
Decryption oracle slide attacks on T-310

Nicolas T. Courtois

University College London, Gower Street, London, UK

Abstract. T-310 is an important Cold War cipher [21]. It was the prin-
cipal encryption algorithm used to protect various state communication
lines in Eastern Germany throughout the 1980s. The cipher seems to
be quite robust and until now no cryptography researcher has proposed
an attack on T-310. In this article we study decryption oracle and slide
attacks on T-310.
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1 Introduction

T-310 is an important historical cipher which was used in Eastern Germany
during the last period of the Cold War. According to [12, 21], in 1989 there were
some 3,800 cipher machines in active service across all sorts of government, party
and internal security services.

T-310 is a synchronous stream cipher which derives its keystream from the
iteration of a relatively complex block cipher. The block cipher can be classified
as “Unbalanced Feistel cipher” of so-called contracting type with 4 branches, cf.
[18]. An important historical example of exactly such a cipher is the RC2 cipher
by Rivest which was designed in 1989 cf. [17] with an (alleged) collaboration
with the NSA. RC2 have been very widely used worldwide for real-life commu-
nications security, first in Lotus Notes software and later also in the S/MIME
encrypted email standard of 1997. Another more academic example of (exactly)
a compressing cipher with 4 branches is the McGuffin cipher proposed and crypt-
analysed at FSE’94 [19]. The earlier RC2 has remained a trade secret for a longer
time and only in 1997-1998 was it re-discovered and analysed (without great suc-
cess) in the crypto community [17]. Another important historical cipher with a
very large real-life footprint is the SHA-1 hash function which is a “Contract-
ing Unbalanced Feistel” with 5 branches. It was developed by the well-known
US-government funded Capstone project which also produced the Skipjack algo-
rithm cf. [2]. Skipjack is unique type of cipher with 4 branches which are neither
contracting nor expanding [18] with a lot of extra irregular structure [2, 16]. It is
clearly stated in [2] that Skipjack was designed earlier in the 1980s, which would
make this closer to being a contemporary of T-310. Research on the security of
these ciphers is scarce. Even though Lotus Notes software has been an object of
a number of controversies regarding deliberate weakening by the NSA, no con-
vincing attack has been published to date against the RC2 cipher [17]. Similarly,
to this day there is no attack on the full Skipjack cipher cf. [16]. Finally, until
now, no attack of any sort whatsoever have been published on the T-310. In this
article we provide a first non-trivial attack on T-310 cipher.



2 Nicolas T. Courtois

1.1 Basic Description of T-310

The main component of T-310 is a keyed permutation which also takes an IV
which we will call “the T-310 block cipher”. In this article we study an attack
based on high-level properties which will require only a simplified description of
the cipher. A full description of T-310 was published in Cryptologia in 2006 cf.
[21].

The block size in T-310 is 36 bits only, the secret key has 240 bits and the IV
has 61 bits. The block cipher is not used directly to encrypt, but it is iterated a
large number of times. Some 13·127 = 1651 block cipher rounds are performed in
order to extract as few as 10 bits called (Bj , rj) from the cipher’s internal state,
which will then be used to encrypt just one 5-bit character of the plaintext by a
sort of double one-time pad cf. Fig. 1.

Fig. 1. T-310 Cipher.

The key used in different rounds repeats every 120 steps. This cyclic structure
is the key vulnerability which we will exploit in this article. In contrast the
IV bits are expanded with an LFSR which produces a sequence with a very
large period. This makes T-310 potentially stronger than, for example, GOST
or KeeLoq, where the exact same permutation consisting of many rounds is
repeated many times, which is a source of numerous self-similarity attacks [4, 9,
11, 6, 1]. However this sequence remains entirely predictable for the attacker and
it is possible to design a self-similarity attack on T-310.



Decryption oracle slide attacks on T-310 3

1.2 On the Strength Of Individual Encryption Rounds

The structure of one round of T-310 is shown in Fig. 2. One round m ≥ 1
uses 2 bits of the key sm,1, sm,2 and 1 bit derived from IV fm. It is a peculiar
variant of a so-called “Contracting Unbalanced Feistel cipher” with 4 branches,
cf. [18]. The original Feistel cipher construction had 2 branches and was invented
around 1971 [14]. Then East German cipher designers had already in 1970s [21]
mandated a substantially more complex internal structure.

Fig. 2. The internal structure of one encryption round of T-310.

This peculiar internal structure is largely irrelevant in this article and we will
not study it. The attack which we will study does not depend on this structure
The only property which will matter in this article is that some bits CAN be
correlated to one input bit at the same position few rounds earlier, for example
bit α = 30 after d = 7 rounds. This property is a property of the whole round
which depends on countless technical details such as the choice of the Boolean
function inside T , the connections of T , the connections in Fig. 2, and the long-
term key D,P , cf. [13]. In this article we are just going to show one example of
such correlation, which is relatively strong, and the resulting attack. It is easy to
see that many other [possibly weaker] correlations of this type exist for various
versions of T-310 and potentially just one would be sufficient to make our later
attack work.

2 A Short Description of T-310

Following Fig. 2, one round of encryption is given by

(ui,1−36) = φ (si,1, si,2, fi; ui−1,1−36)

Given Fig. 1, in order to fully specify the cipher T-310 we need exactly:

1. To specify u0 the initial 36-bit state I1−4 of the block cipher which is a
constant equal to 0xC5A13E396, cf. [21].

2. To specify the internals of one round φ : {0, 1}3×{0, 1}36 → {0, 1}36, which
is one full round of encryption, which uses 3 bits of key+IV per round,
and (inside this) for the round function T . We refer to [21] for a detailed
description.
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3. To specify D,P , e.g. one of the actual keys from 1977-1990 listed in [13].
4. We specify how the 3 bits of the key and IV (fm, sm,1, sm,2) used by in each

round are generated in round m ≥ 1.
5. The fm sequence is obtained with an LFSR and it starts at f−60, . . . , f0

which is the 61-bit IV. These bits are not used in encryption and the first
bit used is f1. The LFSR is defined by:

fi = fi−61 ⊕ fi−60 ⊕ fi−59 ⊕ fi−56.

6. The key has 240 bits s1−120,1−2. Contrary to popular belief1 the effective
key size is NOT reduced to 230 bits, cf. [21, 20]. Key bits are repeated every
120 rounds as follows:

sm+120,1−2 = sm,1−2.

This description is sufficient for the purpose of this article, we refer to [21] for
more details. On Fig. 3 and earlier Fig. 1 we show how all these things come
together.

Fig. 3. T-310 Encryption Process.

2.1 How Encryption is Performed - Double One-Time Pad

From our iterated block cipher we extract just 1 bit per 127 rounds:
u127,α, u2·127,α, u3·127,α, . . . , u13·127,α and for every 13 bits we discard 3 and use
5+5 bits. Here α ∈ {1 . . . 36} is a constant which is a part of the long-term key.
More precisely we put:

Cj = (Pj ⊕Bj) ·Mrj ,

1 In [21, 20] we read that 10 out of 240 bits should be parity bits. However according
to specialists who studied the actual T-310 machines [12], the parity bits specified
in 1980 in [20] were NOT subsequently used in real life transmissions.



Decryption oracle slide attacks on T-310 5

where Pj/Cj is the plaintext/ciphertext character on 5 bits, respectively,
then Bj = (a7+13(j−1), . . . , a11+13(j−1)) are 5 consecutive bits out of the 13
previously discussed and rj is a “stepping” output which is derived from the
FIRST consecutive 5 bits out of the 13 as follows:

rj =

0 if Rj = (0, 0, 0, 0, 0)
0 if Rj = (1, 1, 1, 1, 1)
31− r if Rj ·Mr = (1, 1, 1, 1, 1)

where Rj
def
= (a1+13(j−1), . . . , a5+13(j−1)) and

M =


0 0 0 0 1
1 0 0 0 0
0 1 0 0 1
0 0 1 0 0
0 0 0 1 0

 , which is such that M31 = Id.

A Strong Point in T-310. This selection of extremely few bits is where T-
310 appears to be a particularly strong cipher, potentially actually stronger than
other comparable classical Feistel ciphers such as RC2, DES, and Skipjack. This
is an incredibly low quantity and the cryptanalytic literature knows extremely
few examples where the cipher would actually be broken under such difficult
circumstances. One major example is the so-called “Courtois Dark Side Attack”
on MiFare classic [7] one of the most widely used cryptosystems on our planet,
with approximately 2 billion RFID smart cards sold. In this attack the attacker
obtains only 4 bits from each encryption [7]. Here we can obtain only 1 bit per
127 rounds of encryption. The more rounds, the harder it becomes to develop
any sort of cryptographic attack.

2.2 Estimating Strength Against Direct Software Algebraic Attacks

Here the security of T-310 can be compared to KeeLoq, also a block cipher which
locally looks like a stream cipher, and which has hundreds of rounds. General-
purpose software key recovery attacks on KeeLoq with a SAT solver can recover
the key for about 160 rounds only, cf. [6, 1] for attacks running within hours/days
on a PC. The complexity of KeeLoq is lower than T-310: in KeeLoq we have 1
Boolean function with 5 inputs per round, in T-310 we have 4 evaluations of a
Boolean function with 6 inputs per round. it may be reasonable to expect that
a SAT solver can break 120 rounds of the T-310 block cipher in a similar way
as it can break 8 rounds of GOST; see [10] and Table 1, Section 9.1. in [9].
Application: Initially it seems that the attacker has little choice other than to
work on the first character of the ciphertext C1 and try to develop an attack
on 11 · 127 = 1397 rounds. The main point of this article is that there exists
a non-trivial method which allows the attacker to obtain Plaintext/Ciphertext
(P/C) pairs for as few as 120 rounds.
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3 Decryption Oracle Attacks - Recovering the Keystream

A plausible attack scenario is that the attacker would have access to a decryption
oracle. The attacker can send any IV and the ciphertext and obtain the plaintext.
For the j-th character we have:

Cj = Pj ·Mrj ⊕Bj ·Mrj

for every j < k where ciphertexts submitted to the oracle have length k
characters. Then in all these encryptions rj and Bj will be the same

Cj ⊕ C ′j = (Pj ⊕ P ′j) ·Mrj for all 0 ≤ j < k.

This allows to recover Mrj uniquely in a proportion of 1-1/32 of cases where
Cj 6= C ′j and the attacker could chose ciphertexts such that Cj 6= C ′j for most
pairs. Moreover following Section 2.1, Mrj does almost always allow to determine
Rj except when rj = 0. One of the two problematic events happens with overall
probability less than 2/32. Overall in at least 30/32 of the cases over all possible
pairs, P/C, P ′/C ′, the 5 bits of Rj = (a1+13(j−1), . . . , a5+13(j−1)) are uniquely
determined, because rj 6= 0, which avoids the ambiguity2. We can then also
determine Bj = (a7+13(j−1), . . . , a11+13(j−1)). However we cannot hope to ever
recover any aj with j ≡ 0, 6, or 12 modulo 13, because these aj are never used
for encryption. Moreover we also make a deliberate choice NOT to recover all
the ai which could be recovered, in order to minimize the data [decryption oracle
query] complexity of our later attack. We have the following result:

Theorem 3.0.1 (General Decryption Oracle Attack). For every IV cho-
sen by the attacker, and for every k ≥ 1, the attacker can obtain a proportion
of 30/32 · 10/13 + 1/32 · 5/13 ≈ 0.73 of the internal keystream bits a1−13k with a
computation effort of about 2k and with about K = 2 “Chosen IV and Chosen
Ciphertext” (CIVCC) queries on average, with one fixed chosen IV and random
ciphertexts, and with ciphertext lengths of about k characters. For the remaining
values ai we make the algorithm return ”don’t know”.
Proof: In this article we made a “minimalistic” choice of K = 2. Exactly, and
only, two things can go wrong for our pair of decryptions obtained from the
oracle. Either we have Cj = C ′j or rj = 0. Avoiding both cases happens with
probability at least 30/32. In this case we can determine 10/13 the bits uniquely
from the decrypted pair. We also have a case where Cj 6= C ′j but unhappily
rj = 0 and Rj cannot be determined for sure (ambiguity), in this case however
Bj can be obtained from Cj = Pj ·Mrj ⊕ Bj ·Mrj = Pj ⊕ Bj . This happens
with probability about 1/32, in this case we only get 5/13 of the bits of Bj =
(a7+13(j−1), . . . , a11+13(j−1)).

2 When rj = 0 we are not able to determine Rj , either Rj = (0, 0, 0, 0, 0) or Rj =
(1, 1, 1, 1, 1).
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4 On the Existence of Suitable α→ α Correlations

We consider some relation of type

120s = 127t+ d,

where d is small in absolute value and also s and t are not too large. For
example (s, t, d) = 18, 17, 1 or (s, t, d) = 1, 1,−7. In this article we will concen-
trate on the case of d = ±7. Other cases will be studied in future works. Then
we want two bits used for encryption in two encryptions shifted by 120s rounds
to be correlated, cf. Fig 5 page 8. In other words order to make our slide attack
we need a correlation property of type: one special bit α ∈ {1− 36} of the block
cipher state is correlated with the same bit α after d rounds for some small d.

si,α
?
= si+d,α ∀i

This can be seen as a special case of linear cryptanalysis (LC). However we
only look at invariant linear characteristics with Hamming weight 1, which will
be substantially less frequent. In general the answer depends on the values of d
and the choice of the term key LZS with specific values for D,P, α. We conjecture
that for every D,P, α there exists several d such that our attack can be made to
work (with s > 1 it will be harder).

In this article we present a simple attack with s = 1 and d = ±7 and
we will later evaluate the complexity of our attack on one key 701 which we
have generated ourselves and which exhibits a suitable correlation. For these
parameters s, d we have NOT found a more convincing real-life example which
indicates that the East-German cryptologists have somewhat managed to pre-
vent the basic slide attack, described in this article, from being effective in
practice. In general however, probably there is no way to prevent such at-
tacks from working with a sufficiently large d or/and with a weaker correla-
tion. For this purpose we are going to use the key 701 for which we have an
invariant linear characteristic [30] → [30] for some 20 % of key and IV choices.
Let 701 be a key defined by P=31,10,33,6,32,8,5,3,9,15,13,26,19,28,21,

7,16,25,34,12,22,17,35,29,30,23,4 and D=4,2,17,32,12,35,0,24,20. We
also recall that key 27 is defined in [13]. We have:

Table 1. Examples of a one-bit invariant correlation in T-310

LZS nb rounds input → output bias probability

701 7 [30] → [30] 2−11 0.2

27 16 [27] → [27] 2−7.2 0.2

It is worth noticing that some very good results and for as many as 16 rounds
can be obtained for key 27, however this key is an anomalous key which was ever
approved for use, cf. [13].
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5 A Decryption Oracle with a Slide Attack

Now we are going to design our slide attack [15, 3, 6] We want to exploit the self-
similarity of the T-310 block cipher: the key bits repeat every 120 rounds, and
we need to adjust the IV bits in order to obtain identical permutations. Then the
question will be whether these identical permutations can have identical inputs.
Traditionally researchers call such pairs of inputs a ‘slid pair’ [3]. Here is our first
basic slide attack. Let s again be a small integer with 120s = 127t+d, where d is
small in absolute value. In this article we only study the case (s, t, d) = 1, 1,−7.
Other cases will be studied in future work. Now the key point is that if by some
sort of “happy” accident for some encryption with some IV, we have

u120s = u0 = 0xC5A13E396,

then the attacker can detect this fact efficiently, if there exist correlations on bit
α for d rounds, cf. Section 4 and if the attacker has access to a certain type
of chosen IV and chosen ciphertext attack (with partial recovery of the internal
keystream) such as in Thm. 3.0.1.

Fig. 4. Slide Attacks on T-310 (case d > 0).
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Theorem 5.0.1 (Sliding Property Detection with a Decryption Ora-
cle). For every IV chosen by the attacker, and for every s ≥ 1, the attacker can
detect with near-certainty if u120s = u0 for the unknown key, by requesting a
decryption of K = 2 ciphertexts for this IV and another related IV’ which we
specify below, with length 120s+ k each, and with time complexity about 2k as
in Thm. 3.0.1, where k is the decryption oracle query data capacity requested
for a fixed set of parameters s, d, which will be determined later to achieve the
desired confidence level four our distinguisher.

Proof: We describe how the distinguisher works in four Steps.
Step 1. We select two IVs which are distant by 120s steps of our 61-bit

LFSR, called IV, IV ′. We recall that 120s mod 127 is small. We recall that the
key is repeated after every multiple of 120 rounds, but the keystream is extracted
every 127 rounds. Then IF in some two encryptions have the same state

u0 = u′120s [Sliding Assumption]

which occurs with probability 2−36 THEN we have

ui = u′120s+i
for any number of steps i ≥ 0.
Step 2. Then for both encryptions the attacker can recover most of the

keystream with K = 2 decryption queries per IV, cf. Thm. 3.0.1.
Step 3. We have 120s = 127t + d with d small. This means that IF again

u0 = u′120s the keystream extracted from the second encryption is shifted by
127t+ d, i.e. it is extracted at t “big” ai-scale steps later with 127 rounds each,
and with a φd offset. We can hardly hope that these bits will be identical BUT
we can hope they will be in some cases correlated. We have

aj = u127j,α

and

a′j = u′127j,α = u′127(j−t)−d+120s,α = u127(j−t)−d,α

5.1 Step 4 - Correlation Analysis

Now as a first approximation, we see that the attacker has access to the sequences
u127j,α and u127j′−d,α for any j, j′ which are shifted by d = 1 encryption round
φ. The question now is if there is a correlation between these 2 bits which
makes that the slide assumption u0 = u′120s will be detected. In this article
we put LZS=701, d = −7 and we have observed that u127j+7,α = u127j,α with
probability 0.5−ε with ε = 2−11. This means that the attacker can easily detect
if our sliding condition on 36 bits is true for α = 30.

More precisely, it is not quite correct to say that the attacker has access to
the sequences u127j,α and u′127j,α for every j. Following cf. Thm. 3.0.1 only 73
% of these bits can be recovered on each side. This makes that only some pairs
u127j,α, u

′
127(j−17),α will actually be available, in fact a proportion of (0.73)2 ≈

0.53. This is of course sufficient to detect the correlation with about twice the
value k than otherwise needed, and we will estimate k below. This ends the proof
of Thm. 5.0.1.



10 Nicolas T. Courtois

5.2 Sliding Step - Summary

We see that the attacker can obtain P/C pairs on 36+36 bits for the T-310
block cipher for 120s rounds away and with arbitrarily chosen IVs, and where
the second IV is obtained by clocking the LFSR 120s steps backwards.

More precisely, following Thm. 5.0.1 the attacker can detect if the internal
states on the 36 bits are identical. He can know with near-certitude that

u0 = u′120s [Sliding Assumption]

is true for some pairs IV, s and for the current secret key. This condition is true
with probability 2−36 in general and when it occurs the attacker will detect it.

5.3 Data Complexity Required in Our Attack

At this stage we see that the attacker can generate P/C pairs for 120 rounds
given that s = 1, and following Section 2.2 key recovery for 120 rounds with a
SAT solver is assumed to be feasible. It is then easy to see that the we need
to generate 7 such P/C conditions on 36 bits: one is not sufficient to uniquely
determine a key on 240 bits. We need to estimate the data complexity needed
to see if u120s = 0xC5A13E396 will be simultaneously true in 7 cases with
probability of at least 1/2 and to reliably discard as many as 239 − 7 cases.
Therefore we need to operate with a precision which is sufficient to have the
standard Gauss error function erf(), to predict less than one false positive in 239

experiments. We must be able to reject most cases with Thm. 5.0.1 operating at
z standard deviations, where z is such that that erf(z/

√
2) < 2−39, which gives

z = 7, see the table in [22].
The standard deviation for N events, where equality of some two bits of type

u127i,α holds in Thm. 5.0.1, which is assumed true with probability 1/2±ε, with

ε = 2−11 here, will be about
√
N and the deviation in observed probability will be√

N/N . In order to detect correlations with confidence at or exceeding 7 standard
deviations we need, approximately, 7

√
N/N ≤ ε. This leads to N ≥ 72 ·ε−2. Now,

not all bits u127i,α are simultaneously known in 2 distinct encryptions. Inside 13k
possible bits ai for each of K = 2 decryptions with k characters, only 73 % are
available, and out of these only 73 % are such that the correlated bit for the other
decryption is also available to the attacker. This leads toN ≈ 13k·(0.73)2 ≈ 6.9k.
We need k = N/6.9 ≈ 7ε−2 with ε = 2−11.

5.4 A Basic Full Sliding Key Recovery Attack with d = −7
Below we describe a full combined attack.

1. We consider key 701, d = −7 and s = 1.
2. The attacker will try some 7 · 236 ≈ 239 random IVi on 61 bits. He can

then expect that there exists some 239−36 ≈ 7 “good” IVs where he has
u120s = u0 = 0xC5A13E396. At this moment he does not know which 7 IVs
are the “good” ones.

3. For each of IVi, i = 1 . . . 239 the attacker will step the IV exactly 120s steps
backwards to obtain IV ′i .

4. The pairs IV, IV ′ are always shifted by a multiple of 120 rounds, so that
they key bits si,1−2 are also aligned.
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5. Memory requirements are very small.
6. Then we apply Thm. 5.0.1 cf. also Fig. 4. The attacker - with the help of

a decryption oracle - can see if u120s = u0 = 0xC5A13E396 by aligning 2
sequences aj and a′j+t, where only 0.732 ≈ 0.53 of the pairs are known to
the attacker, discarding all the pairs where either of aj , a

′
j+t is not known,

and counting how many times we have aj = a′j+t.
7. Following Section 5.3, the attacker needs to select 7 cases where u120s =

0xC5A13E396 will be simultaneously true and reliably discard 239−7 cases.
This leads to k = N/6.9 = 72 · ε−2/6.9 ≈ 7ε−2 with ε = 2−11. We also need
120s more characters which is negligible.

8. Overall our attack requires k = 7ε−2 characters of encrypted data where
ε = 2−11. We need about k ≈ 225 characters of decrypted data per decryption
query.

9. The data complexity is about K · 7 · 239 ≈ 243 chosen IV chosen ciphertext
decryption queries, which are 225 characters each in length.

10. The time complexity is about 239 · K · 225 ≈ 265 CPU clocks spent in ex-
amining correlations plus the time to recover the key from 7 P/C pairs for
120 rounds by a SAT solver attack. As long as this step takes less3 than
265 CPU clocks, this will NOT change the complexity of our attack. For the
time being we assume it does.

Overall we see that we can recover the 240-bit key of T-310 with about 243

chosen IV chosen ciphertext decryption queries with messages of less than 225

characters each, cf. Section 5.4. The time required is about 265 CPU clocks and
the memory required is small.

6 Conclusion

T-310 is an important Cold War cipher which uses a block cipher from which it
extracts extremely few bits for the actual encryption. This property makes that
T-310 seems substantially stronger than other ciphers from the same historical
period, such as RC2, DES, and Skipjack. The cryptanalytic literature knows
extremely few examples where the cipher would actually be broken under such
difficult circumstances. In one such example the attacker obtains only 4 bits from
each larger encryption [7]. In T-310, bits from rounds as high as 1397 are used
to encrypt just the first character. The key question for cryptanalysis of T-310
will then be, is there a “reduction” method or a self-similarity attack, where
the attacker can obtain data for a substantially smaller number of rounds. For
example, in [4, 9, 11] we discover many different methods to transform an attack
on 8 rounds of GOST, into an attack on 32 rounds of GOST. The same occurs
for KeeLoq, where a key recovery attack on 64 rounds allows us to break the
full 528 rounds [6, 1]. In this article we show a non-trivial attack which gives the
attacker the ability to generate pairs for ‘only’ 120 rounds of T-310.

3 For example, in Table 1, Section 9, page 25, in [9], the time complexity decreases as
the number of P/C pairs grows. We expect a similar result here and arguably 120
rounds of T-310 are the equivalent of 8 rounds of GOST in terms of complexity and
key usage.
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Our main result is to show how to recover the 240-bit key of T-310 with
about 243 chosen IV / chosen ciphertext decryption queries, which need to be
225 characters long. Then if a suitable SAT solver software attack step can recover
the key from 7 P/C pairs for 120 rounds in time less than 265, then we get an
overall attack with complexity 265 to recover a 240-bit key with small memory
requirements. Our current attack was designed for just one vulnerable long-term
key, 701, and has d = −7. It seems that historical keys which were approved
for use have a good level of resistance against this attack. Future research will
show what will be the optimal parameters s, t, d to obtain the best possible slide
attack for various actual historical long-term keys listed in [13].
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