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As the impact of anthropogenic activity on the environment has grown, research into 
biodiversity change and associated threats has also accelerated. Synthesising this vast 
literature is important for understanding the drivers of biodiversity change and identi-
fying those actions that will mitigate further ecological losses. However, keeping pace 
with an ever-increasing publication rate presents a substantial challenge to efficient 
syntheses, an issue which could be partly addressed by increasing levels of automation 
in the synthesis pipeline.

Here, we evaluate the potential for automated tools to extract ecologically impor-
tant information from the abstracts of articles compiled in the Living Planet Database. 
Specifically, we focused on extracting key information on taxonomy (studied species 
names), geographic location and estimated population trend, assessing the accuracy of 
automated versus manual information extraction, the potential for automated tools to 
introduce biases into syntheses, and evaluating if synthesising abstracts was enough to 
capture the key information from the full article.

Taxonomic and geographic extraction tools performed reasonably well, although 
information on studied species was sometimes limited in the abstract (compared to the 
main text) preventing fast extraction. In contrast, extraction of trends was less success-
ful, highlighting the challenges involved in automating information extraction from 
abstracts, such as deficiencies in the algorithms, linguistic complexity associated with 
ecological findings, and limited information when compared to the main text.

In light of these results, we cautiously advocate for a wider use of automated taxo-
nomic and geographic parsing tools for ecological synthesis. Additionally, to further 
the use of automated synthesis within ecology, we recommend a dual approach: devel-
opment of improved computational tools to reduce biases; and enhanced protocols for 
abstracts (and associated metadata) to ensure key information is included in a format 
that facilitates machine-readability.
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Introduction

Anthropogenic activity is negatively impacting the natural 
world (IPBES 2019); vertebrate populations are declining 
(WWF 2020) and species are being lost at rates reminiscent of 
mass extinction events (Ceballos et al. 2015). !is biodiver-
sity loss threatens ecosystem function (Rockström et al. 2009, 
Leclère et al. 2020) – which humans rely on (Díaz et al. 2018) 
– placing people and their livelihoods at risk. Much of our 
knowledge regarding environmental change impacts draws 
on global syntheses such as the PREDICTS (Hudson et al. 
2017) and BioTIME (Dornelas et al. 2018) datasets, in 
addition to intergovernmental reports (IPCC 2014, IPBES 
2019). !e rapid growth in environmental literature over the 
last 30 years (Anderson et al. 2021) has been essential for 
facilitating these syntheses. However, as the literature con-
tinues to grow, syntheses become ever more challenging and 
time consuming (Ananiadou et al. 2009, Cohen et al. 2012).

‘Big data’ approaches, and associated computational tools, 
provide a means to wrangle the extensive ecological literature 
into usable information (Westgate et al. 2018). Much of the 
recent development in synthesis methods has been in expe-
diting and automating the searching for (Grames et al. 2019), 
and screening of (Wallace et al. 2012, Shackelford et al. 
2020, Cornford et al. 2021), papers to address research 
questions. Within the medical literature, some approaches 
have even managed to automate the entire systematic review 
procedure (Marshall and Wallace 2019, Gates et al. 2020, 
Marshall et al. 2020, Yang et al. 2020, Brassey et al. 2021). 
In the environmental sciences, automated topic models have 
provided insight into research trends (Hintzen et al. 2020) 
and the identification of knowledge gaps (Westgate et al. 
2015), with text-classifiers allowing for the automated analy-
sis of social media content to understand public opinions of 
nature (Johnson et al. 2021a). Complementing these broader, 
summarisation approaches, direct extraction of ecologically 
valuable information from literature (e.g. species names and 
geographic locations) is a growing field, with recent exam-
ples including Akella et al. (2012), Millard et al. (2020) and 
Kulkarni and Di Minin (2021).

Harnessing big data approaches to automatically synthe-
sise data found within individual publications could support 
the environmental sciences in capturing the abundance of 
primary literature for compilation projects (e.g. Hudson et al. 
2017) and evidence reviews (e.g. the Conservation Evidence 
project; <www.conservationevidence.com>) within a fully 
reproducible pipeline. However, validating the outputs of 
automated approaches is crucial to ensure the tools are accu-
rate and do not introduce unwanted biases (Westgate et al. 
2018). Benchmarking also helps users compare between alter-
native approaches, and track performance gains as techniques 
improve. Unfortunately, collating data for such validation 
often requires extensive manual effort, making evaluation a 
challenge. An exception is the Living Planet Database (LPD; 
<https://livingplanetindex.org/data_portal>), a collec-
tion of vertebrate population time series, each tagged with 
a species name and monitoring location. !e LPD is useful 

to test automated approaches for biodiversity assessment 
and ecological research for two core reasons. First, the LPD 
underpins the Living Planet Index, an aggregated index of 
changing vertebrate populations with important policy impli-
cations (WWF 2020). Second, the LPD is largely based upon 
research in the primary literature, meaning many records in 
the LPD can be traced back to a publication and, central to 
this work, an associated abstract. Here we use the LPD as a 
reference point to test the performance of automated syn-
thesis approaches in an ecological context. Specifically, we 
evaluate the performance of automated approaches for three 
important tasks relating to the synthesis of biodiversity trends 
and provide recommendations on how to address detected 
limitations. While our analyses focus on ecological and bio-
diversity change data, the approach and identified issues are 
relevant widely to all environmental sciences. !e three tasks 
are as follows:
1. Taxonomic entity extraction i.e. finding which species were 

studied. Recent papers have used automated extraction 
approaches to identify species in text (Gerner et al. 2010, 
Akella et al. 2012) and general taxonomic patterns in eco-
logical research (Millard et al. 2020). However, formal 
assessments of extraction accuracy and vulnerability to 
bias are still relatively scarce and warrant investigation.

2. Geographic location extraction i.e. finding where the study 
was conducted (in this work, we group locations based 
on country borders, but other geopolitical/biogeographic 
boundaries could be specified). Whilst development in 
taxonomic extraction and application has accelerated in 
recent years (Gerner et al. 2010, Akella et al. 2012), geo-
graphic extraction has a far greater history and wealth of 
available methods (Buscaldi and Rosso 2008, Kitamoto 
and Sagara 2012, Speriosu and Baldridge 2013, Ding et al. 
2018, Magge et al. 2018, Kokla and Guilbert 2020, 
Wang et al. 2020). Automated geographic extraction 
could be valuable for extracting countries in coarse spa-
tial resolution synthesis projects, or in the pre-screening 
phase of fine resolution syntheses. However, automated 
geographic extraction has been rarely used in ecology and 
conservation, with very few examples of successful appli-
cation (Fisher et al. 2011, Millard et al. 2020). As a result, 
whilst many methods have been developed (Kokla and 
Guilbert 2020), there is a general need to validate geo-
graphic extraction in the field of ecology.

3. Population trend extraction i.e. summarising estimated pop-
ulation trends for studied species and locations. Developing 
methods that can synthesise ecological findings and data 
could help manage the ever-growing literature. Population 
trends, describing change in abundance over time, are 
amongst the most valuable types of data to compile as they 
meet the criteria of an essential biodiversity variable, and 
can thus directly support conservation management and 
policy (Pereira et al. 2013, Jetz et al. 2019).

In addressing these tasks we explicitly consider two poten-
tial ‘leaks’, which could limit the accuracy of automatically 
generated output. First, automated synthesis tools used to 
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extract information from abstracts may be ineffective or 
biased, e.g. favouring the extraction of certain species or loca-
tions, and failing to detect population trends. Second, even if 
automated tools perform well in extracting information from 
abstracts, abstracts may not accurately represent full studies, 
e.g. the population trend in the abstract is over-emphasised 
or only example species are listed for a multi-species study.

To explore these tasks and leaks, we compiled 1556 English 
language abstracts from the LPD and assessed how well the 
outputs from the automated extraction aligned with that 
reported in the LPD (for species names and geographic loca-
tions). For 300 randomly sampled abstracts we also manually 
extracted species, locations and population trends, producing 
a dataset of publications with information extracted using 
three methods: 1) LPD estimates, manually extracted from 
full texts (full-text data); 2) information manually curated (by 
the authors) from abstracts (manually assessed abstracts); and 
3) data automatically extracted from abstracts (automated). 
We compared alignment between these three extraction types 
to determine whether leaks were due to ineffective automated 
tools (automated estimates differ from both types of manual 
extraction) or abstracts lacking information present in the 
full text (manual extractions differ).

Methods

Taxonomic entity extraction

To automatically extract species names from abstracts, we used 
a two-step approach (detailed in the Supporting information 
and Millard et al. 2020). First, we used taxize::scrapenames 
(Chamberlain and Szocs 2013, Chamberlain et al. 2018) to 
extract potential taxonomic names from abstracts. We then 
applied string-matching to retain only Latin binomials also 
present in the 2017 Catalogue of Life (Roskov et al. 2017), 
ignoring non-vertebrates.

We used three comparisons to evaluate the performance 
of automated taxonomic extraction: a) automated versus full-
text data in the LPD; b) automated versus manually assessed 
abstracts; and c) manually assessed abstracts versus full-text 
data in the LPD. For each comparison we calculated recall 
(percentage of species in latter present in the former, per pub-
lication), and bias (proportion of species within each order in 
the former divided by the proportion of species within each 
order in the latter). We investigated if this bias had phyloge-
netic signal, whereby certain clades would be under- or over-
represented, by measuring Pagel’s λ across orders.

Geographic location extraction

We used the CLIFF-CLAVIN geoparser (D’Ignazio et al. 
2014) to extract focal geographic locations (countries and 
coordinates) from abstracts. As country strings can differ 
between the LPD records and those resolved by CLIFF-
CLAVIN, we used the geographic coordinates from both to 
identify associated countries (see Supporting information 

for details). We measured the effectiveness of the automated 
geographic extraction in a comparable way to the taxonomic 
extraction, using recall based on country names, and bias as 
the proportional difference in country frequency between 
data extraction approaches.

Population trend extraction

We trained machine learning classifiers to predict aggregate, 
paper-level population trends using a paper’s title and abstract 
(full details in the Supporting information). We assigned 
paper-level trend categories (increase, stable, decline or var-
ied) based on the proportion and direction of significant pop-
ulation-level trends, which were themselves estimated from a 
log10-linear model of population time-series.

Both random forests and neural networks (constructed 
in Python; van Rossum 1995) were used to predict trends, 
representing two well-known and high-performing text clas-
sification techniques. !e performance of these machine 
learning approaches is improved by larger amounts of train-
ing data and/or better data quality (Liu et al. 2019), which 
can be generated using data augmentation (Wei and Zou 
2019). We explored the impact of text augmentation (e.g. 
randomly replacing words with a synonym) on the accuracy 
of our trend predictions, using the Python library EDA (easy 
data augmentation; Wei and Zou 2019).

Initial analyses (Supporting information, using the 1256 
texts remaining after setting aside the 300 manually assessed 
abstracts), indicated that random forest classifiers incorpo-
rating data augmentation but ignoring texts containing ‘var-
ied’ population trends, performed best. We therefore tested 
a classifier of this specification on the 300 manually assessed 
abstracts, comparing the performance of our automated 
approach to both manual alternatives using accuracy and 
Cohen’s kappa (Kuhn 2020).

Results

Taxonomic entity extraction

For all 1556 texts, the automatic taxonomic extraction 
recalled an average of 80.8% of species relative to the full 
text (SD = 35.0%). When considering only the 300 manu-
ally assessed texts, our automated approach achieved average 
recall of 83.7% (SD = 34.1%; Fig. 1a). Cases of low recall 
were primarily influenced by under-reporting of species 
within abstracts, as only 82.5% (SD = 35.2%; Fig. 1c) of 
species with population data in the full texts were recorded 
in the abstracts. In contrast, loss of information from the 
automated method was low, with an average of 93.6% recall 
(SD = 17.9%; Fig. 1b) when compared to data manually 
extracted from abstracts.

Our analysis also suggests taxonomic bias in both the 
automated tool and abstract content, when compared to the 
full text, with some orders substantially under- and over-
detected (Fig. 1d). Despite these disparities, we did not detect 
any significant phylogenetic signal (Pagel’s λ likelihood-test 
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p-value > 0.05) in detection bias for any of our comparisons, 
although sample sizes of 16 and 17 orders may be a limitation 
here (Fig. 1d and Supporting information).

Geographic location extraction

!e automated geographic extraction generally performed 
worse than the taxonomic extraction, accurately identify-
ing an average of 69.1% (SD = 45.5%) of countries rela-
tive to the full-text extraction when considering the 1556 
records. For the 300 manually assessed texts, average recall 
rose to 77.9% (SD = 40.4%; Fig. 2.1a). However, unlike 
the taxonomic extraction, accuracy error was driven by the 
poor performance of the automated geographic extraction 
(mean recall = 82.1%, SD = 36.7%; Fig. 2.2a), as the manu-
ally assessed abstracts and full texts were well aligned (mean 
recall = 93.9%, SD = 22.6%; Fig. 2.3a).

!e automated geographic extraction also showed bias, 
tending to over-assign records to countries with English as 
the first language (e.g. USA, UK and Australia; Fig. 2.1b and 

2.2b) and under-assign records across South America and 
Southeast Asia. In contrast, comparing between full texts and 
manually assessed abstracts suggests more moderate over-/
under-reporting of countries in abstracts (Fig. 2.3b). As an 
example, records labelled as France in the full texts were split 
between seven countries in automated extraction, nine coun-
tries when comparing the manually assessed abstracts to the 
automated extraction, and only two countries when compar-
ing the full texts to the manually assessed abstracts (Fig. 2.1c, 
2.2c and 2.3c).

Population trend extraction

Of the 300 manually assessed abstracts, 21 were classified as 
varied based on full-text data, and 180 as either varied or 
unclear by manual assessment. Here, we therefore present 
results based on the subset of these 300 texts where all clas-
sification approaches (automated, full-text data and manu-
ally assessed abstracts) produced categories of either increase, 
decline or stable (111 studies). !ese results allow for a fair 

Figure 1. Recall and bias of automated taxonomic extraction using taxize and Catalogue of Life on our sample of 300 texts. (a–c) Distribution 
of recall (percentage of species successfully detected within each study) for the automated tool relative to the full-text data (a), automated 
relative to manually assessed abstract data (b) and the manually assessed abstracts relative to the full texts (c). !e red line represents the 
mean recall within each of these comparisons. (d) Phylogenetic variability in detection bias of species within texts. Despite visible variation, 
we found no phylogenetic signal in detection bias (Pagel’s λ likelihood-test p-value > 0.05). Each ring around the phylogenetic tree (a, b, 
c) relates to the comparisons between extraction approaches indicated in the left-hand column titles. Bias ranges from ×0.1 to ×10, where 
a value of 0.1 in ring a, for example, would indicate that a given order occurs 10 times less frequently in the automated extraction than in 
the data taken from the full text. !e bias colouring is on the log10 scale. Grey indicates an absence of the order in the reference dataset.
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comparison between approaches, but also likely over-esti-
mate the performance of both our automated and manual 
approaches, as we focus on the simplest ecological (and tex-
tual) scenarios. Results based on all 300 manually assessed 
texts can be found in the Supporting information.

Automated population trend prediction performed 
worse than either taxonomic or geographic data extraction, 
with accuracy of 64.9% compared to the full text (kappa: 

0.473, ‘moderate’; Fig. 3a). Interestingly, the accuracy of 
manual abstract categorisation compared to estimates 
based on data from the full text was lower still, at 57.7% 
(kappa: 0.387, ‘fair’; Fig. 3c). Agreement between the man-
ually assessed abstracts and automated classifications was 
also low (accuracy: 58.6%, kappa: 0.369, ‘fair’; Fig. 3b), 
suggesting the automated and manual approaches made 
different mistakes.

Figure 2. Recall and bias of automated geoparsing using CLIFF-CLAVIN on our sample of 300 texts. (1a, 2a, 3a) Distribution of recall 
(percentage of countries successfully detected) for the automated tool relative to the full-text data in the Living Planet Database (1a), the 
automated tool relative to the manually assessed abstracts (2a) and the manually assessed abstracts relative to the full-text data (3a). !e red 
line represents the mean recall within each of these comparisons. (1b, 2b, 3b) Spatial variability in detection bias of countries within texts, 
comparing full-text information versus automated, manual abstract assessment versus automated, and full texts versus manually assessed 
abstracts. Bias ranges from ×0.2 to ×5, where a value of 0.2 in 1b, for example, would indicate that a given country occurs five times less 
frequently in the automated extraction than in the data taken from the full text. !e bias colouring is on the log10 scale. White countries 
indicate no representation in the reference dataset. (1c, 2c, 3c) Assignment of records in the comparison groups relative to France in the 
reference group. !e grey line indicates a match between the reference and comparison group, whilst red indicates a mismatch. Line thick-
ness describes its proportional frequency.
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Discussion

Here we evaluated three tools to explore key challenges in 
automated synthesis of ecological and biodiversity knowl-
edge. Our study explored their limitations and tested the 
potential sources of errors or information ‘leaks’. !e first 
two tools for automated taxonomic and geographic extrac-
tion delivered moderately successful performance. !ese 
approaches are already being used (Millard et al. 2020), and, 
compared to manual extraction, offer much faster and more 
easily reproducible data collation. However, we found that 
automated extraction of species and locations can introduce 
biases (e.g. over-/under-representation of certain taxonomic 
orders), and so should be used cautiously. !e performance 
of taxonomic and geographic extraction was affected by the 
representativeness of abstracts (relative to the main text), and 
the biases inherent in automated algorithms. For example, 
the automatic taxonomic tool performed well in extracting 
Latin binomials from abstracts, but abstracts poorly repre-
sented main texts in terms of taxonomic coverage. On the 
other hand, the automatic geographic extraction tool per-
formed poorly in extracting locations from abstracts, but 
abstracts represented main texts well in terms of geographic 
coverage. !e third tool we developed and tested was a popu-
lation trend extractor which delivered relatively poor perfor-
mance driven by a lack of clarity regarding trend descriptions 
in abstracts (a problem concerning how research is presented 
in the literature) and by the complexity associated with sum-
marising multiple trends into one value (an issue related to 
limitations of automated tools).

!e relatively good performance of automated taxo-
nomic and geographic extraction is promising for current/

future synthesis projects, through application as a text pri-
oritisation tool (an example of a project already using these 
approaches is EntoGEM; <https://entogem.github.io/>). 
One current issue with global synthesis projects is their sub-
stantial taxonomic (McRae et al. 2017, Troudet et al. 2017) 
and spatial biases (Gonzalez et al. 2016, Tydecks et al. 2018). 
!ese biases hinder inference and erode our ability to predict 
over space (Yates et al. 2018) and phylogeny (Johnson et al. 
2021b). Automatically analysing the content of collated stud-
ies early in the synthesis pipeline could reveal imbalances/
gaps in geographic and taxonomic coverage, which if not 
addressed would undermine subsequent analyses and conclu-
sions. Prioritising the collation of studies that fill data gaps 
has already been used in some synthesis projects (Jones et al. 
2009, Hudson et al. 2017), traditionally relying on manual 
searches. Using automated taxonomic and geographic iden-
tification tools to also identify such publications could speed 
up the collation of representative ecological data, enabling 
more rapid and accurate syntheses, thereby better informing 
conservation decisions.

While taxonomic and geographic tools can be recom-
mended, the poorer performance of the trend extraction 
tool limits our ability to automate the entire trend synthe-
sis process. Although the accuracy demonstrated here may 
be sufficient for providing a coarse, preliminary overview 
of population trend distributions in scoping searches, we 
suspect obtaining more reliable estimates per-study is cur-
rently unfeasible for a variety of reasons. First, nature can be 
complex, making the estimation of population abundance 
trends difficult (Humbert et al. 2009), and potentially inac-
curate (Fournier et al. 2019). Descriptions of such trends are 
therefore likely to be linguistically complex and could vary 

Figure 3. Accuracy of automated population trend extraction using random forest classifiers on 111 texts. !e chord diagrams show the 
agreement between automated classifiers and the estimates based on full-text data (a), automated classifiers and manually assessed abstracts 
(b) and manually assessed abstracts and full-text data (c). Coloured semi-circles on the left of each panel show the distribution of trend 
categories in the reference data. Links indicate how these reference categories are distributed among the predicted categories (right-hand 
semi-circles), with link width proportional to the number of classifications represented. Accuracy (Acc) and Cohen’s Kappa statistic (K) 
provide quantitative measures of performance. Accuracy ranges from 0% (all predictions incorrect) to 100% (all predictions correct). Kappa 
values of 0.21–0.40 indicate ‘fair’ agreement, and 0.41–0.60 ‘moderate’ (Landis and Koch 1977).
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depending on the trend estimation method used. Second, 
information is often not reported to facilitate synthesis, 
and abstracts can use polarising language, e.g. a population 
may be increasing, but this message could be confused if the 
text opens with negative or disaster-based language, or may 
describe only ‘key results’ that do not reflect the full con-
tent. !ird, it is challenging to develop tools that can pro-
cess complex texts or adequately capture information about 
multiple diverging trends. !e first two issues reflect nature 
itself and academic writing and are embedded in much of 
the published ecological literature. It seems unlikely that the 
way in which researchers write will change given its impor-
tance in the framing of research and the complex nature of 
some biodiversity patterns. Although future developments in 
machine-learning tools may enable accurate automated trend 
extraction, we think a more ambitious, short-term change is 
needed in the form of standardization of abstract structures, 
language-use and inclusion of metadata. !e importance 
of crafting titles, abstracts and keywords to ensure primary 
research is easily discoverable for use in syntheses has recently 
been highlighted (Hennessy et al. 2021), but automated syn-
thesis would likely benefit from even more structure. Some 
journals, e.g. Global Ecology and Biogeography, structure 
abstracts into sections, where results and methods are iso-
lated. !ese structures would limit the conflation of results 
with the disaster-based language often found in the intro-
duction and discussion, thereby improving performance of 
metadata extraction.

Our study tackles some important challenges involved 
in automating ecological synthesis but there are limitations 
associated with the approaches we present. First, we focused 
solely on English language texts, and only explored tools 
designed for English. Although English is the main language 
of the scientific literature (Nuñez and Amano 2021), and 
LPD articles, we recognise that considering publications in 
languages other than English is important for ensuring biodi-
versity knowledge/inference is unbiased (Konno et al. 2020, 
Amano et al. 2021). We therefore encourage future work to 
develop/evaluate similar automated synthesis tools for texts 
in a variety of languages. Second, we have only evaluated 
the automated extraction of data from article abstracts. Text-
mining approaches are known to improve when full-texts 
are used (Westergaard et al. 2018), with this work also find-
ing that abstracts may not accurately represent the content 
of the full paper. However, we argue that as access to full-
text articles is often restricted by paywalls, it is important 
that fast, accurate, automated syntheses can be performed 
using freely, and easily, available abstracts. !ird, we assessed 
automated tools for extracting large-scale patterns of biodi-
versity change, i.e. qualitative population trends associated 
with countries and species. !e collation of such informa-
tion is vital for systematic maps/coarse resolution synthesis, 
but may struggle to capture the known nuances of biodiver-
sity change, especially at local scales (Dornelas et al. 2019, 
Leung et al. 2020). Further work to enhance the granularity 
of data extraction and minimise identified biases is there-
fore needed before automated approaches are readily applied 

without caution. Finally, our analysis centres on a database 
of vertebrate population time-series. Previous research com-
paring automated and manual extraction of various animal 
pollinator species (mostly insects) from abstracts found recall 
of 79.5% (Millard et al. 2020), suggesting that the quality 
of automated taxon tagging may vary across phylogenetic 
groups. Further evaluation of automated species extraction 
across kingdoms and phyla is therefore required, especially as 
targeting data retrieval for less charismatic groups – i.e. not 
mammals and birds – is essential for furthering biodiversity 
knowledge (Guerra et al. 2020).

Conclusion

In this work we have explored the three broad tasks of extract-
ing taxonomic names, geographic locations and population 
trends from article abstracts. We have shown that the spe-
cies and country tagging tools perform sufficiently well for us 
to recommend their wider use, e.g. study prioritisation and 
coarse-scale literature summarisation, but caution is needed, as 
these automated approaches can introduce biases, e.g. under-
representing certain countries. Our trend extraction approach 
delivered poorer performance, being constrained by poor align-
ment between abstracts and the main text, poor text classifier 
performance, and the complexity of the population trend data 
and its descriptions. To facilitate improved automated synthe-
sis within ecology, we recommend both the improvement of 
computational tools, and better structuring of abstract text.
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