be
≤ C(ε | log ε |), where C > 0 is independent of ε ∈ (0, ε2); we will not keep track of the
constants and will instead write O(ε | log ε |). At the very end (see Sect. 5.5), in order to make
these errors much smaller than the geometric quantities, and thus have an effective estimate
for Eε, we will revisit the smallness choice of ε: for some ε3 ≤ ε2 we will get that whenever
ε < ε3 the errors can be absorbed in the geometric quantities. Therefore for ε < ε3, we will
obtain an upper bound for Eε along the path that is independent of ε.

Now we choose ε1; the choices of ε2, ε3 will be made as we proceed into the forthcoming
sections. We restrict to values sufficiently small, namely ε1 < 1/e, so to have that ε | log ε | is
decreasing as ε decreases; this guarantees that the conditions specified below on ε1 hold also
for each ε < ε1. The condition ε1 < 1/e, also gives that the O(ε2)-control that we have in
Sect. 4.1 on the truncated one-dimensional solutions H

ε
are valid for all ε < ε1. Moreover,

(recall that η, c0 and z0 are chosen at the end of Sect. 4.3) we require:
(i) 12 ε1 | log ε1 | < c0

20 (and, from above, 12 ε1 | log ε1 | < 1
2ω and ε1 < 1/e);

(ii) 12 ε1 | log ε1 | < z0 minM̃ η;
(iii) 24 ε1 | log ε1 | < c0 − z0 maxM̃ η;
(iv) 6 ε1 | log ε1 | < 1

4ω − t0 maxM̃ η.
(The right-hand-sides of the last two inequalities are strictly positive by the choices made
in Sect. 4.3.) Moreover, we will need to ensure a positiveness condition for the mean cur-
vature of the level sets of the distance function to the image of ι + z0ην (equivalently, to
graph(z0η), working in M̃ × [0, ω)). Recall that the signed distance dist(·, graph(z0η)) is
well-defined on M̃ × (0, ω) and negative at (p, s) with s < z0η(p) and positive at (p, s)
with s > z0η(p); its modulus is the Riemannian distance to graph(z0η). To begin with,
consider a tubular neighbourhood of graph(z0η) that does not intersect M , and denote
by ω1 its semi-width. Choose ε1 small enough to have 12 ε1 | log ε1 | < ω1. Now, for
d ∈ [−12 ε1 | log ε1 |, 12 ε1 | log ε1 |], consider the smooth embedded hypersurface given
by the level set {dist(·, graph(z0η)) = d}. Let Hd,z0η denote the scalar mean curvature of
{dist(·, graph(z0η)) = d} (with respect to the normal on ι + z0ην that has positive scalar
product with ∂

∂s ). Recall from (7) that for d = 0 (i.e. on graph(z0η)) we have that the scalar
mean curvature is ≥ z0

2 λminM̃ η. By continuity we therefore ensure that, for ε1 sufficiently
small, we have, for all d ∈ [−12 ε1 | log ε1 |, 12 ε1 | log ε1 |]:
(v) Hd,z0η ≥ z0

4 λ minM̃ η. (Implicitly, 12 ε1 | log ε1 | < ω1.)

5.2 From E"(−1) = 0 to 2(|M| − |B|)

Wewill work at fixed ε, with ε < ε1 for ε1 chosen to satisfy (i), (ii), (iii), (iv), (v) of Sect. 5.1.

We will often use the shorthand notation � = 3| log ε |. We recall the notation M̃
×∼ [0, ω)

introduced in Sect. 4.2 (to denote the quotient of M̃ × [0, ω)) and the choices (independent
of ε) made in Remark 4.1, with R denoting the radius of the (geodesic) ball B, D denoting
the concentric ball with radius 2R, and with D̃ = ι−1(D), B̃ = ι−1(B).
Definition of χ . Let χ0 : M → [0, 1] be a smooth function on M with compact support
contained in D and such that χ0 = 1 on B and |∇χ0| ≤ 2/R. Let χ : M̃ → [0, 1] be defined
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by χ = ι ◦ χ0. Then χ is smooth and compactly supported in D̃, with χ = 1 on B̃ and
|∇χ | ≤ 2/R.
Definition of f . We define f (y, z) on M̃ × [0, ω) as follows (�t was defined in (4)):

f (y, z) = �4 ε �χ(y)(z).

This function is even in y, therefore it descends to a function on M̃
×∼ [0, ω) and we will

now check that it is there Lipschitz. Since f is smooth on M̃ × (0, ω) and equal to −1 on
M̃ ×[ω/2, ω), we only need to check at x ∈ M . Let Bρ(x) ⊂ M be a geodesic ball, then we
have a well-defined tubular neighbourhood of Bρ(x) of semi-widthω that is diffeomorphic to
Bρ(x)× (−ω,ω) and isometric to it, when we endow Bρ(x)× (−ω,ω)with the Riemannian
metric from N . The Jacobian factor measuring the distortion of this metric from the product
metric is bounded by a constant that only depends on the geometric data M, N , therefore
it suffices to prove the Lipschitz property with respect to the product metric. Using Fermi
coordinates (a, s) in Bρ(x) × (−ω,ω) the expression of f becomes �4 ε �χ0(a)(s) because
�t is even for all t . As �t (r) is Lipschitz in (t, r), this expression shows that f is Lipschitz
continuous in Bρ(x) × (−ω,ω) (the Lipschitz constant depends only on �, χ , and on the
geometric data M, N ).

Passing f to the quotient M̃
×∼ [0, ω), we can extend it to N by setting it equal to −1

on N \
(
M̃

×∼ [0, ω)
)
, (since f = −1 on M̃ × [ω/2, ω)). We will denote the function

defined on N also by f , by abuse of notation. This function is Lipschitz on N (and actually
smooth away from (D \ B)). We may think of f as of an “Allen–Cahn approximation” of
the hypersurface-with-boundary given by the image of ιB counted twice (2|M | − 2|B| in
varifold notation).
Allen–Cahn energy of f . We will show that for ε sufficiently small Eε( f ) is controlled
by twice the area of M \ B, up to errors of type O(ε | log ε |). Recall (see Sect. 4.3) that
� denotes the nearest point projection onto M and that its Jacobian determinant satisfies∣∣∣ 1

|J�|(x) − 1
∣∣∣ ≤ KA d(x, M) whenever d(x, M) ≤ 4 ε � and ε < ε1.

The Allen–Cahn energy of the Lipschitz function f on N is 0 outside M̃
×∼ [0, ω), since

f = −1 there.We perform the computation in M̃×(0, ω) (removingM from the domain does
not affect the computation). Denote by ∇y f the gradient of f with respect to the variables
y ∈ M̃ . Then by definition of f we have, at (y, z) ∈ M̃ × (0, ω):

∂ f

∂ yi
= d

ds
(�s)(z)

∣∣∣∣
s=4 ε �χ(y)

4 ε �
∂χ

∂ yi

and since |∇χ | ≤ 2
R , | d

ds (�s)(z)| = |� ′(|z| + s)| ≤ 3
ε , this implies (� = 3| log ε |)

ε |∇y( f )|2 ≤ ε
C
ε2

ε2 | log ε |2
R2 = C ε | log ε |2

R2 . (8)

(Here C = (48 · 3)2 ·C ′, where C ′ depends on (g0)−1gs .) By the coarea formula (the metric
is the one induced by the pull-back from N ) we compute 2σ Eε( f ) as follows:

∫
B̃

(∫
(0,ω)

1

|J�|

(
ε

2

∣∣∣∣ ∂

∂z
f

∣∣∣∣
2

+ W ( f )

ε

)
dz

)
dy +

+
∫
D̃\B̃

(∫
(0,ω)

1

|J�|

(
ε

2

∣∣∣∣ ∂

∂z
f

∣∣∣∣
2

+ W ( f )
ε

)
dz

)
dy +
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+
∫

(D̃\B̃)×(0,ω)

ε

2
|∇y f |2 +

+
∫
M̃\D̃

(∫
(0,ω)

1

|J�|

(
ε

2

∣∣∣∣ ∂

∂z
f

∣∣∣∣
2

+ W ( f )
ε

)
dz

)
dy. (9)

The first term vanishes because f = −1 on the domain of integration. Thanks to (8)
the third term can be made arbitrarily small by choosing ε sufficiently small; this term is
O(ε2 | log ε |3), since the inner integrand in non-zero only on [0, 4 ε �]. For the second
term, note that the inner integral only gives a contribution in [0, 4 ε �] (as f = −1 on
[4 ε �,ω]). Recalling the bounds on the Jacobian factor |J�| and the energy estimates on
the one-dimensional profiles, see Sect. 4.1, we find

second term of (9) ≤ Hn(D̃ \ B̃) (1 + 4 ε �KA)
Eε(�4 ε �χ(y))

2
≤

≤ Hn(D̃ \ B̃) (1 + 4 ε �KA)(1 + O(ε2)).

Arguing similarly for the fourth term, we get the upper bound

fourth term of (9) ≤ (1 + 4 ε �KA)
(
Hn(M̃) − Hn(D̃)

)
(1 + O(ε2)).

Recall that f depends on ε, although for notational convenience we do not explicit the
dependence; we can produce f = f ε as above for every ε < ε1. The estimates obtained
contain leading terms, independent of ε, and errors depending on ε. For a sufficiently small
choice of ε2 ≤ ε1, all the errors above, for ε < ε2, are of the type O(ε | log ε |). Putting
together the previous estimates we conclude that, for ε < ε2,

Eε( f ) ≤ 2
(
Hn(M) − Hn(B)

) + O(ε | log ε |).
Path to −1. We will now exhibit a continuous (in r ) path { fr }r∈[0,4 ε �], with fr ∈ W 1,2(N )

for all r (actually, fr ∈ W 1,∞(N )), that starts at f0 = f and ends at f4 ε � ≡ −1. Recall that

f = −1 outside M̃
×∼ [0, ω), so we set fr = −1 in N \ (M̃

×∼ [0, ω)) for every r . In order

to define fr in M̃
×∼ [0, ω), we will give a definition in M̃ ×[0, ω), taking care that it is even

on M̃ and therefore passes to the quotient. (Again, by abuse of notation we call fr both the

function on M̃
×∼ [0, ω) and the one on the double cover.) For (y, z) ∈ M̃ ×[0, ω) we define

fr , for r ∈ [0, 4 ε �] by
fr (y, z) = �4 ε �χ(y)+r (z). (10)

For r = 4 ε � this function becomes constantly −1. We can check the Lipschitz property
of fr on N as done for f earlier, by noticing that on Bρ(x) × (−ω,ω) (for Bρ(x) ⊂ M) we
have the coordinate expression fr (a, z) = �4 ε �χ(a)+r (z) thanks to the fact that �t is even.
This shows that for every r ∈ [0, 4 ε �] the function fr is smooth on N \ M and globally
Lipschitz.

We will now check that r ∈ [0, 4 ε �] → fr ∈ W 1,2(N ) is continuous. (In fact, the
argument below establishes that this is a Lipschitz curve in W 1,∞(N ).) For each r (compare
the computation that led to (8)) we have

∂ fr
∂ yi

(y, z) = (4 ε �) � ′(|z| + 4 ε �χ(y) + r)
∂χ

∂ yi
(y);

given r1, r2 ∈ [0, 4 ε �], for every (y, z) there exists ζ ∈ R such that

∂( fr1 − fr2)

∂ yi
(y, z) = (4 ε �)

∂χ

∂ yi
(y) � ′′(ζ ) (r1 − r2)
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and, in conclusion,

|∇( fr1 − fr2)| ≤ C
8 ε �

R
sup
R

|� ′′| |r1 − r2|

for a constant C that depends on (g0)−1gs . From the definition of fr one also obtains ‖ fr1 −
fr2‖L∞ ≤ C supR |� ′| |r1 − r2|. The claimed continuity is proved.
To visualize the evolution in r , recall from (4) that, for every y, the two half profiles

�4 ε �χ(y)(z)
∣∣{z>0} and �4 ε �χ(y)(z)

∣∣{z<0} in the normal direction to TyM move towards
each other at unit speed (creating a non smooth point at z = 0 on M , where the regularity of
fr is just Lipschitz).
The same computation performed in (9), this time on fr , shows that

Eε( fr ) ≤ (1 + O(ε | log ε |))2(Hn(M) − Hn(B)) (11)

for every r , i.e. the energy stays below 2(Hn(M) − Hn(B)) + O(ε | log ε |) along this path,
for all ε < ε2, for a suitable choice of ε2 ≤ ε1. (Moreover it reaches 0 at the end of the path.)
This follows immediately upon noticing that, using the coarea formula as in (9), this time for
fr , the inner integrands that we find are controlled by those computed for f , since for every

t1 we have
∫ ω

0
ε
2 |(�t1+r )

′|2 + W (�t1+r )

ε ≤ ∫ ω

0
ε
2 |(�t1)

′|2 + W (�t1 )

ε .

Remark 5.1 The choice of ε2 will be made several times in the forthcoming sections, always
with the scope of making the errors controlled by C ε | log ε | with C independent of ε ∈
(0, ε2). It should be kept in mind that the specific value ε2 might change from one instance
to the next, however we make finitely many choices, therefore we implicitly assume that the
correct ε2 is the smallest of all. From now on, this remark will be tacitly applied every time
we say that the errors are of the form O(ε | log ε |) for all ε < ε2, for some suitably small
choice of ε2 (see the related comments in Sect. 5.1).

5.3 Lowering the peak

In this section we construct the portion of our path that ensures the upper bound on the
maximum along the path. We keep writing � = 3| log ε |. To begin with, recall the definition
of signed distance (to Mϕ) given in Sect. 4.3 and note that in the case ϕ = 2 ε � we have that
dist(x, M2 ε �), which was defined on M̃ × (0, ω), extends by continuity to M̃ × {0} with
value −2 ε �.

The definition of f in Sect. 5.2 can therefore equivalently be given as follows at x =
(y, z) ∈ M̃ × [0, ω):

f (x) = H
ε

4 ε �χ(y)(−dist(x, M2 ε �)),

where H
ε

s (·) = H
ε
(·− s) and χ is as in the previous section. Note that the expression is even

in y, therefore f passes to the quotient M̃
×∼ [0, ω). (The signed distance dist(x, M2 ε �)

passes to the quotient as a smooth function on M̃
×∼ [0, ω), this provides an alternative way

to chech that f is Lipschitz in M̃
×∼ [0, ω)). Recall that f = −1 in N \ (M̃

×∼ [0, ω)).
Recall the choice of φ̃ in Lemma 4.1 and Remark 4.3, with suppφ̃ ∩ D̃ = ∅. We will

now produce a continuous path gt , t ∈ [0, t0] → gt ∈ W 1,2(N ), with the property that
g0 = f and gt is an Allen–Cahn approximation of ιB + (2 ε � + t φ̃)ν (with notation as

in Sect. 4.3). Under the identification of M × [0, ω) with M̃
×∼ [0, ω), the latter is the
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hypersurface-with-boundary

graph

(
(2 ε � + t φ̃)

∣∣∣
M̃B

)
⊂ M̃ × (0, ω),

where t ∈ [0, t0]. Subsequently, we will produce a continuous (in W 1,2(N )) path gt0+s ,
s ∈ [0, 1], that starts at gt0 and ends at a function that is an Allen–Cahn approximation of
the (closed) hypersurface

graph
(
(2 ε � + t0φ̃)

)
.

The latter path starts (at s = 0) from the endpoint of the former path and has the geometric
effect of “closing the hole” at B (at s = 1).

Remark 5.2 The signed distance dist(x, M2 ε �+t φ̃ ) is defined for x ∈ M̃ × (0, ω), using

the notation MC+t φ̃ as in Sect. 4.3. We point out the following facts. Let x ∈ M̃ × {0}
and x j → x , x j ∈ M̃ × (0, ω) (so that the signed distance is negative on x j ); then
lim sup j→∞ dist(x j , M2 ε �+t φ̃ ) ≤ −2 ε �. Moreover, dist(x, M2 ε �+t φ̃ ) extends continu-

ously, with value −2 ε �, to
(
M̃ \ supp(φ̃)

)
× {0}. In particular, this continuous extension

is valid on D̃ × {0}.
Definition of gt . As done earlier, we will define the functions on M̃ ×[0, ω), taking care that

they pass to the quotient M̃
×∼ [0, ω) and are there Lipschitz. Again, we do not distinguish

the notation for the functions on M̃
×∼ [0, ω) and on M̃ × [0, ω). For t ∈ [0, t0], we define

gt (x) = H
ε

4 ε �χ(y)(−dist(x, M2 ε �+t φ̃ )) for x = (y, z) ∈ M̃ × (0, ω).

This function is smooth on
(
M̃

×∼ [0, ω)
)

\ M and can be extended smoothly to N \ M

by setting it equal to −1 on N \
(
M̃

×∼ [0, ω)
)
, thanks to (iv) of Sect. 5.1.

We can now check that (for every t) gt extends continuously across M . On the support
of χ , which is contained in D̃, we have, thanks to Remark 5.2, that −dist(x, M2 ε �+t φ̃ )

is continuous and takes value 2 ε �: therefore gt extends continuously, with value
H

ε

4 ε �χ(y)(2 ε �), across D. On the complement of suppχ , on the other hand, we have
lim infx→M̃×{0} −dist(x, M2 ε �+t φ̃ ) ≥ 2 ε �: this implies that, away from the interior of the

support ofχ , i.e.whereH
ε

4 ε �χ(y) = H
ε
, the function gt extends continuously to (M̃\D̃)×{0}

with value +1. More precisely, we can check that gt is Lipschitz on N , and actually smooth
in the complement of supp(∇χ) × {0}. The smoothness in N \ (D \ B) is immediate since
H

ε
, dist and χ are smooth and thanks to the fact that H

ε
has all derivatives vanishing at

±(2 ε �). So we only need to check the Lipschitz property at an arbitrary point x ∈ D \ B.
Let Bρ(x) ⊂ M be a geodesic ball in M centred at x ; we work in a tubular neighbourhood

Bρ(x)×(−ω,ω) (using Fermi coordinates (y, s)). Recall that suppφ is disjoint from ι−1(D)

(Lemma 4.1). Then, for ρ sufficiently small, gt (y, s) = �2 ε �χ(y)(s), which shows that gt
is Lipschitz in this neighbourhood.

Note that g0 = f by the expression of f given in the beginning of this section. Next,
we check that the path t ∈ [0, t0] → gt ∈ W 1,2(N ) is continuous (in t). From the triangle
inequality it follows that, for t1, t2 ∈ [0, t0], sup |gt1 − gt2 | ≤ |t2 − t1| supM̃ |φ̃| supR |(Hε

)′|.
Noting that |∇gt | is uniformly bounded, independently of t (because |∇dist(x, M2 ε �+t φ̃ )| =
1 a.e. ), and that we are on a finitemeasure space, the continuity of t → ∇gt ∈ L2(N ) follows
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from the fact that ∇gt → ∇gt a.e. when t → t (by dominated convergence). This in turn
follows from the well-known fact (see e.g. [7,Sect. 9]) that, whenever Ki , K are compact
sets with i ∈ N and Ki converge to K in the Hausdorff distance as i → ∞, then d(·, Ki )

converges pointwise a.e. to d(·, K ) as i → ∞, where d is the Riemannian distance. In our
case, the compact sets in question are graph(2 ε �+ t φ̃) (the convergence available is in fact
stronger than just convergence in Hausdorff distance).

To compute Eε(gt ), we argue analogously to (9) of Sect. 5.2, however this time we use the
coarea formula in a tubular neighbourhood ofMc+t φ̃ (or, equivalently, of graph(c+t φ̃)), with
the function �c,t . Using the bounds on the Jacobian of �c,t , for c = 2 ε �, see Sect. 4.3, we

find, for every t , that Eε(gt ) ≤ Hn
(
graph

(
(2 ε � + t φ̃)

∣∣∣
M̃B

))
+ O(ε | log ε |) whenever

ε < ε2 for a suitably small choice of ε2 and independently of t . Therefore (for all ε < ε2
and for all t ∈ [0, t0])

Eε(gt ) ≤ 2

(
Hn(M) − 3

4
Hn(B)

)
+ O(ε | log ε |) (12)

thanks to the estimate in (i) of Lemma 4.2.
Definition of gt0+s : “closing the hole at B”. We set, for s ∈ [0, 1], for x ∈ M̃ × (0, ω),

gt0+s(x) = H
ε

4 ε �(1−s)χ(y)(−dist(x, M2 ε �+t0φ̃
)). (13)

The argument that follows the definition of gt above can be repeated to show that the
functions gt0+s (passed to the quotient) extend to smooth functions on N\M (with gt0+s = −1

in N \
(
M̃

×∼ [0, ω)
)
) and extend in a Lipschitz fashion across M .

The path s ∈ [0, 1] → gt0+s ∈ W 1,2(N ) is continuous in s by definition. Note that gt0+1

is an Allen–Cahn approximation of the (closed) hypersurface graph
(
(2 ε � + t0φ̃)

)
. As s

increases from 0 to 1, the “weight carried by B” increases from 0 to 2.
Moreover, with computations as those for gt above, we can compute for every s the

energy Eε(gt0+s). For sufficiently small ε2, we obtain that, for every s ∈ [0, 1] and for every
ε < ε2, the following holds: Eε(gt0+s) ≤ area of graph of

(
(2 ε � + t0φ̃)

)
+ O(ε | log ε |).

Therefore
Eε(gt0+s) ≤ 2Hn(M) − τ + O(ε | log ε |) (14)

thanks to Lemma 4.2 (and by (i) of Sect. 5.1), for all s ∈ [0, 1] and for every ε < ε2.

5.4 Connect to a stable critical point of E"

To conclude, we will produce a path (continuous in W 1,2(N )) that connects gt0+1 to a stable
critical point of Eε . This will be achieved by a negative gradient flow, employing a barrier
m. To ensure the barrier condition we need to push gt0+1 a bit more “away from M”: we
define gt0+1+r for r ∈ [0, c0 − 2 ε �] so that we reach an Allen–Cahn approximation of the
immersion ι + (c0 + t0φ̃)ν when r = c0 − 2 ε �.

For r ∈ [0, c0 − 2 ε �] we define gt0+1+r = −1 on N \
(
M̃

×∼ [0, ω)
)
and the following

for x ∈ M̃
×∼ [0, ω):

gt0+1+r (x) = H
ε
(−dist(x, M2 ε �+r+t0φ̃

)). (15)

Note that this is well-defined and equal to+1 on M thanks to Remark 5.2 and the function
is smooth on N for every r .Moreover, the path is continuous in r (inW 1,2(N )) and computing

123



Generic existence of multiplicity… Page 19 of 25   149 

Eε again, we obtain (as done for gt0+s) the bound

Eε(gt0+1+r ) ≤ 2Hn(M) − τ + O(ε | log ε |) (16)

thanks to Lemma 4.2 (and by (i) of Sect. 5.1), for all r ∈ [0, c0 −2 ε �] and for every ε < ε2
(for a suitable choice of ε2 ≤ ε1).

We set h = gt0+1+c0−2 ε �: by definition, h(x) = H
ε
(−dist(x, Mc0+t0φ̃

)) for x ∈
M̃

×∼ [0, ω) and h = −1 on N \
(
M̃

×∼ [0, ω)
)
. Also note that h = +1 on a tubular neigh-

bourhood of M of semi-width 19
20c0 , by (i) of Sect. 5.1.

Barrier construction. With this preparation, we are ready to construct the barrier m. This
will be an Allen–Cahn approximation of ι + z0ην (see end of Sect. 4.3). Recall that this is
an embedded two-sided hypersurface that we also denote by Mz0η (or by graph(z0η), when

identifying M̃
×∼ [0, ω) with M̃ × [0, ω)) and we defined a signed distance to Mz0η (for

points in (M̃
×∼ [0, ω)) \ M) in Sect. 5.1. For x in M̃ × (0, ω) ≡

(
M̃

×∼ [0, ω)
)

\ M , we set

m(x) = H
ε
(−dist(x, graph(z0η))).

This function extends smoothly across M with value +1: indeed, in a tubular neighbour-
hood of M , the argument of H

ε
is larger than 2 ε � by (ii) of Sect. 5.1 and this means that

m = +1 in a tubular neighbourhood of M (recall that H
ε
is smooth with all derivatives van-

ishing at ±2 ε �). Similarly we set m = −1 on N \
(
M̃

×∼ [0, ω)
)
, which is also a smooth

extension since m = −1 in M̃ × (c0, ω) by (iii) of Sect. 5.1. The function m is thus smooth
on N .

Remark 5.3 In order to use it as a barrier for the flow starting at h, we check that m ≤
h. Recall that −1 ≤ m, h ≤ +1 by construction. By (iii) of Sect. 5.1, on the set where
dist(·, graph(z0η)) ≤ 2 ε � we have dist(·, Mc0+t0φ̃

) ≤ −2 ε �. This implies that whenever
m > −1 we have h = +1 and so m ≤ h on N .

Flow starting at m. We consider the negative Eε-gradient flow with initial condition m.
Since m = −1 on {|dist(·, graph(z0η))| ≥ 2 ε �} we get

−E ′
ε(m) = 0 on {|dist(·, graph(z0η))| ≥ 2 ε �}.

Next, we compute the first variation of m with respect to Eε on the set {−2 ε � <

dist(·, graph(z0η)) < 2 ε �}. We use the chain rule to express the Laplacian of m in Fermi
coordinates (a, d) centred onMz0η; we havem = H

ε
(−d) in these coordinates. Since |∇d| =

1, using the temporary notation η(x) = H
ε
(−x), we get �(η(d)) = (η)′′(d) + η′(d)�d .

Moreover, �d = −Hd,z0η with notation as in (7) and with our convention for the choice of
unit normal. Therefore (in what follows, H

ε
and its derivatives are evaluated at −d)

− (2σ)E ′
ε(m) = ε �m − W ′(m)

ε
= ε(H

ε
)′′ − W ′(Hε

)

ε
+ ε Hd,z0η(H

ε
)′ =

= O(ε2) + ε Hd,z0η(H
ε
)′, (17)

where we used the O(ε2)-bound for H
ε
from Sect. 4.1. By (v) of Sect. 5.1 the hyper-

surfaces {dist(·, graph(z0η)) = d} have scalar mean curvature Hd,z0η ≥ z0
4 λ minM̃ η

for d ∈ [−2 ε �, 2 ε �]. Moreover 0 ≤ (H
ε
)′ ≤ 3

ε . As a consequence, we obtain
−(2σ)E ′

ε(m) ≥ O(ε2). Denote by μ = με > 0 a constant such that |O(ε2)| < μ, where
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O(ε2) is the function appearing in (17) (we will finalize the choice of μ later). Then we
consider the functional Fε,μ(u) = (2σ) Eε(u) − μ

∫
N u. For the first variation of m with

respect to Fε,μ we have

−F ′
ε,μ(m) > 0.

This condition implies that the negative Fε,μ-gradient flow {mt } (t ∈ [0,∞)) with initial
condition m0 = m is “mean convex”, i.e. the condition −F ′

ε,μ(mt ) > 0 holds for all
t ≥ 0. (By standard semi-linear parabolic theory the flow exists smoothly for all times,
we refer to [2,Sect. 7.5] for details.) To see that mean convexity is preserved, one argues
as follows. For notational convenience, we write temporarily Ft = ε �mt − W ′(mt )

ε + μ

(the negative gradient). Differentiating the PDE we get that the evolution of Ft is given by
∂t Ft = �Ft− W ′′(mt )

ε2
Ft . So Ft is a smooth solution of ∂tγ = �γ − W ′′(mt )

ε2
γ , and the constant

γ = 0 is also a solution to the same PDE. The condition F > 0 is therefore preserved by the
maximum principle.

The mean convexity immediately gives that mt : N → R increases in t (since ∂tmt =
− 1

εF ′
ε,μ(mt ) > 0).Moreover the limitm∞ of this flow (as t → ∞) must be a stable solution

of F ′
ε,μ = 0. This follows by combining the mean convexity property with the maximum

principle, see for example [2,Lemma 7.3].
Recall that for all sufficiently small ε there exist (exactly) three constant solutions of

F ′
ε,μ = 0: indeed, any such constant k must satisfy W ′(k) = ε μ so one constant is slightly

larger than −1, one is slightly larger than +1, and the third is slightly smaller than 0 (as
ε → 0 they converge respectively to −1, +1, 0). It is immediate to check that the first two,
that we denote respectively by kε,μ and kε,μ, are stable, while the third is unstable. Note that
m∞ ≥ 1 on M since mt ≥ m for all t and m = 1 on M . In conclusion, we must have that
either m∞ is the constant kε,μ, or m∞ is a non-constant (stable) solution to F ′

ε,μ = 0 with
m∞ ≥ 1 on M .

Flow starting at h. By the maximum principle, since h ≥ m, the negative Fε,μ-gradient
flow {ht } starting at h0 = h stays above {mt } at all times. On the other hand, h < kε,μ

(because h ≤ 1) and kε,μ is stationary, so ht ≤ kε,μ for all t . Then we have two options for
the limit h∞ of ht , as t → ∞:
(a) ht converges to the constant kε,μ (which solves F ′

ε,μ = 0);
(b) ht converges to a non-constant solution h∞ of F ′

ε,μ = 0 with h∞ ≥ m.
In either case (a) or (b), using h∞ as initial condition, we can run the negative Eε-gradient

flow {h∞,β}β for β ≥ 0; the initial condition h∞,0 = h∞ satisfies −E ′
ε(h∞) = − μ

2σ < 0,
therefore the same arguments used above prove that the sign of the first variation is preserved,
i.e. −E ′

ε(h∞,β) < 0 for all β ≥ 0 and the limit as β → ∞ is a stable solution h∞,∞ to
E ′

ε = 0.
In case (a), the limit h∞,∞ must be the constant +1. This follows by considering the

ODE ε dy
dβ

(β) = W ′(y(β))
ε with initial condition y(0) = kε,μ, whose solution decreases to

+1 as β → ∞. Then h∞,β(x) = y(β) is the solution of the negative Eε-gradient flow (by
uniqueness). So in case (a) all times slices are constant and they converge to the constant+1.
By composing the two paths produced, first from h to kε,μ0 and then from kε,μ0 to +1, we
obtain a continuous path from h to +1.

Let us analyse case (b). The flow h∞,β is decreasing (by the mean convexity condition
−E ′

ε < 0 at β = 0) and reaches a stable solution h∞,∞; we want to ensure that h∞,∞ is not
the constant −1 and we will do so, roughly speaking, by comparing with the mean curvature
flow starting at Mzη. More precisely, the mean curvature flow with initial condition Mzη is
well-defined, smooth and mean convex for all z ∈ (0, z0] thanks to (7), which gives mean
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convexity for the initial condition. Let z = z0
2 and define the function

m(x) = H
δ (−dist(x, graph(zη))

)
,

for x ∈ M̃
×∼ [0, ω), where δ ∈ (0, ε1) is chosen sufficiently small to satisfy that

{dist(·, Mzη) ≤ 6δ| log δ|} and {dist(·, Mz0η) ≥ −6δ| log δ|} are disjoint; the function m

is extended smoothly in the complement of M̃
×∼ [0, ω) by setting it equal to −1 there. We

stress that the definitions of m and m are similar, however with the following differences:
firstly, m was chosen to vanish at graph(z0η) while m vanishes at graph(zη); secondly, m
depends on ε, while m does not (δ has been fixed). The choice of δ guarantees m ≤ mδ

(the latter is m taken with ε = δ), since whenever m > −1 we have mδ = +1. It then
follows (ε | log ε | decreases as ε decreases, see Sect. 5.1) that whenever m > −1 we have
m = mε = +1 for all ε ≤ δ, that is, m ≤ m = mε for all ε ≤ δ. It follows that m ≤ h∞ for
all ε ≤ δ.

Then [13,6.5] implies that the negative Eε-gradient flow with initial condition m, that
we denote by {mβ}β , “follows” the mean curvature flow

{
(Mzη)β

}
β
with initial condition

Mzη. Precisely, [13, 6.5] (which is in turn adapted from [4]) says that there exist constants
M2 > 0 and β0 > 0 such that for all ε sufficiently small the following implication holds for
β ≥ β0 ε2 | log ε |:

dist
(
x, (Mzη)β

) ≤ −M2 ε | log ε | ⇒ mβ(x) ≥ 1 − ε .

Every x in the tubular neighbourhood of M of semi-width
z0 minM̃ η

4 satisfies the condition

dist
(
x, (Mzη)

) ≤ − z0 minM̃ η

4 . This inequality implies dist
(
x, (Mzη)

) ≤ −M2 ε | log ε | for
all sufficiently small ε. As

{
(Mzη)β

}
β
is a mean convex mean curvature flow by (7), the

inequality is preserved for all β ≥ 0, that is, every x in the same tubular neighbourhood
satisfies dist

(
x, (Mzη)β

) ≤ −M2 ε | log ε | for all β ≥ 0. The implication above then gives,
on this fixed tubular neighbourhood, mβ(x) ≥ 1 − ε for all β ≥ β0 ε2 | log ε |. The maxi-
mum principle (applied to the negative Eε-gradient flows with initial conditions m ≤ h∞)
guarantees h∞,β ≥ mβ for all β ≥ 0. In particular, on the chosen tubular neighbourhood we

have h∞,∞ ≥ 1
2 for all sufficiently small ε. In conclusion, in case (b) we have that h∞,∞ is

a stable Allen–Cahn solution with the property that there exists a fixed non-empty open set
(independent of ε, as long as ε is sufficiently small) contained in {h∞,∞ > 1/2}.

The function vε in Proposition 3.1 is going to be h∞,∞ (in both cases (a) and (b)). We
showed that h∞,∞ �≡ −1.

Remark 5.4 We used the initial condition m in order to apply [13, 6.5], which takes an initial
condition with gradient bounds independent of ε. In fact, we only need that result insofar as
it permits to conclude that the negative Eε-gradient flow starting at m stays above the initial
condition for all sufficiently small ε, possibly after waiting for a time β0 ε2 | log ε |. This
could be proved directly, using the arguments of [4] that build a suitable subsolution.

Evaluation of Eε on the path. Let us estimate the value of Eε along the path (continuously
joining h to h∞,∞ = vε in W 1,2(N )) that we have produced. For this, note that Fε,μ

is decreasing along the flow {ht }, therefore Eε(ht ) ≤ Eε(h) + μ
σ Hn+1(N ) for all t : this

implies that Eε is bounded above indepedently of ε. More precisely, choosing μ = με to
be 2‖O(ε2)‖∞, where O(ε2) is the function appearing in (17), and recalling that Eε(h) ≤
2Hn(M) − τ + O(ε | log ε |), we can absorbe μ

σ Hn+1(N ) in the error term O(ε | log ε |) for
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ε sufficiently small. In other words we obtain the upper bound

Eε(ht ) ≤ 2Hn(M) − τ + O(ε | log ε |) (18)

for all t and for ε < ε2. For the second part of the path (h∞,β ) the energy Eε is decreasing,
so the same upper bound holds. (In case (a), one can easily check that Eε decreases to 0 on
the second part of the path.)

5.5 Conclusive arguments

In Sect. 5.2, 5.3 and (in the beginning of) 5.4 we exhibited (given M , which also fixed B
and τ ) continuous paths in W 1,2(N ) that join −1 to f , f to g, g to h. Then in Sect. 5.4
we produced by gradient flow a path (still continuous in W 1,2(N )) that joins h to a stable
solution vε = h∞,∞ of E ′

ε = 0 that is not the constant −1. We obtained the energy bounds
respectively (11), (12), (14), (16), (18). These are valid uniformly on the paths for all ε < ε2.

For all sufficiently small ε, composing these partial paths we obtain a continuous path in
W 1,2(N ) that starts at the constant −1 and ends at vε and such that

Eε along this path is ≤ 2Hn(M) − min

{
τ,

3Hn(B)

2

}
+ O(ε | log ε |).

Choosing ε3 sufficiently small to ensure O(ε | log ε |) ≤ min
{

τ
2 ,Hn(B)

}
the above bound

gives, for all ε < ε3, that themaximumofEε on the path is atmost 2Hn(M)−min
{

τ
2 , Hn(B)

2

}
.

This proves Proposition 3.1.

Remark 5.5 (proof of Corollary 1.1) Multiplicity-1 convergence of critical points uε of Eε to
a minimal hypersurface M implies that the functions uε converge in BV (N ) to a function
u∞ : N → {±1}, with the property that M = ∂{u∞ = +1}. In particular, the inner normal
to {u∞ = +1} provides a global unit normal to M , so M is two-sided.

Remark 5.6 The multiplicity-1 convergence guarantees that the Morse index of M is at most
1 and that only way for it to vanish is that M has non trivial nullity. However, with a bumpy
metric, the nullity has to be trivial, hence the Morse index of M is 1. (The lower semi-
continuity of the Morse index also follows from [6] or [11].)

Remark 5.7 The statement in Remark 2.2 is proved as follows. Since V uε converge (upon
extraction of a sequence) to |M | (with multiplicity 1), and M is strictly stable (and two-
sided) by the bumpy metric assumption, then the nullity of uε has to be 0 for all sufficiently
small ε (the nullity is upper-semi-continuous as ε → 0). Then uε has Morse index 1. We
perturb uε by its first eigenfunction, in both directions, obtaining two functions, one strictly
larger and one strictly smaller than uε (the perturbation is energy-decreasing), with −Eε

′
respectively positive and negative. We then consider two negative-Eε-gradient flows, one
increasing, one decreasing, starting respectively at the two functions. These flows are mean
convex and produce two continuous paths that reach respectively a stable solution v2ε with
v2ε > uε and a stable solution v1ε with v1ε < uε . In particular these solutions are distinct.
Moreover, they must be strictly stable for sufficiently small ε, thanks to Lemma A.1. We thus
have a continuous path that joins two strictly stable solutions and such that the maximum of
Eε along this path is achieved at uε .
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A passing stability to the limit for the double cover

The proof of Lemma 3.1 will be a consequence of the following observation.

Lemma A.1 Let N be a Riemannian manifold of dimension n + 1, and let vεi : N → R be
stable solutions to E ′

εi = 0, with V vεi → V (V vεi are the varifolds associated to vεi as
in Sect. 2) and V = ∑

θα|Mα|, where θα ∈ N and Mα is a smoothly embedded minimal
hypersurface with dimH(M \ M) ≤ n − 7. Then the oriented double cover of Mα is stable
for each α.

Note that the regularity of spt ‖V ‖ is not an assumption: it follows from the fact that
any limit of V vεi is a stationary integral varifold by [12] satisfying a stability condition and
therefore its support must be smooth away from a codimension-7 set by [32, 35].

Proof of Lemma A.1 Denoting by V i = V vεi the associated varifolds, we have V i → V .
Let R be the smoothly embedded part of a connected component of spt ‖V ‖. Then R is a
stable minimal hypersurface and more precisely, if R carries multiplicity θ ∈ N we have that
for every f ∈ C2(R) the following inequality holds:

∫
f 2(|A|2 + RicN (ν, ν))θdHn R ≤∫ |∇ f |2θdHn R. This follows from the stability inequality E ′′

ε ≥ 0 as in [31] (by first
extending f to a C2 function on N , employing a tubular neighbhourhood of R). Since θ is
constant on R we can write the same inequality for θ = 2, which amounts to the following
fact: letting R̃ denote the oriented double cover of R, the minimal immersion ι : R̃ → N
(that covers R twice) is stable for all deformations whose initial speed is given by a C2

even function on R̃ multiplied by ν, where ν is a determination of the unit normal for the
immersion. Let now φ be a C2 odd function on R̃. Then a deformation of R̃ as an immersion,
with initial speed given by φν, amounts to an ambient deformation of 2|R|: indeed, both ν

and f are odd on R̃, hence φν is (identified with) a well-defined C2 vector field on R (in
particular, if R is one-sided then this vector field must vanish somewhere). Then the second
variation of area is non-negative along this deformation, by using [6] to pass to the limit the
stability condition for vεi .

Next, we consider an arbitrary φ ∈ C2(R̃). We consider the deformation of the immersion
ι : R̃ → N (induced by the standard 2 − 1 projection) given by expι(p)(ι(p) + tφ(p)ν(p)),
for t ∈ (−δ, δ) and ν a choice of unit normal to the immersion. The second variation of area
computed at t = 0 along this deformation is given by

∫
|∇φ|2 − φ2(|A|2 + RicN (ν, ν)) dHn R̃. (19)

Consider the involution i : R̃ → R̃ that sends each point to the only other point with the
same image via ι. Then by writing φe = φ+φ(i)

2 and φo = φ−φ(i)
2 we obtain φ = φe + φo
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with φe even on R̃ and φo odd on R̃. We expand and rewrite (19) as follows:
∫

|∇φe|2 + |∇φe|2 − φ2
e (|A|2 + RicN (ν, ν)) − φ2

o(|A|2 + RicN (ν, ν)) dHn R̃. (20)

Here we used the fact that
∫ ∇φe∇φo dHn R̃ = 0 because ∇φo∇φe is an odd function,

and the fact that φeφo is odd and |A|2 + RicN (ν, ν) is even, therefore the mixed product
φeφo(|A|2 + RicN (ν, ν)) integrates to 0.

In conclusion, (20) shows that the second variation of area for ι along the deformation
induced by φν is the sum of the second variation induced by φeν and the second variation of
2|R| induced by the ambient vector field (in a tubular neighbhourhood of R) given by φoν.
As we saw above that both of these are non-negative, we conclude that the double cover R̃
of R is stable. ��

Proof of Lemma 3.1 Arguing by contradiction, let vεi for εi → 0 be stable critical points of
Eεi and assume that for every i strict stability fails.

Let V i = V vεi denote the associated varifolds, we have V i → V (subsequentially) and
spt ‖V ‖ is everywhere smoothly embedded. By Lemma A.1 each connected component R of
spt ‖V ‖ is a smoothly embedded closed minimal hypersurface with stable double cover. By
the bumpymetric assumption, the double cover is strictly stable. Then [10] applies to give that
V vεi converge with multiplicity 1 to their varifold limit V . The multiplicity-1 convergence
implies that the nullity is upper-semi continuous in the ε → 0 limit, therefore vεi must be
strictly stable for sufficiently large i , contradiction. ��
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