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Abstract

Numerical phantoms have played a key role in the development of diffusion MRI (dMRI)
techniques seeking to estimate features of the microscopic structure of tissue by providing
a ground truth for simulation experiments against which we can validate and compare
techniques. One common limitation of numerical phantoms which represent white matter
(WM) is that they oversimplify the true complex morphology of the tissue which has
been revealed through ex vivo studies. It is important to try to generate WM numerical
phantoms that capture this realistic complexity in order to understand how it impacts the
dMRI signal.

This thesis presents work towards improving the realism of WM numerical phantoms
by generating fibres mimicking natural fibre genesis. A novel phantom generator is
presented which was developed over two works, resulting in Contextual Fibre Growth
(ConFiG). ConFiG grows fibres one-by-one, following simple rules motivated by real
axonal guidance mechanisms. These simple rules enable ConFiG to generate phantoms
with tuneable microstructural features by growing fibres while attempting to meet
morphological targets such as user-specified density and orientation distribution. We
compare ConFiG to the state-of-the-art approach based on packing fibres together by
generating phantoms in a range of fibre configurations including crossing fibre bundles
and orientation dispersion. Results demonstrate that ConFiG produces phantoms with up
to 20% higher densities than the state-of-the-art, particularly in complex configurations
with crossing fibres. We additionally show that the microstructural morphology of
ConFiG phantoms is comparable to real tissue, producing diameter and orientation
distributions close to electron microscopy estimates from real tissue as well as capturing
complex fibre cross sections. ConFiG is applied to investigate the intra-axonal diffusivity
and probe assumptions in a family of dMRI modelling techniques based on spherical
deconvolution (SD), demonstrating that the microscopic variations in fibres’ shapes
affects the diffusion within axons. This leads to variations in the per-fibre signal contrary
to the assumptions inherent in SD which may have a knock-on effect in popular techniques
such as tractography.





Impact Statement

The focus of this thesis is the development of a new tool to generate realistic synthetic
white matter (WM) phantoms which we can use in simulation experiments to test and
develop existing and new diffusion MRI (dMRI) models. This tool, which we call
ConFiG, works by mimicking natural fibre growth and enables us to generate synthetic
models of white matter that are more realistic than previously achievable, opening a door
into investigation of the dMRI process in more detail than ever before. This tool has the
potential to impact not just our immediate academic community, but the wider academic
community and society as a whole as outlined in the remainder of this statement.

Immediate academic community ConFiG produces highly realistic WM phantoms
which outperform the previous state-of-the-art, producing microscopically realistic
structure in the generated axons. An immediate of impact of this the recently published
NeuroImage paper outlining the method and demonstrating its effectiveness. Further,
in this thesis we demonstrate that ConFiG can be used to probe assumptions in dMRI
models in a way that was previously infeasible, showing that some of the assumptions
may not hold true which may have a downstream effect on popular dMRI techniques.
This is merely the tip of the iceberg of what ConFiG could potentially bring to the dMRI
community, offering the potential to study the diffusion process in greater detail than
ever and generate new dMRI models capable of more accurately quantifying microscopic
features of tissue non-invasively.

Wider academic community The idea behind ConFiG, to grow cells mimicking
nature, could be extended to produce phantoms for other tissues including branching
neuronal cells in grey matter and non-brain tissues (for instance the complex
micro-environment of a tumour), potentially creating a whole suite of realistic tissues
to build new models for all sorts of applications. On top of this, the phantoms ConFiG
produces are stored as 3D meshes, which could be applied to many modalities outside of
dMRI in which it is possible to simulate the signal using a mesh. For instance the realistic
microstructure could be used with an electron microscopy (EM) simulator to generate
realistic EM images to help train and test models designed to segment WM axons.



Beyond academia The work presented in this thesis is the first step on a journey
towards potentially exciting clinical applications including more accurate imaging of
diseases affecting the WM such as multiple sclerosis (MS). Here we demonstrate that
ConFiG can generate realistic WM microstructure, and from that realistic dMRI signal
which lays the groundwork for this to be used to develop new dMRI models to estimate
microstructural information from WM. As an example of this, ConFiG could be used to
help us more effectively differentiate axonal loss and demyelination in MS, something
which is valuable information for differential diagnosis but is currently very difficult to
estimate from dMRI.
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Chapter Summary

The purpose of this chapter is to introduce the main motivations behind this project, from
the historical relevance of diffusion MRI to the use of modern simulations for validating
and developing new diffusion MRI models. This chapter also sets out the problem that
this project aims to address and the specific aims for addressing various aspects of it.

1.1 Motivation

In 1992, James Watson, co-discoverer of DNA, said “The brain is the last and grandest
biological frontier, the most complex thing we have yet discovered in our universe.” [1].
One year later, Francis Crick, fellow discoverer of DNA, and Edward Jones published a
commentary in Nature lamenting how little was understood about human neuroanatomy,
saying that new techniques were needed beyond the contemporary tracer studies in
non-human primates [2].1

1This introduction was inspired by Richard Passingham’s very nice foreword to Diffusion MRI by Berg
and Behrens [3]

19



1 Introduction

Just one year after that, in 1994, Basser et al. [4] showed that it was possible to use
magnetic resonance imaging (MRI) to measure the movement of water along axons,
providing the basis for exactly the kind of new technique Crick and Jones had felt was
needed. This technique of using MRI for measuring the movement of water molecules is
known as diffusion MRI (dMRI).

In the 25 years since the work of Basser et al., diffusion MRI has grown into a major MRI
research field, generating thousands of publications per year. Diffusion MRI has found
extensive use for imaging the brain, generating new techniques such as tractography,
which attempts to map out the connections in the brain in vivo, and microstructure
imaging, in which measurements of the diffusion of water in tissue are used to infer
information about the structure of the tissue on a scale much lower than the size of an
MRI voxel.

These techniques work because dMRI sensitises the MRI signal to the diffusive motion
of water molecules on the micrometer scale - the further the water diffuses, the more
strongly the MR signal is attenuated. The environment in which the water molecules move
restricts the motion of the molecules and so will affect how strongly the dMRI signal
is attenuated. This dependency of the dMRI signal on the environment in which water
molecules diffuse can be exploited to infer information about the environment solely from
the dMRI signal.

Microstructure imaging attempts to do exactly this, infer information about the
microstructural environment such as cell size and density from the dMRI signal. Since
the microstructure is on a much smaller scale than the dMRI voxels, we cannot directly
image this structure, so mathematical models are used to relate the dMRI signal from a
voxel to microstructural features.

The validation of these microstructural models can be difficult since ground truth
microstructural features are typically inaccessible in vivo and classical histological
validation techniques have limitations such as disruption due to tissue extraction and
preparation.

One approach commonly taken for the validation of new models is simulation of the dMRI
signal using well defined and controllable ground truth microstructural environments
known as numerical phantoms which allow us to compare model fitting results to the
ground truth from the numerical phantoms. Recent studies have used this approach to
investigate grey matter [5], however numerical phantoms have more commonly been used
to study dMRI in white matter (WM) [6–14].

Another application of numerical phantoms which is growing in popularity is in the direct
computational modelling of microstructure. These techniques use machine learning or
fingerprinting-style techniques to match simulated signals and the corresponding ground
truth microstructure of the numerical phantom to the measured signal in order to directly
estimate microstructural features without using an explicit analytical model [15–18].

20



1.1 Motivation

As well as affecting the dMRI signal, tissue microstructure also affects other MR
techniques such as susceptibility-weighted imaging [19, 20]. For instance, simulations
have been used to show that using realistic WM axonal models affect the susceptibility
weighted MR image differently to the commonly assumed straight cylinders [21]. It
is, therefore, important to the wider MRI community, not just the dMRI community,
to generate realistic WM numerical phantoms which accurately capture microstructural
features in order to get realistic simulated signal.

Typically, however, there is a mismatch between the true complexity of brain tissue and
the numerical phantoms that are used in simulations, outlined in Figure 1.1. For instance,
WM fibres are commonly represented using simple geometric constructs such as straight,
parallel cylinders [14, 22–26]. Real WM fibres, however, have complex shapes with
morphological features such as undulation and diameter variation, as revealed by electron
microscopy (EM) studies [27, 28].

It is very difficult to know exactly how this complex microstructure impacts on the dMRI
signal and to understand which of these complex morphological features can be detected
using dMRI. Developing new numerical phantoms which allow us to generate realistic
WM microstructure would enable us to study these effects with more control and detail
as well as enabling us to validate new and existing dMRI microstructure models more
comprehensively.

Additionally, realistic WM numerical phantoms would enable us to drive forward a new
generation of computational models of WM, using machine learning to link simulated
signals to the realistic WM microstructure which could potentially improve the accuracy
of microstructure models. For instance, it may be possible to disentangle axonal loss and
demyelination using these computational models which can give us valuable information
for differential diagnosis in diseases such as multiple sclerosis (MS).

The first step on the road to developing these new computational models, however, is
to develop a method to generate realistic WM numerical phantoms with controllable
microstructure. That is the main purpose of the work presented in this thesis, the
development of a new tool to generate more realistic WM numerical phantoms than was
previously possible.
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1 Introduction

Figure 1.1: The work presented in this abstract aims to bridge the gap between the true
complexity of white matter axonal morphology and the simplistic representation
currently used as numerical phantoms.

1.2 Problem Statement

There is a need to be able to generate numerical phantoms that realistically represent
WM microstructure, with controllable microstructural parameters such as axon packing
density and orientation dispersion.

1.3 Project Aims and Scope

This report summarises work towards improving the realism of simulations of diffusion
MRI. Realistic simulations allow models of the MRI signal to be validated using
controllable and well known ground truth.

The main aims of this work are as follows:

1. Develop a method for generating realistic WM numerical phantoms with realistic
and controllable morphology including axon packing densities and orientation
dispersion
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1.4 Report Overview

2. Test the realism of these numerical phantoms by comparing microstructure with
real microstructure reconstructed from electron microscopy and by comparing
simulated dMRI signal to real dMRI signals from WM

3. Demonstrate the usefulness of the phantom generator by using WM numerical
phantoms to probe the intra-axonal diffusion and assumptions in spherical
deconvolution based dMRI modelling techniques.

In an effort to achieve these aims, a method called ConFiG (Contextual Fibre Growth) is
presented which ‘grows’ fibres densely, mimicking natural fibre-genesis while attempting
to respect some morphological priors to generate realistic WM numerical phantoms.

1.4 Report Overview

This report is arranged into four parts and is based on a number of publications produced
over the course of this project2:

I - Introduction and Background This part includes the current chapter, outlining
the motivation behind this project and setting out the aims. Chapter 2 outlines
some background for the project, explaining the physics of diffusion MRI
and how we simulate it while Chapter 3 reviews current literature on dMRI
simulations and numerical phantoms to establish the state-of-the-art and identify
some limitations in existing numerical phantom generation techniques - primarily
that they over-simplify real axonal geometry.

II - Methods Development This part describes the methodological improvements for
phantom generation developed during this project, tackling aims 1 & 2 outlined
above. Working towards these aims, we developed a novel phantom generation
technique based on growing digital fibres, trying to mimic natural fibre growth. A
preliminary version of the phantom generator, preliminary fibre growth (preFiG), is
presented in Chapter 4 and is based on work published in Callaghan et al., IPMI,
2019, Callaghan et al., ISMRM, 2019 and Callaghan et al., OHBM, 2019.

The preFiG approach produced at-that-time state-of-the-art numerical phantoms,
however the maximum achievable fibre density was too low to apply to many
WM regions. To improve upon the preFiG phantom generator, we introduced new
growth mechanisms inspired by real biological axonal growth mechanisms. This
resulted in the final phantom generator, ConFiG, which is presented in Chapter 5,
with validation of the realism of ConFiG phantoms presented in Chapter 6 by
comparing ConFiG phantoms to real axons. Chapters 5 and 6 are an expanded
version of the work published in Callaghan et al., NeuroImage, 2020.

2For a full list of publications produced during this project, see the Publications chapter at the end of this
report (page 147).
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III - Applications This part contains a series of experiments performed using ConFiG
phantoms to probe diffusion dynamics and modelling assumptions in realistic WM
phantoms, addressing the third aim outlined above. Chapter 7 presents experiments
investigating the intra-axonal diffusivity within realistic axons, demonstrating that
undulation and beading (variable diameter along axons) affect the axial diffusivity
in different diffusion time regimes. We further investigate what impact realistic
axonal morphology and orientation dispersion can have on the estimation of the
axial diffusivity from dMRI. This chapter is based in part on results presented in
Callaghan et al., ISMRM, 2019.

Chapter 8 presents an investigation into how variable axonal morphology within a
voxel can impact a family of dMRI techniques based on spherical deconvolution
(SD). We demonstrate that variable axon morphology causes the dMRI signal to
differ across axons and that this can impact SD techniques which assume all axons
give the same signal. This chapter is based on work that has been submitted for
publication as a journal article and is under review.

IV - Conclusions The final part presents some concluding remarks, with Chapter 9
discussing the contributions to the field made by the work done during this project
and future directions that are enabled by ConFiG that we can take to push the
microstructure imaging field forward
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Chapter Summary

This chapter introduces the physics behind dMRI and some techniques used for the
simulation and modelling of dMRI. Firstly, general MR physics is introduced, building
up from a single proton to the generation of the spin echo signal. The second section
discusses how the diffusion of water molecules impacts the MR signal, leading to the
diffusion signal attenuation. The third section introduces some simulation approaches
which can be used to generate synthetic dMRI data. The final section gives a brief
overview of the kinds of dMRI models typically used in the brain with a focus on spherical
deconvolution techniques which will be used later in the thesis.

2.1 MR Physics

All forms of in vivo magnetic resonance have their origins in the 1940s when Purcell,
Torrey and Pound independently and almost simultaneously with Bloch, Hansen and
Packard detected radio frequency signals from nuclei in ordinary matter [29–32]. This
discovery gave birth to the field of nuclear magnetic resonance (NMR) which has become
widespread, with applications in a number of areas including chemistry, biology, materials
science and medical imaging [30, 33].
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Within the medical imaging context, NMR typically finds two uses, magnetic resonance
imaging (MRI) and magnetic resonance spectroscopy (MRS)1. Both of these uses are
closely related: MRI is typically concerned with building images of internal structures in
the body, whilst MRS is concerned with identifying the chemical composition of tissues
in the body.

The theory behind NMR concerns the interaction between nuclei and magnetic fields.
This section briefly introduces the NMR physics relevant to dMRI.

2.1.1 Nuclear Magnetism

The most important property of a nucleus for the application of NMR is nuclear spin.
Spin is a property inherent to all subatomic particles and whilst it is a purely quantum
effect, it can be thought of loosely as the particle spinning around its axis - much like
a tiny planet [29]. A planet spinning about its axis will have an angular momentum
associated with that rotation and similarly the spin of a particle behaves like an angular
momentum. Unlike the angular momentum of a rotating planet, however, the spin is an
intrinsic property of the particle itself and not a result of its motion [29].

MRI typically relies on NMR of 1H nuclei in water molecules, which simply consist of a
single proton. A proton carries a positive electric charge. Just as classically a rotating
charge with angular momentum, L, will produce a magnetic moment, µ = γL, the
intrinsic spin angular momentum, S of a proton will produce a magnetic moment

µ = γS , (2.1)

where γ is the gyromagnetic ratio [29]. For a proton, γ = 2.675× 108 rad s−1 T−1.

The fact that a proton has an intrinsic magnetic moment means that it will interact with
magnetic fields and it is understanding this interaction that underpins NMR theory.

2.1.2 Magnetic Resonance

Classically, a magnetic moment, µ, placed in an external magnetic field, B0, will feel a
torque, τ , given by [34]

τ = µ×B0 . (2.2)

At the same time, classical mechanics gives a relationship between the change in angular
momentum and the torque as [34]

dL

dt
= τ . (2.3)

For a proton in its rest state, the only angular momentum is the intrinsic spin angular
momentum, S, so combining Equations (2.2) and (2.3) gives the equation of motion for a
spin in an external magnetic field

dS

dt
= µ×B0 . (2.4)

1The ‘N’ from NMR is dropped in the medical imaging context to avoid confusion with nuclear medicine
and general squeamishness around the word nuclear
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Figure 2.1: a) Illustration of the precessional motion of a single spin with magnetic moment
µ in the presence of an external magnetic field B0. b) Many individual spins in
an external magnetic field precess around the external field with random phase
producing a net magnetisation in the direction of the B0 field.

Since S is equivalent to µ/γ (Equation (2.1)), this becomes

dµ

dt
= γµ×B0 . (2.5)

This equation of motion can be solved in a few ways for the case of constant external
magnetic field, with the result being that the magnetic moment precesses about the
magnetic field with a frequency, ω0, given by [29]

ω0 = γB0 , (2.6)

with B0 being the external field strength. This precessional motion is illustrated in
Figure 2.1a. The frequency ω0 is known as the Larmor frequency and lies in the
radiofrequency (RF) range for typical field strengths found in MRI machines (1.5 - 7
T).

In practice, it is not possible to observe the magnetic moment of a single spin in vivo. The
quantity observed is rather the sum of the magnetic moments from many spins together,
this is known as the net magnetisation.

In a sample, slightly more protons will align with the B0 field than against it, meaning that
the net magnetisation will be parallel to B0. Figure 2.1b shows a pictorial representation
of the system of many spins producing a net magnetisation, M0 aligned with B0.

Each of the spins will still be precessing about the magnetic field at the Larmor frequency
but since they are out of phase with one another, all transverse components of the
magnetisation cancel out when they combine and all that is left is a static longitudinal
component.
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Figure 2.2: Nutation motion of an on-resonance spin in the presence of an RF field. Precession
about the B0 and B1 fields create the spiralling motion in the laboratory frame.

In order to make measurements, the net longitudinal magnetisation needs to be ‘flipped’
into the transverse plane where it can be detected. This is achieved by applying a second
magnetic field, B1, oscillating in the transverse plane. In much the same way as with B0,
the magnetisation feels a torque from B1 and begins to rotate about B1, away from the
longitudinal axis. The two external fields act simultaneously on M0 so the magnetisation
will tip away from the z axis whilst still precessing about z with a frequency ω0. This
kind of motion is known as nutation and is illustrated in Figure 2.2.

2.1.3 The Bloch Equations

The interaction between the magnetisation and magnetic fields is described by the Bloch
equations - an empirical set of equations describing the evolution of magnetisation
introduced by Felix Bloch in 1946 [31].

The magnetisation arises from a sum of independent magnetic moments, meaning that we
can represent the magnetisation as

M =
∑
i

µi , (2.7)

with i indicating a sum over all the spins in the sample. This definition for M can be
combined with the equation of motion for a single spin, Equation (2.5), to give [34]

dM

dt
= γM×B . (2.8)
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In the presence of the main external field, B0, the magnetisation will be static and aligned
along the z axis. The x and y components of the magnetisation will have random
orientations and precess about B0 at the Larmor frequency with a mean amplitude of
zero. This will give the components of Equation (2.8) as [35]

dMx(t)

dt
= γMyB0 , (2.9)

dMy(t)

dt
= −γMxB0 , (2.10)

dMz(t)

dt
= 0 . (2.11)

To understand the interaction of the magnetisation with the B1 field, the oscillation of
the field in the transverse plane needs to be described. Usually, the B1 field is circularly
polarised to oscillate in the transverse plane so that the field can be described as

B1(t) = B1 cos(ωt)x̂−B1 sin(ωt)ŷ , (2.12)

where x̂ and ŷ are unit vectors in the x and y directions respectively.

The combined effect of the B0 and B1 fields can be seen from Equation (2.8) to get [35]

dMx(t)

dt
= γ (My(t)B0 −Mz(t)B1 sin(ωt)) , (2.13)

dMy(t)

dt
= γ (Mz(t)B1 cos(ωt)−Mx(t)B0) , (2.14)

dMz(t)

dt
= γ (Mx(t)B1 sin(ωt)−My(t)B1 cos(ωt)) . (2.15)

These are the equations of motion of the magnetisation in the laboratory frame under the
influence of the B0 and B1 and describe the kind of motion seen in Figure 2.2.

2.1.3.1 Relaxation

In order to get to the full Bloch Equations the concept of relaxation must be introduced.
Relaxation is a term used to describe the way in which a spin system will return to
equilibrium after being perturbed. The components of M that are parallel to the B0

magnetic field relax differently to those perpendicular to the magnetic field leading to
two relaxation terms being introduced into Equations (2.13) to (2.15).

The relaxation processes are exponential and described by two time constants, T1 and
T2. T1 is the longitudinal relaxation time and describes the rate at which longitudinal
magnetisation regrows after a perturbation. T2 is the transverse relaxation time and
describes the rate at which transverse magnetisation decays after a perturbation. T2 is
always shorter than T1 since all the effects which contribute to T1 also contribute to T2
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relaxation, however T2 relaxation is also affected by the spins going out of phase with
one another. The relaxation process can be written as [35]

dMx(t)

dt
= −Mx(t)

T2

, (2.16)

dMy(t)

dt
= −My(t)

T2

, (2.17)

dMz(t)

dt
= −Mz(t)−M0

T1

. (2.18)

Combining Equations (2.13) to (2.15) and Equations (2.16) to (2.18) gives the full Bloch
equations

dMx(t)

dt
= γ (My(t)B0 −Mz(t)B1 sin(ωt))− Mx(t)

T2

, (2.19)

dMy(t)

dt
= γ (Mz(t)B1 cos(ωt)−Mx(t)B0)− My(t)

T2

, (2.20)

dMz(t)

dt
= γ (Mx(t)B1 sin(ωt)−My(t)B1 cos(ωt))− Mz(t)−M0

T1

. (2.21)

T2 is used to refer to relaxation due to intrinsic spin-spin interactions which cause spins
to accrue phase relative to one another and thus the magnitude of the net transverse
magnetisation is reduced when taking the sum in Equation (2.7) . Other effects can also
contribute to the loss of transverse magnetisation, such as magnetic field inhomogeneities
which can add to the T2 relaxation. This is referred to as T∗2, with

1

T∗2
=

1

T2

+
1

T′2
, (2.22)

where T′2 is the relaxation time associated with these external sources and T2 is the
intrinsic spin-spin relaxation time. The T′2 effect can be negated using special MR pulse
sequences which will be covered in Section 2.1.5, however the intrinsic T2 relaxation
cannot be avoided.

2.1.3.2 The rotating frame

To this point, everything has been described in a static Cartesian frame known as the
laboratory frame. The lab frame is not the most convenient reference frame to analyse
the NMR experiment in, however. Moving to a frame which is rotating about B0 (i.e.
the z-axis) at a frequency ω matching the B1 field oscillation simplifies the maths of the
system. The axes of this rotating frame will be referred to as x′, y′ and z′.

The components of the magnetisation in the rotating frame can be calculated from the lab
frame components as [35]

M′
x = Mx cos(ωt)−My sin(ωt) , (2.23)

M′
y = Mx sin(ωt)−Mx cos(ωt) , (2.24)

M′
z = Mz . (2.25)
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Figure 2.3: Motion of a spin in the presence of a B1 RF field in the rotating frame. This is
identical to the nutation in Figure 2.2, however viewing from the rotating frame
simplifies the motion.

The rotating frame Bloch equations can be calculated by combining these rotating frame
magnetisation components with the lab frame Bloch equations [35]

dM′
x(t)

dt
= ΩM′

y(t)−
M′

x(t)

T2

, (2.26)

dM′
y(t)

dt
= −ΩM′

x(t) + γB1M
′
z(t)−

M′
y(t)

T2

, (2.27)

dM′
z(t)

dt
= −γB1M

′
y(t)−

M′
z(t)−M0

T1

, (2.28)

where Ω = ω0−ω is the offset frequency between the B1 field frequency and the Larmor
frequency.

Since the frame is rotating with a frequency ω, the B1 field appears static in the rotating
frame. The precessional motion that is seen in the lab frame (ω0 = γB0) is reduced to a
frequency Ω in the rotating frame. When Ω = 0, meaning that B1 oscillates at the Larmor
frequency, the magnetisation simply precesses about the B1 field towards the transverse
plane as illustrated in Figure 2.3.

This situation is known as resonance - the frequency of the RF pulse matches the
Larmor frequency, perfectly tipping the magnetisation away from the z′ axis and into the
transverse plane.

In the off-resonance case, an additional component of magnetic field with magnitude
Ω/γ is produced in the z-direction. This results in an effective magnetic field, Be, with a
magnitude [35]

Be = |Be| =

√
B2

1 +

(
Ω

γ

)2

. (2.29)
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Figure 2.4: The effective field, Be, produced due to an off-resonance frequency Ω. The
off-resonance effects produce an additional component of magnetic field along the
z′ axis.

The effective field is illustrated in Figure 2.4 with the additional component of Ω/γ
resulting in an effective field that is no longer aligned with x′. Off-resonance effects
can produce unwanted results meaning the spin does not get flipped as much as expected
under an RF pulse which can result in signal losses.

2.1.4 Detecting the MR signal

The detection and processing of NMR signals is a deep topic which could be the subject
of its own book, however some very basic details of how a signal is formed are useful to
go on from here.

The reason for flipping the magnetisation into the transverse plane using B1 fields is to
make the magnetisation detectable. Transverse magnetisation precesses about B0 at the
Larmor frequency, sweeping its magnetic field around B0. A coil of wire placed near this
precessing field will feel an electromotive force induced in it according to Faraday’s Law
of Induction [34].

Following a pulse that flips the magnetisation from M0 aligned with z through an angle
β towards x′, the x′-component of the magnetisation will be M0 sin β and (ignoring
relaxation) will then precess at the offset frequency, Ω, in the rotating frame. This will
give the components of the magnetisation in the transverse plane over time as

Mx = M0 sin(β) cos(Ωt) My = M0 sin(β) sin(Ωt) . (2.30)
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Figure 2.5: The free induction decay described by Equation (2.32). Here, just the real channel
is plotted.

The signal induced into the receiver coils is proportional to Mx and My and so the signal
will also have an oscillating form similar to Equation (2.30). From the sin β term, it is
clear that the maximum signal will arise when β = 90°, meaning all the magnetisation
is flipped into the transverse plane. Additionally, in a realistic experiment, there will be
T∗2 relaxation so including this, the general form of the signal following a 90° pulse will
be [35]

Sx = S0 cos(Ωt) exp (−t/T∗2) Sy = S0 sin(Ωt) exp (−t/T∗2) . (2.31)

Generally NMR systems use something known as quadrature detection, meaning that both
the x′ and y′ components of the magnetisation are measured simultaneously [29], giving
the signal as a function of time as

S(t) = Sx + iSy ,

= S0 exp((iΩ− 1/T∗2)t) . (2.32)

This time-domain signal is known as a free induction decay (FID) and has a typical form
shown in Figure 2.5. If we neglect off-resonance effects, then the FID in the rotating
frame will be a simple exponential decay.

S(t) = S0 exp(−t/T∗2) (2.33)

The FID is not commonly used for dMRI for a few reasons. Firstly, magnetic field
gradients need to be introduced to make the signal sensitive to diffusion. Additionally,
the T∗2 decay is often very rapid, so sequences known as spin echo sequences are used to
remove the T′2 relaxation.

2.1.5 Spin echoes

It is possible to undo the effects of T′2 by designing a pulse sequence to ‘refocus’ the
spins, forming what is known as a spin echo. The first spin echo sequence was introduced
by Edwin Hahn in 1950 [36]. The simplest sequence to form a spin echo consists of a 90°
pulse to excite the spins followed by a 180° pulse after a delay. This sequence is shown in
the diagram in Figure 2.6 along with how the signal varies during the pulse sequence.
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(a)

(b)

Figure 2.6: a) Spin echo sequence and (b) an indication of the evolution of spins under a spin
echo sequence. This shows how the 180° refocusing pulse acts to refocus the spins
after a time TE.

Figure 2.6b represents how the magnetisation evolves through the pulse sequence with the
four diagrams corresponding to the points marked in Figure 2.6a. At point 1, immediately
following the 90° pulse, all the magnetisation has been flipped into the transverse plane
and is in phase - meaning all the magnetic moments of the spins point in the same direction
in the x-y plane.

The field inhomogeneities cause the different spins to feel slightly different magnetic
fields and so precess at slightly different frequencies. This causes the spins to lose
phase-coherence as indicated at point 2, and so the signal decays with T∗2.

At point 3, following the 180° pulse, the spins remain out of phase with one another, but
the 180° pulse has flipped their orientations across the x′-axis. The magnetic field the
spins feel is still the same, so despite their flip in orientation, they still precess in the same
direction. This means that the evolution that caused the spins to dephase begins to rewind
and bring the spins back into phase coherence. After a time equal to the time between the
90° and 180° pulses, at point 4, the spins will be brought completely back in phase - or,
refocused - and the spin echo is formed.

The signal at point 4 will still be lower in magnitude than that at point 1 since the T2

relaxation will still occur as it is an inherent property of the matter. The spin echo
does, however, refocus the B0 inhomogeneities. The time between the 90° pulse and the
formation of the echo is known as the echo time (TE).

The spin echo sequence shown in Figure 2.6 forms the basis of the standard pulsed
gradient spin echo (PGSE) diffusion MRI sequence which is introduced in the following
section, along with a description of the physics behind diffusion MRI.
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2.2 Diffusion MRI

Diffusion MRI (dMRI) sensitises the MRI signal to the motion of water molecules due
to diffusion. The following section describes the physics behind diffusion and how the
diffusion impacts the MRI signal.

The diffusion process is driven by the Brownian motion of particles in fluids. The
thermal kinetic energy of particles causes them to move around rapidly, however particles
frequently collide with each other (for instance, molecules in water at room temperature
experience around 60 billion collisions per second [37]) creating a very tortuous, random
path.

Diffusion MRI sensitises the MR signal to this motion by exploiting the dephasing of
spins as a result of magnetic field gradients.

The magnetic field will generally have a uniform component from the main B0 field,
and spatially and/or time varying components due to deliberate magnetic field gradients
or typically unwanted effects such as magnetic susceptibility inhomogeneities and
concomitant fields [34]. In general, B(r, t), the magnitude of the magnetic field at a
position r at time t is given by

B(r, t) = |B| = |B0ẑ + ∆B(r, t)| , (2.34)

where ∆B(r, t) accounts for all of the variation in the magnetic field away from B0.
Note that ∆B(r, t) is a vector quantity which may have components in the x̂ and ŷ
directions.

An idealised expression for ∆B(r, t) often applied to MRI assumes that all of the change
in the magnetic field is due to an applied magnetic field gradient, g(r, t), which only has
a significant ẑ component. This means that Equation (2.34) can be written as

B(r, t) = |B0ẑ + (g(r, t) · r) ẑ| ,
= B0 + g(r, t) · r . (2.35)

Magnetic field gradients introduce a deliberate variation in the magnetic field which,
according to Equation (2.6), causes the Larmor frequency to vary spatially as well
temporally.

Since the Larmor frequency varies spatially, spins in different locations will precess at
different frequencies and accrue a phase shift relative to spins in different locations. The
incremental phase, dφ, accrued for a single spin, i, in an infinitesimal time, dt, is given
by

dφi = γB(Ri(t), t)dt , (2.36)

where γ is the gyromagnetic ratio and Ri(t) is the position of the particle at time t.

Putting Equation (2.35) into Equation (2.36) and integrating over the time of the diffusion
experiment will give the total phase accrued for a single spin:

φ(Ri(t)) = γB0t+ γ

∫ t

0

g(Ri(t
′), t′) ·Ri(t

′)dt′ , (2.37)
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Figure 2.7: The standard pulsed gradient spin echo sequence used in dMRI.

The first term in this equation is the phase accrued due to the main magnetic field which
will be the same for all spins in the system. The second term is the phased accrued due
to the gradient, which will be dependent on the motion of each individual spin. The dot
product here indicates that only displacement projected onto the gradient direction affects
the phase, allowing the gradient direction to be used to probe the diffusion in different
directions.

The first diffusion MR sequence, introduced by Stejskal and Tanner in 1965 [38], is the
pulsed gradient spin echo (PGSE) sequence, shown in Figure 2.7. The PGSE sequence
consists of a standard spin echo sequence with a pair of gradient pulses added either
side of the refocusing pulse. In the ideal case, each pulse is rectangular with a gradient
strength, G, and duration, δ and they are separated by a time, ∆.

The effect of this pulse sequence can be simplified by considering the case when δ � ∆.
This is known as the short gradient pulse (SGP) approximation and means that the motion
of spins during the pulses can be ignored.

Under the SGP approximation, the phase accrued by a spin at a position R0 during a pulse
at a time t0 will be

φ(R0) = γB0δ + γδg(R0) ·R0 . (2.38)

Here, R0 refers to the spin position at time t = t0 and is not time-dependent, because
under the SGP approximation the motion of spins during the pulse is assumed to be
negligible.

The 180° pulse in the PGSE sequence is crucial, since it flips the orientation of the spins’
magnetic moments as in the spin echo sequence in Figure 2.6. Not only does this refocus
T∗2 effects as outlined in Section 2.1.5, but similarly, it means that the phase accrued due
to the first gradient pulse now has a negative sign relative to the phase that will be accrued
due to the second pulse.

A spin which is at a position R0 during the first pulse and then diffuses to a position R1

during the second pulse will therefore have a relative phase shift of

∆φ(R1 −R0) = γδg · (R1 −R0) . (2.39)

The B0 term from Equation (2.38) is the same for both gradient pulses, meaning that
during the subtraction in Equation (2.39) it cancels and the only relative phase shift comes
from the diffusive motion.
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The total MR signal comes from an ensemble of spins, each with their own random
Brownian motion and thus, from Equation (2.39), their own relative phase shift. To get to
the total MR signal, we need to consider the probability that a particle starts at position R0

(i.e. the initial spin density, ρ(R0)), which can generally be considered uniform within
a voxel [39]) and the probability that a particle which starts at R0 moves to R1 during
the time ∆, P (R0,R1,∆). Putting these together, gives an expression for the total MR
signal [38, 39]:

S(g,∆) = S(0,∆)

∫ ∫
ρ(R0)P (R0,R1,∆)eiγδg·(R1−R0)dR0dR1 . (2.40)

This quantity, P (R0,R1,∆), is known as the diffusion propagator and is of great interest
for diffusion MRI because P (R0,R1,∆) encodes the information about the environment
in which the spins are diffusing. For diffusion in an isotropic, homogeneous medium, the
diffusion propagator is a Gaussian distribution [39]:

P (R0,R1, t) = (4πDt)−
3/2 exp

(
−(R1 −R0)2

4Dt

)
. (2.41)

In the case of Gaussian diffusion, Equation (2.40) can be solved analytically and will give
an MR signal attenuation (that is, S(t)/S(0)) which is also Gaussian [38, 39]

E(g,∆) = exp(−γ2g2δ2D∆) . (2.42)

The general form of this expression, accounting for finite duration gradient pulses, can
also be analytically derived to give the Stejskal-Tanner equation [38, 40]

ln(E) = −γ2g2δ2D(∆− δ/3) , (2.43)
= −bD , (2.44)

where b = γ2g2δ2(∆ − δ/3) is the so-called b-value which describes the strength of the
diffusion encoding.

We can formulate a more general form of Equation (2.40) without requiring any
assumptions on the gradients (such as the SGP approximation used above) as [25, 39]

S(g, t) = S(0, t)

∫ ∞
−∞

P (φ, t)eiφdφ , (2.45)

where the phase, φ will be given by Equation (2.37) and P (φ, t) is the probability density
function of the phase distribution after a time t.

In the case of restricted diffusion (i.e. diffusion in an inhomogeneous or anisotropic
environment) the form of the diffusion propagator becomes more complex and closed
form solutions of Equations (2.40) and (2.45) are only possible for certain simple
geometries and assumptions.

Analytical solutions can be found for some simple restricting geometries such as spheres,
cylinders and parallel plates [41–43]. For more complex environments, however, an
analytical solution is intractable and we must rely on simulations to approximate the
diffusion MRI signal.
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2.2.1 The Bloch-Torrey equations

As well as describing the dMRI signal by considering the microscopic diffusion of spins,
a macroscopic formulation can be derived considering Fick’s laws of diffusion. The
combination of the Bloch equations (Equations (2.26) to (2.28)) with Fick’s second law
of diffusion leads to the Bloch-Torrey (BT) equations, proposed by H. C. Torrey in 1956
[44–46]:

∂M(r, t)

∂t
= γM×B(r, t)− Mxx̂ +Myŷ

T2

− (Mz −M0)ẑ

T1

+∇ · (D∇M) . (2.46)

This version of the BT equation is sometimes referred to as the standard BT equation. An
additional term can be added to account for the evolution of the magnetisation due to a
flow, described by a velocity field v to get the generalised BT equation [47,48]. However,
this flow term is often dropped, assuming no net flow, in the application to dMRI, leaving
Equation (2.46). D is the diffusion tensor, a generalisation of the diffusion coefficient,
D, to allow for anisotropic diffusion. In short, this means that diffusion happens at a
different rate in different directions. It is the D term in Equation (2.46) which encodes
the evolution of the magnetisation when there is diffusion.

In general, the BT equations cannot be solved analytically, apart from in some simple
cases such as isotropic free diffusion. For instance, the solution to the BT equations
in isotropic free diffusion can be shown to give the expected Stejskal-Tanner equation,
Equation (2.43) [39].

For complex geometries, as with the case above, we must rely on computational methods
to come to a solution for the BT equations.

2.3 Diffusion Simulation

Diffusion simulations attempt to evaluate Equation (2.45) or Equation (2.46)
computationally. Simulation approaches broadly fall into two categories: numerical
solutions of the BT equation and Monte-Carlo (MC) simulations of the diffusion
dynamics. This section introduces these techniques, highlighting some of the similarities
and differences between them.

At a high level, all diffusion simulations have three common components: the substrate,
the diffusion dynamics and the measurement. The substrate describes the environment
in which the diffusion is taking place. A common example of this is parallel cylinders
representing axons in white matter. The diffusion dynamics describe our understanding
of the processes underlying the diffusive motion of molecules and the measurement
describes how this diffusive motion results in a synthetic dMRI signal.
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2.3 Diffusion Simulation

2.3.1 Numerical solutions

Numerical solution approaches generally attempt to solve the Bloch-Torrey equation [44].
These approaches combine both the dynamics and the measurement components of the
diffusion simulation by solving for the magnetisation in Equation (2.46). The third
component, the substrate, defines boundary conditions required for the solution of the
equation.

There are two typical methods for solving the partial differential equation (PDE) in
Equation (2.46), finite difference methods (FDMs) and finite element methods (FEMs).
Finite difference methods evaluate the PDE using a local Taylor expansion at discrete
points which are generally uniformly separated in each spatial as well as the temporal
dimension [49]. FDMs are an efficient method for solving PDEs when the problem
can fit into a rectangular grid, however they are less effective when applied to complex
geometries [49, 50].

Finite element methods subdivide the domain into small elements which are simple
geometric shapes, though unlike the FDMs, they do not have to form a regular grid, but
rather an arbitrary mesh. In each element, the PDE solution is approximated by simple
functions such as a linear combination of polynomials. The combination of all of these
local approximations can be solved to give a numerical solution of the PDE across the
whole domain [51]. FEMs are generally more complex to formulate and implement than
FDMs, however the added complexity can be worth the effort for more difficult problems
in which FDMs may be ineffective [52].

2.3.2 Monte-Carlo simulations

Monte-Carlo (MC) methods take a different approach to the simulation of the dMRI
signal. MC methods simulate the Brownian motion of a large number of particles by
simulating the motion of each particle individually, along with the MR acquisition to
generate the dMRI signal.

There exist many different implementations of the MC simulation of dMRI [24, 25, 53–
57], however the underlying principles are similar for all of them. The following is a
general description of the MC simulation process, however the specifics for each different
implementation may vary.

Most early MC studies used simple, easily parameterised substrates like regularly packed
cuboids [57] or cylinders [24]. As computational power has increased, so too has the
capacity for more and more complex substrates. This includes cylinders with randomly
distributed radii [25], undulating cylinders [54], beading cylinders [58] and meshes, both
generated from high resolution microscopy of tissue [59] and computer generated cell
models [60, 61].
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Algorithm 2.1 Basic algorithm for taking a step in the random walk.
generate randomly oriented step vector
check if step crosses a barrier
while step crosses barrier do

amend step according to barrier interaction (e.g. elastic reflection)
repeat barrier checking on amended step

update the particle position

The Brownian motion of particles is typically simulated as a random walk of many
independent particles. The time domain is discretised into many time points and at each
time point each particle takes a random step through the substrate. One step of the random
walk can be briefly summarised as shown in Algorithm 2.1.

Following the Brownian motion, each particle in the simulation will have taken many
steps giving each particle a unique trajectory that it has traversed. The incremental phase,
∆φ, accrued at each step can be calculated from a discrete version of Equation (2.37).
Under the assumption of uniform B0, only the gradient term matters, giving

∆φ = γg(R(t), t) ·R(t) ∆t , (2.47)

where ∆t is the duration of the step and g(R(t), t) and R(t) are the gradient and particle
position during that step respectively.

The phase accumulation in Equation (2.47) for each spin in the simulation can be
combined with Equation (2.45) to approximate the total signal for the dMRI acquisition
as

S =
∑
j

eiΦj , (2.48)

where Φj is the total phase accrued for each spin.

Monte-Carlo simulations are a powerful tool for dMRI simulation due to their ability to
handle any arbitrary substrate and MR pulse sequence. Additionally, MC simulations
can be modified to account for effects that are more difficult to formulate for analytical
and numerical solutions of the diffusion equation such as semi-permeable membranes,
membrane-particle interactions and spatially and/or temporally varying T1,T2 and
diffusivities.

A drawback of MC simulation, particularly for complex substrates is the need to simulate
enough spins to mimic the ensemble behaviour of spins in vivo as well as enough discrete
time points to adequately capture the dynamics through the pulse sequence. The huge
number of calculations required to handle large simulations can be alleviated by exploiting
the inherent parallel nature of the problem to run simulations in parallel on a central
processing unit (CPU) cluster or, even more effectively, a GPU cluster.

Details on some dMRI simulation packages and numerical phantoms are presented in
Chapter 3.
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2.4 Diffusion Modelling

As discussed in Section 2.2, the environment in which spins diffuse can impact on the
diffusion process, imparting information about this environment in the diffusion weighted
MRI signal via the diffusion propagator. As dMRI research has advanced, many works
have tried to take advantage of this to estimate information about the cellular environment
spins are diffusing to gain biological meaningful information [7, 62, 63].

Broadly speaking, these models fall into two families: signal representations and
biophysical models. Signal representations seek to express the signal from a voxel using
a general expression which captures salient features of the data without making too many
assumptions and by construction don’t carry any particular biological meaning [62].
Some examples of representations are diffusion tensor imaging (DTI) [64], diffusion
kurtosis imaging (DKI) [65] and diffusion spectrum imaging (DSI) [66]. Biophysical
models, however, model tissue by breaking it down into compartments that can be
described by simple analytical models such as spheres and cylinders. Some examples
of this kind of model are ball-and-stick [67], composited hindered and restricted models
of diffusion (CHARMED) [68] and neurite orientation dispersion and density imaging
(NODDI) [13].

As different models and representations have been proposed over the past two decades,
a menagerie of techniques has emerged that is too deep and varied to summarise here,
however a number of articles have attempted to review the field [7,62,63]. The remainder
of this section will briefly cover one family of models that are used in this thesis.

2.4.1 Spherical deconvolution techniques

A popular approach in dMRI modelling of brain tissue, in particular WM, is to model the
signal as a combination of two components: one describing the orientational distribution
of the tissue (e.g. direction of axons) and one describing the dMRI response of typical
tissue (e.g. the typical signal from an axon), sometimes called the kernel. One such family
of techniques, which aims to estimate the orientational distribution of fibres in WM,
models this relationship as a spherical convolution of the fibre orientation distribution
function (fODF) with a kernel that is the typical dMRI response of a single fibre (or bundle
of fibres). This kernel is commonly referred to as the fibre response function (FRF).
Mathematically, this is expressed as

S(θ, φ) = F (θ, φ)⊗R(θ) , (2.49)

where S is the dMRI signal, F the fODF, R the FRF and θ and φ are the elevation and
azimuthal angles respectively. Note here that the FRF, R(θ), is assumed to be axially
symmetric.
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Since the goal of these techniques is typically to estimate the fODF, the approach is to
estimate the FRF a priori and deconvolve this out to leave the fODF. While there are
many techniques based on this SD each with slightly different approaches, many such
techniques express the signal, fODF and FRF in their spherical harmonic (SH) expansions
to facilitate SD.

2.4.1.1 Spherical harmonics

The spherical harmonic series is a spherical analogue to the Fourier series in Cartesian
space, providing an orthonormal basis of functions on the sphere which can be used to
represent any spherical function. The basis functions are denoted Y m

l (θ, φ) where l is
called the degree and m the order of the SH. Any (potentially complex valued) function,
f , on the sphere can then be written as a linear combination of SHs:

f(θ, φ) =
∞∑
l=0

l∑
m=−l

cml Y
m
l (θ, φ) , (2.50)

where the SH coefficients, cml , are given by

cml =

∫ 2π

0

∫ π

0

f(θ, φ)Y m∗
l (θ, φ)sin(θ)dθdφ , (2.51)

where ∗ denotes complex conjugation.

The benefit of working in SHs is that the spherical convolution in Equation (2.49)
simplifies to a set of matrix multiplications in spherical harmonics:

~Sl = Rl
~Fl , (2.52)

where ~Sl is the 2l+ 1 vector of lth degree SH coefficients of the signal, ~Fl is similarly the
lth degree SH decomposition of the fODF andRl is the (2l+1)(2l+1) matrix representing
the lth degree rotational harmonic decomposition of the FRF. Rl must be represented by
rotational harmonics (an analogue of the Fourier series in SO(3) rather than S2 as with
SH) for this to work mathematically [69,70] however much of the complexity is simplified
due to the physical properties of the dMRI signal.

Firstly, the assumption that the FRF is axially symmetric means that the Rl collapses to a
single scalar value for each l [70], making the solution of Equation (2.52) for ~Fl a simple
case of the division of ~Sl by a scalar. Secondly, since the dMRI signal is antipodally
symmetric, all odd m terms are zero and since it’s real valued, the SH coefficients exhibit
conjugate symmetry, that is cml = (−1)mc−m∗l [70, 71].

All of this means that SD based techniques are efficient methods to estimate the fODF
from dMRI and as such have been used in many studies to investigate the organisation and
structural connectivity of the brain [70, 72–79]. These techniques will, of course, depend
on the FRF which is estimate prior to performing the spherical deconvolution, something
which we investigate in Chapter 8.
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Chapter Summary

This chapter presents some examples of the use of numerical phantoms from literature. It
represents a review of the contemporary literature in dMRI simulation, highlighting the
state of the art and presenting some weaknesses which this project aims to address.

3.1 Numerical Solutions

Many of the studies presenting a numerical solution are focused on the validation of
the technique and improvements to various algorithms rather than the direct use of the
technique involving numerical phantoms.

One application of FDM solutions of the Bloch-Torrey equations is in the simulation of
dMRI signals from histological images. For example, Chin et al. [80] simulate the signal
from segmented histological images of mouse spinal cord white matter, showing that
the fast and slow components of a bi-exponential decay of diffusion attenuation do not
arise from a contribution from each of the intra- and extracellular components. Hwang
et al. [81] extend this technique to 3D, showing that their FDM solutions agree well with
analytical solutions for hexagonally packed cylinders.
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Xu et al. [82] develop a matrix based FDM, also testing their solution on hexagonally
packed cylinders, showing a reduction in error compared to a conventional FDM. This
FDM is used by the same group to investigate the sensitivity of dMRI to intracellular
structure [83]. A numerical phantom is used with cells represented as densely packed
spheres with spherical nuclei at the centre of each sphere. The FDM is used to show that
an oscillating gradient spin echo (OGSE) sequence is more sensitive to changes in the
nucleus size than a PGSE sequence. Similarly, Xu et al. [12] use histology based FDM
simulations to investigate the efficacy of an axon diameter estimation technique based on
an OGSE sequence. They show that the OGSE technique is able to distinguish axons of a
lower diameter than traditional PGSE techniques.

The first example of an FEM solution known to the author is presented by Hagslätt et
al. [50]. In this study, rather than solving the BT equation, the FEM is used to solve for
the diffusion propagator [39, 45]. From the diffusion propagator, the diffusion attenuated
signal is calculated based on an assumption of infinitely narrow gradient pulses. A good
agreement is shown between simulation and theoretical solutions for a range of simple
geometries (parallel plates, a lamellar system and hexagonally packed cylinders).

More studies have recently begun investigating diffusion simulation using FEMs.
Moroney et al. [84] present an FEM solution of the BT equation without the relaxation
and flow terms for numerical analysis of dMRI experiments in the short gradient pulse
limit. FEM results are compared to analytical solutions and MC simulations in simple
geometries, showing that the FEM is more accurate than MC simulations, whilst taking
less time to run.

Nguyen et al. [85] also present an FEM solution of the standard BT equation, showing
its application to diffusion simulation with more general gradient waveforms. The FEM
solution is shown to be more accurate in some simple geometries than a finite volume
method, with second order accuracy in both the spatial and temporal domains. Three
example applications to questions in dMRI are demonstrated using this FEM [85]. One
shows that an infinitely thin membrane can be used to approximate a thick membrane.
The second shows that the apparent diffusion coefficient (ADC) approaches the value
predicted by mathematical homogenisation for long diffusion times. Finally, a model of a
neuron is presented as a spherical body, with cylindrical axons and dendrites protruding.
The ADC is shown to approach a steady state faster with a smaller neuronal body.

Beltrachini et al. [48] present a solution of the generalised BT equation, extending the
FEM of Nguyen et al. [85] to include the relaxation and flow terms. This FEM improves
on some of the restrictions in the FEM, making the simulations more stable through the
use of an implicit scheme that is stable for a coarser discretisation without compromising
the validity of the result.
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3.2 Monte-Carlo - Packages

Historically, most studies utilising MC simulation used in-house developed MC
simulation software [57, 86–88], however in more recent years and as the complexity of
situations possible to simulate has grown, a range of MC simulation packages have been
released for public use.

Hall and Alexander [25] introduced MC simulation as part of the Camino diffusion MRI
toolkit [89] in the context of simulating swelling cylinders as a model of the effect of
ischaemic stroke, however the MC framework is very general and can be used to simulate
any arbitrary substrate from simple geometric constructs to complex 3D meshes.

Balls and Frank [56] present DiffSim, a dMRI simulation framework which embeds
the MCell [90–92] cellular microphysiology simulator within an MRI simulator for
synthesising the dMRI signal. DiffSim is used to simulate myelinated white matter
[93], showing that an analytical solution model by Sen and Basser [94] holds for an
SGP approximation or long diffusion time, however with more realistic pulse sequence
parameters, the numerical simulations show lower anisotropy than the analytical model.

Landman et al. [55] developed the DW-MRI Random Walk Simulator (RWS) showing, as
an example of its flexibility and reproducibility, a range of geometrical models for white
matter damage, including healthy straight cylinders, bulging cylinders, crimped cylinders
and broken cylinders.

Yeh et al. [53] present Diffusion Microscopist Simulator (DMS), showing a range of
diffusion substrates ranging from simple parallel uniform cylinders to more complex
undulating, beading or crossing arrangements of fibres, albeit at relatively low fibre
densities. As of the writing of this review, the DMS software package has not been
publicly released.

3.3 Monte-Carlo - Numerical Phantoms

The above packages, as well as dMRI simulation software developed in-house in various
research groups, have been used to investigate the diffusion signal in many different
numerical phantoms.

A common target of microstructure imaging is the estimation of axonal diameter and
density. As mentioned above, FDM approaches have been used to investigate this [12,80],
whilst this has been the subject of MC simulation studies as well. Alexander et al. [26] use
Camino to simulate a series of numerical phantoms of parallel cylinders with radii drawn
from a Gamma distribution for the validation of a technique for orientationally invariant
indices of axon diameter and density.
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Nilsson et al. [8], investigated the theoretical resolution limit for cylinder diameter
estimation using diffusion MRI. Analytic expressions based on the Gaussian phase
distribution approximation [39] were used for the intracellular signal and validated with
MC simulations to determine a dmin, the diameter below which a cylinder cannot be
differentiated from a cylinder with diameter approaching zero. The resolution limit for
clinical scanners was found to be between 4 - 8 µm. This suggests a limitation on the level
of microstructural detail that can be estimated using current clinical MRI machines.

Another problem commonly investigated using numerical phantoms is that of exchange
between the intra and extracellular compartments of tissues. Permeability is difficult to
control and vary in physical or biological phantoms, so numerical phantoms offer a unique
tool with which to explore permeability and exchange models.

Nilsson et al. [14, 23] and Fieremans et al. [22] investigate the Kärger model [95], a
model for exchange between two signal bearing compartments. These three studies all use
similar numerical phantoms made of straight cylinders in which there is some probability
that on encountering a barrier, the spin will pass through the barrier, exchanging spins
between the compartments.

In their first study, Nilsson et al. [23] use simulations and experimental data to draw
the conclusion that it is necessary to include exchange in a model containing two
compartments, one of which is restricted. Fieremans et al. [22] show that the Kärger
model is able to describe the signal for long diffusion times and sufficiently impermeable
membranes, however at larger permeabilities, the Kärger model underestimates the value
of the permeability. Nilsson et al. also investigate the effectiveness of the Kärger model at
estimating the intracellular water fraction, showing that the Kärger model has a negative
bias, underestimating the intracellular water fraction by up to 25% when there is high
permeability when compared to a computational model made by building a database of
simulated signals [14].

Nilsson et al. [54] also investigate the importance of axonal undulation on diffusion MRI
measurements. In this experiment, numerical phantoms consisting of axons with either
sinusoidal or helical undulations were used in MC simulations to investigate the impact
on a range of dMRI measured parameters. Nilsson et al. show that undulation affects
essentially all of the parameters they tested derived from dMRI, for instance, undulation
results in an overestimation of axonal diameter when using models that assume axons are
straight [54].

Budde et al. [58] use MC simulations to investigate the effect of neurite beading,
showing that beading is sufficient to explain the decrease in ADC after ischaemic stroke.
Numerical phantoms consisting of straight cylinders with increasing amounts of beading
introduced are simulated, showing a decrease in ADC in both the intra and extracellular
spaces with increased beading.
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Lin et al. [96] investigate the effect of traumatic brain injury (TBI) on dMRI derived
parameters. Using a numerical phantom consisting of straight cylinders representing
axons and ellipsoids representing glial cells, the effects of TBI are investigated by
varying various parameters such as the size of the glial cells, the permeability of the
cylinders and the spacing of the cylinders [96]. Using this technique, Lin et al. conclude
that the inconsistencies amongst previous dMRI based TBI studies [97–99] are due to
differences in the timing between the onset of TBI and the diffusion measurement, arguing
that different processes drive the TBI at different timings, leading to different dMRI
characteristics.

Lin et al. [100] similarly investigate the effect of myelin water exchange on various
dMRI derived parameters. In this work, their representation of WM is slightly different,
choosing nested cylinders to represent the intra-axonal and myelin-water compartments.
Using MC simulations on these cylinders, they show correlations between dMRI derived
parameters such as ADC and fractional anisotropy (FA) and the echo time.

Lam et al. [101] produce an empirical model of the extra axonal space using a series of
MC simulations based on both regularly and randomly packed cylinders. The model is
based on the diffusion spectrum [102], modelling diffusion in densely packed cylinders
as diffusion in a series of pores with a small chance of exchange between the pores. The
empirical model agrees closely with MC simulated data.

Some studies combine analytical solutions of the Bloch-Torrey equation and MC
simulations. Rensonnet et al. [103] use this combined simulation to synthesise signals
for parallel and crossing cylinders. The intracellular component is modelled using
an analytical solution for diffusion within a cylinder based on Grebenkov’s multiple
correlation function approach [104]. The extracellular compartment, which is much
more complex geometrically, is simulated using Monte-Carlo simulations. This hybrid
approach yields simulation results which are indistinguishable from pure MC simulation
whilst being quicker and more precise than a purely MC approach [103].

In a further study, Rensonnet et al. [105] use this approach to assess the validity of the
superposition approximation of crossing fascicles (i.e. that the total signal from crossing
fascicles is the sum of the signal from each fascicle independently). They are able to show
that the signal differences between the superposition approximation and a full simulation
of interwoven fascicles is small enough compared to typical noise levels in clinical
dMRI data, that the superposition approximation is sufficient to describe the signal. A
drawback to this hybrid approach is that the intra and extracellular compartments are
treated as distinct, non-interacting compartments, meaning that membrane permeability
is not accounted for.

An emerging application for dMRI simulations in the direct computational modelling of
microstructure. The first example found for this type of modelling is actually the 2010
work by Nilsson et al. [14] mentioned above for evaluating the Kärger model. In recent
years however, this idea has reemerged, partially thanks to the popularity of machine
learning and emergence of MR fingerprinting.
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One area of application these approaches have found is in the estimation of axonal
permeability. Nedjati-Gilani et al. [18] use a machine learning technique known
as random forest regression to learn the relationship between dMRI signal and
microstructural parameters. They simulate diffusion using Camino in a range parallel
cylinder substrates with different microstructural parameters including membrane
permeability to build a dataset to train the random forest regression. The random forest
regression is shown to estimate membrane permeability well, performing better than the
Kärger model and an application to MS is presented, showing in vivo results consistent
with pathology.

Palombo et al. [17] verify this method using a cuprizone treated in vivo mouse model.
Cuprizone is a well known mouse model of WM demyelination, which is important
as demyelination is hypothesised to affect axonal permeability. The random forest
approach achieves accurate and robust estimation of microstructural parameters which
match expected microstructure changes from electron microscopy and gains more specific
information that typical dMRI measures such as ADC and FA.

Hill et al. [16] extend this work to use a deep neural network (NN) in place of the random
forest regression. They are able to show that the NN outperforms the random forest
approach and an application in in vivo mice estimates microstructural parameters in the
biologically plausible range.

Rensonnet et al. [15] also attempt to use computational models to directly estimate
microstructural parameters using dMRI simulations. Using the hybrid approach
mentioned above [103], they generate a dictionary of dMRI simulation signals for various
combinations of microstructural parameters and crossing fascicles. Measured signals are
then compared against this dictionary to find the entry that most closely matches the
measured signal to get an estimate of the microstructural parameters. They show that
their approach achieves accurate and robust estimates of microstructural parameters and
shows good correspondence with histology compared to traditional closed-form models
when applied to an in vivo mouse model of spinal cord injury.

3.3.1 Towards realistic WM numerical phantoms

One thing common to all of the dMRI simulation studies presented so far is that
they represent WM axons using simplified representations. By far the most common
representation of axons in as straight cylinders in parallel bundles or simple crossing
arrangements [14, 15, 25, 26, 103].

True axonal morphology, however, is much more complex than this. ex vivo
EM and high-resolution x-ray imaging studies have shown that real axons have
complex morphologies with undulation, beading (variable diameter along the axon) and
non-circular cross sections [27, 28, 106, 107]. Recently, a few groups have tried to tackle
the challenge of generating WM phantoms with more realistic microstructure, capturing
some of these features.

48



3.4 Conclusions

Rafael-Patino et al. [61] extend the phantom generator of Close et al. [108], previously
used to simulate dMRI using a simple diffusion tensor model, to generate crossing,
interdigitated fibre bundles. They use these models to show that previous simple
representations may not be sufficient to accurately represent realistic dMRI signals
[109].

Ginsberger et al. presented an extension of DMS which shows more complex white matter
numerical phantom including orientation dispersion, tortuosity, beading and nodes of
Ranvier [110], however the range of orientation dispersion and axon densities achieved
does not reach typical in vivo values. They subsequently improved their phantom
generator, producing “microstructure environment designer with unified sphere atoms
(MEDUSA)”, which works by generating a set of overlapping fibres decomposed into
small segments and iteratively refining their positions to remove the overlap between
them [111,112]. MEDUSA produces phantoms with complex fibre configurations at high
fibre density, but as of writing, no dMRI application has been presented.

3.4 Conclusions

There has been significant work into the use of numerical phantoms in the simulation of
diffusion MRI signals. As discussed, one thing which is common throughout most of
the works is a simple model of WM. Typically, WM is represented as a set of densely
packed, straight, parallel cylinders, which oversimplifies the underlying complexity of the
microstructure which has been revealed through EM [27, 28].

Generating WM substrates which accurately represent real microstructure is important
for the kinds of model validation studies mentioned in Section 3.3 because if a model is
validated using overly simplified simulations, it may not be very robust when applied to
real data, something with Rafael-Patino et al. have studied [109].

Realistic WM representations are additionally important for the kind of computational
models mentioned in Section 3.3 for similar reasons. Another element which is
particularly important for building the training datasets or dictionaries for these kinds
of computational models is controllability. The WM numerical phantoms need to be
realistic, but also must be able to be generated in a controlled manner so that we can
generate substrates covering the relevant ranges of microstructural parameters needed to
build robust computational models.

These are the main driving reasons behind the work presented in this thesis which aims to
build these realistic WM substrates with controllable morphology.
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Chapter Summary

This chapter introduces preliminary fibre growth algorithm (preFiG), a method for
generating white matter (WM) numerical phantoms with realistic orientation dispersion
and packing density. The growth algorithm is introduced, describing how each WM fibre
is grown individually to generate a densely packed substrate.

Some experiments are presented, one of which explores how different inputs to preFiG
impacts the shape of resulting fibres. An application of the method to dMRI is
demonstrated with simulations of the diffusion-weighted MR signal in three example
substrates with differing orientation dispersion, packing density and permeability.

4.1 Introduction

Numerical phantoms have found much use for validating many magnetic resonance
imaging (MRI) experiments. In particular, numerical phantoms are often used when
developing diffusion MRI (dMRI) microstructure imaging techniques where simulations
of the dMRI signal in phantoms with known microstructural properties are used in lieu of
an in vivo ground truth measure of microstructure [63].
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While recently numerical phantoms have proven useful for validating microstructure
imaging of grey matter [5], they have more commonly been used for validating white
matter (WM) microstructure, with many studies comparing parameter estimates from
fitting their models to the known ground truth from the phantoms e.g. [6–14]. Some
recent works directly estimate microstructural features using fingerprinting techniques
and machine learning to match simulated signals and the corresponding ground truth
microstructure of the numerical phantom to the measured signal [15–18]. As well as
affecting the dMRI signal, microstructural features also influence other MR techniques
such as susceptibility-weighted imaging [19, 20]. For instance, Xu et al. [21] recently
used simulations to show that using realistic axonal models rather than simple circular
cylinders affects the MR signal. Therefore, it is important to the MRI community
to generate realistic WM numerical phantoms which accurately capture microstructural
features in order to get realistic simulated signal.

Generating realistic WM numerical phantoms which accurately capture realistic
microstructural features (such as dispersion, undulation, beading, etc.) at high packing
densities is a major open challenge for the dMRI community. While densely packing
straight, parallel, fibres is relatively easy, only a few groups have attempted to densely
pack irregular, non-parallel, fibres.

The most common approach to this is the packing of fibres into densely packed
configurations [61, 108, 110, 111]. The typical approach, as taken in the state-of-the-art
MEDUSA algorithm [111], is to generate a set of overlapping fibres decomposed into
small segments and iteratively refine their positions to remove the overlap between them.
Despite their recent progress, further advance of this class of techniques may be limited,
because nature does not create fibres before attempting to pack them together. Instead,
real axons are guided by chemical cues and fit into available space as they grow [113,114].
Mimicking the natural fibre genesis may prove important for building more realistic
phantoms.

Here, we propose a completely different strategy: rather than densely ‘packing’ irregular
fibres, we ‘grow’ fibres contextually, mimicking natural fibre genesis. We propose
a preliminary fibre growth algorithm (preFiG) for the generation of WM numerical
phantoms with more realistic orientation dispersion and packing density. Fibres are grown
one-by-one following a cost function which attempts to impose the morphological priors
that are input to the algorithm.

The rest of the chapter is organised as follows: Section 4.2 describes preFiG, Section 4.3
details some experiments showing the potential of the algorithm and comparing it to a
brute-force approach to fibre growth and Section 4.4 summarises the contributions and
discusses limitations in the preliminary implementation and future work to improve the
method.
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Figure 4.1: Inputs to the preFiG algorithm for the single bundle case. L defines the size of
the area of that the growth will take place in. The target density and fibre radius
distribution govern the generation of starting points for each fibre by packing
in 2D. Orientation dispersion parameters govern the generation of target points
corresponding to each starting point. N defines the number of nodes to use when
generating the network. In the case of multiple bundles, starting and target points
are generated for each bundle and then combined into the same space which is
filled with nodes for the network.

4.2 A preliminary fibre growth algorithm

In this section we describe a preliminary fibre growth algorithm (preFiG) which grows
fibres one-by-one, avoiding intersection between fibres whilst attempting to ensure that
the resulting substrate has desired morphological input properties such as orientation
dispersion, diameter distribution and packing density.

The generation of preFiG numerical phantoms happens in three main steps:

STEP 1 Generate initial growth configuration from user inputs

STEP 2 Grow the fibres using preFiG growth algorithm

STEP 3 Generate 3D meshes for dMRI simulation

The remainder of this section outlines these steps in further detail, breaking each step
down into smaller steps and detailing each one.

4.2.1 STEP 1: Initial growth configuration

STEP 1 is broken down in to three substeps which are outlined in Figure 4.1:
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STEP 1.1 Generate fibre starting points for each fibre to grow from (Figure 4.1a-b).
To generate these starting points preFiG packs circles with the desired diameter
distribution up to the target density (defined in terms of the desired fibre volume
fraction) in 2D, following the approach taken in [25].

STEP 1.2 Generate fibre target points for each point to grow towards (Figure 4.1c). To
encode the desired orientation distribution, each fibre has a direction drawn from
the target distribution which gives a target point for the fibre to grow towards. As a
demonstration of the framework, in this work we use the Watson distribution [115].

STEP 1.3 Generate growth nodes (Figure 4.1d). preFiG uses a set of pseudorandomly
placed points (which we refer to as nodes) to sample the space and encode which
regions are occupied by existing fibres. This simplifies collision checking making
growth more efficient than a direct collision detection approach involving growing
each fibre one small step at a time and checking collisions with existing fibres. This
is demonstrated in Section 4.3.3.

4.2.2 STEP 2: Fibre growth

STEP 2, the main growth algorithm, is broken down into a series of substeps which are
outlined in Figure 4.2:

STEP 2.1 Create growth network (Figure 4.2a&b). In order to encode which nodes a
fibre can move to from any other node, the growth nodes are connected using the
Delaunay triangulation.

STEP 2.2 Grow one fibre step (Figure 4.2c-e). Fibres grow one-by-one in a random
order along this network towards their target points while avoiding existing fibres.

During growth, a fibre must choose in which direction it should grow. This direction
is chosen in preFiG by following a cost function which encourages fibres to grow
towards their target points (Figure 4.2d). From a starting node, s, the candidate
nodes, c, that the fibre can move to are any nodes that share an edge with s. In
addition to its position, each network node stores the maximum fibre diameter,
dc, that can be sustained at that node without intersecting another fibre (described
further in STEP 2.3). The fibre will move to a candidate node according to a
cost function consisting of two terms; lt, which penalises taking very large steps or
moving away from the target point, t, and ld, which penalises moving to a position
where dc is low meaning that the fibre will have to shrink. The cost function for a
fibre at a position, s, to move to a candidate node, c, given a target point, t, is

l = lt + fld , (4.1)
where

lt =
1

2
· ‖s− c‖

1 + ‖s− c‖
·
(

1− ((c− s) · (t− s))
‖c− s‖‖t− s‖

)
, (4.2)

ld = max

(
0,

1

d0

(d0 − dc)
)
. (4.3)
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Figure 4.2: Overview of the basic growth algorithm in preFiG. In this example, three fibres
are shown with a growth network that only contains relevant nodes for the sake of
visualisation. From the set of nodes, a network is constructed using the Delaunay
triangulation. Each fibre then grows from node to node, along any edge connected
to the current node. The node moved to will be the node with the lowest cost. Once
a fibre segment has grown, the network nodes are updated to store information
about which nodes are occupied or near to an existing fibres. This contributes to the
cost function for any future fibres, penalising moving to nodes too close to existing
fibres. It is not possible to move to any node now inside a fibre as indicated by the
removal of this edges from the network (pairs of blue arrows show where this is
happening). The next fibres grow, now avoiding existing fibres until all fibres have
finished. See Supplementary Video 1 for an animation of this algorithm.

Here, d0 is the target diameter of the fibre and f is a weighting factor between the
two terms. In this work, f is fixed to 0.2 to more strongly weight growth towards
the target.

The next node for a fibre will be the candidate node which has the lowest cost
according to Equation (4.1). This method of finding a path through the triangulation
by choosing the lowest cost node at each position amounts to a greedy best-first
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pathfinding approach with a heuristic given by Equation (4.1).

STEP 2.3 Update the network (Figure 4.2f). The growth network is updated in order to
store the information about the space this fibre is occupying so that future fibres can
avoid it. The way that this is done is to simply store the minimum distance from
each node in the network to any existing fibre.

With the next node chosen, the value of dc needs to be updated for other nearby
nodes. All nodes have dc set to the Euclidean distance between the node and the
surface of the new section of fibre if that distance is less than the current value of
dc. This is illustrated in Figure 4.2d.

Any nodes which now lie within the fibre have dc set to zero. Nodes with dc = 0
are disallowed from future steps, meaning that once a fibre has grown, no future
fibres can connect to any nodes within the fibre. This, in addition to shrinking the
radius of future fibres according to dc at each node means that the fibres grow in
an almost completely non-intersecting manner. Since the value of dc is set based
on fibre-to-point distances, there can be cases in which the fibres would intersect
when the closest point between two fibre sections is not at one of the fibre nodes.
In order to account for this, a meshing process was developed which can deform
fibres around one another. This is described in Section 4.2.3.

STEP 2.4 Repeat STEP 2.2 and 2.3 until fibre reaches target (Figure 4.2g). By default
in preFiG, each fibre will grow completely before the next one starts, meaning that
STEP 2.3 only needs to be performed once the fibre has finished growing. If fibres
are allowed to grow concurrently, STEP 2.3 must be performed after each growth
step.

STEP 2.5 Repeat STEP 2.2-2.4 for remaining fibres (Figure 4.2h-i). As noted in
Figure 4.2 (e-h), as the network is updated, more and more nodes become
inaccessible making the network sparser. This means that some fibres may reach a
point from which they cannot grow any further and will become stuck. Currently,
these fibres are simply removed from the final phantom, meaning the final phantom
may have a lower density than the target density.

4.2.3 STEP 3: Meshing

Finally, STEP 3, the meshing procedure is described in more detail below:

STEP 3 Generate 3D fibre meshes. After the growth process, each fibre will be
represented by a series of connected 3D points and corresponding diameters at each
point, stored in the Stockley-Wheal-Cole (SWC) format [116]. In order to simulate
diffusion MRI signals, these fibre skeleta need to be turned into 3D meshes. preFiG
uses a meshing procedure designed to eliminate overlap between fibres, using
Blender (https://blender.org), building upon on the SWC mesher add-on
(https://github.com/mcellteam/swc_mesher).
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Figure 4.3: Demonstration of the meshing procedure in preFiG. The first fibre is created using
metaballs to create a smooth surface. The second, and following fibres will be
created using negative metaballs for any fibres that intersect in order to deform
around them. Note that in practice, more spheres will be much more closely placed
along the skeleton to create a smoother surface (see Figure 4.4

preFiG meshes are constructed using Blender metaballs, an implicit surface
representation which is the isosurface of a function; typically a function analogous
to the electric potential from a point charge. When two metaballs come close to one
another, the fields combine and the surfaces will merge to form a smooth surface.
By placing a series of metaballs along the skeleton of each fibre, a smooth surface
is formed for each fibre one-by-one as shown in Figure 4.3a. Figure 4.3 shows
an extreme example with few metaballs to demonstrate the meshing procedure, in
practice however, more metaballs are placed closer together to form a smoother
surface. Figure 4.4 demonstrates the surface formed in a realistic preFiG phantom
and that the preFiG meshing procedure does not impact the diffusion dynamics
compared to a perfectly straight cylinder.

When fibres are densely packed, the surfaces from neighbouring fibres may overlap.
To account for this, a meshing procedure was developed in which fibres can deform
around nearby fibres to avoid overlap. The metaball surface for one fibre is created
as described above. This surface is then turned into a triangulated mesh, however
the metaballs are retained. The metaball potential is then turned negative, meaning
that rather than merging with any future nearby metaball surfaces, it will repel them,
as shown in Figure 4.3b. This means that subsequent fibres which are meshed
very close to, or overlapping with, existing fibres will deform organically to resolve
the intersection, thus creating a series of completely non-intersecting fibre meshes
which can be used by the dMRI simulator.
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Figure 4.4: Axial diffusivity as a function of diffusion time for different metaball meshing
thresholds. The threshold determines the level of the isosurface, a low threshold
making the spheres behave more like hard spheres and a higher threshold
smoothing nearby metaballs together. Lines show the median of 20 runs of the
simulation with different seeds and the grey area shows the interquartile range of
the cylinder diffusivity.

4.3 Experiments and Results

4.3.1 Effect of choice of growth network

As mentioned in Section 4.2.1, the choice of the node points in the network will affect the
morphology of the resulting substrate. In order to investigate this, a qualitative experiment
was performed in which a single fibre was grown on a network with either a) nodes on a
uniform grid or b) pseudorandom nodes. In each case, the number of nodes was increased
and the resulting fibre investigated.

The fibre was defined by a start point (20, 0, 0) µm, target point (0, 0, 50) µm and diameter
1 µm. This configuration was chosen so that the fibre would not have a path that directly
followed one of the 90° or 45° lines in the uniform grid. Node points were initialised
in either a uniform grid or pseudorandomly within the space [-5, -5, -5] to [25, 5, 55] to
ensure coverage of the space in which the fibre would grow. The number of source points
used was N ≈ 1000, 10000, 100000, 1000000, 5000000.

The resulting fibres can be seen in Figure 4.5, where orange fibres are grown using the
uniform grid and blue fibres using pseudorandom points. In both cases, as the number of
nodes increases, the resulting fibre has more of a smooth, straight path between start and
target. The uniform grid fibres, have a much more angular, structured path due to being
forced to grow on the grid, while the pseudorandom fibres more irregular paths, which
could be considered more ‘organic’ looking.
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Figure 4.5: Fibres generated using uniform grid (orange) and pseudo-random (blue) network
nodes for increasing numbers of nodes.

4.3.2 Demonstration of preFiG

To demonstrate the potential of preFiG, three substrates at different (dispersion, packing
density) conditions were generated: (0°, 60%), (15°, 30%) and (35°, 25%), shown in
Figure 4.6a. Each substrate is grown using 5× 106 pseudo-randomly placed source nodes
for the growth network, giving a network with 3.88 × 107 edges and a mean distance
between any given node and its neighbours of 0.29 µm. The packing densities chosen
represent the highest densities achievable using preFiG for each dispersion condition.

For the 0° dispersed substrate, initial diameters were drawn from a gamma distribution
with mean d0 = 2 µm and standard deviation σd = 0.2 µm. The 15° and 35° substrates
were generated with d0 = 1.2 µm and σd = 0.2 µm in order to show the flexibility of
preFiG to generate substrates with different diameter distributions as well as orientation
dispersion and packing density. Diameters were limited to be permitted to shrink to 25%
of the original fibre diameter in order to fit into space.

For each substrate, the pulsed gradient spin echo (PGSE) signal was simulated in Camino
[89] using 5 × 105 diffusing spins and 5 × 103 discrete time steps, uniformly distributed
with bulk-diffusivity D0=2 µm2/ms. To show the range of simulation possibilities
available, three different membrane permeabilities (κ=0, 0.0025, 0.0050 µm/ms) were
also imposed. The simulated PGSE measurement parameters were: δ/∆ = 1/40 ms and
50 b-values from 0 to 9 ms/µm2 along x-, y- and z-directions.

The corresponding direction-averaged simulated PGSE signals at different permeabilities
are shown with SNR =∞ in Figure 4.6b and SNR = 20 in Figure 4.6c. The signal decays
to a lower value as the dispersion increases and density decreases, as expected.
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Figure 4.6: a) Example substrates (cut into 30x30x30 µm3 cube) from the fibre growth
algorithm, left to right: Zero macroscopic dispersion (60% density), 15°
of macroscopic dispersion (30% density), 35° dispersed (25% density). b)
Simulations for each substrate for varying permeabilities with SNR = ∞ and c)
SNR = 20. Units of κ are µm/ms.

4.3.3 Comparison with brute-force approach

preFiG was compared against the naïve brute-force approach to fibre growth. The
brute-force approach grows fibres one segment at a time and checks for collisions between
the new segment and all existing fibres. Each new segment is chosen from one of 128
candidate directions on a cone aligned with the previous segment, with each direction
being weighted according to Equation (4.2).

Substrates were grown with both the brute-force approach and preFiG using the same
starting and target points and initial diameters. These initial parameters were determined
by packing circles with gamma distributed radii (mean d0 = 2 µm, standard deviation
σ = 0.6 µm) into a 40 µm x 40 µm square up to a packing density of 60%. Target

62



4.3 Experiments and Results

0 5 10 15 20 25 30 35 40

Number of Fibres

0

5

10

15

20

25

30

35

T
im

e
 T

a
k
e

n
 t

o
 G

ro
w

 (
m

in
u

te
s
)

Brute-Force

ConFiG

Figure 4.7: Timing of brute force growth vs. the fibre growth algorithm along with a quadratic
fit (brute-force) and linear fit (fibre growth algorithm). The fibre growth algorithm
is clearly linear in the number of fibres, while brute force growth fits an order n2

well.

points were set as 40 µm directly above the starting points to define a substrate with 0°
macroscopic orientation dispersion. This resulted in a substrate with a total of 54 initial
fibres.

The fibre growth algorithm used 1 × 106 randomly distributed points for the Delaunay
triangulation giving a mean distance between points of 0.5 µm, matching the brute force
approach which used a segment length of 0.5 µm for each new fibre segment.

From these initial parameters, fibres were grown using a subset of n =
1, 5, 10, 15, 20, 25, 30, 40 fibres and the growth was timed. Each value of n was timed
5 times with and the mean taken to reduce single-run timing fluctuations.

Figure 4.7 shows the timing results of the brute-force approach versus the fibre growth
algorithm. The fibre growth algorithm has approximately O(n) complexity with n being
the number of fibres. Conversely, the brute-force algorithm shows O(n2) complexity
owing to the fact that every new segment has to check for collisions with all existing
fibres.

The fibre growth algorithm has a higher n = 0 offset which is caused by the overhead in
calculating the Delaunay triangulation for the growth network. This causes the brute-force
approach to have better performance at low n, while at higher n (approaching the > 100
fibres needed for a realistic dMRI voxel) the linearity of the fibre growth algorithm gives
it much faster performance.
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4.4 Discussion and Conclusion

preFiG shifts the perspective from previous works attempting to pack together fibres by
trying to mimic natural fibre genesis. This approach represents a major step towards very
high fibre packing, enabling us to reach the highest dispersion at the highest packing
density reached so far, to our knowledge. Our (15°, 30%) and (35°, 25%) represent an
average ∼50% and ∼200% improvement, respectively, over the best previously reported
results of (10°, 20%) [110]1.

The substrates presented in Figure 4.6 are just a few examples of the kinds of substrates
that can be produced using our preFiG method, though by varying the setup of the
morphological controls and start and target points, many different fibre configurations
can be produced. Currently, fibres will attempt to grow in a straight line between the start
and target points, meaning that certain configurations such as kissing bundles cannot be
represented. However, the algorithm can in principle be extended to allow for series of
target points, allowing the definition of a desired ’path’ of a fibre.

Additionally, some input parameter settings cannot be achieved. For instance, trying to
grow a substrate with both very high density and very high dispersion will result in a
final substrate that does not reach the density required. The reason for this could be a
combination of limitations of the algorithm in restricting growth to a discrete network and
also the fact that some morphological settings are practically infeasible. This limitation,
however, also applies to the fibre packing and brute force growth approaches.

One weakness of the fibre-growth algorithm is that since the fibre diameters are calculated
from a fibre-to-point distance, there can still be some small amount of overlap between
fibres. This is solved using the meshing process in Blender to deform the regions of slight
overlap between neighbouring fibres.

Another limitation of the preFiG implementation is that while the phantoms produced
improve upon the state-of-the-art, the fibre density achieved is still too low to really
be applicable to white matter. Typical expected fibre density would be between 50 and
80%, so improvements need to made to enable phantoms to be generated at a higher fibre
density.

To conclude, the proposed preFiG approach, using the fully connected growth network,
is shown to be more efficient than a ‘brute-force’ growth approach. The fact that preFiG
processing time is linear with the number of fibres makes it far more efficient for high
numbers of fibres. For instance, a realistic voxel will need hundreds or thousands
of fibres which will become impractically slow for the ‘brute-force’ approach, whilst
remaining manageable for our algorithm. This efficiency, along with the high density and
orientation dispersion achieved means that preFiG represents a promising step forward in
the construction of ultra-realistic numerical phantoms of WM.

1The preFiG method presented here outperformed the state-of-the-art at the time it was published in 2019
[117]
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Chapter Summary

This chapter introduces a series of mechanisms which were added to improve the
initial implementation of preFiG described in Chapter 4 and the biological fibre growth
processes which inspire these mechanisms.

These improvements are tested against the state of the art MEDUSA algorithm and
simulated dMRI signals compared to real dMRI signals from the white matter of a healthy
subject.
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5.1 Introduction

Numerical phantoms play a valuable role in the development and validation of many MRI
techniques. In particular, numerical phantoms are often used when developing dMRI
microstructure imaging techniques where simulations of the dMRI signal in phantoms
with known microstructural properties are used in lieu of an in vivo ground truth measure
of microstructure [63]. While recently numerical phantoms have proven useful for
validating microstructure imaging of grey matter [5], they have more commonly been
used for validating WM microstructure, with many studies comparing parameter estimates
from fitting their models to the known ground truth from the phantoms e.g. [6–14]. Some
recent works directly estimate microstructural features using fingerprinting techniques
and machine learning to match simulated signals and the corresponding ground truth
microstructure of the numerical phantom to the measured signal [15–18].

Typically, however, there is a mismatch between the complexity of true brain tissue
microstructure and the models used in simulation, with simulations simplifying the
microstructure. On one hand, ex vivo EM studies have revealed the high complexity of real
axonal morphology [27, 28, 106]. Reconstructions of axons from these studies show that
real WM contains axons with complex morphologies on an individual axon basis such as
undulation, beading and non-circular cross sections, as well as non-trivial configurations
including orientation dispersion and crossing bundles. On the other hand, the models
used in simulation studies often represent axons in WM using simplistic geometrical
representations such as parallel cylinders with uniform [14,22–24] or polydisperse [25,26]
radii. Some studies investigate the effect of differing configurations of fibres such as
simple crossing [105, 118] and orientation-dispersed [10, 13, 119] fibre bundles. A few
groups generate WM numerical phantoms with complex fibre configurations for the
application to tractography [108, 120]; however realistic microstructural morphology is
not the focus of these approaches.

Other studies introduce more microstructural complexity into the numerical phantoms,
typically only considering one mode of morphological variation at a time; some examples
of this include harmonic beading [55, 58], spines [121], undulation [54, 122] and
myelination [123].

Recently, a number of groups have attempted the challenge of combining these features
to generate phantoms approaching the morphological complexity and density of real
tissue. The most common approach to this is the packing of fibres into densely packed
configurations [61, 108, 110, 111]. The typical approach, as taken in the state-of-the-art
MEDUSA algorithm [111], is to generate a set of overlapping fibres decomposed into
small segments and iteratively refine their positions to remove the overlap between them.
Despite their recent progress, further advance of this class of techniques may be limited,
because nature does not create fibres before attempting to pack them together. Instead,
real axons are guided by chemical cues and fit into available space as they grow [113,114].
Mimicking the natural fibre genesis may prove important for building more realistic
phantoms.

66



5.2 Methods

To this end, we have proposed an approach to generate WM numerical phantoms by
emulating natural fibre growth as presented in Chapter 4 and [117]. In this work we
present an extension of this preliminary fibre growth algorithm, adding in further growth
mechanisms which mimic a set of key biological mechanisms which govern real axonal
growth. The result of this is contextual fibre growth (ConFiG), our WM numerical
phantom generator. We assess the performance of ConFiG by measuring the impact
of each of the biologically inspired mechanisms on the achievable phantom density and
comparing against state-of-the-art MEDUSA phantoms. To test how realistic ConFiG
phantoms are, we compare simulated dMRI signal in the ConFiG phantoms to real dMRI
data.

The rest of the paper is organised as follows: Section 5.2 describes the ConFiG algorithm,
Section 5.3 details the experiments outlined above and Sections 5.4 and 5.5 summarise
the contributions and discuss future work.

5.2 Methods

In this section we describe the ConFiG algorithm, beginning with a brief outline of the
main steps in growth algorithm before describing the biological mechanisms motivating
ConFiG and how each of these are implemented to give the final ConFiG algorithm.

5.2.1 Overview of the ConFiG algorithm

The ConFiG growth algorithm follows the same overall structure as the preliminary
implementation described in detail in Chapter 4. The generation of ConFiG numerical
phantoms happens in three main steps:

STEP 1 Generate initial growth configuration from user inputs

• Set up target growth parameters for fibres and network upon which growth
takes place. This is the same in ConFiG as described in Section 4.2.1.

STEP 2 Grow the fibres using ConFiG growth algorithm

• Fibres grow one-by-one attempting to meet the target distribution established
in STEP 1. It is this step in which the majority of the ConFiG improvements
take place

STEP 3 Generate 3D meshes for dMRI simulation

• Convert fibre skeleta created in STEP 2 into 3D surface meshes. Again, this
step is largely the same as described in Section 4.2.3.

The remainder of this section outlines the biological process governing real axonal
growth, and how these processes motivated the final implementation of the ConFiG
algorithm.
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5 ConFiG: Contextual Fibre Growth

Figure 5.1: Illustration of two of the biological motivations and how they are implemented in
ConFiG. a) Growth towards the target is enforced by means of a cost function
encouraging growth towards the target point. b) Fibre collapse is implemented by
allowing the fibre to move backwards if it reaches a node from which there are no
viable steps. The biological figures are adapted from [113]

5.2.2 Biological motivation for ConFiG

In nature, axons grow following chemical cues in their environment through various
mechanisms which either attract or repel fibres to guide their growth [113,114,124–128].
In an attempt to emulate real axonal growth, mechanisms motivated by the following
guidance processes have been integrated into ConFiG:

• Chemoattraction – the process by which fibres are attracted to chemical cues in their
environment [113, 125].

• Fibre collapse – a response to a chemorepulsive source whereby a fibre withdraws
and regrows in a different direction [127].

• Cell adhesion molecules – chemical signals on the surface of cells which guide
axons that come into contact with them [128].

• Fasciculation – the process by which multiple axons come together to form bundles
[113, 129].

The following sections detail how mechanisms motivated by these biological processes
are implemented in ConFiG while Figures 5.1 to 5.3 illustrate these biological processes
alongside their ConFiG counterparts.

5.2.2.1 Chemoattraction

As a fibre grows it must choose in which direction it will move. One of the main processes
governing the guidance of real axons is chemotropism; a process by which axons respond
to diffusible chemical cues in their environment. One key chemotropic mechanism is
chemoattraction, in which fibres are attracted along a chemical gradient towards a target
region [113].
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To approximate this chemoattractive mechanism, each fibre is encouraged to grow
towards its target point (i.e. the target point acts like a chemoattractive source). This
is the same guidance mechanism in the preliminary fibre growth algorithm presented in
Section 4.2.2. The chemoattractive mechanism and its ConFiG counterpart are illustrated
in Figure 5.1a.

From any node in the growth network, the fibre will move along an edge that takes it
towards its target while avoiding existing fibres according to a cost function [117]. From
a starting node, s, the candidate nodes, c, that the fibre can move to are any nodes that
share an edge with s. In addition to its position, each network node stores the maximum
fibre diameter, dc, that can be sustained at that node without intersecting another fibre.
The fibre will move to a candidate node according to a cost function consisting of two
terms; lt, which penalises taking very large steps or moving away from the target point, t,
and ld, which penalises moving to a position where dc is low meaning that the fibre will
have to shrink. The cost function for a fibre at a position, s, to move to a candidate node,
c, given a target point, t, is

l = lt + fld , (5.1)
where

lt =
1

2
· ‖s− c‖

1 + ‖s− c‖
·
(

1− ((c− s) · (t− s))
‖c− s‖‖t− s‖

)
, (5.2)

ld = max

(
0,

1

d0

(d0 − dc)
)
. (5.3)

Here, d0 is the target diameter of the fibre and f is a weighting factor between the two
terms. In this work, f is fixed to 0.2 to more strongly weight growth towards the target.

The next node for a fibre will be the candidate node which has the lowest cost according
to Equation (5.1). This method of finding a path through the triangulation by choosing
the lowest cost node at each position amounts to a greedy best-first pathfinding approach
with a heuristic given by Equation (5.1).

Growing fibres along the network using just this chemoattractive mechanism is the
minimal implementation of ConFiG that will generate substrates to try and meet the
morphological inputs. There are some limitations to this minimal approach however;
the greedy growth and the sparse sampling of the space means that fibres can grow into
regions from which they cannot grow further and become stuck. Additionally, in this
approach, fibres grow independently of one another, whereas real fibres grow forming
bundles in the process known as fasciculation.

Sections 5.2.2.2 to 5.2.2.4 describe further mechanisms which were added to enable
ConFiG to address these limitations in order to meet more complex morphological priors
(e.g. high density and orientation dispersion together).
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Figure 5.2: Illustration of the contact guidance axonal growth mechanism and the dynamic
growth network implemented in ConFiG. The dynamic growth network is
implemented as a set of points added around each fibre after growth, enable future
fibres to more easily grow along/around existing fibres.

5.2.2.2 Fibre collapse

As mentioned in Section 5.2.2, in ConFiG a fibre can become stuck when there are
no possible next steps because all neighbouring nodes are inaccessible. In an attempt
to ameliorate this a process mimicking fibre collapse was implemented, illustrated in
Figure 5.1b.

In ConFiG fibre collapse, the fibre will move back by an initial distance, g0, and regrow
from there avoiding any nodes in the route it took previously. If the fibre becomes stuck
again, it will move back by a further distance, g0 + δ, where δ is the additional distance
to step back. This process is repeated until the fibre reaches the target or gets stuck a
user-defined maximum number of times. In this work, g0 = 2 µm and δ = 5 µm in an
approximation of the biological fibre collapse process investigated by Rauch et al. [127]
who show fibres collapsing up to 25 µm back towards the soma. The maximum number
of steps back is set to 5, meaning that the maximum step back is 27 µm, in line with real
fibres. If there is no possible route after 5 attempts then the fibre will stop growing and
will be removed from the phantom. This process of removing stuck fibres means that
the resulting substrate may not always have the same density as the input desired fibre
density.

5.2.2.3 Dynamic growth network

In the preliminary implementation of ConFiG [117], the network nodes were initialised
pseudorandomly within the growth region and once initialised, the growth network was
static, meaning that the nodes and edges of the network were fixed. This limited the
growth to the specific instantiation of the network and it could not adapt to where fibres
were once they had grown. Furthermore, as illustrated in Figure 4.2, as fibres grow, many
nodes become inaccessible due to being within fibres meaning that the network becomes
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Figure 5.3: Illustration of how the labelled pathway hypothesis is expected to work in biology
and its ConFiG counterpart. Fasciculation is implemented using the cost function
term in Equation (5.4) which means that fibres in the same bundle are encouraged
to stay close to one another.

gradually sparser.

A dynamic growth network was implemented to ameliorate these effects. Now, once a
fibre has reached the target, a number of nodes, Nadded, are generated around the path of
the fibre. This gives a denser sampling of the space in regions in which fibres exist and
serves to give subsequent fibres more nodes to use to grow along or around that fibre,
helping to increase the achievable density by limiting the number of fibres which get
stuck. In this work, where the dynamic network is used, Nadded = 2500.

This is also loosely motivated by the contact guidance mechanism in which axons are
attracted to or repelled by chemical cues on the surface of other cells, known as cell
adhesion molecules (CAMs). Here, the added points act like CAMs meaning that a future
fibre which grows can use these points near to the fibre to grow around or along it as if it
were following contact guidance cues. Figure 5.2 shows how CAMs work in biological
axonal growth alongside the ConFiG dynamic network, illustrating the parallels between
the two.

5.2.2.4 Axon fasciculation

One particular role CAMs play is in axon fasciculation, the process in which axons follow
a so-called pioneer axon closely, forming a bundle [113, 128]. To mimic the process of
axon fasciculation, the term in the cost function penalising moving into regions in which
the fibre had to shrink, ld Equation (5.3), was altered to be conditional on which fibre
bundle is closest.
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A fibre, f , with a target diameter, d0, moving to a candidate node, c, which has a maximum
sustainable diameter dc will now have ld given by:

ld =

max
(

0, 1
d0

(d0 − dc)
)

if bc 6= bf

abs
(

1
d0

(d0 − dc)
)

if bc = bf
(5.4)

Where bf is an index identifying the bundle that fibre f belongs to and bc is the index of
the bundle that is closest to c (i.e. the index of the bundle of the fibre that set dc). This
means that when c is closest to the same bundle as f , the cost function penalises moving
away from that bundle as well as shrinkage, whereas when the bundles differ, it only
penalises shrinkage.

This new form of the cost function encourages fibres of the same bundle to stick
together while still avoiding fibres of different bundles, inspired by the labelled pathway
hypothesis, which states that axons join different fascicles based on different CAMs
expressed on the fibres [113]. In this case, bundle indices bc and bf act like different
identifying CAMs. Figure 5.3 shows how this fasciculation process is expected to happen
in biology alongside how the improved cost function encourages a similar process in
ConFiG.

5.2.2.5 Global optimisation

Since the growth of fibres in ConFiG takes place on a discrete network of points, the final
positions of fibre nodes may be suboptimal for achieving the maximum density. In other
words, certain fibres’ nodes may be closer to other fibres than they would ideally be in
order to reach their target diameter (i.e. the fibre has had to shrink its diameter at that
node).

To mitigate against this, a global optimisation step was added at the end of the growth in
a procedure similar to MEDUSA [111]. For each point, i, that is part of a fibre, its nearest
n neighbours (j ∈ NN(i)) from other fibres are found; in this work n = 10. The distance
to all of the neighbours is found and the point’s position is updated from these distances
according to the update vector, ~ui

~ui =
∑

j∈NN(i)

D(i, j) · (~pi − ~pj) , (5.5)

where ~pi and ~pj are the locations of point i and j. D(i, j) is the function determining
whether the interaction is repulsive or attractive:

D(i, j) = sgn (ri + rj − ‖~pi − ~pj‖) . (5.6)

Here, sgn is the signum function and ri and rj are the target radii of point i and j. The
sum of these radii is the desired distance between the points since that means the fibres are
just touching. D(i, j) imposes that the force is repulsive if the points are closer together
than the desired radius and attractive if they are further apart. The update vector is scaled
such that if ‖~ui‖ > 0.2ri, the update vector is rescaled so that ‖~ui‖ = 0.2ri. This acts to
prevent the update vector from becoming very large.

72



5.2 Methods

There is some biological evidence that this kind of interaction between fibres is important
in the fasciculation process. The fasciculation process described in Section 5.2.2.4 relies
on CAMs detected at the tip of a growing axon, however some studies provide evidence
for fasciculation through interactions along axon shafts, known as zippering [129–131].
In zippering, nearby axon shafts attract one another to form more closely packed fascicles,
which is a similar process to the global optimisation process in ConFiG.

5.2.3 Summary of ConFiG input parameters

Table 5.1 summarises the key parameters that govern the generation of ConFiG phantoms.
Parameters are split into those which define the target microstructural morphology and
those which define the instantiation of the growth algorithm. For each parameter, the
theoretical range is reported alongside the practical range that has been tested so far. This
is due to stochastic nature of the algorithm and the interdependence of the parameters.
For instance a very large substrate is possible if very large fibres are chosen, but likely
impossible with very small fibres since this will require a very large number of fibres and
run into memory limitations.

Table 5.1: Summary of ConFiG parameters split into parameters which define the target
microstructural morphology and parameters which define the instantiation of the
growth algorithm. For each parameter the theoretical range is reported as well as
the practical range that has been tested so far.

Parameter Meaning
Theoretical

Range Practical Limits Tested
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L Size of growth region R3
+ [0, 0, 0]→ [50, 50, 50] µm

ρ Fibre volume fraction [0, 1] [0, 0.8]

µr Mean radius R+ [0.5, 2] µm

σr Standard deviation radius R+ [0.1, 0.5] µm

GAD
Global
angular

dispersion

Watson: κ R+ [4, 100]

ESAG
{µ R+ [2, 10]

γ R2
+ [2, 2]→ [10, 10]
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s

N Number of growth nodes N [0, 107]

f Cost function weighting term [0, 1] [0, 0.5]

g0, δ
Fibre collapse initial and
subsequent step length R+ [1, 5], [1, 5] µm

Nadded
Dynamic network no. nodes

added N [0, 5000]
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5.3 Experiments

In order to assess the performance of ConFiG, a range of experiments were performed.
The first set of experiments were performed in order to explore the impact of each
of the biologically inspired growth mechanisms. Another set of experiments aimed
to show that ConFiG is able to generate substrates with realistic microstructure by
comparing generated substrates with real tissue. Additionally, the relationship between
the user-specified target morphology and the final output morphology was investigated by
comparing resulting phantoms to their inputs (target density and orientation distribution).
Finally, a simulation experiment was performed to assess how well ConFiG phantoms can
be used to generate realistic diffusion MRI data. The rest of this section outlines these
experiments.

5.3.1 Testing the performance of ConFiG

In order to test how each of the biological mechanisms proposed in Section 5.2 impacted
on the resulting phantoms, an experiment was devised to measure how phantoms changed
when each mechanism was introduced. Four scenarios of interest were generated using
several variants of the ConFiG algorithm that included these mechanisms either one at a
time or all at once, attempting to grow phantoms as densely as possible:

• one bundle of parallel fibres, target density 75%

• one bundle with Watson distributed fibres (κ = 8), target density 75%

• two perpendicular crossing bundles, intra-bundle target density 40%

• three mutually perpendicular crossing bundles, intra-bundle target density 30%

These target densities were chosen to ensure that the centre of the phantom (i.e. the
crossing region for crossed bundles) had a high target density whilst ensuring that each
bundle had a reasonable number of fibres to begin with (>50).

The ConFiG variants were tested by generating phantoms for each of the scenarios starting
with the same initial conditions. Each phantom was generated 5 times with a different
random seed and results averaged across the seeds.

To investigate the impact of the biological mechanisms on dMRI simulation, a comparison
was made between real dMRI signals and simulations from ConFiG phantoms. The
NODDI model [13] was fitted to a WM ROI in the corpus callosum of a Human
Connectome Project (HCP) [132] subject to provide sensible input parameters (target
fibre density and orientation dispersion) for ConFiG to generate phantoms. We
generated phantoms using the two extreme cases: the minimal growth case only using
chemoattraction, and the complete ConFiG algorithm using all mechanisms. Whilst the
random nature of ConFiG means that the resulting phantom will not have morphology
exactly matching the input parameters, this approach ensured that the phantoms were
reasonable for this proof of concept experiment.
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The dMRI signal was simulated in the phantoms using Camino [25, 89] with identical
simulation conditions in both cases and the measurement scheme corresponding to
the HCP dMRI sequence [133]. An important consideration when performing dMRI
simulations is the size of the substrate relative to the diffusion length. The phantom should
be large enough that it is bigger than the diffusion length, but not so large as to require
excessive computational resources. Owing to the relatively long diffusion time (43 ms) in
the HCP sequence, phantoms were extended with reflected copies [134, 135] to increase
their effective size relative to the diffusion length scale.

All dMRI simulations in this work used a bulk diffusivityD = 2.0 µm2 ms−1 in agreement
with values used in similar Monte Carlo simulations [23,25,105] with 105 spins and 2000
timesteps. Standard Camino periodic boundaries were used [25], with dMRI signal was
generated from a central region 75% the size of the total phantom to avoid boundary
effects [59].

5.3.1.1 Interaction of ConFiG parameters

In practice, certain combinations of ConFiG target microstructure parameters are
incompatible and are also influenced by the choice of growth algorithm parameters in
Table 5.1. For instance, it is unlikely to be possible to achieve very high densities with
large amounts of orientation dispersion due to the complex nature of the packing that will
be required.

To investigate this, a series of phantoms were generated, each attempting to reach a high
fibre density of ρ = 75% (chosen to represent the upper end of what would be expected in
vivo), with variable amounts of orientation dispersion (OD), modulated through changing
the target κ (κ = 2...50) for the Watson distribution. For each ρ, κ combination, a
phantom was generated using 104, 105, 106 and 5× 106 growth nodes. Each phantom was
generated in a 20× 20× 20 µm region with a mean radius of 1 µm and standard deviation
of radius of 0.1 µm.

For each phantom, the resulting fibre density was measured, to test which combinations
of κ and ρ were achievable. A similar experiment investigating the ability to recover
the correct OD is presented in Chapter 6, using the microstructural evaluation methods
developed therein.

5.3.2 Diffusion MRI simulation

To qualitatively verify that the simulated diffusion MRI signals from ConFiG phantoms
are realistic, simulated signals from ConFiG phantoms were compared to real HCP data
[132, 133].

In the real data, the fODF was fit in each voxel using constrained spherical deconvolution
(CSD) in MRTrix [75,136]. Voxels were selected in regions of interest in the midbody of
the corpus callosum (CC) and the internal capsule (IC), regions in which a single bundle
of fibres is found from the FOD. A third voxel was selected in which three crossing fibre
populations were found from visual inspection of the FOD.
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In each voxel, the diffusion tensor was fit to the signal and the principal eigenvector used
to define a major direction of diffusion in the voxel, n. From this, the normalised diffusion
weighted signal was plotted against |n·G|, whereG is the gradient direction. Additionally,
the direction averaged signal was calculated for each b-shell.

To attempt to generate representative microstructure for each voxel using ConFiG, the
NODDI model [13] was fitted to the dMRI signal to give some initial parameters for
ConFiG. Most importantly, the value of κ for the Watson distribution [115] estimated
using NODDI was used to initialise the orientation dispersion in the ConFiG phantoms
used to represent CC (κ = 6.2) and IC (κ = 5.5) regions. To represent the three crossing
(TC) voxel, a phantom generated using three mutually perpendicular crossing bundles
was used.

ConFiG phantoms were grown using these initial conditions and the diffusion MRI
signal simulated using the Camino Monte Carlo diffusion MRI simulator [25]. For each
phantom, the same processing as with the real data was performed, finding the direction
dependent and direction averaged signal per b-shell.

5.3.3 3D signal visualisation

In order to better understand how close the simulated signal is to the real signal, a new
method for 3D visualisation of the signal was developed. A 6th order SH representation of
the simulated signal was calculated for a given b-value and the surface plotted in 3D. On
top of this, the real data for that b-value were plotted as points with a line projected along
the gradient direction to the surface to show the distance between the real and simulated
signals in that direction. Each point is coloured red or blue depending on whether the
measured signal is above or below the simulated signal respectively.

Since there is no guarantee that the microstructure is aligned similarly relative to the
gradients in the ConFiG phantom and real data (indeed, it is highly unlikely that they
are), the Bingham-NODDI model [10] is fit to the both the real and simulated data to give
a basis for each, defined by three orthogonal vectors: the principal diffusion direction µ1,
the principal fanning direction µ2 and a vector mutually orthogonal to both of these, µ3,
defined as µ1 × µ2.

A rotation matrix is use to bring these two bases into alignment, defined as follows1: The
rotation matrix R that brings a basis of unit vectors(~a,~b,~c) onto another basis (~d,~e, ~f)
must fulfil

R~a = ~d R~b = ~e R~c = ~f . (5.7)

This matrix can constructed through the addition of three dyads

R = ~d~a+~e~b+ ~f ~c , (5.8)

1This solution is based on https://math.stackexchange.com/questions/1125203/
finding-rotation-axis-and-angle-to-align-two-3d-vector-bases
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which can be seen to work if we multiply through by one of the first basis vectors R~a =
~d~a · ~a = ~d, since ~a multiplied with itself gives unity and is orthogonal to ~b and ~c. Each
of these dyads can be written as a 3x3 matrix using the vector direct product, giving the
rotation matrix

R = ~d⊗ ~a
T

+~e⊗~b
T

+ ~f ⊗~c
T
, (5.9)

where ⊗ denotes the Kronecker product. This rotation matrix, R is used to bring the
simulated and real data into the same space for visualisation.

This approach to signal visualisation enables us to get a better feel for how close the
signals are and whether there is any pattern to the discrepancy (for instance, is the
measured signal high along one axis and low along another). Besides its application here
to see how close our simulated and real signals are, this could be a useful tool to see how
fitting models are behaving. For instance plotting the data against a surface from a NODDI
fit may enable easy identification of cases where the isotropic orientation dispersion
assumed in Watson-NODDI is a poor fit to the data and where Bingham-NODDI [10]
may be better. In this case of plotting data against a fit, the alignment approach described
above does not need to be followed since the fitting parameters will already be in the same
space as the real data.

5.4 Results

5.4.1 Impact of biological mechanisms

Each of the proposed biological mechanisms enabled ConFiG to generate phantoms
with increased density over the minimal case of chemoattraction only, as is shown in
Figure 5.4. Global optimisation resulted in the largest improvement, 17-24%, consistently
giving a large improvement. Other improvements performed better for specific phantom
configurations. For instance, fasciculation and the dynamic network produced only
modest improvements in crossing fibre configurations (4-6%), but performed well in
the single bundle cases (11-14%). Fibre collapse was particularly effective in the three
perpendicular case, offering 10% improvement.

When combining all of the proposed mechanisms together, the achievable density is
higher than any of the improvements individually. This improved performance is
comparable to the state of the art, MEDUSA [111], with particularly good performance
relative to MEDUSA in the crossing fibre configurations.

This improvement in density can be appreciated visually in Figure 5.5 which demonstrates
virtual histology (in which a thin slice through a phantom is rendered) of a parallel
fibre phantom for each of the mechanisms. Additionally, Figure 5.6 visually shows the
difference in density of the phantoms in 3D between the minimal case of chemoattraction
and all biological mechanism for each fibre configuration.

The improvement in the density of phantoms leads to a much more realistic simulated
diffusion MRI signal as demonstrated in Figure 5.7. The root mean square error to the
real data is reduced by 10 times when using improved ConFiG.
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Figure 5.4: Demonstration of the impact of each biological growth mechanism on the density
achievable with ConFiG. Each bar shows the mean density for each proposed
mechanism, error bars show ± standard error on the mean. MEDUSA values are
estimated from Fig. 14 in Ginsberger et al. (Ginsburger et al., 2019).

Figure 5.5: Virtual histology demonstrating the impact of biologically inspired mechanism on
the final phantom created for one of the parallel phantoms tested. This visually
demonstrates the improvement in density. Leftmost image shows the phantom
generated with all mechanisms in 3D and the cutting plane used to produce the
virtual histology.

5.4.2 Interaction of ConFiG parameters

High amounts of orientation dispersion limit the ability of ConFiG to achieve high
densities as shown in Figure 5.8(a). Additionally, the number of ConFiG network nodes
affects the outcome, with only the case of κ = 50, N = 5 × 106 being able to achieve
the target density of 75%. Generally, as the number of network nodes increases, the
density achievable is higher at the cost of increased time taken for growth as demonstrated
in Figure 5.8(b). The time taken for growth does not show a strong dependence on κ
indicating that the primary driver of the time required for growth is the number of nodes
in the network.

78



5.4 Results

Figure 5.6: Demonstration of the improvement in density achieved when using all mechanisms
in ConFiG compared to the minimal implementation using only chemoattraction.
Colours chosen to match Figure 5.4.

The results shown are just for a single instance of each combination of κ, ρ and N (for
the sake of time) and so there are fluctuations in the density achieved and time taken,
however the results give an idea of the limitations and interaction of some the ConFiG
parameters.

The result indicates that when attempting to grow very dense phantoms, the number
of ConFiG network growth nodes should be carefully considered along with the time
available.

5.4.3 Diffusion MRI simulation

Simulated data from ConFiG substrates match real dMRI data well, as shown in
Figure 5.9. The direction averaged signal matches well in each case, in particular, for
the corpus callosum and three crossing phantoms, the simulated signal matches the real
signal closely. The b = 3 ms µm−2 signal in the internal capsule and corpus callosum is
lower in simulation than in real data. This is to be expected however because as |n · G|
approaches 1, the signal reaches the noise floor and the noise-free simulations fall below
the measured data.

Figure 5.10 shows the difference between the simulated and measured signal in 3D for
the corpus callosum and internal capsule. In this visualisation it is possible to see some
systematic differences that are not visible in the signal plotted against |n ·G| in Figure 5.9
such as the anisotropic dispersion in the IC data. It can be seen that the real signal is
generally lower than the ConFiG along the principle dispersion direction, µ2, and higher
in the orthogonal dispersion direction, µ3, highlighting that the real data shows some
anisotropic dispersion which isn’t captured by the ConFiG phantom which was generated
using the isotropic Watson distribution.
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Figure 5.7: Left: Direction averaged signal attenuation for real HCP data (± standard deviation
over ROI) and simulated data from the minimal ConFiG implementation using
only chemoattraction and using all growth mechanisms ConFiG showing that
ConFiG can produce realistic dMRI signals. Right: The original and improved
ConFiG phantoms used to generate the signal on the left. Simulations performed
with 105 spins, 2000 timesteps and HCP measurement scheme (Stamatios N.
Sotiropoulos et al., 2013). Diffusivity set to 2.0µm2 ms−1 , chosen to be consistent
with previously reported values (Hall and Alexander, 2009; Nilsson et al., 2009;
Rensonnet et al., 2017).
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Figure 5.8: Interaction between target density and OD as a function of number of ConFiG
network nodes.
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Figure 5.9: Comparison of diffusion MRI simulations and real data from three different brain
regions: a) a voxel in the midbody of the corpus callosum, with phantom with
volume fraction 55% and mean orientation from z 25o. b) a voxel in which there
are three crossing bundles, with phantom of three crossing bundles with volume
fraction 50% and c) a voxel in the internal capsule, with phantom with volume
fraction 58% and mean orientation from z 22o. Top row shows the ConFiG
phantom and corresponding WM voxel. Middle row shows the direction dependent
signal for ConFiG (lines) and HCP data (dots). Grey dashed line demonstrates
estimated noise floor. Bottom row shows the direction averaged signal. Black lines
correspond to phantom in top row. Grey lines are signal from phantoms with the
same orientation distribution as the black line in each plot but different densities to
show that ConFiG has the flexibility to generate a wide range of realistic signals.
Simulations performed with 105 spins, 2000 timesteps, diffusivity 2.0 µm2 ms−1

and HCP measurement scheme [137]
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Figure 5.10: 3D visualisation of simulated and real dMRI signals in the corpus callosum and
internal capsule for b = 3 ms µm−2. Surface is 6th order SH representation of
the simulated signal. Points are measured data coloured such that red points have
measured signal higher than corresponding simulated signal and blue points have
signal lower than simulated signal. Lines connected to each point show distance
to corresponding point on the simulated signal surface.
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5.5 Discussion

ConFiG is shown to produce WM numerical phantoms with state-of-the-art performance,
producing phantoms with higher fibre density than the MEDUSA approach, particularly
in complex arrangements of fibres. These improvements lead to much more realistic
simulated signals from ConFiG phantoms than the preliminary fibre growth algorithm as
demonstrated in Figure 5.7. ConFiG is able to produce this realistic microstructure at high
fibre density by following simple biologically inspired growth rules.

The ConFiG growth algorithm of course depends on the specific instance of the growth
network, meaning that the resulting phantom for the same input fibre configuration will
be different for different network choices. This is alleviated to an extent by using
the dynamic network introduced here, however the phantom will still be dependent on
the initialisation of the network. The dependence appears to be relatively minor as is
demonstrated by the small standard errors on the mean density shown in Figure 5.4 across
the five repetitions.

The diffusion MRI simulations shown in Figure 5.9 demonstrate the ability of ConFiG
to generate phantoms which reproduce real diffusion MRI data well. These simulations,
however, are just three examples of ConFiG phantoms and corresponding simulations.
Using NODDI as input to ConFiG means that the resulting phantoms have sensible
morphologies and are shown to generate signals that match the real tissue well, though
there may be other configurations that can better reproduce the signal. As an example, the
b = 3 ms µm−2 signal from the internal capsule is higher at low |n · G| in the simulated
versus the real data ( Figure 5.9c). One explanation of this is that the phantom generated
does not have microstructure accurately representing this region, for instance the phantom
may have too little dispersion caused by ConFiG under representing the target orientation
dispersion, as seen at low κ in the following chapter in Table 6.1.

Another explanation, as highlighted in Figure 5.10, is that the orientation dispersion
distribution used is not right to fully characterise the signal. The fact that the real signal
is lower in the principle dispersion direction µ2 and higher in the orthogonal dispersion
direction µ3 suggests that that there is anisotropic dispersion in the real data which is
not captured by the ConFiG. In this case, the ConFiG phantom was generated using a
Watson distribution for the orientation dispersion, which gives the isotropic OD seen in
Figure 5.10, however, it may be better to use something like the elliptically symmetric
angular Gaussian (ESAG) or Bingham distribution to better represent the IC.

Eventually, it may be possible to find a better matching phantom using a computational
modelling approach such as that proposed in [18], however the simulations presented are
sufficient to demonstrate a proof-of-concept that ConFiG can be used to generate realistic
simulated dMRI data.
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Limitations and future work

One limitation of ConFiG is that the algorithm relies on the space being sufficiently
densely sampled by the growth network. This can require a large number of nodes for a
large phantom, becoming prohibitively memory and time expensive. This is investigated
in Section 5.3.1.1 which demonstrates that in order to achieve high densities, a very large
number of nodes are required (> 5× 106). In this case, the phantoms generated are quite
small (20 × 20 × 20 µm), while larger phantoms will require a larger number of nodes.
In fact, the more relevant value than the number of nodes is the density of nodes which
may be remedied in future versions of ConFiG by changing the input parameter from the
number of nodes to the density.

The dependence of the resulting phantom on the density of network nodes can be
addressed by growing the fibres in small sub-regions local to the head of the fibres rather
than the whole space at once. For instance, rather than filling the entire space of growth
with nodes, it is possible to fill a small layer of the space with points and then grow layer
by layer. In this way, it is possible to achieve a high density of nodes using fewer nodes
than when covering the entire space.

One further potential limitation of ConFiG is that once a fibre has grown, it is static. The
fibre will remain fixed in place and all other fibres will have to grow around it. One
problem with this is that once the fibres are fixed, they may create pockets of inaccessible
space which limits the space available for following fibres. Additionally, in real tissue,
axons are flexible and non-rigid, meaning that it may be more realistic that growing fibres
can push existing fibres out of the way to make more space for growth. A potential
approach to ameliorate this would be to have an optimisation procedure during growth,
similar to the global optimisation introduced in this work but optimising the shape of a
fibre as it grows.

A limitation of the current study is that the simulations assume a single diffusivity for the
intra and extracellular spaces and no permeability of the axonal membranes. Furthermore,
effects such as T2 and magnetic susceptibility are ignored. These effects are a limitation
of the simulator used rather than ConFiG, and work is planned to improve these aspects
of the simulator for more realistic simulated signals.

While the dMRI simulations presented here provide a good sanity check that the ConFiG
phantoms are realistic since the simulated signals match well with real dMRI signals, a
more thorough validation of the microstructure generated is planned. Chapter 6 outlines
a series of experiments performed to compare the microstructure generated with ConFiG
to real axons segmented from EM [28].

We will work towards decreasing the difference between the input and output
morphological measures, particularly in complex situations, such as high orientation
dispersion and crossing bundles. This can be addressed through the improvements to
ConFiG mentioned here and also by improving the strategy for the generation of starting
and target points for each fibre. For instance, currently it is not intuitive how starting
and target points should be arranged to achieve a desired density in crossing regions of
fibres.
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Figure 5.11: Proof-of-concept ConFiG phantom grown around real cells from https:
//neuromorpho.org. One astrocyte (green), oligodendrocyte (red) and
microglial cell (blue) were added to the network before fibres grew and the
network updated in the same as once a fibre has grown to prevent fibres
intersecting the cells. Fibres then grew as normal.

One planned extension of ConFiG is to implement periodic boundary conditions in the
growth network, enabling the generation of fully periodic phantoms. This would enable
ConFiG phantoms to be generated in relatively small volumes and tiled for simulation,
accelerating the process of generating a wide range of phantoms and the memory required
to store each phantom.

The core growth algorithm for ConFiG relies on a set of starting and target points, a
connected network of nodes and some rules defining the growth. As such, ConFiG is very
flexible since the exact form of each of these components can be modified based on the
application. One example of a simple modification that may be explored is the order of
growth of the axons. Currently, in the absence of any clear biological precedent know to
the authors, fibres grow in a random order, but it may be possible that there is a better
order such as growing large diameter axons first, or central axons in a bundle growing
first.

In this work, ConFiG is applied to the case of densely packed axons, without contributions
from neuronal cell bodies or other processes. A planned future extension of ConFiG is
to allow for the addition of glial cells such as astrocytes and oligodendrocytes [60] to
the extracellular space to make the virtual WM tissue more realistic. A proof-of-concept
of this is shown in Figure 5.11 where we generated fibres which grow around realistic
cells from https://neuromorpho.org. An astrocyte, an oligodendrocyte and a
microglial cell were manually placed into the space before the fibres grew and the network
was updated in the same as once a fibre has grown meaning that the growing fibres grow
around the cells.
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5 ConFiG: Contextual Fibre Growth

Additionally, to further add to the realism of ConFiG phantoms, realistic myelin may
be modelled, creating spiral layers wrapped around the axons [123]. Furthermore,
intra-axonal structures such as mitochondria and microtubules may be added to investigate
their contributions to the diffusion weighted signal.

A planned future application will be to use ConFiG to generate a wide range of phantoms
with different microstructural features. These can then be used to create a computational
model to estimate microstructural features directly from the diffusion MRI signal in an
approach similar to previous works [15–18, 138].

Applications beyond diffusion MRI

As mentioned in the introduction, axonal configuration impacts MR signals beyond
dMRI. One potential avenue of exploration would be to investigate the impact of realistic
axonal configurations on magnetic susceptibility in a similar way to Xu et al. [21],
extending their 2D simulations to use realistic 3D geometries generated in ConFiG.

The virtual histology presented in Figure 5.5 shows an approximation of a histology image
generated using ConFiG substrates. In this work, the purpose of this is to show the impact
the growth mechanisms have on ConFiG phantoms. For this reason, the virtual histology
is simply produced by rendering images with false colours. It may be possible, however
to generate more realistic electron microscopy images using a physically realistic electron
microscopy simulator [139–141] which may be used to train and test axon segmentation
routines. This may be of particular use for cases of fibres parallel to the electron
microscopy plane or crossing bundles which are typically difficult for 3D reconstruction
and segmentation algorithms.

The 3D meshes generated by ConFiG are saved in the PLY format, a widely used format
for storing meshes for many purposes. This means that the ConFiG phantoms may be
used in other types of simulations such as polarised light imaging [142,143] or molecular
dynamics simulations using software such as MCell (https://mcell.org) [90, 91,
144] or LAMMPS (http://lammps.sandia.gov) [145].

5.6 Conclusion

ConFiG enables the generation of realistic white matter numerical phantoms achieving
state of the art fibre density whilst ensuring realistic microstructural morphology by
following biologically motivated rules. This realistic microstructure is shown to generate
realistic simulated diffusion MRI signals, opening up the possibility to use ConFiG to
create a realistic computational model of WM microstructure. ConFiG outputs fibre
meshes which can be used for realistic diffusion MRI simulations or can be processed
to produce virtual histological slices, allowing for further potential applications outside
of diffusion MRI.

86

https://mcell.org
http://lammps.sandia.gov


y

6 Microstructural Evaluation

Chapter Contents

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.2 Microstructural measurements . . . . . . . . . . . . . . . . . . . . . . . 88

6.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Chapter Summary

This chapter presents a series of experiments performed using ConFiG phantoms to
test their microstructural realism, something essential to prove the value of ConFiG
phantoms.

Firstly, the methodology used to calculate microstructural features from ConFiG phantom
meshes are presented. The dependency of some of these features on the input morphology
is demonstrated, followed by a series of experiments which compare ConFiG phantoms
to real white matter reconstructed from electron microscopy.
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6.1 Introduction

As demonstrated in Chapter 5, ConFiG is able to generate white matter (WM) numerical
phantoms which can be used to generate realistic simulated diffusion MRI (dMRI) signals.
Whilst this a valuable check of the realism of the phantoms, this does not guarantee that
the underlying microstructure is realistic since simplistic representations such as straight
parallel cylinders can be used to generate realistic signals in certain cases.

To investigate how well axons generated using ConFiG represent real WM axons, a series
of experiments were conducted to compare ConFiG axons to real axons reconstructed
from electron microscopy (EM). Typical EM techniques such as scanning electron
microscopy (SEM) and transmission electron microscopy (TEM) provide only 2D images
of tissue cross-sections, giving only limited information on axonal morphology. Recent
technological improvements - primarily improvements to and increased accessibility of
serial block-face scanning electron microscopy (SBEM) [146, 147], a technique to take
SEM images of many sequential tissue slices - have enabled new possibilities for the study
of axonal microstructure in 3D.

Although high-resolution 3D imaging of tissue is possible using these SBEM techniques,
segmentation and quantification of the resulting images has remained challenging,
meaning that there have only been a few studies investigating the 3D microstructure of
segmented axons in WM [27, 28, 106]. Of these, only Lee et al. [28] have made their
axonal segmentation publicly available so it is this data set that we use to compare with
ConFiG.

The rest of the chapter is arranged as follows, Section 6.2 describes the procedures used
to extract microstructural features from the 3D meshes generated by ConFiG. Section 6.3
outlines a set of experiments that were performed using these microstructural
measurement techniques to assess how the complexity of fibre arrangements affect the
axonal morphology and to compare ConFiG axons to real axons segmented from EM.
Section 6.4 presents the results of these experiments and Section 6.5 summarises the
contributions and discusses future work.

6.2 Microstructural measurements

In order to test how realistic the microstructure generated using ConFiG is,
microstructural measurements of diameter distribution and orientation distribution were
calculated using methods designed to be comparable with previous studies on ex-vivo
tissue [27, 28].

A centre line is generated from each of the fibre meshes by aligning the ends of each fibre
with the z-axis and connecting the centre of mass of 100 equidistant slices through each
fibre, following the approach taken by Lee et al., [28]. This is illustrated in Figure 6.1.
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6.2 Microstructural measurements

Figure 6.1: Centre line extraction of fibres. Each fibre was sliced N times along the z-axis,
connecting the centre of mass of each slice to create the points in the centre
line. This line could then be optionally smoothed according the diffusion time
coarse-graining effect, as in [28]

Each segment in this centre line could then be used to assess the microstructure of the
phantom. The direction of each segment was used to assess the orientation distribution
of the phantom, illustrated in Figure 6.2. Following the approach of Lee et al., [28], the
direction of each segment was projected onto the surface of a triangulated unit sphere
[148]. For each triangle, the number of segments pointing in that direction was used to
colour the triangle to visualise the orientation distribution.

A second approach was devised to better visualise orientation distributions in 3D to aid
differentiation of crossing bundles and antipodal symmetry. In this approach each vertex
was raised above the surface of the sphere proportionally to the number of segments
pointing in its direction as illustrated in Figure 6.2.

To measure the diameter profile along fibres, the direction of each segment gave the
normal to a plane used to cut the fibre using Boolean intersection to give a cross section
of each fibre at each segment. The diameter profile along the axon was generated by
calculating the equivalent diameter of a circle with the same area as the fibre cross section.
This process is illustrated in Figure 6.3.

6.2.1 Virtual histology and 2D morphological measures

Virtual histological slices were generated to compare ConFiG substrates to real white
matter analysed using histology. Histological slices were found by calculating the
Boolean intersection of a cutting plane with the generated fibre meshes using Blender
(https://blender.org). A myelin sheath was added to the fibres when generating
virtual histology for visualisation purposes. Virtual histological images were rendered
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Figure 6.2: Orientation distribution calculation. Each segment of a fibre was projected onto
the surface of a triangulated sphere, here illustrated with a sectioned circle. For
each section in the sphere, the number of fibre segments going through that section
was used to colour and/or raise the surface to visualise the orientation distribution.
Since the diffusion process is symmetric about the origin, each fibre segment was
projected onto the sphere forwards and backwards.

with a resolution of 5 nm× 5 nm× 100 nm, chosen to be comparable to real histological
white matter measurements [27, 28].

In order to compare ConFiG virtual histology to real histology, virtual histological
slices were rendered in binary black and white to compare against intra-axonal
segmentations from [28]. Slices from real histology, ConFiG phantoms and a parallel
cylinder phantom were processed using the MorphoLibJ plugin for ImageJ [149–152] to
extract morphological features: circularity (4π × Area/Perimeter2), convexity (Area of
shape/Area of convex hull), eccentricity of fitted ellipse and Area/πr2

max for each axon.
Axons touching the edge of the image were removed since truncation from the image
edge would skew these microstructural metrics.
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Figure 6.3: Calculation of the diameter distribution. A slice is taken through each fibre
perpendicular to every segment in the centre line. The area of each of these slices
is used to find a circle equivalent radius or diameter using A = πr2.

6.3 Experiments

6.3.1 Relationship between input and output morphology

As mentioned in Section 5.2, the nature of the ConFiG growth algorithm means that the
microstructural morphology of the phantoms may not match the user input. Some fibres
may become stuck and fibres cannot typically grow in a straight line, affecting the density
and orientation distribution.

To investigate this, we generated a series of ConFiG phantoms with Watson distributed
[115] orientation dispersion with κ = [8, 10, 15, 20, 30, 50, 100] and target density, ρ =
75%. The target density of 75% is chosen as this is the upper limit of what is achievable
empirically and towards the higher end of expected axonal volume fraction. Additionally,
with 75% achieved, lower densities can be generated easily, either by running ConFiG in
full, or simply by removing or shrinking fibres.

The mean and standard deviation of the angle from z, µθ and σθ respectively, for each
κ was calculated by taking 10000 samples from the Watson distribution and this was
compared to µθ and σθ of the ConFiG fibres. Additionally, the density of the ConFiG
phantoms was compared to the target density of 75%. Each phantom was generated in a
20 µm× 20 µm× 20 µm region, using 2.5× 106 nodes in the growth network.
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6.3.2 Packing induced microstructural complexity

When axons grow, they must bend and bulge to grow around one another without
colliding. It is a reasonable assumption to make that the level of divergence from
straight cylinders is higher in more complex arrangements of fibres (i.e. in complex fibre
arrangements such as high orientation dispersion, fibres are more likely to cross paths and
so are more likely to need to deform around one another).

In order to test whether this effect is present in ConFiG phantoms, we used the phantoms
from Section 6.3.1, with the addition of two phantoms generated with target κ of 2 and
4 to attempt to generate even more complex arrangements. Each of these phantoms
were generated with fibres that attempted to go straight from start to target point with a
constant radius, so any deviations arise from the growth procedure itself rather than input
settings.

For each fibre, the centre line was extracted as described in Section 6.2 and the end points
of each fibre were used to calculate σθ for the fibres if they were joined by straight lines.
This is used as a proxy for the complexity of the phantom since a higher σθ will lead
to more fibres crossing one another. Additionally, for each phantom, the coefficient of
variation of the diameter along each fibre (CV ) was calculated as a measure of the amount
of fibre beading and the tortuosity for each fibre was calculated as τ = Lfibre/Lends, the
ratio of the total length of the fibre and the length of the straight line between endpoints.

6.3.3 Variability of repeated instances of ConFiG

As discussed in Chapter 4, ConFiG uses a network of pseudorandom points to facilitate
the growth of WM phantoms. This means that different instances of ConFiG with
the same inputs (other than a different random seed) will produce slightly different
phantoms.

In an effort to investigate this affect, repeated phantoms were generated using exactly the
same input parameters for three conditions (a subset of the conditions used in the previous
experiment):

• Watson distributed κ = 2 - highly dispersed

• Watson distributed κ = 6 - Typical WM dispersion

• Watson distributed κ = 100 - Highly coherent

Phantoms were generated for each condition 40 times, each time keeping all other
parameters the same but using a different random seed. The mean coefficient of variation
of diameter, µCV , and tortuosity τ for each fibre in each phantom was calculated to
assess how much microstructural variation can arise due to the random instantiation of
the ConFiG algorithm.
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Figure 6.4: Comparison of real and virtual histology. A) Light microscopy of rat ventromedial
WM in thoracic spinal cord. Reproduced from Baxi et al. 2015 (Baxi et al.,
2015), scale bar 2 µm. B) Two virtual histological slices from a ConFiG generated
phantom. Phantoms are rendered to have similar colours to electron microscopy
studies. The exact contrast and fibre bundle configurations are different between
the real and virtual tissues, but the general morphology of the myelinated axons
are captured well using ConFiG as highlighted by corresponding boxes. Yellow
and Blue: axons severely deformed between other axons. Red: Pockets of empty
space forming. Green: Largely circular axon surrounded by other axons deforming
around it. Scale bar 2 µm.

6.4 Results

6.4.1 Microstructural measures and virtual histology

The microstructural morphology generated using ConFiG is comparable to results from
real data as demonstrated in Figures 6.4, 6.5, 6.7 and 6.8. Figure 6.4 demonstrates virtual
histology of a ConFiG phantom alongside a real EM image from mouse corpus callosum
[153]. The exact microstructural features, such as diameter distribution, as well as the
EM contrast do not exactly match between ConFiG and the real data. However, ConFiG
is able to capture the general morphology of real axons as highlighted in Figures 6.5
and 6.7. In particular, ConFiG is able to capture complex fibre cross-sections such as in
the case of fibres squashed into small spaces. This is the first model of white matter able
to handle complex fibre cross-sections such as this to our knowledge.

ConFiG morphological metrics calculated slice-wise on the virtual histology correspond
much more closely to real axons than the same metrics calculated for parallel cylinders,
as shown in Figure 6.5. While cylinders produce a delta function at one extreme of each
metric, ConFiG phantoms produce much closer distributions to the real data. Figure 6.6
shows each of these slices coloured by their morphological metrics, demonstrating which
fibres are contributing to the distributions of each metric shown in Figure 6.5.

The diameter distribution of a ConFiG substrate is compared to a reconstruction from
real EM data [28] in Figure 6.7. ConFiG is able to capture the general profile of axonal
variations well, with the overall shape of the diameter distribution matching well. The
distribution of the coefficient of variation along ConFiG axons is slightly narrower with
a smaller mean than real axons, though these discrepancies may be alleviated with a
different choice of input parameters to ConFiG.
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Figure 6.5: Slice wise morphological metrics calculated for real axons, ConFiG phantoms
and parallel cylinders. Across each of the metrics, ConFiG produces much more
realistic distributions than the cylinder phantom. Some of the cylinders have a
non-zero eccentricity, but this arises since the metrics are calculated from binary
images where the pixelated circles may appear to not be perfectly circular.

ConFiG is also able to generate fODFs comparable to real tissue as shown in Figure 6.8.
Here the fibre paths are smoothed with a Gaussian kernel equivalent to having a diffusion
time of 1 ms and diffusivity of 2 µm2 ms−1 as in Lee et al. [28]. The orientation
dispersion is introduced to ConFiG phantoms using the elliptically symmetric angular
Gaussian (ESAG) [154] to best approximate the EM data and also using isotropic Watson
distributed directions to demonstrate the flexibility of ConFiG.
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Figure 6.6: Slice-wise microstructural measurements with colourmap demonstrating which
fibres are being picked out by which metrics. Again, this shows that the standard
cylinder approach generates uniform cross-sections while nature produces much
more variation which ConFiG is much closer to capturing.

6.4.2 Relationship between input and output morphology

The morphology of ConFiG phantoms matches the input morphology well, as shown in
Table 6.1. Whilst the input and output µθ and σθ, do not match exactly, the values are close
and increasing the input µθ and σθ also increases the output µθ and σθ. Additionally, the
output density generally matches the input target density well, achieving higher densities
than MEDUSA for the same angular dispersion.

These phantoms took an average of 6 hours to grow plus an average of 20 minutes for the
meshing and microstructural measurement procedure, using 9.4GB of RAM on average.
These values give an estimate of the time taken to generate a typical ConFiG phantom,
though it is strongly dependent on user inputs (number of nodes in the network etc.).
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Figure 6.7: a) Along fibre diameter variation in ex vivo mouse corpus callosum, reproduced
from Lee et al. [28] compared to along axis diameter variation in the phantom
inset demonstrating the ability of ConFiG to generate realistic microstructure. b)
Histograms of the inner diameter of axons from Lee et al. [28] and diameter of
ConFiG axons. c) Coefficient of variation along axons for real and ConFiG axons
and d) Three example fibres reconstructed from the EM data used by Lee et al.
to make a). d) Three example ConFiG fibres selected for similarity to the EM
examples

6.4.3 Packing induced microstructural complexity

The more complex the fibre orientation in a phantom, the more complex the
microstructure that is generated will be as demonstrated in Figure 6.9. Both the mean
tortuosity and mean coefficient of variation grow as more orientation dispersion is
introduced to the phantom (Figure 6.9a&b), with the two showing a positive correlation
(Figure 6.9).

6.4.4 Variability of repeated instances of ConFiG

Different random seeds in the ConFiG phantom generation algorithm lead to different
microstructural arrangements as shown in Figure 6.10. In particular, the amount of
beading introduced can vary quite a lot relative to the mean amount of beading, with
certain instantiations of the more dispersed phantoms (κ = 2) showing a CV more typical
of the highly coherent phantoms (κ = 100).
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Figure 6.8: Fibre orientation distributions for EM data and a series of numerical phantoms.
Top row: EM data used to generate fODF, reproduced from Lee et al. [28] and
three ConFiG phantoms with one, two and three crossing bundles (each crossing
bundle coloured a different shade of grey). Middle row: fODF profile for real
EM data and fODF profiles corresponding to ConFiG phantoms above, generated
using an elliptically symmetric dispersion. Bottom row: Three fODF profiles
generated from ConFiG phantoms generated using isotropic orientation dispersion.
Colourmap has units of sr−1.

Table 6.1: Comparison between input microstructural parameters and the microstructure
measured in the resulting ConFiG phantoms. For each phantom, an input target
density, ρ, of 75% was used with each phantom having a different value of κ used
in the Watson distribution. Each κ is associated with a target µθ and σθ, the mean
and standard deviation of the angle away from the main bundle direction. Angles
reported in degrees.

Input κ Input ρ Output ρ Target µθ Output µθ Target σθ Output σθ

8 75% 70.6% 19.60 17.46 11.32 9.92
10 75% 73.4% 17.11 16.47 9.62 9.43
15 75% 73.4% 13.60 13.93 7.37 8.75
20 75% 70.7% 11.68 12.69 6.23 7.88
30 75% 72.0% 9.45 11.60 5.02 6.60
50 75% 73.6% 7.26 9.36 3.83 5.51

100 75% 74.9% 5.10 7.75 2.68 4.23
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(a) (b) (c)

Figure 6.9: Packing induced microstructural complexity. (a) the mean coefficient of variation
in a phantom (µCV) grows with increased orientation dispersion in the phantom,
as does (b) the mean tortuosity (µtort). (c) µtort and µCV are positively correlated
showing that for ConFiG phantoms, complex arrangements of fibres are achieved
through both undulation and beading of fibres.
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Figure 6.10: Variability of ConFiG phantoms under repetition. (a) Variability of the coefficient
of variability of diameter of the axons which is a measure of beading. (b)
Variability of the tortuosity of axons which is a measure of undulation.
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6.5 Discussion

ConFiG is shown to produce realistic WM numerical phantoms, capturing microscopic
structural features such as diameter and orientation distributions. The amount of real
data containing 3D microstructural morphology information available to compare to is
limited, so we have only compared to one sample in this study. Whilst limited, this shows
that ConFiG is able to produce realistic microstructure by following simple biologically
inspired growth rules.

Figures 6.5 and 6.6 demonstrate that ConFiG is able to create fibre morphologies that
match real axons much more closely than previous methods based on cylinders. Whilst
some of the features such as eccentricity may be achievable with cylinders oriented
obliquely to the cutting plane, ConFiG phantoms capture morphological features that are
otherwise impossible with cylinders such as convexity less than one.

Whilst the input morphological priors do not necessarily correspond to the morphology of
the resulting ConFiG phantom, Table 6.1 shows that even for relatively high orientation
dispersion and density, this effect is small.

Related to this effect, Figure 6.9 shows that as the input fibre orientation becomes
more complex, with increased OD, the microstructural complexity increases. Both the
tortuosity in the fibre paths and the coefficient of variation in diameter along fibres
grows with increased OD in the phantom. Furthermore, the fact that ConFiG relies on a
pseudorandom network of points leads to variation in the generated microstructure, even
when using the same input to the algorithm as shown in Figure 6.10.

These factors mean that ConFiG should not be seen as capable of producing exactly
the desired inputs but instead as a tool which can generate realistic phantoms as close
to the target morphology as currently possible. Even so, for use in further analyses
microstructural measures such as orientation dispersion and density should be calculated
based on the resultant phantom, rather than taking the input microstructural parameters.

6.5.1 Limitations and future Work

As mentioned above, this study only compares ConFiG to one EM sample of real tissue.
Future work will also aim at more extensive validation of the digital phantoms generated
using ConFiG, making comparison with larger EM datasets, including different WM
configurations from different brain regions.

99



6 Microstructural Evaluation

One limitation of this and future work is ambiguity in the definition of the fODFs
which are displayed in Figure 6.8. In this work, since we’re concerned with the actual
microstructure of the phantoms we calculate the fODF with a small amount of smoothing
to compare with Lee et. al [28]. One consequence of this ‘microscopic’ definition of the
fODF is that individual fibres contribute to more than one direction in the distribution
(this can be seen in Figure 6.8 with the loops on the edges of the distributions which
come from individual fibres). This is contrary to the fODF more commonly used in dMRI
techniques such as tractography [70,72,75,76] which assumes each fibre contributes to a
single direction only. It remains to be seen how these two definitions of the fODF can be
brought together, thought it would certainly be a valuable contribution to be able to test
the performance of fODF estimation techniques to the ‘true’ microscopic fODF.

We will work towards decreasing the difference between the input and output
morphological measures, particularly in complex situations, such as high orientation
dispersion and crossing bundles. This can be addressed through the improvements to
ConFiG mentioned in Section 5.6 and also by improving the strategy for the generation
of starting and target points for each fibre. For instance, currently it is not intuitive how
starting and target points should be arranged to achieve a desired density in crossing
regions of fibres.

6.6 Conclusion

The experiments presented here demonstrate the microscopic realism of ConFiG
phantoms. Microstructural measurement methods have been developed which enable the
quantification of axonal microstructure from ConFiG meshes and are used to demonstrate
that ConFiG captures axonal diameter and orientation distributions that agree well with
real axonal microstructure. Not only that, but ConFiG captures subtle, complex features
such as bulges and non-circular cross-sections bringing WM phantoms much closer to
real tissue than the previous standard of cylinders. Whilst only comparing to a single
tissue sample, these experiments give us confidence that the microstructure generated
using ConFiG is a big step forwards towards realistic WM numerical phantoms.
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Chapter Summary

In this chapter we explore how realistic axonal morphology impacts the intracellular
diffusion within axons, from the pure diffusion dynamics to models used to estimate the
diffusivity from dMRI data.

7.1 Introduction

The diffusivity is an intrinsic property of a fluid describing how quickly the diffusion
process happens, and as such is very important for diffusion MRI (dMRI) techniques since
our measurements are intrinsically dependent on the diffusivity. As such, virtually all
dMRI models have some parameter which is used to capture the diffusivity. The diffusion
tensor, for instance, is effectively a 3D descriptor of the diffusivity in different directions
with the apparent diffusion coefficient (ADC) being the apparent overall diffusivity that
we can measure from our data.
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Other compartment models assign a diffusivity to various tissue compartments and either
assume that they have some fixed value, or try to estimate them directly from the data.
An example of this is neurite orientation dispersion and density imaging (NODDI) [13],
in which the axons are treated as zero-radius ‘sticks’ meaning they only have diffusivity
along the axons which is assumed to be 1.7 µm2 ms−1. The extracellular space has a
diffusivity based on the estimated axonal volume fraction under the assumption that more
densely packed fibres leads to a more hindered diffusion perpendicular to the fibres.

This representation of axons as straight sticks or cylinders is a common one in the
white matter (WM) imaging community [13, 62, 63, 155–158] since it leads to a simple
relationship between the microstructure (the sticks) and the dMRI via the diffusivity. In
the simplest case of diffusion in straight, parallel sticks, the dMRI signal is

S = S0 exp(−bd‖(~g · ~n)2) , (7.1)

where b is the b-value, S0 the signal without diffusion weighting, ~g the gradient direction,
~n the stick orientation direction and d‖ is the axial diffusivity of the sticks (that is,
diffusion along the sticks). In this model, diffusion is Gaussian along the axon and zero
radially.

In these models the axons are represented as straight sticks or cylinders, however ex
vivo studies have revealed that real axonal morphology is much more complex than that,
including undulations and variable diameters along axons [27, 28, 106, 159]. One thing
that ex vivo histology studies such as these inherently cannot measure however, is the
diffusivity, and how it interacts with the complex microstructure.

It is important that we are able to accurately estimate (or assign an accurate value to)
the diffusivity since misestimation (or poor assignment) will bias the other parameters
that our model is trying to estimate (for instance axon diameter, or orientation dispersion
(OD)). A few studies have attempted to estimate the axonal axial diffusivity from dMRI
data, typically getting values around 1.9-2.5 µm2 ms−1 [155, 160–162]. A recent study,
attempting to estimate d‖ while accounting for OD, however, estimates higher values, up
to 3 µm2 ms−1 [163].

In this chapter, we investigate how complex microstructural features interact with
the intracellular diffusivity, initially in simple geometric environments of undulation
and beading separately. Previous works have investigated the impact of undulation
[54, 122] and beading [58] but here we look into whether such simple representations
can explain the intracellular diffusivity in complex environments introduced by the
dense packing of axons in realistic contextual fibre growth (ConFiG) phantoms and
axons reconstructed from electron microscopy (EM) [28]. We further investigate how
the complex microstructure in realistic axons affects the estimation of the intracellular
diffusivity using a model based on Equation (7.1) with OD.
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7.2 Method

7.2.1 Impact of beading and undulation

To investigate how microstructural morphology affects the intracellular diffusivity, we
began by investigating the simplistic cases of beading (variable diameter along axons) and
harmonic undulation. A set of fibres were generated with varying amounts of undulation
and beading. In each case, we created 300 fibres, each 1000 µm long, broken down into
1 µm sections.

For the undulating fibres, each fibre had a diameter drawn from a gamma distribution with
mean D0 = 1 µm and standard deviation σ = 0.2 µm and variable undulation amplitude,
a = 2, 4, 8 µm and wavelength λ = 10, 50, 100 µm.

For the beading fibres, each fibre had a base diameter, D0, gamma distributed with mean
D0 = 1 µm and σ0 = 0.2 µm. Each 1 µm long fibre section was then given a diameter
D drawn from a gamma distribution with mean D0 and σ = 0.5D0, 1D0, 2D0. Each
fibre’s diameter profile was smoothed with a 15 µm wide moving mean to ensure a smooth
diameter profile along each fibre. Examples of undulating and beading fibres can be seen
in Figure 7.1.

As a summary metric of the beading of each set of fibres the mean coefficient of variation
of diameter of each fibre was calculated. That is

〈CV〉 =

〈
σD
µD

〉
, (7.2)

where σD is the standard deviation of the diameter and µD the mean diameter for
each fibre and 〈·〉 represents averaging across fibres in a set. As a summary metric
of undulation, the mean microscopic orientation dispersion, µOD, across fibres was
calculated as in Brabec et al. [122]. For a single fibre, the µOD is

µOD =
〈
sin2 θ

〉
, (7.3)

where θ = tan−1
(
l⊥/l‖

)
, with l‖ being the length of a fibre segment along the main axis

and l⊥ the length in the radial direction. This means a fibre segment perfectly aligned
with the main axis has θ = 0→ µOD = 0 while a segment perfectly perpendicular to the
axis has θ = π/2→ µOD = 1. The mean µOD across all the fibres in the set is used as a
summary metric of the undulation for that set.

For comparison, a set of straight cylinders were generated with diameters drawn from the
same gamma distribution with mean D0 = 1 µm and standard deviation σ = 0.2 µm.

The diffusion of 500, 000 spins distributed proportionally to the volume of each fibre was
simulated using Camino [25,89]. From the spins’ trajectories, the axial diffusivity d‖ was
computed for t = [0 : 0.1 : 500]ms from the mean squared displacement (MSD) along
the axon as

d‖ =
MSD

2t
. (7.4)
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(a) (b)

Figure 7.1: Example fibres used to investigate impact of undulation (a) and beading (b).

7.2.2 A phenomenological model of undulation and beading

In an attempt to explore the impact of beading and undulation on the axial diffusivity
simulated in Section 7.2.1, we created a phenomenological model to describe the
time-dependent diffusivity. As discussed in Sections 7.3 and 7.4, the results of Experiment
7.2.4 show that undulation leads to a long diffusion time dependence in the axial
diffusivity while undulation leads to largely time independent shift in the axial diffusivity
(Figure 7.3).

Therefore, to describe the impact of beading and undulation on the diffusivity, we split the
diffusion time into two regimes, a long diffusion time (t ≥ 25 ms) regime which informs
us about beading and a short diffusion time (4 < t < 20 ms) regime which informs us
about undulation.

A relationship was estimated from the data between the slope, c, of a linear fit to the
long diffusion time d‖ and the amount of beading of axons (measured by 〈CV〉 as in
Equation (7.2)) and between the mean d‖ at short diffusion time, dshort

‖ (Equation (7.5)),
and the undulation (measured by mean microOD).

dshort
‖ = 〈d‖〉 for 4 < t < 20 ms (7.5)

The effectiveness of this model was tested on the d‖ measured from realistic ConFiG
phantoms and EM fibres by comparing the 〈µOD〉 and 〈CV〉 estimated from d‖ in the
phantoms to that measured from the microstructure using Equations (7.2) and (7.3).

7.2.3 Realistic axonal morphology

In order to test how the complex morphology introduced by packing fibres together around
one another impacts on the intracellular diffusivity, a set of six ConFiG were generated.
Three phantoms were generated with target OD drawn from a Watson distribution [115]
with κ = 2, 6, 100 and constant target radius to test the impact of OD driven fibre
microstructure. One phantom was generated with κ = 5 and variable target diameter with
standard deviation σD = 1D0 in the same way as in Section 7.2.1 to test how packed fibres
with beading affect the diffusivity. Phantoms were generated with two crossing and three
crossing perpendicular bundles of fibres to assess the impact of complex morphology
introduced by interleaved crossing bundles of fibres.
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Figure 7.2: The method used to generate simulated intracellular signals. Firstly, the fibres
are aligned with the z-axis and then extended with replicated copies before the
signals are simulated using Camino. Each fibre’s signal is then rotated back onto
its original direction using the SH representation and all fibre signals combined to
give the overall voxel signal.

Additionally, a set of fibres meshed from the segmentations of 3D EM of mouse corpus
callosum (CC) in Lee et al. [28] were used to assess the impact of realistic geometries.
The procedure used to mesh these axons used the isosurface function in MATLAB
to create a surface from a binary volume segmentation of axons and is described in more
detail in Section 8.2.1.2.

Since this experiment was only interested in the intracellular diffusivity and the b-values
used were very high, the extracellular signal was assumed to be negligible. This meant
that the intracellular signal from each fibre could be simulated individually and so to avoid
issues with capping at the end of each fibre mesh, each fibre was aligned with the z-axis
and extended with a reflected copy as in Lee et al. [134]. The rotation matrix used to
align the fibre with z was stored so that signals could be rotated back into the dispersed
directions to generate an overall voxel signal. The process used to simulate the signals
used in this experiment is shown in Figure 7.2

To test whether the diffusivity time-dependence seen in simulation is present
in real data, dMRI measurements were performed in ex-vivo mouse CC.
Pulsed-Gradients-Stimulated-Echo data were measured at 16.4 T (scanner
Bruker-BioSpin, Germany) with: TE/TR = 46/2500 ms δ = 2.5 ms,
b = 1.5, 3 ms µm−2, ∆ = 6.85, 15.85, 25.85, 50.85, 75.85, 100.85 ms, 15 gradient
directions, resolution 100 µm× 100 µm× 250 µm, 4 averages. The principle eigenvalues
of the diffusion tensor, ADC‖, at each diffusion time, ∆−δ/3, were computed using FSL
(https://fsl.fmrib.ox.ac.uk/fsl) and these principle eigenvalues taken to
be an estimate of the axial diffusivity.
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7.2.4 Impact on estimated d‖

In order to test how microscopic variations in fibre morphology affect the estimation of d‖
from the dMRI, we used a modified NODDI model based on recent work from Howard
et al. [163] to estimate d‖ in the presence of OD. Here the assumption is that at a high
b-value the extracellular signal has decayed to a negligible level, and the signal can be
described by the intracellular term in the NODDI model alone. That is, the dMRI signal
in a gradient direction ~g at a given b-value is

S ∼ S0f ·
1

CW

∫
S2

exp
(
κ (~µ · ~x)2) exp

(
−bd‖ (~g · ~x)2) dS , (7.6)

where f is the intracellular volume fraction, CW is the Watson distribution normalisation
constant, κ is the Watson concentration parameter, ~µ is the mean fibre direction and ~x is a
unit vector on the sphere which is integrated over. This model is equivalent to the standard
NODDI model with νic set to one, νiso set to zero and d‖ set free.

To test how this model performs and is affected by microscopic fibre morphology,
simulations were performed in the intracellular space of the same Watson distributed
phantoms as in Section 7.2.3 with each fibre aligned with z. The per-fibre signals were
rotated to align with the original fibre direction and the volume-weighted mean signal
calculated for each phantom as illustrated in Figure 7.2.

The simulated scheme had b = 7.75, 11.6, 15.5 ms µm−2, δ = 7 ms, ∆ = 55 ms with
256 directions per shell. These b-values and timings were chosen to be in agreement with
Howard et al. [163] who use such high b-values to ensure the extracellular contribution is
minimal. Here we use 256 directions per shell to ensure a dense sampling of directions so
that signals can be rotated into alignment with the original fibre direction effectively.

Additionally, to investigate the effectiveness of the model in a simple, theoretically ideal
scenario, the model was tested against simulations in simple cylinders. Cylinders with
the same diameter distribution as the ConFiG phantoms had the same dMRI sequence
as above simulated in them, with varying levels of dispersion introduced into the overall
signal by rotating each signal onto a direction sampled from the Watson distribution. The
set of κ values used was κ = 2, 6, 10, 20, 30, 50, 100,∞, where∞ leads to no dispersion
(i.e. parallel fibres).

The model in Equation (7.6) was fit to the simulated dMRI using the NODDI
toolbox (https://www.nitrc.org/projects/noddi_toolbox), with the
modifications described above - that is, setting νic to one and νiso to zero. To see how
axonal morphology affects estimation of d‖, firstly the model was fit with d‖ set as a
free parameter and estimated. Additionally, the model was fit with a range a of fixed d‖
values from d‖ = 0.5 : 0.1 : 3 ms µm−2 to see how the fitting performance varied with
diffusivity.
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7.3 Results

7.3.1 Impact of beading and undulation

Beading and undulation have different effects on the time-dependence of the intracellular
diffusivity as seen in Figure 7.3. Figure 7.3a&c shows that undulation effects the
intracellular diffusivity at very short diffusion times (t < 4 ms, t−0.5 > 0.5), leading to
an almost plateau of d‖/d0 at moderate to long t (t > 4 ms, t−0.5 < 0.5).

Beading leads to time-dependence at long diffusion times as seen in Figure 7.3b&d
with increased beading leading to a stronger fall in d‖/d0 at long diffusion times (t >
25 ms, t−0.5 < 0.2).

7.3.2 Phenomenological model of undulation and beading

A phenomenological model of undulation was created by finding the relationship between
the mean level of the d‖/d0 plateau (4 < t < 25 ms), which we label dshort

‖ , and the
microscopic OD which we label µOD. This relationship is linear, as seen in Figure 7.3e.

Beading, meanwhile, gives a quadratic relationship between 〈CV 〉 and the slope, c, of the
linear fit to the long diffusion time diffusivity as seen in Figure 7.3f.

7.3.3 Realistic axonal morphology

Generally, the axial diffusivity measured in realistic fibres shows a combination of the
plateau shift from undulation and time dependence from beading as seen in Figure 7.4.

When using the phenomenological model created in Section 7.3.2, the undulation is not
well captured as seen in Figure 7.4b, with all of the 〈dshort

‖ 〉 falling below the fit line. For
beading, the phenomenological model performs better as seen Figure 7.4c, with most of
the points lying close to the fit.

The real data from mouse CC shown in Figure 7.4a, also show the time dependence in
ADC‖ that is typical of beading. It is difficult however, to quantitatively compare this data
with the simulations since here the raw measured ADC‖ is used without being normalised
by d0 since this is unknown in the real data.

7.3.4 Impact on estimated d‖

The microscopic variations in fibre morphology introduced when fibres are packed
densely around one another lead to a lower estimated d‖ than when using cylinders as
shown in Figure 7.5.
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In Figure 7.5, we see that the higher the κ, the higher the estimated d‖. This is investigated
in cylinders in Figure 7.6, showing that at low κ, d‖ is estimated well, but as κ increases,
the estimated d‖ increases, deviating from the true value. As seen in Figure 7.6b-e, this
could be explained by the fact that at high κ, the objective function becomes flat at d‖ >
1.7, meaning that the model cannot accurately estimate d‖.
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(a) (b)

(c) (d)

(e) (f)

Figure 7.3: Intracellular axial diffusivity in beading and undulation. a) and e) undulation
leads to a time-dependence in diffusivity at very short diffusion times and a µOD
dependent plateau at long diffusion time. b) and d) beading leads to a long
diffusion time time-dependence of d‖/d0. e) The phenomenological model of
undulation finds a linear relationship between µOD and the diffusivity plateau and
f) the phenomenological model of beading finds a quadratic relationship between
〈CV 〉 and the slope, c, of the diffusivity at long diffusion time. Grey dashed lines
show phenomenological model.
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(a)

(b) (c)

Figure 7.4: Intracellular axial diffusivity in realistic phantoms generally shows a combination
of the plateau shift from undulation and long time-dependence from beading. a)
d‖/d0 for a variety of phantoms (lines) as well as measured ADC‖ from mouse
corpus callosum. It should be noted that ADC‖ is purely the measured valued
and not normalised by d0 (since this is unknown). The phenomenological model
for undulation, b), does not match well with realistic phantoms, however the
phenomenological model for beading, c), does a better job. Shapes and colours
of points correspond to a).
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Figure 7.5: Impact of microstructure on estimated d‖ in realistic phantoms. Estimated d‖ is
consistently lower in ConFiG phantoms than cylinders with the same OD.

(a)

(b) κ = 2 (c) κ = 10

(d) κ = 50 (e) κ =∞

Figure 7.6: Estimated d‖ in cylinders with varying OD. a) as κ increases (meaning decreasing
OD), the estimated d‖ goes up, straying from the true d0 set in simulation at
2 µm2 ms−1 (grey dashed line). b) to e) show fitting performance when varying
the fixed value of d‖. At low κ, fitting performance is as expected, being optimal
close to the true value of d0, but at high κ, fitting performance flattens for a range of
d‖ ≥ 2 µm2 ms−1, leading to the misestimation of d‖ when it is set free. Different
symbols represent phantoms with different kappa. Black points represent fit with
d‖ set free and estimated.
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7.4 Discussion

Impact of beading and undulation Undulation and beading affect the intracellular
axial diffusivity in different diffusion time regions as demonstrated in Figure 7.3. This is
in agreement with recent results from Lee at al. [134], who perform a similar experiment
in axons segmented from EM (in fact, the same real EM fibres used in Section 7.2.3). In
their work, they are limited to the EM sample they have, however here we perform a more
thorough exploration of the impacts of undulation. In particular, here we more clearly
show the effect of undulation which is only present to a small degree in the Lee et al.
fibres.

The time-dependent behaviour of d‖ under undulation can easily be reasoned, since
undulation acts to increase the path length that spins must diffuse in the axial direction
which leads to a reduced apparent diffusivity. The behaviour under beading is less
intuitively understood, however it could arise due to beading behaving as short-term
disorder on long diffusion timescales, as suggested by Lee et al. [134, 164].

Phenomenological model of undulation and beading The phenomenological
model developed in this work is merely meant as an exploration of the observed pattern
in d‖ to see whether anything meaningful could be potentially gleaned from the data.
Were it to be used in practice, a more thorough theoretical model should be developed for
linking diffusivity to the microstructural features such as Brabec et al. [122] do for radial
diffusivity with undulation and Lee et al. [134] do with short-term disorder to describe
beading.

It is, nonetheless, interesting to understand the relationship between undulation and
beading and the axial diffusivity, particularly in comparison to realistic axons. Indeed, as
shown in Figure 7.4c, although the beading phenomenological model is based on simple
beading phantoms, it can be used to describe the axial diffusivity in realistic phantoms
fairly well. The undulation model however, fails to represent the realistic phantom
diffusivity well (Figure 7.4b), though one possible explanation of this is the relatively low
〈µOD〉 in the real phantoms when compared to the undulating phantoms. Another factor
is that the undulation model is based on harmonic undulation while real axons display
more complex undulation patterns.

Realistic axonal morphology Diffusion in realistic numerical phantoms generally
shows a combination of undulation-like and beading-like diffusion time dependence as
seen in Figure 7.4 which is sensible since each phantom shows some degree of both.
Indeed, the long diffusion time behaviour in ConFiG phantoms generally matches well
with the phenomenological beading model, however the real EM fibres show a weaker
diffusion time dependence given their 〈CV〉 which could suggest that the beading model
used in building the phenomenological model does not match real beading very well.
This also points towards the beading that is produced by ConFiG not matching realistic
beading very closely which can be used to inform future development of ConFiG.
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While the realistic phantoms do not match the undulation phenomenological model very
well, there is a downward trend in 〈dshort

‖ 〉 with increasing 〈µOD〉 which is what would
be expected. From the realistic phantom d‖ data, one possible explanation for the poor
agreement can be seen in that, unlike in Figure 7.3, d‖ does not generally completely
plateau, particularly with beading, in Figure 7.4a. This suggests that 〈dshort

‖ 〉 is not a
good value to use since d‖ is not constant in the time regime in which it is calculated
(4 < t < 25 ms).

The real data from ex vivo mouse CC also demonstrate the beading-like time-dependence
at long diffusion time, however it is difficult to make a direct comparison with the
simulation results since the true d0 for this case is unknown. It is, however interesting
that we see the same kind of time-dependence in this real data that we see in the
simple beading phantoms. A confounding factor here is that this is simply the ADC in
the axial diffusivity and as such contains contains contributions from non-axonal tissue
compartments such as the extracellular space and, potentially, cell bodies. These could
be a significant contribution since the b-value used in this experiment is relatively low
(b = 1.5, 3 ms µm−2).

Impact on estimated d‖ Realistic microstructural phantoms lead to a lower estimated
d‖ than when using equivalent cylinders as demonstrated by Figure 7.5. This behaviour
should be expected since as shown in Figure 7.4, the apparent axial diffusivity is lower in
realistic phantoms than the free diffusivity d0.

Indeed, the relative drop in estimated axial diffusivity from cylinders to ConFiG,
dConFiG
‖ /d cyl

‖ , for κ = 2, 6, 100 is dConFiG
‖ /d cyl

‖ = 0.82, 0.89, 0.92 which matches well
with the d‖/d0 at the diffusion time of the dMRI measurements (∆− δ/3 = 55− 7/3 =
52.67 ms) which are d‖/d0|t=52.67 = 0.78, 0.82, 0.92. This shows that although the actual
value of d‖ estimated in Figure 7.5 is not accurate to the true d0, the change due to
microstructural complexity is captured well.

As mentioned, the estimated d‖ is not accurate and is dependent on the level of orientation
dispersion which was investigated in further detail in Figure 7.6. At low κ, i.e. high
dispersion, the estimated d‖ in dispersed cylinders is accurate and the fitting performance
while changing the fixed value of d‖ behaves as expected, with optimal fitting performance
around the true value. At high κ, meaning low OD, however, the d‖ estimated is inaccurate
overestimating d‖ up to the extreme of 3 µm2 ms−1 (which is the upper limit constraint
set in the fitting procedure) for parallel fibres. This is also explained by the fitting
performance at varying d‖, which becomes flat after d‖ ∼ 1.7 µm2 ms−1 meaning that
the fitting procedure cannot differentiate different d‖ values very well.

One possible reason for this may be that at the high b-values used here, the signal
parallel to fibres has decayed almost entirely to zero for a low level of dispersion in these
simulations with no added noise, meaning that many values of d‖ explain the data equally
well since they are all almost zero. To test whether this effect may be present in real data,
Rician noise was added to the simulations for a signal-to-noise ratio (SNR) of 30 and the
same analysis performed, with the results shown in Figure 7.7.
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(a)

(b) κ = 2 (c) κ = 10

(d) κ = 50 (e) κ =∞

Figure 7.7: Estimated d‖ in cylinders with varying OD at SNR=30, showing a different
behaviour than at SNR=∞ in Figure 7.6.

The estimation of d‖ behaves differently in the presence of noise, with few phantoms
yielding a good estimation of d‖. For most values of κ, d‖ is underestimated, though the
fitting curves shown in Figure 7.7b-e are generally quite stable, peaking at the estimated
free value of d‖ except for with parallel fibres where the fitting curve is again quite flat.
One explanation for this behaviour, linked to the overestimation in the SNR =∞ case is
that here the Rician noise floor masks the full decay of the signal and since the b-value is
already so high, all the data points along the axial direction have hit the noise floor and
the diffusivity can’t be accurately estimated.

This suggests that perhaps the model proposed here cannot be used to accurately estimate
d‖ owing to the vary high b-values used and perhaps can help to understand why the d‖
estimated by Howard et al. [163] differs from typically reported values.

7.4.1 Limitations and future work

In this work we have identified signatures of undulation and beading in the
time-dependence of the axial diffusivity. One potential limitation of this study is that the
patterns of undulation and beading are generated using simple parametric forms which
may not represent the patterns of undulation and beading that are seen in realistic axons.
A potential way to address this is to investigate these patterns in real data to understand
what realistic undulation and beading look like, however the amount of high-resolution
3D imaging of WM is limited, both in terms of the number of samples available and the
size of the samples.

Another feature which has not been investigate here is the effect of orientation dispersion.
It has been shown that OD will affect estimates of d‖ [107, 134]so future work will look
to explore this effect.
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7.5 Conclusion

The simple phenomenological model presented in Section 7.2.2 is used to explore the
effects of undulation and beading, though it is limited. Firstly the model is just a
simple way to explain the data we see in Figure 7.3 and as such has no theoretical basis.
Future work will look towards building a more complete, theoretically described model.
Secondly, the model presented here is based on the measured axial diffusivity normalised
by the true free diffusivity used in simulation, d‖/d0. This means that the model can’t be
applied to the real data from mouse CC since the true d0 is not known in that case. One
potential way to address this is to simply use d‖ to build the model, however the effect
of d0 on this value is not known. For instance, if the same level of beading gives the
same high t slope in d‖/d0 independently of d0, then the slope without normalisation will
also depend on d0 and the two cannot be simply disentangled. Future work to attempt
to understand this will repeat the simulations in Section 7.2.1 at different values of d0 to
explore its effect.

The effect of microscopic morphological variations on estimated d‖ using a the model
based on Equation (7.6) which attempts to estimate d‖ under the assumption of diffusion in
Watson distributed sticks. Without noise, this model can estimate d‖ at low κ values (high
OD), however it fails at high κ (low OD). When this same model is applied to data with
noise at SNR = 30, the model cannot estimate d‖ accurately, typically underestimating
its value. This suggests that this model is not effective for estimating d‖, at least at these
very high b-values and may need to be reassessed.

One potential approach is to attempt the same experiment at lower b-values where the
attenuation along fibres will be less strong. The problem with this approach, however is
linked to another limitation of this study which is the lack of extracellular space in the
simulations. The high b-values used by Howard et al. [163] and in this study are chosen
to attenuate the extracellular space strongly, however, so the same model is likely to be
invalid at lower b-values where something like the standard NODDI model will be more
appropriate. Future work will investigate this effect, simulating a realistic extracellular
space along with the intracellular simulations presented here.

Another avenue for investigation is to use a measurement scheme designed for axial
diffusivity measurements such as that presented by Dhital et al. [160]. They use planar
diffusion encoding to suppress signal orthogonal to the axial direction and then standard
linear diffusion encoding in the axial direction to estimate d‖. It would be an interesting
experiment to see how this approach works in the realistic environments created by
ConFiG or EM reconstructed fibres.

7.5 Conclusion

Undulation and beading affect the axial diffusivity in fibres in separate diffusion time
regimes, offering the potential to disentangle the two effects. We have demonstrated
here that realistic axonal morphology, including microscopic variations in fibre shapes,
leads to a diffusion time dependent axial diffusivity which shows both undulation-like
and beading-like behaviour and demonstrated that a simple phenomenological model can
capture some of these features.
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Additionally, we have demonstrated that this microscopic complexity of realistic axons
impacts on d‖ estimated using a model which attempts to estimate the axial diffusivity
when there is orientation dispersion. This demonstrates that the models typically used to
represent axons as sticks do not represent the true geometry fully, which may lead to a
bias when estimating d‖ and, as such, other microstructural parameters.
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Chapter Summary

This chapter presents a series of experiments performed to probe to what extent
microscopic variations in fibre geometry impact on dMRI techniques based on spherical
deconvolution (SD), using ConFiG phantoms and real fibres reconstructed from EM.

Firstly, the theory behind SD techniques is described, outlining some of the assumptions
that could be affected or violated by microscopic fibre heterogeneity. dMRI simulations
are performed in ConFiG phantoms and EM fibres to test how realistic, complex axonal
morphology impacts SD techniques for fibre orientation distribution function (fODF)
estimation.
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8.1 Introduction

Diffusion magnetic resonance imaging (dMRI) has been widely used to probe the
structure and organisation of brain tissue, with one particular area of focus being
the estimation of the orientational distribution of neuronal fibres in a voxel. This
fibre orientation distribution function (fODF) is particularly interesting since it is used
in tractography techniques to probe the structural connectivity of the brain which is
important in many clinical and basic neuroscience studies [72, 165, 166]. Whilst
tractography has found many uses, there remain a number of challenges to the technique,
including typically generating a large number of false positive connections [73, 77,
79, 167]. One potential source of these issues could be due to difficulties in reliably
estimating the fODF, where minor differences in fODF can lead to large differences in
the tractograms created [73,76]. Accurate and reliable estimation of the fODF is therefore
important to improve the accuracy of tractography techniques.

Many techniques have been developed for estimating the fODF, of which perhaps the
most prominent are based on spherical deconvolution (SD). While there are a variety
of spherical deconvolution methods, the central principle is the same - the diffusion
weighted signal as a function of the azimuthal (φ) and elevation (θ) angles is modelled
as a spherical convolution of the fODF, F (θ, φ), with a kernel (called the fibre response
function (FRF)),R(θ), the typical diffusion weighted signal from a single fibre population
estimated a priori. By estimating an FRF from voxels where the signals are deemed
typical of a single coherent fibre population, the fODF is determined by deconvolving
this FRF from the signal. Implicit in this formulation is an assumption that one common
FRF is shared across all fibre populations in the white matter (WM). Recently, some
works have challenged this assumption, for instance Schilling et al. [76] use known fODFs
from histology to estimate the FRF in different WM regions, showing that the FRF does
indeed vary across the WM and that this variation does affect the estimated fODF and
tractography results.

Indeed, while the FRF is typically taken to represent the typical response from a fibre
population on a voxel level, the way that the convolution is defined mathematically
requires that it be identical across individual fibre populations within a voxel. In fact,
recent works using electron microscopy (EM) and high-resolution x-ray imaging to
investigate WM axonal morphology show that axons within a voxel have different shapes
[27, 107, 134], with varying diameters along their length and non-straight trajectories. It
is reasonable, therefore, to propose that this heterogeneity in fibre geometry could lead to
different fibres having different responses. This may lead to misestimation of the fODF
when assuming a single FRF for all fibres, which can have downstream consequences for
techniques including tractography.

A related factor arising from the convolution is that an assumption is made that there
is no exchange between fibres or, equivalently, diffusion in different directions using
this representation. In essence, this means that the fibres are implicitly assumed to be
perfectly straight and pointing a given direction since any deviation from straight (i.e.
curved or undulating fibres) would introduce directions that are connected, violating the
non-exchange assumption. Additionally, this means that it is hard to reconcile the effect
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of tissue compartments which contribute to multiple directions, such as isotropically
restricted compartments or the extracellular space, with this formulation. Under some
experimental conditions, such as those used in current clinical applications, these effects
may not be negligible and may affect subsequent techniques such as tractography.

In this work we investigate what effect, if any, violation of these assumptions introduced
by within-voxel heterogeneity in axonal morphologies has on SD techniques. We use
contextual fibre growth (ConFiG) [168], our recently developed white matter numerical
phantom generator capable of generating realistic WM morphology to investigate this in
controllable environments, as well as real digital tissues reconstructed from EM [28] to
test a limited sample of real tissue. Firstly, we investigate how microscopic variations in
fibre geometry affect the diffusion within each fibre and whether the dMRI signal from
each fibre is the same. We further evaluate what effect this has on fODF estimates by
calculating them using FRFs representing the variable responses present in a voxel.

The rest of this paper is organised as follows: Section 8.2 describes the experiments
performed to probe the assumptions outlined above, Section 8.3 presents the results and
Sections 8.4 and 8.5 summarise the contributions and discuss future work.

8.2 Method

In order to test the impact of fibre geometry heterogeneity on the dMRI signal per-fibre
and how any variability in response may affect fODF estimation. Experiments were
performed with a range of numerical phantoms generated using ConFiG and reconstructed
from EM [28], using an acquisition typical of SD applications.

Two primary experiments were conducted:

1. Per-fibre response heterogeneity - To investigate the impact of fibre geometry
heterogeneity on the dMRI signal per-fibre

2. Impact on fODF estimation – To investigate what impact variation in the FRF can
have on fODF estimation

In this section, we begin by describing how the phantoms were generated and
gold-standard fODFs extracted and quantified, before describing the dMRI simulation
experiments that were performed to investigate the impact of microscopic structural
variability.

8.2.1 Phantom Generation

In order to test SD techniques in realistic geometries, a set of digital-tissue phantoms were
generated to represent a range of WM tissue configurations:

• A single bundle of fibres generated by ConFiG with varying amounts of orientation
dispersion:
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– Watson distributed [115], κ = 2 - highly dispersed

– Watson distributed, κ = 6 - typical WM dispersion

– Watson distributed, κ = 100 - highly coherent

• Crossing bundles of fibres generated by ConFiG

– Two perpendicular bundles

– Three perpendicular bundles

• Real fibres from mouse corpus callosum (CC) reconstructed from EM [28]

In the case of the single bundle phantoms, a low κ means high orientation dispersion, so
phantoms with a lower κ were expected to have more complex morphology since higher
OD means that they must grow around one another more to avoid intersections. A typical
κ, estimated using NODDI [13], for the corpus callosum of a healthy Human Connectome
Project (HCP) [132,137] subject is κ ∼ 6 [168]. Since the CC is expected to contain some
of the most coherent fibre bundles in the brain, κ ∼ 6 will be towards the lower end of
OD (higher end of κ) in vivo. Crossing bundle phantoms were generated by using starting
and target points arranged into two- or three-crossing bundles and grown using ConFiG
to generate complex phantoms with interleaved fibres.

8.2.1.1 Real WM fibres from EM

To simulate diffusion in real axons, 3D meshes were generated from WM axon
segmentations from EM of mouse corpus callosum presented by Lee et al. [28].

The axonal segmentations are provided in the NIfTI format, a volumetric format. In order
to convert these into surface meshes for dMRI simulation, the isosurface function
in MATLAB was used, however this produces meshes with some artifacts such as loose
surfaces inside the fibres. In order to account for this, a further mesh refinement procedure
was developed using the shrinkwrap feature in Blender to create a smooth, closed surface
mesh around each fibre.

8.2.1.2 Gold standard fODF extraction from microstructure

In order to generate a ground truth to evaluate fODFs estimated from the simulated dMRI
signals, a gold standard fODF was estimated directly from the WM numerical phantom
meshes. As an attempt to generate a microstructural fODF comparable to that estimated
from the simulated dMRI based fODFs, the microstructural fODF was calculated using
the assumption of one direction per fibre, namely the direction connecting the endpoints
of the fibre that would subsequently be used to align each fibre to the z-axis (see Figure
1).
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A triangulated unit sphere was used to store this fODF, with each triangle in the sphere
storing the number of fibres whose direction went through that triangle scaled by the
volume of each fibre, as illustrated in Figure 1. In order to compare this fODF to those
calculated using SD from dMRI, the microstructural fODF was expanded in spherical
harmonics (SHs). A spherical function f(θ, φ), can be expressed in terms of spherical
harmonics as:

f(θ, φ) =
lmax∑
l=0

l∑
m=−l

cml Y
m
l (θ, φ) , (8.1)

where

cml =

∫ 2π

0

∫ π

0

f(θ, φ)Y m∗
l (θ, φ)sin(θ)dθdφ . (8.2)

Y m
l are the so-called spherical harmonics of degree l and order m up to a maximum

degree lmax and ∗ denotes complex conjugation. In our case, θ and φ are discrete samples
in the centre of each triangle in our unit sphere meaning one approach to finding cml is
to turn the integral in into a summation. We adopt a more robust approach based on
least squares [71, 169] in which the spherical harmonics are re-indexed to have single
index j(l,m) = l2 + l + m. The discrete fODF values stored in each triangle are turned
into a vector of length ntri, [f ] = {f(θi, φi), i = 1, . . . , ntri} and an ntri × j(lmax, lmax)
matrix, X , constructed with elements Xi,j(l,m) = Y m

l (θi, φi). Essentially, X maps the SH
coefficients for each l,m into amplitudes along each θi, φi. The j(lmax, lmax) vector of SH
coefficients, [c] can then be found as

[c] = (X∗TX)−1X∗T [f ] . (8.3)

The number of coefficients in [c] can be reduced since the fODF is real-valued and
antipodally symmetric. Being real valued means that the SH coefficients exhibit conjugate
symmetry (that is, cml = (−1)mc−m∗l ) and the antipodal symmetry means that all odd m
terms are 0 [70,71]. In the end, this means that [c] has (lmax + 1)(lmax + 2)/2 elements.

Each fODF was normalised such that

∫ 2π

0

∫ π

0

f(θ, φ)sin(θ)dθdφ = 1 , (8.4)

to ensure that the fODF is a probability density function (PDF), describing the probability
of fibre pointing in a given unit of solid angle.
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Figure 8.1: Gold standard fODF estimation from microstructure of WM numerical phantoms.
Each fibre’s main direction (line in left image, extracted as shown in Figure 2) is
projected onto a sphere and a spherical harmonic representation calculated

8.2.1.3 fODF metrics

In order to quantify differences in fODF, a series of metrics were extracted by fitting
a Watson distribution to each single bundle fODF. The Watson distribution probability
density function is defined as a function of a unit vector −→x , parameterised by −→µ and κ,
the mean direction and concentration parameter respectively.

f (−→x |−→µ , κ) = C(κ)exp
(
κ (−→µ · −→x )

2
)
, (8.5)

where

C(κ) = M

(
1

2
,
3

2
, κ

)−1

(8.6)

is Kummer’s confluent hypergeometric function which is a constant for any given κ. If
we have a series of measured directions {x} = {−→x 1,

−→x 2, . . . ,
−→x n}, we can determine the

Watson best-fit parameters with maximum-likelihood estimation. The likelihood function
can be computed as

L (−→µ , κ| {x}) =
n∏
i=1

f (−→x i|−→µ , κ) ,

=
n∏
i=1

C(κ)exp
(
κ (−→µ · −→x i)

2
)
. (8.7)

In this experiment, {x} is our set of measured fibre directions from the phantom, however
since each fibre has a different volume, we need to create a weighted likelihood which
weights larger fibres more heavily than small fibres. Each fibre should contribute to the
overall distribution proportionally to its volume, so we assign each fibre a weight which
is its volume, vi, normalised by the overall fibre volume V =

∑
i vi , i.e. the weight for

each fibre is wi = vi/V .

In order to incorporate this into the likelihood, we treat each fibre contributes as if it
contributes wi times so the overall likelihood, so Equation (8.7) becomes
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L (−→µ , κ| {x}) =
n∏
i=0

[
C(κ)exp

(
κ (−→µ · −→x i)

2
)]wi

. (8.8)

Taking the logarithm and exploiting logarithmic properties, this can be simplified to give
the log-likelihood

l (−→µ , κ| {x}) =
n∑
i=0

wi

[
log
(
C(κ) exp

(
κ (−→µ · −→xi )

2
))]

,

= logC(κ) + κ
n∑
i=0

wi(
−→µ · −→xi )

2
. (8.9)

In order maximise the log-likelihood, we follow the approach of Mardia and Jupp [115],
to directly estimate −→µ using the scatter matrix, T(−→w ,x) =

∑n
i=0 wi

−→xi
⊗−→xi , where⊗

denotes the outer product. The maximum likelihood estimate of −→µ is then found by
taking the eigenvector of T with the largest eigenvalue [115]. κ is then estimated with an
iterative grid search evaluating Equation (8.9) for a range of possible κ ∈ [0, 100].

Additionally, this approach is used to quantify dMRI derived fODFs by sampling uniform
directions on the sphere and taking the weight, wi, for each direction to be the normalised
fODF amplitude in that direction.

8.2.2 Experiments

8.2.2.1 Per-fibre response heterogeneity (Experiment 1)

We test to what extent variable fibre geometry results in variable fibre responses by
simulating the intracellular dMRI signal from the phantoms described in Section 8.2.1
following the procedure outlined in Figure 8.1.

As mentioned in Section 8.1, SD assumes that the overall voxel signal is the sum of
signals from the constituent fibre directions. This requires no exchange between different
fibre directions which makes the extracellular space difficult to account for. Indeed, in
practice the signal is often assumed to come from the intra-axonal space alone to aid in
interpretation of the resulting fODF [74,170]. Therefore, to test SD under the assumptions
inherent in the model, only the intra-axonal signal was simulated.

To create a periodic intra-axonal space for simulation, each fibre was rotated to be aligned
with the z-axis and then extended with a reflected copy as in [171]. The rotation matrix
used to align the fibre with z was stored so that signals could be rotated back into the
dispersed directions to generate an overall voxel signal. In the case of EM fibres, only
axons that were longer than 18 µm (chosen to be slightly shorter than the height of the
EM volume in the principle fibre direction) before extension were used in simulation to
remove very short fibres that had been segmented at the edge of the volume.
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Diffusion MRI signals were simulated from ConFiG phantoms using the Camino dMRI
simulator [25, 89] to perform the experiments described below. For all experiments a
bulk diffusivity D = 2.0 µm2 ms−1 was used in accordance with similar Monte Carlo
experiments [5, 25, 160, 171]. Standard Camino periodic boundaries were used in which
copies of the phantom are tiled in the x-, y- and z-directions to create an effectively
infinite, but periodic, simulation domain [59].

For each fibre 10,000 spins were initialised uniformly within the intra-axonal space
and the simulations were performed using 5000 timesteps. Each phantom had ∼ 300
fibres giving ∼ 3 × 106 spins in total per phantom. These settings were confirmed to
be adequate by comparing to a set of test simulations performed using 105 spins per
fibre and 104 timesteps. The measurement parameters were ∆ = 28 ms, δ = 24 ms,
b = 1000, 2000, 3000 s ms−1 and 256 equidistributed gradient directions [172] at each
shell. This gives a diffusion time dt = 20 ms, chosen so that the diffusion length scale
(
√

2Ddt ≈ 8 µm at D = 2.0 µm2 ms−1 is small relative to the axon length (≥ 18 µm).
Additionally, these settings give G = 60 mT m−1 at b = 3000 s mm−2, a feasible gradient
strength on a high-end clinical system.

To compare to the collection-of-straight-fibres assumption implicit in SD techniques, an
infinite cylinder representing each fibre was generated using the endpoints of each fibre to
give the direction and the mean radius of the fibre as the cylinder radius. For simulation,
each cylinder was aligned with the z-axis similarly to the ConFiG fibres so that everything
was in the same space to compare the signals. The same measurement scheme was
simulated in each cylinder in order to compare to the ConFiG fibres.

Since the individual axons have been aligned with the z-axis, the signals from each fibre
can be directly compared with one another as the gradient directions are aligned with
respect to each fibre. To demonstrate the variability in dMRI response, the median, 10th
and 90th percentile responses were found (in terms of mean squared difference between
fibre and cylinder responses). Additionally, to relate the type and size of morphological
variation to the signal changes, the microscopic orientation dispersion [122] (µOD), a
measure of undulation, and the coefficient of variation of diameter (CV), a measure of
beading [171], was calculated for each fibre.

Throughout this work, SH representations of signals are used. The MATLAB
implementation of constrained spherical deconvolution (CSD) [75] available
from (https://github.com/jdtournier/csd) is used to calculate SH
decompositions of signals. This is the same technique as used in popular dMRI
tractography tool MRtrix3 [136] and follows the procedure outlined in Section 8.2.1.2
for SH decomposition of the dMRI signal.
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8.2.2.2 Impact on fODF estimation (Experiment 2)

To investigate the impact on the fODF of assuming a single fibre response per voxel,
we compared fODF estimates from CSD using six different FRFs per phantom derived
from Experiment 1: the 10th, 50th and 90th percentile FRF (representing the spread of
responses), the volume-weighted mean signal (representing a best case CSD scenario),
a cylinder (representing an ideal stick-like response) and the κ = 100 voxel signal
(representing a typical CSD-like approach of estimating the FRF in a region of coherent
fibres). These FRFs are illustrated in Figure 8.2.

For each FRF, the fODF was estimated in two scenarios per phantom, illustrated in
Figure 8.3:

1. Full voxel signal: The voxel signal contains each fibre’s signal as simulated. This
represents the realistic scenario where each fibre may have a different signal.

2. Single FRF signal: The voxel signal comes from using the same FRF signal per
fibre. This represents the ideal CSD scenario in which the signal truly comes from
a single FRF.

The approach to generating the voxel signals is illustrated in Figure 8.4, achieved by
rotating each fibre’s signal onto the original fibre direction and weighting by fibre volume.
To investigate the impact of FRF variation relative to noise, the experiment was repeated
for 500 Rician noise instances at 30 SNR. The fODF estimated using CSD is not a true
PDF as it does not integrate to one, so throughout this work the fODF from CSD is
normalised as outlined in Section 8.2.1.2.
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Figure 8.2: Steps 1 and 2 in the experiment pipeline. Step 1 processes fibre meshes to prepare
them for simulation as well as to extract gold standard fODF metrics. Each fibre is
rotated to align with the z-axis and extended with a reflected copy for simulation as
in [168, 171]. The main direction of each fibre as well as the rotation matrix used
to align it to z are stored for later use. Step 2 simulates the dMRI signal in each
fibre, taking the signal only from the original (not replicated) copy of the fibre and
computes the distance between each fibre’s signal and a cylinder signal to extract
a set of FRFs. This gives a measure of variability in fibre responses in a voxel.
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Figure 8.3: The third step in the experiment is to compute voxel signals and perform CSD.
There are two strands to the experiment, one using the full voxel signal from each
fibre’s individual signal and one using a single signal for all fibres, representing
the ideal case in which there is a single true FRF. In each case the voxel signal
is computed by combining all fibre signals rotated into their original directions
and then noise is added. The various FRFs used in the experiments are then
deconvolved with the signal using CSD to estimate the fODF.
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Figure 8.4: Illustration of the method to produce voxel signals. Given a library of fibre signals
aligned with z, the rotation matrices taking each fibre onto z and the measurement
scheme, each fibre’s signal is evaluated in SHs in a rotated scheme and then these
SH coefficients are re-evaluated in the original directions. Rotated signals are then
combined, weighted by the volume of each fibre, to give the total voxel signal.
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8.3 Results

8.3.1 Per-fibre response heterogeneity

Variations in intra-voxel fibre geometries are present in real fibres and ConFiG phantoms
as demonstrated in Figure 8.5 which shows each digital phantom alongside the fibres
which give the median, 10th and 90th percentile response.

Under the experimental conditions investigated, this morphological variation in the fibres
causes the dMRI signal response per-fibre to vary as can be seen in Figure 8.5, which
shows the mean, median, 10th and 90th percentile signals across all fibres in each phantom
at b = 3000 s mm−2 and 30 SNR. The variation in the response function depends on
the complexity of the fibre arrangement, with the most complex three-crossing bundle
arrangement leading to the largest variation in response functions.

This variation in the FRF is seen across each b-value from 1000 to 3000 s mm−2 as
demonstrated in Figure 8.6 for the κ = 2, three-crossing and EM fibre phantoms, chosen
since these display the most variation for each phantom category. Here SNR = ∞ to
isolate the effect of b from noise.

8.3.2 Impact on fODF estimation

The variation in the FRF for each fibre leads to a variation in the estimated fODF as
seen in Figures 8.7 to 8.9. Again, the magnitude of differences in fODF tends to depend
on the complexity of the fibre arrangements since the more complex arrangements have
more variation in the FRF. Generally, the fODF calculated from SD picks out the correct
main peak direction that is seen in the gold standard fODF from the microstructure, with
differences in the overall peak amplitude and shape. Notable exceptions to this occur
for some phantoms when using the cylinder FRF, such as EM fibres and three-crossing
bundles in which fODF peaks are estimated which are not present in the gold standard
fODF.

These qualitative differences in fODF produced with differing FRFs lead to quantitative
differences as seen in Figure 8 for the single bundle phantoms. The more stick-like FRFs
lead to an underestimation of κ (too much orientation dispersion in the fODF) while
FRFs which are more representative of the overall fibre population (mean and median)
perform better. In the ideal single FRF voxel signal case, in which the signal truly comes
from a single FRF, the fODF is generally estimated well with the main exception being a
misestimation of peak direction for κ = 2 and 6 with the 90th percentile FRF.
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Figure 8.5: Variability in fibre responses within a voxel at b = 3000 s mm−2 at SNR=30
along with geometrical variation in fibres responsible for median, 10th and 90th
percentile response.
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Figure 8.6: Per-fibre response function at b = 1000, 2000, 3000 s/mm2 (left-to-right) for (a)
the EM fibres, (b) the κ = 2 phantom and (c) the three-crossing phantom.
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Figure 8.7: Variation in fODF estimated using the range of FRFs in Experiment 2 at b =
3000 s mm−2 for the single fibre bundle voxels
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Figure 8.8: Variation in fODF estimated using the range of FRFs in Experiment 2 at b =
3000 s mm−2 for the crossing fibre bundle voxels.

Figure 8.9: Variation in fODF properties when estimated using different FRFs. a) the angular
error between the main peak in gold standard fODF and that of the fODFs
estimated using CSD, b) κ estimated from the fODF (gold standard value is dashed
line for each fODF), c) fODF integral for each fODF estimated and d) the RMSE
to the ground truth signal.
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8.4 Discussion

The microscopic variations in fibre morphology challenge the assumption in SD
techniques that there exists a unique and shared FRF even within a single voxel. Here
we have used dMRI simulations to demonstrate that variations in individual axonal
morphology do indeed lead to different response functions per-fibre which in turn can
have a knock-on effect on SD techniques to estimate the fODF.

As demonstrated in Figures 8.5 and 8.6, the response function can vary substantially
across different fibres, particularly in complex fibre arrangements such as the
three-crossing bundles scenario. Indeed, the variation in responses in fibres reconstructed
from real EM images of WM is large, similar to that of the ConFiG three-crossing
simulations, and generally larger than ConFiG phantoms containing a single fibre bundle.
This suggests that there is in fact more variation in real axons than in the axons
generated by ConFiG, even in simple arrangements of a single bundle of fibres. This
is something that may be used to inform future versions of ConFiG to generate more
realistic phantoms.

In the main, the largest variation in the per-fibre response, as well as the largest difference
between cylinders and realistic axons happens in the axial direction which is to be
expected. Even with diameter variations and undulation, the radial diffusion is still
strongly restricted under the assumption of no axonal permeability, while recent studies
have shown that real axonal morphology causes time-dependent deviations from Gaussian
diffusivity along the axial direction [171]. Phantoms which show large amounts of
beading (high CV in EM fibres and three-crossing bundles) show the largest variability
in response, while µOD affects the response less, suggesting that fibre beading drives
fibre response variability more than undulation. One exception to this in the κ = 2 case
in which the 90th percentile fibre contains a large amount of undulation, leading to a
reduction in radial signal at higher b-values (Figure 8.6).

Variations in the FRF have an impact on the estimated fODF as demonstrated in
Figures 8.7 to 8.9. In the simplest fibre arrangements with low dispersion (κ = 6, 100) the
FRF variation is relatively small and the resulting fODF variation is small. In phantoms
with more variable FRFs (EM Fibres, three-crossing), the resulting fODFs show more
variability, sometimes identifying fewer (e.g. EM fibres 90th percentile) or more peaks
(e.g. EM fibres cylinder, three-crossing CSD) than are present in the gold standard fODF
and often producing fODFs with differently shaped peaks. This is significant because
as shown by Schilling et al. [76], even changes in fODF peak amplitudes without peak
direction changes can have an impact on tractography results.

When constructing a voxel signal that truly comes from a single FRF and using that FRF
to deconvolve, the fODF is generally recovered well as demonstrated in Figure 8.9. The
main exception is the peak direction for κ = 2 and 6 for the 90th percentile FRF, though
this may be caused by the FRF itself containing some orientation dispersion, which makes
the voxel signal more difficult to deconvolve as the assumption that each fibre contributes
to a single direction is not valid.
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Conversely, when using the full voxel signal, the fODF reconstructed depends on the
FRF used as shown in Figure 8.9. This demonstrates that when the voxel signal truly
comes from fibres with a mix of different responses, assuming a single FRF can lead to
misestimation of the fODF. This effect is particularly pronounced when using an FRF that
does not represent the fibre population well (Cylinder, 10th percentile, 90th percentile)
and would be expected in these cases.

When using an FRF that more broadly represents the fibre population (mean and median),
the fODF is generally well estimated, however it is worth noting that the typical CSD
approach of taking the signal from a voxel of coherent fibres does not always perform
well, producing wrongly shaped peaks for the EM fibre and three-crossing phantoms.

The main takeaway from these investigations is that within-voxel heterogeneity in fibre
geometry leads to heterogeneity in the per-fibre response to the extent that using a single
FRF in CSD cannot always accurately recover the underlying fODF. Some techniques
account for some FRF variation voxel-to-voxel [156, 173], however the investigations
presented here suggest that the FRF may vary even within a voxel. In spite of this, when
using a FRF that broadly represents the population, such as the median fibre response,
CSD is able to recover the fODF well, however the fact remains that currently there is
no way to determine this representative FRF which means that SD techniques may suffer
from this effect when prescribing a single FRF.

Additionally, these simulations lend further support to challenge the assumption that FRF
is constant across the brain as differences in the mean FRF per phantom demonstrate
that the overall FRF from different fibre arrangements will be different as a result of
the different axonal morphology in each environment. Further, as demonstrated by the
CSD-style fODF experiments, using a single FRF across different voxels can lead to
misestimation of the estimated fODF, meaning that using the wrong FRF in different brain
regions could have large impacts on fODF-based techniques such as tractography. For
instance, this could potentially explain fODFs with many peaks in the gyral blade such as
those seen in Figure 8.10, which appear similar to those seen in this study in Figure 8.7a
when using an incorrect FRF and can lead to spurious fibres crossing the gyral blade
in tractography. In this region, it is reasonable to expect complex fibre geometry (and
therefore variable FRF) as axons spread out to reach their grey matter termini, however
other factors may also influence this such as partial volume. In the absence of in vivo
ground truth we cannot say for certain the cause of these fODFs, however this study
suggests axonal morphology variations could be a contributing factor.

8.4.1 Limitations and future work

In this work we investigated how complex fibre morphology affects SD techniques using
a dMRI scheme chosen to use clinically feasible gradient strength and duration, though
it may be possible that other measurement schemes exhibit greater or lesser sensitivity to
these effects. For instance Yeh et al. [176] have shown that the gradient pulse duration
can impact fibre orientation estimation. Another factor to investigate is the impact of the
diffusion time on the observed effects, since longer diffusion times can ‘smooth out’ these
microscopic morphological variations as spins are able to diffuse further. At present, the
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Figure 8.10: An example of spurious peaks in the fODF estimated in the gyral blade of an HCP
subject [133, 137] using MRTrix3 [136]. Fibres are expected to project towards
the gyral crown but may end up with erroneous peaks in the fODF which can
lead to errors in tractography [174, 175].

diffusion time we can simulate is limited by the size of our phantoms, however work is
ongoing to produce larger phantoms with ConFiG to allow us to study these effects at
longer diffusion time.

Throughout this work we have referred to the fODF generated from the phantom
microstructure as the ‘gold standard’ fODF in inverted commas. This is deliberate since
it is not straightforward to define an fODF from microstructure that exactly corresponds
to that from dMRI, in part due to the assumptions made in modelling the fODF from
dMRI, which have been discussed here. Efforts have been made to make the two fODFs
comparable in this work by defining the gold standard fODF using a single direction per
fibre and normalising all fODFs to one.

The variability that is demonstrated in the per-fibre response in this experiment is
suggested to arise due to the complexity of fibre morphology introduced due to complex
fibre arrangements. This seems to be case, as shown in Figure 8.5, though the exact
nature of the link is not known for certain since there are many sources of morphological
complexity (undulation, beading, non-circular cross-sections, etc.) which could all
contribute to these variations. Currently, ConFiG does not allow us to directly control such
morphological features but instead the precise morphology generated is a product of the
target fibre arrangement (orientation dispersion, density etc.) and the growth algorithm.
Future work will aim to incorporate control over microscopic morphological features into
ConFiG in order to isolate each of these effects to probe which morphological features
have the largest impact on the FRF/fODF. Should these effects be understood, it may
be possible to estimate them from the dMRI signal to improve the accuracy of SD
techniques.
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Another important consideration is that in this work we use CSD as in MRtrix3, however
there are wide range of SD techniques for fODF estimation, each with slightly different
derivations and assumptions. While this will affect the fODFs presented in this work, the
per-fibre signals and compartmental signals presented do not rely on any SD model, so
the FRF variations will impact any models which use the FRF.

It is worth pointing out that here we merely demonstrate that the response varies on a
per-fibre basis, meaning that the concept of a fibre response function needs to be treated
carefully. Most SD techniques estimate their FRF from averaging across a number of
voxels, meaning that the FRF is an average single bundle response (including many fibres,
extracellular space, other cells etc.) rather than purely a fibre response function. The
variability in the per-fibre response may contribute less to the variable overall FRF seen
across the brain in previous studies [76, 177] than other factors such as the extracellular
space but it should be a consideration.

It is also worth noting that this effect will impact other dMRI modelling techniques which
model the signal as a combination of a diffusion response with an orientation distribution.
For instance, NODDI models the intracellular signal with a Watson distribution as the
orientation component and diffusion in sticks as the MR response, assuming that all the
fibres can be treated as sticks. As shown here, microscopic variations in fibre morphology
mean that the signals from each fibre are not identical and this could affect results of
NODDI and other similar models [63]. Similarly, previous studies have looked into the
effect of morphological features such as undulation on axon diameter estimation [54,122,
171]. Future work will aim to shed more light on these effects and investigate whether it
is possible for it to be accounted for in our models.

8.5 Conclusion

The complex axonal morphology introduced by axons packing together in complex
arrangements leads to differences in the dMRI response across different fibres. These
variations in per-fibre response functions can lead to differences in the fODF estimated
using CSD when using a single FRF across all fibres and all voxels. Indeed, when the
FRF represents the voxel well, CSD can recover the fODF well, however when the FRF
is slightly off (as can be the case for assuming a single FRF across all voxels), the fODF
can be misestimated.

All of this means that the interpretation of the FRF and fODF in SD needs to be carefully
considered and future models may seek to disentangle some of these effects for more
accurate FRF and fODF estimation.
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Chapter Summary

The purpose of this chapter is to summarise the contributions made by the work presented
in this thesis, including the new white matter numerical phantom generator, ConFiG, and
discuss future directions for the project.

9.1 Contributions

In this thesis, we have presented a new method for generating realistic numerical
phantoms of white matter (WM) for diffusion MRI (dMRI) simulations. Our primary
contribution is the development of contextual fibre growth (ConFiG), a novel approach to
phantom generation in which we mimic the processes governing the growth of real axons
in an effort to produce realistic WM phantoms. We demonstrated, though a preliminary
implementation and subsequent improvements, that ConFiG is able to produce phantoms
with state-of-the-art performance in terms of the axonal density accomplished, by
following simple rules inspired by the biological processes governing axonal guidance.
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Diffusion MRI simulations show that the microstructure generated by ConFiG can be
used to generate realistic synthetic dMRI data, acting as a proof-of-concept of the utility
of ConFiG phantoms. Comparisons to real axons segmented from EM show that ConFiG
produces axons with similar morphologies to real axons, capturing not just axon diameter
and orientation distributions, but also subtle features such as variable diameters along
axons and non-circular cross-sections. Taking all of this into account, ConFiG phantoms
represent a new generation of WM numerical phantoms, greatly increasing phantom
realism when compared to the current standard of WM numerical phantoms which are
based on cylinders.

As example applications of ConFiG, we investigated the intra-axonal diffusion in realistic
geometries and probed assumptions that are inherent in spherical deconvolution (SD)
based dMRI modelling techniques. We have demonstrated that undulation and beading
have distinct effects on the diffusion time dependence of axial diffusivity and that a simple
phenomenological model can capture some of these effects. Realistic axons however, are
not particularly well described by the undulation term in this phenomenological model.
Further, we showed that models which attempt to model the intracellular diffusivity by
modelling the axons as sticks may end up with biased estimates by ignoring the true
microscopic complexity of axonal morphology.

Additionally, we were able to demonstrate that microscopic variations in the shapes
of individual axons within a bundle mean that the intra-axonal signal varies per-fibre,
violating one of the assumptions in SD techniques that each fibre has an identical dMRI
response. The variability in the FRF also leads to a variability in the fODF estimated
which could have a large impact fODF based techniques such as tractography.

9.2 Future directions

ConFiG opens up many possibilities for future investigation by giving us the ability
to generate more realistic WM phantoms than ever before. One such possibility is
to study the dynamics of the diffusion process itself. For instance, we could study
the diffusion time dependence in realistic WM phantoms, similarly to recent work
investigating intracellular diffusion [107,134], however ConFiG offers us the potential to
study the realistic extracellular space too. This could help to disentangle different sources
of diffusion time dependence (axonal beading, undulation, extracellular space etc.) and
identify which source is the most significant.
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Further, we can investigate how best to sensitise the dMRI signal to these complex
microstructural features. Recent advances in dMRI acquisition have given us novel
diffusion encoding schemes such as b-tensor encoding [178] which provide additional
information to standard pulsed gradient spin echo (PGSE) techniques. While this gives
us a new tool to study microstructure, the potential space of possible imaging schemes
becomes very large, making it difficult to know which schemes may be best to identify
which features. This is something that ConFiG gives us an opportunity to empirically test,
by generating a wide range of phantoms covering different microstructural environments
and simulating various dMRI sequences to test which sequences or combination of
sequences give us the best sensitivity.

On a related note, ConFiG enables us to study how realistic microstructure affects dMRI
signals and subsequent modelling techniques using these new b-tensor encoding schemes.
For instance, Kerkelä et al. [179] in collaboration with authors of this thesis, have
used ConFiG phantoms to investigate how well different models are able to estimate
microscopic fractional anisotropy, a measure of the anisotropy of tissue compartments
regardless of their orientation dispersion. This is just one example of myriad possible
applications of ConFiG for testing the validity and proving limits of existing dMRI
modelling techniques.

For instance, ConFiG also offers us a new tool for validating existing models of dMRI
microstructure. Previous models for measuring microstructural features such as axon
diameter or orientation dispersion have used simple cylinder models in simulation
validations [13,26,63,119], ConFiG enables us to test these models in realistic geometries.
In principle, this offers us the possibility for a more comprehensive validation of
dMRI modelling techniques, it will require some thought because certain microstructural
features are not intuitively defined in these complex phantoms. For instance, the fibre
diameter is simple to define when using cylinders, but when you have complex fibres that
not only have a variable diameter along the fibres but also non-circular cross-sections,
such a thing becomes more difficult to define. ConFiG phantoms may enable us to probe
some of these questions, however, to find out which features can be best estimated using
dMRI, for instance are we more sensitive to diameter variation along fibres (i.e beading)
or the overall mean diameter.

The experiments presented in Chapter 8 demonstrate an example of this kind of
application of ConFiG to investigate a dMRI model, demonstrating that certain
assumptions in SD techniques may not hold true. Beyond this application to simply probe
dMRI models, we may use this to develop improved models. For instance, it may be
possible to include variability in the FRF into the modelling process to try to capture the
variations in axonal morphology. Beyond SD techniques, there are many dMRI modelling
techniques which take a similar approach to the representation of the dMRI signal,
splitting it into a diffusion response term and an orientation distribution term. An example
of this is neurite orientation dispersion and density imaging (NODDI) [13], which uses
a Watson distribution for the orientation dispersion distribution and the MR response is
diffusion in sticks, with an extracellular and cerebrospinal fluid (CSF) compartment. As
in the SD case however, NODDI uses the same basic MR response for all the fibres (that
is, they are all sticks with the same diffusivity), while we have shown that fibres have
different responses. Again, it may be possible to attempt to account for this variability
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when modelling dMRI using models such as NODDI.

Another potential application of ConFiG is in the development of a new computational
model of WM microstructure. The idea here would be to estimate microstructural features
by learning a mapping between dMRI signals and microstructure. This could be done
by generating a wide range of WM numerical phantoms spanning the range of possible
expected microstructural environments in the brain and simulating the dMRI signal
within them to generate a dictionary of signals paired with ground-truth microstructure.
As mentioned above, ConFiG phantoms may be used to identify the set of dMRI
sequences that give us the best sensitivity to various microstructure features to give this
computational model the best chance to work effectively. The benefit of developing
this computational model would be that it can capture the relationship between complex
microstructure and dMRI signal without relying on an explicit analytical model and
further may be able to identify features which do not have a simple analytical expression
such as axonal beading. Such approaches have recently been used to estimate membrane
permeability, one such feature that is hard to model analytically [16, 18].

ConFiG itself can be also be improved. Currently the maximum size of a phantom is
limited to around 50 µm× 50 µm× 50 µm which limits the diffusion time that can be
explored without needing to extend phantoms with replicated copies. This is down to
memory and computational time constraints from using a large number of points in the
growth network. As mentioned in Section 5.5, this could be addressed by growing in
layers enabling dense sampling of small regions of space using fewer points. Another
option is to reconfigure the algorithm to remove the reliance on the network. Currently
the network plays two main roles, one is defining the paths available for a fibre to grow
and one is sampling the space so that growing fibres know where existing fibres are.
A potentially better approach is to separate these two processes so that the sampling of
the space is done by one structure (potentially a Delaunay/Voronoi based approach as
currently or potentially something like an Octree or bounding volume hierarchy (BVH)
[180]) and the paths are left separate to enable fibres to have more freedom in growth
directions. This approach could potentially enable faster and more memory-efficient
growth of ConFiG phantoms while giving the fibres more freedom in paths could enable
even high density of phantoms.

The potential future directions presented here are only limited to applications of ConFiG
to dMRI of WM. Since the growth idea behind ConFiG is quite general, it is easy to see
how ConFiG could be adapted to apply to other tissues (for instance adding branching
cells and vasculature) by changing the growth rules. Additionally, since the end product
of ConFiG is a 3D surface mesh, these could be used in any other simulator that can
handle a 3D mesh. Very basic examples of this are presented throughout the thesis as the
meshes are used in Blender to render (effectively simulating visible light imaging) 3D
images and 2D ‘virtual histology’ images. All of this means that ConFiG represents a
potentially powerful new tool for the dMRI community and beyond.
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