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Abstract

Statistical inference for manifolds attracts much attention because of its power of

working with more general forms of data or geometric objects. We study regression

and stochastic differential equations on manifolds from the intrinsic point of view.

Firstly, we are able to provide alternative parametrizations for data that lie

on Lie group in the problem of fitting a regression model, by mapping this space

intrinsically onto its Lie algebra, while we explore the behaviour of fitted values

when this base point is chosen differently. Due to the nature of our data in the

application of soft tissue artefacts, we employ two correlation structures, namely

Mateŕn and quasi-periodic correlation functions when using the generalized least

squares, and show that some patterns of the residuals are removed.

Secondly, we construct a generalization of the Ornstein-Uhlenbeck process

on the cone of covariance matrices SP(n) endowed with two popular Riemannian

metrics, namely Log-Euclidean (LE) and Affine-Invariant (AI) metrics. We show

that the Riemannian Brownian motion on SP(n) has infinite explosion time as on

the Euclidean space and establish the calculation for the horizontal lifts of smooth

curves. Moreover, we provide Bayesian inference for discretely observed diffusion

processes of covariance matrices associated with either the LE or the AI metrics,

and present a novel diffusion bridge sampling method using guided proposals when

equipping SP(n) with the AI metric. The estimation algorithms are illustrated with

an application in finance, together with a goodness-of-fit test comparing models

associatedwith differentmetrics. Furthermore, we explore themultivariate volatility

models via simulation study, in which covariancematrices in themodels are assumed

to be unobservable.



Impact statement

Statistical inference on manifolds receives much attention in the literature, however,

because of non-linearity studying statistical inference on general manifolds is dis-

tinct from the Euclidean space. Thus, the Gaussian distribution, while it can be

defined, loses its ubiquitous role and many standard statistical procedures behave

unexpectedly. While regression analysis and stochastic differential equations have

been very successful for several decades, little has been published on the case when

the state space on which the system evolves is not simply Euclidean.

In this thesis, we focus on two applications where ignoring the special geomet-

ric structures negatively affect model fits. Firstly, we study the human knee joint

whose bending at each point in time is described by a rotational matrix, which is an

element belonging to the Lie group of rotations of solid three-dimensional bodies.

Particularly, we extend the use of generalized least squares to any compact and

connected Lie group through a transformation to its tangent space at the identity.

Secondly, we generalize the famous Ornstein-Uhlenbeck process on the Euclidean

space to the space of covariance matrices, SP(n). In particular, we develop a novel

diffusion bridge sampling strategy from the intrinsic point of view and perform in-

ference for partially observed data when SP(n) is a complete Riemannian manifold

of non-positive sectional curvature. And inference for the multivariate stochastic

volatility models is also explored toward the end of the thesis.

In summary, this thesis extends existing methods in statistical science in the

case where curvature cannot be ignored and by exploring geometric structure, we can

find new statistical methodology that is applicable in improving modelling across a

range of applications.
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Chapter 1

Introduction

1.1 Statistical inference on manifolds
Statistical inference on manifolds has received much attention in the literature be-

cause manifolds not only do manifold-valued observations appear in many applica-

tions (i.e. directional data [7, 8, 9], shape [10, 11], diffusion tensors [12, 13], etc) but

also because manifolds are able to explain geometric concepts (e.g. collinearity in

regression analysis [14], etc). However, because of non-linearity, studying statistical

inference on general manifolds is distinct from the Euclidean space. For example,

the most favoured probability distribution on the Euclidean space, Gaussian distri-

bution, loses many favourable properties, such as that the additive Gaussian error is

no longer well-defined on a general manifold. Moreover, many standard statistical

procedures behave unexpectedly, such as the existence and uniqueness of the Fréchet

mean only being guaranteed for some special conditions [15], such as Riemannian

manifold with non-positive sectional curvature, and in general it is not guaranteed,

see Example 1.1.

Example 1.1. The Earth (or sphere S2) in Figure 1.1a is a smooth manifold (Fig-

ure 1.1a were created from [16]). It can be easily seen that globally it is a curved

surface, whereas locally it is flat. For instance, if we only look at London instead of

the whole Earth, we can assume that London is approximately flat.

Furthermore, there is more than one geodesic connecting the North pole and

the South pole, see Figure 1.1b. Since the Fréchet mean is defined such that it
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(a) The Earth is a smooth manifold. (b) Fréchet means on S2.

Figure 1.1: Fréchet mean on the smooth manifold S2.

minimizes the sum of squared distances between itself and the observations globally,

if our observations are the North pole and the South pole, any points on the equator

can become the Fréchet mean for this data set. On the other hand, if we suppose

that all observations lie on the equator of S2, the Fréchet mean can be either the

North pole or the South pole, then again the mean is not unique. Now, suppose that

we simply pick one of these two points to be the mean, e.g. the South pole, and by

moving slightly one observation toward the South pole, the new mean now lies close

to the South pole. In other words, the Fréchet mean on S2 can jump instantaneously

by shifting slightly a single data point, and thus this definition of mean is no longer

a continuous function with respect to the data.

Firstly, let us discuss some related works of extending a crucial statistical tool

on the Euclidean space, namely the Gaussian distribution, onto manifolds. In 1948,

M. Fréchet generalized the concept of the Euclidean mean (or expectation) from

linear spaces to metric spaces, where distance is well-defined, and the mean is

therefore called the Fréchet mean [17]. Example 1.1 illustrates that existence and

uniqueness of the Fréchet mean (i.e. intrinsic mean) can not be ensured for a general

manifold, and the Karcher mean is sometimes used instead since it minimizes the

sum of squared Riemannian distance locally. Besides the extension of the mean, the

variance can also be generalized to Riemannianmanifolds in a similarmanner, which

allows us to study statistics onRiemannianmanifolds from the intrinsic point of view.

In particular, X. Pennec [15] constructs analogues of many usual statistical tools to



1.1. Statistical inference on manifolds 17

geodesically complete Riemannian manifolds. These include notions of mean value,

covariance matrix of a random element, as well as Mahalanobis distance. Moreover,

the generalization of Gaussian distribution on Riemannian manifold is constructed

through the maximization of the entropy given that the mean and covariance of the

distribution are available, and this distribution is referred to as normal law. By

taking the limit of the variance, one can obtain the uniform distribution on compact

manifolds or the point mass distribution. Approximation of this probability density

can be efficiently achieved given that variance is small. Furthermore, the X 2-law is

studied in [15], which enable hypothesis testing on Riemannian manifolds.

Another successful statistical tools on the Euclidean space are the central limit

theorem (CLT) and the law of large numbers (LLN). While the Euclidean version

of LLN states that the empirical mean converges in probability and almost surely to

the population mean, the corresponding CLT indicates that the limiting probability

distribution is simply the Gaussian distribution. In order to extend these theories

to Riemannian manifolds from the intrinsic point of view, one needs to overcome

two problems: non-linearity of manifolds and the problem of existence, uniqueness

and stability of the Fréchet mean. Some generalization works have been developed

under some restrictions [18, 19, 20]. For example, on some particular Riemannian

manifolds (e.g. open books, etc.) the Fréchet mean does not move when moving one

or more data points, i.e. the mean is “sticky", and in this case the classical CLT and

LLN are clearly not applicable. S. Huckemann & T. Hotz [19] establish this sticky

concept formally and state the corresponding CLT and LLN for three cases of the

Fréchet mean being either non-sticky, partial sticky or sticky on these manifolds. On

the other hand, a new phenomenon of the Fréchet mean, which is formally defined

as “smeariness", have been recently discussed, one up to date example of which is

on the circle [20]. The example is a scenario, where there is positive mass near

the cut locus of the population mean, and it is shown that the fluctuation of sample

means asymptotically converges to a non-Gaussian distribution at a scale nα with

α < 1/2, whereas in the classical CLT this scale is
√
n and the limiting distribution

is Gaussian.
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We have discussed various routes that one can achieve the generalization of

Gaussian distribution on manifolds, such as normal law, CLT, etc. However, there

is in general no identical version of the Gaussian distribution on a manifold that

preserves all properties as on the Euclidean space, and only partial features are

retrieved which depend on the aim of use. Overall, studying non-linear spaces

brings more complexity, and many Euclidean theories change. However, this study,

particularly in statistics, is unavoidable, simply because geometric objects appear

in a vast range of applications in many fields, and direct use of the Euclidean

approach sometimes raises many issues. For example, Subsection 4.2.3 addresses

the necessity for using Rieamannian metrics instead of the Euclidean metric (i.e. the

Frobenius inner product) on the space of covariancematrices, and a Brownian bridge

simulation exercise is implemented in Subsection 4.6.1 to illustrate the problems

that arise when neglecting the Riemannian structures.

1.2 Research activities
In this thesis, wemainly focus on two areas of research, which are regression analysis

and stochastic differential equations. More details are discussed below.

1.2.1 Regression on Lie groups

Regression modelling is an ubiquitous statistical tool in understanding the relation-

ship between predictor and response variables, which has been studied for centuries

on the Euclidean space and many results are generalized onto manifolds. On the

Euclidean space, linear regression is the most popular regression model due to its

simplicity and efficiency. If response variables lie on Riemannian manifolds, the

natural generalization of linear regression is the geodesic regression, that is to fit the

best geodesic curve on these manifolds [21]. Moreover, least squares estimation in

this case is defined to minimize the sum of squared Riemannian distance, i.e. from

the intrinsic point of view.

In this work, we are mainly interested in the problem of fitting a regression

model given that predictor variables lie on Lie groups, i.e. being not only a manifold

but also a group (see Definition 2.22). Moreover, we assume this special space is



1.2. Research activities 19

compact and connected in order to guarantee the existence of a bi-invariant metric.

This simply says that we can study the whole space via its tangent space at the

identity (i.e. its Lie algebra) by using a fixed base point, and this tangent space is

a vector space of same dimension with the space of interest. Thus, usual statistical

tools such as generalized least squares can be implemented on the coefficients with

respect to some fixed basis on the tangent space.

Next, we look into the space of rotational matrices SO(3) with the applica-

tion in human kinematic analysis. Besides providing alternative regression models

through the intrinsic view, one of our contributions in this work is to study the

effect to fitted values from choosing different base points. Moreover, we explore

two different correlation structures, namely Matérn and quasi-periodic correlation

functions. These selections are based on the fact that the next movement of the

knee is highly correlated to the previous position when observations are collected

at high frequency. We show that while using ordinary least squares clearly violates

the assumption about randomness of the residuals, using Matérn or quasi-periodic

correlation structure removes some patterns among these residuals.

1.2.2 Stochastic differential equations on SP(n)

We nowmove to a different research activity, in which we have most contributions in

this thesis, the construction of time series models for covariance matrices that take

the geometric structures into account. In this thesis, we mainly focus on the case

that covariance matrices are strictly positive definite, unless indicated otherwise.

We denote the space of n × n covariance matrices SP(n), and strictly speaking,

SP(n) is the space of symmetric positive definite matrices.

We are interested in a successful class of time series models that not only

capture the stochastic effects but also learn about the true trajectories, so-called

stochastic differential equations (SDEs). This class of models has been studied

intensively on the Euclidean space, but little work of statistical inference has been

done on Riemannian manifolds. On SP(n), some existing time series models like

the Wishart process lack geometric structures. O. Pfaffel [22] shows that Wishart

process does lie on SP(n), but the simulation method, which uses the usual Euler-
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Maruyama method, depends on some time-adjustment algorithm. Every time the

simulated points fail to be symmetric positive definite, the time width is cut half,

and this is clearly not an ideal approach since it can produce biased sample paths.

Studying SDEs on manifolds in general can be accomplished through various

ways, such as local coordinates, extrinsic approach (i.e. embedding) or intrinsic

approach (i.e. exponential map/connection). The first method borrows from the

definition of being a manifold, thus using the system of local coordinates will map

the space locally to the Euclidean space of same dimension. This approach gains

popularity when local charts are not too complicated, and the existing results on

Euclidean space can be applied directly [8, 7, 10, 11, 23]. On the other hand, for

a more general manifold, where writing down the local charts is not so simple,

embedding the manifold in a larger Euclidean space seem to be a natural approach

[24]. This is the most common way in proving many important theories of stochastic

analysis on manifolds as in theory one always can embed any manifold in some

ambient Euclidean space of higher dimension using Nash embedding theorem [25].

However, not many manifolds have a nice embedding, and this approach becomes

less appealing due to its practicability.

Alternatively, the intrinsic approach is also a feasible selection as many the-

oretical works are available, that are mainly based on the concepts of horizontal

lift and stochastic development, see for example [26, 25]. Basically, for a smooth

manifold equipped with a connection, one can lift a smooth curve horizontally to the

frame bundle uniquely, and the resulting curve has a corresponding curve, namely

the anti-development curve, on the Euclidean space of the same dimension as the

manifold of interest. In other words, we can interpret that there is an one-to-one

correspondence between the set of smooth curves of a fixed starting point on the

manifolds and their anti-developments on the Euclidean space of same dimension.

In practise, the piecewise approximation method using exponential map (sometimes

mentioned as injection scheme) is well-received because to some extent it resembles

a popular approximation method on the Euclidean space, the Euler-Maruyama ap-

proximation [10, 27]. Convergence of this piecewise approximation for some special
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manifolds has been shown before the concept of stochastic development of SDEs

is established [28, 29]. However, little have been published to connected these two

theories in general and people often regard the injection scheme as the stochastic

development via smooth approximation, with examples include: the work in [30, 31]

that connect the scheme of injection to the tangent plane with the action “rolling

without slipping" on SO(3); in Section 4.3 we demonstrate the approximation of

horizontal lifts on SP(n) endowed with the Affine-Invariant metric.

Back to SP(n), we concentrate on two popular Riemannian metrics, namely

Log-Euclidean (LE) [32, 33] and Affine-Invariant (AI) metrics [33, 34, 35]. Endow-

ing SP(n) with the LE metric gives us a flat Riemannian manifold, and moreover

we can write down the analytic form in local coordinate for the horizontal lift of

smooth curves. In fact, we can map SP(n) globally onto its tangent space, the

space of n × n symmetric matrices S(n) by the matrix logarithm function, which

is a bĳective map. The simplicity and efficiency gain from the results in [32],which

offer the vector space structure in the logarithm domain of covariance matrices. On

the other hand, the AImetric provides a geodesically complete Riemannianmanifold

of non-positive sectional curvature, i.e. a Cartan-Hadamard manifold. Due to the

presence of curvature, many existing theories on the Euclidean space are no longer

applicable. Both LE and AI metrics are getting more attentions for statistical infer-

ence on SP(n), such as studying the geometric mean (i.e. Fréchet mean) [32, 36],

least squares [37], etc. We discuss the reasons for which Riemannian metrics are

more favourable than the Euclidean metric (i.e. the Frobenius inner product) in

greater details in Subsection 4.2.3.

Studying SDEs on SP(n) consists of three main parts, firstly exploring some

stochastic properties of Brownian motion on SP(n) endowed with either the LE

or AI metrics, e.g. stochastic completeness; secondly computing horizontal lifts

of smooth curves in local coordinate for both metrics; and finally the construction

of a parametric family of mean-reverting SDEs, which we refer to as the Ornstein-

Uhlenbeck (OU) class of processes on SP(n). The main challenge in this work is

performing statistical inference on SP(n) endowed with the AI metric, particularly
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the capability of sampling diffusion bridges, since existingmethods on the Euclidean

space are now incompatible. Our contribution includes the development of a dif-

fusion bridge sampler based on guided proposals from the intrinsic point of view.

There has been a line of research based on ideas of B. Delyon & Y. Hu [38] on the

Euclidean space that uses guided and residual proposal densities, see [39, 40, 41].

There is some extension to landmarkmanifold [42], but the work involves using local

coordinates, in which technically sampling the bridges is still carried out on a flat

space. Up to this date, no one has used this method in the intrinsic approach to work

with SDEs on Riemannian manifolds, particularly SP(n). The proposed bridge

sampling method can be extended to other Cartan-Hadamard manifolds under the

assumption that there exists a suitable diffusion process with an explicit transition

density function.

Finally, we illustrate our proposed algorithm in the AI case, and the modifica-

tion of the strategy by G. O. Roberts & O. Strammer [43] in the LE case to the real

application in finance. And for comparison these two metric tensors, we perform a

goodness-of-fit test using the transition density-based approach [44]. Furthermore,

we study inference for discretely observed data that come from the multivariate

stochastic volatility models, in which covariance matrices in these models are indi-

rectly observed and assumed to follow our construction of the OU class.

1.3 Thesis outline
The thesis is organized as follows. Firstly, we give a brief mathematical introduction

with definition, mathematical theories and results about Riemannian manifolds, Lie

group with Lie algebra and stochastic analysis on manifolds in Chapter 2. Details

of two research activities are discussed in-depth in Chapter 3 for regression analysis

on Lie groups and Chapter 4 for SDEs on SP(n).

In Chapter 3, we first review the generalized least squares in the Euclidean

setting, and extend them to a compact connected Lie group in Section 3.2. We

then apply this methodology to the space of rotational matrices SO(3), where we

aim to fit a regression model of soft tissues artefacts against rotational matrices,
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where two correlation structures, namely Matérn and quasi-periodic, are considered

in Subsection 3.4.2. Moreover, we compare ordinary least squares estimation and

different algorithms of generalized least squares estimation, togetherwith the existing

model using Euler angles in Subsection 3.4.1. We also investigate the effect of using

different base points on fitted values in Section 3.3.

Next, we start Chapter 4 by revising some results of SP(n) endowed with

either the LE or the AI metrics, such as exponential/logarithm maps, Riemannian

distances, etc and following up with a discussion of how important the Riemannian

geometric structures whenworking with covariancematrices. Afterwards, we define

the Riemannian Brownian motion class and OU class on SP(n) in Section 4.3 and

4.4 respectively. Particularly, local expressions of horizontal lifts of smooth curves

on SP(n) equipped with either the LE or the AI metrics are presented in Section 4.3.

Furthermore, we construct guided proposals on SP(n) equipped with the AI metric

in Section 4.5 and study the absolute continuity between the target diffusion bridge

and the guided proposal. We investigate both simulated (Section 4.6) and real data

(Section 4.7) to study the performance of our proposed diffusion processes onSP(2)

with the three metrics: the Euclidean, the Log-Euclidean and the Affine-Invariant

metrics. This chapter ends with the multivariate stochastic volatility models in

Section 4.8, where we provide a simulation study on R2.

Finally, we summarize our work and outline future work in Chapter 5. Sup-

plementary figures are presented in Appendix A. In Appendix B we give a brief

overview of the guided proposal algorithm on the Euclidean space introduced by M.

Schauer & F. V. D. Meulen et al. [40] and the algorithm for low-frequency inference

of multi-dimensional diffusion proposed by G. O. Roberts & O. Stramer [43].



Chapter 2

Preliminary Material

We aim to provide a brief overview of the mathematical background on Riemannian

geometry and stochastic analysis required for this thesis. Firstly, we introduce the

notion of differentiable (or smooth) manifold in Subsection 2.1.1, which generalizes

the Euclidean space and differentiation can be applied. We continue to extend these

manifolds to metric spaces in Subsection 2.1.2, by equipping some metric tensors.

If a Riemannian metric is used, the manifold is called Riemannian manifold.

Thereafter, a special class of manifolds which have algebraic structure, namely

Lie groups, are discussed in Section 2.2. Finally, in Section 2.3 we review the

theory of stochastic analysis on Euclidean spaces in essence, followed by manifolds

in more details, such as the concept of horizontal lift, stochastic development,

stochastic completeness etc, which are the key ingredients for Chapter 4.

2.1 Riemannian geometry

2.1.1 Differentiable manifold
A motivating example of a smooth manifold is the Earth (see Example 1.1), where

locally resembles R2. However, being flat locally will not be sufficient to attain

the differentiability, more conditions need to be achieved. We state them in the

following definition.

Definition 2.1 (Manifold). [45] An n-dimensional manifold M is a topological

space such that there exists a family A = {Ui, ϕi | i ∈ I} with some indexing set I

such that
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(i) Ui is an open set inM and
⋃
i∈I Ui =M.

(ii) ϕi : Ui → Rn is a continuous bĳection onto open set ϕi(Ui) with continuous

inverse (i.e. homeomorphism).

(iii) Whenever Ui ∩ Uj 6= ∅ , the map ϕj ◦ ϕ−1
i : ϕi(Ui ∩ Uj)→ ϕj(Ui ∩ Uj) is a

smooth bĳection with smooth inverse (i.e. diffeomorphism)

If {ϕi◦ϕ−1
j | ∀i, j} are differentiable (smooth), we sayM is a differentiable (smooth)

manifold. ϕi ◦ϕ−1
j are called transition maps, while the collection of pairs {Ui, ϕi}

are called charts (systems of coordinates) of M. We call the image ϕi(Ui) the

coordinate neighbourhood at p ∈ Ui ⊂M.

Figure 2.1: Charts of a manifold.

We illustrate transition maps and charts in Figure 2.1. Moreover, there may be

more the one choice of charts for a manifold. For example, there are many ways

of map projecting the Earth, e.g. cylindrical projection, conformal projection, etc.

Furthermore, manifolds can appear as geometry objects like spheres, tori, cones,

cylinders, Klein bottles, etc or as a more complicated space in higher dimension like

space of symmetric matrices S(n), space of symmetric positive definite matrices

SP(n), orthogonal group O(n), special orthogonal group SO(n), real projective

plane and many more.

The special thing about a smooth manifold is the differentiability, so let us

review definition of some important terminologies, e.g. tangent vector, differential
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map, vector field, etc. Firstly, we fix the notation ofM and N for differentiable

manifolds with dimensionm,n respectively.

Definition 2.2 (Differentiable map). [46] A map F : M → N is differentiable

if for every p ∈ M, there exists a coordinate neighbourhood U covering p with

the corresponding transition map ϕ and V = F (U) ⊂ N covering F (p) with the

transition map φ such that φ ◦ F ◦ ϕ−1 : ϕ(U) → φ(V ) is differentiable. This

relationship is illustrated in Figure 2.2.

We call the map φ ◦ F ◦ ϕ−1 expression of F in local coordinates of φ and ϕ.

Figure 2.2: Differentiable map between two differentiable manifolds.

Before defining a tangent vector, let us denote the differentiability class for a

non-negative integer k:

Ck(M) = {f :M→ R | the derivatives f ′, . . . , f (k) exist and are continuous}

C∞(M) = {f :M→ R | f has derivatives of all orders}

Definition 2.3 (Tangent vector). [47] Let us consider some point p ∈ M and the

differentiable function γ : (−ε, ε) → M such that γ(0) = p. Then the tangent

vector to the curve γ at t = 0 is the linear function

γ′(0) : C1(M)→ Rm γ′(0)
(
f
)

=
d

dt

(
f ◦ γ

)∣∣∣∣
t=0

for f ∈ C1(M).



2.1. Riemannian geometry 27

We define the tangent vector at p ∈ M as the tangent vector to some differ-

entiable curve onM that passes through p at t = 0. We denote TpM , the tangent

space ofM at p, as the collection of all tangent vectors at p, that is

TpM = {γ′(0) | γ is a differentiable curve onM such that γ(0) = p},

and TM =
⋃
p∈M

TpM is the tangent bundle ofM.

In addition, we introduce the definition of differential map, which allows us to

map tangent vectors from one tangent space to another tangent space linearly.

Definition 2.4 (Differential map). [46] Let F : M → N be a differentiable map.

Consider a point p ∈M and a tangent vector v ∈ TpM with a differentiable curve

γ onM, which satisfies γ(0) = p, γ′(0) = v. We denote θ = F ◦ γ, so θ is a curve

on N with θ(0) = F (p).

The differential of F at p is a linear map dFp : TpM→ TF (p)N , given by

dFp(v) = θ′(0) =
d

dt

(
F ◦ γ

)∣∣∣∣
t=0

.

In the literature, dFp(v) is sometimes referred to as the push-forward of v by

F as it pushes the tangent vector v on tangent space ofM forward onto the tangent

space of N , see the illustration in Figure 2.3.

Figure 2.3: Differential map of a differentiable function between two manifolds.

If we want to study the manifold intrinsically, we need to understand carefully

what a vector field is. We give two approaches of defining vector fields on a manifold

in the following definition together with their expressions in terms of local charts.
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Definition 2.5 (Vector field). [45]

(i) A vector fieldX onM is a function assigning to each point p ∈M an element

Xp of the tangent space at p, TpM. Moreover, we can express the vector field

in terms of some local chart x = {x(1), . . . , x(m)} on an open subset U ⊂M

covering p as

Xp =
m∑
i=1

x(i)(p)
∂

∂x(i)
.

(ii) Alternatively, ifX satisfies the following for all f, g ∈ C∞(M) and α, β ∈ R:

(a) [X(αf + βg)](p) = α(Xf)(p) + β(Xg)(p) (linearity),

(b) [X(fg)](p) = [(Xf)(p)]g(p) + f(p)[(Xg)(p) (Leibniz product),

we say X is a vector field onM. And X is said to be smooth if and only if

for all f ∈ C∞(M) : Xf ∈ C∞(M). In other words, we define the smooth

vector fieldX as a derivation which maps C∞(M) onto itself. Moreover,Xf

can also be expressed in terms of the previous local chart x as

(Xf)p =
m∑
i=1

x(i)(p)
∂f

∂x(i)
f ∈ C∞(M).

In fact, Xf is proven to be independent of the parametrization x, see [45].

The set of all smooth vector fields onM is denoted by Γ (TM).

On the other hand, if we have a smooth curve {γ(t) | t ∈ I} onM, where I is

an interval in R, we call V a vector field along the curve γ if V defines a smooth

map I → TM and V (t) ∈ Tγ(t)M, ∀t ∈ I . We denote the collection of all smooth

vector fields onM along γ as Γγ (TM).

Before extending the manifold to a metric space, let us state some important

results about vector fields in the following proposition.

Proposition 2.6. [46, 47] Let X and Y be smooth vector fields onM. There exists

a unique smooth vector field Z such that Zf = (XY − Y X)f , ∀f ∈ C∞(M). We

call this operation that acts on vector fieldsX, Y as the bracket operation, denoted
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by [X, Y ] := XY − Y X = Z. Moreover, this bracket operation satisfies for all

a, b ∈ R and f, g ∈ C∞(M):
(i) [X, Y ] = −[X, Y ] (anti-commutativity).

(ii) [aX + bY, Z] = a[X,Z] + b[Y, Z] (linearity).

(iii) [[X, Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0 (Jacobi identity).

(iv) [X,X] = 0 (alternativity).

(v) [fX, gY ] = fg[X, Y ] + fX(g)Y − gY (f)X.

Proposition 2.6 defines a binary operation [·, ·] on Γ
(
TM

)
, which sometimes

is referred to as the Lie bracket. In fact, the space of special vector fields, namely

left invariant vector fields, on a smooth manifold forms a Lie algebra equipped with

this Lie bracket, see Remark 2.27. We discuss Lie algebra further in Section 2.2.

2.1.2 Riemannian manifold
Since notions of length, angle and shortest distance only make sense on a metric

space, ideally we would like to equip the manifold with some metric tensors. First

of all, let us look for something similar in a simpler case, the Euclidean space. The

inner product of two vectors is commonly used to define these notions, for example:

Length of x ∈ Rm : l(x) = ||x||2 =
√
〈x, x〉2 =

√
xTx,

“Length” of A ∈ Rm×m : l(A) = ||A||F =
√
〈A,A〉F =

√
tr (ATA),

Shortest distance between x, y ∈ Rm : d(x, y) = ||x− y||2,

“Shortest distance” between A, B ∈ Rm×m : d(A,B) = ||A−B||F ,

where xT is the transpose of x and tr is the trace operator. Moreover, the norm || · ||2
defined by the inner product 〈·, ·〉 is sometimes referred to as the Euclidean norm or

the L2 norm, while the norm || · ||F is induced from the Frobenius inner product.

The fact that we assign the notion of length to something as complicated as a matrix

shows that, even in linear algebra, we already use the notion of length generalized

beyond everyday meaning of the word “length”.

Accordingly, the required metric tensor for the manifold should preserve prop-

erties that the Eucludean inner product has, while act as point-dependent geometry of
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inner product spaces. We start this subsection by defining the Riemannian metric on

M, and then studying when two Riemannian manifolds have equivalent structures,

such as preserving the notion of distance between points (i.e. isometry).

Definition 2.7 (Riemannian metric). [46] Consider a differentiable manifold M

and a function g which assigns to each point p ∈ M a bilinear form (i.e. linear in

both arguments) gp : TpM× TpM→ R≥0. We call g a Riemannian metric onM

if for all p ∈M, gp satisfies

(i) gp(u, v) = gp(v, u) ∀v, u ∈ TpM (symmetric),

(ii) gp(u, u) ∈ R>0 ∀u ∈ TpM\{0} (positive definiteness).

A differentiable manifold equipped with a Riemannian metric is consequently called

a Riemannian manifold.

Definition 2.8 (Isometry). [46] LetM and N be Riemannian manifolds equipped

with the metric gM and gN respectively. A diffeomorphism map F : M → N is

called an isometry if for all p ∈M and u, v ∈ TpM:

gMp (u, v) = gNF (p)(dFp(u), dFp(v)).

Here dFp is the differential of F at p. We therefore said two Riemannian manifolds

M and N are isometric.

Until now, we review first order differentiability, such as differential map, vector

field, etc, the next natural thing is studying higher order. For instance, we want to

be able to differentiate a vector field along another vector field, which brings up the

notion of a connection on the manifold.

Definition 2.9 (Affine connection). [47] An affine connection∇ on a differentiable

manifoldM is a map (X, Y )
∇7→ ∇XY, which satisfies for all X, Y, Z ∈ Γ(TM)

and f, g ∈ C∞(M):

(i) ∇fX+gYZ = f∇XZ + g∇YZ,
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(ii) ∇X(Y + Z) = ∇XY +∇XZ,

(iii) ∇X(fY ) = f(∇XY ) +X(f)Y .

∇XY is called the covariant derivative of Y along X .

In addition, for any p ∈M, the tangent vector∇XY |p depends only on tangent

vector Xp and the values of Y in the neighbourhood of p, see [46]. We call ∇XY |p
the directional derivative at p in the direction Xp, and therefore it is often written

∇XpY instead. Whence, let us state the result that the covariant derivative along a

differentiable curve onM can be defined uniquely.

Proposition 2.10. [47] Suppose that the differentiable manifoldM has an affine

connection ∇ and a smooth curve {γ(t) | t ∈ I}, where I is an interval in R.

There exists a unique operator Dt : Γγ(TM) → Γγ(TM) such that for any

V,W ∈ Γγ(TM) and f ∈ C∞(M) :

(i) Dt(V +W ) = DtV + DtW ,

(ii) Dt(fV ) = f ′(t)V + fDtV .

(iii) If V is induced from a vector field Y ∈ Γ(TM), i.e. ∀t ∈ I : V (t) = Yγ(t),

then DtV = ∇γ′(t)Y .

We call DtV the covariant derivative of vector field V along the curve γ.

The value of the covariant derivative impacts on the direction of how the

corresponding vector fields travel along the curve. Figure 2.5 illustrates examples

of vector fields (green color) that have non-zero covariant derivative along the top

curve, and vector fields (red color) that has zero covariant derivative at all points on

the bottom curve. In addition, the connection ∇ can be expressed as coefficients

with respect to some basis in local coordinates, which will become useful in the

later contexts, such as parallel transports, geodesics, etc.

Definition 2.11 (Christoffel symbols). [25] Suppose M is of dimension m and

x = {x(1), . . . , x(m)} is a local chart on an open subset U ⊂ M, then the vector
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fields Xi = ∂/∂x(i) spans the tangent space TpM for any p ∈ U . The Christoffel

symbols Γkij are functions on U defined uniquely by the following relation

(∇XiXj)p =
m∑
k=1

Γkij(p)Xk.

To put it another way, the Christoffel symbols tell us how the basis field change

at different points on themanifold. We know that onRm equippedwith the Euclidean

metric, basis on tangent space does not change its direction, and in this case we have

zero Christoffel symbols everywhere. However, Figure 2.4 illustrates an opposite

picture on the sphere S2, where the basis for tangent spaces at different points on S2

are required to adapt with the bending of the surface, and in this case we say S2 has

non-zero Christoffel symbols. We therefore often distinguish manifolds from the

Euclidean space, that have the structure of basis field changing from point to point

on the manifold, as curved spaces. An alternative indication is the curvature, in

which manifolds having zero curvature everywhere are classified to have Euclidean

structure. Since a Riemannian manifold can have dimension higher than 2, there are

many ways of expressing the curvature. We name some of them in Definition 2.12.

Figure 2.4: Basis for tangent plane changes from point to point on the sphere S2.

Definition 2.12. [25] Suppose that the differentiable manifoldM of dimension m

has an affine connection∇, and a Riemannian metric g.

(i) The Riemannian curvature tensor R is defined by

R(X, Y )Z = ∇X(∇YZ)−∇Y (∇XZ)−∇[X,Y ]Z ∀X, Y, Z ∈ Γ(TM),
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where [·, ·] is the bracket of two vector fields.

(ii) The sectional curvature tensor K for any p ∈ M is defined by K(X, Y )p =

gp
(
R(X, Y )Y,X

)
for any X, Y ∈ Γ(TM).

(iii) The Ricci curvature tensor Ric : Γ(TM) × Γ(TM) → R≥0 is defined for

any p ∈M by

Ric(X, Y )p =
m∑
i=1

gp
(
R(Ei, X)Ei, Y

)
for X, Y ∈ Γ(TM),

where {E1, . . . , Em} is an orthonormal basis on TpM with respect to g.

(iv) The scalar curvature at any point p ∈M, Sp, is the fully contracted curvature

tensor, i.e. Sp =
∑m

i=1K(Ei, Ei)p, where {E1, . . . , Em} is an orthonormal

basis on TpM.

Definition 2.13 (Torsion). The torsion tensor T(X, Y ) of a smooth manifold M

with an affine connection is given by

T(X, Y ) = ∇XY −∇YX − [X, Y ] for X, Y ∈ Γ(TM).

We sayM is torsion-free if its torsion tensor vanishes identically.

So far, we define and use the affine connection∇ in a way which does not relate

to the Riemannian metric. However, for each Riemannian metric tensor there is a

unique torsion-free affine connection, called the Levi-Civita connection.

Theorem 2.14. [47] (Levi-Civita) Given a Riemannian manifoldM equipped with

metric g, there exists a unique affine connection∇ onM that satisfies:

(i) ∇ is symmetric, i.e. M is torsion-free.

(ii) ∇ is compatible with the Riemannian metric g, that is

Xg(Y, Z) = g(∇XY, Z) + g(Y,∇XZ) ∀X, Y, Z ∈ Γ(TM)

We refer to this special connection as the Levi-Civita connection.
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Hereafter, for any Riemannian manifold we fix the affine connection to be the

Levi-Civita connection, which implies the Christoffel symbols are now symmetric,

i.e. Γkij = Γkji, ∀i, j, k ∈ {1, . . . ,m}.

From now on, wewill assume thatm-dimensionalmanifoldM comes equipped

with a Riemannian metric g and the Levi-Civita connection ∇. The rest of this

subsection is carried out as follows. Firstly, we study how one generalizes the notion

of a straight line on the Euclidean space onto a general Riemannianmanifold, namely

geodesic. Secondly, we present so-called the exponential/logarithm maps, that map

from the tangent space onto the manifold itself or vice versa, followed by some

important results and definitions related to these maps. And lastly, we introduce the

notion of Riemannian gradient (i.e. first order operator) and the Laplace-Beltrami

operator (i.e. second order elliptic operator) to a C2(M) function, which will be

required when studying stochastic differential equations on manifolds.

First of all, to achieve the minimum distance between two points onM, intu-

itively we want the geodesic connecting these two points to have a constant speed

from the start, i.e. acceleration equals to zero. In physics, we can interpret the mo-

tion on the geodesic as being completely determined by the bending of the surface,

which is caused purely by the gravity, and not any other external forces.

Zero acceleration implies the acceleration vector is perpendicular to the tangent

space at any point on the curve. Since the tangent space may change when moving

along the curve, so we need to be able to move freely between different tangent

spaces. Previously, we say that using the differential map one can map linearly

a tangent vector from one tangent space onto another tangent space. However, if

we want to study how a tangent vectors varies along a smooth curve on M, the

concept of differential map is not enough as it does not connect the geometries of

nearby points. Thus, we need something which can affix the connection locally, and

parallel transport describes exactly this action, see Figure 2.5. Let us consider a

smooth curve γ : I →M, where I is a compact interval in R.

Definition 2.15 (Parallel transport). [46] A vector field V ∈ Γγ(TM) is said to be

parallel along the curve if DtV = 0 at every point of the curve. In this case, we say
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Figure 2.5: Vector fields (red colour) travel parallel along the bottom curve, whereas vector
fields (green colour) do not move parallel along the top curve on the sphere.

Vγ(t) is the parallel transport of Vγ(0) along the curve γ.

Definition 2.16 (Geodesic). [47] We call γ(t) geodesic if ∀t ∈ I : Dtγ
′(t) = 0. In

other words, if the vector field V ∈ Γγ(TM) such that V (t) = γ′(t), γ is a geodesic

onM if and only if V is parallel along γ.

Let us now express conditions of parallel transport and geodesic through

Christoffel symbols in local coordinates. Consider a chart x = {x(1), . . . , x(m)}

on an open subset U ⊂M, and denote Xi = ∂/∂x(i).

We write γ(t) =
∑n

i=1 γ
(i)(t)x(i),

⇒ γ′(t) =
m∑
i=1

dγ(i)

dt
Xi and Vγ(t) =

m∑
i=1

v(i)(t)Xi.

So, V is parallel to γ if and only if for all k ∈ {1, . . . ,m}:

dv(k)

dt
+

m∑
i,j=1

Γkij(γ(t))
dγ(i)

dt
v(j)(t) = 0. (2.1)

Similar to Equation (2.1), γ is a geodesic curve onM if and only if the following

equations hold for all k ∈ {1, . . . ,m}:

d2γ(k)

dt2
+

m∑
i,j=1

Γkij(γ(t))
dγ(i)

dt

dγ(j)

dt
= 0. (2.2)

Here, Equation (2.2) constitutes a system of non-linear second order ordinary dif-
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ferential equations (ODEs). Thus, the solution exists and is uniquely determined by

the initial condition γ(0) and the initial direction γ′(0). However, geodesics are only

locally distance minimizing paths as these ODEs only hold in U , see [46].

Next, let us introduce a local diffeomorphism map from the tangent space onto

the manifold itself, namely the exponential map.

Theorem 2.17 (Exponential map). [45] Suppose for some point p ∈ M with a

chart {U, φ} covering p, there exists a neighbourhood V ⊂ M covering p and a

positive number ε such that whenever q ∈ V , Xq ∈ TqM with ||Xq||2 < ε. Then

there is a unique geodesic γ(t) = ω(t, q,Xq) defined for t ∈ (−2, 2), and with

γ(0) = q, γ′(t) = Xq. Moreover, the map ω is a smooth map on the open set

{t ∈ (−2, 2), q ∈ V, Xq ∈ TqM with ||Xq||2 < ε} and has its value in U .

Therefore, the exponential map Expq : V→M at q is uniquely defined by

Expq(Xq) = γ(1) = ω(1, q,Xq),

where the open set V = {Xq | q ∈ V, ||Xq||2 < ε} ⊂ TqM.

Figure 2.6: The exponential map on a Riemannian manifold.

Intuitively, the exponential map Expq(Xq) ∈ M is obtained by starting at

q, travelling on the unique geodesic curve γ(t) with the velocity Xq after a unit

of time, see Figure 2.6. The geodesic γ(t) is only locally defined and locally

differentiable in Theorem 2.17, because we can’t guarantee that the solution of

ODEs in Equation (2.2) won’t blow up in finite time. This behaviour is similar to

the property of locally distance minimizing from geodesics.
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Definition 2.18 (Geodesically complete manifold). We say M is a geodesically

complete manifold ifM is a Riemannian manifold for which, the exponential map

at any point p ∈M, is well-defined on the entire tangent space TpM.

The condition of having geodesical completeness is not a huge issue as it covers

a vast variety of Riemanianmanifolds, particularly the spaces we aremainly focusing

on in this thesis, such as SO(3), SP(n), are some typical examples.

Corollary 2.19 (Logarithm map). Theorem 2.17 implies Expq : V →M is diffeo-

morphism, it is therefore valid to define the inverse of exponential map on V , the

so-called logarithm map Logq : V → V such that Expq ◦ Logq = Id, ∀q ∈ V .

Consequently, logarithm map is also locally differentiable, same as the expo-

nential map. We interpret the logarithm map as a local projection fromM onto its

tangent space. In addition, the unique geodesic γ(t) in Theorem 2.17 yields smallest

distance only when it stays inside U . Thus, there is a threshold for t such that γ will

not minimize distance once t passes beyond this threshold.

Definition 2.20 (Cut locus). [25] Choose an arbitrary p ∈M and some v ∈ TpM.

Let tv be the largest t such that the geodesic ν(t) = Expp(tv) is the uniqueminimizing

geodesic between its end points. We define

C̃p = {tww |w ∈ TpM, ||w||2 = 1} and Cp = {Expp(v) | v ∈ C̃p},

then Cp is called the cut locus of p, which is the image of C̃p by the exponential map.

In a similar manner, we can define the set Ep within the cut locus of p:

Ẽp = {tw |w ∈ TpM, t ∈ [0, tw), ||w||2 = 1} and Ep = {Expp(v) | v ∈ Ẽp}.

The following results about the cut locus of a geodesically complete manifold

will be requisite for our methodology in Chapter 3.

Theorem 2.21. [25, 48] SupposeM is geodesically complete, then

(i) The exponential map Expp : Ẽp → Ep is a diffeomorphism for any p ∈M.
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(ii) The cut locus Cp of p is a closed subset of measure zero for any p ∈M.

(iii) For p, q ∈M, if p ∈ Cq then q ∈ Cp.

(iv) Ep and Cp are disjoint andM = Ep ∪ Cp for any p ∈M

Lastly, our work in Chapter 4 requires the calculation of the Riemannian gra-

dient of some functions f ∈ C2
(
SP(n)

)
, such as squared distance, etc. Thus, we

would like to define it formally and give its expression in terms of some local charts.

The Riemannian gradient of f , denoted by ∇f , is a unique vector field (i.e.

first order derivative) defined by the following relation

gp(∇f,X) = df(Xp) = (Xf)p ∀X ∈ Γ(TM), p ∈M. (2.3)

Consider a chart x = {x(1), . . . , x(m)} on an open subset U covering a point p ∈M,

and denote Xi = ∂/∂x(i). Therefore, {X1, . . . , Xm} forms an basis field defined

in U , and the Riemannian metric g can be expressed with respect to this basis as a

matrix form, denoted by G. We then can express ∇f in local coordinates:

(∇f)q =
m∑

i,j=1

∂f

∂x(i)
Gij(q)Xj ∀q ∈ U,

withGij is the (i, j) entry ofG−1. Particularly, let us state a famous result from [49]

for some fixed point q ∈M:

(
∇d2(p, q)

)
p

= −2Logp(q) ∀p ∈M. (2.4)

In fact, we prove Equation (2.4) for a specific Riemannianmanifold, SP(n) endowed

with different Riemannian metrics, see Proposition 4.2 and 4.3.

Moving fromfirst to second order differential operators, among the second order

differential operators, the Laplace-Beltrami operator is perhaps of greatest interest.

The Lapalace-Beltrami operator onM, denoted by ∆M, is an intrinsically defined

second order elliptic operator, which generalizes the Laplace operator known from

Euclidean differential calculus. ∆M can be written using the trace of the Hessian of
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the function f associated with the connection, that is

∆Mf =
m∑

i,j=1

∆Mf(Xi, Xj) =
m∑

i,j=1

Gij
(
Hessf

)
ij
, (2.5)

where
(
Hessf

)
ij

= Hessf(Xi, Xj) = Xi(Xjf) − (∇XiXj)f . Thus, if {Xi}mi=1

is orthonormal with respect to g, G equals to an indentity matrix and so ∆Mf =

tr
(
Hessf). Moreover, we can also express ∆Mf in local coordinates, see [26]:

∆Mf =
m∑

i,j=1

{
Gij ∂

∂x(i)

∂f

∂x(j)
+

1√
detG

∂
(√

detG ·Gij
)

∂x(i)

∂f

∂x(j)

}
. (2.6)

2.2 Lie group and Lie algebra
Lie groups have been researched extensively in mordern geometry. They appear

in many areas, such as physics, biomechanics and engineering, etc. The intuition

stems from the idea of replacing the global concept of a group with the infinitesimal

group, its local version, which is commonly known as the Lie algebra. In order to

achieve this, this group of interest is required to have differentiable structure.

Definition 2.22 (Lie group). The set G equipped with a binary operation ∗ : G × G

is a Lie group if (G, ∗) is a group, that is

(i) ∀a, b ∈ G : a ∗ b ∈ G (closure),

(ii) ∀a, b, c ∈ G : (a ∗ b) ∗ c = a ∗ (b ∗ c) (associativity),

(iii) ∃e ∈ G satisfies ∀a ∈ G : e ∗ a = a = a ∗ e (identity element),

(iv) ∀a ∈ G, ∃a−1 ∈ G satifies a−1 ∗ a = e = a ∗ a−1 (inverse element),

and G is a smooth manifold in which the map (a, b) 7→ a ∗ b−1 is smooth.

Definition 2.23 (Compact connected group). We say the Lie group G is connected if

it cannot be represented as the union of two or more disjoint non-empty open subsets.

Furthermore, if any sequence in G has a convergent sub-sequence, the connected

Lie group G is now called a compact connected Lie group.

A typical example of Lie groups, namely the Euclidean group E3, comes from
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isometric action, such as rotations, reflections, translations, etc. Other examples in

matrix form, that are Lie groups when equipping the standard matrix multiplication,

include the space of invertible matrices GL(n), space of orthogonal matricesO(n),

space of special orthogonal matrices SO(n). While O(n) is not a connected Lie

group, SO(n) is connected.

We fix the notation of G be a Lie group equipped with the binary operation ∗

and study the invariant Riemannian metrics on G.

Definition 2.24 (Left/right translation). We define for a ∈ G the left translation

La : b 7→ a ∗ b and the right translation Ra : b 7→ b ∗ a.

Definition 2.25 (Invariant Riemannian metric). [47] Since G is a Lie group, both left

and right translations are diffeomorphisms. Consider a Riemannian metric tensor

g on G, then g is said to be left (or right) invariant if La (or Ra) are isometric with

respect to g for all a ∈ G. Moreover, a Riemannian metric that is both left and right

invariant is said to be bi-invariant.

In similar manner, we say vector field X ∈ Γ(TG) is left invariant if ∀a, b ∈

G : (dLa)(Xb) = Xa∗b and right invariant if ∀a, b ∈ G : (dRa)(Xb) = Xb∗a.

Furthermore, any tangent vector Xe ∈ TeG at the identity element e ∈ G can

be extended to a left invariant vector field via the push-forward of Xe by the left

translation Lb for any b ∈ G, i.e. Xb = (dLb)Xe. A similar approach can be applied

to construct a right invariant vector field.

Definition 2.26 (Lie algebra). The tangent space at the identity element e ∈ G is

called the Lie algebra, denoted by g. The Lie algebra g is a vector space equipped

with a binary operation [·, ·] : g× g→ g, the so-called Lie bracket, which satisfies

all five properties in Proposition 2.6.

Remark 2.27. The bracket of two left invariant vector fields is again a left invariant

vector field, that is ifX, Y ∈ Γ(TG) are left invariant, dLa[X, Y ]f = [X, Y ]f, ∀a ∈

G, f ∈ C∞(G), see [47]. Therefore, the space of left invariant vector fields on a Lie

group is a Lie algebra equipped with the Lie bracket of vector fields.
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Proposition 2.28. [45] Consider an arbitrary inner product ge(·, ·) on the Lie

algebra g of G, we define the following metric tensor using the left translation:

gx(u, v) = ge
(
(dLx−1)x(u), (dLx−1)x(v)

)
∀u, v ∈ TxG, x ∈ G.

This construction induces a left invariant Riemannian metric on G.

Corollary 2.29. Suppose an inner product ge on the Lie algebra g of G satisfies

ge([u, v], w) + ge(u, [w, v]) = 0 ∀u, v, w ∈ g,

then the Riemannian metric constructed from ge in Proposition 2.28 is bi-invariant.

Proof of Proposition 2.28 and Corollary 2.29 can be easily shown using Defi-

nition 2.25 of a Riemannian metric being left invariant or bi-invariant.

Proposition 2.30. [50] There exists a bi-invariant metric on G if and only if the

adjoint representation Ad(G) of G is relatively compact, i.e. the group of matrices

given by Ad(G) has finite dimension.

Here, the adjoint representation Ad(G) of the Lie Group G is defined by the

differential of the conjugation action Φ at the identity of G such that for x ∈ G,

Φx : (x, y) 7→ xyx−1, ∀y ∈ G.

Consequently, if G is Abelian (i.e. commutative group) of finite dimension,

there exists a bi-invariant metric on G. On the other hand, if G is non-Abelian group

of finite dimension but is compact and connected, the adjoint representation of G is

bounded, Proposition 2.30 therefore can still be applied.

Earlier on, we mention the Lie algebra as the infinitesimal group because

elements of the Lie algebra are regarded to lie infinitesimally close to the identity

element. We therefore introduce the concept of the one-parameter subgroup, which

explains the infinitesimal transformation of the Lie algebra, see Theorem 2.33. This

concept is closely related to the exponential map of a Lie group. Let us firstly denote

the additive group of real numbers (R,+). The map F : (R,+)→ (G, ∗) is said to

be homomorphism if ∀x, y ∈ R : F (x+ y) = F (x) ∗ F (y).
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Definition 2.31 (One-parameter subgroup). [45] The sub-group H is a one-

parameter subgroup of G if there exists a homomorphsim map F : (R,+)→ (G, ∗)

such thatthe sub-group H is the homomorphic image F (R).

Definition 2.32 (Infinitesimal generator). [45] Suppose θ : R × G → G is an

smooth action, i.e. it is a smooth map that satisfies ∀t, s ∈ R, a ∈ G : θ0(a) =

a and θt ◦ θs(a) = θt+s(a) = θs ◦ θt(a).

For a ∈ G, we define a map Xa : C∞(G)→ R by

Xaf = lim
δt→0

f(θδt(a))− f(a)

δt
∀f ∈ C∞(G),

then clearly X is a vector field on G and is commonly called the infinitesimal

generator of the action θ in the context of algebra.

Theorem 2.33. [45] Given a homomorphism F : (R,+) → (G, ∗), let H be the

corresponding one-parameter subgroup of G. Consider the left invariant vector field

X on G constructed from tangent vector Xe = F ′(0) ∈ g . Then θt(x) = xF (t)

defines a smooth action of R on G having X as its infinitesimal generator.

Conversely, let X be a left invariant vector field on G, there exists a unique

action θ : R × G → G such that the map F (t) = θt(e) defines a one-parameter

subgroup of G and θt(x) = xF (t).

In corollary, there is a one to one correspondence between the elements of g and

one-parameter subgroup of G. In other words, for each ν ∈ g, let t→ F̃ (t, ν) be the

unique one-parameter subgroup of G, then the homomorphism map F̃ : R× g→ G

is smooth and satisfies F̃ (t, sν) = F̃ (st, ν), ∀t, s ∈ R. Thus, the exponential map of

a Lie group can be defined using a homomorphism map on g via the one-parameter

subgroup.

Remark 2.34. The exponential map Expe : g→ G is given by Expe(ν) = F̃ (1, ν)

for ν ∈ g. Moreover, for p ∈ G and a tangent vector ω on TpG, we have dLp−1(ω) ∈

TeG = g. Therefore, it is valid to define the exponential map at the point p as

Expp : TpG → G by Exp p(ω) = Exp e

(
dLp−1(ω)

)
.
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Furthermore, if G has a bi-invariant Riemannian metric, the exponential map

defined in Definition 2.17 using this metric is identical to the exponential map

defined in Remark 2.34. In this occasion, the geodesics passing through the identity

element form a one-parameter subgroup of G, e.g. {Expe(tν) | t ∈ R, ν ∈ g}.

For a general Lie group G, existence of a bi-invariant Riemannian metric on G

is not guaranteed. Although there is always an invariant Riemannian metric under

either left or right translations (Proposition 2.28), the exponential map defined

in Definition 2.17 will not in general agree with the exponential map defined in

Remark 2.34. In other words, if G is not equipped with a bi-invariant Riemannian

metric, the geodesics through the identity element, each form a one-parameter

subgroups of G.

In addition, the exponential maps of Lie groups consisting of square invertible

matrices often coincide with the matrix exponential function.

Definition 2.35 (Matrix exponential/logarithm). Let A ∈ GL(n), then the matrix

exponential of A is defined by expA =
∑∞

k=0

(
Ak/k!

)
if the series converges.

Conversely, if B ∈ GL(n) such that expA = B, we say A is the matrix

logarithm of B, denoted by logB = A. Moreover, if B is sufficiently close to the

identity matrix In, i.e. ||B − In||F < 1 , the following power series converges and

we can compute logB as

logB =
∞∑
k=1

(−1)k+1 (B − In)k

k
.

2.3 Stochastic differential equations
We divide this section into two parts: Euclidean space and Riemannian manifold.

On the Euclidean space, literature of SDEs is rich with many well-known results. In

particular, we briefly review two popular constructions of stochastic integrals: Itô

integral and Stratonovich integral. Moreover, conditions for existence and unique-

ness of solutions are also discussed in Subsection 2.3.1. We end this subsection

by presenting a popular piecewise approximation method for SDEs in Itô calculus,

namely the Euler-Maruyama method.
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On the other hand, SDEs on a Riemannian manifold present additional com-

plications over the Euclidean setting. In Subsection 2.3.2, we first introduce the

general notion of SDEs on manifolds driven by smooth vector fields, L -diffusion

and the concept of stochastic development. Secondly, we discuss how one gener-

alizes Brownian motion on the Euclidean space to a Riemannian manifold. This

includes not only definition, local representation, construction via the expoential

adapted Euler-Maruyama approximation, but also the explosion time and minimal

heat kernel. Lastly, we define a class of SDEs resulting from the convergence of

the exponential adapted Euler-Maruyama approximation on some special manifolds,

while briefly discuss about different writing forms of SDEs defined by E. P. Hsu [25]

and K. D. Elworthy [26]. Furthermore, the extension of Itô’s lemma and Girsanov’s

theorem to a Riemannian manifold is presented towards the end of Subsection 2.3.2.

In this thesis, we work with a probability space (Ω,F,P) equipped with the

filtration F∗ = {Ft, t ≥ 0} of σ-fields contained in F. Here, we assume that

F = lim
t↑∞

Ft, while F∗ is right continuous and every null set (i.e. a subset of a set

having measure zero) is contained in Ft.

2.3.1 Euclidean space

There are different types of driving processes for SDEs, such as Brownian mo-

tion (or the Wiener process), jump process, etc. In this thesis, we focus on SDEs

driven by Brownian motion, which has remarkable complex mathematical charac-

teristics. One particular feature of Brownian motion is nowhere differentiability

almost surely, which makes direct use of standard calculus impossible. Therefore,

stochastic integral using the derivative of Brownian motion requires new mathemat-

ical establishment. And two most common construction of stochastic integrals are

Itô and Stratonovich integrals.

Since both Itô and Stratonovich integrals are defined in a similar manner to the

Riemann-Stieltjes integral, which takes a limit in probability of Riemann sums, we

demonstrate the difference in the following example. Consider a one-dimensional

Brownian motionBt, and a right continuous, F-adapted and locally bounded process

f : [0,∞)× Ω→ R. For a sequence of partitions πn of [0, t] with mesh tending to
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zero, it is natural to approximate f by

f(s, ω) ≈
∑

[tj ,tj+1)∈πn

f(t∗j , ω) I{s∈[tj ,tj+1)}

where t∗j ∈ [tj, tj+1) and I denotes the indicator function. The stochastic integral of

f with respect to Brownian motion is defined by lim
n→∞

∑
[tj ,tj+1)∈πn f(t∗j , ω)

(
Btj+1

−

Btj

)
(ω). The choice of t∗j varies, for instance:

• If t∗j = tj , the integral turns out to be the Itô integral, denoted by∫ t
0
f(s, ω) dBs(ω).

• If t∗j = (tj + tj+1)/2, the integral turns out to be the Stratonovich integral,

denoted by
∫ t

0
f(s, ω) ◦ dBs(ω).

It is clear that
∫ t

0
f(s, ω) dBs(ω) is a martingale as f(t∗j , ω) ∈ Ftj in the Itô case,

while
∫ t

0
f(s, ω) ◦ dBs(ω) is not as f(t∗j , ω) /∈ Ftj in the Stratonovich case. This

property offers mathematical advantage for the Itô integrals and makes more sense

to use in many real applications due to this feature of “not looking into the future”,

see [51]. Nonetheless, the Stratonovich integrals preserve the ordinary chain rule

(i.e. change of variable), whereas Itô integrals do not. The extension of this chain

rule in Itô calculus, so-called Itô’s lemma, allows conversion between them.

Theorem 2.36 (Itô’s lemma). [52] Suppose that f ∈ C2(Rm) for some positive

integer c and 0 ≤ c ≤ m. If X(1)
t , . . . , X

(m)
t are continuous semimartingales (i.e.

they can be decomposed as the sum of a local martingale and an adapted finite-

variation process) and X(c+1)
t , . . . , X

(m)
t are locally of bounded variation then

f(Xt) = f(X0) +
m∑
i=1

∫ t

0

∂f

∂X(i)
(Xs) dX

(i)
s

+
1

2

∑
1≤i,j≤c

∫ t

0

∂2f

∂X(i)∂X(j)
(Xs) d[X(i), X(j)]s.

Here, [X(i), X(j)]t stands for the quadratic covariation of processesX
(i)
t andX(j)

t .

Similar to the ordinary chain rule, there are no second order terms as in the Itô’s

lemma when using the Stratonovich integrals, whence they are usually preferred for
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SDEs on manifolds. Let us now state conditions under which the solution of an SDE

on Rm exists and is unique.

Theorem 2.37 (Existence and uniqueness theorem for SDEs). [51] Consider an

l-dimensional Brownian motion Bt and some T > 0. Let a : [0, T ] × Rm → Rm

and b : [0, T ] × Rm → Rm×l be measurable functions with l ≤ m for which there

exist positive constants C and D such that for all 0 ≤ t ≤ T and x, y ∈ Rm:

(i) ||a(t, x)||2 + ||b(t, x)||F ≤ C(1 + ||x||2) and

(ii) ||a(t, x)− a(t, y)||2 + ||b(t, x− b(t, y)||F ≤ D||x− y||2.

Let U be a random variable that is is independent of the σ-algebra generated by

{Bs, s ≥ 0} and has finite second moment. Then the stochastic integral equation

Xt = U +

∫ t

0

a(s,Xs) ds+

∫ t

0

b(s,Xs) dBs for t ∈ [0, T ] (2.7)

has a unique t-continuous solution Xt such that it satisfies two properties

• Xt is adapted to the filtration generated by U and {Bs, 0 ≤ s ≤ t}.

• E
[∫ T

0
||Xt||22 dt

]
is finite.

Since explicit solutions of SDEs are not always available, solving a SDE often

relies on numerical methods. We end this subsection by introducing a popular

numerical approximation method in Itô calculus, the Euler-Maruyama method (also

called the Euler method). Suppose that we want to approximate the solution of

the SDE given in Equation (2.7) with an intial condition X0 = u using a partition

πn = {0 = t0, . . . , tn = T}. Then the Euler-Maruyama approximation of the

solution Xt on [0, T ] is the Markov chain X̃ defined by

(i) setting X̃0 = u,

(ii) defining recursively X̃i for 1 ≤ i ≤ n by

X̃i = X̃i−1 + a
(
ti−1, X̃i−1

)
(ti − ti−1) + b

(
ti−1, X̃i−1

)
(Bti −Bti−1

).
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Due to properties of Brownian motion, the random variables (Bti − Bti−1
) are

independent and identically distributed normal random variables with mean zero,

variance (ti − ti−1) for all 1 ≤ i ≤ n.

2.3.2 Riemannian manifold

Since the curvature of Riemannianmanifoldmakes direct use of Euclidean stochastic

analysis prohibitively hard, a common strategy in stochastic analysis is to adopt

the extrinsic view that involves embedding the manifold in a higher dimensional

Euclidean space, which is guaranteed by the Nash embedding theorem; see for

example [25, 26, 28]. The approach benefits from existing theories on the Euclidean

space, but it can be hard to find a suitable embedding and may be even harder to

adapt existing SDE algorithms to force the paths to stay on the embedded manifold.

We firstly approach SDEs on manifolds in a similar sense as E. P. Hsu [25],

covering SDEs driven by vector fields, diffusion process generated by some differ-

ential operators, etc. Afterwards, we discuss the horizontal lift of a smooth curve

on manifold to the frame bundle in greater detail and provide intuition in the case

of lifting a semimartingale horizontally. Then, we get back to the discussion of the

Riemannian Brownianmotion, which includes simulation, explosion time, transition

probability density, etc. Toward the end of the subsection, we present the extension

from K. D. Elworthy [26] to Itô’s lemma and Girsanov theorem on the Euclidean

space. But, in order to apply these results, we need to review K. D. Elworthy’s

form of the definition of SDEs on manifolds in [26] and compare this form to the

one defined by E. P. Hsu [25]. Although they are equivalent in theory, it is not

straightforward to convert explicitly between these two forms. While demonstrating

this difficulty on parallelizable manifolds (i.e. existence of a global basis field on

the tangent bundle is guaranteed), we define a special class of SDEs on these spaces.

This sub-class of SDEs not only provides efficient simulation but also makes many

theories in [26] applicable for practical uses. Some examples of these processes are

the Riemannian Brownian motion and the Riemannian Ornstein-Uhlenbeck process

defined in Chapter 4.

We letM be a Riemannian manifold of dimension m equipped with a Rie-
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mannian metric g. An M-valued semimartingale Xt is defined by a continuous

M-valued process defined on [0, τ) for some F∗-stopping time τ such that the

process f(Xt) is a real-valued semimartingale on [0, τ) for any f ∈ C∞(M).

First of all, we define a SDE on M driven by l + 1 smooth vector fields{
Vi ∈ Γ(TM)

}l
i=0

with a semimartingale Zt on Rl+1 and anM-valued random

variable P ∈ F0 :

dXt =
l∑

i=0

Vi(Xt) ◦ dZ(i)
t (X0 = P ) (2.8)

AnM-valued semimartingale Xt is the solution of Equation (2.8) defined up to a

F∗-stopping time τ if for all f ∈ C∞(M),

f(Xt) = f(U) +
l∑

i=1

∫ t

0

Vif(Xs) ◦ dZ(i)
s (0 ≤ t < τ), (2.9)

where the integrals above are in the Stratonovich sense, and converting them to Itô

sense yields for 0 ≤ t ≤ τ :

f(Xt) = f(U) +
l∑

i=1

∫ t

0

Vif(Xs) dZ
(i)
s

+
1

2

l∑
i,j=1

∫ t

0

(∇VjVi)f(Xs) d[Z(i), Z(j)]s. (2.10)

Here, [Z(i), Z(j)]t stands for the usual quadratic covariation of Z(i)
t and Z(j)

t defined

on the Euclidean space. Comparing to the Itô’s lemma (Theorem 2.36), the second

order terms (bottom row) of Equation (2.10) are now replaced by the covariant

derivatives. Moreover, existence and uniqueness of a SDE’s solution up to its

explosion time can be shown by reducing this SDE to a corresponding SDE on a

Euclidean space of larger dimension and applying the corresponding theorem that

was established for Euclidean space [25].

Alternatively, one can also define a L -diffusion process onM for a smooth

second order elliptic differential operator L on M. An F∗-adapted stochastic
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process Xt onM is called a diffusion process generated by L (or L -diffusion)

if Xt is an M-valued semimartingale up to its explosion time τ and f(Xt) −

f(X0)−
∫ t

0
L f(Xs) ds is a local F∗-martingale for all f ∈ C∞(M) and 0 ≤ t < τ .

Moreover, the solution of Equation (2.8) is an L -diffusion generated by a second

order parabolic operator

L =
1

2

l∑
i=1

V 2
i + V0 (2.11)

given that Z(i)
t are R-valued Brownian motion for 1 ≤ i ≤ l and Z(0)

t = t, see [25].

On the other hand, inspired by the procedure of “rolling without slipping”,

K. D. Elworthy [26] has constructed theories about stochastic development of an

M-valued semimartingale using the concept of horizontal lift. The fundamental

idea here is that one can lift a smooth curve onM uniquely to a horizontal curve on

the frame bundle ofM and there is a unique corresponding smooth curve on Rm to

this horizontal curve. This idea can be generalized to semimartingales onM.

While we discuss horizontal lifts for smooth curves in greater detail later in

this subsection, we will only give intuition of the generalization to semimartingales.

The stochastic development involves having a semimartingale on Rm, which is

the solution of some SDE in terms of Stratonovich integral. The next step is to

develop this semimartingale into a horizontal semimartingale on the frame bundle

of M. Lastly, we project this horizontal semimartingale down to the manifold

M. This procedure induces one-to-one relationships between a semimartingale

on Rm, a horizontal semimartingale on the frame bundle ofM and anM-valued

semimartingale onM. This approach of stochastic development builds on SDEs,

that are written in terms of Stratonovich integrals, however, it is possible to approach

stochastic development by smooth approximation [26] with examples: SO(3) in

[31, 30], so-called injection scheme; SP(n) in Section 4.3. For a moment, let us

define some terminologies and notations when dealing with the horizontal lift. We

fix a basis {e1, . . . , em} for Rm.

A frame at p ∈M is a linear isomorphism u : Rm → TpM, that is
{
u(ei)

}m
i=1

is a basis for TpM. Denoted by F (M)p the space containing all frames at p, and
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the frame bundle ofM, F (M) =
⋃
p∈M

F (M)p. Moreover, we can express u in

local coordinates {E1, . . . , Em, e1, . . . , em} in some neighbourhood U covering p as

u = (q, ζ) with ζ = (ζ ij) ∈ Rm×m the coefficients with respect to the orthonormal

basis {Ei(q)}mi=1 on TqM for all q ∈ U . That is for any vector e ∈ Rm, i.e.

e =
∑m

i=1 εi ei for some real numbers εi, we get u(e) =
∑m

i,j=1 εi ζ
i
j Ei(p) ∈ TpM.

Furthermore, F (M) is a differentiable manifold of dimension m + m2 and

there exists a smooth canonical projection map π : F (M) → M, see [25]. A

smooth curve ut on F (M) is defined such that at each time point t, ut assigns

smoothly both a point π(ut) on the manifold as well as a frame for the tangent space

Tπ(ut)M. If for each e ∈ Rd, ut(e) is a vector field onM such that it is parallel

along the curve π(ut), then we call ut a horizontal curve on F (M). Suppose

X ∈ TuF (M) for some frame u ∈ F (M), then X is called a horizontal tangent

vector if it is a tangent vector of a horizontal curve ut with initial frame u0 = u. The

subspace of TuF (M) contains all horizontal tangent vectors is denotedHuF (M)

and has same dimension as the manifoldM.

If xt is a smooth curve onM with x0 = p ∈ M and u0 is a frame at p, there

exists a unique horizontal curve ut on F (M) such that π(ut) = xt, we call ut
the horizontal lift of the curve xt from u0. Moreover, for 0 < t0 ≤ t1 the linear

map ut1u−1
t0 : Txt0M→ Txt1M is independent of u0, while it provides the parallel

transport along xt. Existence and uniqueness of ut can be shown by expressing the

condition for being parallel in local coordinates, and solving a system of ordinary

differential equations, see Equation (2.1). Moreover, the projection map π induces

an isomorphism for any u ∈ F (M), π∗ : HuF (M) → Tπ(u)M . That is, for

p ∈ M, u ∈ F (M)p and v ∈ TpM, there exists uniquely X ∈ HuF (M), we call

X the horizontal lift of the tangent vector v to HuF (M). Similarly, we can define

the horizontal vector field He on F (M) for some e ∈ Rm such that He(u) is the

horizontal lift of tangent vector u(e) for any u ∈ F (M).

Consider a horizontal lift ut of a smooth curve xt onM. Let x′t denote the

tangent vector of xt for all t ≥ 0, then u−1
t (x′t) ∈ Rm. The anti-development of

the curve xt onM is defined by wt =
∫ t

0
u−1
s (x′s) ds, which depends on the initial
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frame u0. In fact, the relationship between wt and ut is expressed by the following

ordinary differential equation

du

dt
=

m∑
i=1

Hei(ut)
dw(i)

dt
. (2.12)

The anti-development wt is guaranteed to exist and is uniquely defined up to initial

conditions u0 and x0, though its computation is often difficult.

Overall, using stochastic development results in many useful theories, i.e.

stochastic line integrals, local martingales on manifolds and sub-manifolds, etc [25].

One of themost important result is that if the anti-developmentWt ofXt is a standard

Brownian motion on Rm thenXt is a Riemannian Brownian motion (defined via the

Laplace Beltrami operator) on the manifoldM equipped with the affine-connection

∇. In greater detail, a Riemannian Brownian motion, just like a Euclidean Brownian

motion, can be defined by the diffusion process generated by ∆M/2, the Laplace-

Beltrami operator. But, on general Riemannian manifolds there is no closed form

of expressing Brownian motion via vector fields similar to those in Equation (2.8)

because ∆M cannot be expressed as similar to L in Equation (2.11). In theory,

there is a lifting of ∆M to the orthonormal frame bundle ofM, in which it then

can be expressed similarly to Equation (2.11). Nevertheless, the practical use of this

result is limited as computation of the horizontal lift is usually complex.

On the other hand, since a manifold is made of many flat pieces under trans-

formation of charts, we can write down ∆M locally, see Equation (2.6). Consider a

chart x = {x(i)}mi=1 on an open subset U covering a point p ∈ M, and the induced

basis {Xi = ∂/∂x(i)}mi=1. We write the metric tensor g in the matrix form G with

respect to the basis. Consequently, the equation of the Riemannian Brownianmotion

Wt on U ⊂M in local coordinates is given by

dW
(i)
t =

m∑
j=1

σij(Wt) dB
(j)
t −

1

2

m∑
k,l=1

Glk(Wt)Γ
i
kl(Wt) dt, (2.13)

with 1 ≤ i ≤ m, σ =
√
G−1 and Bt is an Rm-Brownian motion, see also in [25,
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Equation (3.3.11)]. Numerical approximation ofWt can be achieved by any existing

methods on the Euclidean space, such as the Euler-Maruyama method. However,

the SDE (2.13) is well-defined only on U and the matrix function G changes when

transitioning to a different chart. Therefore, there is a finite probability of leaving the

chart. If one only pays attention in tuning the time width to ensure the next position

ofWt stays insideU , this potentially creates biased sample from the true distribution

of the SDE of interest, e.g. when simply re-sampling a Brownian increment when

the currently proposed increment leads to the next point of the SDE solution falling

outside of U . This problem has been addressed in the literature for the Euclidean

setting and some suggestions are proposed to overcome it. For example, G. N.

Milstein et al. [53] propose a new concept for numerical methods, in which they

suggest removing the whole trajectories if any point on these trajectories escapes the

restricted region, and clearly this increases the computational cost significantly.

Instead, there is an extension of the Euler-Maruyama method which employs

the exponential map [29, 28, 27, 31], we call this method the exponential adapted

Euler-Maruyama method. At the current time t, we can simulate the next position

of the Riemannian Brownian motionWt as following

Wt+δt = ExpWt

{
m∑
i=1

(B
(i)
t+δt −B

(i)
t )Ei(Wt)

}
(2.14)

where {E1, . . . , Em} is an orthonormal basis field with respect to the metric g,

defined on a open neighbourhood of Wt and Bt is an Rm-Brownian motion. The

exponential adapted Euler-Maruyama method guaranteesWt+δt lies onM ifM is

geodesically complete, see Definition 2.18. Moreover, as δt → 0, Xt converges to

the Riemannian Brownian motion in distribution if there exists a global basis field

on the tangent bundle ofM [31, 28, 54], i.e. M is a parallelizable manifold (e.g.

Lie groups, torus, S0,S1,S3, etc; notice that not all Sn is parallelizable, e.g. S2 is

not). Additionally, the exponential adapted Euler-Maruyama method only requires

solving a system of ordinary differential equations to compute the exponential map,

whereas even if we insist to use implicit methods which depend on some clever
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choices of integrators during transitioning charts or embedding, this approach often

involves solving SDEs which can be much more complicated in the presence of

the curvature. Particularly, the space of covariance matrices SP(n), which is our

main focus in Chapter 4, not only is parallelizable, geodesically complete when

equipping with either the Log-Eucidean metric or the Affine-Invariant metric, but

also offers explicit formulas for the exponential maps. Hence, when working on

SP(n), the exponential adapted Euler-Maruyama method offers greater benefit for

practicability.

When performing statistical inference for SDEs, we often require calculation

of the transition density function, in particular those of Brownian motions if the

process is driven by Brownian motion. We know that the transition density function

f(s, x; t, y) of Brownian motion onRm is simply a Gaussian distributionN
(
x, (t−

s) Im
)
, where Im is an m×m identity matrix. However, on a general Riemannian

manifold, this density function f exists but usually no explicit expression is available,

it is often referred to the minimal heat kernel because it solves the heat equation

LMf = 0, where LM = ∂
∂t
− 1

2
∆M, see more details in [25, 26]. Nonetheless, we

can bound the heat kernel below and above for a compact Riemannian manifold.

Theorem 2.38 (Bounds for minimal heat kernel). [25] Suppose that M is com-

pact, we denote the Riemannian distance d(x, y) between x, y ∈ M. There exists

constants C1, C2 > 0 such that for all t ∈ (0, 1) and x, y ∈ M, the heat kernel

fM(0, x; t, y) satisfies

C1√
tm

exp

(
−d2(x, y)

2t

)
≤ fM(0, x; t, y) ≤ C2√

t2m−1
exp

(
−d2(x, y)

2t

)
(2.15)

On the Euclidean space, Brownian motion does not explode in finite time, and

if this holds in the Riemannian setting, that is
∫
M fM(0, p; t, q) dq = 1 for all p ∈

M and 0 < t < ∞, then the manifoldM is said to be stochastically complete. A

sufficient geometric condition for a complete Riemannian manifold to be stochasti-

cally complete depends on the growth of the Ricci curvature.

Theorem 2.39 (Conditions for stochastic completeness). [25] Consider a fixed point
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p ∈ M and denote d(x, p) as the distance between x ∈ M and p. Suppose that a

negative, non-decreasing, continuous function κ : [0,∞)→ R<0 satisfies

κ(r) ≤ 1

d− 1
inf
x∈M

{RicM(x) : d(x, p) = r},

where RicM(x) = {Ric(v, v) : v ∈ TxM and ||v||2 = 1}. If
∫∞
c

(
− κ(r)

)−1/2
dr is

infinite for some constant c thenM is stochastically complete.

Corollary 2.40. [26] Every geodesically complete Riemannian manifold is stochas-

tically complete if its Ricci curvature is bounded below.

From this moment, letM be parallelizable, i.e. there exists a global basis field

{Ei}mi=1 on the tangent bundle TM. We additionaly introduceN to denote a general

(not necessarily parallelizable) Riemannian manifold. Without loss of generality,

we can assume {Ei}mi=1 is orthonormal with respect to the metric tensor g onM.

Thus, it is possible to define a smooth function F :M× Rm → Γ(TM), in which

it assigns smoothly for each p ∈M a frame Fp : Rm → TpM by

Fp(e) =
m∑
i=1

εiEi(p) with e =
m∑
i=1

εi ei ∈ Rm. (2.16)

Furthermore, suppose that a : [0, T ] × M → Rm and b : M → Rm×m are

measurable functions, Bt are Rm-Browninan motion and P ∈ F0 is anM-valued

random variable. K. D. Elworthy [26] write SDEs on such manifoldM as

dXt = FXt
(
a(t,Xt) dt

)
+ FXt

(
b(Xt) dBt

)
(X0 = P ), (2.17)

which can be converted to those SDEs in Equation (2.8) (or vice versa) by setting

Vi(Xt) =
∑m

j=1 bij(Xt)Ej(Xt) for 1 ≤ i ≤ l = m and V0(t,Xt) = FXt
(
a(t,Xt)

)
,

with Z(0)
t = t and

(
Z

(i)
t

)m
i=1

= Bt. SDEs given in the form of Equation (2.17)

presents similar interpretation as the Euclidean SDEs, which are separated into

random and deterministic terms.

For amore generalmanifoldN , K. D. Elworthy [26] only requires such function

F to be differentiable in the first argument, having locally Lipschitz first derivatives
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(in coordinate charts), while it assigns for each point q ∈ N an associated frame Fq
on TqN . We distinguish this class of functions when considering N by denoting

F̃ . The function F defined in Equation (2.16) is an example of such an F̃ . Suppose

that A : [0, T ] × N → Γ(TN ) such that A assigns smoothly for each t ∈ [0, T ] a

smooth vector field A(t, ·) on N . And SDEs on N are then established in [26] as

dXt = A(t,Xt) dt+ F̃Xt
(
b(Xt) dBt

)
(X0 = P ). (2.18)

The assumption of a parallelizable manifold is not only to ensure the definition

of F in Equation (2.16) to be well-defined, but also to show examples of possible

conversion between SDEs in the forms (2.8) and (2.18). We emphasize two remarks:

firstly, Equation (2.17) is another way of writing Equation (2.18) for a paralleliz-

able manifold, given that the formula of F̃ is available explicitly, i.e. a(t, xt) can

be extracted explicitly from A(t,Xt) (or vice versa) and any functions F̃ can be

rewritten in term of F with a new function b̃ that plays a similar role to b defined in

Equation (2.17). Secondly, although two forms of SDEs in Equation (2.8) and (2.18)

are equivalent in theory, it is not obvious how one can move between these forms

when dealing with an arbitrary Riemannian manifold, e.g. it is not always possible

to extract Vi explicitly from F̃ and vice versa. For instance, if Ut is the horizontal

lift of the Riemannian Brownian motion Wt on N , the SDE in the form (2.18) of

Wt is simply dWt = F̃Wt(dBt), where F̃Wt = Ut, and we know that SDE of Wt

can’t be written in the form (2.8) generally. Besides a clear separation between

random and deterministic parts, we favour the expression of SDEs in the form (2.17)

or (2.18) over the one in Equation (2.8) because many important results, that are

established globally can be applied directly, such as the extension of Itô’s lemma

and the Girsanov theorem to Riemannian manifolds, see Theorem 2.41 and 2.42.

Additionally, let us define a sub-class of SDEs onM as those processes obtained
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as the limit as δt tends to zero of the exponential adapted Euler-Maruyama method:

Xt+δt = ExpXt

{
m∑
j=1

(
a(j)(t,Xt) δt+

m∑
i=1

bij(Xt)
(
B

(i)
t+δt −B

(i)
t

))
Ej(Xt)

}
,

(2.19)

where functions a, b are those appearing in Equation (2.17). We emphasize that not

all functions a, b guarantee the convergence, but this special class is non-empty as

there are existing works in the literature, which says certain diffusion processes can

be achieved by taking the limit δt ↓ 0, see for examples [28, 54, 26]. Besides the

example of the Riemannian Brownian motion, the Riemannian Ornstein-Uhlenbeck

process defined in Chapter 4 also belongs to this class.

However, the limiting result Xt in Equation (2.19) is not the solution of the

SDE (2.17) with a counterexample that having a = 0, b = Im. In fact, Xt is the

solution of the SDE defined with F̃Xt = Ut, where Ut is the horizontal lift ofXt and

in general has no explicit formula. This approach studies stochastic development

via smooth approximation. Thus, if we start our SDEs in either forms (2.8) or

(2.17) onM, it limits practical uses as one might need to approach embedding or

local coordinates for simulation. Instead, we write this special class of stochastic

processes onM as

dXt = A(t,Xt) dt+ FXt
(
b(Xt) dBt

)
(X0 = P ). (2.20)

That is to say, when we defineXt as the solution of the SDE (2.20) with explicit for-

mulas for A(t,Xt) and b(Xt), we meanXt as the limiting results in Equation (2.19)

with a(t,Xt) = F−1
Xt

(
A(t,Xt)

)
. Converting the SDE (2.20) to the form (2.18) is

done by setting F̃Xt = Ut, the horizontal lift ofXt. We want to be clear that although

the Equation (2.20) and (2.17) look similar, their solutions are different in general.

In favour for practicability, we choose the form given in Equation (2.20) for the

construction of the Riemannian Ornstein-Uhlenbeck process in Chapter 4. More-

over, under some restrictions for functions A and b, the map F defined in Equa-

tion (2.16) approximates Ut, see the demonstration for SP(n) in the Subsection 4.3.
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When dealing with SDEs in the form (2.20), this approximation procedure allows

us to apply existing theories that are directly applicable to SDEs (2.18). While there

are many important theories in [26], we end the chapter by presenting only those

that will be used later in Chapter 4.

Theorem 2.41 (Global formulations of Itô’s lemma). [26] Consider a stochastic

processXt onN , which is the solution of the SDE (2.18) and denote τ the explosion

time of Xt. For a function f ∈ C2
(
[0, τ)×N

)
, and any t < τ , we get

f(t,Xt) = f(0, X0) +

t∫
0

(
∂f

∂s
ds+ gXs

(
A(s,Xs) ds+ h(Xs),∇f

))

+
1

2

t∫
0

(
∆Nf

(
h(Xs) , h(Xs)

)
+ gXs

(
∇h(Xs)h(Xs) , ∇f

))

where h(Xs) = F̃Xs(b(Xs) dBs), see definition of the Riemannian gradient ∇f in

Equation (2.3) and the Lapalace-Beltrami operator ∆Nf in Equation (2.5).

Comparing to the Itô lemma on the Euclidean space (Theorem 2.36), the last

additional term in the second line in fact accounts for the curvature of N . Because

if N has zero curvature everywhere, this last term vanishes, and we get a formula

identical to the one in Theorem 2.36.

Theorem 2.42 (Girsanov-Cameron-Martin theorem ). [26] Given the stochastic

process Xt, Yt and their explosion time τX , τY , their law µX , µY respectively, let

τ = min{τX , τY }.

(i) Suppose Xt, Yt ∈M are the solutions of the SDEs in the form (2.17):

dXt = FXt
(
a(t,Xt) dt

)
+ FXt

(
b(Xt) dBt

)
(X0 = P ),

dYt = FYt
(
a(t, Yt) dt

)
+ FYt

(
b(Yt) dBt

)
+ FYt

(
c(t, Yt) dt

)
(Y0 = P ),

where c : [0, τ)×M→ Rm is a measurable function. Moreover, assume that

function c is locally Lipschitz, bounded above and b is invertible. Then µx and
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µy are absolutely continuous on [0, τ), and the Radon–Nikodym derivative is

dµx
dµy

(Yt) = exp

{
−
∫ t

0

〈
b−1(Ys) c(s, Ys), dBs

〉
F

− 1

2

∫ t

0

∣∣∣∣∣∣b−1(Ys) c(s, Ys)
∣∣∣∣∣∣2
F
ds

}
.

(ii) Suppose Xt, Yt ∈ N are the solutions of the SDEs in the form (2.18):

dXt = A(t,Xt) dt+ F̃Xt
(
b dBt

)
(X0 = P ),

dYt = A(t,Xt) dt+ F̃Xt
(
b dBt

)
+ C(t,Xt) dt (Y0 = P ),

where b is a non-zero constant andC : [0, T ]×N → Γ(TN ) assigns smoothly

for each t ∈ [0, τ) a smooth vector fieldC(t, ·) onN . Moreover, assume thatC

is locally Lipschitz, bounded above. Then µx and µy are absolutely continuous

on [0, τ), and the Radon–Nikodym derivative is given by

dµx
dµy

(Yt) = exp

{
−
∫ t

0

gYs

(
b−1C(s, Ys), Us(dBs)

)
− 1

2

∫ t

0

∣∣∣∣∣∣b−1C(s, Ys)
∣∣∣∣∣∣2
gYs

ds

}
,

where Ut is the horizontal lift of the process Yt.



Chapter 3

Regression on Lie groups

3.1 Overview

Regression analysis has been studied for centuries in the literature but most work

focuses on the Euclidean space, and more attention to manifolds has recently been

received due to geometric features, for examples: parametric circular–circular re-

gression [55], dimension reduction [56], dealing with predictor collinearity [14],

etc. Since linearity is not well-defined on a general manifold, the linear model will

not be suitable if the variables lie on a manifold. In particular, P. T. Fletcher [21]

has constructed an analogue of linear regression to manifold, so-called geodesic

regression, to model the relationship between the dependent variables on a Rieman-

nian manifold and the independent variables on the Euclidean space. The theory

of least squares for geodesic regression has been investigated in [57, 58], in which

the approach basically aims to minimize the sum of squared Riemannian distances

between the data and the fitted values from the model. However, as we know that this

minimizer in general has no explicit form, one requires an iterative algorithm, e.g.

gradient descent method. Besides linear models, more general forms of regression,

that have either independent and dependent variables lie on a Riemannian manifold,

are proposed in [59] with application in brain imaging via a novel kernel based

non-linear regression method.

We consider a simpler scenario in this thesis under two assumptions. Firstly,

we assume only the independent variables lie on a Riemannian manifold, whereas
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the fitted curve lies on the Euclidean space. Secondly, the Riemannian manifold

that the independent variables belong to is assumed to be a compact connected Lie

group, so that the existence of a bi-invariant metric is guaranteed. Thus, we can

set a principal basis on the tangent plane at the identity equipped with this special

metric, and it is sufficient to study the whole space apart from its cut locus.

We map the manifold of interest intrinsically onto its tangent space using

the logarithm map. In particular, for some Lie groups of matrix form, such as

GL(n), SO(n), etc, the exponential/logarithm maps coincide to be the usual matrix

exponential/logarithm functions. Many properties of matrix exponential/logarithm

can be applied, offering lower computational cost. This parametrization converts

locally (i.e. within the cut locus) a more complex space to a Euclidean space,

therefore the number of parameters in the model required to estimate does not

increase, whereas, using embedding might require more parameters. Although the

exponential map is only diffeomorphic within the cut locus, the cut locus Cq is

a closed subset with measure zero conditioned on an arbitrary point q on the Lie

group of interest (see Theorem 2.21). Therefore, it is valid to restrict our data to

stay away from the cut locus. To summarize, the proposed methodology is simply

fitting a regression model through the parametrization of Lie groups employing the

logarithm map, followed by existing Euclidean estimation methods.

While there are many estimation methods in regression analysis on the Eu-

clidean space, we focus on the generalized least squares (GLS) in this thesis because

wewould like tomake it applicable for our application of soft tissue artefacts, thatwill

come later in this chapter. We briefly review GLS on the Euclidean space, followed

by the extension to the compact connected Lie groups in Section 3.2. Furthermore,

we explore GLS on the space of rotational matrices SO(3) in Section 3.3. Besides

the parametrization employing the logarithmmap, we review another prametrization

defined by Euler angles, that is commonly seen in human kinematic analysis; see

for examples [3, 4, 60]. Moreover, the impact of different base points of the tangent

space on the fitted values are also explored. Lastly, for our application in human

kinematic analysis, we implement GLS on SO(3) for the model that describes the
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relationship between soft tissue artefacts and the rotations around the hip/knee joints

when using two different parametrizations. In addition, we consider two non-trivial

correlation structures, namely Matérn and quasi-periodic correlation functions in

the attempt of removing obvious patterns among residuals.

3.2 Generalized least squares

3.2.1 Euclidean space

Linear regression is widely used in practise due to its simplicity, e.g. in agricul-

ture, biology, astronomy, social science, etc [61, 62, 63]. Many applications use

linear regression to describe relationships between variables [64] , e.g. prediction,

forecasting, explaining the variation in the response variables. The method of least

squares is a popular approach in regression analysis [57, 58], which aims to mini-

mize the sum of squared residuals. C. Gauss [65] studies the theory of least squares

to a great extend and the Gauss-Markov theorem, which is one fundamental result

for general linear models, see Theorem 3.1.

Firstly, let us consider a linear regression model of n observations:

y = Xβ + ε with ε ∼ N
(
0n, σ

2 Σ
)

(3.1)

where the dependent variables y is an n× 1 vector, the independent variableX is an

n × p matrix with full rank, i.e. rank(X) = p, and β is an p × 1 vector containing

p unknown model parameters. Here, we split the covariance matrix of the errors

ε into σ and Σ. We assume that while σ is an unknown positive constant, Σ is a

correlation matrix that is either known or if it is unknown, it has known structure

within a parametric family.

We define an estimator β̂ for β in model (3.1) to be a linear unbiased estimator

of β if there exists C ∈ Rp×n such that β̂ = Cy and CX = Ip. Moreover, the best

linear unbiased estimator β∗ of β is a unique linear unbiased estimator such that for

any linear unbiased estimator β̂ of β, the matrix Cov(β̂)− Cov(β∗) is non-negative

definite. In other words, the best linear unbiased estimator has smallest variation
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and hence the smallest mean square error among linear unbiased estimators.

Theorem 3.1 (Gauss-Markov theorem). [66] Consider the linear model (3.1), given

that Σ is known. The Gauss-Markov estimator (GME) for β is defined by

β̂(Σ) = (XTΣ−1X)−1XTΣ−1y, (3.2)

then GME is the best linear unbiased estimator of β and Cov
(
β̂(Σ)

)
=

σ2(XTΣ−1X)−1.

When Σ equals the n×n identity matrix In, the GME defined in Equation (3.2)

reduces to the ordinary least squares estimator (OLSE):

β̂(In) = (XTX)−1XTy. (3.3)

In real applications, the correlation structure and variation of the data are

usually unknown. In practice, an assumption of independent errors with constant

variance, i.e. Σ = In, is often made as a first attempt. However, when the errors

appear obviously correlated, OLSE does not offer smallest variation and the residuals

indicate a clear pattern. In fact, if we decomposeΣ using the Cholesky factorization,

i.e. Σ = AAT for some lower triangular matrix A with real and positive diagonal

entries, the OLSE using transformed data A−1y and A−1X is given by

{
(A−1X)T (A−1X)

}−1
(A−1X)T (A−1y) = (XTΣ−1X)−1XTΣ−1y

which is indeed the GMEwhen using the original data while knowing the correlation

matrixΣ. Now suppose thatΣ is unavailable but its structure is known, i.e. Σ = Σ(θ)

for some unknown but estimable parameters θ. It is reasonable to use an estimator for

the correlation matrix Σ, say Σ̂. Thus, the GME in (3.2) reduces to the generalized

least squares estimator (GLSE),

β̂(Σ̂) = (XT Σ̂−1X)−1XT Σ̂−1y (3.4)
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From now on, we will denote the OLSE of β as β̂OLS, and the GLSE as β̂ GLS. The

OLS residual vector e is then given by e = y−Xβ̂OLS =
(
In−X(XTX)−1XT

)
y.

Moreover, for any linear unbiased estimator β̂ of β, i.e. β̂ = C(e)y for some function

C that satisfies C(e)X = Ip, K. Takeaki & H.Kurata [66] show that the estimator β̂

is in fact a GLSE with a known form of correlation matrix Σ̂ given by observations,

Σ̂ =
(
C(e)T C(e) +

(
In −X(XTX)−1XT

))−1

.

Lastly, let us introduce two different algorithms of generalized least squares

when considering the linear regression model (3.1).

Algorithm 3.2 (Minimized GLS). [66] Suppose the correlation function Σ(θ)

is a non-vanishing twice differentiable function with θ ∈ Rd and d < n, then

(β, θ) =
(
β̂GLS(Σ(θ̂)), θ̂

)
minimizesF(β,Σ) = (y−Xβ)TΣ(θ)−1(y−Xβ),where

β̂GLS(Σ(θ̂)) is given in Equation (3.4) and

θ̂ = arg min
θ∈Rd

{[y −Xβ̂GLS(Σ(θ))]TΣ(θ)−1[y −Xβ̂GLS(Σ(θ))]}

Algorithm 3.3 (Iterated GLS). [67] Under the model assumption that errors ε ∼

N (0n, σ
2Σ), the estimator θ̂ of θ aim to maximize the likelihood, i.e. it minimizes

the following function:

f(θ, e) =
n

2
log σ̂2 +

1

2
log det Σ(θ) +

1

2σ̂2
(eTΣ−1(θ)e) with

Σ(θ) = AAT and σ̂2 =

∑n
i=1(
∑n

j=1A
−1
ij ej)

2

n− 1
.

1. At k = 1,

(i) Starting with Σ1 = In, computing β1 = (XTΣ−1
1 X)−1XTΣ−1

1 Y and the

residuals vector e1 = y −Xβ1.

(ii) Minimizing function f(θ, e1) to get θ1 = argmin
θ

f(θ, e1).

2. At k = 2,
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(i) Computing Σ2 = Σ(θ1), β2 = (XTΣ−1
2 X)−1XTΣ−1

2 Y and the residuals

vector e2 = Y −Xβ2.

(ii) Minimizing function f(e2) to get θ2 = argmin
θ

f(e2).

3. Repeating for k ≥ 3, and we will stop the algorithm at k = N where |θN −

θN−1| < δ for some small δ.

While Algorithm 3.2 provides an estimationmethod such that {β, θ}minimizes

the sumof squaredMahalanobis distance between observations y and its fitted values,

Algorithm 3.3 estimates β in a similar manner as linear least squares and at the same

time θ maximizes the likelihood of residuals given estimator of β. It is easy to

see that Algorithm 3.2 differs from the Algorithm 3.3 through the absence of the

calculation log det Σ(θ), and we expect these two methods to give similar estimates

for (β, θ) when det Σ(θ) is constant. If Σ = In, i.e. β̂GLS = β̂OLS, the Algorithm 3.2

reduces to the usual least squares method.

Particularly, although Algorithm 3.3 may not give the same result as a pure

maximum likelihood estimator for {β, θ}, this algorithm reduces the computational

cost significantly as the formula of the estimator for β is available explicitly. How-

ever, alongside with the result that the iterated GLSE coming from Algorithm 3.3

offers a GLSE for β, Y. Toyooka [67] also states that “there is no improvement by the

use of the iterated residuals up to the second order”. For the practical use of iterated

GLS, it is recommended to use up to step 2 in Algorithm 3.3 to get an estimate of θ,

then compute the GLSE for β given this estimated value of θ. Overall, there is no

clear evidence as to which methods is better [66].

3.2.2 Compact connected Lie group
In this subsection, we discuss the extension of the GLS in Subsection 3.2.1 to a

compact connected Lie group G (see Definition 2.23) of dimension p, equipped with

the binary operation ∗, the identity element e and its Lie algebra g. We consider

a regression model of y against X , where y is a n × 1 vector and observations

Xi (1 ≤ i ≤ n) are elements of G.

The essence of the generalization is based on the following key points. We
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construct a bi-invariant Riemannian metric using left translation from an induced

Euclidean metric. We then discuss three cases regarding the location where obser-

vations lie in order to remove the restriction of exponential/logarithm maps being

only locally diffeomorphic. Lastly, we establish the parametrization employing the

logarithm map in each case and apply the usual GLS to estimate model parameters.

We intend using Corollary 2.29 to get a bi-invariant Riemannian metric on G,

that is to choose an induced Euclidean metric ge on g, such as the scalar product or

Frobenius inner product, etc, which satisfies

ge([u, v], w) + ge(u, [w, v]) = 0 ∀u, v, w ∈ g, (3.5)

where [·, ·] is the Lie bracket operating on the Lie algebra g. Using Proposition 2.28,

we can define a left invariant Riemannian metric g on G from this metric ge through

the left translation L, that is

gx(u, v) = ge((dLx−1)x(u), (dLx−1)x(v) ∀u, v ∈ TxG, x ∈ G,

where Lx−1 stands for the left translation by x−1. Corollary 2.29 ensure g is indeed

a bi-invariant Riemannian metric on G. Given that G is a compact connected

Lie group of finite dimension, its adjoint representation is therefore bounded and

Proposition 2.30 guarantees the existence of a bi-invariant Riemannian metric on G.

In other words, we are always able to obtain a metric ge which satisfies condition

in Equation (3.5), and extend it to a bi-invariant Riemannian metric through the left

translation. Accordingly, it is valid to fix a bi-invariant Riemannian metric g on G

for further work.

Since the dimension of the Lie algebra g is finite, it is not difficult to find

an orthonormal basis for g with respect to the metric g, for instance: the Gram-

Schmidt algorithm can be applied to convert a basis to an orthonormal basis. Let

B = {b1, . . . , bp} be an orthonormal basis for g, that is for any x ∈ g, there exist

x(k) ∈ R such that x =
∑p

k=1 x
(k)bk and ge(bj, bk) = δjk with the Kronecker delta

δjk. Furthermore, let us denote the set Ea within the cut locus of a ∈ G, see for more
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details in Definition 2.20. In other words, for some ε > 0 with the open ball Bε(0)

at the origin of g, the following map and its inverse are diffeomorphisms:

Expa ◦ (dLa)e : Bε(0)→ Ea & (dLa−1)a ◦ Loga : Ea → Bε(0)

Noting that not all Lie groups have an exponential map (with inverse given by the

logarithm map) at the identity coincides with the matrix exponential (and matrix

logarithm, respectively). In order to avoid the confusion, in this subsection we only

mean exponential/logarithmmap. Finally, let us define our proposed parametrization

that employs the logarithm map in three cases:

Case 1. {X1, . . . , Xn} ⊂ Ee, then dLe−1 ◦Loge = Loge. We compute xi ∈ Rp for i ∈

{1, . . . , n} such that Loge(Xi) =
∑p

k=1 x
(k)
i bk, i.e. x(k)

i = 〈Loge(Xi), bk〉F
for k ∈ {1, . . . , p}.

Case 2. There exists a fixed base point a ∈ G such that {X1, . . . , Xn} ⊂ Ea, and

we compute xi ∈ Rp for i ∈ {1, . . . , n} such that
(
(dLa−1)a ◦ Loga

)
(Xi) =∑p

k=1 x
(k)
i bj , i.e. x(k)

i =
〈(

(dLa−1)a ◦ Loga
)
(Xi) , bk

〉
F
for k ∈ {1, . . . , p}.

Case 3. There is no such a ∈ G as in case 2, which means there is no one-to-one

parametrization given our data set. By restricting the domain of the data, we

can end up in case 2.

For the first two cases, we get xi ∈ g, uniquely corresponding to our data Xi.

In case 2, a can be chosen as any fixed element of G, e.g. a can be one of the data

points, the important point here is we need to make sure that Ea covers the domain

of our observations. The Fréchet mean of {X1. . . . , Xn} could be an alternative

choice. Furthermore, since the measure of the cut locus of a point on G is zero

(Theorem 2.21), in probability we will not end up in case 3. However, if restricting

the domain is not an option, we need to seek for an alternative parametrization.

Consequently, {x1, . . . , xn} lie on Rp, thus standard technique on Euclidean

space can be applied from here, such as GLS in Subsection 3.2. Clearly, using the

proposed parametrization via logarithm map does not incur extra model parameters.
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In fact, any regressionmodels and statistical tools in regression analysis on Euclidean

space (e.g. p-values, hypothesis testing) can also be applied at this step. For example,

if we assume the data fall into case 1 and the regression model includes an intercept,

the OLS aims to minimize
∑n

i=1

{
yi − β0 −

∑p
k=1 βk 〈Loge(Xi), bk〉F

}2
.

The GLSE is no longer the best linear estimator as the logarithm map in

general is non-linear. But, under the assumption of data points staying away from

the cut locus of a fixed base point, the GLSE is unbiased as the logarithm map is a

diffeorphism within this cut locus.

In summary, the role of the base point a is simply making sure that the observa-

tions stay away from the cut locus. And using different base point a results a different

model, because in our methodology we are treating y as a collection of coefficients

with respect to the basis on the tangent plane at identity, while transporting X to

the tangent plane at a then using the left invariant vector field of a−1 to move them

to the tangent plane at identity. Depending on the nature of observations (i.e. the

spread of the data) and which Lie group we are working with, the impact from the

base point varies. We discuss this problem in detail forSO(3), which is a typical

example of a compact connected Lie group in the next section.

3.3 Regression on SO(3)
We briefly review the space of rotational matrices SO(3), and state the Rodrigues’

formula that calculates matrix exponential/logarithm on SO(3). Followed by study-

ing the effects of using different base points to the fitted values when applying

OLS/GLS with our proposed parametrization given in Subsection 3.2.2. Lastly, we

explore a convention of Euler angles using the joint coordinate system proposed by

E. Grood & W. Suntay [4], which is commonly used in human kinematic study.

The concept of rotation has been studied comprehensively in many areas and

there are many ways to parameterize rotational matrices, such as Euler angles,

axis angle pair, unit quaternion. For instance, in an application of aircraft rotation

occurs when the air-planes lift up from the runway during take-off, Euler angles

are regarded as yaw, pitch and roll [68]. In an application of human kinematic
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study, movement between femur and hipbone is also a rotation, and Euler angles

describe flexion-extension, abduction-adduction and internal-extenal rotation [3, 4].

In addition, in the field of astronomy researchers have shown that stars, planets

rotate (or spin) around some axes [69], and in this case expression of rotation can

be thought as an axis angle pair; or in quantum mechanics, the spin of the particle

(i.e. electron) is indeed undertaken by a rotational transformation [70], which is

commonly written in the form of a unit quaternion. Besides these parametrizations,

the study in Subsection 3.2.2 suggests another form using coefficients of skew

symmetric matrices (via logarithm map) with respect to a fixed basis.

We know that the set of matrices

SO(3) = {A ∈ GL(3) |ATA = AAT = I3 and detA = 1}

is a group with the binary operation defined by the usual matrix multiplication,

and SO(3) is sometimes referred to as the special orthogonal group. Moreover,

every rotational transformation (i.e. rotation of a rigid body which preserves length,

angles and orientation) can be represented uniquely by an orthogonal matrix with

unit determinant, thus SO(3) is also often called the space of rotational matrices.

Firstly, it is not difficult to see that SO(3) is a non-Abelian group (i.e. non-

commutative group) since exchanging the order of the rotational transformations

implies a different rotation. Furthermore, SO(3) is a compact connected Lie group,

and its Lie algebra, denoted by so(3), is the space of skew symmetric matrices [71],

i.e. so(3) = {B ∈ GL(3) |BT = −B}. This can be easily shown by considering a

differentiable curve A : (−ε, ε)→ SO(3) such that A(0) = I3, then differentiating

the equation AT (t)A(t) = I3 with respect to t at t = 0, we get

dAT

dt
A+ AT

dA

dt
=

(
dA

dt

)T
A+ AT

dA

dt
= 0,

⇒
(
dA

dt

∣∣∣∣
t=0

)T
A(0) + AT (0)

dA

dt

∣∣∣∣
t=0

= 0 ⇒
(
dA

dt

∣∣∣∣
t=0

)T
= − dA

dt

∣∣∣∣
t=0

.

Let us equip the Lie algebra so(3) with the Frobennius inner product 〈·, ·〉F .
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It is not difficult to check that Equation (3.5) holds for ge = 〈·, ·〉F . Thus, we

can define a bi-invariant Riemannian metric g from 〈·, ·〉F as discussed in previous

section. Particularly, any 3× 3 skew symmetric matrix is of the following form
0 −z y

z 0 −x

−y x 0

 (x, y, z ∈ R) .

It is easy to see thatB = {bi}3
i=1 is an orthogonal basis with respect to 〈·, ·〉F , where

b1 =


0 0 0

0 0 −1

0 1 0

 b2 =


0 0 1

0 0 0

−1 0 0

 b3 =


0 −1 0

1 0 0

0 0 0

 (3.6)

and the basis {b1/
√

2 , b2/
√

2 , b3/
√

2} is orthonormal with respect to 〈·, ·〉F .

In order to apply GLS in Subsection 3.2.2 to SO(3), we need to identify the

differential of the left translation and the logarithm map. Firstly, given A ∈ SO(3)

the differential of the left translation LA (i.e. B 7→ AB) is

∀B ∈ SO(3), (dLA)B : TBSO(3)→ TLA(B)SO(3) v 7→ Av. (3.7)

Secondly, as previously mentioned in Section 2.2, the geodesics passing through the

origin of so(3) are in fact one-parameter subgroups of SO(3). Since one-parameter

subgroups of SO(3) are given in the form {exp(tv) | t ∈ R, v ∈ so(3)}, where exp

denotes the matrix exponential function, the curve γ(t) = exp(tv) on SO(3) is a

geodesic that passes through the identity element, i.e. γ(0) = I3, in some direction

v ∈ so(3). Thus, using the left translation for any point A ∈ SO(3), the curve

γ(t) = A exp(tv) is a geodesic starting at A with initial velocity γ′(0) = Av. The

exponential/logarithm maps on SO(3) are therefore defined by

ExpA(v) = A exp(A−1v) and LogA(B) = A log(A−1B), (3.8)
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for v ∈ TASO(3), and LogA is well-defined given that B ∈ SO(3) is not in the

cut locus of A. Moreover, for any A1, A2 ∈ SO(3), the minimizing geodesic γ(t)

joining A1 and A2 is γ(t) = A1 exp
{
t log(A−1

1 A2)
}
, which is unique if and only if

A2 is not in the cut locus of A1, i.e tr (A−1
1 A2) 6= −1, see [71].

Therefore, from Equation (3.7) and (3.8), for all A ∈ SO(3) we get

(
(dLA−1)A ◦ LogA

)
: SO(3)→ so(3) B 7→ log(A−1B).

And since A ∈ SO(3), A−1 = AT implies reduction in computational cost. More-

over, given thatA ∈ SO(3) is not in the cut locus of someX ∈ SO(3), we can always

express log(ATX) in terms of the basis B, i.e. there exists {x(i) ∈ R | 1 ≤ i ≤ 3}

such that log(ATX) =
∑3

i=1 x
(i) bi. In previous chapter, we know that the formulas

for the matrix exponential/logarithm in general are complicated, as they involve

power series, see Definition 2.35, however, on SO(3) it is much easier to do so, see

the following proposition.

Proposition 3.4 (Rodrigues’ formula). [71] Consider A ∈ SO(3) and a ∈ so(3),

we define

ξ =

√
tr (aTa)

2
=
||a||F√

2
and θ = cos−1

(
trA− 1

2

)
with |θ| < π.

Then, the matrix exponential/logarithm are computed by

exp a =

 I3 if ξ = 0,

I3 + sin ξ
ξ
a+ 1−cos ξ

ξ2
a2 if ξ 6= 0.

(3.9)

logA =

 03 if θ = 0,

θ
2 sin θ

(A− AT ) if θ 6= 0.
(3.10)

The formula for log has singularities at θ = ±π (i.e. trA = −1), which are the cut

locus of I3 in SO(3).

Remark 3.5. [72] For any A ∈ SO(3) \ {I3} with trA 6= −1, there exists uniquely

a skew symmetric matrix ω and a real number φ such that A = exp(φω) and
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||ω||F = 2, i.e. ω =
∑3

i=1 ω
(i)bi with a unit vector

(
ω(1), ω(2), ω(3)

)
in R3. This is a

direct consequence from Equation (3.10), that is to set

ω =
2(A− AT )

||A− AT ||F
& φ =

θ ||A− AT ||F
4 sin θ

.

It is easy to see that φ is uniquely determined byA, we call φ the Rodrigues’ rotation

angle of A. Moreover, we get || logA||F = |φ| ||ω||F = 2 |φ|, and φ = 0 if any only

if A = AT , which is equivalent to the case A = I3.

Next, we study the impact of different base points on the fitted values when

using GLS, given that the parametrization employs the skew symmetric matrices

(i.e. via logarithm map) introduced in Subsection 3.2.2. We intend to bound the

difference between fitted values from models associated with different base points

when using OLS/GLS, in term of the Rodrigues’ rotation angle.

Firstly, we know that exp(x) exp(y) = exp(x+ y) holds for real numbers, but

on GL(n) this equation does not hold because the group GL(n) is non-commutative.

In fact, for any Lie group the Baker-Campbell-Hausdorff formula [73] approximate

Log
(
Exp(X)Exp(Y )

)
, given thatX and Y are elements of this Lie group, while Exp

and Log are the corresponding exponential/logarithm maps defined in Remark 2.34.

Theorem 3.6 (Baker–Campbell–Hausdorff formula). [73] Suppose that X, Y, Z

are elements of the Lie algebra g such that Exp(Z) = Exp(X)Exp(Y ), then Z is

approximated by the following series expansion in term of the Lie bracket:

Z = X + Y +
1

2
[X, Y ] +

1

12
([X, [X, Y ]]− [[X, Y ], Y ]) + · · · (3.11)

In particular, for a Lie group of matrices, [X, Y ] = XY − Y X , while

Exp/Log coincide with the standard matrix exponential/logarithm. Thus, Z =

log
(

expX expY
)
is now approximated by Z = Z1 + Z2 + Z3 + · · · , where

Z1 = X + Y & 2Z2 = XY − Y X,

12Z3 = X(XY − Y X)− (XY − Y X)X − (XY − Y X)Y + Y (XY − Y X).
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It is clear that if thematrix Lie group of interest is commutative, we get back the usual

result that applies to the one-dimensional case, i.e. log
(

expX expY
)

= X + Y .

Furthermore, we show that the action of Lie bracket on elements of SO(3) is

equivalent to the cross product of coefficient vectors on so(3) with respect to the

basis B defined in Equation (3.6), see following lemma.

Lemma 3.7. For any X, Y ∈ so(3), we write

X =
3∑
i=1

x(i) bi and Y =
3∑
i=1

y(i) bi for some x(i), y(i) ∈ R.

If Z = [X, Y ] = XY − Y X , there exists z =
(
z(1), z(2), z(3)

)
∈ R3 such that

z = x× y ( i.e. the cross product of x and y) and Z =
∑3

i=1 z
(i) bi.

Proof. The commutation relations among elements of the basis B are [b1, b2] =

b3 ; [b2, b3] = b1 ; , [b3, b1] = b2 and [bi, bj] = −[bj, bi] (∀1 ≤ i, j ≤ 3). There-

fore, for Z = [X, Y ] we get

Z =

[
3∑
i=1

x(i) bi ,
3∑
j=1

y(j)

]
=
∑
i,j=1

x(i)y(j) [bi, bj]

=
(
x(2)y(3) − x(3)y(2)

)
b1 +

(
x(3)y(1) − x(1)y(3)

)
b2 +

(
x(1)y(2) − x(2)y(1)

)
b3.

By setting z(1) = x(2)y(3)−x(3)y(2) , z(2) = x(3)y(1)−x(1)y(3) and z(3) = x(1)y(2)−

x(2)y(1), it is easy to see that if z =
(
z(1), z(2), z(3)

)
, then z = x × y and Z =∑3

i=1 z
(i) bi.

Let us restate the regression model with intercept using the parametrization

that employs the logarithm map introduced in Subsection 3.2.2 for SO(3), that is

for some base point A ∈ SO(3):

y = xAβ + ε with ε ∼ N
(
0n, σ

2 Σ
)
. (3.12)

Here, we assume that observations for the dependent variables and indepen-

dent variables are {yi}ni=1 and {Xi}ni=1, such that for all 1 ≤ i ≤ n : Xi =
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A exp
{∑3

j=1 x
(j)
i bj

}
with

xA =


1 x

(1)
1 x

(2)
1 x

(3)
1

. . . . . . . . . . . .

1 x
(1)
n x

(2)
n x

(3)
n


T

∈ Rn×4.

If A = I3 (i.e. a trivial base point) this parametrization is interpreted by having

coefficients in the logarithm domain with respect to B, whereas for a non-trivial

base pointA, before we perform those steps we need to apply a rotation in the reverse

direction of A first, ATXi (i.e. left translation with AT = A−1). On the other hand,

when choosing a different base point B, we have ATXi = (ATB) · (BTXi) for all

1 ≤ i ≤ n in which ATB ∈ SO(3). In other words, changing base point requires

secondary rotation ATB, and if A = B, it makes sense since this additional rotation

equals the identity map.

The essence of proving the main results, Theorem 3.10 for OLS and Theo-

rem 3.11 for GLS, are carried out in two steps. Firstly, we use Theorem 3.6 to

approximate the coefficients of ATXi in term of those corresponding to ATB and

BTXi in the logarithm domain. Secondly, we use results that fitted values are un-

changed under mean-centering in Remark 3.8 and a special form of transformation

in Lemma 3.9 for independent variables on the Euclidean space, in order to bound

the difference of fitted values in L2-norm.

Remark 3.8. The approach of translation observations by a fixed vector c =(
c(1), c(2), c(3)

)
, that is for all i ∈ {1, . . . , n}

(
1, x

(1)
i , x

(2)
i , x

(3)
i

)
7→

(
1, x

(1)
i + c(1), x

(2)
i + c(2), x

(3)
i + c(3)

)
which does not alter fitted values. This is due to the fact that on each direction j ∈

{1, 2, 3} observations were added with same amount c(j), and OLS or GLS balance

the expected values of response when all predictors are zero with the intercept.

Moreover, this transformation is sometimes referred to as mean-centering.
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Lemma 3.9. Suppose V ∈ GL(p) with p < n and some correlation matrix Σ ∈

GL(n). If Y = XV , the following holds for X, Y ∈ Rn×p:

X(XTΣ−1X)−1XT = Y (Y TΣ−1Y )−1Y T ,

which implies fitted values usingOLS/GLS are invariant under given transformation.

Proof. Since Y = XV , we have
(
Y TΣ−1Y

)−1
= V −1

(
XTΣ−1X

)−1 (
V T
)−1,

⇒ Y
(
Y TΣ−1Y

)−1
Y T = XV

{
V −1

(
XTΣ−1X

)−1 (
V T
)−1
}
V TXT

= X
(
XTΣ−1X

)−1
XT .

We are now ready to prove our main results by firstly showing the case of OLS,

followed by the case of GLS.

Theorem 3.10 (OLS). Consider two base points A,B ∈ SO(3), using OLS yields

fitted values ŷA, ŷB when using the base point A or B respectively in the model, i.e.

ŷA = xA(xTAxA)−1xTAy & ŷB = xB(xTBxB)−1xTBy. (3.13)

Suppose that φ is the Rodrigues’ rotation angle ofATB, defined in Remark 3.5, then

there exists some positive constant K such that ||ŷA − ŷB||22 ≤ φ2K.

Proof. We express ATXi, B
TXi and ATB in the logarithm domain with respect to

the basis B, for all 1 ≤ i ≤ n there exist ai, bi, c ∈ R3 such that

log(ATXi) =
3∑
j=1

a
(j)
i bj ; log(BTXi) =

3∑
j=1

b
(j)
i bj ; log(ATB) =

3∑
j=1

c(j) bj.

In other words,

xA =


1 a

(1)
1 a

(2)
1 a

(3)
1

. . . . . . . . . . . .

1 a
(1)
n a

(2)
n a

(3)
n


T

& xB =


1 b

(1)
1 b

(2)
1 b

(3)
1

. . . . . . . . . . . .

1 b
(1)
n b

(2)
n b

(3)
n


T
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Applying Theorem 3.6 for Z = log(ATXi), X = log(ATB) and Y = log(BTXi),

together with Lemma 3.7, we have

ai = c + bi +
1

2
c× bi +

1

12
{c× (c× bi)− (c× bi)× bi}+ · · ·

Moreover,

(c× bi) =


c(2)b

(3)
i − b

(2)
i c(3)

b
(1)
i c(3) − c(1)b

(3)
i

c(1)b
(2)
i − c(2)b

(1)
i

 = −


0 −c(3) c(2)

c(3) 0 −c(1)

−c(2) c(1) 0

 ·

b

(1)
i

b
(2)
i

b
(3)
i


= −

(
3∑
j=1

c(j) bj

)
bi = − log(ATB) bi.

⇒ c× (c× bi)− (c× bi)× bi = −(c× bi)× c− (c× bi)× bi

=
(
log(ATB) bi

)
× c +

(
log(ATB) bi

)
× bi

= log(H) c + log(H) bi,

where, log(H) =
(
− c(2)b

(3)
i +b

(2)
i c(3)

)
b1 +

(
−b

(1)
i c(3) + c(1)b

(3)
i

)
b2 +

(
− c(1)b

(2)
i +

c(2)b
(1)
i

)
b3, is a skew symmetric matrix. Therefore,

ai = c +

{
I3 −

1

2
log(ATB) +

1

12
log(H)

}
bi + O(c2).

Here,O(c2) stands for an infinite sum in which all elements include factors of either

(c(t))2 or c(l)c(s) for l, s ∈ {1, 2, 3}, and this sum is finite sinceA,B andXi are finite

real matrices.

Since A,B ∈ SO(3) are fixed, the vector c is a constant vector. And

at each data point, the coefficients of log(ATB) are translated by c, Lemma

3.8 implies ŷA remains the same if we replace ai by ai − c. Thus it is suf-

ficient to show that if ai =
{
I3 − 1

2
log(ATB) + 1

12
log(H)

}
bi + O(c2) then

||ŷA − ŷB||2 ≤ φ2K for some positive constant K, where φ is the Rodrigues’ ro-

tation angle of ATB defined in Remark 3.5.
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On the other hand, Remark 3.5 implies

3∑
j=1

(c(j))2 = 4φ2 ⇒ max
{∣∣c(a)

∣∣ ; 1 ≤ j ≤ 3
}
≤ 2φ

⇒
∣∣∣∣∣∣∣∣ai −{I3 −

1

2
log(ATB) +

1

12
log(H)

}
bi

∣∣∣∣∣∣∣∣2 ≤ φ2M for someM > 0.

Let us denote U = −1
2

log(ATB) + 1
12

log(H) then U is also a skew symmetric

matrix, i.e. U =
∑3

j=1 u
(j)bj , because both log(ATB) and log(H) are elements of

so(3). We then set x̃B = xBU
∗, where

U∗ =

1 0

0 I3 + U

 with det(U∗) = det(I3 + U) = 1 +
3∑
j=1

(
u(j)
)2
> 0.

Thus, U∗ is invertible, and using Lemma 3.9, we get

ŷB = xB(xTBxB)−1xTBy = x̃B(x̃TBx̃B)−1x̃TBy

Since each row of (xA − x̃B) has squared length bounded above by φ2M ,

⇒ ||ŷA − ŷB||2 ≤ φ2K for some positive constant K.

Theorem 3.11 (GLS). Consider two base points A,B ∈ SO(3), using GLS asso-

ciated with a correlation matrix Σ, yields fitted values ŷA, ŷB when using the base

point A or B respectively, i.e.

ŷA = xA(xTAΣ−1xA)−1xTAΣ−1y & ŷB = xB(xTBΣ−1xB)−1xTBΣ−1y. (3.14)

Suppose that φ is the Rodrigues’ rotation angle ofATB, defined in Remark 3.5, then

there exists some positive constant K such that ||ŷA − ŷB||22 ≤ φ2K.

Proof. Since the translation invariance and Lemma 3.9 hold for GLS, the same

results of OLS will also hold when using GLS instead (i.e. Σ 6= I3).
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Both Theorem 3.10 and 3.11 imply that the difference between fitted values

changes with rate φ, which makes sense as the lower Rodrigues’ rotation angle, the

closer ATB to the identity matrix, at which φ = 0 implies A = B. Moreover, this

could reduce the number of potential base points before proceeding model fitting,

by picking only several candidates that have large relative Rodrigues’ rotation angles

to each other. If observations are close to each other (e.g. the application of human

joint movement in Section 3.4), then by picking the base point from one observations

or Fréchet mean of all observations, there will be very small difference between fitted

values.

Before proceeding to the application of human joint movement in the next

section, we give a brief introduction of a convention of Euler angles proposed by E.

Grood &W. Suntay [4], because it can happen that even in the same area of research,

many convention of Euler angles are used, which might bring some confusion when

understanding these angles.

Figure 3.1: The joint coordinate system for the knee proposed by E. Grood & W. Suntay
[4] (original source of the image [5]).

Any rotational transformation can be converted to a set of three angles, which

describe the orientation of either a rigid object with respect to a fixed coordinate

frame (i.e. extrinsic) or a moving frame of reference (i.e. intrinsic). However these

sets of angles depend on the definition of the rotational frame, thus whenever using

Euler angles, we always need to attach the convention of the frame used, i.e. how it
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is defined, the ranges and signs of the angles.

A common way to collect 3D data of joint movement is using multiple cameras,

placed around the desired objects, each camera will contribute a 2D coordinate,

which is then used to compute 3D coordinates. The global (laboratory) coordinate

system is fixed and a local coordinate system is attached to the moving body. E.

Grood &W. Suntay [4] proposed a joint coordinate system of the knee consisting of

three non-orthogonal axes. It is composed of two body fixed axes and the third axis

(floating axis) is the mutually perpendicular of the two (i.e. equals the cross product

of the other two axes), see Figure 3.1.

Joint angles (Euler angles) are defined tomatch clinical terminologies in biome-

chanics about joint rotation, which are flexion/extension, external/internal rotation

and adduction/abduction. Flexion/extension occurs about the femoral fixed axis on

the thigh (~ithigh), external/internal rotation occurs about the tibial fixed axis on the

leg (~kleg) and finally adduction/abduction occurs about the floating axis.

Suppose we have a rotational matrix R =
(
Rij

)
of the right leg, then the

computation of the Euler angles (α, β, γ) are

(i) Adduction/abduction = cos−1R13 − π/2 = β − π/2 with β ∈ [0, π).

(ii) Flexion/extension = tan−1(R23/R33) = α with α ∈ [0, π].

(iii) External/internal = tan−1(R12/R11) = γ with γ ∈ [−π/2, π/2].

On the other hand, for the left knee the computation is carried out similarly, except

adduction/abduction and external/internal must have their sign reversed in order to

maintain the relative orientation between the right and left knee.

When β = 0 (i.e. 90◦ abduction), we can only uniquely determine β (i.e

β = 0 or π) and the sum α+ γ, but not the two angles themselves. In this rare case,

which is often referred to as gimbal lock, the rotational matrix R reduces to

R =


0 0 1

− sin(α + γ) cos(α + γ) 0

− cos(α + γ) − sin(α + γ) 0

 ,
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and we lose a degree of freedom as changing α or γ does not change the rotation

axis, i.e. the rotation is still about the Z-axis, which occurs when ~ithigh becomes

coincident with ~kleg. In general, regardless of the convention of Euler angles used,

there will always be some points at which the Euler angles break down, which

behaves similar to the cut locus when using exponential/logarithm map. However,

this rare scenario is physically impossible with the knee/pelvis joint, Euler angles

therefore can always be established uniquely. This indicates that it is possible for us

to avoid falling case 3 mentioned in Subsection 3.2.2.

3.4 Application to soft tissue artefacts

In human kinematic study, the interest is often in studying the bone movement,

which is a rigid motion. However, measuring the bone movement exactly is very

difficult, expensive and time-consuming. Thus people commonly use skin-mounted

markers to estimate the actual bone movement. These markers are affixed onto the

skin, and get captured by camera during some required activities. One problem

arises, that is when the muscle is contracted, which results in skin being stretched or

slid under a certain activity, the relative position between the skin and the underlying

bone changes. This difference in position is often called soft tissue artefact (STA).

An alternativemethod uses pin-mountedmarkers, which can be used to evaluate

the validity of using skin-mounted markers, e.g. measuring STAs. Clusters of

markers are mounted onto steel pins, which are implanted into the bone (e.g. tibia,

femur and hip-bones), and skin displacements encountered (i.e. STAs) during

certain activities are computed. These displacements are the differences between

the actual skin markers position and the position in which the skin markers would

be if only the solid motions (i.e. rotation and translation) that are implied by the

change in position of the bone markers had taken place. Even though the use of pin-

mounted markers brings more accurate representation of bone movement, it is more

dangerous, difficult and expensive than using skin-mounted markers. The impact of

STAs is therefore very important when studying the position and orientation of the

bone movement.
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In this section, we first describe the source of the data, together with reviewing

a linear regression proposed by V. Camomilla et al. [3], that uses Euler angles, in

Subsection 3.4.1, in which OLS is applied to estimate the regression parameters.

Moreover, we see that there is a clear violation of the assumption about residuals,

which suggests the use of GLS, which has not been considered elsewhere for this

type of data. We implement GLS using two forms of parametrization, defined by

either the Euler angles or the coefficients of skew symmetric matrices, to fit a model

of STAs in Subsection 3.4.2. Due to the nature of the data, we assume two non-trivial

correlation structures: Matérn and quasi-periodic correlations for GLS. We show

that there is some reduction of some patterns among residuals.

3.4.1 The regression model proposed by V. Camomilla et al. [3]
The experiment was carried out on four adult cadaver subjects with twelve skin-

mounted markers on the thigh skin along three longitudinal lines in antero-lateral,

anterior and antero-medial positions. In addition, steel pins equipped with four-

marker clusters, are mounted into tibia, femur and hip-bones. These markers are

captured by a 9-camera stereophotogrammetric system at frequency 120 frames per

second and the number of observations for each subject in each trial is summarized

in Table 3.1.

Subject 1 Subject 2 Subject 3 Subject 4
Trial 1 2423 1932 1671 2133
Trial 2 2498 2004 1860 2316
Trial 3 2042 1838 1968 2471

Table 3.1: Total observations for each subject in each trial from the ex-vivo study in [3].

The subjects are passively performed two movements: a star-movement and an

arc-movement over three trials, see Figure 3.2. The reference position at eachmarker

is placed in a femur anatomical frame. STAs at each marker are then computed by

the displacement vector relative to the reference position in the global (laboratory)

coordinate system. On the other hand, in order to compute rotations of the bone, the

estimate of the hip joint centre (HJC) location is required. For our data set, the HJC

is determined using a functional approach, see [6] for more details, with two main
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Figure 3.2: The foot trajectory of the lower limbmovements relative to the pelvis is projected
on the transverse plane during the star-movement followed by the arcmovement.
The direction of these movement is illustrated by the arrows, numbers 1-9, in
which the initial position is indicated with number 0 (original source of the
image [6]).

sources of errors for HJC determination coming from the stereophotogrammetric

system and the STAs. Therefore, a collection of high-frequency observations of

STAs and rotation matrices are recorded over time. Furthermore, trajectories of

STAs are filtered with a 4th-order low pass Butterworth filter with a cut-off frequency

10 Hz. The process of smooth filtering reduce the influence of noises, and in the

field of biomechanic, practitioners often consider these noises to be undesirable,

because it is not only more difficult to see the true pattern of movement, but also

computation with differentiation (e.g. velocity, acceleration) can give unreasonably

inaccurate values, see [74]. However, using a filter imposes correlation on errors,

which in statistics adds more complexity in regression analysis.

V. Camomilla et al. [3] propose a linear regression model of STAs at each

marker in each component against three Euler angles (flexion/extension, external/in-

ternal and adduction/abduction) computed by the convention from E. Grood & W.

Suntay [4] of the thigh and shank, that is

y(m,c) = hα(m,c,th)αth + hβ(m,c,th)βth + hγ(m,c,th)γth

+ hα(m,c,sh)αsh + hβ(m,c,sh)βsh + hγ(m,c,sh)γsh + h0
(m,c) + ε(m,c) (3.15)

where
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• y(m,c): Euclidean component c of the difference between skin-mountedmarker

m is versus where it would be expected to be under a solid rotation by

αth, βth, γth in the (~ithigh,~jthigh, ~kthigh) system.

• αth, αsh: flexion/extension on the thigh/shank.

• βth, βsh: adduction/abduction on the thigh/shank.

• γth, γsh: external/internal rotation on the thigh/shank.

• h(m,c) =
(
hα(m,c,th), h

α
(m,c,sh), h

β
(m,c,th), h

β
(m,c,sh), h

γ
(m,c,th), h

γ
(m,c,sh), h

0
(m,c)

)
are

model parameters at marker m in the component c when considering both

thigh and shank.

• ε(m,c) : residuals.

Similar models are also considered in [75, 76] , all of which assume the errors are

independent and identically normally distributed with same variance. Overall, at

each marker the model consists of 21 unknown parameters. The intercept terms are

added so that the STAs vector is a zero vector at the beginning of the experiment.

The model parameters are estimated using OLS. While V. Camomilla et al. [3] use

degrees as the unit of Euler angles, we use radian, simply because the coefficients of

the skew symmetric matrices computed from the data are very small. This will only

change the unit of the model parameters, whereas predictors or fitted values remain

the same. While the linear model (3.15) provides a linear correlation of the STA

affecting a givenmarkermounted on the thigh during certainmovementwith the time

history of adjacent joints’ rotations, there are high number of independent models

corresponding to the numbers of skin markers and their Euclidean components.

Alternatively, someworks on reducing these numbers include fitting amarker-cluster

located on the thigh [77, 78], where the STA of a marker cluster is transformed

through a geometrical transformation into a modal series, e.g. projecting the STAs

onto an appropriate basis vector representing the components of the soft tissue

movement, see for examples [79, 80, 81]. Furthermore, another attempt of data

reduction involves using the principal component analysis, see [60]. Here, models
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often neglect all geometric nonlinearities, since the STA is relatively small compared

to the overall rotation of the bones.

Next, before discussing a downside of the model proposed by V. Camomilla et

al. [3], let us explore a problem when processing the data and how one wants to

reduce its impact. Due to the method of collecting 3D data from using stereopho-

togrammetric system and human error when the hip joint is moving, abnormal

observations occur as the result of sudden high speed (Figures A.1–A.3, Appendix

A). Using camera system leads to apparent “jump”, which are covered up by using

the smooth filtering. These jumps result from discrete changes in the set of cam-

era images being used to reconstruct the marker position at discrete time points.

Without filtering these changes would yield actual jumps. With smooth filtering

the trajectory stays continuous but high velocities are observed, e.g. the black dots

spread out more during some particular time intervals in Figure 3.3. In other words,

the multiple camera system fails to capture all twelve markers for some small time

intervals and the filter method aim to guess these missing values.
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 Trajectories of STA observations from subject 1 in trial 1

Figure 3.3: Trajectories of 2423 observations of STAs against time from subject 1, trial 1
(before removing abnormal observations).

We notice that the bad time intervals, where these problems happen, not only

occurs with STAs observations (i.e. dependent variables y) but also rotation obser-

vations (i.e. independent variables X). This is a consequence of using the camera

system to capture image of the cluster of four markers on the steel pin, which were

implanted into tibia, femur and hip-bones. And observations of rotation and ex-

pected displacement of the skin are the results of these images. These bad time
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intervals change for different subjects during different trials in both y on R3 and X

on SO(3). Moreover, they do not always occur at the same time for different loca-

tions of markers. When using the model to predict STAs values, we can determine

most of these bad time intervals through the independent variables (i.e. rotation

matrices), see the comparison between Figure A.3 and A.4.

In order tominimize the impact, we remove partial data at which these problems

occur, while we keep a sufficient amount from the dataset to use for parameter esti-

mation. In Algorithm 3.12, we compare estimated speed using Euclidean distance

of STAs in some specific markers, trials, subjects and discard observations that have

high speed. And for prediction we will use an alternative algorithm, which involves

only on the independent variables X , i.e. rotational matrices, see Algorithm 3.13.

While Algorithm 3.12 results dependence on trial, subject and location of markers,

Algorithm 3.13 implies independence from the location of the markers.

Suppose that we observe rotational matrices {Xt1 , . . . , Xtn} ∈ SO(3) and the

corresponding STAs {yt1 , . . . , ytn} for observation time t = {t1, . . . , tn}. Both Al-

gorithm 3.12 and 3.13 involve computation of estimated speed, followed by removal

of high speed observations.

Algorithm 3.12 (STAs). We use 〈··〉F to compute the Euclidean distance.

1. Estimated speed between two adjacent STAs are computed by

v
(y)
i =

d(yti , yti+1
)

ti+1 − ti
=
||yti+1

− yti ||F
ti+1 − ti

(1 ≤ i ≤ n− 1).

2. Remove α% part of data that have higher speed.

Algorithm 3.13 (Rotation). We use a Riemannian metric tensor discussed in [71]

to compute the Riemannian distance on SO(3).

1. Estimated speed between two adjacent rotational matrices are computed by

v
(X)
i =

d(Xti , Xti+1
)

ti+1 − ti
=

∣∣∣∣log
(
XT
ti
Xti+1

)∣∣∣∣
F

ti+1 − ti
(1 ≤ i ≤ n− 1).
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2. Remove α% part of data that have higher speed.

The choice of α varies and we recommend to keep in the range (0, 10] as we

don’t want to remove too many observations. With the given set of data, we set

α = 2 throughout this study. The impact of performing either Algorithm 3.12 or

Algorithm 3.13 on the removal of abnormal observations caused by sudden high

speed, together with comparison between these algorithms can be seen in Figure A.3

and A.4 (Appendix A).
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Figure 3.4: OLS residuals plots using regression model (3.15), which consisting 2376
observations (models are fitted after removing abnormal observations).

After prepossessing the data, we fit the regression model in Equation (3.15), in

which we use OLS to estimate model parameters. It is clear that there are obvious

patterns among residuals, see Figure 3.4. This indicates that the assumption about the

independence among errors with same variance is violated. Aswementioned before,

observations of STAs have been processed with a smooth filtering, see Figure 3.3.

Since we are unable to access the raw data (i.e. before they are processed through

the low-pass Butterworth filter), we therefore suggest using GLS to estimate model

parameters as it takes into account the correlation between errors.

3.4.2 Model fitting using GLS
We aim to fit a linear regression after parametrization of rotation matrices, either

defined by the Euler angles as in model (3.15) or by the coefficients of skew sym-

metric matrices as in model (3.12), to the experimental data obtained from the

ex-vivo study in [3]. In this work, we assume that the model is subject-specific and

trial-specific, based on the result from [3], for each subject we therefore construct
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36 models for twelve markers in three Euclidean components. We mainly use data

of trial 1, and possibly use trial 2 or trial 3 to validate the model. Moreover, we

assume a non-trivial correlation structure when applying GLS, i.e. Σ 6= In.

Since the dimension of then×n correlationmatrixΣ ismassive (after removing

abnormal observations, n = 2376), it is impossible to estimate Σ properly unless we

impose an explicit structure on Σ. We know that observations have been processed

by a 4th-order low pass Butterworth filter with a cut-off frequency 10 Hz. Since a

Butterworth filter shifts the timing of the data, a 2nd-order with a cut-off frequency

10 Hz is applied to the original time series (i.e. forward direction) and then again

in the reverse direction (i.e. backward direction), in order to achieve the zero-phase

shift, see [74, 82, 83]. This process contains complicated calculation and it is

therefore impossible to extract the correlation matrix exactly from the information

we have. However, we can still deduce that residuals have time dependence and

possibly periodic behaviour. Thus, potential candidates for the correlation functions

are the Matérn [84] and the quasi-periodic correlation functions [85], denoted by

ΣM , ΣQ respectively, that is for 1 ≤ i, j ≤ n:

ΣM
ij (ρ, ν) =

21−ν

Gam1(ν)

(
2
√
ν|ti − tj|10ρ

)
κν
(
2
√
ν|ti − tj|10ρ

)
, (3.16)

ΣQ
ij(ρ, ν, T, ω) = ΣM

ij (ρ, ν) exp

−sin2
(
π|ti−tj |

T

)
2ω2

 . (3.17)

with the gamma function for real numbers, Gam1, and the modified Bessel function

of the second kind, κν . The positive parameter ρ plays important role in controlling

the correlation decay time, while positive parameter ν has large impact on the

roughness of the data, see Figure 3.5. In particular, a Gaussian process with Matérn

covariance is dνe−1 times differentiable in the mean-squared sense [85], where dνe

is the ceiling of ν. In other words, we expect that using Matérn with larger ν will

produce smoother trajectories. On the other hand, the quasi-periodic correlation

function is constructed such that there is an additional periodic term of frequency T

and ω, which parametrizes the strength of the periodic effect.
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Figure 3.5: Simulation of Gaussian process equipped with the Matérn correlation structure
using different pair values of (ρ, ν).

Computational complexity for both Matérn or quasi-periodic correlation func-

tion is high because they require solving the Bessel’s differential equation. However,

we can simplify the calculation for the Matérn correlation matrix in Equation (3.16)

and (3.17) when ν = q + 1/2 with q ∈ N to a product of an exponential and a

polynomial of order q, see [86]. We know that our observations are filtered with a

4th-order Butterworth filter, therefore we expect they are three times differentiable,

see [87]. One option is therefore to choose ν = 3.5, but matching only the order of

differentiation may not be good thing if the true correlation structure is too different

to the proposal form. In general, over-smoothing leads to more rapid loss of rate of

convergence than under-smoothing in nonparametric estimation (see for example of

the Bayesian context in [88]). Since the true (unknown) correlation structure can be

far more different to either the Matérn or the quasi-periodic functions, it is safer to
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choose a smaller value for ν. We compare Figure 3.4 versus Figure 3.5 and decide

to set ν = 1.5 for all models of twelve markers in three Euclidean components. It

is left to estimate ρ for ΣM and {ρ, T, ω} for ΣQ. The computational efficiency is

improved significantly because not only there are less parameters to estimate, but

also the formulas of the correlation matrix are simplified to

ΣM
ij =

(
1 +
√

3|ti − tj|10ρ
)

exp
(
−
√

3 |ti − tj| 10ρ
)
, (3.18)

ΣQ
ij = ΣM

ij exp

−sin2
(
π|ti−tj |

T

)
2w2

 . (3.19)

We fit 36 models for each subject in trial 1 independently, using GLS associ-

ated with either ΣM or ΣQ, defined in Equation (3.18) or (3.19) respectively. We

compare the result using either iterated GLS in Algorithm 3.3 and minimized GLS

in Algorithm 3.2. We use the Cholesky decomposition on Σ such that Σ = AAT ,

the assumption of GLS is fulfilled if the transformed residuals, i.e. A−1(y−xβ̂GLS),

are independent and identically normally distributed with same variance.

Firstly, we compare results from GLS to the model (3.15) using Euler angles,

where correlation matrix Σ equals to In (i.e. OLS), ΣM and ΣQ. Although using

iterated GLS reduces some structure of residuals in both correlation structure (see

Figure 3.6), it does not improve the fit (see Figure 3.7). In fact, it performs far worse

than the OLS in terms of fitting. On the other hand, compared to the iterated GLS

we get a better fit when using minimized GLS but there is less improvement on

the independence assumption, see Figures 3.6 and 3.7. We can see from Table 3.2

and 3.3 that estimates for ρ when assuming the Matérn correlation structure tend

to be larger when using minimized GLS across four subjects. In other words,

the minimized GLS suggests higher correlation decay time than the iterated GLS,

which again emphasizes that algorithms used for the minimized GLS and iterated

GLS work differently. Moreover, estimates for ρ varies largely across different

Euclidean components, different markers and different subjects. This result supports

the finding in [3] that we can not assume same model for all markers to be used in a

wider population, particularly our data source is only based on four cadaver subjects.
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Figure 3.6: The residuals are plotted against fitted values for OLS (top row) and transformed
residuals are plotted against transformed fitted values for GLS (bottom three
rows), given that the regression model (3.15) fit Euler angles to STAs for subject
1 of 3 markers: 1, 3 and 8.

Subject 1 Subject 2 Subject 3 Subject 4
x-component (0.187, 0.724) (0.848, 1.29) (0.347, 1.07) (0.862, 1.48)
y-component (0.00425, 0.705) (1.27, 1.49) (0.831, 1.24) (0.525, 1.47)
z-component (0.193, 0.757) (0.471, 1.24) (0.145, 1.27) (1.02, 1.57)

Table 3.2: Range of estimates for ρ accross 12models (each links to 12markers) defined in
Equation (3.15), that use iterated GLS with Matérn correlation function for each
subject in trial 1.

On the other hand, we can see from Figure 3.6 that the transformed residu-

als using the iterated GLS have similar patterns when using either the Maérn or
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Figure 3.7: STAs predictions from models using OLS or Matérn (iterated/minimized) GLS
models (3.15) for data in trial 2 and 3 (parameters are estimated from trial 1).

Subject 1 Subject 2 Subject 3 Subject 4
x-component (1.00, 1.21) (1.03, 1.67) (0.858, 1.37) (0.612, 1.15)
y-component (0.839, 1.15) (1.02, 1.28) (0.605, 1.15) (0.571, 0.818)
z-component (0.972, 1.26) (1.11, 1.55) (0.925, 1.16) (0.658, 1.02)

Table 3.3: Range of estimates for ρ accross 12models (each links to 12markers) defined in
Equation (3.15), that use minimized GLS with Matérn correlation function for
each subject in trial 1.

the quasi-periodic functions. This suggests the additional periodic term does not

help us to get closer to the true correlation structure. Therefore, we expect no

significant improvement in removing obvious patterns in transformed residuals, and

will not proceed the minimized GLS with the quasi-periodic function because the

computational cost is considerably higher.

Secondly, we compare results from GLS to the model (3.12) using coefficients

of skew symmetric matrices(via logarithm map) with respect to the basis B defined

in Equation (3.6) using two non-trivial correlation structures ΣM and ΣQ. Selection

for the base point is simple as the data of rotational matrices lie close to each other

on SO(3). Therefore, we simply choose the first rotation as the base point for our
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Figure 3.8: The transformed residuals are plotted against transformed fitted values using
GLS, given that the regression model (3.12) fit coefficients of skew symmetric
matrices (via logarithm map) to STAs for subject 1 of 3 markers: 1, 3 and 8.

model in Equation (3.12), and this is enough to make sure that the matrix logarithm

function behaves nicely on SO(3). Similar to the model (3.15) using Euler angles,

using minimized GLS does not worsen the fit, while it remove less structure of

the residuals than iterated GLS, and having additional periodic term in the quasi-

periodic correlation structure does not improve neither the fit nor the independence

assumption on transformed residuals, see Figure 3.8.

For most markers, both models using parametrizations defined by Euler angles

or skew symmetric matrices provide very close fit and result in similar patterns of

residuals. Figure 3.9 suggests that the model of marker 1 for subject 1 using skew

symmetric matrices somehow captures some small movement while the model with

Euler angles can not. This could be due to the fact that the logarithm matrix is
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Figure 3.9: Predictions of STAs from models using GLS models equipped with the Matérn
correlation structure for data in trial 2 and 3 (parameters are estimated from trial
1), in which parametrizations are defined by either Euler angles in model (3.15)
or skew symmetric matrices (via logarithm map) in model (3.12).

non-linear, and thus could capture a smaller oscillation, while models using Euler

angles can not.

Overall, models using OLS clearly fail to have approximately scattered residu-

als, we therefore propose using GLS associated with a non-trivial correlation matrix,

instead of the identity matrix. The estimation from using two estimation methods:

Algorithm 3.2 and 3.3 differ because they aim to optimize different things. And

the difference between two algorithms get more pronounced due to the appear-

ance of sudden high-speed events that we can not remove completely. The Matérn

and the quasi-periodic correlation structure only improves to a certain degree, as

they do not completely remove the pattern in residuals. This means there are

information that both the Matérn and the quasi-periodic don’t take into account.

Since a Butterworth filter is used, correlation between two observations yti , ytj de-

pends not only themselves, but also observations that are recorded before [82], e.g.

yti−2
, yti−1

, ytj−2
, ytj−1

, etc. Thus, one may need to look for alternative correlation

structure.
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3.5 Summary
In this chapter, by mapping the Lie group to its Lie algebra via the logarithm map

with the left-invariant translation from a base point, we are able to apply the usual

Euclidean regression tools to the coefficients with respect to some fixed orthonormal

basis. Particularly, we revise generalized least squares and ordinary least squares

on the Euclidean space, and extend to the compact connected Lie groups. The

resulting estimations are unbiased estimators but no longer linear estimations as on

the Euclidean space. We then focus on the space of rotational matrices SO(3), in

which the Lie algebra is simply the space of skew symmetric matrices so(3). We

study the impacts of choosing different base points for our proposed parametrization

on SO(3), and achieve an upper bound for differences of fitted values in L2-norm

in term of the Rodrigues’ rotation angle.

We then fit regression models in the application of hip and knee joint move-

ments, which helps learning the relationship between soft tissue artefacts and ro-

tations of the hip/knee bones. The main contribution in this chapter involves the

use of GLS in an effort to remove obvious patterns among residuals. Moreover,

we compare the existing parametrization defined by Euler angles with our proposed

parametrizaton that makes use of the logarithm map, when using two correlation

structures, the Matérn and the quasi-periodic functions. The result indicates some

reduction of obvious patterns among residuals, however, one may need to find other

existing correlation structures or construct an error model to get closer to the true

form of correlation among errors. Alternatively, higher order of regression can also

be considered, such as the quadratic regression.

Furthermore, the practicability of the models mentioned in this chapter is

limited in real life. Because we fit 36 independent regression models for each

subject, which is tremendous although all models are quite simple (e.g. linear

regression), and these models are subject-specific, therefore cannot be applied in a

wider population. Additionally, there is high dependence among markers that are

close to each other, reduction of correlated variables are hence recommended. Let

us discuss in greater details about future work of this topic in Chapter 5.



Chapter 4

Stochastic differential equations on

the cone of covariance matrices

4.1 Overview

Stochastic differential equation (SDE) has been used to model the time evolution

of a vast range of applications, such as physics [89], biology [90], finance [91, 92],

etc. They express the rate of change of the observed quantity as a function of the

quantity’s current value. This change can be decomposed into two parts: the drift

and an added random component called the diffusivity. SDEs capture the stochastic

effects, which offers the possibility of building models that are capable of predicting

not only a realistic trajectory, but also the uncertainty of the prediction. While SDEs

have been a very successful class of models for time series for several decades,

little has been published on the case when the state space on which the system

evolves is not simply Euclidean. Even though theory for SDEs on manifolds exists

in the literature [25, 26], there is little on statistical inference for these processes,

which makes people who have no prior knowledge about geometry find it hard to

understand and apply it to statistical situations.

One special SDE on Euclidean space is the Ornstein-Uhlenbeck (OU) process

driven by Brownian motion, which appears in many applications, such as biology

[93], finance [94],etc. It is a Gaussian process with a bounded variance and there are

analytical expressions for its transition probability density as well as the stationary
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distribution, which unsurprisingly are Gaussian due to the linearity of the drift, see

Equation (4.1). Moreover, it is the unique time-reversible diffusionwith theGaussian

equilibrium distribution and constant diffusion coefficient [7], thus it is also ergodic.

Another property that characterizes the OU process is mean-reversion such that it is

parameterized by a speed and point of attraction and a constant diffusivity. There is

another version of OU processes associated with Lévy processes, and OU process

can be driven by jump processes, e.g. Poisson process [95]. We will only consider

the OU process driven by Brownian motion in this thesis.

The OU process xt on Rm that has full-rank diffusivity driven by Brownian

motion is defined as the solution to the SDE :

dxt = θ(µ− xt)dt+
√

Σ dBt (x0 = u) (4.1)

where xt : Ω → Rm for some sample space Ω and Bt is the standard Euclidean

Brownianmotion onRm. Themodel parameters are θ ∈ R>0, the speed of attraction,

µ ∈ Rm, the point of attraction and Σ ∈ SP(m), the diffusivity.

Since the Gaussian distribution on a Riemannian manifold, which in general

lacks linearity, behaves slightly different from the Euclidean case, thus defining

OU process is no longer straightforward on manifolds. Besides non-linearity in

the drift, the process might not be tractable, i.e. there might not be an explicit

expression of transition probability density. The ergodic property is also very hard

to be theoretically proved, thus it might be impossible to write down the expression

of equilibrium distribution.

Generalization of OU process to manifolds.

There are some attempts of constructing an analogue of the OU process on several

manifolds, see for examples [23, 8, 7, 10, 11]. The first attempt was proposed by

J. Kent [23] for the sphere S1, in which he proposes a circular OU process, also

referred to as the von Mises process. This process describes the evolution of angles
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through time, and is a solution to the following SDE:

dΘt = θ sin(µ−Θt)dt+ σdBt (Θ0 = u),

where Bt is the standard Brownian motion on R with θ, σ ∈ R>0 and µ ∈ [−π, π),

see [7]. This process is ergodic and its equilibrium distribution is simply the

von Mises distribution vM
(
µ, 2α/σ2

)
, where the probability density function of

vM(µ, κ) is given by

fµ,κ(Θ) =
1

2πI0(κ)
exp

{
κ cos(Θ− µ)

}
, Θ, µ ∈ [−π, π); κ ≥ 0.

Here, I0 is themodifiedBessel function of the first kindwith order 0. The parameters

µ, κ depict the location and concentration of the distribution respectively, see [96].

The transition probability density of this von Mises process is not tractable and is

therefore usually approximated by the Fokker–Planck or Kolmogorov’s equation. A

more general theory was introduced afterwards by J. Kent [8], in which a family

of densities are established that are the equilibrium distributions of some time-

reversible diffusions. Moreover, von Mises processes are also generalized to higher

dimension in [8], i.e. sphere Sn with n > 1, which have the von Mises-Fisher

distribution as the equilibrium distribution. In a similar manner, M. Wilkinson &

P. Alain [9] use angular velocity to characterise the random movement on the circle

and the sphere, in which models are then implemented to model objects tumbling in

a turbulent environment.

After some time, E. P. García et al. [7] took inspiration from the theory by

J. Kent [8], and applied it to the torus. By choosing some well-known probability

distribution for directional statistics, the authors constructed Langevin diffusions for

which the stationary distribution of those process turn out to be the chosen probabil-

ity distributions. The reason for choosing Langevin diffusions is that those processes

are ergodic and time-reversible with the chosen probability distributions. And by

applying the theory proposed by J. Kent [8], we can conclude that the stationary

distributions of those processes are in fact the corresponding chosen probability
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distributions. Since OU process on the Euclidean space is driven by the Brown-

ian motion whose the stationary distribution is the Gaussian, this construction of

Langevin diffusions builds an analogue of the OU process on the torus [7], by choos-

ing probability distributions that have similarities as Gaussian on the Euclidean. In

the case of the torus, there are two common choices, which are wrapped normal and

von Mises distributions. The same problems occur on Sn, there are no closed forms

of transition density, one needs to approximate by solving the Fokker–Planck or

Kolmogorov’s equation through numerical methods. However, the main challenge

in [7] is not caused by the curvature of manifolds but by complex changes in rotations

on the torus.

Besides Sn and the torus, there are some works of constructing OU process on

shape manifolds. Some previous work make use of existing Euclidean approaches

through local charts, i.e. expressing them in some chosen coordinates systems of

shape space. For instance, F. G. Ball & I. L. Dryden et al. [11] initially construct

Brownian motion on planar shape space, by expressing them in local coordinate

form, i.e. finding the drift and diffusion in term of Kendall and Goodall–Mardia

coordinates. Next, some extra drift is added so that there is a tendency of returning

to a reference shape and a stationary distribution exists. However, the likelihood

cannot be computed explicitly and so some approximation methods are required,

e.g. the Euler–Maruyama approximation method (see Subsection 2.3.1) in terms of

Kendall and Goodall–Mardia coordinates.

While statistical inference through local charts simply means using usual Eu-

clidean statistical methods locally, an alternative approach is from the intrinsic point

of view, e.g. employing the exponential map. For instance, V. Staneva et al. [10]

study the OU process intrinsically for shape manifolds, in which they focus on the

shapes that do not change their topology, thus can be described by flow of diffeomor-

phisms. The OU process in [10] is defined to have the mean-reverting property, i.e.

adding a drift such that it pushes the process toward the minimizer of the squared

distance between the process and some attraction point. This idea is motivated

by the fact that the drift of the SDE (4.1) equals to −0.5∇Xt(Xt − µ)2 on the
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Euclidean space. The likelihood is approximated through the exponential adapted

Euler–Maruyama method for high-frequency data. With the corresponding approx-

imated likelihood, the maximum likelihood estimator can be expressed explicitly in

some special cases. However, statistical inference for low frequency observations

when using this intrinsic approach has not been explored in the literature. More-

over, if we assume the manifold of interest is parallelizable, and consider the special

class mentioned in Subsection 2.3.2, where functionA(t,Xt) is now replaced by the

Riemannian gradient of the squared distance function, we obtain many benefits. For

instance, we get an efficient simulation method (i.e. using the exponential adapted

Euler-Maruyama method), and many powerful theories are available (e.g. Itô for-

mula, Girsanov-Cameron-Martin theorem, etc) by approximating the horizontal lift.

Thus, besides achieving the mean-reverting property, defining the OU process in

this approach on a Riemannian manifold simplifies the complexity of working with

curved spaces to a certain degree.

Space of covariance matrices SP(n).

Our main interest is the space of n×n symmetric positive definite matrices SP(n),

which appears in many contexts, such as in diffusion tensor imaging, volatilities

for multiple financial assets, and generally wherever a Gaussian distribution is used

in a multivariate context. Here, we only focus on covariance matrices which are

strictly positive definite, unless indicated otherwise, i.e. considering only points

inside the cone and excluding the boundary in Figure 4.1. We therefore sometimes

refer to SP(n) as the cone of covariance matrices. We will briefly introduce some

application fields of symmetric positive definite matrices.

In medical image analysis, covariance matrices arise from the diffusion tensor

image (DTI), and thesematrices are elements ofSP(3); see for examples [32, 13, 97].

The diffusion of water molecules is used to generate contrast in magnetic resonance

images, which reveal the pattern of the diffusion process of water molecules [98, 99].

It is usually assumed that the random motions of water molecules follow Brownian

motion. Thus, positions of the water molecules therefore follow a multivariate

Gaussian distribution, and the DTI is indeed the covariance matrix of the diffusion
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process. Another example is in financial mathematics, where financial time series

data of multiple assets (such as stocks, bonds, interest rates, etc.) can be modelled

using SDEs, e.g. multivariate geometric Brownian motion is used in the Black-

Scholesmodel to price assets [100, 101]. Covariancematrices in this field sometimes

are referred to as volatilities, and they are elements of SP(n) with n the number of

underlying assets.

Figure 4.1: Illustration of the cone SP(2) in R3, where the constraints are x, y ≥ 0 and
z = ±√xy

It is not difficult to show that the space SP(n) is a convex cone, for instance

Figure 4.1 shows a clear picture for this space when n = 2. In fact, SP(n) is a

smooth manifold of dimension d = n(n+1)/2, and is an example of a parallelizable

manifold, see [102]. While there are many Riemannian metric tensors on SP(n)

[13], we focus on the twomost popular ones, namely theAffine-Invariant (AI)metrics

[33, 34, 35] and the Log-Euclidean (LE) [32, 33]. In particular, the formulas for

the orthonormal global basis field when SP(n) is equipped either with the AI or

LE metrics are available explicitly, see Proposition 4.2 and 4.3. The AI metric can

be constructed through various approaches, for instance as Fisher information in the

multivariate normal model, see [35, 36], or as group action to an affine group, see

[33]. Equipping SP(n) with the AI metric, we achieve a geodesically complete and

simply connected Riemmanian manifold with non-positive sectional curvature, i.e.

a Cartan-Hadamard manifold. However, working with a curved surface increases

complexity and thus computational cost is high. To overcome this problem, V.

Arsigny et al. [32] propose a new matrix operation, i.e. for any P1, P2 ∈ SP(n),
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P1 � P2 := exp(logP1 + logP2), and SP(n) equipped with this new operation is

now an Abelian Lie group. Thus, Proposition 2.30 guarantees the existence of a

bi-invariant metric on SP(n). Moreover, Proposition 2.28 defines the LE metric by

constructing from an induced Euclidean metric, i.e. the Frobenius inner product on

S(n). It is verified in [32] that the LE metric is a Riemannian metric on SP(n) and

we obtain a vector space of null curvature, i.e. having the Euclidean structure. Thus,

many Euclidean statistical tools can be applied, which require less computational

resource than when using the AI metric. Moreover, SP(n) is an example of a

symmetric space, so equipping SP(n) with the AI metric results in a non-compact

space [103], and this is also true for the LE metric because we achieve Euclidean

structure in this case.

As previously discussed in Section 2.3.2, there are various ways to study SDEs,

particularly the OU process, on a Riemannian manifold, such as embedding, local

charts, exponential maps, etc. Since SP(n) endowed with either the LE and the

AI metric is geodesically complete, studying the manifold from an intrinsic point

of view becomes more beneficial. We therefore define the OU class of processes

on SP(n) in a similar manner to the paper by V. Staneva et al. [10], such that

the mean-reverting property is achieved. For high-frequency data, it is not difficult

to approximate the likelihood, e.g. via the exponential adapted Euler-Maruyama

method, so there is no difficulty for statistical inference in this case.

However, in practice it is not always the case that high-frequency data is

available, e.g. because it is too expensive to observe, or missing data, etc. Statistical

inference for low-frequency data therefore receivesmuch attention. On theEuclidean

space, a common approach is to use an MCMC data-augmentation algorithm, i.e.

imputing latent data points between every adjacent observations to allow the Euler-

Maruyamamethod to give better approximation of the likelihood. Thiswould require

a diffusion bridge sampler on manifold, in our case on SP(n). Diffusion bridges

in the Euclidean case have been studied for decades, but due to the complexity

of manifolds, little has been done in the non-Euclidean case. The most common

approach is using embedding or local charts followed by an appropriate Euclidean
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method, see [42]. This algorithm will not be suitable in practice when the charts or

embedding methods are too complicated. And since exponential maps work nicely

on SP(n), we aim to develop diffusion bridge sampling method which should work

well with this extra information. The main challenge in this study is associated with

the presence of the curvature, i.e. SP(n) equipped with AI metric.

Outline.

First of all, we discuss Riemannianmetrics onSP(n) in Section 4.2, where our focus

are the Log-Euclidean and Affine-Invariant metrics. We review some calculations

including the exponential/logarithm maps, geodesic, Riemannian distance, Rieman-

nian gradient of the squared distance function, etc, because they are essential for the

establishment of the Riemannian OU process on SP(n). Moreover, we also discuss

the importance of Riemannian geometry when dealing with covariance matrices

toward the end of Section 4.2. It is then followed by Section 4.3 and 4.4, where we

discuss the Riemannian Brownian motion class and OU class respectively. Particu-

larly, local expressions of horizontal lifts of smooth curves on SP(n) equipped with

either the LE or the AI metrics are presented in Section 4.3.

The rest of this chapter is structured as follows. We firstly extend the notion

of guided proposal process used in MCMC data augmentation sampling strategies

to SP(n) equipped with the AI metric in Section 4.5. We then validate our guided

proposal algorithm with simulation study on SP(2) in Section 4.6. Besides the task

of estimating model parameters from simulation data, we also compare Brownian

bridges on SP(n) equipped with either the Euclidean, the LE or the AI metrics; see

Subsection 4.6.1. We demonstrate that the LE and the AImetrics should be preferred

to the Euclidean metric, the problems (e.g. swelling effect, difficulty of sampling

near the boundary of SP(n), etc) are particularly pronounced when conditioning on

matrices with eigenvalues close to zero. Our financial data example in Section 4.7

is chosen to illustrate this exact point: one can use diffusions on SP(n) with LE and

AI metrics for pricing or portfolio construction even when the dynamics on SP(n)

operate near the boundary. Moreover, we perform goodness-of-fit test to compare

the fit when considering either the LE or AI metrics.
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Lastly, we explore the multivariate stochastic volatility models in Section 4.8,

an example of a hidden Markov model, where covariance matrices are not directly

observed. We assume the hidden covariance matrices follow the OU class defined in

Section 4.4, and the derivative’s underlying asset prices follow a linear SDE on the

Euclidean space with volatility given by the unobserved covariance matrix process.

In this section, we study the Metropolis-adjusted Langevin algorithm (MALA) for

parameter estimation and illustrate simulation study on R2.

4.2 Riemannian metrics on SP(n)

Since the tangent space at any point on SP(n) is the space of n × n symmetric

matrices S(n) of dimension d = n(n + 1)/2, we establish the standard symmetric

basis Bd = {Si}di=1 for S(n) by defining an orthonormal basis with respect to

〈·, ·〉F :

Si = e
(n)
ii for 1 ≤ i ≤ n (4.2)

Sn+1 =
(
e

(n)
21 + e

(n)
12

)
/
√

2 ; Sn+2 =
(
e

(n)
31 + e

(n)
13

)
/
√

2 ; . . .

Here, {Si}ni=1 has all entries zero except the jth entry on the diagonal being one.

The remaining {Si}di=n+1 are obtained by adding, with i > j, the single-entry matrix

e
(n)
ij with one at the (i, j)th entry and zero elsewhere to its transpose and dividing to
√

2 so that it has unit Frobenius norm.

In the first two subsections, Subsections 4.2.1 and 4.2.2, we give a brief sum-

mary of existing results about the Log-Euclidean and Affine-Invariant metrics, such

as exponential/logarithm maps, geodesics, squared distance function, etc. In prepa-

ration for the construction of the OU class on SP(n), we also compute the Rieman-

nian gradient of squared distance associated with the corresponding Riemannian

metrics. Lastly, since one can get different Riemannian structures by endowing

with different Riemannian metrics, we compare different geometric structures of

SP(n) when considering the induced Euclidean (or simply the Euclidean), the

Log-Euclidean and the Affine-Invariant metrics in the Subsection 4.2.3.
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4.2.1 Log-Euclidean metric

It is clear that SP(n) is not a group with the usual matrix multiplication since

the symmetry property is not preserved under this operation. V. Arsigny et al.

[32] propose a new matrix operation, referred to as the logarithm product and the

logarithm scalar product, that is for any P1, P2 ∈ SP(n) and λ ∈ R:

P1 � P2 = exp(logP1 + logP2) & λ©? P = exp(λ logP ) = P λ.

Consequently, we obtain an Abelian Lie group
(
SP(n),�

)
, and its associated Lie

algebra is S(n), see [32]. Having a Lie group structure does not on its own guarantee

existence of a bi-invariant metric, but having the Abelian property does guarantee it,

see Proposition 2.30. Moreover, Proposition 2.28 defines a left invariant Riemannian

metric gLE on S(n) from the Frobenius inner product 〈·, ·〉F using the left translation

L, that is for any P ∈ SP(n) and X, Y ∈ S(n),

gLEP (X, Y ) =
〈

(dLP−1)P (X), (dLP−1)P (Y )
〉
F
. (4.3)

Corollary 2.29 implies gLE is indeed a bi-invariant Riemannian metric, and we call

gLE the Log-Euclidean (LE) metric. Moreover, we get a vector space structure with

©? on top of
(
SP(n),�

)
since (SP(n),�) is isomorphic and diffeomorphic to(

S(n),+
)
. This simply says even though SP(n) is not vector space of invertible

matrices, we can interpret SP(n) as a vector space when we identify a symmetric

positive definite matrix with its matrix logarithm.

In addition, it is easy to check that {exp(tS) | t ∈ R} for some S ∈ S(n)

forms an one-parameter subgroup of SP(n), see Definition 2.31. Furthermore, the

geodesics associated with gLE which pass through the identity In in the direction

S in fact equals to the one-parameter subgroup {exp(tS) | t ∈ R}, this is the

consequence of equipping SP(n) with a bi-invariant metric, see Section 2.2. Using

the left translation L at some point P ∈ SP(n), the curve γ(t) = exp(logP + tS) is

also a geodesic on SP(n) that satisfies γ(0) = P and γ′(0) = DlogP exp .S, which

represents the derivative of matrix exponential function at logP in the direction S.
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As a result, the exponential/logarithm maps associated with the LE metric at some

point P ∈ SP(n) are defined by

ExpLEP (S) = exp(logP +DP log .S) ∀S ∈ S(n), (4.4)

LogLEP (Q) = DlogP exp .(logQ− logP ) ∀Q ∈ SP(n). (4.5)

Here, we emphasize the derivative of matrix logarithm function log at P in direction

S, i.e. DP log .S, is identical to the differential of log at P acts on S, i.e. d logP (S).

While SP(n) equipped with the LE metric is geodesically complete since the

exponentialmap is a global diffeomorphism, the LEmetric offers Euclidean structure

in the domain of logarithm as the name suggests, see the following proposition.

Proposition 4.1. Two Riemannian manifolds
(
SP(n), gLE

)
and (S(n), 〈·, ·〉F ) are

isometric, where the matrix logarithm function log : SP(n)→ S(n) is an isometry.

Proof. Since log : SP(n)→ S(n) is global diffeomorphism, it is sufficient to show

that for all P ∈ SP(n) and X, Y ∈ S(n), the following equation holds

gLEP (X, Y ) =
〈
d logP (X), d logP (Y )

〉
F
, (4.6)

where d logP is the differential of the matrix logarithm function log at P .

Consider the geodesic curve γ(t) = exp(logP + tS) passes through P ∈

SP(n) and define the curve ε(t) =
(
LP−1◦γ

)
(t) = exp(tS) using the left translation

LP−1 . In other words, ε(t) is not only the image of γ(t) under the left translation

LP−1 , but also a geodesic passing through the identity In in the direction S, and the

differential map dLP−1 at P sends γ′(t) ∈ TPSP(n) to ε′(t) ∈ TInSP(n) = S(n).

So, d (LP−1)P (v) = ε′(0) = S, where v = γ′(0).

On the other hand, applying Definition 2.4 to the differentiable map log :

SP(n)→ S(n), we also have d logP (v) =
(

log ◦ exp(logP + tS)
)′

(0) = S. Thus,

d log = dLP−1 , and Equation (4.3) implies the required result.

In consequence, we say the LE metric a flat Riemannian metric, and SP(n)
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equipped with the LE metric therefore has null curvature everywhere. Moreover,

the Riemannian distance associated with the LE metric between any two points

P, Q ∈ SP(n) is simply given by the Euclidean distance in the log-domain, i.e.

dLE(P,Q) =

√
gLEP

(
LogLEP Q,Log

LE
P Q)

)
=
∣∣∣∣ logP − logQ

∣∣∣∣
F
. (4.7)

As a result, any matrices with non-positive eigenvalues are at infinite distance of any

covariance matrices. Furthermore, similarity (i.e. A 7→ BAB−1 for any invertible

matrix B) and inversion are invariant with respect to the LE metric, see [32].

Lastly, we present a global orthonormal frame on the tangent bundle of SP(n)

equipped with the LE metric and compute the corresponding Riemannian gradient

of the squared distance function, which is crucial for our construction of the OU

process on SP(n).

Proposition 4.2. The setBLE
d = {ELE

i }di=1 is an orthonormal frame on the tangent

bundle TSP(n), where for any P ∈ SP(n):

ELE
i (P ) = (d logP )−1(Si) = DlogP exp .Si (1 ≤ i ≤ d). (4.8)

Moreover, the Riemannian gradient of squared distance for any fixed point Q is

(
∇d2

LE(P,Q)
)
P

= −2DlogP exp .(logQ− logP ) = −2LogLEP (Q).

Proof. It is straightforward to verify that the basis BLE is an orthonormal frame on

TSP(n) using Equation (4.6).

On the other hand, calculation of the Riemannian gradient given in Equa-

tion (2.3), together with Theorem 2.14 and Equation (4.5), (4.8) imply

gLEP (∇f, ELE
i ) = (ELE

i )Pf = 2gP

(
∇ELE

i
LogLEP Q,Log

LE
P Q)

)
= 2

〈
DlogP (logQ− logP ).Si, logQ− logP

〉
F

= −2 〈Si, logQ− logP 〉F

⇒ (∇f)P =
d∑
i=1

gLEP (∇f, ELE
i )ELE

i (P ) = −2DlogP exp .(logQ− logP ).
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4.2.2 Affine-Invariant metric
Before the establishment of the LE metric, there is another well-known metric

tensor on SP(n), which also preserves the symmetry with respect to the inversion

and offers infinite distance to a non-positive definite matrices, see for examples

[32, 33, 34, 104, 36]. There are various approaches to construct this metric. In

particular, one way is to define a smooth group action ψR : P 7→ R ? P = RPRT

for any R ∈ GL(n) on SP(n). This group action is linear and its differential map

d
(
ψR
)
P

: S 7→ R ? S for S ∈ TPSP(n), see [104]. A Riemannian metric g on

SP(n) is ψ-invariant if for any R ∈ GL(n) the map ψR preserves the Riemannian

distance on SP(n), that is for any X, Y ∈ S(n) and an arbitrary P ∈ SP(n):

gP (X, Y ) = gR?P (R ? X,R ? Y ).

Since the symmetry to the affine transformation is respected, thismetric g is therefore

referred to as the Affine-Invariant metric [33], denoted by gAI. Choosing R =

P−1/2 ∈ GL(n) and the Frobenius inner product 〈·, ·〉F on TInSP(n), we get

R ? P = In and the equation above yields

gAIP (X, Y ) =
〈
P−1/2 ? X, P−1/2 ? Y

〉
F

=
〈
P−1/2XP−1/2, P−1/2Y P−1/2

〉
F

= tr
(
P−1XP−1Y

)
(4.9)

Consequently, the AI metric at any point P ∈ SP(n) can be transported back to the

identity In through the map ψP−1/2 : SP(n)→ S(n), where Equation (4.9) can be

rewritten to

gAIP (X, Y ) =
〈
d
(
ψP−1/2

)
P

(X), d
(
ψP−1/2

)
P

(Y )
〉
F
. (4.10)

Comparison of Equation (4.10) to the LE metric in Equation (4.6), we see that

although both metrics are extended from the Frobenius inner product on the tangent

space TInSP(n), the function log offers independence of P , while the function
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ψP−1/2 clearly does not. This indicates the presence of non-zero curvature when

equipping SP(n) with the AI metric, which contributes more complexity and there-

fore results in higher computational burden.

Additionally, the matrix form GAI of gAI with respect toBd is given by:

GAI(P ) = DT
n ·
(
P−1 ⊗ P−1

)
·Dn & G−1

AI (P ) = D†n · (P ⊗ P ) · (D†n)T , (4.11)

where Dn ∈ Rn2×d is a constant matrix (referred to as the duplication matrix), that

satisfies vec(P ) = Dn ν(P ) with ν(P ) containing all independent entries of P and

D†n is the Moore-Penrose inverse of Dn, see details of calculation in [34].

Alternatively, the AI metric also arises from the theory of multivariate normal

distribution, see [35, 34]. Here, we regard the collection of multivariate normal

distributions of dimension n of zero mean, M = {N (0,Σ) |Σ ∈ SP(n)}, as a

Riemannianmanifold of dimension d = n(n+1)/2, while endowing to thismanifold

a Riemannian metric that constructed through the Fisher information [105],

1 ≤ i, j, k, l ≤ n : Iijkl(Σ) =
1

2
tr
(

Σ−1 ∂

∂Σij

Σ−1 ∂

∂Σkl

)
,

where ∂/∂Σij , 1 ≤ i, j ≤ n are derivatives of Σ at the (i, j)th entry.

Since SP(n) equipped with the AI metric is a symmetric space, the set of all

isometries of SP(n) is a Lie group, see [103, 104, 33]. The geodesics pass through

In are therefore generated by the action of the one-parameter subgroups of this Lie

group, i.e. the curve ε(t) = exp(tS̃) is a geodesic that satisfies ε(0) = In, ε
′(0) = S̃

for some S̃ ∈ S(n). Using the group action ψP−1/2 for an arbitrary P ∈ SP(n), the

geodesics γ(t) with γ(0) = P and γ′(0) = S ∈ S(n) can be constructed such that

the curve
(
ψP−1/2 ◦ γ

)
(t) is a geodesic passing through the identity in the direction

d
(
ψP−1/2

)
P

(S). Since d
(
ψP−1/2

)
P

(S) = P−1/2?γ′(0), we set S̃ = P−1/2?S, which

implies γ(t) = P 1/2 ?exp
(
P−1/2 ?tS

)
. As a result, the exponential/logarithmmaps

associated with the AI metric at some point P ∈ SP(n) are defined by

ExpAIP (S) = P 1/2 ? exp
(
P−1/2 ? S

)
= P 1/2 exp

(
P−1/2SP−1/2

)
P 1/2, (4.12)



4.2. Riemannian metrics on SP(n) 108

LogAIP (Q) = P 1/2 ? log
(
P−1/2 ? Q

)
= P 1/2 log

(
P−1/2QP−1/2

)
P 1/2, (4.13)

for any S ∈ S(n) and Q ∈ SP(n). Accordingly, we also achieve geodesical

completeness for SP(n) equipped with the AI metric, which is similar in the case

of the LE metric, however, SP(n) has non-positive sectional curvature everywhere

in the case of the AI metric, unlike the LE metric which offers null curvature. In

fact, SP(n) equipped with the AI metric offers the geometric structure of a Cartan-

Hadamard manifold, and it is parallelizable. The formula for the Riemannian

distance dAI associated with the AI metric between any two points P, Q ∈ SP(n)

is more complicated than dLE in Equation (4.7),

dAI(P,Q) =
√
gAIP
(
LogAIP (Q),LogAIP (Q)

)
=
∣∣∣∣ log

(
P−1/2 ? Q

)∣∣∣∣
F

=
∣∣∣∣ log

(
P−1/2QP−1/2

)∣∣∣∣
F
. (4.14)

Even though working with AI metric brings more complications, there are explicit

formula for the corresponding connection ∇, that is for any P ∈ SP(n),

(∇XY )P = −1

2
(XPP

−1YP + YPP
−1XP ) for X, Y ∈ Γ(TSP(n)), (4.15)

which simplifies many calculations, see [34]. For instance, toward the end of

this subsection we will show that the Christoffel symbol with respect to a special

orthonormal basis is actually a constant in Lemma 4.4.

Similar to previous subsection of the LEmetric, wewould like to define a global

orthonormal frame on the tangent bundle of SP(n) equipped with the AI metric,

and compute the corresponding Riemannian gradient of squared distance, which is

crucial for Section 4.4. We will use a special result from [36] when calculating the

derivative that involves the matrix logarithm function. For a continuous function

φ : R→ SP(n), i.e. all eigenvalues of φ(t) are strictly positive,

d

dt
tr
{

log2
(
φ(t)

)}
= 2 tr

{
log
[
φ(t)

][
φ(t)

]−1
φ′(t)

}
(4.16)



4.2. Riemannian metrics on SP(n) 109

Proposition 4.3. The set BAI
d = {EAI

i }di=1 is an orthonormal frame on the tangent

bundle TSP(n), where for any P ∈ SP(n):

EAI
i (P ) = d

(
ψP 1/2

)
P

(Si) = P 1/2 ? Si for 1 ≤ i ≤ d. (4.17)

Moreover, the Riemannian gradient of squared distance for any fixed point Q is

(
∇d2

AI(P,Q)
)
P

= −2
d∑
i=1

〈
log(P−1/2 ? Q), Si

〉
F
EAI
i (P ) = −2LogAIP (Q).

Proof. Firstly, we know thatψP 1/2◦ψP−1/2 is an indentitymap, so the differentialmap

dψP 1/2 =
(
dψP−1/2

)−1. Using the Equation (4.10) implies BAI
d is an orthonormal

frame on TSP(n) .

On the other hand, applying the calculation of the Riemannian gradient given

in Equation (2.3) to f(P ) = d2
AI(P,Q), for all 1 ≤ i ≤ d: gAIP (∇f, EAI

i ) =

dfP
(
EAI
i (P )

)
. Moreover, using properties of the matrix logarithm function, we get

log(P−1/2 ? Q) = log
(
P−1/2QP−1/2

)
= log

(
P 1/2P−1QP−1/2

)
= P 1/2 log

(
P−1Q

)
P−1/2 = −P 1/2 log

(
Q−1P

)
P−1/2

⇒ f(P ) = tr
(

logT (P−1/2 ? Q) log(P−1/2 ? Q)
)

= tr
(

log2
(
Q−1P

) )
Let us fix i ∈ {1, . . . , d} and consider geodesics γ(t) = P 1/2 ? exp(tSi), that satisfy

γ(0) = P , γ′(0) = P 1/2 ? Si = Ei(P ). Then (f ◦ γ)(t) = tr
{

log2
[
Q−1

(
P 1/2 ?

exp(tSi)
)]}

. We set φ(t) = Q−1
(
P 1/2 ? exp(tSi)

)
and apply Equation (4.16),

dfP (Ei(P )) =
d

dt
(f ◦ γ)(t)

∣∣∣∣
t=0

=
d

dt
tr
{

log2
(
φ(t)

)}∣∣∣∣
t=0

= 2 tr
{

log
[
φ(0)

] [
φ(0)

]−1
φ′(0)

}
= 2 tr

{
log
[
Q−1P

] [
Q−1

(
P 1/2 ? In

)]−1
Q−1

(
P 1/2 ? Si

)}
= 2 tr

{
log
[
P−1/2P 1/2Q−1P 1/2P 1/2

]
P−1/2SiP

1/2
}

= −2 tr
{

log
(
P−1/2 ? Q

)
Si

}
= −2

〈
log
(
P−1/2 ? Q

)
, Si
〉
F
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⇒ (∇f)P =
d∑
i=1

gAI
(
∇f, EAI

i

)
EAI
i (P )

= −2
d∑
i=1

〈
log(P−1/2 ? Q), Si

〉
F
EAI
i (P )

= −2LogAIP (Q).

We end this subsection by presenting the calculation of the Christoffel symbols,

see Definition 2.11, and the Hessian for the squared Riemannian distance with

respect to the basis field BAI
d defined in Equation (4.17). Moreover, we show that

the Laplace-Beltrami operator ∆SP(n) to the squared Riemannian distance with

respect to BAI
d is constant when equipping SP(n) with the AI metric.

Lemma 4.4 (Christoffel symbols). Consider the orthonormal basis fieldBAI
d , then

(∇EAI
i
EAI
j )P = −1

2

d∑
k=1

〈
(SiSj + SjSi) , Sk

〉
F
EAI
k (P ) ∀1 ≤ i, j ≤ d.

Thus, Christoffel symbols of the second kind are constant with respect toBAI
d ,

Γkij(P ) = Γkij = −1

2

〈
(SiSj + SjSi) , Sk

〉
F

∀1 ≤ i, j ≤ d.

Proof. Applying Equation (4.15) with X = Ei and Y = Ej ,

(∇EiEj)P = −1

2

{(
P 1/2 ? Si

)
P−1

(
P 1/2 ? Sj

)
+
(
P 1/2 ? Sj

)
P−1

(
P 1/2 ? Si

)}
= −1

2
P 1/2 ?

(
SiSj + SjSi

)
= −1

2

d∑
k=1

〈
(SiSj + SjSi) , Sk

〉
F
EAI
k (P )

So, Γkij(P ) = −1
2

〈
(SiSj + SjSi) , Sk

〉
F
.

Lemma 4.5. The Laplace-Beltrami operator ∆SP(n) and the Hessian to the squared

Riemannian distance with respect toBAI
d equal to 2 Id, that is

(Hessf)P
(
EAI
i , E

AI
j

)
= 2 δij & ∆SP(n)f

(
EAI
i , E

AI
j

)
= 2 δij ∀1 ≤ i, j ≤ d.
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where f(P ) = d2
AI(P,Q) and δij is the Kronecker delta.

Proof. Definition of the Hessian given in Equation (2.5) gives

(Hessf)P
(
EAI
i , E

AI
j

)
= EAI

i (EAI
j f)P −

(
∇EAI

i
EAI
j f
)
P
,

while from the proof of Proposition 4.2, we know that for any 1 ≤ i ≤ d,

(EAI
i f)P = −2

〈
log
(
P−1/2 ? Q

)
, Si
〉
F

= −2gAIP
(
EAI
i (P ),LogAIP (Q)

)
Moreover, Theorem 2.14 implies (EAI

i f)P = 2gAIP
(
∇EAI

i (P )LogAIP (Q),LogAIP (Q)
)
.

SinceEAI
i (P ), LogAIP (Q) and P are invertible, we can conclude∇EAI

i (P )LogAIP (Q) =

−EAI
i (P ). Therefore, using Lemma 4.4 we have

(
∇EAI

i
EAI
j f
)
P

= 2gAIP

(
∇(∇

EAI
i
EAI
j )P

LogAIP (Q),LogAIP (Q)
)

= 2gAIP

( d∑
k=1

∇Γkij(P )EAI
k (P )LogAIP (Q),LogAIP (Q)

)
= 2gAIP

( d∑
k=1

Γkij∇EAI
k (P )LogAIP (Q),LogAIP (Q)

)
= −2gAIP

((
∇EAI

i
EAI
j

)
P
,LogAIP (Q)

)
.

EAI
i (EAI

j f)P = −2EAI
i gAIP

(
EAI
j (P ),LogAIP (Q)

)
= −2 gAIP

((
∇EAI

i
EAI
j

)
P
,LogAIP (Q)

)
− 2 gP

(
EAI
j (P ),∇EAI

i (P )LogAIP (Q)
)

= −2 gAIP

((
∇EAI

i
EAI
j

)
P
,LogAIP (Q)

)
+ 2 gP

(
EAI
j (P ), EAI

i (P )
)

= −2 gAIP

((
∇EAI

i
EAI
j

)
P
,LogAIP (Q)

)
+ 2 δij.

Thus,
(
Hessf

)
ij

= 2 δij . Since Bd
AI is an orthonormal basis with respect to gAI,

thus the matrix form GAI of the metric gAI equals to Id. Therefore, we also achieve

∆SP(n)f
(
EAI
i , E

AI
j

)
= 2 δij

4.2.3 Importance of Riemannian geometry to SP(n)

We discuss two major reasons that necessitate the use of Riemannian geometry: ca-

pability of sampling near the boundaries of SP(n) and no swelling effects. One may
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additionally argue that other properties, such as inversion-invariance and similarity-

invariance for the LE and AI metrics, and affine-invariance for the AI metric, may be

useful in simplifying calculations for complex algorithms. Additionally, we discuss

the phenomenon of anisotropy when using either the LE or AI metrics.

Although the Euclidean metric (i.e. Frobenius inner product) on SP(n) ⊂

GL(n) is simple, it is problematic because non-covariance matrices are only a finite

distance away from covariance matrices. As Equation (4.7) and (4.14) indicate, LE

and AI metrics do not suffer from this problem since they make use of the matrix

logarithm function, so that non-covariance matrices are at infinite distance from any

points on SP(n). Therefore, they avoid the undesirable inequality constraints that

are required in the Frobenius induced geometry to ensure positive definiteness and

whose number grows quadratically with n. As will become evident in our simulation

experiments, this property turns out to be a highly desirable because it facilitates

sampling, particularly near the boundary of SP(n).

The determinant of a covariance matrix measures the dispersion of the data

points from a multivariate normal distribution. For the Euclidean metric, the

geodesic connecting two fixed points often contains points with a larger determinant

than the two fixed points, and the difference can get extremely large whenever these

fixed points lie close to the boundary of SP(n). This problem is referred to as the

swelling effect [32, 13, 106]. In many contexts, the swelling effect is described as

undesirable because the level of dispersion should remain close to the given infor-

mation obtained by the observations of covariance matrices [32, 107, 108, 109]. The

LE and AI metrics avoid this swelling effect and in fact we demonstrate in Corol-

lary 4.6 that points on the geodesics associated with the LE or the AI metrics have

their determinants resulted from the linear interpolation in the domain of logarithm.

Corollary 4.6. Determinant of points on geodesics associated with either the LE

and AI metrics are identical.

Proof. Fix two points P0, P1 ∈ SP(n) and consider the geodesics associated with

the LE and AI metrics γLE(t), γAI(t) respectively such that γLE(0) = γAI(0) = P0

and γLE(1) = γAI(1) = P1. Using the fact that for any A ∈ SP(n), det expA =



4.2. Riemannian metrics on SP(n) 113

exp trA and log detA = tr logA, we get for any t ∈ [0, 1]:

det γLE(t) = det
(

exp(logP0 + t(logP1 − logP0))
)

= exp

(
log detP0 + t log

detP1

detP0

)
=
(

detP0

)1−t (
detP1

)t
det γAI(t) = det

(
P

1/2
0 ? (P

−1/2
0 ? P1)t

)
= detP0 det

(
P
−1/2
0 P1 P

−1/2
0

)t
=
(

detP0

)1−t (
detP1

)t

Euclidean

0 0.25 0.75 1
Time

Log−Euclidean

c(
−

0.
5,

 0
.5

)

0 0.25 0.75 1
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Affine−Invariant
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−

0.
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 0
.5

)

0 0.25 0.75 1
Time

Figure 4.2: Comparison of three metric tensors on SP(2): Red ellipses represent points at
time t = 0.25, 0.75 on the geodesic connecting P0 at t = 0 and P1 at t = 1.
The length of the axes are the square root of the eigenvalues.

A visual illustration of the swelling effect is provided in Figure 4.2 where two

intermediate points on the geodesic connecting

P0 =

0.4 0.3

0.3 0.4

 at t = 0 and P1 =

 1 0.1

0.1 0.02

 at t = 1

are shown for each metric. The red ellipses in the case of the Euclidean metric

are swelled up noticeably, compared to the other Riemannian metrics: LE and AI

metrics. More discussion about this phenomenon can be found in [110, 13].

In addition, the shape (e.g. thin/thick, short/long) of the ellipse tells us about

the anisotropy in the covariance matrices, which is understood to occur when the

eigenvalues are not identical. If the eigenvalues are equal, the covariance matrix

is said to have isotropy. Here, larger anisotropy implies more dependence in some

particular directions (i.e. corresponding to the larger eigenvalues), see [110, 13].
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In the example, we use two fixed points that have one eigenvalue much larger than

the other (i.e. the ellipse is pointy), and Figure 4.2 demonstrates that the LE metric

escalates anisotropy. Moreover, the result in [32] says that at a fixed time t ∈ [0, 1],

the trace of points on geodesics associated with the LE metric are always larger

or equal to those in the AI case, and since their determinants are identical, the LE

metric leads to geodesic with exaggerated anisotropy. In general, whether anisotropy

constitutes a problem depends on the application of interest.

Furthermore, as discussed previously in Subsection 4.2.1 and 4.2.2 the LE and

the AI metric hold many invariant properties, such as inversion invariance, similar-

ity invariance for the LE metric, and affine invariance for the AI metric, while the

Euclidean metric does not achieve any of those. In many complicated computational

algorithms, having an invariance property may help to simplify some calculations.

Overall, the desirability of the invariance property also depends on the area of the

application. For example in diffusion tensor imaging, symmetry with respect to

inversion is often required [32, 13, 106], thus the LE and the AI metrics are more

suitable. While there are many other Riemannian metrics on either space of symme-

try positive semi-definite or symmetry positive definite matrices, such as Cholesky,

Procrustes size and shape, etc, explicit formulas for the exponential/logarithm maps

when using those metrics are often complicated or unavailable, see [13, 111].

4.3 Brownian motion class

We define the Brownian motion class on SP(n) by the Riemannian Brownian

motion on SP(n) equipped with different Riemannian metrics, and besides the

existing result of the Euclideanmetric, in this thesis we consider the two Riemannian

metrics: the Log-Euclidean (LE) metric in Subsection 4.2.1 and the Affine-Invariant

(AI) metric in Subsection 4.2.2. While on the Euclidean space, the Brownian

motion explodes in infinite time, it does not always hold for a general Riemannian

manifold. If we achieve this property, the Riemannian manifold obtains stochastic

completeness, see Proposition 4.8 for SP(n) equipped with either the LE or the AI

metric.
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In order to prove stochastic completeness, we aim to show that Ricci curvatures

on SP(n) equipped with either LE or AI metrics are bounded below, and use

Theorem 2.39, i.e. using Corollary 2.40. Firstly, let us state the results of Ricci

curvatures in the case of AI metric from [112] and include a concise calculation.

Lemma 4.7. [112] For any P ∈ SP(n), the Ricci curvature is given with respect

to the basis BAI
d (P ), as defined in Equation (4.17) :

RicP = −n
4

In − 1
n
1n,n 0

0 In(n−1)/2

 .

Proof. We apply Equation (4.15) to the Definition 2.12 of curvature tensor and get

RP (X, Y )Z = (∇X∇YZ)P − (∇Y∇XZ)P − (∇[X,Y ]Z)P

=
1

4

(
XPP

−1YPP
−1ZP + ZPP

−1YPP
−1XP

− YPP−1XPP
−1ZP − ZPP−1XPP

−1YP

)
Since 1 ≤ i ≤ d : Ei(P ) = P 1/2 ? Si, for any 1 ≤ k ≤ d:

⇒ RP (Ek, Ei)Ek =
1

4

(
P 1/2 ? (2SkSiSk − SiSkSk − SkSkSi)

)
.

Thus, for any 1 ≤ i, j ≤ d : Ric(Ei, Ej)P =
d∑

k=1

gAIP
(
RP (Ek, Ei)Ek), Ej(P )

)
=

1

4

d∑
k=1

〈
2SkSiSk − SiSkSk − SkSkSi , Sj

〉
F
.

Many terms vanish, and the result is summarised as below :

Ric(Ei, Ej)P =



−(n− 1)/4 if 1 ≤ (i = j) ≤ n,

−n/4 if n+ 1 ≤ (i = j) ≤ d,

1/4 if 1 ≤ (i 6= j) ≤ n,

0 otherwise.
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Proposition 4.8 (Stochastic completeness). The Riemannian manifold SP(n) is

stochastically complete when it is equipped with either

(i) the LE metric,

(ii) or the AI metric.

Proof. (i) Proposition 4.1 implies SP(n) equipped with the LE metric has null

sectional curvature everywhere, i.e. for all 1 ≤ i, j ≤ d and P ∈ SP(n)

we have ∇ELE
i (P )E

LE
j (P ) = 0, where ELE

i , ELE
j ∈ BLE

d , as defined in Equa-

tion (4.8). Thus, the Ricci curvature tensor also vanishes everywhere, and the

required result is a direct consequence from Theorem 2.39.

(ii) Let us fix a point P ∈ SP(n), and vary some point Q ∈ SP(n) such that

d2
AI(P,Q) = r for some r > 0. Consider a tangent vector v ∈ TQSP(n) such

that it has unit length, that is v =
∑d

i=1 νiE
AI
i (Q) ∈ TQSP(n) and ||ν||2 = 1.

Using Lemma 4.7, and denoting the (i, j)th entry of the Ricci curvature tensor

at Q in matrix form as Ric(i,j)
Q , we have

Ric(v, v) =
d∑

i,j=1

νiRic(i,j)
Q νj

= −n− 1

4

n∑
i=j=1

ν2
i −

n

4

d∑
i=j=n+1

ν2
i +

1

4

n∑
i 6=j

νiνj

= −n
4

+
1

4

n∑
i,j=1

νiνj ≥ −
n

4
− n2

4
= −d

2

The last inequality holds due to the fact that ||ν||2 = 1. Therefore, using

Theorem 2.39, we can set κ(r) = −d/
(
2(d− 1)

)
, which is clearly a negative,

non-decreasing, continuous function.

⇒
∫ ∞
c

1√
−κ(r)

dr =

√
2(d− 1)

d

∫ ∞
c

1 dr =∞ for some constant c.
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The rest of this section proceeds as follows: firstly establish the local expression

of the horizontal lifts of smooth curves on SP(n) equipped either with the LE or the

AI metric; secondly show that any SDEs on Rd can be extended to SP(n) equipped

with the LE metric in Theorem 4.10; and lastly discuss about the construction of

the Riemannian Brownian motion on SP(n). Particularly, we provide the first order

Euler approximation for the horizontal lifts of geodesics when working with the AI

metric. But first of all, let us fix the standard basis {e1, . . . , ed} for Rd.

Proposition 4.9 (Horizontal lift of smooth curves). Suppose that γ(t) is a smooth

curve on SP(n) with γ(0) = P and some smooth curve ut on the frame bundle

F
(
SP(n)

)
such that π(ut) = γ(t) for all t > 0, where π : F

(
SP(n)

)
→ SP(n)

is the canonical projection map discussed in Subsection 2.3.2.

(i) (LE metric) If ut is the unique horizontal lift of γ(t) from an initial frame

u0, where u0(ei) = ELE
i (P ) for all 1 ≤ i ≤ d, the expression of ut in local

coordinates with respect to
{
ELE
i

(
γ(t)

)
, ei
}d
i=1

is (γ(t), δ), where δ =
(
δij
)
,

the Kronecker delta.

(ii) (AI metric) Suppose the expression of ut in local coordinates with respect to{
EAI
i

(
γ(t)

)
, ei
}d
i=1

is ut = (γ(t), ζ) with ζ =
(
ζ ij
)
and ζ ij : SP(n) → R

are differentiable functions, then ut is the unique horizontal lift of γ(t) from

an initial frame u0, where u0(ei) = EAI
i (P ) for all 1 ≤ i ≤ d if and only if

functions ζ ij exist uniquely and satisfy for all 1 ≤ i, j ≤ d:

d∑
r=1

αr
(
γ(t)

){(
EAI
r ζ

i
j

)
γ(t)

+
d∑

k=1

ζ ik
(
γ(t)

)
Γjrk
(
γ(t)

)}
= 0, (4.18)

where the Christoffel symbols Γjrk
(
γ(t)

)
= Γjrk are given in Lemma 4.4 and

smooth functions αr : SP(n)→ R satisfy γ′(t) =
∑d

r=1 αr
(
γ(t)

)
EAI
r

(
γ(t)

)
.

Moreover, if αr
(
γ(t)

)
6= 0 for only one r ∈ {1, . . . , d} , then functions

ζ ij
(
γ(t)

)
must satisfy

(
EAI
r ζ

i
j

)
γ(t)

= −
d∑

k=1

ζ ik
(
γ(t)

)
Γjrk for all 1 ≤ i, j ≤ d.
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Proof. We are given π(ut) = γ(t) with a fixed initial value γ(0) = P and an initial

frame u0 ∈ F
(
SP(n)

)
P
, thus it is sufficient to show that ut(e) is parallel along the

curve γ(t) for any e ∈ Rd, i.e. ∇γ′(t)ut(e) = 0. Consider an arbitrary e ∈ Rd, then

e =
∑d

i=1 εiei for some εi ∈ R and we aim to use Definition 2.9 for ∇.

(i) We express γ′(t) with respect to the basisBLE
d , i.e.

γ′(t) =
d∑
i=1

αi
(
γ(t)

)
ELE
i

(
γ(t)

)
,

where functions αi ∈ C∞
(
SP(n)

)
. Since ut(e) =

∑d
i=1 εiE

LE
i (Xt) and εi

does not depend on γ(t) for all 1 ≤ i ≤ d,

∇γ′(t)ut(e) = ∇{∑d
i=1 αi(γ(t))ELE

i

(
γ(t)
)}{ d∑

j=1

εj E
LE
j

(
γ(t)

)}
=

d∑
i,j=1

αi
(
γ(t)

)
εj

{
∇
ELE
i

(
γ(t)
)ELE

j

(
γ(t)

)}
= 0.

Here we use the result that SP(n) equipped with the LE metric has null

curvature everywhere, i.e. ∇ELE
i
ELE
j = 0 (∀1 ≤ i, j ≤ d).

(ii) Firstly, let us suppose that there exist such functions ζ ij , which satisfy Equa-

tion (4.18). Since ut(e) =
∑d

i,j=1 εi ζ
i
j

(
γ(t)

)
EAI
j

(
γ(t)

)
, we use the given

condition in Equation (4.18) and get

∇γ′(t)ut(e) =
d∑
r=1

αr
(
γ(t)

) (
∇
EAI
r

(
γ(t)
) { d∑

i,j=1

ei ζ
i
j

(
γ(t)

)
EAI
j

(
γ(t)

)})

=
d∑
r=1

αr
(
γ(t)

)( d∑
i,j=1

ei

{(
EAI
r ζ

i
j

)
γ(t)

EAI
j

(
γ(t)

)
+ ζ ij(Xt)∇

EAI
r

(
γ(t)
)EAI

j

(
γ(t)

)})

=
d∑

r,i,j=1

αr
(
γ(t)

)
ei
(
EAI
r ζ

i
j

)
γ(t)

EAI
j

(
γ(t)

)
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+
d∑
r=1

αr
(
γ(t)

) d∑
i,j=1

ei ζ
i
j

(
γ(t)

)( d∑
k=1

Γkrj
(
γ(t)

)
EAI
k

(
γ(t)

))

=
d∑

i,j=1

eiE
AI
j

(
γ(t)

)
(

d∑
r=1

αr
(
γ(t)

){(
EAI
r ζ

i
j

)
γ(t)

+
d∑

k=1

ζ ik
(
γ(t)

)
Γjrk

})
= 0.

On the other hand, if ut is the horizontal lift of γ(t) starting from the initial

frame u0, ∇γ′(t)ut(e) = 0. So, for all 1 ≤ i, j ≤ d:

d∑
r=1

αr
(
γ(t)

){(
EAI
r ζ

i
j

)
γ(t)

+
d∑

k=1

ζ ik
(
γ(t)

)
Γjrk
(
γ(t)

)}
= 0.

If only one r ∈ {1, . . . , d} is such that αr
(
γ(t)

)
6= 0, then clearly functions

ζ ij
(
γ(t)

)
must satisfy

(
EAI
r ζ

i
j

)
γ(t)

= −
d∑

k=1

ζ ik
(
γ(t)

)
Γjrk for all 1 ≤ i, j ≤ d.

Uniqueness and existence of ut result from the fact that ζ ij are the solution

of a system of first order linear ordinary differential equations with initial

conditions ζ ij(P ) = δij .

Proposition 4.1 indicates that the LE metric offers the Euclidean structure

through the transformation of matrix logarithm. This is consistent with the result in

Proposition 4.9, in which the frame ut does not change its direction while travelling

horizontally along the curve γ(t). On the other hand, SP(n) equipped with the

AI metric has non-zero curvature and therefore the corresponding frame ut in this

case must adapt, i.e. the functions ζ ij are no longer independent of points on γ(t).

Although in general there are no explicit formulas for ζ ij , we will provide instead

a first order Euler approximation when assuming γ(t) is the geodesic associated

with the AI metric toward the end of this section. This is an example where we ap-
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proach stochastic development by smooth approximationwhen using the exponential

adapted Euler-Maruyama method.

Before moving to our construction of Riemannian Brownian motion on SP(n),

we present an important result for any SDEs on SP(n) equipped with the LEmetric,

where we show an explicit one-to-one transformation between the SDEs on SP(n)

to another SDEs on Rd using the map h. Here, we define h = (hj) : SP(n) → Rd

with an arbitrary e =
∑d

j=1 εj ej ∈ Rd and P ∈ SP(n) as follows:

hj(P ) = 〈logP, Sj〉F (1 ≤ j ≤ d) and h−1(e) = exp
( d∑
j=1

εj Sj
)
. (4.19)

Theorem 4.10. Suppose the processXt is the solution of the SDE (2.17) on SP(n)

endowed with the LE metric, i.e. for t ∈ [0, τ) with a F∗-stopping time τ :

dXt = A(t,Xt) dt+ FXt
(
b(Xt) dBt

)
(X0 = P ), (4.20)

where A assigns smoothly for each t ∈ [0, τ) a smooth vector field A(t, ·) on SP(n)

and some smooth function b : SP(n)→ Rd×d. Moreover,Bt isRd-valued Brownian

motion and the function F is defined in Equation (2.16) associated with the basis

BLE
d . Then the problem of solving the SDE (4.20) on SP(n) is the same as solving

the following SDE on Rd :

dxt = a(t, xt) dt+ b̃(xt) dBt (x0 = p), (4.21)

Here, p = h(P ), xt = h(Xt) hold for all t ∈ [0, τ) and smooth function b̃ is given by

b̃ = b ◦ h−1. In addition, smooth function a =
(
a(j)
)
is given by a(j) : [0, τ)×Rd →

R, (t, xt) 7→
〈
DXt log .A(t,Xt), Sj

〉
F
for all 1 ≤ j ≤ d.

Proof. As A(t, ·) is a smooth vector field on SP(n) for all t ∈ [0, τ), there always

exist functions f (j) ∈ C∞
(
[0, τ)× SP(n)

)
for all 1 ≤ j ≤ d such that

A(t,Xt) =
d∑
j=1

f (j)(t,Xt)E
LE
j (Xt) =

d∑
j=1

f (j)(t,Xt)
((
d logXt

)−1
(Sj)

)
.
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Then applying the differential map d log at Xt on both sides, we get

d logXt
(
A(t,Xt)

)
=

d∑
j=1

f (j)(t,Xt)Sj,

which is equivalent toDXt log .A(t,Xt) =
∑d

j=1 f
(j)(Xt)Sj . And since the matrix

logarithm function log is smooth onSP(n),DXt log .A(t,Xt) is smoothwith respect

to t andXt. Moreover, we can easily deduce f (j)(t,Xt) =
〈
DXt log .A(t,Xt), Sj

〉
F

as {Si}di=1 are orthonormal. Thus, a(j)(t, xt) simply equals f (j)(h−1(t, xt)), and

since h−1 and f are both smooth, the function a is smooth on [0, τ)× Rd.

On the other hand, for any e =
∑d

j=1 εj ej ∈ Rd, the definition of F in

Equation (2.16) implies

FXt(e) =
d∑
j=1

εj E
LE
j (Xt) =

(
d logXt

)−1

(
d∑
j=1

εj Sj

)

⇐⇒ d logXt
(
FXt(e)

)
=

d∑
j=1

εj Sj.

We know that log : SP(n)→ S(n) is a diffeomorphism, and therefore we can apply

the result in [25, Proposition 1.2.4, Page 20], which says if Xt is the solution of the

SDE (4.20), the process logXt is a solution of the following SDE

d logXt
(
dXt

)
= d logXt

(
A(t,Xt)

)
dt+ d logXt

(
FXt
{
b(Xt) dBt

})

⇐⇒
d∑
j=1

dx
(j)
t Sj =

d∑
j=1

a(j)(t, xt)Sj dt+
d∑

i,j=1

b̃ij(xt)Sj dB
i
t.

The SDE above is purely in the Itô sense as the second order term in Equation (2.10)

of Itô integral vanishes when converting from the corresponding Stratonovich inte-

gral. We achieve this because the LE metric offers null curvature everywhere on

SP(n). Lastly, removing the basis Bd = {Si}dj=1, we get the desired result.

The result in Theorem 4.10 brings no surprise because SP(n) is isomorphic to

S(n), while Proposition 4.9 says the horizontal lift of any semimartingale on SP(n)
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equippedwith the LEmetric is available explicitly and identical to the definition ofF

in Equation (2.16) associated with the basisBLE
d . Consequently, solutions of (4.20)

and (4.21) are in one-to-one correspondence. Therefore, when equipping SP(n)

with the LE metric, we only need to study the coefficients of Xt in log-domain

with respect to a fixed basis Bd instead (i.e. through the function h), which greatly

benefits both theoretical and practical work.

The conditions for existence and uniqueness of the solution for the SDE (4.20)

depend directly on the requirements that the drift and diffusivity of the SDE (4.21)

satisfy on the Euclidean space, see Theorem 2.37. In particular, the Riemannian

Brownian motion associated with the LE metric on SP(n) has its coefficients in

log-domain to equal to anRd-valued Brownian motion. Similarly, the generalization

of OU process can be done in the same way, and we discuss this in more detail later

in Section 4.4. For the time being, let us look into the construction of Riemannian

Bownian motion associated with the AI metric, which requires an approximation

approach and convergence theory.

Firstly, since we have a global basis fieldBAI
d when dealing with the AI metric

on SP(n), see Proposition 4.3, it is straightforward to use the exponential adapted

Euler-Maruyama method when simulating the Riemannian Brownian motion Xt.

We substitute a(t,Xt) = 0 and b(Xt) = Id to Equation (2.19) and use the explicit

formula of the exponential map associated with the AI metric in Equation (4.12),

and get for δt > 0:

Xt+δt = X
1/2
t exp

( d∑
i=1

(
B

(i)
t+δt
−B(i)

t

)
Si

)
X

1/2
t ,

where Bt =
(
B

(i)
t

)
is an Rd-valued Brownian motion. As δt → 0, Xt converges

to the Riemannian Brownian motion in distribution [28]. We achieve this because

SP(n) equipped with the AI metric is parallelizable.

In addition, this approximation method indicates for an infinitesimal time δt,

Xt+δt lies on the geodesic starting from Xt, and we therefore can assume the path

connecting Xt and Xt+δt is smooth. We highlight that the process Xt is assumed
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to be the solution of the SDE (2.20), which can be more complicated than the

Riemannian Brownian motion. We firstly approximate function ζ in Proposition 4.9

given that γ(t) are geodesics, and aim to use the information that the path between

Xt and Xt+δt is also a geodesic in providing an approximation of horizontal lifts of

the stochastic process Xt. We emphasize this approach of smooth approximation

for stochastic development in our work requires the stochastic process Xt to be the

limiting result of the exponential adapted Euler-Maruyama method, i.e. Xt belongs

to the special class of SDEs discussed at the end of Subsection 2.3.2.

Corollary 4.11 (Approximation of functions ζ). Consider the geodesic γ(t) on

SP(n) equipped with the AI metric with γ(0) = P . We approximate ζ ij
(
γ(t)

)
defined in Proposition 4.9 when t > 0 is infinitesimally small under the special

scenarios for the initial tangent vector γ′(0) ∈ TPSP(n) as follows:

1. Choose an integer l ∈ {1, , . . . , d} and set γ′(0) = P 1/2 ? Sl, we therefore

get γ(t) = P 1/2 ? exp(tSl). Suppose ut is the unique horizontal lift of γ(t)

defined in Proposition 4.9. For all 1 ≤ r ≤ d we have

⇒
(
EAI
r ζ

i
j

)
P

=
(
dζ ij
)
P

(
EAI
r (P )

)
=

d

dt
(ζ ij ◦ γ)(t)

∣∣∣∣
t=0

.

Since αr(P ) = δrl and ζji (P ) = δij (i.e. using information of the initial

frame), Proposition 4.9 implies

(
EAI
l ζ

i
j

)
P

= −
d∑

k=1

ζ ik(P ) Γjlk = −
d∑

k=1

δikΓ
j
lk = −Γjli (∀1 ≤ i, j ≤ d)

⇒ d

dt
(ζ ij ◦ γ)(t)

∣∣∣∣
t=0

= −Γjli ⇒ lim
t→0

(ζ ij ◦ γ)(t)− δij
t

= −Γjli,

as (ζ ij ◦ γ)(0) = δij , so ζ ij
(
γ(t)

)
≈ δij − tΓjli, given that t is close to zero.

Thus, for all 1 ≤ i, j ≤ d: ζ ij
(
P 1/2 ? exp(t Sl)

)
≈ δij − tΓjli (0 ≤ t� 1).

2. We extend case 1 by considering an arbitrary e =
∑d

l=1 αl el ∈ Rd such that

αl ∈ R \ {0} for l ∈ I ⊆ {1, . . . , d} and set γ′(0) = P 1/2 ?
(
u0(e)), i.e.

γ(t) = ExpAIP
(
t u0(e)

)
with αr(X0) in Proposition 4.9 equals to αr 6= 0 for



4.3. Brownian motion class 124

r ∈ I. Therefore, Proposition 4.9 implies

∑
r∈I

αr
(
EAI
r ζ

i
j

)
P

= −
∑
r∈I

αr

d∑
k=1

ζ ik(P ) Γjrk = −
∑
r∈I

αr Γjri.

On the other hand, we denote V =
∑d

l=1 αlE
AI
l =

∑
r∈I αr E

AI
r which is a

vector field on SP(n), then

(
V ζ ij
)
γ(t)

=
∑
r∈I

αr
(
EAI
r ζ

i
j

)
γ(t)

and
(
V ζ ij
)
P

=
d

dt
(ζ ij ◦ γ)(t)

∣∣∣∣
t=0

⇒ lim
t→0

(ζ ij ◦ γ)(t)− δij
t

=
∑
r∈I

αr (EAI
r ζ

i
j)P = −

∑
r∈I

αr Γjri.

Thus, for all 1 ≤ i, j ≤ d:

ζ ij

(
P 1/2 exp(t

d∑
l=1

αl Sl)P
1/2

)
≈ δij − t

d∑
l=1

αl Γ
j
li I{l∈I},

for infinitesimally small t > 0, where I stands for the indicator function.

From Equation (2.19), we substitute P = Xt and get αr = a(r)(t,Xt)δt +∑d
i=1 bir(Xt)

(
B

(i)
t+δt
− B(i)

t

)
as given in case 2 of Corollary 4.11, where a(t,Xt) =

F−1
Xt

(
A(t,Xt)

)
, where function F is defined in Equation (2.16) associated with the

basisBAI
d . Since the differenceB(i)

t+δt
−B(i)

t ∼ N
(
0, δt

)
, by assuming that functions

a(t,Xt) and b(Xt) are locally bounded (e.g. locally Lipschitz continuous), we can

contract the approximation for ζ ij in Corollary 4.11 to δij given that δt is sufficiently

small. The conditions for functions a, b clearly hold for the case of Riemannian

Brownian motion since a(t,Xt) = 0 and b(Xt) = Id. This approximation turns out

to be identical to the local expression of the horizontal lift for all smooth curves on

SP(n) equipped with the LE metric, see Proposition 4.9.

To sum up this section, we show that the Riemannian Brownian motion asso-

ciated with either LE or AI metrics explode in infinite time. In particular, we can

preserve many properties of SDEs on Rd when extending them to SP(n) equipped

with the LEmetric via the matrix logarithm function. While the Riemannian Brown-
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ian motion associated with the LEmetric is straightforward to study, it is not the case

with the AI metric with requirement of piecewise approximation. The definition of

F in Equation (2.16) associated with the basis BLE
d coincides with the horizontal

lifts in the LE case, whereas F associated with the basisBAI
d approximates the hor-

izontal lifts in the AI case under some requirements for functions a, b as provided

in Equation (2.19). In other words, we are able to approximate the true frame, that

is glued to the stochastic process and moving horizontally along with this process,

in a very simple formula in the AI case. Thus, on top of efficient simulation, we can

make theories of stochastic development more practically accessible. We illustrate

this with the task of Bayesian parameter estimation in Section 4.6.2 when assuming

the SDE of interest is the generalization of the OU process.

4.4 Ornstein-Uhlenbeck class
Adopting the intrinsic point of view, we present the construction of the Ornstein-

Ulenbeck (OU) class of processes onSP(n) equippedwith someRiemannianmetric.

In analogy with the Euclidean OU process, we start with Brownian motion and add a

mean-reverting drift which pushes the process toward the point of attraction. In the

Euclidean setting, this drift is simply given as the gradient of the squared distance

between the process and the point of attraction. We translate this idea to manifolds

and define A(t,Xt) by the Riemannian gradient of the squared distance function in

the SDE (2.20). This is similar to the treatment of the drift term by V. Staneva et al.

[10] for shape manifolds.

We define the Riemannian OU process Xt on SP(n) to be the solution of the

following SDE with model parameters θ ∈ R>0,M ∈ SP(n) and σ ∈ R>0:

dXt = −θ
2

(
∇d2(Xt,M)

)
Xt
dt+ FXt(σ dBt) (X0 = U), (4.22)

where F is defined in Equation (2.16) associated with some global basis field,

i.e. FQ(e) =
∑d

i=1 εiEi(Q) with e =
∑d

i=1 εi ei ∈ Rd, Q ∈ SP(n), where

{Ei}di=1 the orthonormal basis field with respect to the given metric tensor,

e.g. BAI
d or BLE

d . Simulation for Xt can be easily performed with the ex-
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ponential adapted Euler-Maruyama method, see Equation (2.19). In this case,

a(j)(t,Xt) = −gXt
(
θ
(
∇d2(Xt,M)

)
Xt
, Ej(Xt)

)
/2 for 1 ≤ j ≤ d and b(Xt) = σ.

So, Equation (2.19) can be rewritten as

Xt+δt = ExpXt

{
− θ

2
∇Xt{d2(Xt,M)} δt +

d∑
j=1

(B
(j)
t+δt
−B(j)

t )σ Ej(Xt)

}
, (4.23)

for δt > 0. Here, the exponential map Exp, the squared distance function d2 and the

orthonormal basis frame {Ej}dj=1 depend on the chosen metric tensor, i.e. either the

LE or AI metrics. Moreover, Proposition 4.2 and 4.3 imply

• LE metric: a(j)(t,Xt) = θ
〈

logM − logXt, Sj
〉
F
.

• AI metric: a(j)(t,Xt) = θ
〈

log(X
−1/2
t ? M), Sj

〉
F
.

Proposition 4.2 and 4.3 demonstrates that the Riemannian gradient chosen

for the drift, ∇d2(Xt,M), in the SDE (4.22) is explicitly computable, while the

definition of ELE
i , EAI

i suggest acceptable computational cost compared to when

using the Euclidean metric. In addition, Theorem 4.10 indicates that one can simply

study the usual OU process on Rd and transform the whole process via a global

function h defined in Equation (4.19), to get the Riemannian OU process associated

with the LEmetric, so the computational cost is significantly scaled down. Moreover,

most favourable properties that the OU process has on the Euclidean space will carry

over to SP(n) equipped with the LE metric, such as existence and uniqueness of the

solution and ergodicity. And the transition probability density of the OU process

associatedwith the LEmetric is explicitly available up to the Jacobian term involving

the derivative of the matrix exponential.

We conclude this section by establishing equivalent results for the AI case in a

non-constructive manner. While there is no simple diffeomorphism corresponding

to h, otherwise equivalent results can be obtained for the AI case.

Proposition 4.12. The existence and uniqueness theorem in [26, Theorem 2E, Page

121] is applicable to the Riemannian OU process associated with the AI metric.

And, this diffusion process is also non-explosive, see [26, Corollary 6.1, Page 131].
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4.5 Bayesian parameter estimation

We now focus on the Bayesian estimation for the model parameters in the OU

difussion processes on SP(n) when observations are collected at low frequency.

Benefiting from Theorem 4.10, we are able to adopt the MCMC strategy introduced

byG.O. Roberts&O. Stramer [43] which requires data imputation through sampling

from a diffusion bridge in the case of the LE metric, see Appendix B.2. On the

other hand, when working with the AI metric we require a diffusion bridge sampling

method that operates on SP(n) which, unlike the Euclidean case, has not been

studied before. So, in the remainder of this section we focus only on the AI metric

where no such result exists.

A common approach used in manifolds is to use embedding or local charts

followed by an appropriate Euclidean method; see for example, [11, 42, 10], but

this strategy is unsuitable when transitioning between charts is required and charts

can be cumbersome to work with. We therefore develop a diffusion bridge sampler

exploiting the exponential map and adopting an intrinsic viewpoint.

For low frequency data, the transition density, and hence the likelihood, are

generally not explicitly available. Hence, one common strategy is to augment the

data by filling in a number of data points in between observations and relying on

an approximation of the diffusion for short time intervals. This data augmentation

problem has appeared in the literature for at least two decades, it is therefore difficult

to cover the whole research field of this problem, we instead focus on some key

papers. To deal with the data augmentation problem it is either assumed thatXt has

constant diffusivity, or that Xt is transformed to a process of constant diffusivity,

or existence of a process that is absolutely continuous to Xt and its corresponding

transition probability need to be derived. MCMC data augmentation sampling

strategies that impute partial trajectories via bridge samplers have been used to

numerically approximate the transition densities, see [113, 114, 43]. The use of

bridge sampling has a long history in the inference for diffusions starting from A.

R. Pedersen [115]. Recent advances include the modified diffusion bridge by G. B.

Durham & A. R. Gallant [116] and its modifications, see [117, 118, 119] and ideas
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based on sequential Monte Carlo [120, 121]. There has been a line of research based

on ideas of B. Delyon & Y. Hu [38] that uses guided and residual proposal densities,

see [39, 40, 41]. Finally, a recent promising approach is based on M. Bladt & M.

Sorensen [122], which provides a single proposal path (sometimes is referred to as a

“confluent diffusion bridge”) for the target diffusion bridge by conditioning forward

and backward diffusion processes to cross paths, see [123, 124, 125].

In the case of the AI metric, at first glance the SDE seems to have constant

diffusivity. However, due to the presence of curvature, the diffusivity does depend

on the position of Xt, hence straightforward algorithms from literature are not

applicable. For instance, looking at the local coordinate expression of the SDE

of the Riemannian Brownian motion Wt on SP(n) equipped with the AI metric

(substitutingG−1
AI in Equation (4.11) and the Christoffel symbols given in Lemma 4.4

into Equation (2.13)), the dependence of the diffusivity on Wt is evident as is the

complexity of the resulting expressions. Furthermore, attempting to sample from

this SDE using the standard Euclidean method will lead to symmetric matrices but

will fail to preserve positive definiteness.

On the Euclidean space, B. Delyon & Y. Hu [38] and M. Schauer & F. V.

D. Meulen et al. [40] suggest adding an extra drift term which guides the SDE

solution toward the correct terminal point and leaves its law absolutely continuous

with respect to the law of the original conditional diffusion process; the Radon-

Nikodym derivative is available explicitly. This results in an easier simulation,

much better MCMC mixing rate of convergence and no difficulty of computing

acceptance probability when updating the proposal bridge. The additional drift

is the gradient of the logarithm of the transition density of an auxiliary process

which must have explicitly available transition probability density. We include a

short summary about guided proposals on the Euclidean space in the Appendix, see

Section B.1. In the manifold setting, we are aware of one attempt to use the above

approach to sample diffusion bridges through local coordinates by S. Sommer et al.

[42], but using the exponential map in this context is new. Motivated by these ideas,

we construct a methodology that allows us to sample a diffusion bridge on SP(n)
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equipped with the AI metric using a guided proposal process.

We need to choose a proposal diffusion process, which has both an explicit

transition probability density and an analytically tractable gradient of the log transi-

tion probability density due to the requirement in obtaining the additional drift for

the SDE of the guided proposal. Moreover, the target diffusion bridges that we are

unable to sample from and the proposal diffusion process which are much easier to

deal with, are required to pull to the terminal point with the same force because it

is a mandatory condition for their laws to be equivalent. On the Euclidean space,

M. Schauer & F. V. D. Meulen et al. [40] shows that if the proposal diffusion

process is a linear process, its diffusion coefficient needs to coincide with the value

of the original process at the terminal time, in order to ensure the speed at which the

proposal diffusion process tends to the correct endpoints is appropriate with respect

to the target (unknown) diffusion bridge.

Unlike the Euclidean space, where many probability distributions have been

studied for centuries, there are only few probability distributions on SP(n). One

common distribution on SP(n) is the Wishart distribution, and the Wishart process

on SP(n) is an extension of the Cox-Ingersoll-Ross process to the space of covari-

ance matrices. The transition probability density of the Wishart process is given in

terms of the non-central Wishart distributionWn(p,Σ,Θ) [22],

f(X) =
1

2pn/2 Gamn

(
p
2

)
n
√

det Σ
exp

{
tr
(
−1

2
(Θ + Σ−1X)

)}
(detX)(p−n−1)/2

0F1

(
p

2
;
1

4
Θ Σ−1X

)
, (4.24)

where X,Σ ∈ SP(n) and Θ ∈ Rn×n, Gamn is the multivariate Gamma function

[126] and 0F1 is the hypergeometric function [127]. However, due to the presence

of hypergeometric function, there is no closed form for the Riemannian gradient

of this transition probability density. If one insists on using this distribution, a

numerical approximationmethod is required to compute this gradient. Alternatively,

we choose a diffusion process X̃s on SP(n), whose transition probability is given

by the Riemannian Gaussian distribution in [128], that is
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p(t, X̃t; s, X̃s) =
1

Kn(σ)
exp

(
−d2

AI(X̃s, X̃t)

2 (t− s)σ2

)
for s > t, and (4.25)

Kn(σ) =
π
n2

2 8
n(n−1)

4

n!Gamn(n
2
)

∫
Rn

exp

(
−
∑n

i=1 r
2
i

2(t− s)σ2

) ∏
i<j

sinh
|ri − rj|

2

n∏
i=1

dri.

(4.26)

This transition density is symmetric and we denote X̃t|X̃s ∼ N
(
X̃s, (s−t)σ2

)
.

If the time difference s − t is fixed, the normalising constant Kn(σ) depends only

on σ and n. Moreover, this auxiliary process X̃t exists but its SDE form is not

explicitly available, see [29]. We call X̃t the proposal process and emphasize that

explicit availability of the proposal SDE is not actually a pre-requisite for the guided

proposals algorithm. Furthermore, the model parameter σ appears in both the

SDE (4.22) and the Equation (4.25) because we want to duplicate the requirement

for which the guided proposal process and the target diffusion bridge are absolutely

continuous on the Euclidean space, see Appendix B.1. Although the requirement in

the Euclidean setting does not directly imply that the absolute continuity will hold

on a general manifold, it suggests what the properties of the process X̃t should be.

Firstly, the OU process Xt on SP(n) equipped with the AI metric defined in

Section 4.4, is the solution of the following SDE with its law Pt,

dXt = θ LogAIXtM dt+ FXt(σ dBt) (X0 = U). (4.27)

and we assume that sampling from the target diffusion bridge X∗t = {Xt, 0 ≤

t ≤ T |X0 = U,XT = V } with its corresponding law P∗t is required. Sub-

sequently, applying Proposition 4.3 to Equation (4.25), we get the guided drift

σ−2
(
∇ log p(t,X�t ;T, V )

)
X�t

=
(
LogAIX�t V

)
/(T − t). We therefore introduce the

guided proposal X�t , which is the solution of the following SDE with its law P�t :

dX�t =

(
θ LogAIX�t M +

LogAIX�t V
T − t

)
dt+ FX�t (σ dBt) (X�0 = U). (4.28)
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Lastly, we aim to show that the P∗t and P�t are equivalent for t ∈ [0, T ] and the

Radon-Nikodym derivatives are computable. In essence, we prove that P∗t and P�t
are equivalent up to time T with the aid of Lemma 4.4 in Theorem 4.13 and compute

their corresponding Radon-Nikodym derivatives. We then take limit of t→ T , and

claim that the measure P�t is absolutely continuous with respect to the measure P∗t ,

and obtain the Radon-Nikodym derivative in Theorem 4.15.

Let p(t,Xt;T, V ) be the true (unknown) transition density of moving from Xt

at time t to V at time T and let X�[0:t] be the path of X�t from time 0 to t.

Theorem 4.13. For t ∈ [0, T ), the laws Pt, P�t and P∗t are absolutely continuous,

dPt
dP�t

(
X�[0:t]

)
=

exp
(
f(X�0 )

)
exp

(
f(X�t )

) exp
{

Φ(t,X�[0:t]) + φ
(
t,X�[0:t]

)}
, (4.29)

dP∗t
dP�t

(
X�[0:t]

)
=
p(t,X�t ;T, V )

exp
(
f(X�t )

) exp
(
f(X�0 )

)
p(0, U ;T, V )

exp
{

Φ
(
t,X�[0:t]

)
+ φ
(
t,X�[0:t]

)}
,

(4.30)

where the functions f, φ and Φ are defined by

f(X�t ) = −d
2
AI(X

�
t , V )

2σ2(T − t)
= −

∣∣∣∣log
(
(X�t )−1/2V (X�t )−1/2

)∣∣∣∣2
F

2σ2(T − t)
, (4.31)

φ
(
t,X�[0:t]

)
=

d∑
i,j=1

∫ t

0

(
ζ ij(X

�
s )
)2

2(T − s)
ds, (4.32)

Φ
(
t,X�[0:t]

)
=

t∫
0

(
θ gAIXs

(
LogAIX�sM,LogAIX�sV

)
σ2(T − s)

+
d∑

i,j,r=1

gAIX�s

(
ζ ij(X

�
s )
(∑d

l=1 ζ
i
l (X

�
s )Γrjl + (EAI

j ζ
i
r)X�s

)
EAI
r (X�s ) , LogAIX�sV

)
2(T − s)

)
ds,

(4.33)

with Γrjl given in Lemma 4.4. The functions ζ = (ζ ij) are the coefficients with respect

to the basis BAI
d in the local expression of the horizontal lift, see Proposition 4.9.

Proof. Using Theorem 2.42 (Girsanov-Cameron-Martin theorem), the measures Pt
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and P�t are absolutely continuous, and the Radon-Nikodym derivative is given by

dPt
dP�t

(
X�[0:t]

)
= exp

{
−
∫ t

0

gAIX�s

(
LogAIX�sV , U

�
s (dBs)

)
σ(T − s)

− 1

2

∫ t

0

∣∣∣∣LogAIX�s ∣∣∣∣2gAI
X�s

σ2 (T − s)2
ds

}
(4.34)

where U�t is the horizontal lift of the guided proposal process X�t .

Moreover, Proposition 4.3 and Lemma 4.5 imply the following results:

(∇f)X�t =
LogAIX�t V
σ2(T − t)

,

∂f

∂t
= − d2

AI(V,X
�
t )

2σ2(T − t)2
= −

∣∣∣∣LogAIX�t ∣∣∣∣2gAIX�t
2σ2(T − t)2

,

∆SP(n)f
(
EAI
i (X�t ) , EAI

j (X�t )
)

=
δij

σ2(T − t)
.

Since U�t (ei) =
∑d

j=1 ζ
i
j(X

�
t )EAI

j (X�t ), we get

⇒ ∇U�t (ei)U
�
t (ek) =

d∑
j,l

ζ ij(X
�
t )
( d∑
r=1

ζkl (X�t )ΓrjlE
AI
r (X�t ) + (EAI

j ζ
k
l )X�tE

AI
l (X�t )

)
.

We then apply Theorem 2.41 (Global formulations of Itô’s lemma) to the smooth

function f , and get

f(X�t )− f(X�0 ) =

t∫
0

(
∂f

∂s
+ gAIXs

(
θ LogAIX�sM +

LogAIX�sV
T − s

,∇f

))
ds

+

t∫
0

gAIXs
(
U�s (σ dBs) , ∇f

)
+

1

2

t∫
0

gAIXs
(
∇U�s (σ dBs)U

�
s (σ dBs) , ∇f

)

+
1

2

t∫
0

∆SP(n)f
(
U�s (σ dBs) , U

�
s (σ dBs)

)

= −1

2

t∫
0

∣∣∣∣LogAIX�s ∣∣∣∣2gAI
X�s

σ2(T − s)2
ds+

t∫
0

θ gAIXs

(
LogAIX�sM,LogAIX�sV

)
σ2(T − s)

ds
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+

t∫
0

∣∣∣∣LogAIX�s ∣∣∣∣2gAI
X�s

σ2(T − s)2
ds+

∫ t

0

gAIX�s

(
LogAIX�sV , U

�
s (σ dBs)

)
σ2 (T − s)

+
1

2σ2 (T − s)

∫ t

0

d∑
i,k=1

d
[
Bi, Bk

]
s

{
d∑

j,l=1

δjl ζ
i
j(X

�
s ) ζkl (X�s )σ2

+
d∑

j,r=1

gAIX�s

(
σ2 ζ ij(X

�
s )

(
d∑
l=1

ζkl (X�s )Γljr + (EAI
j ζ

k
r )X�s

)
EAI
l (X�s ) , LogAIX�sV

)}

=
1

2

t∫
0

∣∣∣∣LogAIX�s ∣∣∣∣2gAI
X�s

σ2(T − s)2
ds+

∫ t

0

gAIX�s

(
LogAIX�sV , U

�
s (dBs)

)
σ(T − s)

+

t∫
0

θ gAIXs

(
LogAIX�sM,

LogAIX�sV
σ2(T − s)

)
ds+

1

2

d∑
i,j,r=1

∫ t

0

ζ ij(X
�
s )

gX�s

(( d∑
l=1

ζ il (X
�
s )Γrjl + (EAI

j ζ
i
r)X�s

)
EAI
r (X�s ) ,

LogAIX�sV
T − s

)
ds

+
d∑
i=1

∫ t

0

∑d
j=1

(
ζ ij(X

�
s )
)2

2(T − s)
ds.

Substituting into Equation (4.34), we get

dPt
dP�t

(
X�[0:t]

)
= exp

[
−
(
f(X�t )− f(X�0 )

)
+

t∫
0

ds

2σ2(T − s)

{
θ gAIXs

(
LogAIX�sM,LogAIX�sV

)
+ σ2

d∑
i,j=1

(
ζ ij(X

�
s )
)2

+ σ2

d∑
i,j,r=1

gAIX�s

(
ζ ij(X

�
s )
( d∑
l=1

ζ il (X
�
s )Γrjl + (EAI

j ζ
i
r)X�s

)
EAI
r (X�s ) , LogAIX�sV

)}]

=
exp

(
f(X�0 )

)
exp

(
f(X�t )

) exp
{

Φ
(
t,X�[0:t]

)
+ φ(t,X�[0:t])

}
.

Using the result by M. Schauer & F. Van Der Meulen et al. [40], that is

dP∗t
dPt

(X�[0:t]) =
p(t,X�t ;T, V )

p(0, U ;T, V )
,

we can easily get the desired result in Equation (4.30).

The Radon-Nikodym derivatives given in Equations (4.29)–(4.30) can not be
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computed explicitly due to the presence of ζ . However, we can approximate φ and

Φ in Theorem 4.13 based on the approximation of ζ , see Corollary 4.14, this is a

crucial step to make our proposed algorithm practicable.

Corollary 4.14. Suppose that we have anSP(n)-valued path {X�tk = y�tk}
m+1
k=0 of the

OU process Xt when equipping SP(n) with the AI metric, in which it is simulated

from the exponential adapted Euler-Maruyama method, see Equation (4.23), where

max{tk+1 − tk}mk=0 is sufficiently small and 0 = t0 < . . . < tm+1 = t. Then the

functions φ in Equation (4.32) and Φ in Equation (4.33) can be approximated as

follows:

φ(t,X�[0:t]) ≈
d

2
log

T − t
T

, (4.35)

Φ(t,X�[0:t]) ≈
m∑
k=0

tk+1 − tk
T − tk

{
θ
〈
log
(
(y�tk)

−1/2 ? M
)
, log

(
(y�tk)

−1/2 ? V
)〉

F

σ2

+

〈
Γ , log

(
(y�tk)

−1/2 ? V
)〉

F

2

}
, (4.36)

with Γ =
∑d

i,r=1 ΓriiSr and the Christoffel symbols Γrii are given in Lemma 4.4.

Proof. Using the approximation for ζ ij in Corollary 4.11, we get for 0 ≤ k ≤ m and

1 ≤ i, j ≤ d: ζ ij(X�tk) ≈ δij ,

⇒ EAI
l ζ

i
j = 0, ∀1 ≤ l ≤ d & U�tk(ei) ≈ EAI

i (X�tk).

Thus, we get

φ(t,X�[0:t]) =
d∑

i,j=1

∫ t

0

(
ζ ij(X

�
s )
)2

2(T − s)
ds ≈

d∑
i=1

∫ t

0

1

2(T − s)
ds =

d

2
log

T − t
T

,

Φ
(
t,X�[0:t]

)
=

t∫
0

(
θ gAIXs

(
LogAIX�sM,LogAIX�sV

)
σ2(T − s)

+
d∑

i,j,r=1

gAIX�s

(
ζ ij(X

�
s )
(∑d

l=1 ζ
i
l (X

�
s )Γrjl + (EAI

j ζ
i
r)X�s

)
EAI
r (X�s ) , LogAIX�sV

)
2(T − s)

)
ds,
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≈
t∫

0

θ
〈
log
(
(X�s )−1/2 ? M

)
, log

(
(X�s )−1/2 ? V

)〉
F

σ2(T − s)
ds

+
d∑

i,j,r=1

m∑
k=0

〈
δij

(∑d
l=1 δilΓ

r
jl

)
Sr , log

(
y�tk)

−1/2 ? V
)〉

F

2(T − tk)
(tk+1 − tk)

≈
m∑
k=0

tk+1 − tk
T − tk

{
θ
〈
log
(
(y�tk)

−1/2 ? M
)
, log

(
(y�tk)

−1/2 ? V
)〉

F

σ2

+

〈
Γ , log

(
(y�tk)

−1/2 ? V
)〉

F

2

}
.

Theorem 4.15. Suppose h = h(xt1 , . . . , xtN ) is a bounded FT -measurable function

for 0 < t1 < · · · < tN < T . We write X =
(
Xt1 , . . . , XtN

)
and X[0:T ] =(

0, Xt1 , . . . , XtN , XT

)
, then

E∗
[
h(X∗)

]
= E

[
h(X|XT = V )

]
= E�

[
h(X�)

Hn,T σ
−d exp

(
f(X�0 , σ

2)
)

p(0, U ;T, V )
exp

(
Φ(T,X�[0:T ])

)]

whereHn,T is a fixed constant that only depends on the dimension n and the terminal

time T . Here the notation of expectation E, E� and E∗ are corresponding to their

laws P, P� and P∗ respectively and f(X�t , σ
2) equals to the function f(X�t ) defined

in Equation (4.31). Thus, the measures P∗t and P�t are absolutely continuous on

[0, T ] and the corresponding Radon-Nikodym derivative is given as

dP∗T
dP�T

(
X�[0:T ]

)
=

Hn,T

p(0, U ;T, V )
exp

{
f(X�0 , σ

2) + Φ(T,X�[0:T ])−
d

2
log σ2

}

Proof plan of Theorem 4.15. We follow similar lines to those proofs in [38, 40].

Firstly, let the function f be defined as in the Proposition 4.13, then

exp
(
f(X∗t )

)
/Kn(σ) is the probability density function of the distributionN

(
V, (T−

t)σ2
)
on SP(n), see Equation (4.25). By Proposition 4.13, for any t ∈ [0, T ), and
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any bounded Ft-measurable function h, we have

E∗
[
h(X∗)

exp
(
f(X∗t )

)
/Kn(σ)

p(t,X∗t ;T, V )

]
= E�

[
h(X�)

exp
(
f(X�0 )

)
Kn(σ) p(0, U ;T, V )

exp
{

Φ
(
t,X�[0:t]

)
+ φ
(
t,X�[0:t]

)}]
= E�

[
h(X�)

p(0, U ;T, V )
exp

{
f(X�0 ) + Φ

(
t,X�[0:t]

)
+ log

(
expφ(t,X�[0:t])

Kn(σ)

)}]

Then, we need to show the following three equations:

lim
t→T

E�
[

expφ
(
t,X�[0:t]

)
Kn(σ)

]
= log

(
Hn,T

σd

)
. (4.37)

Here, the constant Hn,T depends only on the dimension n and the terminal time T .

lim
t→T

E∗
[
h(X∗)

exp
(
f(X∗t )

)
/Kn(σ)

p(t,X∗t ;T, V )

]
= E∗

[
h(X∗)

]
. (4.38)

lim
t→T

E�
[

exp
{

Φ
(
t,X�[0:t]

)}]
= E�

[
exp

{
Φ
(
T,X�[0:T ]

)}]
. (4.39)

When those statements above are proved (i.e. L1-convergence), they imply

dP∗T
dP�T

(
X�[0:T ]

)
=

Hn,T

p(0, U ;T, V )
exp

{
f(X�0 , σ

2) + Φ(T,X�[0:T ])−
d

2
log σ2

}
.

While we are able to prove Equation (4.37) and (4.38), at the moment we are

unable to provide a complete proof for Equation (4.39), so we discuss our current

proof plan of Equation (4.39) instead. Before proving Equation (4.37), we need

to understand the behaviour of the normalising constant Kn(σ) of the distribution

N
(
V, (T − t)σ2

)
when t→ T , which is demonstrated in the following lemma.

Lemma 4.16. Consider the probability distribution N
(
V, (T − t)σ2

)
, see Equa-

tion (4.25), for some fixed T > 0 and t ∈ [0, T ), then

lim
t→T

Kn(σ)

(T − t)d/2
= Kn σd
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where Kn is a constant that depends only on d = n(n+ 1)/2.

Proof. Firstly, we note that the Taylor expansion of the sinh function is

sinhx = x+
x3

3!
+
x5

5!
+
x7

7!
+ · · ·

⇒ sinh
|ri − rj|

2
=
|ri − rj|

2
+ O

(
|ri − rj|3

23

)
We denote C1 =

(
π
n2

2 8
n(n−1)

4

)/(
n!Gamn(n

2
)
)
and ρ2 = (T − t)σ2, then

substitute the variables ui = ri/ρ for 1 ≤ i ≤ n in Equation (4.26), and get

Kn(σ) = C1

∫
Rn

exp

(
−

n∑
i=1

u2
i

)∏
i<j

sinh
|ρui − ρuj|

2

n∏
i=1

ρ dui

= C1

∫
Rn

exp

(
−

n∑
i=1

u2
i

)∏
i<j

{
ρ|ui − uj|

2
+ O(ρ3)

}
ρn

n∏
i=1

dui

= C1

∫
Rn

exp

(
−

n∑
i=1

u2
i

){
ρ
n(n−1)

2

∏
i<j

|ui − uj|
2

+ O
(
ρ
n(n−1)

2
+2
)}

ρn
n∏
i=1

dui

= C1ρ
n(n+1)

2

∫
Rn

exp

(
−

n∑
i=1

u2
i

)∏
i<j

|ui − uj|
2

n∏
i=1

dui + O
(
ρ
n(n+1)

2
+2
)

= Kn ρd + O(ρd+2),

where Kn =
π
n2

2 8
n(n−1)

4

n!Gamn(n
2
)

∫
Rn

exp

(
−

n∑
i=1

u2
i

)∏
i<j

sinh
|ui − uj|

2

n∏
i=1

dui,

which clearly depends only on n.

⇒ Kn(σ) = Kn σd(T − t)
d
2 + O(σd+2(T − t)

d
2

+1)⇒ lim
t→T

Kn(σ)

(T − t)d/2
= Kn σd.

Proof of Equation (4.37). Function φ is defined in Equation (4.32) by

φ
(
t,X�[0:t]

)
=

d∑
i,j=1

∫ t

0

(
ζ ij(X

�
s )
)2

2(T − s)
ds,

The requirement that functions ζ ij need to satisfy in Equation (4.18) (see Proposi-
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tion 4.9) and the information thatX�t is obtained from taking the limit of δt → 0when

using the exponential adapted Euler-Maruyama method, imply E�
[ ∣∣ζ ij(X�t )

∣∣ ] <∞,

and equivalently E�
[ (
ζ ij(X

�
t )
)2 ]

<∞ for all t ∈ [0, T ].

Even though ζ ij is integrable, the function itself does not have explicit form.

We compute this Riemann-Stieltjes integral using a sequence of partitions of [0, t]

with mesh tending to zero, that is t0 = 0 < . . . < tm = t and ∆k = (tk+1− tk)→ 0

asm→∞ for all 0 ≤ k ≤ m− 1. Moreover, similar to Corollary 4.11, at tk+1 we

can express ζ ij(X�tk+1
) conditioned on X�tk by Taylor series:

ζ ij(X
�
tk+1

) = ζ ij ◦ γ(0) + (tk+1 − tk)
(
ζ ij ◦ γ

)′
(0) + O

(
(tk+1 − tk)2

)
.

⇒ ζ ij(X
�
tk+1

) = δij −∆k

d∑
i=1

αrΓ
j
ri + O(∆2

k).

Here, {γ(s) | tk ≤ s ≤ tk+1} is the geodesic curve connecting X�tk and X
�
tk+1

when

using the exponential adapted Euler-Maruyama method and

αr = θ
〈

log
(
(X�tk)

−1/2 ? M
)

+
log
(
(X�tk)

−1/2 ? V
)

T − tk
, Sr

〉
F

+ σ
(
B

(r)
tk+1
−B(r)

tk

)
.

⇒
(
ζ ij(X

�
tk+1

)
)2

= δ2
ij − 2 δij ∆k

d∑
i=1

αrΓ
j
ri + O(∆2

k).

⇒ φ
(
t,X�[0,t]

)
=

d∑
i,j=1

lim
∆k→0

m−1∑
k=1

δ2
ij − 2 δij ∆k

∑d
i=1 αrΓ

j
ri + O(∆2

t )

2(T − tk)
∆k

=
d∑

i,j=1

lim
∆k→0

m−1∑
k=1

δ2
ij

2(T − tk)
∆k

+
d∑

i,j=1

lim
∆k→0

m−1∑
k=1

−2 δij ∆2
k

∑d
i=1 αrΓ

j
ri + O(∆3

k)

2(T − tk)

The first line simply equals
∑d

i=1

∫ t
0

(
2(T − s)

)−1
ds = log

(
T−t
T

)d/2. On the other

hand, since our main aim is to take the limit t → T , and this means tm tends to T .

But the term T − tk stops decreasing when k = m − 1 so that the denominator is

never zero, thus explosion around T will not occur. Hence, the second line converges

to zero as the mesh ∆k → 0 because the numerator decreases much faster than the
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denominator. Now, since E�
[ (
ζ ij(X

�
t )
)2 ]

< ∞ for all t ∈ [0, T ], Fubini’s theorem

implies

⇒ E

[
expφ

(
t,X�[0:t]

)
Kn(σ)

]
→ (T − t)d/2

T d/2Kn(σ)
→ Hn,T

σd
as t→ T,

where Lemma 4.16 assists the second limit.

Proof of Equation (4.38). Using Bayes theorem, Markov property and setting t =

tN ∈ (0, T ), we get

E∗
[
h(X∗t1 , . . . , X

∗
tN−1

, X∗t )

p(t,X∗t ;T, V )

]
=

∫
SP(n)N

h(x1, . . . , xN−1, xt) p(x1, . . . , xN−1, xt |xT = V )

p(xT = V |xt)
dx1 . . . dxN−1 dxt

=

∫
SP(n)N

h(x1, . . . , xN−1, xt) p(x1, . . . , xN−1, xt |xT = V )

p(xT = V |xt, xN−1, . . . , x1)
dx1 . . . dxN−1 dxt

=

∫
SP(n)N

h(x1, . . . , xN−1, xt) p(x1, . . . , xN−1, xt)

p(xT = V )
dx1 . . . dxN−1 dxt

= E
[
h(X∗t1 , . . . , X

∗
tN−1

, X∗t )

p(0, U ;T, V )

]

Now suppose that t ∈ (tN , T ),

⇒ E∗
[
h(X∗)

exp
(
f(X∗t )

)
Kn(σ)p(t,X∗t ;T, V )

]
= E

[
h(X∗)

exp
(
f(X∗t )

)
/Kn(σ)

p(0, U ;T, V )

]

=

∫
SP(n)N+1

h(x1, . . . , xN) exp f(z)

Kn(σ) p(0, U ;T, V )
p(x1, . . . , xN , z) dx1, . . . dxNdz

=

∫
SP(n)

Υ(t, z)
exp f(z)

Kn(σ)
dz (4.40)

where Υ(t, z) =

∫
SP(n)N

h(x1, . . . , xN) p(x1, . . . , xN , z)

p(0, U ;T, V )
dx1 . . . dxN .

In order to compute the limit when t tends to T , we apply change of variables

x = ExpAIV
{

(T − t)−1/2 LogAIV z
}
, or equivalently z = ExpV

{
(T − t)1/2 LogAIV x

}
.

Then d2
AI(z, V ) = (T − t) d2

AI(x, V ) and

lim
t→T

ExpV
(

(T − t)1/2 LogV x
)
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= lim
t→T

[
V 1/2 ? exp

(
(T − t)1/2 log

(
V −1/2 ? x

))]
= V.

Moreover, since exp f(z)/Kn(σ) is the probability density ofN(V, (T − t)σ2),

∫
SP(n)

exp f(z)

Kn(σ)
dz = 1⇒

∫
SP(n)

exp
(
− d2(x, V )/(2σ2)

)
Kn(σ)

h̃(x, t) dx = 1

where h̃(x, t) = dz/dx.

⇒ lim
t→T

∫
SP(n)

exp
(
− d2(x, V )/(2σ2)

)
Kn(σ)

h̃(x, t) dx = 1

⇒
∫
SP(n)

exp
(
− d2(x, V )/(2σ2)

)
lim
t→T

(
h̃(x, t)

Kn(σ)

)
dx = 1

Here, we use the dominated convergence theorem to interchange the limiting opera-

tion and integral. Moreover, lim
t→T

(
h̃(x, t)/Kn(t)

)
simply is the normalising constant

of N(V, σ2), thus the limit exists and is finite.

Back to the Equation (4.40), we have

E∗
[
h(X∗)

exp
(
f(X∗t )

)
Kn(σ)p(t,X∗t ;T, V )

]

=

∫
SP(n)

Υ
(
t,ExpV

{
(T − t)1/2 LogV x

})exp
(
− d2(x, V )/(2σ2)

)
Kn(σ)

h̃(x, t) dx

t→T−→ Υ(T, V )

∫
SP(n)

exp

(
−d2(x, V )

2σ2

)
lim
t→T

(
h̃(x, t)

Kn(σ)

)
dx = Υ(T, V )

Thus, we can deduce Equation (4.38) because

Υ(T, V ) =

∫
SP(n)N

h(x1, . . . , xN) p(x1, . . . , xN , V )

p(0, U ;T, V )
dx1 . . . dxN = E∗ [h(X?)]

Proof plan of Equation (4.39). Firstly, we denote ϕt = exp
{

Φ
(
t,X�[0:t]

)}
. The

plan is to show ϕt → ϕT as t→ T in L1-sense, by proving

E� [ϕT ] ≤ lim
t→T

inf E� [ϕt] ≤ lim
t→T

supE� [ϕt] ≤ E [ϕT ]
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Using Fatou’s lemma, we easily get E [ϕT ] ≤ lim
t→T

inf E� [ϕt], whereas the right

inequality is not so straightforward to show. We lay out one approach, which we

hope can solve the problem and discuss some obstacles of this approach.

Form ∈ N and ε ∈ (0, 1/6), we define

τm(Z) = T ∧ inf
t∈[0,T ]

{
dAI(Zt, V ) ≥ m(T − t)1/2−ε}

for some stochastic process Zt on SP(n).

Step 1. We want to prove that there exist an ε ∈ (0, 1/6) and an almost surely finite

random variable K such that for all t ∈ [0, T ) , it holds almost surely that

dAI(X
�
t , V ) ≤ K(T − t)1/2−ε.

That is to say X�t not only converges to V almost surely as t tends to T , but

also it needs to converge at an appropriate rate. If we can prove this, it implies

τm(X�) ↑ T in probability asm→∞.

The first statement sounds obvious given the way we construct the guided

process X�t , however, proving this formally may be harder than it looks.

On the Euclidean space, this is shown by firstly using the Itô’s lemma to the

function ||X�t −V ||F/(T −t), followed by the law of the iterated logarithm for

the Brownian motion onR, see [38]. The proof of Theorem 4.13 demonstrates

the use of Itô lemma on SP(n) to dAI
(
X�t , V

)
/(T − t). We have seen the

extension of the law of the iterated logarithm for the Brownian motion to

a compact Riemannian manifold, see [129, 130], we are not sure with the

case of non-compact space like SP(n). And even when there is some kind

of formula similar to this iterated logarithm law, making use of this law is a

separate problem because of the involvement of the implicit function ζ coming

from the horizontal lift of X�t .

Step 2. Since
E�
[
ϕt It≤τm(X�)

]
E� [ϕt]

= 1−
E�
[
ϕt It>τm(X�)

]
E� [ϕt]

,
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we are now required to show E�
[
ϕt It>τm(X�)

]
/E� [ϕt] ≤ Am for some pos-

itive constant Am such that lim
m→∞

Am = 0. Because by taking lim
t→T

inf of this

equation, we get

E�
[
ϕT IT=τm(X�)

]
lim
t→T

supE� [ϕt]
= 1−

E�
[
ϕt It>τm(X�)

]
E� [ϕt]

≥ 1− Am

And since τm(X�) converges to T as m → ∞ (result from step 1), then we

can deduce

E� [ϕT ] ≥ lim
t→T

supE� [ϕt] .

While we study the proof in [38, 40] for the Euclidean setting, we also seek

other options.

While we do not present the full argument to prove Theorem 4.15, we do,

however, provide a careful numerical validation in Section 4.6. We end this section

by presenting the guided proposal algorithm on SP(n) equipped with the AI metric.

Suppose we have discretely observed data D = {Xtj = yj}Nj=0 at observation

times t0 = 0 < t1 < · · · < tN = T , where the diffusion process Xt is the Rieman-

nian OU process on SP(n) equipped with the AI metric. We wish to sample from

the posterior distribution of Θ = {θ, M, σ2}. Let us set µ =
∑d

i=1 µ
(i) ei = h(M),

where the function h is defined in Equation (4.19). Here, πθ0, π
µ
0 and πσ0 denote

the prior distributions for {θ, µ, σ2} respectively. The key step involves first im-

puting suitable mj − 1 data points between the jth consecutive observations in a

way that they are independent of the diffusivity, and then using the exponential

adapted Euler-Maruyama method to approximate the likelihood. We choose a ran-

dom walk proposal, with suitable step size, denoted by q(θ̃|θ), q(µ̃|µ) and q(σ̃2|σ2)

for {θ, µ, σ2} respectively.

Algorithm 4.17 (Guided proposals on SP(n)).

1. (Iteration k = 0). Choose starting values forΘ0 and sample standardBrownian

motions Wj , independently for 1 ≤ j ≤ N , each covering the time interval
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tj − tj−1, and set B(0)
j = Wj .

2. (Iteration k ≥ 1).

(a) UpdateBj independently (1 ≤ j ≤ N): sample the proposal W̃j and ob-

tain Ỹ[tj−1,tj ] from {W̃j,Θk−1,D} and Y[tj−1,tj ] from {B
(k−1)
j ,Θk−1,D}

using the exponential adapted Euler-Maruyamamethod to approximately

solve the SDE (4.28); then accept W̃j with probability

α(B) = exp
{

Φ
(
tj − tj−1, Ỹ[tj−1,tj ]

)
− Φ

(
tj − tj−1, Y[tj−1,tj ]

)}
(b) Sample σ̃2 from q(σ2|σ2

k−1) and obtain Ỹ[tj−1,tj ] and Y[tj−1,tj ] from

{B(k)
j , θk−1,Mk−1, σ̃

2,D}, {B(k)
j ,Θk−1,D} respectively using the ex-

ponential adapted Euler-Maruyama method to approximately solve the

SDE (4.28); then accept σ̃2 with probability

α(σ) =
πσ0 (σ̃2)

∏N
j=1 exp

{
f(Ỹtj−1

, σ̃2)− d
2
σ̃2
}

πσ0 (σ2
k−1)

∏N
j=1 exp

{
f(Ytj−1

, σ2
k−1)− d

2
σ2
k−1

}
·
N∏
j=1

exp
{

Φ
(
tj − tj−1, Ỹ[tj−1,tj ]

)
− Φ

(
tj − tj−1, Y[tj−1,tj ]

)}
.

(c) Update µ andM : sample µ̃ from q(µ|µk−1), compute the corresponding

M̃ = h−1(µ̃) and accept µ̃, M̃ with probability

α(M) =
πµ0 (µ̃)

πµ0 (µk−1)

·
N∏
j=1

exp
{

Φ
(
tj − tj−1, Ỹ[tj−1,tj ]

)
− Φ

(
tj − tj−1, Y[tj−1,tj ]

)}
,

where Ỹ[tj−1,tj ] and Y[tj−1,tj ] are obtained from {B(k)
j , θk−1, M̃ , σ2

k,D}

and {B(k)
j , θk−1,Mk−1, σ

2
k,D} respectively using the exponential

adapted Euler-Maruyamamethod to approximately solve the SDE (4.28).

(d) Update θ similarly as µ.

Remark 4.18 (Time change). Since Φ in Equation (4.33) explodes as t ↑ T , M.
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Schauer & F. Van Der Meulen et al. [40] suggest time change and scaling to reduce

the required number of imputed data points. Scaling will not be as effective here

as in the univariate setting because it can only fit one of the directions involved,

so the effect is less pronounced than in the univariate setting and we expect further

lessening as dimension increases. In this thesis, we adopt a time change function τ

from [40]: t 7→ t (2− t/T ). And using this time change, our SDE (4.22) becomes

dXτ(t) = −θ
2
τ ′(t)

(
∇d2(Xτ(t),M)

)
Xτ(t)

dt+FXτ(t)
(√

τ ′(t)σ dBt

)
(X0 = U),

where τ ′(t) = 2 (1− t/T ).

4.6 Simulation study on SP(2)

4.6.1 Brownian bridges
We perform a simulation exercise to illustrate our proposed bridge sampling method

of Algorithm 4.17 and compare among three metric tensors: the Euclidean, the LE

and the AI metrics, when sampling the standard Brownian bridges on SP(n).

The simulation scenario involves sampling a standard Brownian bridge Wt

conditioned on {W0 = U,WT = V } with T = 0.1 in two cases:

(i) with U and V lying far away from the boundary,

U =

2 1

1 2

 & V =

3 1

1 2

 .

(ii) with U and V lying close to the boundary,

U =

 2 1.999

1.999 2

 & V =

 3 2.435

2.435 2

 .

For the Euclidean metric, we simply embed SP(n) in S(n) endowed with

〈·, ·〉F , and the Brownian motion on SP(n) is therefore the solution of the SDE

dν(Wt) = dBt, with W0 = U , Bt is the standard Brownian motion on Rd and
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ν(Wt) ∈ Rd contains only independent entries ofWt. Working with the LE and AI

metrics based on Appendix B.2 (e.g. combining the result from Theorem 4.10) and

Algorithm 4.17 respectively.
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Figure 4.3: Comparison in distribution at t = T/2 of the true bridges and the guided
proposal bridges, given that U and V are chosen as in Case 1. Top figures: the
Q-Q plots for determinant and trace when m = 2000 and ε = 0.05. Bottom
table: p-values from the K-S tests, where ε andm are varied.

Firstly, we evaluate the performance of Algorithm 4.17, compared with the

naive simulation approach. For case (i), we obtain samples by forward-simulating

the guided proposal in Equation (4.28) and accepting with probability α(B) in Algo-

rithm 4.17. We then compare these bridges with the so-called true bridges, which are

generated from the naive simulation approach by forward-solving the Riemannian

Brownian motion Xt and picking only those paths Xt that satisfy dAI(X0.1, V ) < ε

for some small positive ε. For different values of ε and number of imputed pointsm,

we collect 1000 path-valuedBrownian bridges and carry out aKolmogorov–Smirnov

(K-S) test to compare the distribution of the true and approximated bridges (i.e. com-

ing from Algorithm 4.17) at t = T/2 = 0.05. Note that the number of paths used in

the test stays constant as ε is decreased. The Q-Q plots and the p-values from K-S
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test shown in Figure 4.3 indicate that the valuesm = 2000, ε = 0.05 provide a good

approximation and as ε ↓ 0 the two distributions get closer to each other. Note that

for case (ii) there is some difficulty in sampling true bridges because V stays very

close to the boundary of SP(2) and points on the boundary are at infinite distance

to covariance matrices. In this situation, we observe that the acceptance rate of

using naive approach approximately equals zero. This issue escalates as dimension

n increases. Overall, apart from high dependence with the diffusivity, the naive

approach of simulating bridges has very low acceptance rate when the conditioned

observation is close to being non-positive definite, thus it is clearly not a suitable

approach to use in the data-augmentation algorithm.
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Figure 4.4: Time series for determinant and trace of 20 simulated Brownian bridges on
SP(2) endowed with three different metrics (Euclidean: top row, Log Eu-
clidean: middle row, Affine Invariant: bottom row) in the 2 cases (i) and (ii).
Red background area shows failure to be positive definite.

Next, we discuss the problems that arise when neglecting the geometric struc-

ture of SP(n) as mentioned in Subsection 4.2.3. Figure 4.4 depicts traces and

determinants of 20 simulated bridges with each metric. Firstly, we observe that

there is a clear presence of the swelling effect and it is extremely difficult to get a

whole matrix-valued path that preserves the positive definiteness in the case of the
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Euclidean metric. Nonetheless, sample points in the case of either the LE or the

AI metrics, lie completely in SP(n) while their determinants behave reasonably

with respect to the conditional points. In fact, Corollary 4.6 implies distribution of

the determinant is the same for the LE and the AI metrics. The AI metric leads

to less anisotropy that becomes more noticeable when the conditional points have

eigenvalues close to zero, see plots about the trace in Figure 4.4, indicating that the

selection between LE and AI depends on the desirable property that one wishes to

achieve.

4.6.2 Parameter estimation for the Affine-Invariant metric
We simulate 106 + 1 equidistant time points from the Riemannian OU process Xt

on SP(n) equipped with the AI metric for 0 ≤ t ≤ 100, i.e. using Equation (4.23),

with following model parameters

θ = 0.5 & M =

 1 0.9

0.9 1

 & σ2 = 1 & X0 = I2.

We then take sub-samples at time points {0, 0.2, . . . , 100} and apply Algorithm 4.17

with time change, assuming the prior distributions log σ2, log θ ∼ N (0, 4) and

µ ∼ N (0, 4× I3).

Figure 4.5, based on 1,000 burn-in and 4,000 MCMC iterations, indicates that

increasing m does not affect the mixing of the chain and improves, in some cases,

the approximation to the marginal densities. We then run a longer MCMC chain

of 50000 iterations while varying the value of m over 10, 50, 100 and 200. These

chains are thinned out after a burn-in period of 2000 iterations and samples of 4000

points are collected from the target distributions. We can see from Figure 4.6 that

the kernel density estimations of the marginal posterior distributions of {θ, µ, σ2}

are approximately the same for m = 100, 200. Thus, m = 100 is considered to

provide a sufficiently fine discretization for these data. The average proportions of

accepting the bridges after the burn-in period are 72.7%, 70.2%, 68.5% and 67.3%

form = 10, 50, 100 and 200 respectively.

Our final investigation is the prior reproduction test in [131].
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Figure 4.5: (Simulation study). m is varied over 10, 50 and 100. Top three rows: Traceplots
from 4×103 iterates after discarding 103 iterations of burn-in, where true values
are indicated with the red dashed lines. Bottom three rows: ACF plots based
on these MCMC chains.

Algorithm 4.19 (Prior reproduction test). Assume that prior π0 for our parameters

Θ is proper, and we wish to validate the algorithmM, that allows sampling from the

posterior distribution of Θ, given that observations come from somemodel f(X|Θ).

1. Sample {Θ1, . . . ,Θl} from the prior distribution π0(Θ).

2. Following steps are carried out independently for each 1 ≤ i ≤ l :

• Simulate high-frequency observations and take sub-samples to get

{x(Θi)
1 , . . . , x

(Θi)
N }, from the model f(X|Θ = Θi).
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Figure 4.6: (Simulation study). Estimated posterior distribution of {θ, µ, σ2} using 5×104

MCMC iterations (2× 103 burn-in discarded, thinned by 12), and the result for
M = h−1(µ) is given in Figure A.5 (Appendix). True values are indicated by
solid vertical black lines.
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Figure 4.7: Prior reproduction test to validate the Algorithm 4.17 with time change: Q-Q
plots of priors against posteriors from three model parameters.

• Use algorithmM to draw one sample Θ̂i from the posterior distribution

p(Θ|{x(Θi)
1 , . . . , x

(Θi)
N }).

3. Collect a sample {Θ̂1, . . . , Θ̂l}, which comes from some distribution π(Θ).

If algorithm M works properly, we expect π = π0. For sufficiently large l, we can

get a good approximate of the distribution π from the sample {Θ̂1, . . . , Θ̂l}.

We assume proper priors for {θ, µ, σ2} : log θ, log σ2 ∼ N (0, 0.32), µ ∼

N (0, 0.2 × I3) and N = 500. And we generate, in turn, 1000 samples from the

prior distributions (i.e. l = 1000 in Algorithm 4.19) and then, conditional on each

sampled parameter vector, high-frequency observations on [0, 50] at 5 × 105 + 1

equidistant time points and keep sub-samples at time points {0, 0.1, . . . , 50}. For

the 1000 generated datasets , we estimate the corresponding posterior densities using

Algorithm 4.17 and test whether they come from the same distribution as the prior as

this validates that our algorithm works properly. Figure 4.7 illustrates that the prior



4.7. Application to finance 150

has been successfully replicated while, as expected, the parameters approximation

improves as number of imputed pointsm increases.

4.7 Application to finance

4.7.1 Data preprocessing

x1

31.12.2012 31.12.2013 31.12.2014

3
4

Date

P
ric

e 
 (

 x
 1

03  ) NDX
COMP

Figure 4.8: Time series of the closing price from two indices: NASDAQ Composite
(COMP) and NASDAQ 100 (NDX) at the end of each working day from
31.12.2012 to 31.12.2014.
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Figure 4.9: Time series of estimated covariance matrices based on the price of two indices
NDXandCOMP.Estimated correlations between indices are also plotted against
time (red dashed line indicates correlation 1).

We estimate 2×2 daily covariance matrices (volatilities) from NASDAQCom-

posite (COMP) and NASDAQ 100 (NDX) indices, where the data is obtained over

504 working days from 31.12.2012 to 31.12.2014 at 1−minute intervals, see Fig-

ure 4.8; the data is downloaded from [132]. For the estimation we used quadratic

variation/covariation in the logarithm domain. For each day i, we estimate a corre-

sponding covariance matrix yi, based on L high-frequency observations {a(i)
j }Lj=1

(NDX) and {b(i)
j }Lj=1 (COMP) on that day.

(yi)11 =
L−1∑
j=1

(
log a

(i)
j+1 − log a

(i)
j

)2

T
& (yi)22 =

L−1∑
j=1

(
log b

(i)
j+1 − log b

(i)
j

)2

T
,
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(yi)12 =
L−1∑
j=1

(
log a

(i)
j+1 − log a

(i)
j

) (
log b

(i)
j+1 − log b

(i)
j

)
T

.

Here T is regarded as the time unit, e.g. T = 1 means xi are in unit of day.

We assume that the microstructure noise does not impact our estimates because

the indices are very liquid, see [133]. We verify this assumption by observing

that estimates based on 5-minute inter-observation intervals are very similar; see

Figure 4.10.
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Figure 4.10: Ratio of the volatility estimation when using data observed every 1 minutes or
5 minutes.

Moreover, the pattern of the time series from the entries of covariance matrices

in Figure 4.9 indicates a mean-reverting tendency, together with many observations

lying close to the boundary of SP(2), making the Euclidean metric inappropriate

and the Riemannian structures suitable.

4.7.2 Model fitting
Our time series have unevenly spaced observations due to weekends and holidays,

so the imputed pointsmj between the (j−1)th and jth consecutive observations are

carefully chosen such that δt = (tj − tj−1)/mj is constant. We choose vague proper

priors, e.g. using the Gaussian distribution N for model parameters {θ, µ, σ2}:

log θ ∼ N (0, 4) & log σ2 ∼ N (−1, 4) & µ ∼ N
((
− 12,−12, 3

)T
, 4 I3

)
.

We combine the approach proposed by G. O. Roberts & O. Stramer [43] in

Appendix B.2 and Theorem 4.10 for the case of the LE metric, while use Algo-
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rithm 4.17 with time change for the case of the AI metric. MCMC samples based

on 105 iterations with different values of δt were collected after a burn-in period of

4000 iterations and kernel density estimations are depicted in Figure 4.11.
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Figure 4.11: Estimated posterior distribution for {θ, µ, σ2} from the financial data example
using either the LE (top row) or the AI metric (bottom row), based on 105

MCMC iterations (4 × 103 burn-in discarded, thinned by 19). Moreover, the
result forM = h−1(µ) is given in Figure A.7 (Appendix).

Fewer imputed points are required for the LE metric than for the AI metric

to adequately approximate the posterior densities which we attribute to different

degrees of non-linearity: after transformation through the matrix logarithm, the LE

problem is reduced to a linear problem whereas with the AI metric, discretization

including approximation of the horizontal lift takes place in the original domain.

This domain can be seen to be less linear from the fact that covariance matrices

are commutative under the logarithm product which is at the heart of the LE metric

whereas exchanging the order of multiplication causes a different result for the AI

metric. This difference is more pronounced near the boundary of the cone which is

where the majority of our observations lie.

Let us illustrate this with a simple example. By forward-simulating the esti-

mated OU process through the exponential adapted Euler-Maruyama method (using

the posterior mean for {θ,M} and σ2 = 0), we plot the ratio of corresponding

eigenvalues when using either the LE or the AI metric in Figure 4.12. Here, we
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Ratio of eigenvalues from the estimated OU process without noise
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Figure 4.12: Forward-simulating the estimatedOUprocess through the exponential adapted
Euler-Maruyama method (using the posterior mean for {θ,M} and σ2 = 0),
we compare the ratio of corresponding eigenvalues when using either the LE or
the AI metric. Here, the ratios of eigenvalues of the estimated posterior mean
forM are approximately 132 and 124 in the LE and the AI case respectively.

simply start the OU process from the first observed covariance matrix, and simulate

at high frequency for two units of time. This emphasizes again the difference be-

tween the LE and the AI metrics that the OU process associated with the AI metric

provides less anisotropy, since the larger eigenvalues dominate more when using

the LE metric, which has been discussed in Subsection 4.2.3 and 4.6.1. In other

words, we get much higher NDX variations compared to the COMP variation in the

model with LE metric. In fact, the ratios of eigenvalues of the estimated posterior

mean for M associated with the LE metric and the AI metric are approximately

132 and 124 respectively, while the estimated posterior means for θ equal to 1.75 in

the model with the LE metric and 2.34 in the model with the AI metric. And we

observe the difference in Figure 4.12 due to two reasons: the geometry of geodesics

associated with two different Riemannian metrics and the mean reversion speed

parameter θ being different. While the LE metric has geodesics that have quite large

anisotropy, the AI metric has geodesics that pass through points of low anisotropy.

Since our data always has strong correlation (e.g. imputed matrices with descreased

anistropy don’t fit into the data), in order to compensate for this, the AI model yields

a larger θ so that trajectories are quickly pulled away from the geodesics (with its

low anisotropy points) and towards the attractive pointM .
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Figure 4.13: Empirical cumulative distribution of the generalized residuals for the entries
from volatilities under two models using either the LE and the AI metric, in
which model parameter estimates are the posterior mean. Moreover, p-values
are obtained from the K-S tests of comparison to U [0, 1] (red line).

Next, we test the fit of the two models using the transition density-based

approach by Y. Hong & H. Li [44]. For each model, we choose the posterior mean

as the point estimates for {θ,M, σ2} and compute the generalized residuals Z(i)
j , for

1 ≤ j ≤ 504, by

Z
(i)
j =

∫ y
(i)
j

−∞
p(i)(tj, v|tj−1, yj−1)dv. (4.41)

where {y(i)
j }

504, 3
j=0, i=1 denote the observations, p(i) are the marginal transition densities

and i = 1, 2, 3 denotes the two diagonal and the off-diagonal entries respectively.

The integral in equation (4.41) is estimated by simulating k = 3000 points at tj
via equation (4.23) starting from yj−1 at time tj−1. Under the null hypothesis that

the observations come from the model, the realized generalized residuals {Z(i)
j }504

j=0

are i.i.d and follow the standard uniform distribution U [0, 1] for all i ∈ {1, 2, 3}.

The empirical cumulative distribution of these Z(i)
j are shown in Figure 4.13 with

p-values obtained from the K-S test when comparing to U [0, 1].

Figure 4.13 clearly indicates that the model using the LE metric fits the data

better than the one using the AI metric for this particular dataset.

4.8 Multivariate stochastic volatility models.
In many real applications, covariance matrices are not observed from a direct source,

and usually are estimated from other quantities. For instance, Section 4.7 illustrates

an example, where we estimate covariance matrices from high-frequency observa-

tions of the price indices. It is therefore more natural to construct a financial time
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series model for the log return of multiple underlying assets Yt ∈ Rn for n > 1. We

assume that Yt is the solution of the following system of SDEs:

dYt = a(t, Yt) dt+
√
Xt dWt (Y0 = y), (4.42)

dXt = θ LogXtM dt+ FXt(σ dBt) (X0 = U). (4.43)

Here,Xt is assumed to follow the OU class introduced in Section 4.4, whileWt and

Bt are independent standard Euclidean Brownian motion on Rn and Rd respectively

with d = n(n + 1)/2. Moreover, the drift of the SDE (4.42) is assumed to satisfy

conditions in Theorem 2.37.

Observing volatilities only indirectly, i.e. through the price process, has been

studied intensively in the univariate setting, see [134], while extension to higher

dimensions has been considered less frequently. For example, K. Kalageropoulos

et al. [135] propose time change transformation for Bayesian inference and assume

the diffusivity in the SDE (4.42), denoted instead by Σt, to be a lower triangle

matrix, which yields the Cholesky decomposition for Σt ΣT
t . Our proposal models

expand the choice for the diffusivity of the SDE (4.42), while incorporating the

fact that Σt ΣT
t lies on a Riemannian manifold. But the time change transformation

introduced in [135] is now no longer applicable, we therefore explore other options.

In this thesis, we put an extra assumption on the drift function a(t, Yt) such that

the SDE (4.42) has explicit solution and the transition probability density is given

in an analytic form in terms of Xt. This assumption implies the approximation of

the likelihood can be purely computed by high-frequency observations of Xt. We

continue the work with a choice of a(t, Yt) in the following form:

a(t, Yt) = −κYt for some κ > 0 ⇒ Yt = Y0 e
−κ t +

∫ t

0

e−κ(t−r)
√
Xr dWr

and the transition probability density p(s, Ys; t, Yt) for 0 ≤ s < t is simply the

density of the Gaussian distribution N
(
Ys e

−κ(t−s) ,
∫ t
s
e−2κ(t−r)Xr dr

)
, i.e.

p(s, Ys; t, Yt) = Z
(
Yt ; Ys e

−κ(t−s) ;

∫ t

s

e−2κ(t−r) Xr dr
)
. (4.44)
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4.8.1 Parameter estimation

Let us denote the model parameters by Θ = {κ, θ,M, σ2}. From Equation (4.44),

it is straightforward to estimate κ through the Metropolis-Hasting algorithm, that is

to alternate updating κ and Xt. The tricky part is to find a good proposal for Xt

because such a proposal has to be consistent with the model parameters θ, M and

especially σ2, and any proposed path forXt must also match the observations whose

distribution involves a path-integral of the process Xt. Naturally, the algorithms

used in Section 4.7 are not applicable because we do not have observations of Xt.

There are some works making use of algorithms based on diffusion bridges of the

hidden process on the Euclidean space, see for examples [136, 137, 117, 138].

They provide appropriate proposal processes that depend on observations of the

primary process Yt, which are aimed to improve theMCMC convergence andmixing

when using a block updating scheme. However, in our case the hidden process

lies on a Riemannian manifold and to come up with similar proposal processes

to those on the Euclidean space is hard. We made some attempts by proposing

independent samplers for the target diffusion bridge onSP(2), howeverwe encounter

MCMC convergence and mixing problems and we expect these problems to be

worsen as dimension n increases. While the literature for hidden Markov models

(HMMs) is rich, such as particle filtering MCMC and sequential Monte Carlo

methods [139, 140, 141, 142], we however will consider these approaches to future

works because of their complexity.

Since the naive simulation of Xt is highly correlated to σ and can lead to

extremely low acceptance rate. To overcome this problem, a common approach is

to transform Xt to a diffusion process with constant diffusivity and direct sampling

of this process should be doable, e.g. standard Brownian motion. This approach is

widely used in the Euclidean space, see examples [43, 135, 143]. In our work, since

we employ the exponential adapted Euler-Maruyama method to approximate Xt,

conditional on Θ there is a one-to-one relationship between the sample pathXt and

the path of the driving Brownian motionBt over [0, T ] for some positive constant T .

Thus, we can obtainBt corresponding to some pathXt by reversing Equation (4.23)
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assuming that that value of X0 and B0 are fixed, i.e.

d∑
j=1

(
B

(j)
t+δt
−B(j)

t

)
Ej(Xt) = σ−1

(
LogXtXt+δt − θ LogXtM δt

)
for δt > 0,

⇒ B
(j)
t+δt

= B
(j)
t + σ−1 gXs

(
LogXtXt+δt − θ LogXtM δt , Ej(Xt)

)
, (4.45)

where 1 ≤ j ≤ d, which results from the assumption that {Ej}dj=1 is an orthonormal

basis field with respect to the metric tensor g. The aim is to propose Bt as similar

as those coming from the target probability distribution p(Bt |Θ, Yt). We know that

Bt is an Rd-Brownian motion, but proposing an independent Brownian motion, i.e.

no information of Yt included, can result in low acceptance rate, which can escalate

as dimension n increases. We therefore suggest using the Metropolis-adjusted

Langevin algorithm (MALA) to construct an infinite-dimensional MCMC sampler

for the Rd−Brownian motion Bt, which uses knowledge about observations of Yt.

This approach follows similar lines to the work of sampling nonlinear diffusion

bridges on the Euclidean space in [144].

Suppose that we have low-frequency observations D = {Yt0 = y0, Yt1 =

y1 . . . , YtN = yN} at time points {t0 = 0, t1, . . . , tN = T}, and a fixed starting point

for volatility X0 = U . Without loss of generality, we also assume the Brownian

motion driving the volatility process Xt starts from zero, i.e. B0 = 0.

LetB[0:T ] denote the path-valued of the BrownianmotionBt onRd for t ∈ [0, T ]

and π denote the target probability distribution p(B[0:T ] |Θ,D). We suppose that

when discretizing B[0:T ] into M + 1 points, the function π(x) ∝ exp
(
xTA x/2−

Ψ(x)
)
for some function Ψ : RM +1 → R and some matrix A ∈ GL(M + 1) is

symmetric negative definite such that∇ log π(x) is continuously differentiable. The

path-valued Langevin stochastic partial differential equation (SPDE) of Z(u, t) with

u ∈ [0,∞) and t ∈ [0, T ], is given by

∂Zu =
(
A Zu −∇Ψ(Z)

)
∂u+

√
2 ∂Ru, (4.46)

whereRu is anM -dimensional Brownianmotion on the Euclidean space. Moreover,
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realizations of solutions of the SDE (4.46) in a limiting sense will provide samples of

paths B[0:T ] from the target density π. The conditions on Ψ to guarantee ergodicity

is provided in [145, 146]. Here, we denote u the time from the Langevin SPDE, and

we distinguish it from the real time t that comes from the driving Brownian motion

Bt in Equation (4.43).

The resulting MCMC sampler requires an implicit approximation scheme

parametrized by β ∈ [0, 1]. In this work, we use the implicit Euler method, i.e.

Zu+δu = Zu + A
(
βZu+δu + (1− β)Zu

)
δu −∇Ψ(Zu)δu +

√
2δu ξ̃, (4.47)

or
(
IM +1 −A βδu

)
Zu+δu =

(
IM +1 + A (1− β)δu

)
Zu −∇Ψ(Zu)δu +

√
2δu ξ̃,

with ξ̃ =
(

0 ξ
)
and ξ ∈ N (0, IM ). In fact, it has been shown that the algorithm

is well defined only if β = 1/2, such as providing the correct quadratic variation,

see [144]. Thus, throughout this work we set β = 1/2. Furthermore, although the

stationary distribution is converged to more quickly for larger δu, increasing this time

step also increases bias. In this case, we use theMetropolis-Hastings correction, that

is if we propose a move from the current location Bt to B̃t, we accept this proposal

with the following probability

α(B) =
π
(
B̃t

)
q
(
Bt | B̃t

)
π(Bt) q

(
B̃t |Bt

) with

q
(
B̃t |Bt

)
= Z

((
IM +1 −

δu
2

A
)
B̃t ;

(
IM +1 +

δu
2

A
)
Bt −∇Ψ(Bt) δu ; 2 δu

)
(4.48)

In practice, the Brownian motion path Bt is discretized in the t-direction.

Suppose that we discretize B[0,T ] to {Bl}Ml=0 at equi-distant time points t̃l such that

M =
∑N

j=1mj . These time points are set out to be the same as Algorithm 4.17, that

is to impute suitable mj − 1 data points between the jth consecutive observations.

To simplify the notation, we assume that our observation time are at equi-distant in

time, i.e. tj − tj−1 equals a constant ∆t for all 0 ≤ j ≤ N . In this case the same

number of imputed points between consecutive observations is required, denoted by
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m, and thus tj = t̃jm for all 1 ≤ j ≤ N and M = Nm. The time-width in the

t-direction of the path-valued for Bt therefore equals δt = T/M .

Next, we compute the target probability distribution π by discretization, that is

π(B[0:T ]) ∝ p
(
B[0:T ]

) N∏
j=1

p
(
yj | yj−1,Θ, B[tj−1:tj ]

)
. (4.49)

Firstly, discretizing B[0:T ] we get

p
(
B[0:T ]

)
≈

M +1∏
l=1

Z
(
Bl ; Bl−1 ; δt

)
∝ exp

{
M +1∑
l=1

−(Bl −Bl−1)T (Bl −Bl−1)

2 δt

}

= exp
{1

2

d∑
i=1

(B(i))TA B(i)
}
,

with A =
1

δt



0 0 0 . . . 0 0 0

1 −2 1 . . . 0 0 0

. . . . . . . . . . . . . . . . . . . . .

0 0 0 . . . 1 −2 1

0 0 0 . . . 0 1 −1


∈ GL

(
M + 1

)
(4.50)

Then, we reverse the exponential adapted Euler-Maruyama method applied to the

SDE (4.43), approximate the Riemannian integral in Equation (4.44), and get

p
(
yj | yj−1,Θ, B[tj−1,tj ]

)
= Z

(
yj ; yj−1e

−κ∆t ;

∫ tj

tj−1

e−2κ(tj−r)Xrdr
)

≈ Z
(
yj ; yj−1e

−κ∆t ;

jm−1∑
l=(j−1)m

e−2κ(tj−t̃l)Xl δt

)

∝ exp

{
− 1

2
log det Cj

− 1

2
(yj − yj−1e

−κ∆t)T C −1
j (yj − yj−1e

−κ∆t)

}
,

where Cj =
∑jm−1

l=(j−1)m e
−2κ(tj−t̃l)Xl δt ∈ SP(2). Additionally, Xl is computed
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using Equation (4.23), that is for X0 = U and l ≥ 1:

Xl = ExpXl−1

{
θ δt LogXl−1

M +
d∑
i=1

(B
(i)
l −B

(i)
l−1)σ Ei(Xl−1)

}

where the exponential map Exp, logarithm map Log and the orthonormal basis

frame {Ei}di=1 depend on the chosen metric tensor. We then set

Ψ
(
B[0:T ]

)
=

1

2

N∑
j=1

(
log det Cj

+ (yj − yj−1e
−κ∆t)T C −1

j (yj − yj−1e
−κ∆t)

)
, (4.51)

and differentiate the function Ψ with respect to Bl for 1 ≤ l ≤M ,

⇒ 1 ≤ i ≤ d :
∂Ψ

∂B
(i)
l

=
1

2

N∑
j=1

I{(j−1)m≤l<jm}

(
tr
(

C −1
j

∂ Cj

∂B
(i)
l

)

− (yj − yj−1e
−κ∆t)T C −1

j

∂ Cj

∂B
(i)
l

C −1
j (yj − yj−1e

−κ∆t)

)
(4.52)

As we fix B0 = 0, ∂Ψ
/
∂B

(i)
0 = 0 for all 1 ≤ i ≤ d. And since Cj contains matrix

exponential and possibly matrix logarithm (i.e. in the AI case), there is no explicit

formula for the derivative ∂ Cj

/
∂B

(i)
l . Instead, we use a first order approximation

for these derivatives, e.g.

∂ Cj

∂B
(i)
l

≈ I{(j−1)m≤l<jm}

(
e−2κ(t̃jm−t̃l)δt

) Xl

(
B

(i)
l + s

)
−Xl

(
B

(i)
l

)
s

,

with an infinitesimally small s > 0.

In summary, the essence of the MALA in our work is based on the following

steps. Firstly, given the current location ofB[0:T ], we propose the next move through

Equation (4.47) and accept this move with probabilityα(B) in Equation (4.48). Here,

the gradient of Ψ is approximated in Equation (4.52). Next, we alternate updating

each model parameter for Θ using random walk (e.g. symmetric proposal) and use

the usual Metropolis–Hastings algorithm based on the likelihood function π, which
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are given in terms of the matrix A , see Equation (4.50) and the function Ψ, see

Equation (4.51).

4.8.2 Simulation study

4.8.2.1 Log-Euclidean metric
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Figure 4.14: Time series of the log return of underlying assets Yt simulated from Equa-
tion (4.42) and (4.43) associated with the LE metric.

We simulate 106 + 1 equidistant time points Xt of the OU process associated

with the LE metric using the SDE (4.43) on [0, 100], then use these path-valued of

Xt to simulate Yt via the SDE (4.42). Here, we set the model parameters as follows:

κ = 0.2 & θ = 0.5 & σ2 = 1 & X0 = M =

 1 0.8

0.8 0.8

 & Y0 =
(
−1 1

)
.

We take sub-samples at time points {0, 0.4, . . . , 100}. Due to the choice of the

covariance matrix M , it is not difficult to see that Y (1) is highly correlated with

Y (2), see Figure 4.14. We apply MALA in Subsection 4.8.1 and assume the prior

distributions log κ, log θ, log σ2 ∼ N (0, 4) and µ = h(M) ∼ N (0, 4× I3), where

h is defined in Equation (4.19).

Firstly, we vary the number of imputed point m and initialize different values

for model parameters {κ, θ, σ2, µ}, then we run 25 × 104 MCMC iterations. The

left two columns of Figure 4.15 illustrate traceplots of the first 15 × 104 iterates

when m = 2, 4, and they clearly show that the chains associated with different

starting points for all parameters will eventually overlap. Moreover, we present

the ACF plots based on 15 × 104 burn-in and 105 MCMC iterations on the right
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Figure 4.15: Left two columns: Traceplots from 15× 104 iterations, where true values are
indicated with the black dashed lines. Right two columns: ACF plots based
on the MCMC iterates 15× 104 - 25× 104 (thinned by 5).

two columns of Figure 4.15 when m = 2, 4. These indicates that increasing m

does not affect the mixing of the chain and improves, in some cases (e.g. µ), the

approximation to the marginal densities. Following up, we run a longer MCMC

chain of 5× 105 iterations while varying the value ofm over 2, 4, 10 and 20. These

chains are thinned out after 105 iterations and samples of 5000 points are collected

from the target distributions. Figure 4.16 depicts the kernel density estimations of

the marginal posterior distributions of all parameters are approximately the same for
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Figure 4.16: Estimated posterior distribution of {κ, θ, σ2, µ} using 5 × 105 MCMC itera-
tions (15 × 104 burn-in discarded, thinned by 60). True values are indicated
by solid vertical black lines.

m = 10 and m = 20. In this case, m = 10 is considered to provide a sufficiently

fine discretization for these synthetic data.

Similarly to the validation for the guided proposal algorithm in Subsection 4.6.2,

we also perform the prior reproduction test on the estimation for {κ, θ, σ2, µ}, see

Algorithm 4.19. We assume proper priors for the model parameters:

(i) log κ ∼ N (−1.5, 0.1), log θ ∼ N (−1, 0.1) and log σ2 ∼ N (0, 0.1).

(ii) µ(1) ∼ N (−0.7, 0.2), µ(2) ∼ N (1, 0.2) and µ(3) ∼ N (−0.7, 0.2).

We then generate, in turn, l = 500 samples from the prior distributions and condi-

tional on each sampled parameter vector, high-frequency observations on [0, 100] at

106+1 equidistant time points and keep sub-samples at time points {0, 0.4, . . . , 100}.

For the 500 generated data sets, we estimate the corresponding marginal posterior

distributions and randomly draw one sample. If the estimation algorithm works

properly, we expect these collection of samples follows the corresponding prior

distributions. Figure 4.17 illustrates that the replication of prior distributions will

improve as m increases. We also want to emphasize that even when m = 4, it may

not offer a sufficiently fine discretization, see for example in Figure 4.16.
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Figure 4.17: Prior reproduction test for the estimation of {κ, θ, σ2, µ} in the case of the LE
metric: Q-Q plots of priors against posteriors from these parameters.

Although result from Theorem 4.10 implies when working with the LE metric

there is an explicit formula for the transition density in the log-domain, here we illus-

trate that it is possible to retrieve the true parameters by discretizing the SDE (4.43)

finely enough to get the approximation for the likelihood. Clearly knowing the true

transition density will improve the bias of likelihood, but in general it is not always

the case and it is therefore desirable to test the estimation algorithm with a more

complicated scenario, and so we investigate the model with the AI metric next.

4.8.2.2 Affine-Invariant metric

Besides requiring higher computational cost, the impact of large time width on

the likelihood approximation when using the exponential adapted Euler-Maruyama

method associated with the AI metric is higher compared with the LE metric. We

expect the MALA in Subsection 4.8.1 to work in a similar manner for the case of the

AI metric but to require significantly increased computational resources. Therefore,

we assume that only the parameter σ2 is unknown, while others are assumed to be

available. We wish to estimate the marginal posterior density for σ2. Moreover,

since the number of imputed points m tends to be larger (e.g. Section 4.7) to offer

a good approximation for likelihood in the AI case, we retain the same number of



4.8. Multivariate stochastic volatility models. 165

observations, i.e. N = 250, but halve the terminal time, i.e. T = 50, thus ∆t = 0.2.
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Figure 4.18: Time series of the log return of prices Yt simulated from Equation (4.42) and
(4.43) using the AI metric.

We simulate 106 + 1 equidistant time points Xt of the OU process associated

with the AI metric using the SDE (4.43) on [0, 50], then use these paths of Xt to

simulate Yt via the SDE (4.42). Here, we set the model parameters as follows :

κ = 0.2 & θ = 0.5 & σ2 = 0.7 & X0 = M =

 1 0.8

0.8 0.8

 & Y0 =
(
−1 1

)
.

We take sub-samples at time points {0, 0.2, . . . , 50}, and illustrate these data in

Figure 4.18. Here, we assume the prior distributions log σ2 ∼ N (0, 4).

We initialize σ2 with different values and run 25 × 104 iterations when m =

2, 4. The left two columns of Figure 4.19 indicate that increasing m improves the

approximation of the likelihood and does not worsen the mixing of the chain. We

also plot the estimated kernel density for the posterior distribution for σ2 using a

longer MCMC chain of 5× 105 iterations (15× 104 burn-in discarded and thinned

by 60), wherem is varied over 2, 4, 10, 20. The right column of Figure 4.19 suggest

m = 10 is considered to provide a sufficiently fine discretization in this case.

Lastly, we perform the prior reproduction test (Algorithm 4.19) to validate

the estimation algorithm for σ2. We assume proper prior for σ2: log σ2 ∼

N (−0.2, 0.07) and generate, in turn, 500 samples from the prior distribution.

Conditional on each sample, we simulate high-frequency observations on [0, 50] at

106 + 1 equidistant time points and take sub-samples at time points {0, 0.2, . . . , 50}.

Figure 4.20 indicates that the distributions of the samples that were collected during



4.8. Multivariate stochastic volatility models. 166

0 12.5 25

0.
1

0.
8

1.
4

2.
1

Iterates    x 104

σ2

0 12.5 25

0.
1

0.
6

1.
5

Iterates    x 104

σ2

D
en

si
ty

0.25 0.74 1.22 1.70

0.
00

1.
33

2.
67

4.
00

 m = 2 
 m = 4 
 m = 10 
 m = 20 

Lag

A
C

F

0 30 60 90

0.
0

7.
5

Lag

A
C

F

Lag

A
C

F
0 30 60 90

0.
0

7.
5

Lag
A

C
F

m = 4m = 2 Estimation for σ2
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Figure 4.20: Prior reproduction test for the estimation of σ2 in the case of the AI metric:
Q-Q plots of priors against posteriors of σ2.

the prior reproduction test resemble the prior distribution more asm increases.

4.8.3 Discussion

In brief, we perform MALA in order to estimate the model parameters of the

SDE (4.42) and (4.43). Because working with the AI metric requires substantial

computational costs, we choose to estimate only the diffusivity parameter σ2 in the

SDE (4.43), and the rest are assumed to be available. For both metrics, we are

able to retrieve the true parameters given our choices for these parameters and the

time points of observations, and validate the algorithm with the prior reproduction
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test. This estimation task is sometimes approximated in the literature as fitting a

homogenized single-scale model to multiscale data, see [147, 148]. In this case,

model parameters may not be identified and this depends on how often the data is

sampled. Particularly, the optimal sampling rate depends heavily on the diffusivity

parameter. Nonetheless, if observations are collected too often, it can lead to

incorrect parameter inference, see [147]. At this stage of our study, we have not

investigated this issue, however, this is one thing that we can look into in the future.

On the other hand, we notice that choosing suitable step sizes when updating

proposal parameters in the Metrospolis-Hastings algorithm is hard. It is very labo-

rious to get the optimal MCMC convergence rate in both cases of the LE metric and

the AI metric. In this work, we improve the speed of convergence by beginning the

algorithm with sampling the path-valued Brownian motion Bt from the distribution

p
(
B[0:T ] |Θ0,D

)
. That is to fix the initial values for the model parameters and run

the chain with updating onlyBt for many iterations, e.g. 5× 103 - 8× 104 iterations

in our simulation study from the previous subsection. Although the distribution that

Bt is initially drawn from may not be the right one, given that the initial values for

Θ may be different from their true values, this will ensure that this sampled path

of Bt supports the right covariance for the data set Yt before alternating the model

parameters Θ. And after some experiments we are convinced that running these

extra iterations can outweigh the additional burn-in iterations for Θ if one uses the

usual Metropolis-Hastings set-up. Naturally, further improvements in convergence

speed and a consequent reduction in computational cost may be possible but we will

leave these as future work.

4.9 Summary

In this chapter, we revise some existing results about two Riemannian metrics

on SP(n): the Log-Euclidean and the Affine-Invariant metrics. We show that

SP(n) endowedwith either metric is stochastically complete, that is the Riemannian

Brownian motion does not explode at finite time. We then calculate horizontal lifts

of smooth curves for both metrics, in which a global form is obtained in the LE
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case, and in the AI case, while there is no such global form, one can approximate

it in a very simple form given that the piecewise approximation method is the

exponential adapted Euler-Maruyamamethod. Moreover, we construct the OU class

on SP(n), that achieves the mean-reverting property by adding a drift consisting of

the Riemannian gradient of the squared distance function.

Due to the presence of curvature, using local coordinates or an embedding

bring more complications to the Riemannian manifold SP(n) endowed with the AI

metric. These two approaches work well in theory, but in practise with extreme

observations (i.e. near boundary of the cone), the neighbourhood covering these

observations needs to be tightly restricted (i.e. ∆t is sufficient small) so that we are

guaranteed to stay on the manifold and these do not fit our problem when we have

low-frequency observations. On the other hand, the naive approach of simulating

bridges has high correlation with the unknown diffusivity parameters, which will

worsen the MCMC convergence rate in the data-augmentation approach. Moreover,

it is almost impossible to collect bridges that have end points lying extremely closely

to the boundary.

We propose a novel of diffusion bridge sampler on SP(n) equipped with the AI

metric in this thesis, which can be generalized to other Cartan-Hadamard manifolds.

In this new approach, the proposal bridge comes from the guided proposals, which

can be simulated more efficiently using the exponential adapted Euler-Maruyama

method, and acceptance probabilities can be calculated through the approximation

of the Radon-Nikodym derivative. In Theorem 4.13, we prove that measures are

absolutely continuous up to some terminal time T and write down the Radon-

Nikodym derivative. Although, the theorem regarding the limit as t → T is not

fully proved, instead, we validate our estimation algorithm through simulation study

on SP(2). Moreover, we fit the OU class equipped with either the LE metric or the

AI metric to data arising from an application in finance, and perform a goodness-of-

fit test using a transition density-based approach comparing the models associated

with these two Riemannian metrics.

Furthermore, we extend our study with the multivariate stochastic volatility
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model. We take advantage that our OU class are limiting processes resulting from

the exponential adapted Euler-Maruyama method, so we can discretize the process

finely to get the approximation for the likelihood. This allows us to apply MALA,

and these estimation steps are now basically Euclidean problems. In this thesis, we

assume a very simple model for Yt, see Equation (4.42), in reality it requires a much

more sophisticated model. Therefore, further study is needed in order to provide a

more adequate model to use in real life.

In summary, the Euclidean metric brings simplicity and thus uses least compu-

tational resources, but it does not guarantee that the simulated path lies completely

on manifold, and the swelling effect also appears. While both the LE and the AI

metrics remove these two problems, complexities increase, particularly for AI metric

as the curvature is no longer zero. Benefiting from the available analytic form of the

global map, working with LE metric is much more efficient than with the AI metric.

Even though SDEs using the LE and the AI metric are quite similar, in general they

are different, in fact covariance matrices tend to be more anisotropic when using

LE metric than AI metric. Thus, the choice between LE and AI metrics depends on

which applications are considered.



Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this thesis, we explore various statistical inference tools on Riemannianmanifolds,

and extend their applicability for statistical modelling across a range of applications.

Chapter 3 presents a simple parametrization for observations, which lie on

a compact connected Lie group. We map this special space intrinsically onto its

tangent space at the identity (i.e. its Lie algebra) using the logarithm map and

the differential map of the left translation from a fixed base point. And by using

coefficients with respect to a fixed orthonormal basis on this tangent space, there

are no extra model parameters incurred by this parametrization, which can occur

if one uses embedding. Furthermore, this approach enables existing tools on the

Euclidean space to work in the manifold setting, such as GLS in regression analysis.

In particular, we investigate SO(3) and apply our proposed approach for estimating

the relationships between soft tissue artefacts and rotations of the bone during

certain activities. We compare different correlation structures when using GLS for

our proposed parametrization and another transformation that is commonly used in

human kinematic analysis, which is defined by the Euler angles. We observe some

improvements in terms of residuals, however due to lack of information about the

smoothing filter that had been used on the data, while some obvious patterns in the

residuals could be removed, model fit is still not quite satisfactory.

Most of our contributions lie in Chapter 4, where we extend the Ornstein-
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Uhlenbeck processes to SP(n) such that they preserve the mean-reverting property.

A novel sampling strategy for a diffusion bridge on SP(n) equipped with the AI

metric from the intrinsic point of view is proposed in this thesis. This diffusion

bridge sampler is inherited from the guided proposal approach on the Euclidean

space. Although only partial mathematical proofs in showing the absolute continuity

between the target diffusion bridge and the guided proposal are presented, we validate

the proposed estimation algorithm via a simulation study. We further illustrate this

algorithm with application in finance, and perform a goodness-of-fit test comparing

models based on the LE and AI metrics.

Besides, Chapter 4 addresses the limitation of equipping SP(n) with the Eu-

clidean metric (i.e. the Frobenius inner product) and we therefore recommend

working with Riemannian metrics on SP(n). We show that the Riemannian Brow-

nian motion on SP(n) equipped either the LE or the AI metric does not explode in

finite time, which is the same behaviour observed on the Euclidean space. Further-

more, we establish the calculation of horizontal lifts of smooth curves and show that

the local expressions of horizontal lifts are available explicitly in the case of the LE

metric. It is particularly beneficial for practicability since any stochastic process on

the Euclidean space can be mapped uniquely onto SP(n) and therefore the usual

tools of statistical inference in the Euclidean setting become compatible. Moreover,

we demonstrate the Metropolis-adjusted Langevin algorithm (MALA) to estimate

the multivariate stochastic volatility model via simulation study on R2, where our

Ornstein-Uhlenbeck class models the unobserved volatilities.

5.2 Future work

5.2.1 Application to human joint movement

For this topic, our suggestions on future work mainly concern regression problems

on the Euclidean space itself, rather than geometric factors.

The total number of model parameters in our setting for one subject (i.e. cov-

ering twelve markers in three Euclidean components) is large given the very limited

number of data subjects available, while there is while there is high dependence
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among markers that stay close to each other. The natural next thing is to reduce

these correlated variables. For example, one can firstly perform PCA or evolving

factor analysis and then fit the regression model on only some important compo-

nents. There is an attempt which applies the PCA in the Euclidean sense in [60]

using in-vivo data. Alternatively, one can treat the surface containing these model

parameters for a single subject as a curved surface, i.e. a Riemannian manifold and

apply the principle geodesic analysis as the work in [21] for Lie groups and [149]

for Riemannian manifolds.

On the other hand, R. Dumas et al [78] propose the marker-cluster transfor-

mations or the skin envelope shape variation as the replacement of coordinates of

individual markers. This approach can the reduce number of model parameters as

it already includes the correlation among markers that are near by. Moreover, the

model for a single subject can be incorporated for a multi-body optimization, see

[150], which is hugely beneficial for use in a wider population.

Lastly, based on information about the smooth filter that were applied to the

observations, we can not recover the correlation structure explicitly in our work.

However, it may be possible to carry out an independent low-budget experiment,

that uses solid objects instead of human bodies, to construct an error model. The

only requirement here is that the same systems that were used to collect our data, such

as the multi-camera systems, the Butterworth filter etc. be used. More generally,

a general statistical error model, perplexingly, seems absent from the literature on

human joint motion modelling.

5.2.2 SDEs on SP(n)

Firstly, we wish to complete the remaining part of the proof for Theorem 4.15 in

Chapter 4, in which the proof plan is discussed comprehensively in Section 4.5.

Since Cartan-Hadamard manifolds are diffeomorphic to Euclidean space, and the

diffeomorphism maps can be obtained from the exponential map at any point, see

[47, 151], we suspect that once the proof for SP(n) is complete, it is not difficult

to generalize this theory to Cartan-Hadamard manifolds. Thus, our approach of

sampling diffusion bridges and our proposed class of OU processes can be extended
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to any Cartan-Hadamard manifold on which there exists a suitable diffusion process

with an explicit transition density function, e.g. hyperbolic spaces [152, 153].

This opens up potential applications to phylogenetic trees [154] and electronic

engineering [155] where this or closely related geometries are used.

On the Euclidean space, the OU process is ergodic (i.e. recurrent), and in fact

this property continues to hold for the proposed OU process on SP(n) endowedwith

the LE metric. Thus the natural question will be about whether one can preserve

ergodicity in the AI case, and, if so, what is the equilibrium/invariant distribution.

One common and possible approach of proving this is the spectral gap analysis, see

[156, 157].

In addition, the family of Gaussian graphical models (GGM) has been widely

used in many application areas for learning the conditional independence structure

among a collection of variables, which is the case that particular elements of the

inverse of the covariancematrix are restricted to be zero, see [158, 159]. The space of

covariancematrices under these restrictions turns out to be a sub-manifold ofSP(n).

Thus, itwould be interesting to explore howonewould equip the inducedRiemannian

metrics: Log-Euclidean and Affine-Invariant, to this sub-manifold, because it then

can offer many benefits. For instance, the construction of a reversible jump MCMC

that proposes moves between GGM, which will prevents the proposals escaping the

sub-manifold (e.g. using the exponential adapted Euler-Maruyama method), may

be possible.

Lastly, we perform a very simple goodness-of-fit test to comparemodels associ-

ated with the LE and AI metrics in Section 4.7.2. However, in the literature there are

other sophisticated tests, see [160], that offer better performance, and we can experi-

ment with them to our models. Moreover, further work on the multivariate volatility

model will include working with real data (e.g. financial data in Section 4.7), or

considering more complex drift of the SDEs for the price processes. We suspect that

the MALA in Subsection 4.8.1 is still applicable for model parameter estimation

even when the drift is non-linear. However, the sensitivity on time width may be

exaggerated further because we may require to approximate the transition density
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of the price process via discretization. More suitable strategies which can improve

the MCMC mixing therefore become necessary. Furthermore, the homogenization

problem for multiscale data, when working with our multivariate volatility models,

is also an interesting field that can be explored in the future. Since homogenization

theory is usually approached via convergence of the infinitesimal generator which

is often available for SDEs on manifolds, there are some prospects of extending this

theory to the manifold setting.

5.2.3 SDEs on other manifolds
Previously, we discussed the possibility of extending the concept of guided proposals

to other Cartan-Hadmard manifolds, which do not have any cut locus. So, the next

natural generalization is to explore a space that does have a cut locus. The Lie group

SO(3), discussed in Section 3.3, is a promising curved space to study statistical

inference for SDEs afterSP(n) because some extension to a general Lie groupmight

be possible. Moreover, SO(3) appears in a vast number of applications, thus the

demand for time series models, e.g. stochastic processes, is always high, for example

Brownianmotion has been studied very earlywhen stochastic processes onmanifolds

were not as popular as they are now, see for examples [24, 31, 30]. Depending on the

application, one will decide whether to choose to use local coordinates, embedding

or exponential maps.
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SDE stochastic differential equation. 19, 94

SPDE stochastic partial differential equation. 157

STA soft tissue artefact. 79



Index

M-valued semimartingale, 48

L -diffusion, 49

Abelian, 41

adjoint representation, 41

affine connection, 30

alternativity, 29

anti-commutativity, 29

anti-development, 50

Baker–Campbell–Hausdorff formula,

71

base point, 66

bracket, 28, 33

Brownian motion

Euclidean space, 44

Riemannian manifold, 51, 114

Butterworth filter, 86

Cartan-Hadamard manifold, 21, 108

Christoffel symbols, 31

compact connected group, 39, 41, 64

covariant derivative, 31

along the curve, 31

curvature, 32, 53

cut locus, 37, 65

derivation, 28

diffeomorphism, 25

differentiable map, 26

differential map (push-forward), 27

directional derivative, 31

Euler-Maruyama method

Euclidean space, 46

Riemannian manifold, 52

existence and uniqueness theorem for

SDEs, 46

exponential map

via geodesics, 36

via one-parameter subgroups, 42

flat Riemannian metric, 104

Fréchet mean, 15

frame, 49

frame bundle, 50

Gauss-Markov theorem, 62

generalized least squares (GLS)

179



INDEX 180

iterated, 63

minimized, 63

geodesic, 35

Girsanov theorem, 57

guided proposal process, 130

homeomorphism, 25

homomorphism map, 41

horizontal curve, 50

horizontal lift

of a curve, 50

of a tangent vector, 50

horizontal tangent vector, 50

horizontal vector field, 50

isometry (manifold), 30

isomorphism, 49

Itô’s lemma

Euclidean space, 45

Riemannian manifold, 57

Jacobi identity, 29

Karcher mean, 16

Lapalace-Beltrami operator, 38, 51

left/right translation, 40

Leibniz product, 28

Levi-Civita connection, 33

Lie theory

bracket, 29, 40

algebra, 40

group, 39

linearity, 28

logarithm map, 37

manifold, 24

geodesically complete, 37, 52

matrix function

matrix exponential, 43

matrix logarithm, 43

mean-centering, 73

minimal heat kernel, 53

one-parameter subgroup, 42

parallel transport, 34

parallelizable manifold, 52, 54

probability space, 44

proposal process, 130

quadratic covariation, 45

regression

geodesic, 59

linear, 61

Riemannian gradient, 38

Riemannian gradient of squared

distance, 105, 109

Riemannian manifold, 30

Riemannian metric, 30

invariant, 40

Rodrigues’ formula, 70

Rodrigues’ rotation angle, 71

semimartingale, 45

smooth action, 42



INDEX 181

soft tissue artefact, 79

standard symmetric basis, 102

stochastic completeness, 53, 114

stochastic development, 49

stochastic integral

Itô integral, 45, 46

Stratonovich integral, 45, 49

tangent

bundle, 27

space, 27

vector, 26

torsion, 33

vector field, 28

along the curve, 28

infinitesimal generator, 42

invariant, 40



Appendix A

Supplementary figures

Firstly, we present some figures mentioned in Chapter 3, where we look at the

estimated speed for STAs in Figure A.1-A.2 and rotations in Figure A.3-A.4.
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Figure A.1: Euclidean distance between adjacent STAs at marker 1 are plotted against
observation time using the data from [3].
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Figure A.2: Euclidean distance between adjacent STAs at marker 9 are plotted against
observation time using the data from [3].
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Figure A.3: Riemannian distance between adjacent rotational matrices on the thigh are
plotted against observation time using the data from [3].
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Figure A.4: Riemannian distance between adjacent rotational matrices on the thigh are
plotted against observation time after applying Algorithm 3.13 with α = 2%.

Lastly, we presents some figures mentioned in Chapter 4. We include the kernel

density estimations for the marginal posterior distribution of the model parameters

{θ,M, σ2} in the simulation study (Figure A.5) and the application in finance (Fig-

ure A.7). Furthermore, trace plots and ACF plots when using either the LE metric

with δt = 0.01 or the AI metric with δt = 0.001 are shown in Figure A.6.
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Figure A.5: (Simulation study). Estimated posterior distribution of {θ,M, σ2} using 5 ×
104 MCMC iterations (2× 103 burn-in discarded, thinned by 12). True values
are indicated by solid vertical black lines.
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Figure A.6: (Application in finance). MCMC trace plots of 4000 iterations using different
starting points (orange, green and red) and ACF plots based on iterates 1000−
4000 of the green chain with δt = 0.01 in the case of the LE metric and
δt = 0.001 in the case of the AI metric .
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Appendix B

Supplementary algorithms

B.1 Guided proposals on the Euclidean space
Suppose that we need to sample the diffusion bridge y∗t = {yt, 0 ≤ t ≤ T | y0 =

u, yT = v}, where the process yt ∈ Rd is the solution of the following SDE :

dyt = a(t, yt) dt+ b(t, yt) dBt (y0 = u) (B.1)

with a : R≥0×Rd → Rd and b : R≥0×Rd → SP(d) are measurable functions and

locally Lipschitz with respect to yt. Here, Bt is a standard Rd- Brownian motion

and we assume the existence of strong solution for the SDE (B.1).

Under weak assumptions, see [161], characteristic of the diffusion bridge y∗t is

actually the solution of the following SDE for y∗0 = u and 0 ≤ t ≤ T :

dy∗t = a(t, y∗t ) dt+ b(t, y∗t ) dBt

+
(
b(t, y∗t )b

T (t, y∗t )
)
∇y∗t

(
log p(t, y∗t ;T, v)

)
dt, (B.2)

with p(t, y∗t ;T, v) is the (unknown) transition density of the original stochastic

process yt from time t to the terminal time T . Since sampling y∗t directly from

the SDE (B.2) is impossible, the idea is to propose for y∗t from a so-called guided

proposal, that is easier for simulation, via the acceptance/rejection sampling. In this

section, we discuss details of the conditions for which the laws of the target diffusion

bridge and the guided proposal are equivalent on the Euclidean space in [38, 40].
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M. Schauer et al. [40] define the class of guided proposals y�t , that are the

solution of the following SDEs, with y�0 = u and 0 ≤ t ≤ T :

dy�t = a(t, y∗t ) dt+ b(t, y�t ) dBt

+
(
b(t, y�t )b

T (t, y�t )
)
∇y�t

(
log p̃(t, y�t ;T, v)

)
dt, (B.3)

where p̃(t, y�t ;T, v) is the transition density of some proposal (auxiliary) processes

ỹt, in which p̃ has explicit formula.

B. Delyon & Y. Hu [38] starts this concept earlier by having ỹt as a standard

Rd-Brownian motion, i.e. y�t is given by

dy�t =

(
a(t, y�t )−

y�t − v
T − t

)
dt+ b(t, y�t ) dBt (y�0 = u)

The law of the guided proposal is shown to be absolutely continuous with respect to

the distribution of the target (unknown) diffusion bridge in [38] under the condition

that the function b(t, y) ∈ C2(Rd) are bounded with bounded derivative. Moreover,

b(t, y) is assumed to be invertible with respect to y and its inverse is also bounded.

In general, M. Schauer et al. [40] shows that there are three required assump-

tions B.1-B.3 to ensure the absolute continuity between the guided proposals and

the target diffusion bridge.

Assumption B.1. [40] Suppose that the diffusivity of the proposal process ỹt is

b̃(t, ỹ). The proposal process is assumed to satify b̃(T, v)b̃T (T, v) = b(T, v)bT (T, v)

and the following

(i) The transition density p̃ of ỹt satisfy

lim
t↑T

∫
f(t, x) p̃(t, y;T, v) dy = f(T, v),

for all bounded, continuous functions f : [0, T ] × Rd → R. And there exist

positive constants Ã, B̃ such that for 0 < s < T ,

p̃(s, y;T, v) ≤ Ã (T − s)−d/2 exp

(
−B̃ ||v − y||

2
2

T − s

)
uniformly in y.
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(ii) For all x, y ∈ Rd and t ∈ [0, T ], there exist positive constants C̃1, C̃2, C̃3 such

that the gradient of log p̃, ∇ log p̃, and the Hessian of log p̃, ∆ log p̃, satisfy

∣∣∣∣∇ log p̃(t, y;T, v)
∣∣∣∣

2
≤ C̃1

(
1 +
||y − v||2
T − t

)
,

∣∣∣∣∇ log p̃(t, y;T, v)−∇ log p̃(t, x;T, v)
∣∣∣∣

2
≤ C̃2

(
||y − x||2
T − t

)
,

∣∣∣∣∆ log p̃(t, y;T, v)
∣∣∣∣
F
≤ C̃3

(
1

T − t
+
||y − v||2
T − t

)
.

Assumption B.2. [40] There exist constants A, B > 0 and C > 1 and a function

µt(s, y) : {s, t : 0 ≤ s ≤ t ≤ T}×Rd → Rd with
∣∣∣∣µt(s, x)−x

∣∣∣∣
2
< C(t−s)||x||2

and ||µt(s, x)||22 ≥ max {1/C, 1− C(t− s)} ||x||22, so that for all s < t ≤ T and

x, y ∈ Rd, the (unknown) transition density of the original process yt satisfies

p(s, x; t, y) ≤ B (t− s)−d/2 exp
(
−A

∣∣∣∣y − µt(s, x)
∣∣∣∣2

2

/
(t− s)

)
.

Assumption B.3. [40] There exist an ε ∈ (0, 1/6) and an almost surely finite random

variable K such that for all 0 ≤ t ≤ T , ||y�t − v||2 ≤ K(T − t)1/2−ε holds almost

surely for the guided proposal y�t .

In summary, while Assumption B.1 select the proposal processes ỹt to behave

nicely near the terminal time T , Assumption B.3 ensures the guided proposal y�t to

converge to v at an appropriate speed when t tends to T , which is essential because

the two laws of interest are equivalent only if their speed of reaching to the endpoint

are the same. On the other hand, Assumption B.2 apply to the original process yt
and particularly if the drift a(t, yt) is bounded, this assumption is directly achieved

by the Aronson ’s estimation, see [38].

The Assumptions B.1 and B.3 can be simplified if the proposal process ỹt is a

linear process, that is the solution of the following SDE:

dỹt =
(
ã1(t) ỹt + ã2(t)

)
dt+ b̃(t) dBt (B.4)

where ã1, ã2, b̃ are time-dependent functions and b̃(T ) = b(T, v). We state these
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statements in [40] below.

(i) Suppose that ã1, ã2 are continuously differentiable on [0, T ] and b̃ is Lipchitz

on [0, T ]. There exists positive constant η such that for all t ∈ [0, T ] and all

y ∈ Rd :

yT b̃(s)b̃T (s) y ≥ η||y||22.

then the proposal process ỹt satisfies Assumption B.1.

(ii) There exists a positive ε such that for all 0 ≤ s ≤ T , and x, y ∈ Rd:

xT b(s, y)bT (s, y)x ≥ ε||x||22,

and that the drift of the original process is in the form a(t, y) = a1(t, y)y +

a2(t, y), where a1 and a2 are bounded function. Then there exists an almost

surely finite random variable K such that the following holds almost surely

∣∣∣∣y�t − v∣∣∣∣2 ≤ K

√
(T − t) log log

(
1

T − t
+ e

)

for all 0 ≤ t ≤ T and here e is the constant Euler’s number. Consequently,

Assumption B.3 holds for any ε > 0.

B.2 Low-frequency inference on the Euclidean space
In this section, we present an adapted version of the algorithm proposed by G. O.

Roberts & O. Stramer [43], which can be applied to a multivariate diffusion process

with constant diffusivity. Suppose that xt ∈ Rd is the solution of the following SDE:

dxt = aΘ(t, xt) +
√
C dBt (x0 = u) (B.5)

where Θ is a vector of model parameters in the drift of xt and a constant matrix

C ∈ SP(d). We assume the existence of the solution of the SDE (B.5).

Suppose we have observationsD = {x0, . . . , xN} at observation times t0 = 0 <

t1 < . . . < tN = T . Moreover, assuming without loss of generality, observations



B.2. Low-frequency inference on the Euclidean space 190

are collected at equidistant time points, and time width equals ∆t. Direct use of the

Euler-Maruyama approximation is not suitable when ∆t is large. To improve the

approximation of the transition probability density, we impute m − 1 data points

between two consecutive observations. Since the matrix C is constant, there is an

one-to-one transformation between the diffusion bridge {xt, ti−1 ≤ t ≤ ti |, xti−1
=

xi−1, xti = xi} to another diffusion bridges {H i
s, 0 ≤ s ≤ ∆t |H i

0 = H i
∆t

= 0}.

Thus, besides estimating {Θ, C}, we also estimate the diffusion bridges {H i
s, 1 ≤

i ≤ N} that fill the unknown gaps between consecutive observations.

There are two choices of the proposal candidates for {H i
s, 1 ≤ i ≤ N} in

[43], namely the standard Brownian bridge and the linear bridge. In this thesis, we

choose the standard Brownian bridge due to its simplicity. Let us denote Bs(0; ∆t)

the standard Brownian bridge conditioned on B0 = B∆t = 0. In fact, Bs(0; ∆t) is

the solution of the following SDE :

dBs = Ws −
s

∆t

W∆t for 0 ≤ s ≤ ∆t,

whereWsis a standard Rd-dimensional Brownian motion withW0 = 0.

Furthermore, we propose new values for the model parameters Θ by random

walk, and the log-domain is used if any parameter is required to be positive. We

denote π0 the prior distributions for Θ.

1. (Iteration k = 0) Choosing starting values for {Θ0} and compute c0 = (C0),

see function h in Equation (4.19). Then sample standard Brownian bridges

Bis(0; ∆t) independently for 1 ≤ i ≤ N , each covering the time interval ∆t

and set H i
s = Bi

s for 1 ≤ i ≤ N .

2. (Iteration k ≥ 1).

(a) Update H i
s independently (1 ≤ i ≤ N ): sample the proposal Brownian

bridge B̃s(0,∆t), and accept this with the probability

α(H) = exp
{

G
(
Θk−1, Ck−1; B̃s(0; ∆t)

)
−G

(
Θk−1, Ck−1;H i

s(0; ∆t)
)}
,
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where

G
(
Θk−1, Ck−1;H i

s(0; ∆t)
)

=
m∑
j=0

{
aTΘk−1

(t, ysj)C
−1
k−1 (ysj+1

− ysj)

− 1

2

(
aTΘk−1

(t, ysj)C
−1
k−1 aΘk−1

(t, ysj)
)

(sj+1 − sj)

}
, (B.6)

and for 0 = s0 < . . . < sm+1 = ∆t :

ysj =
√
Ck−1H

i
sj

+
(∆t − sj) xi−1 + sj xi

∆t

(b) Update C: propose c̃ and compute the corresponding C̃ = h−1(c) and

accept c̃, C̃ with probability

α(C) =
π

(c)
0 (c̃)

∏N
i=1 exp

{
G
(
Θk−1, Ck−1;H i

s(0; ∆t)
)}

π
(c)
0 (ck−1)

∏N
i=1 exp

{
G
(
Θk−1, C̃;H i

s(0; ∆t)
)}

·
∏N

i=1 exp
{
f(ti−1, xi−1; ti, xi;Ck−1)

}∏N
i=1 exp

{
f(ti−1, xi−1; ti, xi; C̃)

}
where G is given in Equation (B.6) and

f(s, x; t, y;C) = −(y − x)T C−1 (y − x)

2(t− s)
− d

2
log detC.

(c) Update Θ: sample proposal Θ̃ and accept it with the probability

α(Θ) =
π

(Θ)
0 (Θ̃)

∏N
i=1 exp

{
G
(
Θ̃, Ck;H

i
s(0; ∆t)

)}
π

(Θ)
0 (Θk−1)

∏N
i=1 exp

{
G
(
Θk−1, Ck;H i

s(0; ∆t)
)}

where G is given in Equation (B.6).
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