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Abstract
J-holomorphic curves in nearly Kähler ℂℙ3 are related to minimal surfaces in S4 as well as 
associative submanifolds in Λ2

−
(S4) . We introduce the class of transverse J-holomorphic 

curves and establish a Bonnet-type theorem for them. We classify flat tori in S4 and con-
struct moment-type maps from ℂℙ3 to relate them to the theory of U(1)-invariant minimal 
surfaces on S4.

Keywords Nearly Kähler manifolds · J-holomorphic curves · Moving frames · Moment 
maps · Toda lattice

1 Introduction

In symplectic geometry, the theory of J-holomorphic curves is a fundamental topic, which 
has for example led to the construction of Gromov–Witten invariants. From a Riemannian 
point of view, it is desirable to have examples of minimal surfaces in Einstein manifolds. 
One class of such examples comes from complex geometry by considering holomorphic 
curves in Einstein–Kähler manifolds. Nearly Kähler six-manifolds are Einstein with posi-
tive Einstein constant and J-holomorphic curves provide a class of examples of minimal 
surfaces inside them. However, they are neither symplectic nor complex and apart from 
local statements not much is known about J-holomorphic curves in general almost complex 
manifolds. One feature that is shared with the symplectic case is that the nearly Kähler 
structure equations guarantee that the volume remains constant on connected components 
of the moduli space of J-holomorphic curves [32]. Nevertheless, a general, in-depth theory 
of J-holomorphic curves in nearly Kähler manifolds seems out of reach at the moment, 
which is why most work has been concerned with studying them in the homogeneous 
examples. Historically, M = S6 has been the example studied the most, set-off by Bryant’s 
construction of torsion-free J-holomorphic curves as integrals of a holomorphic differen-
tial system on G̃r(2,ℝ7) [10]. More recently, questions about certain components of the 
moduli space of J-holomorphic curves have been tackled [15].

J-holomorphic curves in the twistor spaces ℂℙ3 and the flag manifold �  are related to spe-
cial submanifolds in two different geometric settings. Firstly, it is a general result that the cone 
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of a J-holomorphic curve in a nearly Kähler manifold M gives an associative submanifold in 
the G2-cone C(M). Remarkably, J-holomorphic curves in ℂℙ3 and �  also give rise to complete 
associative submanifolds in the Bryant–Salamon spaces Λ2

−
(S4) and Λ2

−
(ℂℙ2) [23]. Secondly, 

via the Eells–Salamon correspondence [14], J-holomorphic curves in the twistor spaces are 
in correspondence with minimal surfaces in S4 and ℂℙ2 . Somewhat similar to torsion-free 
curves in S6 , the space ℂℙ3 admits a particular class of J-holomorphic curves called super-
minimal curves. They can also be constructed via integrals of a holomorphic differential sys-
tem and admit a Weierstraß parametrisation [9]. In [21], N. Hitchin developed powerful tools 
to reduce minimal tori in S3 to algebraic geometry in a very different way. To a minimal torus 
he associates a spectral curve, which is a hyperelliptic curve and whose geometry contains all 
information about the minimal surface. Non-superminimal tori in S4 have also been studied 
with methods of integrable systems [29]. The aim of this article is to describe various results 
on non-superminimal surfaces in S4 from the twistor perspective, building on Xu’s work on 
J-holomorphic curves in nearly Kähler ℂℙ3 [33]. Adapting the twistor perspective means that 
dimension of the ambient space is increased while the second-order PDE describing a mini-
mal surface in S4 is reduced to a first order PDE for J-holomorphic curves in ℂℙ3 . Since the 
key geometric feature we exploit is the twistor fibration ℂℙ3

→ S4 , it is to be expected that 
similar techniques can be applied to the flag manifold.

1.1  Summary of results

By Cartan–Kähler theory, J-holomorphic curves in an almost complex manifold of dimension 
6 are locally described by four functions of one variable. Two functions �−, �+ of two vari-
ables that satisfy a Laplace-type equation are parametrised by four functions of one variable 
too. By using an appropriate adaption of frames, we distill such two functions �− and �+ geo-
metrically. The twistor fibration ℂℙ3

→ S4 comes with a natural connection Tℂℙ3 = H⊕ V . 
We will focus on J-holomorphic curves which are going to be called transverse. In particular, 
they have the property that they are nowhere tangent to horizontal bundle H or vertical bundle 
V , see Definition 4.1. The focus of this article will be on transverse J-holomorphic tori. In fact, 
a compact transverse J-holomorphic curve is necessarily of genus one.

The material covered in Sect.  2 provides background and context for the subsequent sec-
tions. Section  3 establishes relationships between geometric quantities associated with a mini-
mal surface and those of its twistor lifts, featuring a twistor interpretation of Xu’s correspond-
ence of certain J-holomorphic curves in ℂℙ3.

In Sect.  4, we define the two functions �−, �+ ∶ X → ℝ for a transverse J-holomorphic 
curve which measure angles between different components of dΦ in Tℂℙ3 . They always sat-
isfy the 2D periodic Toda lattice equation for ��(2) which are equivalent to the system

where �2 = (�−�+)
−1∕2 is the conformal factor of the induced metric on X and Δ0 the Lapla-

cian for the corresponding flat metric. Viewing the surface in the ambient space ℂℙ3 means 
we can characterise additional data equipped to the curve, such as the first and second fun-
damental form in ℂℙ3 . It turns out that both of them can be expressed through the func-
tions �− and �+ . As an application, we show in Theorem 5.5 that any flat J-holomorphic 
torus is a Clifford torus. The second fundamental form II

ℂℙ
3 is a complex linear tensor and 

its differential �̄�II
ℂℙ

3 can be computed neatly in terms of �−, �+ and vanishes exactly in 

Δ0log(�
2
−
) = −4(3�2

−
+ �2

+
− 2)�2

Δ0log(�
2
+
) = −4(3�2

+
+ �2

−
− 2)�2
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points where the curve is non-transverse. The normal bundle � of a J-holomorphic curve 
carries a natural holomorphic structure. We show that the normal bundles of all transverse 
J-holomorphic tori are isomorphic to each other, in particular all of them admit a holomor-
phic section.

Section 5 features a proof of a Bonnet-type theorem for J-holomorphic curves stating 
that the first and second fundamental form on X are determined by �− and �+ . The essence 
of Theorem 5.2 is that if X is simply connected then a ℂ∗-family of transverse J-holomor-
phic curves can be recovered from a solution to the 2D Toda lattice equation. Roughly 
speaking, this can be seen as a complex analogue to the statement that curves in ℝ3 are 
essentially classified by their curvature and torsion.

To get hold of examples of transverse J-holomorphic curves we impose an arbitrary 
U(1)-symmetry on them in Sect. 6, given by a certain element � ∈ ��(2) . Such an action 
commutes with a � 2-action of automorphisms on ℂℙ3 . Given a � 3-action on a torsion-free 
G2 manifold M7 the multi-moment maps give rise to a local homeomorphism M7∕𝕋 3

→ ℝ
4 

[25, Theorem 4.5]. The only known example of a nearly Kähler manifold admitting a � 3

-action is S3 × S3 whose geometry has been described with multi-moment maps by Dixon 
[13]. Assuming a � 2 symmetry on a nearly Kähler manifold M6 is less restrictive but the 
corresponding multi-moment map � ∶ M6

→ ℝ , introduced by Russo and Swann [30], is 
only real-valued. The question arises if there is a geometric construction of a map into ℝ4 
which descends to a local homeomorphism to the � 2 quotient of M, at least away from a 
singular set. We construct a map p ∶

𝕋 2 �(ℂℙ
3⧵S)

→ ℝ
4 for a certain singular set S and in 

Theorem 6.10 it is shown that p descends to a branched double cover from 
𝕋 2∖ℂℙ

3⧵S onto 
its image D ⊂ ℝ

4 . p maps U(1)-invariant J-holomorphic curves in ℂℙ3 to solutions of the 
1D Toda lattice equation for ��(2) in D. Derived from the Lax representation of this equa-
tion one derives two preserved quantities, giving rise to a map u ∶ D → ℝ

2.
If one equips ℂℙ3 with its Kähler structure then a � 2-action gives rise to a symplectic 

moment map whose image is a quadrilateral. Composing u with p gives rise to a � 2 invari-
ant map P ∶ ℂℙ

3
→ ℝ

2 whose fibres contain U(1)-invariant J-holomorphic curves and 
whose image is a rectangle R̄ ⊂ ℝ

2 . Just as in the symplectic case, the fibre of P degener-
ate over the boundary 𝜕R̄ and are geometrically distinguished sets. In fact, Theorem 6.14 
relates P−1(𝜕R̄) to the nearly Kähler multi-moment map � , Clifford tori and certain fami-
lies of minimal tori in S4 discovered by B. Lawson [24].

2  Background

2.1  Nearly Kähler six‑manifolds

Nearly Kähler manifolds are a special class of almost Hermitian manifolds (M, g, J) satis-
fying the equation

where ∇ is the Levi–Civita connection on M and � denotes any tangent vector on M. Nearly 
Kähler manifolds have many desirable properties from different points of view. Nearly 
Kähler manifolds which are not Kähler are called strictly nearly Kähler manifolds. Since 
Kähler and strictly nearly Kähler manifolds are very different, we will assume that M is 
strictly nearly Kähler. Furthermore, we assume that n = 6 since this case of fundamental 
importance for various reasons. Firstly, they are Einstein with positive Einstein constant 

∇�J(�) = 0
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and vanishing first Chern class [19]. Furthermore, if M6 is nearly Kähler then the Riemann-
ian cone C(M) carries a torsion-free G2 structure. Another reason to focus on the case n = 6 
is that they are one of the building blocks of higher-dimensional nearly Kähler manifolds, 
due to a result by Nagy [28]. Every nearly Kähler manifold carries a unique connection ∇ 
with skew-symmetric torsion and holonomy contained in SU(3) , i.e. ∇g = ∇J = ∇� = 0.

Examples of nearly Kähler manifolds are scarce. In fact, there are only six known examples 
of compact nearly Kähler manifolds. If M = G∕H is a homogeneous strictly nearly Kähler 
manifold of dimension six, then M is an element of the following list [11, Theorem 1]

• G = G2 and H = SU(3) such that M = S6

• G = S3 × S3 × S3 and H = {(g, g, g) ∣ g ∈ S3} such that M = S3 × S3

• G = Sp(2) and H = S1 × S3 such that M = ℂℙ
3

• G = SU(3) and H = �
2 such that M = �  is the manifold of complete complex flags of ℂ3.

In each case, the identity component of the group of nearly Kähler automorphisms is equal 
to G and only for S3 × S3 there is a finite subgroup Γ of G acting freely on M, giving rise to 
locally homogeneous examples [12]. In addition, there are two known examples of compact, 
simply connected nearly Kähler manifolds which are not homogeneous but admit a cohomo-
geneity-one action. They have been constructed by L. Foscolo and M. Haskins via cohomoge-
neity one actions on S3 × S3 and S6 [17].

2.2  Twistor spaces

We briefly review a few fundamental results on four-dimensional twistor theory, see [14]. 
To each even-dimensional Riemannian manifold N one can associate a twistor space Z±(N) , 
which is a fibre bundle over N. The fibre of this bundle over x is given by

Unless specified otherwise, by twistor space Z(N) we refer to the convention of orientation 
reversing endomorphisms, i.e. Z−(N) . From now on, let N be four-dimensional such that 
the twistor space Z(N) can be identified with elements in Λ2

−
(N) of unit length. It is a sphere 

bundle over N which inherits the Levi–Civita connection from Λ2(N) . Hence TZ(N) splits 
into a vertical and horizontal subbundle TZ(N) = H⊕ V . It turns out that Z(N) possesses a 
natural almost complex structure J1 known as the Atiyah–Hitchin–Singer almost complex 
structure. It splits into a sum of almost complex structures on H and V . Reversing J1 on V 
defines the Eells–Salamon almost complex structure J2 . The two almost complex structures 
J1 and J2 are fundamentally different. It turns out that the twistor space of N = S4 with the 
round metric is ℂℙ3 . The fibration ℂℙ3

→ S4 is constructed by composing the map

with a diffeomorphism ℍℙ1 ≅ S4 . The twistor space of N = ℂℙ
2 is the flag manifold 

SU(3)∕� 2 . In both cases, J1 gives rise to the well-known Kähler structures on the spaces 
while J2 belongs to nearly Kähler structures. The splitting TZ(N) = H⊕ V is parallel 
with respect to ∇ when N = S4 or ℂℙ2 . For any immersion f ∶ X → N4 the differential 
df  defines a lift, called the Gauß lift, �̂� from X into the oriented Grassmannian bundle 

(2.1)
Z±(N) = {Jx ∶ TxN → TxN ∣J2

x
= −1, g(Jxv, Jxw) = g(v,w)

Jx preserves/reverses orientation}.

ℂℙ
3
→ ℍℙ

1, [z0 ∶ z1 ∶ z2 ∶ z3] ↦ [z0 + jz1 ∶ z2 + jz3]
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G̃r2(TN) . This bundle in turn projects to Z(N) such that by composition with �̂� one obtains 
a map � ∶ X → Z(N) which is called the twistor lift of f. 

 There is a general relation between the Riemannian geometry of N and (almost) complex 
geometry of Z(N) which is exemplified by the following result.

Proposition 2.1 (Eells-Salamon)[14, Corollary 5.4] Let X be a Riemann surface and N be 
a four-dimensional Riemannian manifold. Then f ∶ X → N is a minimal branched immer-
sion if and only if � ∶ X → Z±(N) is a J2-holomorphic non-vertical curve.

Note that if f ∶ X → N is a branched minimal immersion, i.e. minimal immersion off a 
discrete set of points, then there is a rank two subbundle E ⊂ f ∗(TN) which contains df (TX) 
so the Gauß lift is still well defined in this case. Furthermore, it should be mentioned that, 
since the domain is two-dimensional, a branched minimal immersion is the same thing as 
a conformal harmonic map. Via this correspondence, branched minimal surfaces in S4 are 
identified with J2-holomorphic curves in the nearly Kähler twistor spaces ℂℙ3.

2.3  The nearly Kähler structure on ℂℙ3

As indicated in the previous section, the nearly Kähler structure on ℂℙ3 can be defined 
via twistor structure. For explicit computations it is convenient to define the nearly Kähler 
from the homogeneous space structure ℂℙ3 = Sp(2)∕S1 × S3 . Identify ℍ2 with ℂ4 via 
ℍ = ℂ⊕ jℂ . This identification gives an action of Sp(2) on ℂ4 which descends to ℂℙ3 and 
acts transitively on that space. The stabiliser of the element (1, 0, 0, 0) is

which shows ℂℙ3 = Sp(2)∕S1 × S3 . following [33], consider the Maurer–Cartan form on 
Sp(2) which can be written in components as

Here, �1,�2,�3 and � are complex-valued and �1 as well as �2 are real-valued one-forms on 
Sp(2) . The equation

implies the following differential identities for the components of ΩMC

{(
z 0

0 q

)
∣ z ∈ S1 ⊂ ℂ, q ∈ S3 ⊂ ℍ

}

(2.2)ΩMC =

⎛⎜⎜⎝
i�1 + j�3 −

�1√
2
+ j

�2√
2

�1√
2
+ j

�2√
2

i�2 + j�

⎞
⎟⎟⎠
.

dΩMC + [ΩMC,ΩMC] = 0
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Let furthermore

so one obtains

Let finally �33 = 2i�1 which satisfies d�33 = −�1 ∧ �1 − �2 ∧ �2 + 2�3 ∧ �3 . The nearly 
Kähler structure on ℂℙ3 is defined by declaring the forms s∗(�1), s

∗(�2) and s∗(�3) to 
be unitary (1, 0) forms for any local section s of the bundle Sp(2) → ℂℙ

3 . The resulting 
almost complex structure and metric do not depend on the choice of s. The matrix A� is 
in fact the connection matrix of the nearly Kähler connection ∇ in the frame dual to the 
local co-frame (�1,�2,�3) . Note that the forms (�1,�2,�3, �) are complex-valued invari-
ant forms on Sp(2) and as such they can be seen as elements in ��(2)∨ ⊗ ℂ . They span dif-
ferent root spaces with respect to the maximal torus S1 × S1 , see Fig. 1.

(2.3)
d

⎛⎜⎜⎝

�1

�2

�3

⎞
⎟⎟⎠
= −

⎛
⎜⎜⎝

i(�2 − �1) − � 0

� − i(�1 + �2) 0

0 0 2i�1

⎞
⎟⎟⎠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
A�∶=

∧

⎛
⎜⎜⎝

�1

�2

�3

⎞
⎟⎟⎠
+

⎛
⎜⎜⎝

�2 ∧ �3

�3 ∧ �1

�1 ∧ �2

⎞
⎟⎟⎠
.

(
�11 �12
�21 �22

)
=

(
i(�2 − �1) − �

� − i(�1 + �2)

)
,

d

(
�11 �12
�21 �22

)
= −

(
�11 �12
�21 �22

)
∧

(
�11 �12
�21 �22

)
+

(
�1 ∧ �1 − �3 ∧ �3 �1 ∧ �2

�2 ∧ �1 �2 ∧ �2 − �3 ∧ �3

)
.

Fig. 1  Root spaces associated 
with different components of 
Ω

MC
 under the identification 

Ω1(Sp(2),ℂ)Sp(2) ≅ ��(2)∨ ⊗ ℂ
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3  Properties of twistor lifts

As seen in Eq. (2.1), there is a notion of a negative and positive twistor space for a 
Riemannian four-manifold N4 . In general, they can be different fibre bundles over N4 
and Proposition 3.1 expresses how the second fundamental form of a surface in N4 is 
related to the lift into both twistor spaces. However, for N = S4 both twistor space are 
isomorphic as fibre bundles which we exploit to give a twistor interpretation of Xu’s 
correspondence.

3.1  Encoding the second fundamental form

Since the second fundamental form will be considered in different ambient spaces, we 
use the notation IIY where Y is the ambient space or an ambient bundle. Let N4 be a 
Riemannian manifold and f ∶ X2

→ N4 be an isometric immersion. The second funda-
mental form IIN encodes local geometric information about f. The aim of this section is 
to relate the norm of IIN to quantities defined for the twistor lift of f. Let � be the nor-
mal bundle of TX in f ∗(TN) . Locally, fix an oriented orthonormal frame {e1, e2, e3, e4} 
such that {e1, e2} is an oriented basis of f ∗(TX) . Denote by �ij(v) = g(∇vei, ej) the locally 
defined connection one-forms of the Levi–Civita connection ∇ on N. Furthermore, let 
�ijk = �ij(ek) . Then �ijk = −�jik and if i, k ∈ {1, 2} and j ∈ {3, 4} then �ijk = �kji holds 
by torsion-freeness. The vertical component of the twistor lift can be computed in the 
following way [18]

Here {y5, y6} is a local orthonormal basis for the vertical space of Z, induced from the 
choice of {e1,… , e4} . One can regard (d�)V as a one-form with values in Hom

ℂ
(TX, �) . 

Under this identification,

The almost complex structures J1 and J2 act by J1(y5, y6) = (−y6, y5) and 
J2(y5, y6) = (y6,−y5) on the vertical bundle. Let f ∶ X → N be an immersion. Changing 
between �− and �+ amounts to changing the orientation of N, i.e. swapping the indices 
3 ↔ 4 . This gives the analogous formula

Proposition 3.1 
Furthermore, if f is minimal then ‖d�V

−
‖ = ‖d�V

+
‖ if and only if IIN takes values in a real 

line bundle contained in �.

Proof As a consequence of Eqs. (3.1) and (3.2) we have

(3.1)(d�−)
V =

�13 + �24

2
y5 +

�14 − �23

2
y6.

y5(e1, e2, e3, e4) = (e3, e4,−e1,−e2), y6(e1, e2, e3, e4) = (e4,−e3,−e2,−e1).

(3.2)(d�+)
V =

�14 + �23

2
y5 +

�13 − �24

2
y6.

‖d�V

−
‖2 + ‖d�V

+
‖2 = 1

2
�IIN�2.

(3.3)4‖d�V

−
‖2 = (�131 + �241)

2 + (�132 + �242)
2 + (�141 − �231)

2 + (�142 − �232)
2
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which implies the first statement. Hence, ‖d�V
−
‖ = ‖d�V

+
‖ if and only if

This condition is satisfied if and only if II3 and II4 commute. Here,

This in turn is equivalent to II3 and II4 being simultaneously diagonalisable. So, assume that 
{e1, e2} is a positive local frame in which II3 and II4 are diagonal, i.e. II3 = diag(�131,−�131) 
and II4 = diag(�141,−�141) due to minimality. Hence IIN takes values in the real line bundle 
which is contained in � and locally spanned by 𝜔131 ⊗ e3 + 𝜔141 ⊗ e4.   ◻

The condition that IIN takes values in a real line is equivalent to the ellipse of curvature 
being degenerate, which has been studied in [20].

Corollary 3.2 Let x ∈ X , then f is totally geodesic in x if and only if both twistor lifts are 
horizontal.

Corollary 3.3 If f takes values in a totally geodesic submanifold then ‖d�V
−
‖ = ‖d�V

+
‖.

The relationship between IIN and ‖d�V
±
‖ is expressed more explicitly in the following 

lemma.

Lemma 3.4 For a minimal immersion f ∶ X → N and x ∈ X there is an orthonormal frame 
(e1, e2, e3, e4) of f ∗(TxN) such that the only nonzero components of the second fundamental 
form are −�232 = �131 =

1√
2
(‖d�V

−
‖ + ‖d�V

+
‖), �142 =

1√
2
(‖d�V

−
‖ − ‖d�V

+
‖).

If ‖d�V
−
‖ = ‖d�V

+
‖ at x we choose e1, e2 as in the proof of Proposition  3.1 and let e3 

be equal to II(e1, e1) . If ‖d�V
−
‖ ≠ ‖d�V

+
‖ then the ellipse of curvature does not degenerate 

and there is a frame e1,… , e4 such that �141 = 0,�132 = 0 and �142 ≥ �131 ≥ 0 . The vec-
tors e3 and e4 span the semi-axes of the curvature ellipse [20]. Equation 3.3 simplifies to √
2‖d�V

−
‖ = �131 + �142 and 

√
2‖d�V

+
‖ = −�142 + �131 which proves the statement.

Lemma 3.5 Let X ⊂ Y ⊂ Z all be compact with Y totally geodesic and let G act by iso-
metries X and Z. Then Y is also G-invariant.

Proof Let � be the normal bundle of X in Y. Since X, Y are compact, Y is the image of 
exp ∶ � → Z . exp is G-invariant since G acts by isometries, which implies the statement.  
 ◻

3.2  Twistor interpretation of Xu’s correspondence

We give a brief overview of Xu’s work on J-holomorphic curves in ℂℙ3 and provide a 
twistor interpretation of his correspondence of superminimal curves and curves with van-
ishing torsion [33]. A superminimal curve is a J-holomorphic curve � ∶ X → ℂℙ

3 which 
is tangent to H , i.e. d� maps TX to �∗H . These curves are special since are holomorphic 

(3.4)4‖d�V

+
‖2 = (�141 + �231)

2 + (�142 + �232)
2 + (�131 − �241)

2 + (�132 − �242)
2

�142(�131 − �232) + �132((�242 − �141) = 0.

IIj = (�ijk)i,k=1,2, j ∈ {3, 4}.
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for J1 too and R. Bryant found a Weierstraß parametrisation for them, i.e. each of them is a 
projective line or parametrised by

for f, g meromorphic functions on X with g being non-constant [9, Theorem F]. For a gen-
eral J-holomorphic curve � there is a unique holomorphic line bundle L ⊂ 𝜑∗H which con-
tains the projection of d�(TX) to �∗H . Let N be the quotient bundle �∗H∕L , which natu-
rally carries a holomorphic structure. Define

which is an S1 × S1 sub-bundle of �∗Sp(2) . The bundle P can be equipped with a con-
nection such that the forms � and �2 restrict to basic forms on P. By multiplying 𝜏 by an 
appropriate section in L∨ ⊗ N one obtains the form IIH ∈ Ω1,0(X, L∨ ⊗ N).

Proposition 3.6 In ℂℙ3 , there is a one-to-one correspondence between horizontal holo-
morphic curves and J2-holomorphic curves on which IIH vanishes.

Let IH ∈ Ω1,0(X, L) and IV ∈ Ω1,0(X,V) be d� composed orthogonal projections onto H 
and V . Then IH , IV and IIH are all holomorphic sections and if neither of them vanishes eve-
rywhere and X is compact with genus g and � simple (in the sense of [26]), then

where rH, rV, rII denote the number of zeros of IH , IV and IIH , counted with multiplicities 
[33, Remark 4.11.]. The correspondence of Proposition  3.6 can be entirely described in 
terms of twistor lifts. All statements from Sect. 2.2 apply to the negative as well as to the 
positive twistor space. The twistor theory of S4 has the particularity that both the negative 
and the positive twistor space can be identified with ℂℙ3 . To distinguish the two spaces as 
bundles over S4 we denote them by ℂℙ3

±
 . Both spaces are quotients of Sp(2) by different but 

conjugate subgroups. 

 For a J2-holomorphic curve �− ∶ X → ℂℙ
3
−
 Xu constructs a lift �̃�− ∶ X → Sp(2)∕S1 × S1 

and then considers the projection onto ℂℙ3
+
 which yields a map X → ℂℙ

3
+
 . He constructs 

a similar lift �̃�+ when starting with a curve in ℂℙ3
+
 and shows that both constructions are 

inverse to each other. Observe that Sp(2)∕S1 × S1 is nothing but G̃r2(S4) . Let �± be the 
projection of ℂℙ3

±
 onto S4 . It turns out that the lifts �± equal the Gauß lift of �±◦� into 

Sp(2)∕S1 × S1 . This immediately shows that the two constructions are inverse to each other 
since the transformation leaves the underlying map into S4 unchanged. In fact, this proce-
dure gives a way to pass between J2-holomorphic curves in ℂℙ3

+
 and ℂℙ3

−
 due to Proposi-

tion 2.1. However, when starting with a horizontal J2-holomorphic curve in ℂℙ3
−
 the result-

ing curve in ℂℙ3
+
 need not be horizontal. In fact the tangent bundle of F admits a natural 

splitting

(3.5)Θ(f , g) = [1, f −
1

2
g
(
df

dg

)
, g,

1

2

( df

dg

)
].

P = {p ∈ �∗Sp(2) ∣ �1|p = 0}

(3.6)8(g − 1) = 2rH + rV + rII
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which is a connection of the fibration Sp(2)∕S1 × S1 → S4 such that

If {f1, f2, f3, f4} denotes a frame dual to {�1,�2,�3, �} then � is locally spanned by f1 and 
f2 , V− by f3 and V+ by f4 . Consider a J2-holomorphic curve �− ∶ X → ℂℙ

3
−
 and the Gauß 

lift �̂�− ∶ X → Sp(2)∕S1 × S1 . The curve is horizontal if the lift does not have a component 
in V− . Equation (3.7) describes the splitting of ��(2)∕�2 into root spaces. In fact, Eq. (2.2) 
reveals that the component in V+ vanishes if and only if

on X which proves Proposition 3.6. Finally, observe that Eq. (2.3) implies that IIH is equal 
to the second fundamental form of L in �∗H which is an element in Ω1,0(X, Hom(L,N)) 
because L is a holomorphic sub bundle of �∗H . The holomorphicity of IIH can then be 
related to properties of the curvature tensor of �∗H.

4  Adapting frames on J‑holomorphic curves

Recall from Sect.  2.3 that there are three distinguished classes of J-holomorphic curves 
in ℂℙ3 . The first are curves which are always tangent to the vertical bundle V . They are 
twistor lines and are parametrised by elements in S4 . Since the horizontal bundle H is of 
complex rank two it is less restrictive to require a curve being tangent to H . These curves 
are called superminimal and classified in Eq. (3.5). There is a third class of curves, namely 
those on which IIH vanishes identically. Such curves are in one to one correspondence 
with superminimal curves by Proposition 3.6. Since all of these classes are relatively well 
understood we are interested in studying J-holomorphic curves which do not belong to any 
of these three classes and are defined as follows.

Definition 4.1 A J-holomorphic curve � ∶ X → ℂℙ
3 is called transverse if one of the 

equivalent conditions is satisfied

• IIH ≠ 0 everywhere and � is nowhere tangent to the horizontal bundle H or the vertical 
bundle V

• Both twistor lifts of �−◦� ∶ X → S4 are nowhere horizontal or vertical
• The Gauß lift of �−◦� into Sp(2)∕S1 × S1 is nowhere tangent to either bundle �,�− or 

�+.

If X is homeomorphic to a two-sphere then the curve is superminimal or satisfies IIH ≡ 0 
[34]. If X is a torus then the curve is automatically transverse if it is not superminimal or 
satisfies IIH ≡ 0 . If X is compact with genus g ≥ 2 there are non-transverse points, see Eq. 
(3.6). For this reason, we are mainly interested in the case when X has genus one. However, 
the set of non-transverse points is discrete and in the end of Sect. 4.3 we will describe the 
behaviour of the curve near these points.

In the case of the nearly Kähler S3 × S3 , the almost product structure gives a natural 
choice of an SU(3) frame along any J-holomorphic curve. This allows to study the structure 

(3.7)T(Sp(2)∕S1 × S1) = �⊕ �+ ⊕ �−

�± = ker(d�∓), �∗

±
(H±) = �, �∗

±
(V±) = �±.

�∗� = 0 ⇔ IIH = 0
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equations in terms of a reduced set of functions, classify and identify sub-classes of J-hol-
omorphic curves in S3 × S3 [6]. The aim of this section is to provide a similar analysis for 
J-holomorphic curves in ℂℙ3 . Instead of an almost product structure, the parallel splitting 
Tℂℙ3 = H⊕ V plays a key role in this case. By an appropriate frame adaption we will 
describe transverse J-holomorphic curves by two functions �−, �+ ∶ X → ℝ which carry 
local geometric information such as the curvature and second fundamental form of the 
curve.

4.1  The action of H on ��(2)

Consider the embedding i ∶ U(2) → SU(3) via A ↦

(
A 0

0 det(A−1)

)
 . Let (v1, v2, v3)T ∈ ℂ

3 

with |v1|2 + |v2|2 ≠ 0 and |v3|2 ≠ 0 . Then there is A ∈ U(2) such that if 
(w1,w2,w3)

T = A(v1, v2, v3)
T then w2 = 0 and w3∕w1 ∈ ℝ

>0 . The choice of such an A is 
unique up to multiplication by an element in the subgroup 
K� = {diag(ei𝜗, e−2i𝜗, ei𝜗)} ⊂ SU(3) . Define the double cover u ∶ H = U(1) × Sp(1) → U(2) 
where u(�, q) acts on ℂ2 = ℂ⊕ jℂ = ℍ by h ↦ qh�−1 . Let � be the action of U(1) × Sp(1) 
on V1 = ℂ

3 coming from i◦u . Consider the adjoint action of H ⊂ Sp(2) on ��(2) . It splits as

The action of H on � is the adjoint action while H acts on V1 by � . Here V1 embeds into 
��(2) as follows

Note that K = �−1(K�) = {diag(ei� , ei3�)} and define W = {(v1, 0, v3) ∈ V1 ∣ v3∕v1 > 0} . 
We have proven the following.

Lemma 4.2 For any 𝜁 = 𝜂 + (v1, v2, v3) ∈ �⊕ ℂ
3 with (v1, v2) ≠ (0, 0) and v3 ≠ 0 there is 

h ∈ H such that h�h−1 lies in W. Such an h is unique up to an element in K.

The adjoint action of K on � splits into one-dimensional subspaces. Let

The action of K on V3 is trivial while it acts on V2 by multiplication of e−6i� . On the other 
hand, K acts on (z1, 0, z3) ∈ W by multiplication of e2i� in each component. Define

We conclude

Lemma 4.3 Let v = (z1, z2, z3,w, x1, x2) ∈ ��(2) with (z1, z2) ≠ (0, 0),w ≠ 0 and 
z3 ≠ 0 . Then there is always an element A ∈ K such that Av ∈ � . The choice of 

��(2) = �⊕ V1.

(z1, z2, z3) ↦

(
jz̄3 − z1 + jz2

z1 + jz2 0

)
.

V2 =

{(
0 0

0 jw

)
∣ w ∈ ℂ

}

V3 =

{(
ix1 0

0 ix2

)
∣ x1, x2 ∈ ℝ

}
.

� =

{(
ix1 + jz̄3 − z̄1

z1 ix2 + jw

)
∣ z1 ≠ 0, z3∕z1 ∈ ℝ

>0, w∕z1 ∈ ℝ
>0

}
.
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such an element A is unique up to multiplication of an element of the subgroup 
KF ∶= {diag(ei� , ei3�) ∣ e8i� = 1} ≅ ℤ8.

4.2  Transverse J‑holomorphic curves in ℂℙ3

Consider a general J-holomorphic curve � ∶ X → ℂℙ
3 . Denote by g the nearly Kähler met-

ric on ℂℙ3 which splits as gH + gV since the splitting Tℂℙ3 = H⊕ V is orthogonal. We 
will consider the pull-back metrics of g, gH, gV to X via � and denote them with the same 
symbols. The metric 2gH is equal to the induced metric from �◦� ∶ X → S4 . Note that 
Sp(2) pulls back to an S1 × S3 bundle over X. The structure equations are formulated with 
respect to differential forms on Sp(2) . To simplify matters, one reduces the S1 × S3 bundle 
�∗(Sp(2)) which ensures that additional relations of the differential forms are satisfied. To 
begin with, one can reduce the bundle �∗(Sp(2)) to an S1 × S1 bundle P by imposing the 
equation �2 = 0 , see [33]. This gives a lift of � into Sp(2)∕S1 × S1 . On this reduction, � 
becomes a basic form of type (1,  0). Since � is J-holomorphic d�(T1,0) takes values in 
the subbundle corresponding to the root spaces {(2, 0), (0,−2), (−1, 1)} which are associ-
ated with (�3, �,�1) under the isomorphism Ω1(Sp(2),ℂ)Sp(2) ≅ ��(2)∨ ⊗ ℂ , see Fig.  2. 
Given a semi-simple Lie group with maximal torus T the flag manifold G/T carries a natu-
ral m-symmetric structure � where m is the height of the Lie algebra of G. � gives rise to a 
splitting T

ℂ
(G∕T) = ⊕[Mk] and a map � ∶ X → G∕T  is called �-primitive if it satisfies a 

compatibility condition between the complex structure on X and � , see [8]. In the case of 
G = Sp(2) , {(2, 0), (0,−2), (−1, 1)} is a basis of [M1].

Proposition 4.4 Any J-holomorphic curve � ∶ X → ℂℙ
3 admits a lift into Sp(2)∕S1 × S1 

which is �-primitive in the sense of [8]. Conversely, composing any �-primitive map 

Fig. 2  The thickened arrows rep-
resent a basis of [M1] highlight-
ing that transverse J-holomorphic 
curves are in one-to-one corre-
spondence with �-primitive maps 
in Sp(2)∕S1 × S1
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X → Sp(2)∕S1 × S1 with the projection Sp(2)∕S1 × S1 → ℂℙ
3 gives a J-holomorphic curve 

X → ℂℙ
3.

Note that under this identification, the formula [34, Remark 4.11.] becomes an application 
of the more general Plucker formula for �-primitive maps [7].

We will now explain how �∗(Sp(2)) can in fact be reduced to a discrete bundle for a trans-
verse J-holomorphic curve � ∶ X → ℂℙ

3 . We can define the function 𝛼− ∶ X → ℝ
>0 by

where � is any nonzero vector in TxX . Here | ⋅ |H and | ⋅ |V denote the norms with respect 
to the metric gH and gV on X. The value of �− does not depend on this choice because � is 
J-holomorphic. The function �− is a measure for the angle in which TX lies between HX 
and VX . In accordance with Lemma 4.2 we now adapt frames in the following way. Over X, 
define the principal bundle Q by the relations

The bundle Q has structure group K ≅ S1 . From now on, we will consider the restrictions 
of all differential forms to Q without changing the notation. Note that, since the structure 
group of Q is K, the forms �, 3�1 − �2 and �1 ∧ �1 become basic, i.e. they descend to forms 
on ℂℙ3 . The structure equations then yield

Combining all of the equations gives that � and −dlog(�−) + i(−3�1 + �2) are (1, 0)-forms 
since their wedge product with �1 vanishes. Since �1 and �2 and −dlog(�−) are real-valued 
we get that

for any tangent vector � . In other words,

Note that a-priori this is an equation on Q but it also holds on X since −3�1 + �2 is a basic 
form. Equation (4.4) implies that

Here, Δ denotes the positive definite Laplace operator Ω0(X) → Ω2(X).

�−(x) =
‖�‖V
‖�‖H ,

�2 = 0

�3 = �−�1.

(4.1)d�1 = −i(�2 − �1) ∧ �1

(4.2)d�2 = � ∧ �1 = 0

(4.3)d�3 = −2i�1 ∧ �3.

dlog(�−)(J�) = (−3�1 + �2)(�)

(4.4)dClog(�−) = −3�1 + �2.

(4.5)−Δlog(�−) = d(�2 − 3�1).
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4.3  Further reduction of the structure group

Since � is assumed to be transverse, � is nowhere vanishing. On Q, both � and �1 reduce 
to forms on X with values in the same line bundle. So we can define

for any � ∈ TxX which does not depend on � ∈ TxX since � is a (1,  0)-form. In fact, 
by Proposition  4.4 transverse J-holomorphic curves correspond to �-primitive maps 
�̂� ∶ X → Sp(2)∕S1 × S1 . As seen in Eq. (3.7)

Note that �− is a measure of the angle of TX between �̂�∗(H) and �̂�∗(V−) while �+ is a meas-
ure of the angle of TX between �̂�∗(H) and �̂�∗(V+) . This is why we will refer to �− and �+ as 
angle functions. By Lemma 4.2, we can adapt frames further. The bundle Q restricts to a 
KF bundle R which is characterised by the equation � = �+�1 . From the structure equations 
we now get

Combining Eqs. (4.7) and (4.6) one infers that −dlog(�+) + i(−�1 + 3�2) is a (1, 0)-form. 
As before, we get

This implies

Let us summarise the results so far

Lemma 4.5 Let � ∶ X → ℂℙ
3 be a transverse J-holomorphic curve. Then the bundle 

�∗(Sp(2)) restricts to a KF bundle R on which the following equations hold

Reducing the bundle Sp(2) over a transverse J-holomorphic curve can be summarised 
in Table 1.

By the uniformisation theorem, any metric on a Riemann surface is (globally) con-
formally equivalent to a constant curvature metric which is being made explicit by the 
following proposition.

�+(x) =
|�1(�)|
|�(�)|

T(Sp(2)∕S1 × S1) = H ⊕ V− ⊕ V+.

(4.6)d� = 2i�2 ∧ �

(4.7)−2id�1 = (1 − 2�2
−
)�1 ∧ �1

(4.8)2id�2 = 2� ∧ � + �1 ∧ �1 = (−2�2
+
+ 1)�1 ∧ �1.

dC log(�+) = −�1 + 3�2.

(4.9)Δlog(�+) = d(�1 − 3�2).

(4.10)

�3 = �−�1 �2 = 0 � = �+�1

�1 =
1

8
(−3dC log(�−) + dC log(�+)) �2 =

1

8
(−dC log(�−) + 3dC log(�+)).
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Proposition 4.6 The metrics gH and g are globally conformally flat for any transverse 
J-holomorphic curve � ∶ X → ℂℙ

3 . The conformal factor is given by �2 = (�−�+)
−1∕2

Proof Since the metrics gH and g only differ by the conformal factor (1 + �2
−
) it suffices to 

prove this statement for gH . First assume that X is simply connected, i.e. X ≅ � or ℂ . In 
this case, the bundle R admits a global section s. Then s∗�1 is a unitary (1, 0)-form on X, 
satisfying the equation

Hence

since d(�−1) − idC(�−1) is a (1, 0)-form. This means that the metric �−2gH has a closed, 
unitary (1, 0)-form �−1s∗�1 , hence it is flat. If X is not simply connected we can show the 
statement by passing to the universal cover.   ◻

Putting Eqs. (4.5), (4.9), (4.7) and (4.8) together gives

If we equip X with the metric gH then − 1

2i
�1 ∧ �1 becomes the volume form volH on X and 

we may rewrite the equations as

The curvature form on X is then given by

Let � = (�−�+)
−1∕4 as in Proposition 4.6, i.e. �−2gH is flat. Denote by Δ0 the Laplace opera-

tor on functions with respect to �−2gH.

d(s∗�1) = s∗(i(�1 − �2)) ∧ �1 =

dC(−i∕4 log(�−�+)) ∧ s∗�1.

d((�−1s∗(�1)) = (d(�−1) − i

dC log(�−1)) ∧ s∗�1 = 0

iΔlog(�−) = (3�2
−
+ �2

+
− 2)�1 ∧ �1

iΔlog(�+) = (3�2
+
+ �2

−
− 2)�1 ∧ �1.

(4.11)
Δlog(�2

−
) = −4(3�2

−
+ �2

+
− 2)volH

Δlog(�2
+
) = −4(3�2

+
+ �2

−
− 2)volH.

(4.12)
d�11 = � ∧ � + �1 ∧ �1 − �3 ∧ �3 = (1 − �2

−
− �2

+
)�1 ∧ �1 = −2i(1 − �2

−
− �2

+
)volH.

Table 1  Stepwise reductions of the bundle �∗Sp(2) . Note that P is defined for any J-holomorphic curve 
while Q and R need the assumption of transversality. Q is not strictly a reduction of P but this is only due to 
the convention �1 = 0 in [33] instead of �2 = 0 . This does not change any of the results

Bundle Structure group Reduction characterised by Restriction implies

�∗Sp(2) H = S
1 × S

3

P S
1 × S

1 �1 = 0 � is of type (1, 0)
Q K ≅ S

1 �3 = �−�1,�2 = 0 , and Lemma 4.2 dClog(�−) = −3�1 + �2
R K

F
≅ ℤ8 Above, � = �+�1 and Lemma 4.3 dClog(�+) = −�1 + 3�2
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Theorem 4.7 Let � ∶ X → ℂℙ
3 be a transverse J-holomorphic curve. Then the functions 

�−, �+ satisfy

These equations are equivalent to the affine 2D Toda lattice equations for ��(2) . The 
induced Gauß curvature on X is

Proof Equation 4.13 is a direct consequence of the discussion preceding the theorem. The 
formula for the Gauß curvature follows from Eq. (4.12) since −i�11 is the Levi–Civita con-
nection form of X. If we define �̂�± = 𝛾𝛼± such that 𝛾 = (�̂�−�̂�+)

1∕2 and Eq. (4.13) becomes

So if we let �̂�2
−
=

1√
2
exp(Ω1) and �̂�2

+
=

1√
2
exp(−Ω2) these equations are equivalent to the 

2D affine Toda equations for ��(2) .   ◻

Note the metric induced from �◦� ∶ X → S4 equals 2gH and has hence Gauß curvature 
equal to 1 − �2

−
− �2

+
.

Remark 4.8 Note that the result is consistent with Proposition 4.4 since a �-primitive map 
into G/T is described by the Toda lattice equations for � [8]. Furthermore, the relationship 
between Toda lattice equations and minimal surfaces in S4 has already been observed in 
[29].

From Sect. 2.3 recall that IH, IV, IIH are all holomorphic sections in different line bun-
dles over X. If one of these sections vanishes in a point, then the curve is not transverse in 
this point and �− or �+ becomes singular. In Proposition 4.10 we will show how the defin-
ing equations for �± Eq. (4.13) can locally be extended to the singular set. To this aim, we 
will make use of the following observation.

Lemma 4.9 Let L be a line bundle equipped with a Hermitian metric over a Riemann sur-
face X with holomorphic section s. Then for each point x ∈ X there is a neighbourhood U 
such that |s| = |z|kxu with u positive and smooth, z ∶ U → ℂ biholomorphic onto its image, 
z(0) = x and kx a nonnegative integer.

Proof For x ∈ X choose a local non-vanishing section s� ∶ U → L and write s = fs� for a 
holomorphic function f ∶ U → ℂ . Then kx is the order of the pole of f at x, possibly 0 and 
the statement follows.   ◻

This lemma can now be applied to study the singularities of �±.

Proposition 4.10 Let � ∶ X → ℂℙ
3 be a J-holomorphic curve with neither IH, IV, IIH van-

ishing everywhere. Then there is a discrete set S such that �|X⧵S is transverse with angle 

(4.13)
Δ0log(�

2
−
) = −4(3�2

−
+ �2

+
− 2)�2

Δ0log(�
2
+
) = −4(3�2

+
+ �2

−
− 2)�2.

2(1 − �2
−
− �2

+
).

(4.14)
Δ0log(�̂�

2
−
) = −4(2�̂�2

−
− �̂�−1

−
�̂�−1
+
)

Δ0log(�̂�
2
+
) = −4(2�̂�2

+
− �̂�−1

−
�̂�−1
+
).
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functions �± ∶ X ⧵ S → (0,∞) satisfying Eq. (4.13). For each point x ∈ S there are integers 
k± , not both zero, a neighbourhood U ⊂ ℂℙ

3 of x and a chart z ∶ U → ℂ with z(x) = 0 such 
that 𝛼± = �̂�±|z|k± for �̂�± smooth and positive on U. The metric g�̂�−2 for �̂� = (�̂�−�̂�+)

−1∕4 is 
flat on U. The functions �̂�± satisfy the equations

which are defined on all of U. Here Δ̂0 is the Laplace operator for g�̂�−2.

Proof Observe that

with the norms on the different line bundles induced from the metric on �∗Tℂℙ3 . Hence S 
is the discrete set where IH, IV or IIH vanish. By Lemma 4.9 we can locally write 𝛼 = �̂�|z|k± 
for k ∈ ℤ . The rest of the statement follows from the fact that log|z| is harmonic since z is 
holomorphic.   ◻

4.4  The second fundamental form of transverse curves

As a nearly Kähler manifold, ℂℙ3 comes equipped with two natural connections. The 
Levi–Civita connection ∇ and the nearly Kähler connection ∇ . It turns out that the second 
fundamental form of a J-holomorphic curve is the same for ∇ and ∇ . Despite ∇ having tor-
sion it is the connection that is easier to work with since it preserves the almost complex 
structure J. For a fixed J-holomorphic curve � ∶ X → ℂℙ

3 consider the map Θ� ∶ TX → � 
which is defined as Θ = −�2

−
IdH + IdV . Observe that Θ is injective and let N1 = Θ(TX) . 

Denote by N2 the orthogonal complement of N1 in � . It turns out that N2 is in fact equal to 
the kernel of the orthogonal projection � → VX . In other words, �∗(Tℂℙ3) splits into an 
orthogonal sum of complex line bundles

where N1 ≅ TX and N2 ≅ (TX)−2 . This splitting is related to the reduction of �∗(Sp(2)) to 
Q. If

and s is a (local) section s ∶ X → Q , s∗(u1, u2, u3) is a unitary frame as well. Let (f1, f2, f3) 
be the dual frame of s∗(u1, u2, u3) . Then f1 always takes values in TX, f2 in N1 and f3 in N2 . 
A frame with this property will be called a Q-adapted frame from now on. The connection 

Δ̂0log(�̂�
2
−
) = −4|z|− 1

2
(k−+k+)(3�̂�2

−
|z|2k− + �̂�2

+
|z|2k+ − 2)�̂�2

Δ̂0log(�̂�
2
+
) = −4|z|− 1

2
(k−+k+)(3�̂�2

+
|z|2k+ + �̂�2

−
|z|2k− − 2)�̂�2

�− =
‖IV‖
‖IH‖ , �+ =

‖IIH‖
‖IH‖

(4.15)𝜑∗(Tℂℙ3) = TX ⊕ N1 ⊕ N2

(4.16)

⎛⎜⎜⎝

u1
u2
u3

⎞⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎝

1√
�2
−
+1

0
�−√
�2
−
+1

−�−√
�2
−
+1

0
1√
�2
−
+1

0 1 0

⎞
⎟⎟⎟⎟⎠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
T−1∶=

⎛⎜⎜⎝

�1

�2

�3

⎞⎟⎟⎠
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matrix Au for the frame {f1, f2, f3} is then computed via applying the base change Eq. (4.16) 
to the connection matrix A� in Eq. (2.3) and using Eq. (4.4)

Lemma 4.11 For a Q-adapted frame f1, f2, f3 and co-frame u1, u2, u3 , the second fundamen-
tal form of X is equal to

for II1 = −
2

�2
−
+1
d1,0�− and II2 =

�√
�2
−
+1

=
�+�1√
�2
−
+1

 . We see that transverse points of a J-holo-

morphic curve are never totally geodesic. Conversely, the frame {f1, f2, f3} and the first and 
second fundamental form of a transverse curve determine �− and �+.

Proof The expression for II
ℂℙ

3 can be read off from Eq. (4.17). For the last statement, note 
that II1 = −2d1,0arctan(�−) . Assume that �−, �+ and ��

−
, ��

+
 are two pairs of functions induc-

ing the same first and second fundamental form. Then arctan(�−) and arctan(��
−
) differ by a 

real constant. Equivalently,

for a constant C ∈ ℝ . Furthermore, the equation for II2 implies that

Putting all together gives that

which is a constant by Proposition 4.6. However, this is only possible if C = 0 or if �− is 
constant. But solutions with �− constant force �2

−
= �2

+
= 1∕2 and hence C = 0 .   ◻

Different Q-adapted frames are related by an action of K ≅ S1 . To work out tensors 
which are invariant under this action, let � = (ei� , e3i�) be an element in K and denote 
−2� = � . The action of � introduces a gauge transformation leading to a transformed set 
of tensors (��

1
,��

2
,��

3
, ��) on Q. Note that

which leads to

(4.17)

Au = T−1A�T + T−1dT =

⎛
⎜⎜⎜⎜⎜⎝

i((2�2−−1)�1+�2)
�2
−
+1

2

�2
−
+1
d0,1�− −

�∗√
�2
−
+1

−
2

�2
−
+1
d1,0�− −

i((�2−−2)�1−�
2
−
�2)

�2
−
+1

−
�−�

∗√
�2
−
+1

�√
�2
−
+1

�−�√
�2
−
+1

− i(�1 + �2)

⎞
⎟⎟⎟⎟⎟⎠

.

(4.18)II
ℂℙ

3 = II1 ⊗ f2 ⊗ u1 + II2 ⊗ f3 ⊗ u1

��

−
=

�− + C

1 − �−C

��

+
= �+

√
��
−

2 + 1

�2
−
+ 1

.

��
−
��
+

�−�+
= −

(�− + C)
√

C2+1

(�−C−1)
2

�−(�−C − 1)

(��

1
,��

2
,��

3
) = (ei��1, e

−2i��2, e
i��3)
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and hence

Consequently, the tensors 𝜏 ⊗ ui ⊗ f3, ui ⊗ fj, u3 ⊗ f3 for i, j = 1, 2 are all invariant under 
K and hence correspond to tensors on X. Regard the second fundamental form II

ℂℙ
3 as a 

section in Ω1,0(X, Hom(TX, �)) . The connection ∇ induces connections ∇
T
 and ∇

⟂
 on TX 

and � and thus there is a well-defined object �̄�
∇
II
ℂℙ

3 = d
∇
II
ℂℙ

3 ∈ Ω1,1(X, Hom(TX, 𝜈)) . We 
have seen that a transverse J-holomorphic curve has no points which are totally geodesic. 
Having holomorphic second fundamental form is a natural generalisation of being totally 
geodesic.

Theorem 4.12 The differential of the second fundamental form is equal to

In particular, there is no transverse J-holomorphic curve with holomorphic second funda-
mental form.

Proof Using Eq. (4.18), the differential of II
ℂℙ

3 is computed by

This expression takes values in Ω1,1(X, TX∨ ⊗ 𝜈) and we compute the components in 
u1 ⊗ f2 and u1 ⊗ f3 separately. Note that

and

Furthermore, the u1 ⊗ f2 component of −II1 ∧ ∇
T
u1 ⊗ f2 − u1 ⊗ II1 ∧ ∇

⟂
f2 is equal to

(u�
1
, u�

2
, u�

3
, ��) = (ei�u1, e

i�u2, e
−2i�u3, e

−3i��)

(f �
1
, f �
2
, f �
3
) = (e−i�f1, e

−i�f2, e
2i�f3).

d
∇
(II

ℂℙ
3 ) =

2i𝛼−
𝛼2
−
+ 1

(−2 + 3𝛼2
−
)volH ⊗ u1 ⊗ f2.

d
∇
II
ℂℙ

3 = dII1u1 ⊗ f2 − II1 ∧ ∇
T
u1 ⊗ f2 − u1 ⊗ II1 ∧ ∇

⟂
f2 + dII2u1 ⊗ f3 − II2 ∧ ∇

T
u1

⊗ f3 − u1 ⊗ II2 ∧ ∇
⟂
f3.

∇
T
(u1) = −

i
((
2𝛼2

−
− 1

)
𝜌1 + 𝜌2

)
𝛼2
−
+ 1

⊗ u1

∇
⟂
(f2) = −

i
((
𝛼2
−
− 2

)
𝜌1 − 𝛼2

−
𝜌2
)

𝛼2
−
+ 1

⊗ f2 +
𝛼−𝜏√
𝛼2
−
+ 1

⊗ f3

∇
⟂
(f3) = −

𝛼−𝜏
∗

√
𝛼2
−
+ 1

⊗ f2 − i(𝜌1 + 𝜌2)⊗ f3

dII1 = i
1 − �2

−

(1 + �2
−
)2
d�− ∧ dClog(�−) −

i�−
1 + �2

−

Δlog(�−)

= 2i
1 − �2

−

(1 + �2
−
)2
d1,0�− ∧ dClog(�−) +

�−
1 + �2

−

(−3�2
−
− �2

+
+ 2)�1 ∧ �1.
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Finally, the u1 ⊗ f2 component of −u1 ⊗ II2 ∧ ∇
⟂
f3 is equal to

Observe that various terms cancel and that the u1 ⊗ f2 component of d
∇
II
ℂℙ

3 is

The u1 ⊗ f3 component is computed in an analogous way and equal to

since both II2 and d�− − idC�− are (1, 0) forms. This proves the formula

For a transverse J-holomorphic curve, �− is always positive. So the second fundamental 
form is holomorphic if and only if �− is constant to 

√
2∕3 . However, no such solution exists 

for Eq. (4.13).   ◻

Remark 4.13 Let f ∶ X → S4 be a minimal immersion with twistor lift � ∶ X → ℂℙ
3 and 

associated angle functions �± . Then f induces the metric 2gH on S4 and �± = 2‖d�V
±
‖ . In 

this setting, we have defined the second fundamental forms IIS4 , IIH and II
ℂℙ

3 , depending on 
the ambient space or bundle. Curves with IIH ≡ 0 are in one-to-one correspondence with 
superminimal curves while

In fact, by Lemmas 3.4 and 4.11 each of �± , II
ℂℙ

3 and IIS4 determines the other two.

4.5  Holomorphic structure of the normal bundle

The nearly Kähler connection ∇ preserves J and � is a complex subbundle of Tℂℙ3 . Hence 
∇

⟂
 gives rise to a holomorphic structure on � . Let � ∶ X → ℂℙ

3 be a transverse torus. The 
degree of � is zero since the first Chern class of any nearly Kähler manifold vanishes, i.e.

Let Bun(r, d) be the space of indecomposable holomorphic bundles of rank r and degree 
d over X. By Atiyah’s classification of holomorphic vector bundles over elliptic curves 

II1i

�2
−
+ 1

((2�2
−
− 1)�1 + �2 + (�2

−
− 2)�1 − �2

−
�2) =

i(�2
−
− 1)

�2
−
+ 1

II1 ∧ (3�1 − �2)

= i
1 − �2

−

1 + �2
−

II1 ∧ dC log(�−).

(4.19)II2 ∧
𝛼−𝜏√
𝛼2
−
+ 1

=
𝛼−𝛼

2
+

𝛼2
−
+ 1

𝜔1 ∧ 𝜔1.

�−
�2
−
+ 1

(−3�2
−
+ 2)�1 ∧ �1 =

2i�−
�2
−
+ 1

(3�2
−
− 2)�1 ∧ �1.

(4.20)
�−

�2
−
+ 1

II2 ∧ (d�− − idC�−) = 0

d
∇
(II

ℂℙ
3 ) =

2i𝛼−
𝛼2
−
+ 1

(−2 + 3𝛼2
−
)volH ⊗ u1 ⊗ f2.

IIS4 ≡ 0 ⇔ II
ℂℙ

3 ≡ 0 ⇔ � parametrises a superminimal projective line.

c1(�) = c1(Tℂℙ
3) − c1(TX) = 0.
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[2], Bun(2, 0) is isomorphic to a two-torus. For any element E ∈ Bun(2, 0) the line bundle 
Λ2(E) is trivial. This is consistent with the fact that Λ2(�) = TX . The space Bun(2, 0) has a 
distinguished element E0 , the unique non-trivial extension of the sequence

Based on this, there are a-priori three possibilities for � . Either � is decomposable, iso-
morphic to E0 or another element in Bun(2, 0) . In the following we will see that for a 
transverse J-holomorphic torus in ℂℙ3 , � is always isomorphic to E0 . Let �ij be the com-
ponents of the connection matrix Au . Assume that the frame {f1, f2, f3} is R-adapted, such 
that Eq. (4.10) hold. Then s = s2f2 + s3f3 describes a general section in the normal bundle 
for s2, s3 ∈ Ω(X,ℂ) . By the Leibniz rule for �̄� , holomorphic sections are solution of the 
equation

Since �32 is of type (1, 0) it annihilates 𝜕
𝜕z̄

 . Note that on X, u1 =
√

1 + �2
−
�1 and hence by 

Proposition 4.6 we can find a local coordinate z on X such that

Then Eq. (4.21) reduces to

and

Hence, all solutions of Eq. (4.21) are given by

for a constant c ∈ ℂ . Furthermore, we have

So, define s�
2
= s2�

1∕4

+ �−3∕4
−

√
1 + �2

−
 which makes Eq. (4.22) equivalent to

0 → ℂ → E → ℂ → 0.

(4.21)s2𝜎32(
𝜕

𝜕z̄
) + s3𝜎33(

𝜕

𝜕z̄
) +

𝜕

𝜕z̄
(s3) = 0

(4.22)s2𝜎22(
𝜕

𝜕z̄
) + s3𝜎23(

𝜕

𝜕z̄
) +

𝜕

𝜕z̄
(s2) = 0.

dz =
(�−�+)

1∕4

√
1 + �2

−

u1.

s3𝜎33(
𝜕

𝜕z̄
) +

𝜕

𝜕z̄
(s3) = 0

𝜎33(
𝜕

𝜕z̄
) =

𝜕

𝜕z̄
log(𝛼

−1∕2

+ 𝛼1∕2
−

).

s3 = c�−1∕2
−

�
1∕2

+

𝜎23(
𝜕

𝜕z̄
) =

−(𝛼−𝛼+)
3∕4

√
1 + 𝛼2

−

𝜎22(
𝜕

𝜕z̄
) =

𝜕

𝜕z̄
(log(𝛼

1∕4

+ 𝛼−3∕4
−

√
1 + 𝛼2

−
)).
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and this in turn results in

But the function �−1∕2
−

�
1∕2

+  is non-vanishing which forces c = 0 and s′
2
 to be a constant. This 

computation implies the following two lemmas.

Lemma 4.14 Let X be a transverse torus then h0(X, �) = 1

Lemma 4.15 The holomorphic section s′
2
f2 induces an exact sequence of holomorphic 

bundles

Proof Since s2 is non-vanishing the section gives an injection ℂ → � . The quotient bundle 
admits a non-vanishing holomorphic section because �0,1

33
 is �̄�-exact. Hence the quotient is 

trivial.   ◻

Summarising the two statements above gives

Proposition 4.16 As a holomorphic bundle, the normal bundle � of a transverse torus is the 
unique non-trivial extension of the sequence

5  A Bonnet‑type theorem

The uniqueness part of the classical Bonnet theorem says that two surfaces Σ,Σ� ⊂ ℝ
3 with 

the same first and second fundamental form I and II necessarily differ by an isometry of 
ℝ

3 . The existence part states that given a simply connected surface Σ with the tensors I, II 
defined on Σ satisfying the Gauß and Codazzi equation there is an immersion Σ → ℝ

3 with 
induced first and second fundamental form equal to I and II

ℝ3 . One way how to prove this 
statement is via the theorem of Maurer–Cartan: Let G be a Lie Group with Maurer–Cartan 
form ΩMC , let N be connected and simply connected, equipped with � ∈ Ω1(N, �) satisfy-
ing d� + 1

2
[�, �] = 0. Then there exists a smooth map f ∶ N → G , unique up to left trans-

lation in G, such that f ∗ΩMC = � . In this section we will show, also using the theorem of 
Maurer–Cartan, an analogue of Bonnet’s theorem for J-holomorphic curves in ℂℙ3.

We have seen that given a transverse J-holomorphic curve � ∶ X → ℂℙ
3 there are func-

tions �−, �+, � that satisfy Eq. (4.13), where � is determined by �− and �+ . Up to a con-
stant factor, the functions (�−, �+, �) determine the first and second fundamental form of X. 
Composing � with an element in an automorphism in Sp(2) leaves the quantities (�−, �+) 
invariant since they are defined via components of ΩMC . Besides, the data (�−, �+) deter-
mines the first and second fundamental form up to a constant.

s3
−(𝛼−𝛼+)

3∕4

√
1 + 𝛼2

−

+ 𝛼+
−1∕4𝛼−

+3∕4(1 + 𝛼2
−
)−1∕2

𝜕

𝜕z̄
s�
2
= 0

𝜕

𝜕z̄
s�
2
= c𝛼+

3∕2𝛼−1∕2
−

.

0 → ℂ → � → ℂ → 0.

0 → ℂ → � → ℂ → 0.
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If a Bonnet-theorem holds for J-holomorphic curves in ℂℙ3 then the first and second 
fundamental form determine the curve up to isometries. Furthermore it would say that such 
a curve exists if the Gauß and Codazzi equations are satisfied. In our setting, system Eq. 
(4.11) plays the role of these equations. This raises the following question. Are the solu-
tions of Eq. (4.11) in one to one correspondence to transverse J-holomorphic curves up 
to isometries? Later, we will see that the answer to this question is no because there are 
periodic solutions of Eq. (4.11) which do not descend to a two-torus. However, there is a 
positive result for when X is simply connected.

Lemma 5.1 Let X be a simply connected Riemann surface equipped with a metric k. Let 
furthermore 𝛼−, 𝛼+ ∶ X → ℝ

>0 such that Eq. (4.13) are satisfied for � = (�−�+)
−1∕4 and 

that �−2k is flat. Then there is a J-holomorphic immersion � ∶ X → ℂℙ
3 such that the 

induced metric satisfies gH = k . The angle functions of � are exactly �− and �+ . The immer-
sion is unique up to isometries of ℂℙ3 and an element in S1∕ℤ4 ≅ S1 which parametrises a 
choice of a unitary (1, 0)-form �0 on X such that d(�−1�0) = 0.

Proof Since X is simply connected and globally conformally flat, it is isomorphic to ℂ as 
a complex manifold by the uniformisation theorem. In particular, Ω1,0(X) is trivial as a 
bundle, let �0 be a unitary (1, 0)-form on X. Arguing similarly as in the proof of Proposi-
tion 4.6 we see that, since �−2k is flat,

Now, define a ��(2)-valued one-form on X by

And observe that

is equivalent to Eqs. (4.13) and (5.1). Hence, by Cartan’s theorem, there is an immersion 
Φ ∶ X → Sp(2) such that Φ∗(ΩMC) = � which is unique up to left multiplication in Sp(2) . 
Note that �∗(ΩMC) = � is equivalent to the equations

Consider the map � = �◦Φ ∶ X → ℂℙ
3

 Then � is also an immersion because v ∈ ker(d𝜑) ⊂ T1,0(X) is equivalent to 
Φ∗�i(v) = �i(dΦ(v)) = 0 for i = 1, 2, 3 . By Eq. (5.2), this implies that �0(v) = 0 and hence 
v = 0 . Furthermore, � is J-holomorphic since Φ pulls back the forms �i to multiples of �0 . 

(5.1)d�0 = idC log(�) ∧ �0.

��0
=

� i

8
(−3dClog(�−) + dClog(�+)) + j�−�0 −

�0√
2

�0√
2

i

8
(−dClog(�−) + 3dClog(�+)) + j�+�0.

�
.

d��0
+

1

2
[��0

, ��0
] = 0

(5.2)
�0 = Φ∗(�1) dC(log(�−)) = −Φ∗(3�1 − �2) �0 = �−Φ

∗(�3)

0 = Φ∗(�2) dC(log(�+)) = −Φ∗(�1 − 3�2) �0 = �+Φ
∗�.
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Since �1 is unitary for gH , �0 for k and Φ∗(�1) = �0 the metric gH induced by � is equal 
to k. Since left-multiplication on Sp(2) acts on ℂℙ3 by isometries it remains to prove that 
choosing ei��0 as unitary (1, 0)-form on X yields, up to isometries, the same immersion 
� ∶ X → ℂℙ

3 as �0 if e4i� = 1 . Let R� be the right multiplication of an element � = (ei�, ei�) 
on Sp(2) . Then R∗

�
(ΩMC) = Ad�−1 (ΩMC) . From our knowledge of the adjoint action of K on 

��(2) we infer that

Hence, if e4i� = 1 then �1 and � transform in the same way. This means that in this case if � 
satisfies �∗ΩMC = ��0

 then (�◦R�)
∗(ΩMC) = �ei��0

 . But right multiplication on Sp(2) does 
not affect the immersion � ∶ X → ℂℙ

3 .   ◻

Note that Lemma 5.1 as it is stated requires X to be equipped with a fixed metric. How-
ever, it is more natural to let the metric be one of the quantities to be determined, such as 
�− and �+ . Think of X as equipped with a flat metric and consider a solution of Eq. (4.13) 
with � = (�−�+)

−1∕4 . Then (�−, �+) is a solution of Eq. (4.11) with the metric g = �2g0 . 
However, we could also have chosen the metric �2g0 for a constant 𝜆 > 0 . In general, 
Lemma 5.1 will produce a different immersion �� ∶ X → ℂℙ

3 . The following theorem is 
then a reformulation of Lemma 5.1.

Theorem  5.2 Let X be a simply connected Riemann surface and let (�−, �+) be solu-
tions of Eq. (4.13) for some flat metric on X. Then there is a J-holomorphic immersion 
� ∶ X → ℂℙ

3 such that the angle functions � are exactly �− and �+ . The immersion is 
unique up to isometries of ℂℙ3 , a choice 𝜆 > 0 and an element in S1∕ℤ4 ≅ S1 which para-
metrises a choice of a unitary (1, 0)-form �0 on X such that d(�−1�0) = 0.

In other words, a solution (�−, �+) of Eq. (4.13) specifies the immersion up to isometries 
and a choice of a constant (�,�0) ∈ ℂ

∗ . In the case when the solutions (�−, �+) and hence 
g have symmetries, the different embeddings ��,� might come from reparametrisations of 
X. Consider for example, X = ℂ and let L� ∶ ℂ → ℂ be the multiplication by � . Define fur-
thermore �−� = �−◦L�, �+� = �+◦L�, g� = g◦L� . If (�−, �+) solves Eq. (4.11) for a metric 
g on ℂ then (�−�, �+�) is a solution of Eq. (4.11) for the metric �2g� . This solution comes 
from the J-holomorphic curve �◦L� . In particular, if g� = g then the different immersions 
�� come from reparametrisations of X by L� . Similarly, if the induced g has radial symme-
try, different choices of �0 correspond to reparametrisations by rotations.

5.1  Special solutions of the Toda equations

Note that Eq. (4.13) are symmetric in �− and �+ , meaning a distinguished set of solutions is 
of the form � = �− = �+ . This reduces Eq. (4.13) to

which becomes the Sinh–Gordon equation after rescaling the metric with a constant fac-
tor. This is somewhat similar to the situation in S3 × S3 where J-holomorphic curves with 
Λ = 0 are locally described by the same equation. In particular,

R∗

�(�1,�2,�3, �, �1, �2) = (e−2i��1, e
4i��2, e

−2i��3, e
6i��, �1, �2).

(5.3)Δ0� = −8
√
2sinh(�)
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Proposition 5.3 Transverse J-holomorphic curves in ℂℙ3 with �− = �+ are locally 
described by the same equation as constant mean curvature tori in ℝ3.

Geometrically, the condition �− = �+ is satisfied for a J-holomorphic curve if the cor-
responding minimal surface X → S4 lies in a totally geodesic S3 , see Corollary 3.3. Hence 
the twistor lifts of the surfaces Tk,m ⊂ S3 ⊂ S4 from Sect. 6.1 give rise to examples of J-hol-
omorphic tori with �− = �+ . The Clifford torus T1,1 plays a special because it is a � 2 group 
orbit. Any J-holomorphic curve which is isometric to the twistor lift of T1,1 will be referred 
to as Clifford torus. Since isometries leave �− and �+ invariant this means that �− and �+ 
are constant on Clifford tori. Observe, that there is in fact only one solution for �− and �+ 
constant.

Lemma 5.4 If either �− or �+ is constant then both must be constant and equal to 1∕
√
2.

Theorem 5.5 Let � ∶ X → ℂℙ
3 be a transverse J-holomorphic curve such that the induced 

metric gH is flat and X is equal to � 2 or ℂ as a complex manifold. Then � parametrises a 
Clifford torus for X = �

2 and its universal cover if X = ℂ.

Proof By passing to the universal cover it suffices to assume X = ℂ . Furthermore, 
by Eq. (4.12), flatness of gH is equivalent to 1 = �2

−
+ �2

+
 and so Eq. (4.13) implies that 

log(�2
−
(1 − �2

−
)) is harmonic. It is also bounded because 𝛼2

−
, 𝛼2

+
> 0 and hence con-

stant. Since �− and �+ must be constant on Clifford tori it follows from Lemma 5.4 that 
�2
−
= �2

+
= 1∕2 . Now, Theorem 5.2 can be applied to prove uniqueness. Note that since ℂ 

carries the flat metric, a different choice of (�0, �) amounts to applying an isometry of X.  
 ◻

Consider 𝕋
2 = ℝ

2∕(2�ℤ)2 equipped with the metric gm,k = dx2 + fm,k(x)dy
2 for 

fm,k(x) = m2 cos(x)2 + k2 sin(x)2 and k,m ∈ ℝ ⧵ {0} . Let f̂m,k =
√
8

km
fm,k and 𝛼− = 𝛼+ = 2f̂ −1

m,k
 , 

which implies � = �−1∕2
−

 and �−2g = g0 is a flat metric with Laplace operator

Observe that these �± and g are a solution of Eq. (5.3) and hence give rise to transverse 
J-holomorphic curves in ℂℙ3 . In fact, they correspond to the minimal surfaces Ψm,k 
described in the following section.

The case when X is superminimal can be regarded as the limit �− → 0 . In fact, a similar 
frame adaption gives

and Gauß curvature 2(1 − �2
+
) for gH . The solution �2

+
= 2∕3 results in constant curvature 

1/3. The induced metric from the immersion in S4 is 2gH , i.e. the corresponding minimal 
surface has constant curvature 1/3, volume 12� and corresponds to the Veronese surface. If 
� is superminimal it is also a holomorphic curve for the standard Kähler structure on ℂℙ3 . 
Similarly to Eq. (3.6) one derives for a simple superminimal curve

Δ0 = (

√
f̂
𝜕

𝜕x
)2.

Δlog(�2
+
) = −4(3�2

+
− 2)volH

(5.4)rII = 6(g − 1) + 2deg(�) − 2rH
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where deg(�) is the algebraic degree of � . Since � is tangent to H , rH is the number of 
branching points of � and by Proposition 3.1, rII is the number of totally geodesic points 
of the corresponding minimal branched immersion in S4 . To obtain an explicit solution 
of Eq. (5.4), consider the superminimal curve Θ = Θ(f , g) parametrised via Eq. (3.5), for 
f (z) = zk and g(z) = z regarded as maps ℂℙ1

→ ℂℙ
1 . This example has been considered by 

Friedrich [18], who computed the degree of Θ , which equals k for k ≥ 3 . The induced met-
ric, curvature and �2

+
 on X can then be computed1 by pulling back the Fubini-Study Kähler 

potential on ℂℙ3 resulting in

for r = |z| . We see that �2
+
 vanishes everywhere if k = 0, 1, 2 , assume from now on k ≥ 3 . 

Then �+ has a zero of order k − 3 at both z = 0 and z = ∞ , yielding rII = 2k − 6 . This con-
firms deg(Θ) = k since Θ is an immersion, which implies rH = 0.

6  U(1)‑invariant J‑holomorphic curves

U(1)-actions on the nearly Kähler ℂℙ3 have been studied on the resulting G2-cone by Ati-
yah and Witten in the context of dimensional reductions of M-theory [3]. Closed expres-
sions for the induced metric, curvature and the symplectic structure on ℝ6 have recently 
been found by Acharya, Bryant and Salamon [1] for one particular U(1)-action.

While superminimal curves can be parametrised very explicitly our description of trans-
verse curves has been, with the exception of Clifford tori, rather indirect so far. Imposing 
U(1)-symmetry on the curves reduces a system of PDE’s to a system of ODE’s. In terms of 
�− and �+ , the 2D Toda lattice equation will reduce to the 1D Toda lattice equation. Kill-
ing vector fields on ℂℙ3 are in one to correspondence with Killing vector fields on S4 . We 
will provide a twistor perspective on the work of U(1)-invariant minimal surfaces [16]. The 
geodesic equation on S3 for the Hsiang–Lawson metric is replaced by the computationally 
less involved 1D Toda equation. The twistor perspective establishes relationship between 
U(1)-invariant curves and the toric nearly Kähler geometry of ℂℙ3.

6.1  U(1)‑invariant minimal surfaces in S3

In [24], Lawson developed a rich theory of minimal surfaces in S3 . For m, k ∈ ℝ ⧵ {0} 
there is a minimal immersion

with induced metric gm,k from Sect. 5.1. Assume that k, m are coprime integers, such that 
Tm,k = Im(Ψkm) represent Klein bottles 2|(mk) and tori otherwise. The surface T1,1 is the 
Clifford torus T. They are geodesically ruled and are invariant under the U(1)-action � 
given by

�2
+
(z) =

2(k − 2)2(k − 1)2k2r2k−2
((
k2 + (k − 2)2r2

)
r2k + 4

(
r4 + r2

))4
(
(k − 2)2k2r4k + 4

((
k2 − 3k + 2

)2
r4 + 2(k − 2)2k2r2 + (k − 1)2k2

)
r2k + 16r4

)3

Ψm,k(x, y) = (cos(mx) cos(y), sin(mx) cos(y), cos(kx) sin(y), sin(kx) sin(y))

1 see https:// github. com/ deepfl oe/ super minim al- curves for an implementation in Mathematica

https://github.com/deepfloe/superminimal-curves


141Annals of Global Analysis and Geometry (2022) 61:115–157 

1 3

It is furthermore shown that closed minimal surfaces invariant under this action are in one 
to one correspondence with closed geodesics in the orbit space S3∕U(1) equipped with 
an ovaloid metric. By studying this metric explicitly, a rationality condition on the initial 
values for the geodesic to be closed is obtained. This gives rise to a countable family of 
tori (Tk,m,a)a∈Ak,m

 where Ak,m is a certain countable dense subset of (0,�∕2) . This family 
is bounded by Tk,m corresponding to the boundary case a = 0 and the Clifford torus T for 
a = �∕2 . Similarly, for either m = 0, k = 0 or m = ±k there is a countable family Ca of min-
imal tori bounded by the Clifford torus and a totally geodesic two-sphere [22, Theorem 8].

Any cohomogeneity-one minimal surface in S3 belongs to the families Ca or Tk,m,a 
[22, Theorem  9]. Furthermore, Lawson constructs for any minimal surface in S3 an 
associated minimal surface in S5 which he calls bipolar surface. For the family Tk,m 
the bipolar surfaces lie in S4 but not in a totally geodesic S3 . Extend � to an action on 
S4 ⊂ ℂ

2 ⊕ℝ by letting U(1) act trivially on the ℝ component. The Hsiang–Lawson 
family Tk,m,a is contained in the totally geodesic three sphere x = 0 . Furthermore, the 
corresponding surfaces of this family are also U(1)-invariant but under the modified 
action (k̃, m̃) = (m − k,m + k) . Denote by T̃k,m,a the family of bipolar surfaces constructed 
from Tk̃,m̃,a . The two families Tk,m,a and T̃k,m,a will play a special role in the following 
discussion.

6.2  Killing vector fields

Since the nearly Kähler ℂℙ3 has isometry group Sp(2) any element � ∈ ��(2) gives rise to 
the Killing vector field

Assume that there is t > 0 such that exp(t�) equals the identity e ∈ Sp(2) , i.e. � corre-
sponds to an action � of U(1) on ℂℙ3 . Acting via � on integral curves of JK� gives rise 
to U(1)-invariant J-holomorphic curves in ℂℙ3 . Another way of stating this is that 
[K� , JK�] = 0 and that the span of K� and JK� defines an integrable distribution V� on 
M = ℂℙ

3 ⧵ (K�)−1(0) . The integral submanifold are exactly the � invariant J-holomorphic 
curves in ℂℙ3 which foliate M. Due to the isomorphism between ��(2) ≅ ��(5) , the ele-
ment � also gives rise to a Killing vector field K�

S4
 . This results in a uniqueness statement 

for minimal surfaces in S4.

Lemma 6.1 Let x ∈ S4 such that V ⊂ TxS
4 be a two-dimensional subspace containing 

K
�

S4
(x) and let p ∈ 𝜋−1(x) ⊂ ℂℙ

3 be the twistor lift of V. If K�
p
 is non-vertical there is a 

locally unique minimal surface Σ with x ∈ Σ and V = TxΣ.

Let X be an integral submanifold of the distribution V� . Since it is a J-holomorphic 
curve the bundle Sp(2)|X reduces to the ℤ8 bundle RX , see Lemma 4.5. There is an ℤ8 bun-
dle R over M which restricts to RX on each integral submanifold. Note that the construction 
of R is linked to the subspace � ⊂ ��(2) which becomes apparent in the following lemma.

Lemma 6.2 If a section s ∶ ℂℙ
3 ⊃ U → Sp(2) lies in R then s∗(ΩMC)(K

�) = s−1�s ∈ �.

ei�(z,w) = (eki�z, emi�z).

K�(x) =
d

dt
exp(t�)x.
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Proof Let s be a section of R. Consider the section s� = Lg◦s◦Lg−1 where g = exp(t�) for 
some t ∈ ℝ . Then s�∗(ΩMC)(K

�
x
) = ΩMC(K

�
gx
) ∈ � . In other words, s′ satisfies Eq. (4.10) and 

hence s′ also has values in R. Since the sections s and s′ are joined by a continuous path and 
R has discrete structure group it follows that s� = s , i.e.

This implies

  ◻

The point of the previous lemma is that it gives a more explicit description of the bundle 
R. Over U, define the KF bundle R� = {g ∈ Sp(2) ∣ g−1�g ∈ �} . By Lemma 6.2, R = R� . The 
point of the previous lemma is that it gives a more explicit description of the bundle R.

Corollary 6.3 A section s ∶ U → Sp(2) takes values in R if and only if s−1�s ∈ �.

The presence of the vector field K� means we can define the functions h = ‖K�‖2
H

 , 
v− = ‖K�‖2

V
 . Furthermore, if we restrict � to R the quantity v+ = |�(K�)|2 is well-defined. 

This gives

Let X be a transverse integral submanifold. Since K� and JK� commute, these vector fields 
give rise to coordinates (u, t) such that �

�u
= K� and �

�t
= JK� . The induced metric gH on X 

is equal to h(du2 + dt2) . In particular, due to Proposition 4.6 and since h is the conformal 
factor of the metric, the quantity C = h

√
�−�+ = h1∕2(v−v+)

1∕4 is constant along X. Hence, 
Eq. (4.13) reduces to

It is clear that the equations of Lemma 4.5 hold when the forms are restricted to R. How-
ever, the fact that K� is a Killing vector field guarantees that the following additional equa-
tions are satisfied

s(gx) = gs(x).

s∗(ΩMC)(K
�) = s−1ds(K�) = s−1�s.

(6.1)�− =
√
v−∕h, �+ =

√
v+∕h.

(6.2)

d2

dt2
log(v−) = 4(

C2

√
v−v+

− 2v−)

d2

dt2
log(v+) = 4(

C2

√
v−v+

− 2v+).

(6.3)�1(JK
�) = �2(JK

�) = 0

(6.4)�1(K
�) = �

√
h

(6.5)�3(K
�) = �

√
v−

(6.6)�(K�) = �
√
v+.
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for a constant � ∈ S1 . Note that Eq. (6.3) are satisfied because isometries preserve the 
quantities �− and �+ . Equation (6.4) holds because (u, t) are isothermal coordinates for gH 
on integral submanifold. Lastly, Eq. (6.5) and Eq. (6.6) follow from (6.4) and the defini-
tion of v−, v+ , i.e. Eq. (6.1) as well as the equations defining R, i.e. Eq. (4.10). Note that we 
have abused notation slightly here. By how KF acts on � the forms �1,… ,�3 are basic on 
R but take values in a possibly non-trivial line bundle on X whose structure group reduces 
to KF . In other words, � is only well-defined up to multiplication of a fourth root of unity. 
However, this poses no problem since the results which follow will only depend on � = �4.

6.3  Lax Representation and Toda Lattices

Since a general transverse curve satisfies the 2D periodic Toda lattice equation, U(1)-invar-
iant curves will satisfy the 1D periodic Toda lattice equations for the same Lie algebra, i.e. 
Eq. (6.2). These equations admit a Lax representation [5]. In the following, we will work 
out this Lax representation directly from the formalism of adapted frames. Consider the 
restriction of ΩMC to the reduced bundle R, which will still be denoted by Ω = ΩMC . We 
have

Note that Eq. (6.3–6.6) imply

Consequently, K�(Ω(JK�)) = 0 because h, v−, v+ are constant along K� . With this in mind, 
let us evaluate both two-forms at K� ∧ JK�

Evaluating the right-hand side of Eq. (6.9) gives

Hence, Eq. (6.9) is equivalent to Eq. (6.2). In other words, we have found a Lax representa-
tion of the ODE system. This proves the following lemma.

Lemma 6.4 The eigenvalues of Ω(K𝜉) ∈ ��(2) ⊂ ��(4) are constant along JK�.

Introduce the variables

dΩ = −[Ω,Ω].

(6.7)Ω(JK𝜉) =

⎛⎜⎜⎝
−ji�̄�

√
v− i

𝜆
√
h√
2

i
𝜆
√
h√
2

ji
√
v+𝜆

⎞⎟⎟⎠

(6.8)Ω(K𝜉) =

⎛⎜⎜⎝

−i

4
(
d

dt
log(v+)) + j�̄�

√
v− −

𝜆
√
h√
2

𝜆
√
h√
2

i

4
(
d

dt
log(v+)) + j𝜆

√
v+

⎞⎟⎟⎠
.

(6.9)

d

dt
(Ω(K�)) = (JK�)(Ω(K�)) = −dΩ(K� , JK�) = [Ω,Ω](K� , JK�) = [Ω(K�),Ω(JK�)].

=

⎛
⎜⎜⎝
i(−h + 2v−) + j

d

dt

√
v−

√
h

4
√
2

d

dt
log(v−v+)

−

√
h

4
√
2

d

dt
log(v−v+) i(h − 2v+) + j

d

dt

√
v+

⎞⎟⎟⎠
.
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where the dot denotes the derivative with respect to d
dt

 , i.e. along JK� . Then Eq. (6.2) is 
equivalent to

This system is Hamiltonian with

The Hamiltonian is in the form of [5, Theorem 1]. In other words, Eq. (6.10) are the equa-
tions for a generalised, periodic Toda lattice for the Lie algebra ��(2) . Bogoyavlensky’s 
Lax representation for such a system coincides with Eq. (6.9). Thus we have proven

Proposition 6.5 Simply connected, embedded, transverse J-holomorphic curves with a one-
dimensional symmetry give rise to solutions to the 1D periodic Toda lattice equations for 
the Lie algebra ��(2) with Lax representation

Define

Then one can check explicitly that the eigenvalues of Ω(K�) are given by

We have seen that a choice of a Killing vector field on ℂℙ3 gives rise to the above ODE 
system. The converse statement is also true.

Proposition 6.6 Let X ≅ ℂ be a Riemann surface equipped with coordinates (u, t) a met-
ric k = C�2(du2 + dt2) and 𝛼−, 𝛼+ ∶ X → ℝ

>0 satisfy the ODE system Eq. (6.2) for some 
C > 0 . Then there is an element � ∈ ��(2) such that X is an integral manifold of the dis-
tribution V� and such that �−, �+ are the angle functions and the tautological embedding 
X → ℂℙ

3 is J-holomorphic and isometric.

Proof Let (�−, �+) be a solution of Eq. (6.2) with C > 0 . We will now give a � ∈ ��(2) 
such that the integral submanifold through [e] = [1, 0, 0, 0] ∈ ℂℙ

3 has exactly the angle 
functions �−, �+ . We have already seen that such integral submanifolds satisfy Eq. 
(6.2). System Eq. (6.2) itself does not depend on the choice of � . In fact, � will deter-
mine its initial condition. Hence, it suffices to show that a � with the desired properties 
can be found for any C > 0 and fixed initial conditions for 𝛼−(0), 𝛼+(0), �̇�−(0), �̇�+(0) . Let 
h0 = C�−(0)

1∕2�+(0)
1∕2, v−0 = C�−(0)

3∕2�+(0)
−1∕2, v+0 = C�+(0)

3∕2�−(0)
−1∕2 and

q− =
1

2
log(v−), r− = ̇q−, q+ =

1

2
log(v+), r+ = ̇q+

(6.10)
q̇− = r−, ṙ− = 2(C2 exp(−(q− + q+)) − 2 exp(2q−))

q̇+ = r+, ṙ+ = 2(C2 exp(−(q− + q+)) − 2 exp(2q+)).

H = 2(C2 exp(−(q− + q+)) + exp(2q−) + exp(2q+)) +
1

2
r2
−
+

1

2
r2
+
.

d

dt
(Ω(K�)) = [Ω(K�),Ω(JK�)].

(6.11)
H1 = 2H

H2 = 2C2e−q−−q+
(
(r− − r+)

2 + 4(eq− + eq+ )
2
)
+
(
r2
−
− r2

+
+ 4e2q− − 4e2q+

)2
.

(6.12)±
i

2

√
H1 ±

√
H2 + 16C2Re(�4).
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Consider the integral manifold of V� passing through the point [e] = [1, 0, 0, 0] ∈ ℂℙ
3 . By 

construction, since at the point e ∈ Sp(2) we have ΩMC(K
�) = � and so e ∈ Sp(2) lies in the 

reduced bundle RX . Hence, we can apply Lemma 4.5 and evaluate �1 and �2 at K�([e]) to 
see that the angle functions �−, �+ of X satisfy the given initial conditions.   ◻

6.4  The � 2‑action

In this subsection, we will investigate describe the geometry of a general U(1)-action on 
ℂℙ

3 with respect to the vector field JK� and make use of the fact that such an action com-
mutes with a subgroup of Sp(2) , which is generically a two-torus. To that end, we fix

which integrates to the U(1)-action �(ei�[Z0, Z1, Z2, Z3]) = [eki�Z0, e
−ki�Z1, e

mi�Z2, e
−mi�Z3] 

on ℂℙ
3 . We fix an isomorphism ��(2) ≅ ��(5) which maps � to the element 

(k + m,−k − m, k − m,m − k, 0) ∈ ��(5) and thus corresponds to the U(1)-action with 
weights (k̃ = m − k, m̃ = m + k) on S4 ⊂ ℂ⊕ ℂ⊕ℝ . The Lawson torus Tk̃,m̃ and the bipo-
lar torus T̃k̃,m̃ admit J-holomorphic twistor lifts which are invariant under � and will be 
denoted by �k,m and 𝜏k,m , respectively. Let Stab(�) = {g ∈ Sp(2) ∣ g−1�g = �} , observe that

We will refer to the first two cases as degenerate and to the last case as non-degenerate. 
Due to the presence of a larger symmetry group, the degenerate cases are simpler and 
have been treated by the author elsewhere. This is why, in this article, we restrict ourselves 
to the degenerate case in which Stab(�) is equal to the standard two-torus in Sp(2) i.e. 
{diag(ei� , ei�)} to which we will simply refer as � 2 unless stated otherwise. Let �1, �2 be the 
elements in ��(2) corresponding to the action of ei� and ei� , respectively. This torus action 
gives rise to the multi-moment map � = �(K�1 ,K�2 ) , introduced in [30].

Proposition 6.7 The nearly Kähler multi-moment map on ℂℙ3 is given in homogeneous 
coordinates by

There are two Clifford tori which arise as orbits of � 2 and are equal to the preimages of 
the extremal values of � . Hence they are � 2 orbits of the points [1, 1, 1, i] and [1, 1, 1,−i] . 
When investigating �-invariant J-holomorphic curves, it proves worthwhile to study lower-
dimensional subsets Y of ℂℙ3 which are both invariant under � and the flow of JK� . In 
other words, the distribution V� is then tangent to Y and the problem of finding �-invariant 

𝜉 =

⎛
⎜⎜⎝

i

8
(−3

�̇�−(0)

𝛼−(0)
+

�̇�+(0)

𝛼+(0)
) + j

√
v−0 −

h0√
2

h0√
2

i

8
(−

�̇�−(0)

𝛼−(0)
+ 3

�̇�+(0)

𝛼+(0)
) + j

√
v+0

⎞
⎟⎟⎠
.

� =

(
ik 0

0 im

)
∈ ��(2)

Stab(�) ≅

⎧⎪⎨⎪⎩

U(1) × Sp(1) for k = 0 or m = 0

U(2) for k = ±m

�
2 otherwise

.

� =
12

|Z|4 Im(Z0Z1Z2Z3).
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J-holomorphic curves can be done separately on each such Y. Since d� = �+(K�1 ,K�2 , ⋅) , 
V� is tangent to each preimage �−1(c) . The value 0 as well as extrema of � have a distin-
guished geometrical importance, there are the following sets which arise in a natural geo-
metric way and to which V� is tangent

• C = �−1({�min, �max})

• B = �−1(0).
• Q , the quadric associated with � under the identification ��(2) with the real part of 

S2(ℂ4)

• S , the set where � 2 does not act freely
• T  , a distinguished S1 bundle over S3

0
⊂ ℝ

4 ⊕ {0} (for (k, m) non-degenerate)
• T̃  , a four-dimensional submanifold constructed from T  via Lawson’s bipolar con-

struction.

In the following we will define and outline the properties of each of the subsets.
The four points {[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]} are the fixed points of the 

�
2-action. It turns out that � 2 acts on the projective line going through any two of them 

with cohomogeneity one. More specifically, let

Observe that

The action of � 2 on ℂℙ3 is free away from the projective lines L1,… , L6 , i.e. 
S = L1 ∪⋯ ∪ L6 . Note that L1 and L6 are twistor lines, i.e. h = 0 , while L2,… , L5 are 
superminimal, i.e. v− = 0 . Since L2,… , L5 project to totally geodesic two-spheres they fur-
thermore satisfy v+ = 0 , see Proposition 3.1. Via the isomorphism ��(2)⊗ ℂ ≅ S2(ℂ4) , � 
is identified with the polynomial

Furthermore, since ��(2) ≅ ��(5) , � defines a vector field K�

S4
 on S4 . Since it is a Killing 

vector field, ∇(K�

S4
) can be identified with a two form on S4 . Its anti-self-dual part satisfies 

the twistor equation and gives thus rise to a quadric on ℂℙ3 = Z−(S
4) , holomorphic with 

respect to J1 , see [4, ch. 13]. This quadric is given by

and coincides with the vanishing set of the quadratic expression Eq. (6.13). For x ∈ ℂℙ
3 , 

let Xx be the unique �-invariant embedded J-holomorphic curve containing x and Σx be the 
corresponding minimal surface in S4 . Define

Lemma 6.8 If k = m then T = ℂℙ
3.

L1 = {Z0 = Z1 = 0}, L2 = {Z0 = Z2 = 0}, L3 = {Z0 = Z3 = 0},

L4 = {Z1 = Z3 = 0}, L5 = {Z1 = Z2 = 0}, L6 = {Z2 = Z3 = 0}.

L2 ∪ L4 = (K�1 )
−1
(0) L3 ∪ L5 = (K�2 )

−1
(0), (K�1 + K�2 )−1(0) = L1,

(K�1 − K�2 )−1(0) = L6.

(6.13)i(kZ0Z1 + mZ2Z3).

Q = {kZ0Z1 + mZ2Z3 = 0}

T = {x ∈ ℂℙ
3 ∣ Σx is contained in a totally geodesic S

3}.
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Proof For k = m = 1 the action on S4 only rotates the first two components of ℝ2 ⊕ℝ
3 . 

This action commutes with SO(2) × SO(3) . Let Σ be a minimal surface containing the 
orbit Ox for some x. Let � be the normal bundle of Ox in Σ and v ∈ �x . By an action of 
SO(2) × SO(3) we can assume that x and v lie in ℝ4 ⊕ {0} . In particular, x is contained in 
S3
0
⊂ ℝ

4 ⊕ {0} and v is tangent to it. Because � and S3 are �-invariant we have that Ox ⊂ S3 
and 𝜈x ⊂ TS3 . By [31], there is an embedded, �-invariant minimal surface Σ� such that 
Ox ⊂ Σ� ⊂ S3 . Now, Lemma 6.1 implies that Σ = Σ� , i.e. Σ ⊂ S3

0
 .   ◻

Lemma 6.9 If k ≠ m and Σ is a �-invariant minimal surface which is contained in a totally 
geodesic N ≅ S3 then N = S3

0
= ℝ

4 ⊕ {0} ∩ S4.

Proof One can check that ℝ4 ⊕ {0} ∩ S4 is the only totally geodesic S3 on which � acts. 
The statement follows from Lemma 3.5.

From now on, assume k ≠ m . Over the totally geodesic S3
0
 we introduce the reduced 

Grassmannian bundle

and notice that Gr(K� , S3
0
) is in fact an S1-bundle over S3

0
 which is mapped diffeomorphi-

cally to T ⊂ ℂℙ
3 = Z−(S

4) by the projection G̃r2(S4) → Z−(S
4) . Note that T  is also invari-

ant under � and JK� is tangent to T  . For a minimal surface Σ denote by Σ̃ the bipolar sur-
face from Sect. 6.1. Let

For both T  and T̃  we obtain explicit expressions in Sect. 6.7.

6.5  Separating � 2‑orbits

As highlighted in the introduction, it is desirable to have a geometric construc-
tion of a map into ℝ4 which descends to a local homeomorphism to the � 2 quotient 
of ℂℙ3 , at least away from a singular set. In general, one candidate for such a map is 
(�, ‖K�1‖, ‖K�2‖, g(K�1 ,K�2 )) . For S3 × S3 such a map cannot have four-dimensional 
image however, due to the presence of a unit Killing vector field on S3 × S3 . This is a 
special case, because S3 × S3 is the only nearly Kähler manifold admitting a unit Kill-
ing vector field [27]. Nevertheless, it seems difficult to compute the differentials of 
g(K�i ,K�j ) in a general setting.

For the case M = ℂℙ
3 we use a variant p of this map, based on the splitting 

Tℂℙ3 = H⊕ V . It turns out that, up to a sign, the multi-moment map � can be expressed 
as a function of � , Corollary 6.17. The quotient 

𝕋 2�ℂℙ
3⧵{L1∪⋯∪L6} is smooth and will be 

denoted by MF . Note that the functions (v+, v−, r+, r−) are all � 2-invariant.

Theorem 6.10 The functions

Gr(K
𝜉

S4
, S3

0
) = {V ∈ �Gr2(S

4) ∣ K𝜉 ∈ V ⊂ TS3
0
}

T̃ = {x ∈ ℂℙ
3 ∣ Σx = S̃ for S a minimal surface lying in a totally geodesic S3}.

p = (v+, v−, r+, r−) ∶ MF → ℝ
4
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map to a bounded set D ⊂ ℝ
4 over which p is a branched double cover. The two different 

points in the fibres of p are complex conjugates of each other and the branch locus is equal 
to B = �−1(0).

Proof Let

and �F = � ∩ ��(2)F . The aim is to define a smooth map MF → D ⊂ ℝ
6 as a composition 

of

We will now define each of the maps individually and establish its properties.
cF:
Consider the map c ∶ Sp(2) → ��(2), g ↦ g−1�g . Denote the image of c by O� . Note 

that c descends to a diffeomorphism from 
� 2�Sp(2) onto its image. Quotienting both spaces 

by the right action of S1 × S3 gives a homeomorphism between 
𝕋 2∖ℂℙ

3 and O�∕S1 × S3 . 
Denote the restriction of this map to MF by cF and observe that cF maps MF diffeomorphi-
cally onto

for O�
F
= O

� ∩ ��(2)F.
Π:
If x ∈ ��(2)F then the orbit of x under the action of S1 × S3 intersects �F in a KF orbit. 

In other words, there is an injective map Π ∶ ��(2)F∕S
1 × S3 → �F∕KF . On the other hand, 

the inclusion �F ⊂ ��(2)F induces � ∶ �F∕KF → ��(2)F∕S
1 × S3 and Π◦� = Id . This implies 

that Π is in fact a diffeomorphism from ��(2)F∕S1 × S3 to �F∕KF.
𝜁:
Consider the map

which is KF invariant. On ℝ3
+
×ℝ

2 × [−1, 1] ∋ (v−, v+, r−, r+, h,�) , motivated by Eq. 
(6.11), we define the functions

Denote by D̄ ⊂ ℝ
6 the set defined by the equations

𝔰𝔭(2)F =

{(
q1 − q3
q3 q2

)
∈ 𝔰𝔭(2) ∣ q3 ∈ ℍ ⧵ {0}, q1 ∈ ℍ ⧵ ℂ

}

(6.14)p ∶ MF

cF
→ ��(2)F∕S

1 × S3
Π

→ �F∕KF

𝜁
→ D̄ ⊂ ℝ

6
pr
→ D ⊂ ℝ

4.

cF(MF) = O
�
F
∕S1 × S3

𝜁 ∶ �F → ℝ
6,

⎛⎜⎜⎝

−i

2
r− + j�̄�

√
v− −

𝜆
√
h√
2

𝜆
√
h√
2

i

2
r+ + j𝜆

√
v+

⎞⎟⎟⎠
↦ (v−, v+, r−, r+, h,𝜇 = Re(𝜆4)).

C2 = h
√
v−v+

H1 = 4h + 4v+ + 4v− + r2
+
+ r2

−

H2 = (r−
2 − r+

2 + 4v− − 4v+)
2 + 8h((r+ − r−)

2 + 4(v+ + v−)).

(6.15)
H1 = 4(k2 + m2)

H2 + 64C2� = 16(k2 − m2)2.
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The image of �F under 𝜁 is D̄ . This follows because Eq. (6.15) describe how eigenvalues 
of elements in � are calculated, i.e. Eq. (6.12). Furthermore, since ��(2) is semi-simple, 
conjugacy classes are uniquely characterised by their eigenvalues. Note that 𝜁 descends to a 
double cover �∕KF , branched over ℝ3

+
×ℝ

2 × {−1, 1} . The two preimages are obtained by 
switching between � and �.

pr:
Since Eq. (6.15) can be solved uniquely for h and � the projection pr from 

ℝ
3
+
×ℝ

2 × [0, 1] to the first four components maps D̄ diffeomorphically onto its image

We have shown that Eq. (6.14) restricts to

and that 𝜁 is a branched double cover while each other map is a diffeomorphism. Hence, 
p is a branched double cover. By Eq. (6.7) and Lemma 6.2, p = (v−, v+, r−, r+) . Observ-
ing that p stays invariant under the map � ∶ [Z0, Z1, Z2, Z3] ↦ [Z0,Z1,Z2,Z3] completes the 
proof.   ◻

The proof of Theorem 6.10 gives an explicit description of the branch locus of � . The invo-
lution � preserves the metric and reverses the almost complex structure on ℂℙ3 . The fixed 
point set of � is the standard ℝℙ3 which is hence a special Lagrangian submanifold for the 
nearly Kähler structure [34].

Lemma 6.11 The set ℝℙ3 is special Lagrangian for the nearly Kähler structure on ℂℙ3.

Given a nearly Kähler manifold with a � 2-action the possibly singular space 
� 2��

−1(0) arises 
naturally. In the case of ℂℙ3 this space is an orbifold.

Lemma 6.12 The set 
� 2��

−1(0) is homeomorphic to ℝℙ3∕{±1} where the action of −1 is 
given by [X0,X1,X2,X3] ↦ [−X0,−X1,X2,X3].

6.6  A torus fibration of D

The image of p is equal to D and explicitly described by Eq. (6.16). To understand the set 
more conceptually, we show that D itself admits a two-torus fibration over a rectangle R in 
ℝ

2 . The torus fibres degenerate over the edges of the rectangle. Consider (H2, 64C
2) as a map 

from D to ℝ2 . Recall that (ik, im) are purely imaginary and equal to

Since � ∈ [−1, 1] we obtain the inequalities

(6.16)

D = {(v−, v+, r−, r+ ∈ (ℝ>0)2 ×ℝ
2 ∣h = 4(k2 + m2) − 4v+ − 4v− − r2

+
− r2

−
> 0

16(k2 − m2)2 − H2

64C2
∈ [−1, 1]}.

MF

cF
→ O

𝜉
F
∕S1 × S3

Π

→ (O𝜉 ∩ �F)∕KF

𝜁
→ D̄ ⊂ ℝ

6
pr
→ D ⊂ ℝ

4

1

2
√
2
±

�
4(k2 + m2) ±

�
H2 + 64C2�.
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In fact, the image of u = (H2, 64C
2) is equal to the rectangle, with one corner point missing

Note that R is bounded by the following line segments.

Motivated by the Toda lattice treatment, define the symplectic form

Let R0 = R ⧵ {l1 ∪⋯ ∪ l4} the interior of R and D0 = u−1(R0) . Using this symplectic 
form one can apply the Liouville–Arnold theorem to prove.

Proposition 6.13 On D0 , u is a submersion and its fibres are homeomorphic to � 2 . Around 
any x ∈ D0 there are local coordinates

such that the angles �1, �2 are coordinates on u−1{x} and I1, I2 only depend on H2 and C2 . 
In these coordinates Eq. (6.2) is transformed to

While the previous proposition shows that fibres over R0 are regular it is to be expected 
that the preimages of the boundary of R correspond to subsets with special geometric 
properties. In Sect.  6.4, we have considered the distinguished subsets S, T, T̃, C and B . 
The following proposition is visualised in Fig.  3 and summarises how the preimages of 
l1 ∪⋯ ∪ l4 are related to these subsets.

Theorem 6.14 The special subsets S, T, T̃, C and B are related to the edges of R

• u−1(l2) = p(T) ≅ �
2 , see Fig. 4

• u−1(l3) = p(T̃) ≅ �
2

• u−1(l1 ∪ l4) = p(B ⧵ S)

while the corner points of R are related to the Clifford torus �1,1 , Lawson torus �k,m and the 
bipolar torus 𝜏k,m by

• u−1(l3 ∩ l4) = p(𝜏k,m) ≅ S1

• u−1(l1 ∩ l2) = p(𝜏k,m) ≅ S1

• u−1(Q) = p(C) ≅ {∗}.

H2 − 64C2 ≤ 16(k2 − m2)2 ≤ H2 + 64C2, H2 ≥ 64C2, H2 + 64C2 ≤ 16(k2 + m2)2

R = {(H2, 64C
2) ∣H2 − 64C2 ≤ 16(k2 − m2)2 ≤ H2 + 64C2

H2 ≥ 64C2, H2 + 64C2 ≤ 16(k2 + m2)2} ⧵ {(H2, 64C
2)

= (16(k2 − m2)2, 0)} ⊂ ℝ
2.

l1 = {H2 + 64C2 = 16(k2 − m2)2} ∩Rl2 = {H2 = 16(k2 − m2)2 + 64C2} ∩R

l3 = {H2 + 64C2 = 16(k2 + m2)2} ∩Rl4 = {64C2 = H2} ∩R.

dq− ∧ dr− + dq+ ∧ dr+ =
1

2
(d(log(v−)) ∧ dr− + d(log(v+)) ∧ dr+).

I1, I2, �1, �2, �i ∈ ℝ∕ℤ

İi = 0, �̇� = 𝜔i(I1, I2,C
2) i = 1, 2.
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In the case k = m the rectangle R degenerates to the line l2 , which is a manifestation of 
Lemma 6.8. If m = 0 then R degenerates to the line l3.

Note that the map u◦p extends to the singular set, i.e. to the map

mentioned in the introduction and P maps 
� 2∖S to the point (16(k2 − m2)2, 0) . To prove 

Theorem 6.14 we first establish a more explicit understanding of the map p.

P ∶
𝕋 2 �

ℂℙ
3

→ R̄ = R ∪ {(H2, 64C
2) = (16(k2 − m2)2, 0)}

Fig. 3  The image of u ∶ D → ℝ
2 . Theorem  6.14 expresses how the preimage of the boundary points is 

related to special subsets of ℂℙ3 , compare with [16, Fig. 1]

Fig. 4  Flow lines of JK� in 
u−1(l4) . The boundary of the 
region is equal to u−1(l4 ∩ l1) 
while the zero of JK� is the 
preimage of u−1(l4 ∩ l3)
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6.7  Relation between p and moment maps

If one is just interested in a homeomorphism or cover 
𝕋 2∖ℂℙ

3

→ ℝ
4 the functions 

(v−, v+, r−, r+) are an unnecessarily complicated choice from a topological point of view. 
The reason for using these functions is that JK� takes a simple form

To get an idea of what the functions (v−, v+, r−, r+, h) look like in homogeneous coordi-
nates consider the following set of � 2 invariant functions

Clearly, 1 = f1 + f3 and the functions are also invariant under � . Note that the Kähler struc-
ture on ℂℙ3 admits a � 3 action and after choosing an appropriate basis for �3∨ , (f1, f2, f4) 
are multiples of the symplectic moment map on ℂℙ3 . We can furthermore deduce the rela-
tion between the functions f1,… , f5 and � . Note that � is not invariant under � but satisfies 
�◦� = −� and can thus not be expressed in terms of f1,… , f5 . However, observe that the 
square of � can be expressed in terms of the fi via

Denote by Df  the image of (f1, f2, f4, f5) in ℝ4 . By writing down an explicit sec-
tion one can prove that away from the branch locus B the � 2 × {±1} principal bundle 
(f1, f2, f4, f5) ∶ ℂℙ

3
→ ℝ

4 is trivial. Our aim is to express p = (v−, v+, r−, r+) in terms of the 
functions f1,… , f5 . For a quaternion q = z + jw ∈ ℂ⊕ jℂ let q

ℂ
= z and qjℂ = w.

Lemma 6.15 (v−, r−, v+, r+) = �◦Π ∶ ��(2)F → D is given by

where Q3 = q−1
2
q3q2.

Proof The functions (v−, r−, v+, r+) can be computed by conjugating � with an element in 
S1 × S3 to an element in � . Note that �F∕KF = �1∕K for

Furthermore, p is invariant under the group K so it suffices to find g ∈ Sp(2) such that 
g−1�g ∈ �1. Hence, we can conjugate � with the element diag(1, q2

|q2| ) and the result follows 
from the definition of 𝜁 .   ◻

We now pick a section

r−v−
�

�v−
+ r+v+

�

�v+
+ (h − 2v−)

�

�r−
+ (h − 2v+)

�

�r+
.

(6.17)

f1 = |Z|−2(|Z0|2 + |Z1|2), f2 = |Z|−2(|Z0|2 − |Z1|2)
f3 = |Z|−2(|Z2|2 + |Z3|2), f4 = |Z|−2(|Z2|2 − |Z3|2)
f5 = |Z|−4Re(Z0Z1Z2Z3).

(6.18)(12�)2 + f 2
5
=

1

16
(f 2
1
− f 2

2
)(f 2

3
− f 2

4
).

� =

(
q1 − q2
q2 q3

)
↦ (2i(q1)ℂ, |(q1)jℂ|2,−2iQ3ℂ, |Q3jℂ|2)

� =

{(
q1 − q3
q3 q2

)
∣ q3 ∈ ℂ

}
⊂ ��(2), �1 = � ∩ ��(2)F .
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with

Consequently,

Let

Combining Eq. (6.19) with Lemma 6.15 we can compute

Denote by �
� 2 the quotient map ℂℙ3 ⧵ S → MF by the � 2-action. Equation (6.20) can 

in fact be solved for (f1, f2, f4, f5) . This implies together with the triviality of the bundle 
f ∶ ℂℙ

3 ⧵ S → Df  the following proposition.

Proposition 6.16 There is a homeomorphism Df → D which is a diffeomorphism in the 
smooth points such that the following diagram commutes 

 In particular p◦�
� 2 is a trivial � 2 × {±1} bundle when restricted to ℂℙ3 ⧵ (S ∪ B).

Note that Eq. (6.18) yields the following corollary of Proposition 6.16.

Corollary 6.17 The square of the multi-moment map � is a function of (v−, v+, p−, p+)

ℂℙ
3 ⧵ (L1 ∪ L6) → Sp(2), [Z0, Z1, Z2, Z3] ↦

(
h1 k1
h2 k2

)

h1 = |Z|−1(Z0 + jZ1), h2 = |Z|−1(Z2 + jZ3)

k1 =
1

f1

√
1

f1
+

1

f3

(Z0 + jZ1), k2 =
1

f3

√
1

f1
+

1

f3

(Z2 + jZ3).

(6.19)cF([Z0, Z1, Z2, Z3]) =

(
h1 k1
h2 k2

)−1 (
ik 0

0 im

)(
h1 k1
h2 k2

)
.

E± = r2
±
+ 4v±.

(6.20)

h = −2((−1 + f1)f1k
2 + 2f2f4km + (−1 + f1)f1m

2 + 8kmf5)

r− = −2(f4k + f2m)

E− = 4((−1 + f1)
2k2 + 2f2f4km + f 2

1
m2 + 8kmf5)

r+ = −2(f4k + f2m) −
2(k − m)(k + m)(f1f4k + (−1 + f1)f2m)

(−1 + f1)f1k
2 + 2f2f4km + (−1 + f1)f1m

2 + 8kmf5

E+ = 4(f 2
1
k2 + 2f2f4km + (−1 + f1)

2m2 + 8kmf5).
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The rest of the subsection consists of proofs of some of the statements of Theorem 6.14. 
Note that the preimage of l1, l2 in D̄ are exactly all points with � = 1 or � = −1 , respec-
tively. Hence, the preimage of l1 ∪ l2 is equal to the branch locus of � . We can check 
explicitly

Note that on u−1(l3) the equation 2h =
√
E+E− is satisfied.

Lemma 6.18 The set T  can be explicitly described as {f1 = 1∕2, f4k = f2m} ⊂ ℂℙ
3.

Proof This follows from Eq. (6.20) by setting E− = E+ and r− = r+ .   ◻

Note that on D we have C2 = (k2 + m2 − v−v+ − 1∕4r2
−
− 1∕4r2

+
)(
√
vs) . The maxi-

mum value of C2 on D is attained for r− = 0, r+ = 0 and v− = v+ =
1

4
(k2 + m2) resulting 

in C2
max

=
1

8
(k2 + m2)2 . Furthermore we have h =

1

2
(k2 + m2) which means �− = �+ =

1

2
 

and is consistent with Lemma 5.4. These solutions describe the two � 2 invariant Clifford 
tori. In particular, if k,m ≠ 0 then the � 2 invariant tori never lie in B . Furthermore, we 
have f1 = 1∕2, f2 = 0, f4 = 0, f5 = 0 and in particular 1

16
(f 2
1
− f 2

2
)(f 2

3
− f 2

4
) − f 2

5
=

1

256
 which 

means � = ±3∕4 . That means that the two Clifford tori are equal to �−1(±3∕4) which are 
the extremal values of �.

The other special point on l4 is the intersection point l1 ∩ l4 . Its preimage under p◦u is 
identified with the subset of points in [X0,X1,X2,X3] ∈ ℝℙ

3∕±1 that satisfy f1 = 1∕2 and 
f4k = f2m , i.e.

Hence, p◦u−1(l1 ∩ l4) and thus p◦u−1(l1 ∩ l4) is homeomorphic to two copies of ℝℙ1 ≅ S1.

Lemma 6.19 The preimage u−1(l4) is homeomorphic to a closed two-disk in D.

Proof Inserting v− = v+ and r− = r+ into the inequalities describing R impose

which is homeomorphic to a disk in the (v−, r−) coordinates.   ◻

The flowlines of JK� in (p◦u)−1(l4) are mapped to closed curves in u−1(l4) which are 
plotted in Fig. 4.

6.8  Superminimal U(1)‑invariant curves

The focus of this article has been on transverse J-holomorphic curves. But the computa-
tions carried out in Sect. 6.7 give a framework for classifying U(1)-invariant superminimal 
curves too. From Eq. (6.20) we can deduce that v− = 4|kZ0Z1 + mZ2Z3|2 which implies

u−1(l4) = {v− = v+, r− = r+},

u−1(l3) = {(v−, v+, r−, r+) ∈ D ∣
√
E+ +

√
E− = 2

√
l2 + m2, r+ = −r−

√
E+√
E−

}.

X2
0
+ X2

1
= X2

2
+ X2

3
, k(X2

2
− X2

3
) = m(X2

0
− X2

1
).

(k2 − m2)2 ≤ 8C2 ≤ (k2 + m2)2 ⇔ (k2 − m2)2 ≤ 8v−(k
2 + m2 − 2v− − 1∕2r2

−
) ≤ (k2 + m2)2
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Lemma 6.20 The vector field K�
x
 is horizontal in x ∈ ℂℙ

3 if and only if x lies on the quadric 
Q.

In the case k = m this has already been observed in [1, Corollary 6.3] where this quadric 
has been described in more detail. Remarkably, Q is constructed from � in three different 
ways, via ��(2)⊗ ℂ ≅ S2(ℂ4) , via the anti-selfdual part of ∇(K�) , as explained after Eq. 
(6.13), and via Lemma 6.20. If a � invariant J holomorphic curve intersects Q it will lie in 
Q entirely. In other words, Q is invariant under � and JK� is tangent to Q . Furthermore, it 
follows that Q is traced out by superminimal �-invariant J-holomorphic curves. The follow-
ing proposition then follows from Eq. (3.5).

Proposition 6.21 All superminimal curves invariant under � are given by

for C ∈ ℂ . Furthermore,

for XC = Im(𝜑C) ⊂ ℂℙ
3 and YC = Im(𝜓C) ⊂ ℂℙ

3.

Observe that XL is totally geodesic if and only if L = 0 . This is equivalent to saying that 
v+ vanishes on the curve as well. X0 is part of the singular set of the torus action.
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material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

(6.21)�C ∶ ℂℙ
1 = ℂ ∪ {∞} → ℂℙ

3, z ↦ [1,
Cm

m − k
z2k, zk−m,

2kC

k − m
zk+m]

(6.22)ΨC ∶ ℂℙ
1 = ℂ ∪ {∞} → ℂℙ

3, z ↦ [1,
m

m − k
z2k,Czk−m,

k

C(k − m)
zk+m]

(6.23)or the projective lines L2,… , L5

Q = ∪C∈ℂXC ∪ YC ∪ L2 ∪⋯ ∪ L5
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