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Abstract 26 

Metacognition describes the process of monitoring one’s own mental states, often for 27 

the purpose of cognitive control. Previous research has investigated how metacognitive 28 

signals are generated (metacognitive monitoring), for example when people (both f/m) judge 29 

their confidence in their decisions and memories. Research has also investigated how 30 

metacognitive signals are used to influence behavior (metacognitive control), for example 31 

setting a reminder (i.e. cognitive offloading) for something you are not confident you will 32 

remember. However, the mapping between metacognitive monitoring and metacognitive 33 

control needs further study on a neural level. We used fMRI to investigate a delayed-34 

intentions task with a reminder element, allowing human participants to use their 35 

metacognitive insight to engage metacognitive control. Using multivariate pattern analysis, 36 

we found that we could separately decode both monitoring and control, and, to a lesser 37 

extent, cross-classify between them. Therefore, brain patterns associated with monitoring and 38 

control are partially, but not fully, overlapping. 39 

 40 

Significance Statement 41 

Models of metacognition commonly distinguish between monitoring (how 42 

metacognition is formed) and control (how metacognition is used for behavioural regulation). 43 

Research into these facets of metacognition has often happened in isolation. Here, we provide 44 

a study which directly investigates the mapping between metacognitive monitoring and 45 

metacognitive control at a neural level. We applied multivariate pattern analysis to fMRI data 46 

from a novel task in which participants separately rated their confidence (metacognitive 47 

monitoring) and how much they would like to use a reminder (metacognitive control). We 48 

find support for the notion that the two aspects of metacognition overlap partially but not 49 
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fully. We argue that future research should focus on how different metacognitive signals are 50 

selected for control.  51 
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Introduction 52 

Our brains possess a remarkable ability to monitor performance and to then use 53 

metacognition to control future behavior. For example, if you have low confidence that you 54 

will remember a delayed intention (metacognitive monitoring; MetaM) like regular 55 

medication intake, you might set a reminder on your phone (metacognitive control; MetaC). 56 

This distinction between monitoring and control is found in the seminal metamemory 57 

framework by Nelson and Narens (1990; see also Flavell, 1976; Kluwe, 1982; Brown, 1987; 58 

Efklides, 2008; Shea et al., 2014; Yeung et al., 2004; Fleming & Daw, 2017; Fletcher & 59 

Carruthers, 2012; Fleur, Bredeweg, & van den Bos, 2021), which proposes that cognition 60 

functions at two distinct levels: the object and the meta level (Figure 1A). Information at the 61 

object level about decisions, memories, attention, action and so forth is re-represented at the 62 

meta level via a process of MetaM. Meanwhile, information at the meta level controls 63 

processing at the object level (MetaC). Shimamura’s (2000) dynamic filtering theory extends 64 

the framework by Nelson & Narens (1990), ascribing the role of the object level to posterior 65 

cortical regions and the role of the meta level to prefrontal cortex (PFC). The information 66 

flow between these regions forms the basis of MetaM and MetaC. 67 

We are only slowly beginning to understand the neural mapping between MetaM and 68 

MetaC. This mapping or link describes the relationship that exists between MetaM and 69 

MetaC on a functional level – are these labels describing the identical process or two 70 

different computations with different inputs? This question is important because one rationale 71 

for studing MetaM is that it can provide insight into MetaC (e.g. Boldt & Yeung, 2015; 72 

Wokke et al., 2020; Masset et al., 2020; Gherman & Philiastides, 2018; Miyamoto et al., 73 

2018; Odegaard et al., 2018; Bang & Fleming, 2018; Ye et al., 2018; Shekhar & Rahnev, 74 

2018). This would be strengthened if the mapping between the two were better understood. 75 

Furthermore, dissociations have been found between MetaM and MetaC. For example, in 76 
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some circumstances, young children (Redshaw et al., 2018), OCD patients (Vaghi et al., 77 

2017) older adults (Dunlosky & Connor, 1997), and individuals with Autism Spectrum 78 

Conditions (Grainger et al., 2016) have a diminished mapping between MetaM and MetaC, 79 

which could lead to suboptimal behavioral regulation. However, the potential neural 80 

substrates for this variability are unknown. 81 

One of the reasons why the MetaM-MetaC mapping has received little attention is 82 

that the two aspects of metacognition are usually studied in isolation (though see Koriat et al.,  83 

2006, 2014; Mei et al., 2020; Son & Schwartz, 2009; Schulz, Fleming & Dayan, 2021; Qiu et 84 

al, 2018). Studies on MetaM commonly explore the variables that affect how confident 85 

people feel and the associated neural correlates. For example, neuroimaging studies have 86 

identified a widespread network of involved regions, including the rostrolateral prefrontal 87 

cortex (rlPFC; Yokoyama et al., 2010; Fleming, Huijgen, & Dolan, 2012; Allen et al., 2017) 88 

and also the precuneus specifically for metamemory studies (e.g. McCurdy et al., 2013; 89 

Baird, Smallwood, Gorgolewski, & Margulies, 2013; Ye et al., 2018). Moreover, machine-90 

learning techniques have been used to “decode” brain patterns associated with low versus 91 

high confidence, using both fMRI (Hebart et al., 2014; Cortese et al., 2016; Morales, Lau & 92 

Fleming, 2018) and EEG (Boldt & Yeung, 2015). Research on MetaC, on the other hand, has 93 

focused on situations in which metacognitive experiences are utilized for learning, 94 

communication, or speed-accuracy tradeoff, to name a few (e.g. Metcalfe & Finn, 2008; 95 

Guggenmos et al., 2016; Lak et al., 2020; Shea et al., 2014; Bahrami et al., 2010; Desender et 96 

al., 2019; Frömer, Nassar, Bruckner, Stürmer, Sommer, & Yeung, 2021). 97 

Most of what we know about the link between monitoring and control comes from the 98 

field of cognitive control and error monitoring. Electrophysiological correlates have been 99 

found that signal not only when an error has been committed but are also sensitive to correct-100 

trial performance fluctuations (Allain et al., 2004; Yeung, Botvinick, & Cohen, 2004). Such 101 
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monitoring of errors often results in lower response speed immediately after a mistake, a 102 

robust and often-replicated phenomenon termed post-error slowing (Rabbitt, 1966; 103 

Danielmeier & Ullsperger, 2011; Notebaert et al., 2009). In addition to errors, conflict signals 104 

appear to be monitored by the posterior medial frontal cortex (pMFC) including the dorsal 105 

anterior cingulate cortex (dACC). The lateral prefrontal cortex (laPFC) is thought to receive 106 

this input and implement cognitive control (Ridderinkhof, Ullsperger, Crone, Nieuwenhuis, 107 

2004). It should be noted that participants are often not aware of such errors or response 108 

conflicts and that these studies are not directly measuring metacognitive signals. 109 

Nevertheless, evidence from this domain suggests that similar brain regions support 110 

metacognitive monitoring and control. Qiu and colleagues (2018) conducted four elegant 111 

fMRI experiments, using a decision-redecision paradigm: Participants were presented twice 112 

in a row with each stimulus and rated both their response and confidence for each 113 

presentation. They reasoned that participants would engage metacognitive monitoring for 114 

their initial response and use metacognitive control to revise and improve decisions in the 115 

redecision phase. Their analyses revealed an involvement of dACC in the first response and 116 

lFPC in the second. However, because the order of the decision-redecision phases was always 117 

the same, it is impossible to conclude whether the redecision phase really triggered more 118 

MetaC or whether the signal observed in lPFC was instead a ‘late’ monitoring one. Another 119 

open question is whether MetaM and MetaC rely on similar representations. 120 

In order to address these questions, it is necessary to study both aspects of 121 

metacognition in a single paradigm, which we did using a cognitive offloading task. 122 

Cognitive offloading is the use of physical action to reduce cognitive demand, e.g. setting 123 

external reminders rather than relying on internal memory. Previous research has 124 

demonstrated a MetaM-MetaC link whereby individuals are more likely to set reminders 125 

(MetaC) when they have low confidence in their memory abilities over and above the 126 
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influence of their actual memory performance (MetaM; Risko & Gilbert, 2016; Hu et al., 127 

2019; Dunn & Risko, 2016). This finding is a robust pattern that can even be observed when 128 

reminder setting is not explicitly instructed (Boldt & Gilbert, 2019) or when confidence was 129 

measured in an unrelated perceptual task (Gilbert, 2015). Here, we use a decoding approach 130 

to examine this link at a neural level. 131 

Participants performed a delayed intention task where in separate blocks they engaged 132 

in MetaM (how confident am I that I will remember?) or MetaC (how much would I like a 133 

reminder?). This allowed us to answer two questions: 1) Do similar brain patterns 134 

characterize MetaM and MetaC? If so, 2) Can the neural patterns that characterize specific 135 

acts of MetaC be exhaustively characterized in terms of their associated processes of MetaM? 136 

We answered these questions by examining cross-classification between MetaM and MetaC: 137 

the extent to which a classifier trained on one judgement can decode the other. Insofar as this 138 

is possible, this implies a shared neural code for MetaM and MetaC. But if cross-139 

classification is weaker than decoding MetaM and MetaC individually, this implies that their 140 

neural bases do not overlap fully. 141 

 142 

Materials and Methods 143 

Participants 144 

We trained 29 participants in a behavioral task during a first session. After reviewing 145 

their training data, 22 participants returned to the lab for a second MRI session 1 to 21 days 146 

later, excluding 7 participants (2 unsuited for MRI due to safety regulations, 2 had extreme 147 

staircase values, 3 were unavailable for a second session). Another participant was excluded 148 

after scanning due to excessive movement in the scanner. This resulted in a final sample of 149 

21 participants, out of which 15 were female and 6 were male. While we determined our 150 

sample size based on practical constraints and on available resources, the final sample size of 151 
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N=21 is nevertheless in accordance with previous MRI studies using similar methods 152 

(Morales et al., 2018, Qiu et al., 2018; Hebart et al., 2014). Participants were 20.3 years on 153 

average (18 – 26 years and paid £36 for their participation in both sessions (about 90 and 150 154 

minutes). All participants were right-handed, had intact color vision, no uncorrected visual 155 

impairments and had not been diagnosed with any psychiatric or neurological disorders. All 156 

testing was approved by the local ethics committee and participants gave informed consent 157 

prior to taking part in the study. 158 

 159 

Experimental Design 160 

In order to investigate the extent to which neural patterns associated with MetaM and 161 

MetaC are similar or distinct we had to study both aspects of metacognition within a single 162 

paradigm. Participants underwent short miniblocks of ongoing shape discrimination trials. 163 

For this ongoing task, participants had to quickly and accurately decide whether an array of 164 

colored shapes grouped around a fixation dot looked on average more like a circle or a square 165 

(De Gardelle & Summerfield, 2011) by pressing one of two buttons. The response categories 166 

were equally likely. During some of these miniblocks, participants also had to maintain a 167 

delayed intention to press a different button if the stimulus appeared in a target color (Figure 168 

1B). Participants were allowed to use reminders (cognitive offloading) to support their 169 

prospective memory in approximately half of the miniblocks, which meant that the central 170 

fixation dot of the stimulus took on the target color for the duration of the miniblock. Instead 171 

of having to rely on their memory, participants could then simply wait for the color of the 172 

shapes to match the color of the fixation dot, making the fulfilment of the delayed intention 173 

much easier. There were 12 colors, placed equidistant in RGB space. Within each miniblock, 174 

colors were drawn without replacement. There was only one target color per miniblock, 175 
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presented at the beginning of the miniblock, and its occurrence during the ongoing-task trials 176 

always terminated the miniblock. 177 

The task comprised three within-subject experimental conditions (20% Baseline, 40% 178 

MetaM, and 40% MetaC; see Table 1) each structured into miniblocks. A miniblock 179 

comprised presentation of a target color (except for in the Baseline condition which had no 180 

prospective memory element), a single metacognitive rating or cursor placement, followed by 181 

3-7 ongoing-task trials. The number of trials per miniblock was drawn from an exponential 182 

distribution with a mean of  = 1.1, in other words shorter miniblocks were more frequent 183 

than longer miniblocks. Each of the eight blocks consisted of 94 shape trials spread unevenly 184 

across 40 miniblocks (see Figure 1C). The critical difference between our two key conditions 185 

was the metacognitive rating given about the target color before each miniblock. In the 186 

MetaC condition, participants reported how much they would want to set a reminder to help 187 

them remember this target color. The higher the rating given by the participant, the greater 188 

the likelihood of receiving a reminder, which occurred on approximately 50% of miniblocks. 189 

More specifically, ratings larger than the moving median of the past 20 MetaC ratings were 190 

assigned a reminder, whereas ratings below this cutoff had to be solved using only unaided 191 

memory. In the MetaM condition, participants reported their prospective confidence in 192 

remembering the target color. However, this had no influence on the likelihood of receiving a 193 

reminder, which occurred on a randomly selected 50% of miniblocks. In other words, the two 194 

conditions also differed in the relationship between participants’ ratings and the provision of 195 

reminders. In the MetaM condition, participants’ ratings had no influence on whether or not 196 

they received a reminder. In the MetaC condition, on the other hand, which miniblock 197 

contained a reminder was largely determined by participant’s ratings. Therefore, in the 198 

MetaM condition participants engaged in metacognitive monitoring but did not exercise 199 

metacognitive control. In the MetaC condition they exercised control to make a decision 200 
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which is known to be guided by metacognition (Boldt & Gilbert, 2019; Gilbert, 2015). 201 

However, they were not explicitly asked to make a direct metacognitive judgment. 202 

In the Baseline condition, there was no target color and thus no prospective-memory 203 

component (and no need for a reminder). The rating participants were asked to give was thus 204 

an ‘empty’ one, that is a scale without labels but with a cursor was presented on screen 205 

together with two little markers indicating where the cursor should be placed on the scale. 206 

Participants then had to move the cursor to the indicated position. In all three conditions, 207 

participants were instructed to move the cursor at least once to submit a rating. 208 

Each block was comprised of only two out of the three conditions, the Baseline 209 

condition together with either the MetaM or the MetaC condition and alternated between the 210 

two. Within each block, conditions were predictable, that is they always followed the order of 211 

one Baseline miniblock followed by four other miniblocks. We determined the optimal order 212 

of conditions using simulations, allowing us to maximize the efficiency of our design. The 213 

main analysis window was the initial 7 seconds of the task (presentation of target color and 214 

rating). At the time of these prospective ratings, participants were still unaware whether or 215 

not they would receive a reminder, keeping our key contrast free of confounds, which would 216 

have been unavoidable had we chosen a retrospective confidence judgement as is more 217 

commonly used in the field. To increase the number of instances this analysis window was 218 

shown we therefore included partial miniblocks, that is half of the time (20 miniblocks per 219 

run), the miniblock ended immediately after the rating without the need to perform any shape 220 

classification trials or search for the target. 221 

The study comprised two sessions. The purpose of the first session was assessment of 222 

MRI safety, completion of a pre-study questionnaire on how much participants liked the 12 223 

colors used in the task, and training in the behavioral task (presented in MATLAB using 224 

Psychtoolbox3; Kleiner, Brainard, Pelli, Ingling, Murray, & Broussard, 2007). Participants 225 
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first completed eight practice blocks, each introducing them to a new aspect of the paradigm. 226 

They then completed four experimental runs that were identical to the task they would have 227 

to complete whilst in the scanner, each lasting ~9 minutes. During the second session, 228 

participants first underwent two practice blocks outside of the scanner (each lasting ~5 229 

minutes) to remind them of the task before they completed eight runs in the scanner, with a 6-230 

minute T1 scan between the fourth and fifth run. One participant only completed six blocks 231 

due to feeling unwell inside the scanner. Due to the unbalanced design, we decided to 232 

exclude this participant from all multivariate analyses. 233 

At the end of the second session, participants were furthermore asked to fill in a post-234 

experiment questionnaire, asking them to rate the liking of all colors again, together with how 235 

difficult they found them and several additional questions to determine whether they 236 

perceived the MetaM and MetaC conditions as similar, how much control they felt during 237 

these conditions, how they used the reminders depending on whether or not they asked for 238 

them, and how they approached each rating. The orientation of the rating scales was flipped 239 

halfway through the experiment to avoid confounding visuomotor processes with low versus 240 

high ratings. The order of scale orientations, response keys for the shape task, and the order 241 

of the conditions were counterbalanced across participants. 242 

 243 

MRI Data Collection and Preprocessing 244 

We used a 1.5T Siemens Avanto scanner with a 32-channel head coil and MRI-safe 245 

button boxes. We acquired both T1-weighted structural images, as well as T2*-weighted 246 

echoplanar images (EPI; 64 x 64; 3.2x3.2x3.2 mm voxels) with blood oxygen level-247 

dependent (BOLD) contrast. We used a multiband acquisition sequence with acceleration 248 

factor = 3, TE = 54.8 ms, flip angle = 75°, to record 39 interleaved, axial slices (3.2mm thick, 249 

oriented approximately to the anterior commissure - posterior commissure plane). This 250 
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allowed us to cover most of the brain with an effective repetition time of 1.3s per volume. 251 

Encoding phase direction was anterior to posterior. Functional scans were acquired in eight 252 

runs, each comprising 410 volumes (~9 min). The first five volumes in each session were 253 

discarded to allow for T1 equilibration effects. Between the fourth and fifth functional scans, 254 

an approximately 6 min T1-weighted MPRAGE structural scan was collected. 255 

All preprocessing was done using SPM12 256 

(https://www.fil.ion.ucl.ac.uk/spm/software/spm12/). The T1-weighted images were skull 257 

stripped and their origin was set to the anterior commissure. We then realigned the EPI 258 

volumes and normalized them into 3 mm cubic voxels with fourth-degree B-spline 259 

interpolation using normalization parameters derived from segmentation of the co-registered 260 

structural scan, then smoothed with an isotropic 8 mm full-width half-maximum Gaussian 261 

kernel. 262 

 263 

Statistical Analysis 264 

Analyses of behavioral data were conducted using R version 3.6.0 (“Planting of a 265 

Tree”) with the additional packages plyr, plotrix, Hmisc, R.matlab, viridis, effsize, 266 

raincloudplots, ggplot2, grid, gridExtra, and Rmisc. Statistical tests were conducted two-267 

sided if not stated otherwise. For t-tests we reported effect sizes as Cohen’s d, and for 268 

ANOVAs as partial eta square 2
p. For the fMRI analyses, the volumes acquired during the 269 

eight sessions were treated as separate time series. For each time series, the variance in the 270 

BOLD signal was decomposed with a set of regressors in a general linear model. Three 271 

regressors were generated to code for the target color presentation and the rating as a 7s 272 

boxcar, separately for miniblock and rating conditions (Baseline in MetaM blocks, low 273 

MetaM rating, high MetaM rating in MetaM blocks and Baseline in MetaC blocks, low 274 

MetaC rating, high MetaC rating in MetaC blocks). Six additional regressors were generated 275 
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that represented effects of no interest, specifically, stimulus presentation as a stick function, 276 

separately for targets and non-targets, the ongoing task spanning from the onset of the first to 277 

the last shape stimulus of the miniblock, separately for whether there was a prospective-278 

memory requirement (Baseline vs. MetaM and MetaC) and the time when the computer 279 

revealed to the participant whether they were allowed to use a reminder as a stick function, 280 

separately for Reminder and Own Memory miniblocks. All regressors were convolved with a 281 

canonical hemodynamic response function. The regressors outlined above, along with six 282 

regressors representing residual movement-related artefacts and the mean over scans 283 

comprised the full model for each session. The data and model were high-pass filtered at a 284 

cutoff of 1/128 Hz. Parameter estimates for each regressor were calculated from the least 285 

mean squares fit of the model to the data. Effects of interest were assessed in a random-effect 286 

analysis by first forming subject-specific contrasts subtracting the Baseline from the other 287 

two conditions. The resulting contrast images were entered into a repeated-measures 288 

ANOVA using nonsphericity correction (Friston, Glaser, Henson, Kiebel, Phillips, & 289 

Ashburner, 2002), representing a condition agnostic selection contrast to identify a network 290 

of regions active in the rating task. Results are reported applying a height threshold of p < 291 

0.001 uncorrected in conjunction with an extent threshold determined by SPM12 to achieve p 292 

< 0.05 familywise error correction for multiple comparisons across the whole brain volume. 293 

Region of interest (ROI) analyses were conducted by extracting subject-specific contrast 294 

estimates from the resulting ROIs with the toolbox MarsBaR (Brett, Anton, Valabregue, 295 

Poline, 2002), then entering the resulting data into an ANOVA in R using the same correction 296 

procedure described above. 297 

The logic behind the key analysis of our study was the following: Replicating and 298 

extending previous findings (Hebart et al., 2014; Cortese et al, 2016; Morales et al., 2018) we 299 

first trained separate classifiers to detect A) whether participants were in a high or low 300 
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confidence state (MetaM), and B) whether they had high or low desire for a reminder 301 

(MetaC). These classifiers could then also be combined in a cross-classification analysis, that 302 

is whether a classifier trained on MetaM ratings can also predict MetaC ratings (and vice 303 

versa). Insofar as this cross-classification is possible, this suggests shared brain 304 

representations for both aspects of metacognition. Going one step further, we then compared 305 

within-category classification to cross-classification accuracy to distinguish between two 306 

possible patterns of results: If MetaM and MetaC are based on the exact same 307 

representational code, there should be no difference in classification accuracy. If, on the other 308 

hand, MetaM and MetaC share partially overlapping patterns, we should find significantly 309 

higher classification accuracy for within- than across-category classification, but 310 

significantly-different-from-zero accuracy for cross-classification. 311 

For the multivariate-pattern analyses, we used The Decoding Toolbox (TDT; Hebart, 312 

Görgen, & Haynes, 2015), based on the beta images resulting from the previously described 313 

general linear models (except that the models were re-fit to unsmoothed, unnormalized data 314 

and the MetaM and MetaC boxcar regressors were split into two regressors each using a 315 

median split on the respective metacognitive rating). When we ran our four separate decoding 316 

analyses, two drew the training and testing data from the same condition (low vs. high ratings 317 

for the MetaM and MetaC conditions respectively; defined by block-, condition- and subject-318 

wise median splits), whereas the other two cross-classified (train on low vs. high MetaM 319 

ratings and test on high vs. low MetaC ratings and vice versa; note that the rating scale had to 320 

be flipped for MetaC as low confidence implies high desire for a reminder). For each of these 321 

analyses, a linear support vector machine (SVM) was trained to discriminate between low 322 

versus high ratings given the patterns of BOLD activity across voxels. Given the alternating 323 

block design and the fact that the orientation of the scale was flipped halfway through the 324 
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study, we had two low and two high rating images available for each training or testing fold, 325 

resulting in a 2-fold procedure (see Figure 1D). 326 

We used a whole-brain searchlight approach (Kriegeskorte, Goebel, & Bandettini, 327 

2006), meaning that for each voxel a separate SVM was built, fitted to the beta values within 328 

a sphere with a radius of 3 voxels (9.6 mm). This resulted in three-dimension decoding 329 

accuracy maps in native space for each participant and analyses. Decoding accuracy is 330 

calculated relative to chance level (subtracted by 50%, so a 5% accuracy corresponds to 331 

55%). These maps were then normalized into Montreal Neurological Institute (MNI) space 332 

(using the same normalization parameters as the univariate analyses) and smoothed using a 333 

Gaussian kernel (full-width half-maximum, 4mm). Please note that this kernel was half of the 334 

one used for the univariate analyses. This was done to avoid excessive smoothing, given that 335 

the searchlight analysis already imposes spatial smoothing on the data. The resulting images 336 

were entered into a one-sample t-test using SPM12. This allowed assessment of voxels 337 

showing consistently higher decoding accuracy in a random-effect analysis. We note that the 338 

suitability of second-level t-tests has been challenged for information-like measures such as 339 

classification accuracy, where classifier performance can meaningfully be above, but not 340 

below, chance levels (Allefeld, Görgen & Haynes, 2016; Hirose, 2020). However, this 341 

characteristic does not apply to our two key hypothesis-testing analyses. For the cross-342 

classification between MetaM and MetaC, high MetaM could either predict higher or lower 343 

MetaC. For the comparison between within- and cross-classification, accuracy for one 344 

classification could be higher or lower than the other. Therefore, in both cases our statistical 345 

tests are valid because they are performed on data that could meaningfully take values both 346 

above and below zero. 347 

Along with the main MVPA analyses described above, we conducted an additional 348 

analysis. Here, we used a similar approach to the univariate ROI analysis described above by 349 
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defining a condition agnostic contrast (the mean of all four decoding analyses), extracting 350 

ROIs with significantly above-chance decoding accuracy and then entering the resulting 351 

classification accuracies into a repeated-measures ANOVA with factors ROI, Training 352 

condition (MetaM/MetaC), and Classification type (within-condition/cross-classification). 353 

 354 

Results 355 

Behavioral Results 356 

Our sample included 22 participants, one of which was excluded due to excessive 357 

motion in the MRI scanner, see Methods for more details. Participants performed the tasks 358 

with a high level of accuracy (mean shape-discrimination accuracy = 93.4%, SEM = 0.84%; 359 

non-significant shape bias, t(20) = 1.2, p = 0.25, d = 0.26; mean target-detection rate = 360 

88.1%, SEM = 3.37%; NB chance target-detection accuracy would be 8.3%; false alarm rate 361 

= 0.8%). With our design, we decided against using a direct manipulation of difficulty (such 362 

as spacing some colors closer to each other in color space) as this would have made it 363 

difficult to interpret any effect of confidence due to its inherent confound with a difficulty 364 

manipulation. Instead, we relied upon natural fluctuations in confidence, caused for example 365 

by individual preferences for colors or fatigue. Figure 2A shows that average, unaided 366 

memory performance varied across colors with some colors (e.g. the 4th color, a shade of 367 

green) being associated with lower accuracy when participants had to remember this target 368 

color unaided by a reminder. Moreover, this figure shows that not all participants had the 369 

same inherent color-difficulty profile and that instead some participants perceived particular 370 

colors as more difficult than others. Performance in the Baseline condition was high. Here, an 371 

indicator of compliance with instructions is participants’ placement of the cursor between 372 

two thin lines marked on the scale (Figure 2B). Participants reported that those lines were 373 

difficult to see in the scanning session. Nevertheless, their cursor locations peaked around the 374 
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marked location and landed within the marked positions on approximately half the trials,  = 375 

47.6%. 376 

We next established that the reminders aided participants in their fulfilment of the 377 

delayed intentions by comparing target-detection error rates for miniblocks in which 378 

participants had to use their own memory (fixation dot stayed white) to miniblocks in which 379 

they were allowed to use a reminder (fixation dot took on target color), shown in Figure 2C. 380 

In both conditions, error rates were reduced when reminders could be used (F(1,20) = 20.5, p 381 

< 0.001, 2
p = 0.51; ts > 3.4, ps < 0.01, ds > 0.37 when tested separately for the MetaM and 382 

MetaC conditions). Error rates did not differ significantly between conditions, F < 1, nor was 383 

there an interaction between the two factors, F < 1. 384 

When asked explicitly after the experiment how similar they perceived the two 385 

conditions, participants rated the conditions as similar but not identical (M = 0.68 on a scale 386 

from 0 = ‘totally different’ to 1 = ‘exactly the same’; min = 0.28; max = 0.98). In fact, we 387 

found that participants’ perception of the two conditions differed in how much control 388 

participants felt they had over the reminders. On a scale ranging from 0 = no control to 1 = 389 

full control, participants rated the MetaM condition with a mean of M = 0.32 (min = 0.00; 390 

max = 0.88) and the MetaC condition with a mean of M = 0.80 (min = 0.06; max = 0.98). 391 

This difference was significant, t(20) = 6.4; p < 0.001, d = 1.94. This shows that participants 392 

were able to grasp the key difference that distinguished the two conditions. 393 

We furthermore aimed to rule out that any condition differences found in the pattern 394 

classification analyses could be caused by behavioral differences in how the different ratings 395 

were approached. Firstly, Figure 3A shows that the average ratings participants gave for each 396 

individual color were almost indistinguishable whether they were giving a metacognitive-397 

monitoring or metacognitive-control rating. In fact, if we correlated the average ratings for 398 

each color for each individual participant, there was an average relationship of r = 0.76 with 399 
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19 out of 21 participants showing a significant, positive relationship between the MetaM and 400 

the MetaC rating for different colors. Relatedly, participants’ rating and rating RT 401 

distributions for the two types of ratings were closely matched (Figures 3B and 3C). It is 402 

important to note that participants did not receive any instructions to use these scales in the 403 

same way (except for being asked to use the entire range of the scale in both cases). 404 

Futhermore, neither of the metacognitive rating conditions showed a systematic 405 

relationship between confidence and accuracy: For retrospective confidence judgements, it is 406 

commonly found that these correlate, that is participants express lower confidence on errors 407 

than on correct trials (confidence resolution or type-II sensitivity). In the MetaC condition on 408 

the other hand, participants’ ratings triggered reminders, so we would expect to see the 409 

opposite pattern: Trials for which they expressed a high need for a reminder should naturally 410 

be the ones on which they were allowed to offload and error rates should therefore be lower. 411 

However, we found no significant difference between correct- and error-trial ratings in any of 412 

the four conditions (MetaC reminder, t(14) = 0.2, p = 0.88, d = 0.04; MetaC own memory, 413 

t(19) = 0.1, p = 0.95, d = 0.02; MetaM reminder, t(17) = 1.0, p = 0.34, d = 0.30; MetaM own 414 

memory, t(20) = 1.1, p = 0.28, d = 0.23; participants with missing data excluded from the 415 

respective analysis). We furthermore correlated the dichotomous accuracy vector with our 416 

continuous confidence measure for all four data cells, separately for each participant. The 417 

distributions of these correlations are shown in the right panels of Figure 3D. None were 418 

significantly different from zero, ts < 1.0, ps > 0.32. Taken together, both the prospective 419 

nature of the ratings in the present task (i.e. participants might have felt they needed to invest 420 

more into trials in which they felt less confident or wanted a reminder more) and our unique 421 

offloading design could potentially have led to a reduced confidence resolution, but this was 422 

the case for both rating conditions. 423 

 424 
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Univariate fMRI Results 425 

We first performed univariate analyses to identify brain regions activated by the 426 

requirement to encode new intentions and make metacognitive judgements about them. We 427 

therefore averaged across the two metacognition conditions (MetaM and MetaC) and 428 

compared them to the Baseline condition, allowing us to find regions of interest (ROIs) 429 

activated by our task. After family-wise error correcting for multiple comparisons, this 430 

contrast revealed seven regions showing increased BOLD signal in the metacognitive 431 

conditions (see Table 2 and Figures 4A and 4B). 432 

Within the seven ROIs, activity was then compared between the metacognition 433 

conditions. More specifically, activity was extracted in two separate contrasts (MetaM > 434 

Baseline and MetaC > Baseline) and then compared. Note that this comparison is orthogonal 435 

to the initial selection contrast and therefore unbiased (Kriegeskorte, Simmons, Bellgowan, & 436 

Baker, 2009). BOLD signal was higher for the MetaC than the MetaM condition in all seven 437 

ROIs (Figure 4C) and this main effect was significant when examined in a ROI (7) x 438 

Condition (2: MetaC/MetaM) repeated-measures ANOVA, F(1,20) = 8.1, p = 0.01, ηp
2 = 439 

0.29. There was furthermore a reliable main effect of ROI, F(7,140) = 7.8, p < 0.001, ηp
2 = 440 

0.28, as well as a significant interaction of the two factors, F(7,140) = 3.4, p < 0.01, ηp
2 = 441 

0.14, reflecting that the absolute signal change and also the difference in signal change was 442 

larger in some ROIs compared to others. Taken together, these results show that regions 443 

which respond to the conditions requiring delayed intentions and metacognitive judgments 444 

showed higher activity when participants rated how much they would like a reminder 445 

(MetaC) compared to how confident they were (MetaM). 446 

We repeated the univariate analyses for deactivations, revealing six “task-negative” 447 

regions showing decreased signal in the conditions requiring delayed intentions and 448 

metacognitive judgments compared with baseline (Figure 5 and Table 3). These regions 449 
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included the cingulate and paracingulate cortices, supplementary motor area, supramarginal 450 

gyrus, middle and inferior temporal gyri, occipital gyri, and anterior cingulate gyrus. Within 451 

these task-negative ROIs, there was more deactivation when participants rated how confident 452 

they were (MetaM) compared to how much they would like a reminder (MetaC), however, 453 

BOLD signal did not differ significantly between the MetaC and the MetaM condition, 454 

F(1,20) = 1.3, p = 0.26, ηp
2 = 0.06. There was a reliable main effect of ROI, F(5,100) = 18.2, 455 

p < 0.001, ηp
2 = 0.48. The interaction was not significant, F < 1. 456 

 457 

Multivariate fMRI Results 458 

The multivariate analyses allowed us to address our two key questions: 1) Do the 459 

brain patterns of different metacognitive experiences also distinguish different acts of 460 

control? and 2) Can the neural patterns that characterize specific acts of metacognitive 461 

control be exhaustively characterized in terms of their associated metacognitive experiences? 462 

In a first analysis, we attempted to decode confidence (MetaM). Figures 6A and 6B show the 463 

resulting decoding accuracy maps corrected for chance level and multiple comparisons, 464 

resulting in nine clusters that contained meaningful information when predicting whether the 465 

brain was currently in a low or high confidence state including the anterior cingulate gyrus, 466 

parietal occipital sulcus, central sulcus, superior parietal lobule, superior occipital gyrus, 467 

cuneus, precuneus, supplementary motor area, occipital fusiform gyrus, calcarine cortex; 468 

superior corona radiata, and precentral gyrus (Table 4). 469 

We then repeated the equivalent analysis for the MetaC condition, again successfully 470 

decoding whether participants gave a low or high rating (i.e. desire for a reminder) from five 471 

clusters including the occipital pole, lateral occipital cortex, superior parietal lobule, superior 472 

frontal gyrus (medial segment), middle temporal gyrus (see Table 4). Together these analyses 473 

show that the neuroimaging data contains meaningful patterns that distinguish both different 474 
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metacognitive experiences (low vs. high confidence) and different acts of metacognitive 475 

control (low vs. high desire for a reminder). 476 

Having established the existence of meaningful patterns across the brain that 477 

distinguish different levels both of MetaM and MetaC, we could then ask whether it was 478 

possible to cross-classify the two aspects of metacognition. More specifically, we trained 479 

classifiers to distinguish low from high confidence beta images (MetaM) and tested them to 480 

predict high versus low MetaC ratings. Note that an inverse relationship is expected between 481 

MetaM and MetaC ratings, i.e. low confidence predicts high desire for reminder and vice 482 

versa. Therefore one of the scales was inverted in order to perform this analysis. Above-483 

chance classification accuracy can be interpreted as overlapping patterns encoding both 484 

MetaM and MetaC. The same analysis was then applied to the opposite direction (train on 485 

MetaC, test on MetaM). Importantly, we found overlapping patterns that encode these 486 

different types of metacognitive ratings. However, only for the latter analysis direction (train 487 

on MetaC, test on MetaM) did we find above-chance classification accuracy after correcting 488 

for multiple comparisons. The surviving cluster was located in the left superior and middle 489 

frontal gyri. These findings show that brain patterns associated with different metacognitive 490 

experiences (low vs. high confidence) also distinguish different acts of metacognitive control 491 

(low vs. high desire for a reminder). 492 

To address our second key question, we compared classification accuracy resulting 493 

from the two different types of classification analyses described above: within-category (test 494 

on MetaM and train on MetaM; test on MetaC and train on MetaC) versus across-category 495 

classification (i.e. cross-classification: test on MetaM and train on MetaC; test on MetaC and 496 

train on MetaM). We first performed a condition-blind analysis by averaging across all four 497 

decoding analyses. This identified ROIs that contain information in one or more of the 498 

analyses in an unbiased manner, yielding significant effects in the occipital pole, middle 499 
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occipital gyrus, parietal cortex (superior parietal lobule, precuneus), superior frontal gyrus, 500 

middle frontal gyrus; precentral gyrus (see Table 5 and Figures 6C and 6D). Within the 501 

resulting ROIs, classification accuracies in the four analyses could then be compared (see 502 

Figure 6E) to address the question whether decoding accuracy differed significantly between 503 

the within-condition classification and the cross-classification analyses. Taking an analogous 504 

approach to our univariate analysis, these comparisons were unbiased because they were 505 

orthogonal to the analysis used to define the ROIs. We entered the classification accuracies 506 

from these regions into a repeated-measures ANOVA with factors ROI, Training condition 507 

(MetaM/MetaC) and Classification type (within-condition/between-condition cross-508 

classification). There was a significant main effect of Classification type, F(1,19) = 6.2, p = 509 

0.02, ηp
2 = 0.25, with higher classification accuracy for within-condition classifications than 510 

between-condition cross-classifications. This finding can be interpreted as partially 511 

overlapping neural representations between MetaM and MetaC as opposed to perfect overlap 512 

between the patterns associated with the two aspects of metacognition. Moreover, there was 513 

no effect of the conditions on which the classifier was trained or which ROI was analyzed, Fs 514 

< 1. We found a significant interaction between ROI and category (within vs. between 515 

classification), F(6,114) = 2.4, p = 0.03, ηp
2 = 0.11, reflecting that the difference between 516 

within-condition and across-condition decoding analyses was larger in some ROIs compared 517 

to others. No other interactions were significant, Fs < 1. In sum, while our results 518 

demonstrate overlapping patterns between metacognitive monitoring and control, they also 519 

suggest that patterns of metacognitive control cannot exhaustively be characterized by 520 

associated patterns of metacognitive monitoring when participants report their confidence. 521 

 522 

Discussion 523 
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Metacognitive monitoring is only valuable insofar as it can subsequently influence 524 

control. And metacognitive control can only occur if there are metacognitive representations 525 

to begin with, which can then be utilized to adjust future behaviour. The two processes must 526 

therefore be intimately related, yet the mapping between them requires further study, 527 

especially on a neural level. Here we report three main findings: 1) we can separately decode 528 

metacognitive monitoring and metacognitive control; 2) brain patterns of different levels of 529 

metacognition monitoring (low vs. high confidence) also distinguish different acts of 530 

metacognitive control (low vs. high desire for a reminder); and 3) this overlap in patterns 531 

while significant is only partial. These findings suggest that patterns of brain activity 532 

corresponding to specific acts of metacognitive control are partially, but not fully, 533 

characterized by associated acts of metacognitive monitoring. 534 

Our cross classification analysis revealed involvement of the left superior and middle 535 

frontal gyri, which form part of the lateral prefrontal cortex (laPFC) in both metacognitive 536 

monitoring and control. The role of the laPFC in metacognition has already been highlighted 537 

by previous studies, suggesting a role in domain-general metacognition (Morales et al., 2018; 538 

see also Vaccaro & Fleming, 2018), in the readout of sensory information as an input for 539 

confidence signals (Shekhar & Rahnev, 2018), and more broadly in a mediating role of more 540 

rostral parts of laPFC in metacognitive accuracy (Fleming, Weil, Nagy, Dolan, & Rees, 2010; 541 

Rounis, Maniscalco, Rothwell, Passingham, & Lau, 2010). Crucially, the laPFC has also been 542 

implied in metacognitive control (Qiu et al, 2018; for reviews see Seow, Rouault, Gillan, & 543 

Fleming, 2021; Shimamura, 2000; Fleming & Dolan, 2014) matching its more general 544 

proposed involvement in cognitive control (MacDonald, Cohen, Stenger, & Carter, 2000; 545 

Ridderinkhof et al., 2004). Our study therefore extends this growing body of research that 546 

implies an involvement of the lateral prefrontal cortex in metacognition and cognitive 547 

control. 548 
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Seeing as MetaC could not be characterized exhaustively in terms of the MetaM 549 

judgments we investigated, this raises the obvious question of which other signals might 550 

contribute to MetaC. We consider two main possibilities. The first possibility is that non-551 

metacognitive signals also play a role in influencing MetaC. A wide variety of signals may be 552 

relevant here, such as motivation, the costs and rewards associated with different levels of 553 

performance, serial dependencies, fatigue, states of interoceptive and bodily awareness 554 

reflecting endogenous signals like arousal (Allen et al., 2016; Hauser et al., 2017; Rouault, 555 

McWilliams, Allen, & Fleming, 2018) and so on. This influence of non-metacognitive 556 

signals on metacognitive control was already acknowledged in the seminal paper by Nelson 557 

and Narens (1990) introducing their metamemory framework. The influence of a wide variety 558 

of signals on control is also central to an influential model from the cognitive control 559 

literature, the Expected Value of Control model (EVC; Shenhav, Botvinick, & Cohen, 2013). 560 

This model emphasizes the flexibility with which different control signals are selected, based 561 

on the costs and benefits associated with these signals. The model proposes that the dorsal 562 

anterior cingulate cortex integrates both costs and benefits to form the expected value of 563 

control. Seeing as MetaC may involve the integration of multiple relevant signals, including 564 

the products of MetaM and additional non-metacognitive signals as well, this could 565 

potentially explain the greater univariate signal we observed for the MetaC than the MetaM 566 

condition. This suggests the incorporation of additional processes into the MetaC judgement 567 

beyond those involved in MetaM. We also note that the factor of within- versus cross-568 

classification interacted significantly with region, even though there was no main effect of 569 

region. This suggests that the overlap between MetaM and MetaC is greater in some regions 570 

than others. 571 

A second possible contribution to the MetaC condition is the integration of additional 572 

metacognitive signals, beyond the confidence judgement required by the MetaM condition. In 573 
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our task, for instance, participants’ desire for reminder might have been influenced not only 574 

by confidence in their prospective memory but also confidence in their perceptual 575 

judgements. Consistent with this, behavioral evidence suggests that confidence judgements 576 

are influenced by a variety of domain-general and domain-specific signals (Gilbert, 2015; 577 

Kantner, Solinger, Grybinas, Dobbins, 2018; Rouault et al., 2018). Confidence can be 578 

regarded as an explicit representation of uncertainty, and uncertainty exists at multiple levels 579 

throughout the brain (as noted by the Bayesian brain hypothesis; Knill & Pouget, 2004). 580 

Therefore, the metacognitive signals measured in the MetaM condition probably form only a 581 

subset of the metacognitive signals which may have contributed to MetaC judgements. 582 

Our paradigm involved measurement of only a single MetaC judgment, which may 583 

have been influenced by multiple MetaM signals. In reality, there are multiple types of both 584 

MetaM and MetaC. Take for example the situation of a foreign language student studying for 585 

a test at her desk during the early evening hours. The student reads a word on a flashcard and 586 

we can assume she has access to two relevant metacognitive signals: On the one hand there is 587 

the certainty with which the word is perceived in the waning light, the other is the certainty 588 

with which the word is recognized from memory. The former confidence should guide her 589 

decision whether or not to switch on her desk lamp. The latter confidence should guide her 590 

decision whether or not to place the flashcard on the pile marked as ‘restudy’. Similarly, the 591 

same confidence signal could lead to opposite consequences depending on the situation as 592 

shown by Carlebach & Yeung (2021). The authors report that low confidence leads to advice-593 

seeking when the quality of the advice is known and high. However, when the quality of the 594 

advice is unknown, people tend to seek advice especially when they have high confidence to 595 

test the accuracy of the advisor. How does the brain then ‘harvest’ these various confidence 596 

signals and route them to the appropriate act(s) of metacognitive control? How does it 597 

flexibly switch to a different set of signals when required to do so? How are metacognitive 598 
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signals weighted by past rewards, and how do such weightings shift when our goals change? 599 

Questions such as these could potentially be addressed by adapting the present paradigm to a 600 

situation involving two or more forms of metacognitive monitoring and control. 601 

The key finding of our study was the cross-classification between MetaM and MetaC. 602 

At a whole-brain corrected threshold, this analysis produced a significant effect in only one 603 

direction (train on MetaC and test on MetaM). It is not clear whether this reflects an 604 

asymmetry in cross-classification, or simply a thresholding artefact. This could be an 605 

interesting question to investigate in future work. Our finding of successful cross 606 

classification is in line with the notion that metacognition should be regarded as a cornerstone 607 

of cognitive control. Twenty years ago, this point was made prominently by Fernandez-608 

Duque, Baird, & Posner (2000), who drew parallels between metacognitive and executive 609 

control functions. Similarly, Yeung & Summerfield (2012, 2014) have suggested that error 610 

monitoring, as it is commonly studied in the cognitive-control literature, constitutes an 611 

inverse, binary measure of graded confidence. It is therefore not surprising that decision 612 

confidence is tracked by a well-established electrophysiological marker of error monitoring, 613 

the error positivity (Pe; Boldt & Yeung, 2015). Other empirical examples of links between 614 

metacognition and cognitive control are the findings that metacognitive efficiency correlates 615 

with cognitive control ability (Drescher, Van Den Bussche, & Desender, 2018) and that 616 

confidence modulates the speed accuracy tradeoff on a trial-by-trial basis with participants 617 

prioritizing accuracy over response speed after a previous low-confidence decision (Desender 618 

et al., 2019). The latter effect is reminiscent of post-error slowing (Rabbitt, 1966; 619 

Danielmeier & Ullsperger, 2011; Jentzsch & Dudschig, 2009), one of the most extensively 620 

studied effects of the cognitive control literature. 621 

Our findings bear some interesting parallels to another recent decoding study: Mei 622 

and colleagues (2020) reported the results from two behavioral experiments, each focused on 623 



 

 26 

a different type of prospective decision (belief of successfully classifying a visual stimulus 624 

vs. deciding whether or not to attend to the stimulus during the upcoming trial). The authors 625 

found that it was possible to use the data from one experiment (awareness ratings, confidence 626 

ratings and accuracy in previous trials) to predict the prospective decision from the respective 627 

other experiment and vice versa. This cross-classification analysis therefore highlights 628 

similarities of metacognitive monitoring (in this case: beliefs of successfully classifying the 629 

upcoming stimulus) and metacognitive control (in this case: decision to attend), showing that 630 

both aspects of metacognition appear in the context of the same behavioral precursors. 631 

 Despite the theoretical distinction between two binary facets of metacognition and 632 

the two different labels assigned to the conditions, the conceptual distinction between the two 633 

is not as straightforward as it may seem. For example, our MetaM condition might still be 634 

considered to involve an act of metacognitive control in the sense that participants need to 635 

use their metacognitive knowledge to control the act of placing the cursor on the scale to 636 

indicate low versus high confidence. We suggest that the key distinction between the 637 

conditions is that metacognitive monitoring involves relatively direct read-out of 638 

metacognitive (e.g. confidence) signals, whereas metacognitive control involves the use of 639 

the signals to inform more complex behaviors rather than report the metacognitive experience 640 

itself. However, seeing as metacognitive reports are, at least to some degree, inferential in 641 

nature (Koriat, 1993), metacognitive monitoring and control might be seen as extreme points 642 

on a continuum rather than dichotomous processes. 643 

In sum, our study delineates the similarities and divisions between neural correlates of 644 

metacognitive monitoring and control. Ultimately, understanding the link between 645 

monitoring and control could inform interventions such as metacognitive training in 646 

conditions including brain injury (Fleming et al., 2017), schizophrenia (Moritz & Woodward, 647 

2007) and OCD (Fisher & Wells, 2008). We propose that a full understanding of the 648 
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relationship between monitoring and control will require a focus on the ways in which 649 

distinct metacognitive signals are integrated and selectively routed to appropriate acts of 650 

metacognitive control. 651 

  652 
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Figure Legends 934 

Figure 1: A) Model of metamemory proposed by Nelson & Narens (1990). The arrows 935 

indicate the flow of information. B) Example of a typical MetaM miniblock: Participants 936 

were presented with a target color and had to rate how confident they were that they would 937 

remember this color later on. It was then revealed whether or not they were allowed to use a 938 

reminder for the current miniblock (in this case, the fixation dot took on the target color for 939 

the duration of the ongoing task). The ongoing task was a shape discrimination task where 940 

participants had to judge whether an array of colored shapes was on average a circle or 941 

square. The miniblock ended unpredictably with the target color, which participants were 942 

instructed to respond to using a different key. The analysis window for the fMRI analyses is 943 

highlighted in yellow. C) Two example blocks showing how participants were alternatingly 944 

presented with one Baseline miniblock and then four miniblocks of the current metacognitive 945 

rating condition (MetaM or MetaC), shown in different colours. The height of the rectangles 946 

reflects the approximate length of the miniblocks, their shading and angle the offloading 947 

condition. D) Design matrices for the within-category classifications (first two panels from 948 

the right) and cross classifications (second two panels from the right). Lighter colors denote 949 

beta images modelling the lower half of ratings in the block in question, whereas darker 950 

colors denote higher ratings. Please note that in this example the participant began the 951 

experiment with the MetaM condition, but that approximately half of our sample started in 952 

the opposite order for balancing reasons. Note also that an inverse relationship between 953 

MetaC and MetaM is expected in the cross-classification analysis, hence the ordering of high 954 

vs. low MetaC (dark vs. light red) has been flipped in the cross classifications. 955 

 956 

Figure 2: A) Target detection accuracy across the range of twelve target colors, placed 957 

equidistant in RGB space. Only trials without a reminder were included and the data were 958 
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averaged across conditions (metacognitive monitoring and metacognitive control). The thick 959 

black line indicates the sample average, whereas thinner lines represent individual 960 

participants. B) Placement of the cursor in the Baseline condition relative to the marked 961 

position on the scale (shown in red). Each black line indicates the data from a single 962 

participant. C) Target detection accuracy as a function of miniblock condition (Metacognitive 963 

Monitoring and Metacognitive Control) and offloading condition (Own Memory and 964 

Reminder) as a raincloud plot (Allen et al., 2019). The distributions depict the densities of the 965 

participant-wise accuracy averages for each condition. The boxplots show the median and 966 

interquartile range of the data and the lines represent the individual observations. 967 

 968 

Figure 3: A) Participants’ ratings of Metacognitive Monitoring (low to high confidence) and 969 

Metacognitive Control (high to low need for a reminder; to match orientation of the 970 

confidence scale) showed a similar pattern across the twelve different colors placed 971 

equidistant in RGB space. B and C) Histogram of the B) ratings and C) rating RTs pooled 972 

across all participants as a function of rating type. D) Metacognitive ratings as a function of 973 

objective accuracy and condition shown as participant-wise averages (left panels) and 974 

correlations (right panels). MetaM = metacognitive monitoring; MetaC = metacognitive 975 

control. 976 

 977 

Figure 4: A) and B) show the regions of significant signal change in the contrast of (MetaM + 978 

MetaC) > Baseline. A) Significant results were plotted on sagittal (x = -3), coronal (y = 27) 979 

and axial (z = 23) views of the skull-stripped, mean, normalized structural image. B) Three-980 

dimensional renderings of results on right hemisphere, left hemisphere, and superior views. 981 

C) Percent signal change for both metacognitive rating conditions in comparison with the 982 

Baseline condition, in regions of interest (ROIs) defined by the contrasts shown in Table 2. 983 
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MetaM = metacognitive monitoring; MetaC = metacognitive control; r = right; l = left; MFG 984 

= middle frontal gyrus; IFG = inferior frontal gyrus; SFG = superior frontal gyrus; SMA = 985 

supplementary motor area. Error bars indicate +/- within-subject confidence intervals (95%) 986 

according to Morey (2008). 987 

 988 

Figure 5: A) and B) show the regions of significant signal change in the contrast of Baseline 989 

> (MetaM + MetaC). A) Significant results were plotted on sagittal (x = 0), coronal (y = -20) 990 

and axial (z = 0) views of the skull-stripped, mean, normalized structural image. B) Three-991 

dimensional renderings of results on right hemisphere, left hemisphere, and superior views. 992 

C) Percent signal change for both metacognitive rating conditions in comparison with the 993 

Baseline condition, in regions of interest (ROIs) defined by the task-negative contrasts shown 994 

in Table 3. MetaM = metacognitive monitoring; MetaC = metacognitive control r = right; l = 995 

left; SMA = supplementary motor area; MTG = middle temporal gyrus; ITG = inferior 996 

temporal gyrus; OcG = occipital gyri. Error bars indicate +/- within-subject confidence 997 

intervals (95%) according to Morey (2008). 998 

 999 

Figure 6: A) and B) show the above-chance decoding accuracy maps for the condition-1000 

specific classification analyses (blue: train on MetaM, test on MetaM; red: train on MetaC, 1001 

test on MetaC; yellow: train on MetaC, test on MetaM). A) Significant results were plotted 1002 

on sagittal (x = -5), coronal (y = 7) and axial (z = 43) views of the skull-stripped, mean, 1003 

normalized structural image. B) Three-dimensional renderings of results on right hemisphere, 1004 

left hemisphere, and superior views. C) and D) show the above-chance decoding accuracy 1005 

maps when all four classification analyses were averaged (condition-blind decoding). C) 1006 

Significant results were plotted on sagittal (x = -18), coronal (y = 38) and axial (z = 3) views 1007 

of the skull-stripped, mean, normalized structural image. D) Three-dimensional renderings of 1008 
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results on right hemisphere, left hemisphere, and superior views. E) Above-chance 1009 

classification accuracy for all four classification analyses (trained and/or tested on MetaM 1010 

and MetaC, respectively) in regions of interest (ROIs) defined by a condition-blind selection 1011 

contrast that averaged across all four analyses, listed in Table 5. MetaM = metacognitive 1012 

monitoring; MetaC = metacognitive control, r = right; l = left; SFG = superior frontal gyrus; 1013 

MFG (medial frontal gyrus). Error bars indicate +/- within-subject confidence intervals 1014 

(95%) according to Morey (2008).  1015 
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Tables 1016 

Table 1: List of experimental conditions. 1017 

 Baseline MetaM MetaC 

Proportion 20% 

(32 partial + 32 full 

= 64 miniblocks) 

40% 

(64 partial + 64 full 

= 128 miniblocks) 

40% 

(64 partial + 64 full 

= 128 miniblocks) 

Delayed intention / Target color Target color 

Rating Cursor placement Very unconfident to 

very confident 

Sure reminder to 

sure own memory 

Reminders / 50% (random) based on moving 

median rating cut-

off 

 1018 

Table 2: Regions of increased signal in the MetaM and MetaC conditions, relative to the 1019 

Baseline condition. MetaM = metacognitive monitoring; MetaC = metacognitive control; l = 1020 

left; r = right. 1021 

Contrast Label Laterality Peak 

voxel 

MNI co-

ordinates 

kE pFWE 

cluster-

corrected 

Zmax at 

peak level 

(MetaM + 

MetaC) > 

Baseline 

Occipital and 

parietal cortex 

(calcarine 

cortex; cuneus; 

precuneus; 

right and 
left 

30, -55, 5 1338 < 0.001 5.14 



 

 47 

lateral 

ventricles; all 

regions both l 

and r) 

 Middle frontal 

gyrus 

right 42, 32, 44 345 < 0.001 4.94 

 Inferior and 

middle frontal 

gyri 

left -42, 20, 26 802 < 0.001 4.68 

 Superior and 

middle frontal 

gyri 

right 27, 62, 5 152 0.002 4.49 

 Supplementary 

motor area 

left -6, 23, 44 117 0.009 4.27 

 Angular gyrus left -57, -55, 
44 

150 0.003 4.16 

 Pre- and 

postcentral gyri 

right 18, -28, 65 75 0.046 4.08 

 Angular gyrus right 57, -58, 44 87 0.028 4.05 

 1022 

Table 3: Regions of decreased signal in the MetaM and MetaC conditions, relative to the 1023 

Baseline condition. MetaM = metacognitive monitoring; MetaC = metacognitive control; l = 1024 

left; r = right. 1025 

Contrast Label Laterality Peak 

voxel 

MNI co-

kE pFWE 

cluster-

corrected 

Zmax at 

peak level 



 

 48 

ordinates 

Baseline  > 

(MetaM + 

MetaC) 

Cingulate and 

paracingulate 

cortices; SMA 

(supplementary 

motor area; all 

regions both r 

and l) 

right and 

left 

3, 2, 35 311 < 0.001 5.99 

 Supramarginal 

gyrus 

right 60, -19, 35 809 < 0.001 5.96 

 Supramarginal 

gyrus 

left -66, -28, 

35 

1249 < 0.001 5.86 

 MTG and ITG 

(middle and 

inferior 

temporal gyri); 

OcG (occipital 

gyri) 

left -45, -61, 8 534 < 0.001 4.93 

 MTG and ITG 

(middle and 

inferior 

temporal gyri); 

OcG (occipital 

gyri) 

right 57, -55, -4 508 < 0.001 4.92 

 Anterior right 3, 32, -4 560 < 0.001 4.61 
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cingulate gyrus 

 1026 

Table 4: Clusters of above-chance classification accuracy in the four classification analyses. 1027 

MetaM = metacognitive monitoring; MetaC = metacognitive control; l = left; r = right. 1028 

MVPA Label Laterality Peak 

voxel 

MNI co-

ordinates 

kE pFWE 

cluster-

corrected 

Zmax at 

peak level 

MetaM (low 

vs. high 

confidence) 

Anterior 

cingulate gyrus 

left -3, 17, 26 58 < 0.001 4.57 

 Parietal 

occipital sulcus 

left -18, -85, 
41 

310 < 0.001 4.51 

 Central sulcus right 21, -28, 53 90 < 0.001 4.51 

 Superior 

parietal lobule; 

superior 

occipital gyrus; 

cuneus; 

precuneus 

right 24, -70, 50 404 < 0.001 4.43 

 Supplementary 

motor area 

(both l and r) 

right 15, 14, 44 149 < 0.001 4.10 

 Occipital 

fusiform gyrus 

left -33, -67, -
19 

80 < 0.001 3.94 
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 Calcarine 

cortex; cuneus 

(all regions 

both l and r) 

left -6, -67, 14 43 0.003 3.89 

 Superior 

corona radiata 

left -24, -13, 
32 

38 0.006 3.75 

 Precentral 

gyrus 

left -45, 2, 35 26 0.046 3.69 

MetaC (low 

vs. high 

need for a 

reminder) 

Occipital pole left -9, -100, 
14 

93 < 0.001 4.09 

 Lateral 

occipital cortex 

right 36, -73, 5 28 0.029 4.08 

 Superior 

parietal lobule 

left -12, -67, 
53 

50 0.001 3.79 

 Superior 

frontal gyrus 

(medial 

segment) 

 0, 29, 50 31 0.017 3.63 

 Middle 

temporal gyrus 

right 57, -52, -4 32 0.014 3.58 

MetaC  

MetaM 

Superior and 

middle frontal 

gyri 

left -21, 11, 62 52 < 0.001 4.14 
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MetaM  

MetaC 

/ / / / / / 

 1029 

Table 5: Clusters of above-chance classification accuracy in the condition-blind classification 1030 

analyses. 1031 

Label Laterality Peak voxel 

MNI co-

ordinates 

kE pFWE cluster-

corrected 

Zmax at peak 

level 

Occipital pole right 15, -94, 11 90 0.002 4.54 

Occipital pole left -24, -91, -1 321 < 0.001 4.51 

Middle occipital 

gyrus 

left -30, -70, 26 89 0.002 4.47 

Parietal cortex 

(superior parietal 

lobule; 

precuneus) 

right 18, -55, 59 115 < 0.001 4.22 

Superior frontal 

gyrus 

left -12, 17, 44 114 < 0.001 4.12 

Superior and 

middle frontal 

gyri; precentral 

gyrus 

left -27, 8, 62 121 < 0.001 3.96 

Parietal cortex 

(superior parietal 

lobule; 

left -15, -70, 44 91 0.002 3.65 
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precuneus) 

 1032 














