
 

* Corresponding Author, Qiuchen Lu, Email: qiuchen.lu@ucl.ac.uk 
 

Bayesian Monte Carlo Simulation Driven Approach for Construction 1 

Schedule Risk Inference 2 

Long CHEN1, Ph.D. A.M.ASCE; Qiuchen LU2*, Ph.D. A.M.ASCE; Shuai LI3, Ph.D.; 3 

Wenjing HE4; Jian YANG5, Ph.D. 4 

1Lecturer, School of Architecture Building and Civil Engineering, Loughborough University, 5 

Loughborough LE11 3TU, UK. Email: l.chen3@lboro.ac.uk 6 

2Lecturer, The Bartlett School of Construction and Project Management, University College London, 7 

London WC1E 6BT, UK. Email: qiuchen.lu@ucl.ac.uk 8 

3Assistant Professor, Department of Civil and Environmental Engineering, University of Tennessee, 9 

Knoxville, TN 37996, USA. Email: sli48@utk.edu 10 

4Master student, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong 11 

University, Shanghai, 200240, China. Email: qzclwenj@sjtu.edu.cn 12 

5Professor, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong 13 

University, Shanghai, 200240, China. Email: j.yang.1@sjtu.edu.cn 14 

 15 

ABSTRACT 16 

As the construction of infrastructures becomes increasingly complex, it has been often 17 

challenged by construction delay with enormous losses. The delivery of complex 18 

infrastructures provides rich source of data for new opportunities to understand and address 19 

schedule issues. Based on these data, many efforts have been made to identify key construction 20 

schedule risks and predict the probability of risk occurrence. Bayesian network is one of the 21 

most useful tools for risk inference. However, there are still two obstacles preventing the 22 

Bayesian network from being adopted popularly in construction schedule risk management: (1) 23 

the development of directed acyclic graph (DAG) and associated conditional probability tables 24 

(CPTs); (2) the lack of observation data to trigger risk inference as evidence at the planning 25 

stage. This research aims to develop a novel Bayesian Monte Carlo simulation driven approach 26 

for construction schedule risk inference of infrastructures, where the Bayesian network model 27 

can be developed in a more convenient way and be used without observation data required. It 28 

firstly constructs the key risk network with key risks and links through network theory-based 29 

analysis. Then the DAG structure of Bayesian network is developed based on the topological 30 

structure of key risk network using deep-first search (DFS) and adapted maximum-weight 31 

spanning tree (A-MWST) algorithms. The CPTs are further developed using the leaky-MAX 32 

model. Finally, the Bayesian Monte Carlo simulation driven risk inference method is developed 33 

for predicting and quantifying the probability of construction schedule risk occurrence. A real 34 
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infrastructure project is selected as case study to verify this developed approach. The results 35 

show that the developed approach is more appropriate to deal with risk inference of 36 

infrastructures considering its reliability, convenience, and flexibility. This research contributes 37 

a new way to construction schedule risk management and provides a novel approach for 38 

quantifying and predicting risk occurrence probability. 39 

Keywords: Construction schedule risks; Network theory-based analysis; Bayesian Monte 40 

Carlo simulation 41 

1. Introduction 42 

The construction industry, especially the infrastructure sector, has been rapidly developing in 43 

the past decades, where the average annual growth of global built-up areas is 28% between 44 

1990 and 2015 (UN-Habitat, 2016). The construction of infrastructures has attracted many 45 

attentions due to the extreme complexity, high risks and long lead time (Fiori and Kovaka, 46 

2005), multiple stakeholders involved (Mok et al., 2017; Valentin et al., 2018), and 47 

considerable impacts to the society, economy and natural environment (Zhai et al., 2009). It is 48 

thus significant to manage infrastructure projects properly not only for the project itself but for 49 

the region concerned (Wang and Yuan, 2016). 50 

As a major objective of infrastructure management, the schedule has been regarded as a vital 51 

parameter of the planning and construction of projects (Al-Momani, 2000; Liu et al., 2014). 52 

However, the construction schedule delay of infrastructures is not rare but a ‘business as usual’ 53 

with enormous losses and damages to project delivery (Flyvbjerg et al., 2004, 2005). For 54 

example, Al-Momani (2000) found that 81.5% of 130 public complex construction projects 55 

involved in Jordan had suffered time delay. Ellis and Thomas (2002) found that 55% of 56 

highway projects in the US had experienced an average time delay of 44% in excess of the 57 

original time specified in the contract. The construction schedule and risk management should 58 

be improved to help the delivery of infrastructures within time and budget.  59 

Such complex infrastructures are becoming rich sources of data from multidisciplinary models 60 

and systems, raising new opportunities to understand and address schedule issues (Whyte et 61 

al., 2016; Chen and Whyte, 2020). Based on these data, many efforts have been made to 62 

manage the construction schedule and associated risks of infrastructures. Building information 63 

modelling (BIM) has been adopted as a powerful management tool for schedule planning (Liu 64 

et al., 2015; Tallgren et al., 2020), control (Moon et al., 2015) and risk management (Sami Ur 65 

Rehman et al., 2020). Based on that, extended reality (XR) has been further proposed to assist 66 

schedule control (Alizadehsalehi et al., 2020; Fu and Liu, 2018). However, such technologies 67 



 

 

only focused on pre-defined schedules and risks while ignored the risk impacts on construction 68 

schedule. Other methods more focusing on the risk impacts have been also proposed, such as 69 

line of balance (LOB), critical path method (CPM), program evaluation and review technique 70 

(PERT) and correlated schedule risk analysis model (CSRAM) (Ökmen and Öztaş, 2008). 71 

However, they only focused on the diversity of risks or effect of risk on the schedule while 72 

ignored the complexity of correlations between risks and uncertainty of risk occurrence, where 73 

risk impacts that appear to be minor lead to rippled disruption to the project delivery (Abotaleb 74 

and El-adaway, 2018). Bayesian network has been proposed as a useful tool to handle 75 

complexity and uncertainty and been adopted in the construction schedule risk management of 76 

infrastructures (Nasir et al., 2003; Luu et al., 2009; Khodakarami et al., 2007). It provides a 77 

reliable approach to (1) modelling complex risk correlations by cause-effect relationships, and 78 

(2) modelling uncertainty of risk occurrence by conditional probability. However, given the 79 

richer data, there are still two obstacles preventing the popular adoption of Bayesian network 80 

in the practice of construction schedule risk management: (1) it is often impossible in practice 81 

to define and use a unified classification code for risk identification and data template for 82 

Bayesian network development, especially for the development of directed acyclic graph 83 

(DAG) and associated conditional probability tables (CPTs); (2) the observation data is often 84 

required as evidence to trigger risk inference which is inapplicable at the project planning stage.  85 

This paper aims to solve these problems through developing a novel Bayesian Monte Carlo 86 

simulation driven approach for construction schedule risk inference of infrastructures. This 87 

developed approach enables Bayesian network to be developed in a more convenient way and 88 

be used without observation data required in practice. It starts with a review of construction 89 

schedule risks identified in the past research and theoretical basis of network theory and 90 

Bayesian network in construction schedule risk analysis. Then the methodology is explained 91 

in terms of strategies of case study and focus group discussions for case data collection. The 92 

construction of key risk network is demonstrated using network theory-based analysis, 93 

followed by the development of Bayesian network model through DFS and A-MWST 94 

algorithms and leaky-MAX model. Finally, the Bayesian Monte Carlo simulation driven risk 95 

inference approach is developed for predicting and quantifying the probability of construction 96 

schedule risk occurrence. A real underground railway project is selected as case study to verify 97 

the developed approach. The results are discussed in terms of reliability, convenience and 98 

flexibility, followed by conclusions. 99 

2. Literature Review 100 



 

 

2.1 Construction schedule risks of infrastructure project 101 

As the beginning of the risk management, risk identification is a process through which a series 102 

of potential risks are identified according to their frequency of occurrence and possible 103 

influence, either positively or negatively, on principal project objectives (Perrenoud et al., 104 

2015). Many efforts have been made to identify risks or causes for the construction delay in 105 

infrastructures (Table 1). For instance, Lo et al. (2006) investigated the 30 significant factors 106 

from seven categories, and further provided corresponding risk mitigation measures in Hong 107 

Kong. ‘Inadequate resources due to contractor/lack of running capital’, ‘Unforeseen ground 108 

conditions’, and ‘Exceptionally low bids’ have been identified as the three most significant 109 

causes for delay in civil engineering projects in Hong Kong. Sambasivan and Soon (2007) also 110 

explored the construction delay factors and associated impact on the schedule of large 111 

construction project in Malaysia through questionnaire survey and identified 10 most important 112 

causes for delay (e.g., contactor’s improper planning, poor site management, and inadequate 113 

contractor experience. 114 

Some research has been further conducted to reveal insights of construction delay of specific 115 

infrastructure project. Han et al. (2009) analysed the construction schedule delay of Korea 116 

Train Express (KTX) project in South Korea, and identified five major delay causes for KTX 117 

project, including ‘Lack of owner’s abilities and strategies to manage hi-tech oriented mega 118 

project’, ‘Frequent changes of routes’, ‘Inappropriate project delivery system’, ‘Lack of proper 119 

scheduling tool’ and ‘Redesign and change orders of main structures and tunnels’. The time 120 

overruns of six FIFA World Cup stadia in South Africa have been investigated by Baloyi and 121 

Bekker (2011), examining 11 main factors causing the construction schedule delay. These 122 

identified risks in previous research provide a list of potential construction schedule risks for 123 

infrastructures both in practice and in this research. 124 

[Insert: Table 1 Schedule risks for the construction delay of infrastructure project identified 125 

in previous research] 126 

2.2 Network theory in risk analysis 127 

Network theory is a view of regarding the dependent elements as the complex network with 128 

multiple correlations between them, which is concerned with the ‘structure and patterning’ of 129 

these correlations and seeks to identify both their causes and effects (Yang and Zou, 2014). 130 

Evolving from the network theory, the network theory-based analysis can provide an effective 131 

way to identify the correlations between system elements and analyse the features and 132 

implications of these relational fabrics by integrating mathematical and computational 133 



 

 

applications (Mok et al., 2017; Dogan et al., 2013). Within the network structure, elements 134 

(nodes) of a system are joined by multiple correlations (links) in various manners. The network 135 

theory-based analysis accentuates network and relational measures rather than the individual 136 

attributes of each element on account of the conception that: (1) the existence of an element 137 

can yield effects on or be affected by the presence of other interrelated elements within the 138 

system; and (2) the correlations between system elements can the system’s strength and 139 

behaviours (Fang et al., 2012; Mok et al., 2017). 140 

The network theory-based analysis has been initially applied in the sociometry, and then 141 

adopted in construction management. Fang and Marle (2012) developed a simulation-based 142 

risk network model for decision support in project risk management (PRM), which defined 143 

risks as nodes and correlated influences as links. Furthermore, Fang et al. (2012) analysed the 144 

risk network in a large engineering project to distinguish key risks and correlations affecting 145 

the project objectives. Yang and Zou (2014) investigated stakeholder-associated risks and their 146 

relationships in green building projects to facilitate risk management. Mok et al. (2017) studied 147 

stakeholders concerns and intricate interdependencies between them for identifying key 148 

challenges in major public engineering projects (MEPs). 149 

Although previous research has showed the viability of network theory-based analysis in 150 

analysing the complexity of correlations between risks, it cannot deal with the uncertainty of 151 

risk occurrence. 152 

2.3 Bayesian network in risk analysis 153 

The Bayesian Network provides a probabilistic approach to determine the likelihood of 154 

occurrence of certain variable conditions (i.e., conditional probability) and can model the 155 

uncertainty of risk occurrence (Nasir et al., 2003; Wang and Zhang, 2018). It firstly introduced 156 

in the 1970s (McCabe et al., 1998), is a graphical representation of conditional dependence 157 

among a group of variables. A Bayesian network model usually consists of two parts: (1) a 158 

directed acyclic graph (DAG), which represents the network structure, and (2) an associated 159 

set of conditional probability tables (CPTs), which is the network parameter and represents the 160 

conditional probability distribution among the variables (Hu et al., 2013). Specifically, the 161 

nodes represent variables of the domain, while the arcs represent dependence relationships 162 

between the nodes (McCabe et al., 1998). The network is thus constructed by a series of nodes 163 

where the nodes are connected by the arcs according to the reasoning direction of decision 164 

makers (Kjaerulff, 2008). Based on the Bayes’ theorem (Equation (1)), the relationship between 165 

each pair of connected nodes is expressed in the form of probability distribution that 166 



 

 

encapsulates the decision makers’ experience (Kjaerulff, 2008). Therefore, for a Bayesian 167 

network model, 𝐵 = (𝑉, 𝐸), where 𝑉 denotes a set of nodes (i.e., variables), and 𝐸 denotes 168 

a set of directed links between pairs of the nodes, a joint probability distribution that can be 169 

factorized as: 170 

𝑃(𝐵 𝐴⁄ ) =
𝑃(𝐴/𝐵)𝑃(𝐵)

𝑃(𝐴)
         (1) 171 

𝑃(𝑉) = 𝑃(𝑋1, 𝑋2, ⋯ 𝑋𝑖 , ⋯ , 𝑋𝑛) = ∏ 𝑃(𝑋𝑖|𝑋𝑝𝑎(𝑋𝑖))𝑋𝑖𝜖𝑉      (2) 172 

where 𝑋𝑝𝑎(𝑋𝑖)  is the set of parent nodes for 𝑋𝑖 , 𝑋𝑝𝑎(𝑋𝑖) ∈ 𝑉 . Each conditional probability 173 

distribution for 𝑖th variable, 𝑃(𝑋𝑖|𝑋𝑝𝑎(𝑋𝑖)), consists of a series of conditional probability 𝑝𝑖: 174 

𝑝𝑖 = 𝑃(𝑥𝑖|𝑥𝑝𝑎(𝑋𝑖)), 𝑖 = 1, 2, ⋯ , 𝐼        (3) 175 

where 𝑥𝑖 and 𝑥𝑝𝑎(𝑋𝑖) are the values assigned to 𝑋𝑖 and 𝑋𝑝𝑎(𝑋𝑖) respectively, and 𝑝𝑖 is the 176 

probability of 𝑋𝑖 = 𝑥𝑖 given the condition 𝑋𝑝𝑎(𝑋𝑖) = 𝑥𝑝𝑎(𝑋𝑖). 177 

The Bayesian network has been adopted in addressing the complex problems under uncertainty 178 

in the real world, such as fault diagnosis (Lin et al., 2018), ecosystem assessment (Liu et al., 179 

2014), decision support (Xie and Thomas, 2013), and of course risk analysis of infrastructures. 180 

Specifically, many Bayesian network-based studies have been conducted to evaluate the 181 

construction schedule risks for infrastructures. For example, Luu et al. (2009) applied the 182 

Bayesian network to quality the construction schedule risks and the probability of construction 183 

project delays in Vietnam. Nasir et al. (2003) developed an Evaluating Risk in Construction-184 

Schedule Model (ERIC-S) through integrating the PERT technique and Bayesian network 185 

model, which could be adopted to determine the lower and upper activity duration values for 186 

schedule risk analysis of infrastructure projects. Furthermore, Khodakarami et al. (2007) 187 

mapped the CPM to Bayesian networks to provide the prediction for the construction schedule 188 

under uncertainty. 189 

Through applying Bayesian network, the complexity of risk correlations and uncertainty of risk 190 

occurrence can be modelled properly in construction schedule risk analysis of infrastructures. 191 

However, the development and application of Bayesian network is not easy which usually 192 

require large amount of data and time for (1) DAG and CPTs development; and (2) risk 193 

inference. Unfortunately, there are usually limited time and data provided for Bayesian network 194 

development and application in practice, preventing the popular implementation of Bayesian 195 

network in the risk analysis of infrastructures. It is time to develop a novel approach for 196 



 

 

improving the reliability, convenience and flexibility of Bayesian network development and 197 

application in construction schedule risk analysis of infrastructures. 198 

3. Research Methodology 199 

The novel approach has been developed and validated in this four-stage research for 200 

construction schedule risk inference through integrating network theory-based analysis and 201 

Bayesian Monte Carlo simulation (Figure 1). 202 

The network theory-based analysis is firstly conducted to identify key risks (nodes) and 203 

correlations (links) and construct the key risk network for construction schedule. The 204 

topological structure of key risk network is similar to that of DAG in Bayesian network model, 205 

where the nodes represent risks and links represent the cause-effect relationships. The 206 

development of DAG in Bayesian network model can then be developed based on the 207 

constructed key risk network using DFS and A-MWST algorithms. The CPTs of Bayesian 208 

network model can be further worked out using the leaky-MAX model. Based on the developed 209 

Bayesian network model, the Bayesian Monte Carlo simulation is conducted for generating 210 

reliable probability of each possible state of risk occurrence (i.e., ‘Better than expected’, 211 

‘Expected’ or ‘Worse than expected’). Finally, the case study is conducted according to a real 212 

underground project for approach validation. 213 

[Insert: Figure 1 Overall flowchart for research] 214 

In this research, the main structure for tunnelling of underground railway project in Greater 215 

Bay of China was chosen for case study with the considerations: (1) the project is representative 216 

for its type (transportation), complexity, importance and size, (2) the data was accessible to 217 

conduct this research, (3) construction schedule delay has already happened or is highly 218 

possible to occur in the construction process, and (4) researchers have built a good relationship 219 

with the project team, which helped secure the access to the project for further study. Two focus 220 

group discussions have been organized with five senior members from the project management 221 

team. Although ideally all stakeholders should participate in discussion to achieve a consensus, 222 

it is more efficient in practice to have only senior members from the project management team 223 

involved to provide enough information (Yang and Zou, 2014). All participants in focus group 224 

discussions were selected based on the idea of ‘Applicability’, in which participants should 225 

have rich knowledge and something to say on the discussion topic, have similar socio-226 

characteristics, and be comfortable talking to each other. The data generated based on the 227 

synergy of group interactions could thus be applied to the development of hybrid approach. 228 



 

 

3.1 1st round focus group discussion 229 

The 1st round focus group discussion was designed for developing key risk network of case 230 

project. It lasted for around 2 hours and mainly focused on two aspects: (1) the identification 231 

and verification of construction schedule risks within the context of case project; (2) the 232 

identification and assessment of links among schedule risks within the context of case project. 233 

Before the 1st round focus group discussion, a brief introduction about network theory-based 234 

analysis has been presented to the participants, and a list of potential construction schedule 235 

risks from literature review (Table 1) has also been provided to participants as a reference to 236 

break their cognitive limitations. 237 

The post-discussion log and notes were kept well, which recorded the information related to 238 

the double-check of whether the recording is functioning properly, the researcher’s reflections 239 

and elaborations about the focus group discussion, and the learning from the discussions. The 240 

post-discussion notes coupled with the main data collected from the discussion notes ensure 241 

the quality and reliability of the data for analysis. 242 

3.2 2nd round focus group discussion 243 

The 2nd round focus group discussion was designed for developing Bayesian network model 244 

according to the case project, which also involved the same five senior members participating 245 

in the 1st round focus group discussion. It lasted for around 2 hours and mainly focused on two 246 

topics: (1) verification and examination of developed DAG structure of Bayesian network 247 

model; and (2) development of CPTs of Bayesian network model. The post-discussion log and 248 

notes were also kept well with those from the 1st round focus group discussion. 249 

4. Development of Key Risk Network 250 

4.1 Identification of the network boundary 251 

As the foundation of developing key risk network, the boundary (i.e., specific risks) should be 252 

identified and examined at first.  253 

The classical experience-based method is one of the most popular methods for risk 254 

identification. It includes only core stakeholders to perform the risk identification process, 255 

which is conducted based on a stakeholder’s or a small group of stakeholders’ experiences on 256 

‘what are the risk categories’ and ‘what are the risks’ by interviews, surveys or focus group 257 

discussions. It is convenient and highly efficient to provide insights into risks according to the 258 

rich experience of core stakeholders, but it is difficult for the core stakeholders to break the 259 

cognitive limitations and draw the whole set of boundaries (Chen, 2019; Yang and Zou, 2014). 260 



 

 

In this research, the classical experience-based method was adopted to identify risks for 261 

constructing risk network through the 1st round focus group discussion. Before this focus group 262 

discussion, a list of potential construction schedule risks from literature review (Table 1) was 263 

also provided to participants as a reference to help them break their cognitive limitations and 264 

draw comprehensive boundaries. 265 

4.2 Establishment and assessment of links 266 

After defining the risk network boundary, the links between risks in this research are considered 267 

between each pair of risks (Fang et al, 2012). The risk structure matrix (RSM) method is 268 

commonly adopted to analyse risk links, which was also adopted in this research.  269 

The RSM (i.e., adjacency matrix) is defined as a square matrix with entry 𝑅𝑆𝑀𝑖𝑗 = 𝑆𝑖𝑗 =270 

𝐼𝑖𝑗 × 𝑃𝑖𝑗 when there is a relationship from 𝑖th risk, 𝑅𝑖, to 𝑗th risk, 𝑅𝑗, otherwise, 𝑅𝑆𝑀𝑖𝑗 =271 

𝑁𝑢𝑙𝑙, where 𝑆𝑖𝑗 is the strength of link, 𝐼𝑖𝑗 is the intensity of impact from this one risk to the 272 

other paired, and 𝑃𝑖𝑗 is the likeliness of this impact to happen (Mok et al., 2017; Yang and 273 

Zou, 2014). The five-point Likert scales are adopted to measure 𝐼𝑖𝑗 (from 1 = ‘No impact’ to 274 

5 = ‘Extraordinarily significant impact’) and 𝑃𝑖𝑗 (from 1 = ‘Never happen’ to 5 = ‘Always 275 

happen’). 276 

In order to moderate the confusion and divergence of links establishment and assessment, the 277 

1st round focus group discussion was held to develop the RSM with quantitative assessment 278 

(Yang and Zou, 2014). The outcomes can identify and quantify the links between risks. 279 

4.3 Visualisation of network 280 

Once the nodes and links have been identified and assessed, a construction schedule risk 281 

network for the target infrastructure project can be developed and mapped as a graph 𝐺(𝑁, 𝐾), 282 

where the identified risks are mapped as 𝑁 nodes connected by 𝐾 weighted arrows. 283 

In this research, the NetMiner 4 was used to visualise the risk network for its high competence 284 

in the processing and exploratory analysis of huge networks (Furht, 2010). In the network graph 285 

𝐺(𝑁, 𝐾)  presented, nodes represent the risks where different shapes and colours of them 286 

indicate different risk categories and sub-categories respectively. The arrows are the links 287 

between risks, of which the thicknesses indicate the strength of links. 288 

4.4 Topological analysis of risk network 289 

With risk network mapped as 𝐺(𝑁, 𝐾), the structural configuration is explored and explained 290 

by the metrics of topological analysis (Table 2).  291 



 

 

This analysis consists of three levels. Firstly, through the network-level analysis, the network 292 

density and cohesion are calculated out to unravel the network structure quantitatively. The 293 

value of density indicates how closely the risks are situated in a network, and the value of 294 

cohesion implies the complicated of network configuration in terms of node reachability. Then 295 

the node-level analysis is further conducted to determine the key risks through examining the 296 

direct and/or propagating impacts of nodes, as well as their functions and properties in the 297 

influence network. Five node-level metrics were calculated and analysed in this research, 298 

namely, degree difference, ego network size, node betweenness centrality, out-status centrality, 299 

and total brokerage (Table 2). Finally, the link-level analysis is conducted to measure the extent 300 

that a risk link plays a gatekeeper role in governing the influences passing through it based on 301 

betweenness centrality (Chen, 2019; Yang and Zou, 2014). A greater centrality value implies a 302 

more critical link. 303 

[Insert: Table 2 Definition of metrics for topological analysis] 304 

4.5 Interpretation of the results 305 

Based on the results of analysis at three levels, the key risks and key risk links can be identified. 306 

The key risks are distinguished from the risk network with high values in one or more of nodal 307 

metrics, including degree difference (𝐷𝑑), ego network size (𝐸), betweenness centrality (𝐵), 308 

out-status centrality (𝑆), and brokerage. Meanwhile, the key risk links are identified with high 309 

values in betweenness centrality at the link-level.  310 

The key risk network thus consists of (1) key risks, (2) key risk links, (3) non-key risks involved 311 

in key risk links, and (4) non-key risk links involving key risks. This developed key risk 312 

network provides essential information of construction schedule risks for infrastructures but 313 

with more concise and manageable structure (Chen, 2019). 314 

5. Development of Bayesian Network 315 

5.1 The construction of DAG structure 316 

The construction of DAG can provide a network structure for Bayesian network model, where 317 

two kinds of methods have been commonly adopted, namely the expert knowledge driven 318 

structure construction method (Hu et al., 2013; Luu et al., 2009), and the observational data 319 

driven structure learning method (Lee et al., 2009). However, the structure learning method is 320 

not appropriate to be applied in the field of infrastructures due to (1) the uniqueness and 321 

uncertainty of construction schedule risks for infrastructures; and (2) the data provided for 322 

training process. Although the structure construction method conforming to the verified 323 



 

 

causalities is more suitable for risk analysis of infrastructures, it can be time-consuming for 324 

construction process and inevitably introduce subjective bias from experts (Hu et al., 2013). 325 

Due to limited time and data, it is reasonable to use the key risk network from network theory-326 

based analysis as basis to generate the DAG structure considering that the topological structure 327 

of key risk network is similar to that of DAG in Bayesian network model, where the nodes 328 

represent risks and links represent the cause-effect relationships. This novel approach 329 

integrating the network theory and Bayesian network is not only more convenient and resource-330 

saving but also reliable for incorporating both expert knowledge and analysis metrics (Table 331 

2). 332 

In order to transform the network from directed cyclic graph (DCG) to DAG properly, it is the 333 

key to find the directed cycles in network and eliminate these cycles without essential 334 

information loss, where the directed cycles are formed through ‘starting at any vertex ν and 335 

following a consistently-directed sequence of edges that eventually loops back to ν again’. In 336 

this research, there are two steps developed to construct DAG from key risk network, including 337 

(1) searching cycles by DFS algorithm, and (2) constructing DAG by A-MWST algorithm. 338 

5.1.1 Searching cycles by DFS algorithm 339 

The DFS algorithm is adopted as the searching strategy on account of its convenience and 340 

rapidity to traverse or search the tree or graph data structures as far as possible (Cormen et al., 341 

2001). The pseudocode of recursive DFS algorithm is as follows (Goodrich and Tamassia, 342 

2006): 343 

 344 

Based on recursive DFS algorithm, the process of applying DFS algorithm in searching cycles 345 

within the key risk network is developed as follows: (1) Define the key risk network as the 346 

graph 𝐺  with vertices 𝑣 , (𝐺, 𝑣) , and define 𝑤𝑒𝑖𝑔ℎ𝑡 == 𝐵(𝑅𝑖 → 𝑅𝑗) ; (2) Select an 347 

unvisited node 𝑣 with 𝐷𝑖𝑛(𝑣) = 0 as the root node; define [𝑣] == 0, [𝑤] == 0, label 𝑣 as 348 

‘visited’, and begin the searching procedure; (3) Check whether 𝐺. 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡𝐸𝑑𝑔𝑒𝑠(𝑣) ==349 

{} or not, and if the answer is yes, then go to step 6; otherwise, go to step 4; (4) For all the 350 

available edges (i.e., links) in 𝐺. 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡𝐸𝑑𝑔𝑒𝑠(𝑣) , select the edge with the maximum 351 



 

 

weight 𝑒 which directs to the vertex 𝑤; define [𝑤] == [𝑤] + 1, 𝐺. 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡𝐸𝑑𝑔𝑒𝑠(𝑣) ==352 

𝐺. 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡𝐸𝑑𝑔𝑒𝑠(𝑤)\{𝑒} ; (5) Define [𝑣] == [𝑤] , and check whether the 𝑤  (or 𝑣 ) has 353 

been labelled or not; if the answer is yes, then go to the step 6; otherwise, label 𝑤 as ‘visited’ 354 

and go to the step 3; (6) Define [𝑣] == [𝑣] − 1; check whether [𝑣] == 0 (i.e., the root node), 355 

if the answer is no, go to step 3; otherwise, further check whether all the nodes have been 356 

visited or not, if the answer is no, go to step 2, otherwise, stop the searching procedure; (7) 357 

Transform the key risk network (𝐺, 𝑣) into spanning tree through integrating the visited nodes 358 

and traversed edges (Cormen et al., 2001).  359 

There are usually four types of edges (i.e., links) in the spanning tree (Cormen et al., 2001): (1) 360 

the tree edges which belong to the spanning tree itself, (2) the forward edges which point from 361 

a node of the tree to one of its nonadjacent descendants, (3) the back edges which point from a 362 

node to one of its ancestors, and (4) the cross edges which do neither. The cycle must be existed 363 

if the back edge is existed, through which the cycles can be identified in the risk network. 364 

5.1.2 Constructing DAG by A-MWST algorithm 365 

With the cycles identified, the spanning tree transformed from key risk network need to be re-366 

developed to construct DAG structure through eliminating the identified cycles without 367 

essential information loss. 368 

The MWST algorithm can highly reserve the structure properties and provide the associated 369 

probability distribution closest to the probability distribution of the original network, as 370 

measured by the Kullback-Leibler divergence (KLD) (Pearl, 1988). Based on the MWST 371 

algorithm, the A-MWST algorithm has been developed in this research to re-developed DAG 372 

model from spanning tree: 373 

 374 

In this A-MWST algorithm, the betweenness centrality of link, 𝐵(𝑅𝑖 → 𝑅𝑗) , is a reliable 375 

metric for mutual information 𝐼(𝑅𝑖 → 𝑅𝑗) of corresponding edge and has been defined as the 376 



 

 

weight of corresponding edge. The process of applying A-MWST algorithm to constructing 377 

DAG based on spanning tree is designed as follows: (1) starting from the empty tree over all 378 

variables (i.e., nodes); (2) inserting the largest-weight edge (i.e., link); (3) finding the next 379 

largest-weight edge and adding it to the tree if no cycle is formed; otherwise, discarding the 380 

edge and repeating this step; and (4) repeating the third step until all edges have been selected 381 

and an associated DAG is finally constructed whose weight has the maximum value of 382 

∑ 𝐵(𝑣 → 𝑤)(𝑣→𝑤),𝑣,𝑤𝜖𝐺 . 383 

5.2 The development of CPTs 384 

The development of CPTs is another obstacle preventing the adoption of Bayesian network in 385 

the practice of construction schedule risk management with limited time and data, whose 386 

complexity increases exponentially with the number of parent nodes and possible values (or 387 

states) of nodes (Xie and Thomas, 2013; Zagorecki and Druzdzel, 2013). For example, in a 388 

multi-valued Bayesian network with 𝑚  possible values, there can be 𝑚𝑛+1  conditional 389 

probabilities in the CPT for a node with 𝑛 parent nodes. Apart from the huge amounts of time 390 

and data it requires to assess all the probabilities for CPTs, it can also be problematic to what 391 

extent experts can be expected to coherently provide the probabilities at the level of detail 392 

required (Wisse et al., 2008). 393 

In order to relieve the elicitation task for developing the CPTs, there are two kinds of ways 394 

commonly adopted (Wisse et al., 2008). The first one is to provide an easier way for experts to 395 

deliver CPTs. For instance, Van Der Gaag et al. (1999) transcribed the CPTs using the scale of 396 

both numerical and verbal anchors. However, the efforts to deliver the full CPTs though 397 

reduced is still exponential in the number of variables. The second way to reduce these efforts 398 

is to reduce the number of probabilistic assessments to be made, for example, reducing the 399 

number of variables (e.g., Luu et al., 2009) or limiting the number of possible values (or states) 400 

(e.g., Xie and Thomas, 2013). However, such a way will lead to the unavoidable loss of 401 

information (Wisse et al., 2008). 402 

Considering both the efforts reduction and information reservation, the canonical probabilistic 403 

model was adopted in this research for reducing the number of probabilities to be specified 404 

through delivering approximate probabilities (Xie and Thomas, 2013; Wisse et al., 2008). One 405 

of the most widely used technique among canonical probabilistic models is the noisy-MAX 406 

model introduced by Diez (1993), the generalization applied in addressing multi-valued 407 

variables of the noisy-OR model. In this noisy-MAX model, the CPT is derived from the 408 

‘marginal conditional’ probability distributions specified for each parent using the max 409 



 

 

function (Diez, 1993). The noisy-MAX model just requires a small number of parameters to 410 

specify the entire CPTs, which is linear in the number of conditioning variables rather than 411 

exponential (Wisse et al., 2008). It significantly reduces the efforts in knowledge elicitation 412 

from experts (Wisse et al., 2008), improves the quality of distributions learned from data 413 

(Oniśko et al., 2001), and reduces the special and temporal complexity of algorithms for 414 

Bayesian networks (Diez and Galán, 2003).  415 

However, in practice, it is neither feasible nor desirable to model all variables influencing a 416 

certain node 𝑌 (Diez and Druzdzel, 2006). According to Diez and Druzdzel (2006), in this 417 

case, assuming that there is a large Bayesian network that properly represents the real-world 418 

domain defined over a set of variables 𝑉𝑅, the reduced model exploited can be defined as 419 

𝑉 (𝑉 ⊂ 𝑉𝑅), and the rest of the variables, 𝑉𝐼 = 𝑉𝑅\𝑉, are not explicit in the model where the 420 

index 𝐼 means ‘implicit’ (Figure 2(a)). The leaky model only models the explicit variables to 421 

provide useful information for constructing CPTs with reduced efforts. 422 

[Insert: Figure 2 The example of leaky model: (a) The relationship among the real-world 423 

domain 𝑉𝑅, reduced model 𝑉, and implicit model 𝑉𝐼; (b) The internal structure of a leaky 424 

ICI model, where variable 𝑍𝐿 summarises the effect of 𝑉𝐼] 425 

Before applying the leaky-MAX model, there are two assumptions (i.e., assumption of 426 

independence of causal influence (ICI)) for all cause-effect relationships involved: (1) each 427 

parent node 𝑋𝑖 has a probability 𝑝𝑖 of being sufficient to produce an impact 𝑍𝑖 on the child 428 

node 𝑌 in the absence of all other causes; and (2) the ability of each cause being sufficient is 429 

independent of the presence of the other causes (Figure 2(b)). Then the CPT, 𝑃(𝑦|𝑋), of leaky-430 

MAX model can be obtained through (Diez and Druzdzel, 2006): 431 

𝑃(𝑌 ≤ 𝑦|𝑋) = ∑ ∏ 𝑃(𝑧𝑖|𝑥𝑖)𝑖|𝑋𝑖∈𝑋𝑧|𝑓𝑀𝐴𝑋(𝑍)≤𝑦 ∑ 𝑃(𝑧𝐿)𝑧𝐼|𝑓𝑀𝐴𝑋(𝑧,𝑧𝐿)≤𝑦 =432 

∏ (∑ 𝑐𝑧𝑖

𝑥𝑖
𝑧𝑖≤𝑦 )𝑖 (∑ 𝑐𝑧𝐿

𝐿
𝑧𝐿≤𝑦 )                       (4) 433 

𝐶𝑦
𝐿 = ∑ 𝑐𝑧𝐿

𝐿
𝑧𝐿≤𝑦             (5) 434 

𝐶𝑦
𝑥𝑖 = ∑ 𝑐𝑧𝑖

𝑥𝑖
𝑧𝑖≤𝑦           (6) 435 

𝑃(𝑌 ≤ 𝑦|𝑋) = 𝐶𝑦
𝐿 ∙ ∏ 𝐶𝑦

𝑥𝑖
𝑖            (7) 436 

𝑃(𝑦|𝑋) = {
𝑃(𝑌 ≤ 𝑦|𝑋) − 𝑃(𝑌 ≤ 𝑦 − 1|𝑋), 𝑦 ≠ 𝑦𝑚𝑖𝑛

𝑃(𝑌 ≤ 𝑦|𝑋), 𝑦 = 𝑦𝑚𝑖𝑛
          (8) 437 

where 𝑧𝑖 are the explicit causes and 𝑧𝐿 are the inexplicit causes. 438 



 

 

Although the leaky-MAX model is applied under the ICI assumptions, it is good enough to 439 

provide the approximation of the CPTs compared with the reduction of efforts (Wisse et al., 440 

2008; Diez and Druzdzel, 2006). Zagorecki and Druzdzel (2006) fitted the noisy-MAX model 441 

(i.e., the specification of leaky-MAX model) to existing CPTs of three Bayesian networks and 442 

found that the model can provide a good fit for as many as 50% of CPTs, which is powerful 443 

enough in practice. 444 

In this research, the leaky-MAX model was thus applied to develop the CPTs 𝑃(𝑦|𝑋) under 445 

the ICI assumptions for reasonable simplification. The identified key construction schedule 446 

risks are taken as the variables in Bayesian network model, while three possible states are 447 

assigned to each variable, i.e., ‘State 1: Better than expected (B)’ defining that the condition is 448 

better than expected when risk happens, ‘State 2: Expected (E)’ defining that the condition is 449 

exactly as expected when risk happens, and ‘State 3: Worse than expected (W)’ defining that 450 

the condition is better than expected when risk happens. Ordinal comparison among these states 451 

can be defined by the influence degree of each state on construction schedule. Assuming that 452 

the ‘Expected’ state has already considered a certain influence degree of each risk on 453 

construction schedule, the states are ordinal according to the influence degree, where ‘B < E <454 

W’. 455 

6. Monte Carlo Simulation Driven Risk Inference 456 

The general problem of computing probabilities of interest from a joint probability distribution 457 

is probabilistic inference. With Bayesian network model developed, it provides the basis to 458 

predict the probability of risk occurrence where the probabilistic inference can be executed 459 

dynamically with two facts (Neil et al., 2005): (1) the effects of observations entered into one 460 

or more nodes can be propagated throughout the Bayesian network, in any direction, and the 461 

marginal distributions of all nodes are updated; and (2) only relevant inferences can be made 462 

in the Bayesian network; The Bayesian network uses conditional dependency structure and 463 

current knowledge base to determine those inferences that are valid. According to these two 464 

facts, the Junction Tree (JT) algorithm has been developed and commonly adopted in the exact 465 

inference of multiply connected networks. Details of JT algorithm can be found in the work of 466 

Lauritzen and Spiegelhalter (1988). 467 

In order to start this risk inference process with JT algorithm, the Monte Carlo simulation (MCS) 468 

is adopted for simulating the occurrence of risk as evidence according to the updated ‘risk sate 469 

probability boundary’. This ‘risk sate probability boundary’ can demonstrate the probability of 470 

occurrence of different risk states (i.e., state 1, 2 and 3), which is also the marginal probability 471 



 

 

of each risk state.  472 

The random number within the scale [0, 1] is firstly generated by MCS based on uniform 473 

probability distribution, which is the index of determining the state of target risk. The equal 474 

chance of getting any stochastic value between 0 and 1 can model the real system more 475 

realistically and accurately (Ökmen and Öztaş, 2008). 476 

𝑟𝑖~𝑈[0, 1]             (9) 477 

𝑅𝑖 = {

𝐵, 𝑟𝑖 ∈ [0, 𝑃𝑖𝐵]

𝐸, 𝑟𝑖 ∈ (𝑃𝑖𝐵, 𝑃𝑖𝐵 + 𝑃𝑖𝐸]

𝑊, 𝑟𝑖 ∈ (𝑃𝑖𝐵 + 𝑃𝑖𝐸 , 1]
          (10) 478 

where the 𝑟𝑖 is the random number generated to determine the state of 𝑖th risk; 𝑃𝑖𝐵, 𝑃𝑖𝐸 and 479 

𝑃𝑖𝑊 are the risk state probability boundaries of 𝑖th risk.  480 

In this Bayesian Monte Carlo simulation process, states of risks are simulated in a chain to 481 

introduce evidence in risk inference (Figure 3). This chain is defined according to the time 482 

sequence, where the priority of simulation will be given to the risks being predecessors or risks 483 

will be simulated simultaneously if no predecessor existed. It is reasonable to define this 484 

simulation sequence according to the time, which have mirrored the sequence of risk 485 

occurrence in practice. For instance, in Figure 3, risks 2 and 4 occurred at the time 𝑡1 are 486 

simulated firstly according to equation (9-10). After determining the risk state of these risks, 487 

JT algorithm is adopted to propagate the probability along the Bayesian network and update 488 

all other risks (i.e., Bayesian process in Figure 3). Then the simulation of risks occurred at the 489 

time 𝑡2 (e.g., risk 3 in Figure 3) are followed given the evidence of risk states of risks 2 and 490 

4. The JT algorithm is adopted again for probability propagation. The simulation and 491 

propagation processes are repeated until the states of all risks are determined, where one 492 

iteration of the Bayesian Monte Carlo simulation process is completed. Multiple iterations are 493 

usually needed to provide reliable results for risk inference of infrastructure construction 494 

schedule. It is usually sufficient to have 1,000~3,000 iterations for providing reliable results 495 

with affordable computational cost (Diaz and Hadipriono, 1993). This research thus had 3,000 496 

iterations and selected the same seed value for generating the same specific sequence of random 497 

numbers in every experiment, which makes the simulation become reproducible, and is useful 498 

for comparing the results derived from different conditions. 499 

[Insert: Figure 3 Example of one iteration of Bayesian Monte Carlo simulation process] 500 



 

 

7. Case Study 501 

7.1 Case background 502 

The main structure for tunnelling of an underground railway project in Greater Bay of China 503 

was selected for case study. This railway project was designed as part of a comprehensive 504 

transportation hub in this area, while this research focused on the construction of central 505 

ventilating shaft of the metro project, which is also the starting point of tunnel boring. It is an 506 

underground three-span two-story structure, whose length is 130.0 m from YDK46+010.8212 507 

to YDK46+140.8212, width is 31.8 m, and depth is 20.0 m. The main construction area of it is 508 

8262 m2 and affiliated construction area is 797.86 m2. 509 

This project began on 1st November 2017 and was expected to be completed before 20th June 510 

2018. As part of the transportation hub, the construction schedule should be under control to 511 

avoid the occurrence of construction delay. It is thus necessary for this project to conduct the 512 

construction schedule risk inference in advance. In the past projects, the project management 513 

team mainly relied on experience to manage construction schedule risks, which can identify 514 

and classify key risks but cannot quantify probabilities of such risks. The developed approach 515 

is needed by the project management team for quantitative risk inference. 516 

7.2 Case data collection 517 

Two rounds of focus group discussions have been held in August 2017 and October 2017 518 

separately to collect data for analysis. 519 

In the 1st focus group discussion, the construction schedule risks were firstly provided and 520 

verified by five participants from the project management team using the classical experience-521 

based method. Totally 32 construction schedule risks have been identified as the network 522 

boundary of risk network (Table 3). The links between risks were then identified and assessed 523 

according to the expert experience and opinions using the RSM method. Totally 262 links 524 

between risks have been identified, which constructed the risk network 𝐺(32, 262) together 525 

with 32 risks. The link strength was also provided for each identified link (Table 4). 526 

[Insert: Table 3 Construction schedule risks of case project] 527 

[Insert: Table 4 Example of RSM with link strength of case project] 528 

In the 2nd round focus group discussion held after the construction of DAG structure, the DAG 529 

structure was verified and canonical parameters for all risks involved in the DAG were 530 

collected to develop CPTs (Table 5 and 6). 531 



 

 

[Insert: Table 5 Canonical parameters for root risks of case project] 532 

[Insert: Table 6 Canonical parameters for Tw-R1] 533 

7.3 Results and analysis 534 

Based on the data collected, the construction schedule risk network can be constructed and 535 

visualised as 𝐺(32, 262) shown in Figure 4(a), where 32 risk (nodes) in different categories 536 

(shapes) and sub-categories (colours) were connected by 262 links (arrows). In order to 537 

construct the key risk network, the topological analysis has been conducted based on the 538 

metrics defined in Table 2.  539 

Based on the results of topological analysis at node-level, it was observed that the top three 540 

risks with high values of nodal metrics (𝐷𝑑 , 𝐸 , 𝐵 , 𝑆  and total brokerage) were highly 541 

overlapped and consistent. Totally 7 key risks have thus been identified (Table 7). Meanwhile, 542 

according to the results of link-level topological analysis, it was observed that a sharp decline 543 

was occurred at 10 in the L-shape curve of link betweenness centrality, where 𝐵(𝑅𝑖 → 𝑅𝑗) =544 

10 was set as the cut-off point to distinguish key risk links. Totally 20 key risk links have been 545 

selected for their values of betweenness centrality (𝐵) were higher than 10 (Table 7).  546 

In order to construct the key risk network with a simple structure but retaining most of essential 547 

information, besides key risks and links, other components involving key risks or involved in 548 

key risk links are also necessary to be included in the key risk network, where 14 non-key risks 549 

involved in the key risk links and 19 non-key risk links between key risks have thus been 550 

counted in (Table 7). As shown in Figure 4(b), the key risk network of case project has been 551 

constructed as 𝐺 (21, 39), which consisted of 21 risks (nodes) including 7 key risks and 14 552 

non-key risks and 39 links (arrows) including 20 key risk links and 19 non-key risk links. 553 

[Insert: Figure 4 (a) Construction schedule risk network of case project, 𝐺(32, 262); (b) 554 

Key construction schedule risk network of case project, 𝐺 (21, 39)] 555 

[Insert: Table 7 Components of key risk network] 556 

After developing the key risk network 𝐺 (21, 39), DFS algorithm was firstly adopted to search 557 

for the cycles if existed in the network through transforming the network into a spanning tree. 558 

It was observed that five back edges (i.e., links) were existed in the network, including Tw-559 

R2→S7R4, Tw-R1→Tw-R2, Tw-R1→S7R4, S1R6→S0R2, and S7R4→S1R5, indicating that 560 

there were cycles existed in the spanning tree. In order to further transform the cycled spanning 561 

tree into DAG structure, the A-MWST algorithm was then applied to eliminating these cycles 562 



 

 

and constructing the DAG structure. According to A-MWST algorithm, four risk links have 563 

been eliminated from 𝐺 (21, 39) due to their low weights (i.e., the betweenness centrality of 564 

link), including Tw-R1→Tw-R2, S1R5→S7R4, S1R6→S0R2, and S7R4→Tw-R2. Finally, the 565 

DAG structure 𝐺(21, 35) consisting of 21 risks and 35 risk links has been developed (Figure 566 

5), which however has no cycle existed compared to the key risk network 𝐺 (21, 39). 567 

[Insert: Figure 5 DAG structure of case project, 𝐺(21, 35)] 568 

Following the development of DAG structure, the leaky-MAX model was further adopted to 569 

generate the CPTs based on the determined canonical parameters (Table 5 and 6) under the ICI 570 

assumptions. According to the equations (4-8), the CPTs for risks of the case project can be 571 

figured out conveniently (Table 8). 572 

[Insert: Table 8 Part of CPTs for Tw-R1] 573 

Finally, the MCS-driven risk inference can be conducted to identify key construction schedule 574 

risks and predict the probability of risk occurrence. Based on the construction process (time 575 

sequence), the simulation sequence was determined as ‘S1R3, S4R5, S4R6, S9R3→ S4R4, 576 

S1R2→ S0R2, S1R6→ Tw-R2→ Tw-R1→ Sp-R4, S6R1, S6R2, S7R4→ S1R5, S7R3→ S3R1, 577 

S7R2→Tr-R3→S4R8, S2R1’. After 3,000 iterations of the simulation, the results provided a 578 

good estimation of risk occurrence of case project, quantifying the probability of three states 579 

for each risk (Figure 6).  580 

According to the simulated probability of ‘State 3: Worse than expected’, these 21 risks of case 581 

project can be classified into three categories, including high-risky, medium-risky and low-582 

risky, which require different risk management strategies from the project management team. 583 

The high-risky ones represent the nine risks with probability of state 3 higher than 50% (i.e., 584 

50% ≤ 𝑃𝑤 ≤ 100% ) (e.g., Figure 6a-6c), including S7R3 (89.6%), S7R4 (86.9%), S7R2 585 

(84.1%), Tw-R1 (76.7%), Tw-R2 (72.8%), Sp-R4 (69.6%), S1R6 (66.7%), S4R4 (50.0%), 586 

S6R2 (50.7%). The management team should focus on these risks to avoid risk occurrence and 587 

prepare plans for mitigating the risk impact if happens. The medium-risky ones represent the 588 

eight risks with 20% ≤ 𝑃𝑤 < 50%  (e.g., Figure 6d-6f), including S6R1 (49.1%), S0R2 589 

(44.2%), S3R1 (43.4%), Tr-R3 (37.6%), S2R1 (36.4%), S1R5 (35.2%), S1R2 (27.9%) and 590 

S4R6 (20.2%), where the team need to pay attention to these risks after the high-risky ones and 591 

also prepare plans for risk mitigation. The low-risky ones represent the four risks with 0 ≤592 

𝑃𝑤 < 20% (e.g., Figure 6g-6i), including S9R3 (0%) and S4R8 (9.3%), S1R3 (13.1%) and 593 

S4R5 (19.4%) where it is not necessary for the team to pay much attention to them but have 594 



 

 

risk mitigation plans prepared.  595 

Based on the results, the risk management and mitigation for these 21 risks were prioritised for 596 

decision-makers to draw a risk management benchmark with four different levels (from 0 to 3) 597 

and resources input accordingly. Specifically, the level-0 indicates that no risk happens, and 598 

the construction progresses as expected. The level-1 indicates that one or more low-risky risks’ 599 

states are ‘Worse than expected’, but the construction schedule is just impacted slightly. The 600 

level-2 indicate that one or more medium-risky risks’ states are ‘Worse than expected’, and the 601 

construction schedule is impacted moderately. The level-3 indicate that one or more high-risky 602 

risks’ states are ‘Worse than expected’, and the construction schedule is impacted seriously. 603 

This benchmark can help decision-makers understand the risk interdependencies and dynamic 604 

nature of risk propagation, and avoid rippled disruption of project construction and delivery. 605 

To verify the results, these probabilities of risks were back to the project team for further 606 

discussion, where the five experts participating the focus group discussion before were invited 607 

to review the probability of each risk and assess how appropriate these probabilities are based 608 

on their rich experience on similar projects. Each expert was asked the same question “How 609 

appropriate are these probabilities to be used to predict risk states?” Through using the five-610 

point Likert scale (from 1 = “Not appropriate at all” to 5 = “Very appropriate”), the results 611 

showed that all the probabilities (of state 1, 2 and 3) have been scored over 3 averagely, 612 

indicating that the simulation results were believed to be appropriate to be used to predict the 613 

risk states and occurrence of this case project. 614 

[Insert: Figure 6 Examples for probability of occurrence of risk states (𝑃𝐵, 𝑃𝐸 , 𝑃𝑤): (a) S7R2, 615 

(b) Sp-R4, (c) Tw-R2, (d) S1R5, (e) S6R1, (f) S3R1, (g) S1R3, (h) S4R8, (i) S9R3.] 616 

8. Discussion 617 

This research contributes to the construction schedule risk inference of infrastructures through 618 

developing a state-of-the-art solution, hybrid approach, based on Bayesian Monte Carlo 619 

simulation. It outperforms other construction schedule risk analysis methods in its reliability, 620 

convenience and flexibility to deal with the complex construction schedule risks. 621 

Firstly, this approach provides more insights into the diversity and interdependency of 622 

construction schedule risks, generating more reliable results of risk identification and risk 623 

inference. The diversity of and interdependencies between construction schedule risks have 624 

been considered as main reasons for complexity of infrastructures (Fang et al., 2012; Chu et 625 

al., 2003). It would be necessary and useful to address this complexity for providing reliable 626 



 

 

prediction of risk occurrence (Raz and Michael, 2001). Compared with previous construction 627 

risk analysis methods, such as correlated schedule risk analysis model (CSRAM) (Ökmen and 628 

Öztaş, 2008) and system dynamics approach (Wang and Yuan, 2016), this approach steps 629 

further to not only identify risk interdependencies but also clarify how these interdependencies 630 

impact the risk inference. Through network theory-based analysis and algorithms (DFS and A-631 

MWST), this approach can identify diverse risks and interdependencies which are transformed 632 

into DAG structure with essential information preserved. Through Bayesian Monte Carlo 633 

simulation, the identified interdependencies are adopted to propagate the impact among risks 634 

for risk inference. 635 

Secondly, the developed approach is more convenient in data acquisition and processing for 636 

risk inference. Although the data of infrastructure construction is becoming richer recently, it 637 

is often impossible in practice to define and use a unified classification code for risk 638 

identification and data template for Bayesian network development and training (Lee et al., 639 

2009). The expert knowledge driven structure construction method for Bayesian network 640 

development is however time-consuming and will inevitably introduce subjective bias (Hu et 641 

al., 2013; Luu et al., 2009). For example, Nasir et al. (2003) used to adopt pre-screening, testing 642 

and semi-supervised survey to save time in Bayesian network development but they still 643 

claimed that the risk relationship identification and quantification (i.e., DAG and CPTs 644 

development) were difficult and even impractical, which took 6 weeks with 69 risks. This 645 

approach can fully leverage a small dataset for network theory-based analysis and deal with 646 

the exponential growth of the number of parameters in CPTs using leaky-MAX model. It only 647 

took totally 4 hours to collect and process data for Bayesian network development. With the 648 

network theory-based analysis and proposed algorithms (i.e., DFS and A-MWST), only the 649 

strength of link 𝑆𝑖𝑗 is required to generate the key risk network and further the DAG structure. 650 

With the leaky-MAX model, only (𝑚𝑛 ∙ 𝑚)  canonical parameters are needed to generate 651 

reliable CPTs rather than (𝑚𝑛 ∙ 𝑚)  conditional probabilities for a node in multi-valued 652 

Bayesian network with 𝑚  possible values and 𝑛  parent nodes, significantly reducing the 653 

data requirement and computational complexity. 654 

Finally, the Bayesian Monte Carlo simulation method provides more flexibility for construction 655 

schedule risk inference of infrastructures in practice. At the project planning stage, the risk 656 

inference of construction schedule has been often conducted using observations to provide the 657 

predicted probability of risk occurrence in a one-shot way. For example, Khodakarami et al. 658 

(2007) developed a Bayesian network solution based on CPM to predict the construction 659 

schedule under uncertainty and conducted the scenario analysis for probability of resources 660 



 

 

level based on hypothetic observations. Nasir et al. (2003) and Luu et al. (2009) both developed 661 

a Bayesian network model for quantifying the probability of risk occurrence given the CPTs 662 

and hypothetic observations. Compared to previous research, the simulated data are introduced 663 

as soft evidence in this research to trigger risk inference at the project planning stage, which 664 

enables variables to be simulated individually or simultaneously according to CPTs rather than 665 

hypotheses if the observation data are not available. This developed approach is however 666 

compatible with the observation data and other datasets (e.g., real-time sensor/visual data 667 

informing the risk states) when they are available to trigger risk inference and update the risk 668 

network in near real-time. Moreover, by adopting the same seed value, the simulation process 669 

can be reproducible and useful for comparing the results derived from different conditions. 670 

9. Conclusions 671 

The construction of complex infrastructures has provided rich data for construction schedule 672 

risk management which however has still been challenged by construction delay with 673 

enormous losses. This research developed a novel Bayesian Monte Carlo simulation driven 674 

approach to predict and quantify the probability of construction schedule risk occurrence. The 675 

developed approach efficiently addresses two problems through fully leveraging the dataset 676 

from construction schedule risks: (1) the lack of data template for Bayesian network 677 

development in practice, and (2) the lack of observation data for triggering risk inference in 678 

project planning. It addressed the first problem through developing a data transformation 679 

approach based on DFS and A-MWST algorithms and leaky-MAX model and converting a risk 680 

network into Bayesian network. It then resolved the second problem by designing a Bayesian 681 

Monte Carlo simulation driven risk inference method. The developed approach has been 682 

validated by a case study, where the results enabled the project team to prepare look-ahead risk 683 

mitigation strategies. 684 

This research makes theoretical contributions to the body of knowledge through analysing the 685 

diversity and interdependency of construction schedule risks from a network perspective (i.e., 686 

network theory and Bayesian network). This network-oriented approach handles construction 687 

schedule risks of complex projects (e.g., infrastructures) in a system engineering approach to 688 

avoid rippled disruption of project delivery (Whyte, 2016). The new view and rethinking to 689 

manage such risks of complex projects provide deeper insights into the complexity and 690 

uncertainty of construction of infrastructures. The practical contributions of this research 691 

mainly include: (1) a novel approach developed to construct Bayesian network and conduct 692 

Bayesian Monte Carlo simulation for construction schedule risk inference. Compared to 693 



 

 

traditional methods, it can outperform in reliability of results, convenience of data acquisition 694 

and processing and flexibility in practice; and (2) the findings from case study. The constructed 695 

key risk network 𝐺 (21, 39) can help decision-makers to identify construction schedule risks 696 

and understand risk propagation of infrastructures. The prediction of probabilities of risk 697 

occurrence can further help decision-makers prioritise the construction schedule risks and 698 

make a risk management benchmark. These findings however are not limited to the case project 699 

but can be applied to other similar projects. They can also assist researchers and practitioners 700 

in understanding the practicability of this hybrid approach. 701 

There are also some limitations needed to be addressed in the future research. Firstly, the data 702 

transformation approach is semi-automatic which requires many efforts to transform key risk 703 

network to DAG structure. Secondly, this research only considers the states of risks in time 704 

sequence while ignores the dynamic nature of risk states in the longitude. Thirdly, more case 705 

studies and more objective assessment methods are needed to validate this developed approach. 706 

Future research should be conducted to address these limitations through: (1) developing an 707 

automatic approach and system to integrate network theory-based analysis and Bayesian 708 

network; (2) developing a dynamic Bayesian network based approach for analysing risk 709 

dynamics in the longitude; (3) conducting more case studies of infrastructures both in China 710 

and overseas to validate and further improve this developed approach; and (4) integrating the 711 

probabilities of risk occurrence with impacts on construction schedule to predict the 712 

construction schedule under uncertainty and also to verify this developed approach 713 

quantitatively. 714 
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