
University of Huddersfield Repository

Dweib, Ibrahim Mohammad

Automatic mapping of XML documents into relational database

Original Citation

Dweib, Ibrahim Mohammad (2010) Automatic mapping of XML documents into relational
database. Doctoral thesis, University of Huddersfield.

This version is available at http://eprints.hud.ac.uk/9701/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Huddersfield Repository

https://core.ac.uk/display/51972?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

AUTOMATIC MAPPING OF XML DOCUMENTS
INTO RELATIONAL DATABASE

BY

IBRAHIM MOHAMMAD IBRAHIM DWEIB

A thesis submitted to the School of Computing and Engineering
of the University of Huddersfield

for the degree of Doctor of Philosophy

School of Computing and Engineering
The University of Huddersfield
(September 2010)

 i

LIST OF PUBLICATIONS AND RESEARCH ACTIVITIES

RELATED TO THIS WORK

Dweib, I., Awadi, A. and Lu, J. (2009) MAXDOR: Mapping XML Document
into Relational Database. The Open Information Systems Journal, 3
(2). pp. 108-122. ISSN 1874-1339

Dweib, I., Awadi, A., Fath_Elrhman, S. and Lu, J. (2008) Schemaless
approach of mapping XML document into Relational Database. 8th
IEEE International Conference on Computer and Information
Technology, 2008. CIT 2008. pp. 167-172.

Dweib, I., Awadi, A, Lu, J. Yip, J. and Allen, G. (2007) Flexible Approach
for Querying XML Document-Centric Documents Stored in
Relational Database, ECIG2007 Conference, Soussi, Tunisia, Oct
2007

Dweib, I., Lu, J. Yip, J. and Allen, G. (2007) Schema based approach of
mapping XML documents to relational database. In: Proceedings of
the 2007 International Conference on Internet Computing. CSREA
Press, pp. 332-338. ISBN 1601320442

Dweib I., Automatic Mapping of XML Document to Relational Database
Management System, poster, 2008, research festival, University of
Huddersfield

 ii

ABSTRACT

Extensible Markup Language (XML) nowadays is one of the most important

standard media used for exchanging and representing data through the

Internet. Storing, updating and retrieving the huge amount of web services

data such as XML is an attractive area of research for researchers and

database vendors. In this thesis, we propose and develop a new mapping

model, called MAXDOR, for storing, rebuilding, updating and querying

XML documents using a relational database without making use of any

XML schemas in the mapping process. The model addressed the problem of

solving the structural hole between ordered hierarchical XML and unordered

tabular relational database to enable us to use relational database systems for

storing, updating and querying XML data. A multiple link list is used to

maintain XML document structure, manage the process of updating

document contents and retrieve document contents efficiently.

Experiments are done to evaluate MAXDOR model. MAXDOR will be

compared with other well-known models available in the literature

(Tatarinov et al., 2002) and (Torsten et al., 2004) using total expected value

of rebuilding XML document execution time and insertion of token

execution time.

 iii

DEDICATION

To my parents, brothers, sisters, wife, sons, and daughter with
love

 iv

ACKNOWLEDGEMENTS

At the outset I wish to thank Allah, the Almighty for His blessings

bestowed upon me with the strength to complete this thesis.

I would like to convey my sincere thanks to my grateful supervisor,

Dr. Joan Lu for her precious guidance and supervision that enabled me to

complete this thesis. Without her guidance and dedication this work would

not have seen the light. Also I would like to thank my co-supervisors Dr

Gary Allin and Prof. Jim Yip for their kind coordination and guidance while

carrying out my research.

My thanks go also to all the staff at the Research Studies, University

of Huddersfield for their cooperation and helpfulness in academic matters.

Also I am especially thankful to my family for their endless prayers

and moral support. I dedicate this thesis to them. I am also grateful to my

loyal friends who had helped me all along to accomplish this task, Dr. Walid

Abu Dayyeh, Ayman Alawadi, Yasir Allaham, and Hussien Almegbali.

Last, but not the least, great thanks to all who had been involved directly

and indirectly throughout the making of this thesis. I really appreciate it.

Thank you.

 v

TABLE OF CONTENTS

LIST OF TABLES ...VIII

LIST OF FIGURES.. IX

ABBREVIATIONS & TERMINOLOGIES...................................... XI

CHAPTER 1 INTRODUCTION ... 1

1.1. Problem Definition..3

1.2. Research Aim ...5

1.3. Contributions ...6

1.4. Thesis Outline ..7

CHAPTER 2 RESEARCH BACKGROUND...................................... 9

2.1. XML Model ...9

2.2. XML Query Languages ... 11
2.2.1 XPath Language: .. 11
2.2.2 XML XQuery 1.0 Language: ... 12

2.3. Schema Languages for XML .. 14
2.3.1 Document Type Definition (DTD)... 15
2.3.2 XML Schema.. 15
2.3.3 RELAX NG .. 16
2.3.4 Document Structure Description (DSD)... 16
2.3.5 Schematron.. 18

2.4. XML API... 19
2.4.1 DOM Parser .. 19
2.4.2 SAX Parser .. 19

2.5. XML Documents Types ... 21

2.6. XML Data Storage Approaches .. 24
2.6.1 RDBMS... 24
2.6.2 OODBMS .. 24
2.6.3 XML database .. 25

2.7. RDBMS Model ... 27

2.8. The Similarities and Differences between XML Model and RDB Model 28

 vi

2.9. Summary ... 30

CHAPTER 3 STATE OF THE ART TECHNOLOGY.......................32

3.1. Approaches for storing and querying XML.. 32
3.1.1 Schema-Based Mapping... 33
3.1.2 Schema-Less Mapping ... 40

3.2. Commercial DBMS XML Solutions .. 48
3.2.1 IBM DB2 Extender:... 48
3.2.2 Oracle: ... 49
3.2.3 Microsoft SQL Server: ... 50

3.3. Rebuilding XML from RDB ... 51

3.4. Comparison of Mapping Approaches .. 52
3.4.1 Advantages and Disadvantages of Previous Approaches 56

3.5. Summary ... 57

CHAPTER 4 MAXDOR MODEL ..59

4.1. MAXDOR Theory... 59
4.1.1 Theory Background... 60

4.2. Mapping Framework... 64
4.2.1 Labelling Method .. 65
4.2.2 Relational Schema... 67
4.2.3 SAX-Based Approach ... 71

4.3. Updating XML Document Contents .. 75
4.3.1 Insertion of New Token .. 75
4.3.2 Deletion of a Token: .. 79

4.4. Retrieving and Querying XML Data Stored in Relational Database 79
4.4.1 XPath Axes.. 80
4.4.2 XPath Syntax: .. 84
4.4.3 XML Sub-tree Reconstruction (Query's Result Translation to XML) 86

4.5. Chapter Summary .. 87

CHAPTER 5 SYSTEM ARCHITECTURE AND IMPLEMENTATION
..89

5.1. System Architecture and the Used Tools .. 89
5.1.1 System Architecture ... 89
5.1.2 Tools Used .. 90

5.2. System Implementation ... 92

 vii

5.2.1 Requirements for System Implementation... 92
5.2.2 Classes of the MAXDOR Model ... 93

5.3. Case Study ... 101

5.4. XML Data Sets Used for Testing the Model.. 107

5.5. Chapter Summary .. 109

CHAPTER 6 EXPERIMENTS AND THEIR ASSESSMENT........... 111

6.1. Experiment Setup ... 111
6.1.1 Experiment Environment .. 111
6.1.2 Performance Measurement ... 112

6.2. Testing Strategies.. 112
6.2.1 Mapping XML Document into Relational Database Performance. 112
6.2.2 Rebuilding XML Document from Relational Database Performance 116
6.2.3 Updating Performance... 121
6.2.4 Query Performance ... 124

6.3. Model Analysis and Comparison... 126

CHAPTER 7 : CONCLUSIONS AND FURTHER RESEARCH....... 131

7.1 Contributions ... 131

7.2 Advantages .. 132

7.3 Recommendations:.. 132

7.4 Drawbacks and Limitations.. 132

7.5 Further Research.. 133

REFERENCES: .. 135

APPENDIX A ... 140

APPENDIX B ... 143

 viii

LIST OF TABLES

Table Page
TABLE 2.1: EXAMPLE OF SOME XPATH EXPRESSIONS 12
TABLE 2.2: EXAMPLE FOR SOME XQUERY EXPRESSIONS 14
TABLE 2.3: SOME PROPERTIES AND METHODS USED BY DOM PARSER 20
TABLE 2.4: SOME METHODS USED BY SAX PARSER.. 21
TABLE 2.5: OVERVIEW OF XML DOCUMENTS TYPES .. 23
TABLE 2.6: OVERVIEW OF POPULAR XML STORAGE APPROACHES (VAKALI ET AL.,

2005) ... 26
TABLE 2.7: A COMPARISON BETWEEN XML AND RDBMS (BANSAL AND ALAM, 2001)

... 30
TABLE 3.1: A SUMMARY OF XML TO RDB RELATED WORKS................................ 53
TABLE 3.2: A SUMMARY OF XML LABELLING METHODS..................................... 54
TABLE 4.1: XPATH EXPRESSIONS (BERGLUND ET AL., 2007) 84
TABLE 4.2: PATH EXPRESSIONS WITH PREDICATE... 86
TABLE 5.1: HARDWARE REQUIREMENTS FOR MICROSOFT OFFICE 2003

(CORPORATION, 2009).. 93
TABLE 5.2: XML DATA SETS OF EQUALLY SIZES... 107
TABLE 5.3: XML DATASETS OF EQUAL DEPTHS AND DIFFERENT SIZES 108
TABLE 5.4: AUCTION DOCUMENTS OF SMALL FACTOR.................................... 108
TABLE 5.5: XPATH EXPRESSION SETS .. 109
TABLE 6.1: DIFFERENT SIZES OF AUCTION DOCUMENT 112
TABLE 6.2: XML DATASET OF DIFFERENT STRUCTURES 114
TABLE 6.3: MAPPING TIME FOR MAXDOR, ACCELERATING XPATH AND GLOBAL

ENCODING IN SECONDS .. 115
TABLE 6.4: BUILDING TIME AFTER UPDATE.. 120
TABLE 6.5: DIFFERENCES IN BUILDING TIME ... 121
TABLE 6.6: TIME COST OF INSERTION OF A TOKEN IN DIFFERENT LOCATION . 122
TABLE 6.7: XML DOCUMENTS SIZES AND # OF TOKENS IN THEM 124
TABLE 6.8: XPATH EXPRESSIONS UNDER EVALUATION 124
TABLE 6.9: XPATH TRAVERSALS FOR QUERY Q1 .. 125
TABLE 6.10: XPATH TRAVERSALS FOR QUERY Q2 .. 125
TABLE 6.11: XPATH TRAVERSALS FOR QUERY Q3 .. 125
TABLE 6.12: TOTAL EXPECTATION TIME FOR BUILDING AND INSERTING TOKENS

FOR THE THREE MODELS (IN SEC) ... 127

 ix

LIST OF FIGURES

Figure Page
FIGURE 2.1: AN EXAMPLE OF XML DOCUMENT .. 10
FIGURE 2.2: DTD EXAMPLE .. 15
FIGURE 2.3: SHOWS AN EXAMPLE FOR XML SCHEMA.. 17
FIGURE 2.4: SHOWS AN EXAMPLE FOR RELAX NG SCHEMA 18
FIGURE 2.7: A SAMPLE OF RELATIONAL DATABASE TABLE REPRESENTATION. .. 29
FIGURE 3.1: THE THREE CASE OF INLINING (ATAY ET AL., 2007B) 35
FIGURE 3.2: INLINING DTD GRAPHS (ATAY ET AL., 2007B).................................. 35
FIGURE 3.4 : NODE LABELLING USING SPIDER AND SIBLING DEWEY ORDER

(FUJIMOTO ET AL., 2005) .. 38
FIGURE 3.5: SPIDER RELATIONAL SCHEMA... 38
FIGURE 3.7: XREL RELATIONAL SCHEMA .. 41
FIGURE 3.8: XPARENT RELATIONAL SCHEMA.. 41
FIGURE 3.9: GLOBAL LABELS FOR XML TREE.. 42
FIGURE 3.10: LOCAL LABELS FOR XML TREE .. 42
FIGURE 3.11: DEWEY LABELS FOR XML TREE ... 43
FIGURE 3.12: ORDPATH RELATIONAL SCHEMA (O’NEIL ET AL., 2004)................. 43
FIGURE 3.13: ORDPATH LABELS FOR XML TREE ... 44
FIGURE 3.14: TREE REPRESENTATION FOR XML DOCUMENT WITH PRE-ORDER

POST-ORDER LABELLING ... 45
FIGURE 3.15: PRE-ORDER POST-ORDER LABEL OPTIMIZATION AREAS............... 46
FIGURE 3.16: CLUSTERED LABELS FOR XML TREE (SOLTAN AND RAHGOZAR,

2006) ... 47
FIGURE 3.17: CLUSTERED RELATIONAL SCHEMA (SOLTAN AND RAHGOZAR, 2006)

... 47
FIGURE 4.1: COMPOSITE PARENT-CHILD RELATIONS 61
FIGURE 4.2: ASSOCIATIVE ANCESTOR-DESCENDANT RELATIONS 61
FIGURE 4.3: MULTIPLE LINKED LIST OVER VIEW .. 64
FIGURE 4.4: A TREE REPRESENTATION FOR XML DOCUMENT 66
FIGURE 4.6: RELATIONAL SCHEMA... 71
FIGURE 4.7: INSERTING NEW TOKEN IN XML TREE.. 78
FIGURE 5.2: STATE TRANSITION DIAGRAM FOR XBSXML2RDB CLASS................. 95
FIGURE 5.3: REBUILDING XML DOCUMENT FROM RELATIONAL DATABASE STATE

DIAGRAM .. 97
FIGURE 5.4: STATE TRANSITION DIAGRAM FOR UPDATING THE XML DOCUMENT

... 99
FIGURE 5.5: MAIN PROCESSES OF XPATH EXPRESSION EXECUTION................ 100
FIGURE 5.6: XML DOCUMENT .. 102
FIGURE 5.7: A TREE REPRESENTATIONS FOR XML DOCUMENT 102
FIGURE 5.8: DOCUMENTS TABLE.. 103
FIGURE 5.9: TOKENS TABLE ... 104
FIGURE 5.10: XML DOCUMENT ELEMENT (SUBTREE) 105

 x

FIGURE 5.11: A TREE REPRESENTATION FOR UPDATED XML DOCUMENT 106
FIGURE 5.12: UPDATED “TOKENS TABLE”.. 106
FIGURE 6.1: MAPPING TIME FOR DATASET IN TABLE 6.1 113
FIGURE 6.2: MAPPING TIME FOR DOCUMENTS IN TABLE 6.2 114
FIGURE 6.3: MAPPING COMPARISON BETWEEN MAXDOR, ACCELERATING XPATH

AND GLOBAL ENCODING ... 116
FIGURE 6.4: BUILDING TIME FOR DOCUMENTS IN TABLE 6.1 117
FIGURE 6.5: MAPPING AND BUILDING TIME FOR XML DOCUMENTS OF

DIFFERENT SIZES .. 117
FIGURE 6.6: BUILDING TIME FOR DOCUMENTS IN TABLE 6.2 118
FIGURE 6.7: COMPARISON OF BUILDING AFTER INSERTION IN DIFFERENT

LOCATION ... 121
FIGURE 6.8: TOTAL EXPECTATION TIME FOR THE THREE MODELS, MAXDOR,

GLOBAL ENCODING, AND ACCELERATING XPATH 127
FIGURE 6.9: SNAPSHOT FOR MAPPING AND BUILDING OF XML DOCUMENT ... 128
FIGURE 6.10: SNAPSHOT FOR INSERTING NEW ELEMENT BEFORE CANDIDATE

ONE .. 128
FIGURE 6.11: SNAPSHOT FOR INSERTING NEW ELEMENT AFTER CANDIDATE ONE

... 129
FIGURE 6.12: SNAPSHOT FOR EXECUTING XPATH IN TREE VIEW..................... 129
FIGURE 6.13: SNAPSHOT FOR EXECUTING XPATH IN TREE VIEW..................... 130

 xi

ABBREVIATIONS & TERMINOLOGIES

Abbreviation Details

DOM Document Object Model

DTD Document Type Definition

ER Entity-Relationship diagram

FDLs Four Dimensional Links

GUI Graphical User Interface

MAXDOR MApping XML Document intO Relational database

RDB Relational Database

RDBMS Relation Database Management System

SAX Simple Application Interface for XML

SQL Sequel Query Language

Token Represent element or element’s attribute

Tuple Row or record

XML eXtended Markup Language

XSLT Extensible Stylesheet Language Transformations

XPATH XML Path Language

XQUERY XML Query Language

URI Uniform Resource Identifier

W3C World Wide Web Consortium

 1

CHAPTER 1 INTRODUCTION

The World Wide Web (WWW) nowadays is an important medium used by

many people for many activities in their daily life (i.e.; e-management, e-

learning, e-mail, e-library and e-business). Many enterprises are working

together using XML technologies for exchanging their web services data.

Exchanging, sorting, updating and retrieving these huge data has become a

source of concern for researchers and database vendors.

At present, storing and retrieving of XML documents can be done using

mainly three approaches, i.e., native XML database (Jagadish et al., 2003;M.

Grinev et al., 2004), Object Oriented Database (Chung and Jesurajaiah,

2005) and Relational Database (Zhang and Tompa,

2004a;Shanmugasundaram et al., 1999); (Fujimoto et al., 2005;O'Neil et al.,

2004) (Tan et al., 2005) (Leonardi and Bhowmick, 2005;Atay, 2006;Atay et

al., 2007a;Min et al., 2008,Yun and Chung, 2008;Ahlgren and Colliander,

2009) .

The most important factor in choosing the target database is the type of

XML documents to be stored, data-centric (e.g., bank transaction, airlines

transactions) or document-centric (e.g., emails, books, manual).

Using a hybrid approach of relational database to store and retrieve data and

XML to exchange and represent it. This will solve most of the data issues of

integrity, multi-user access, retrieving, exchanging, concurrency control,

crash recovery, indexing, security, storing semi-structure data, and

reliability. The previous studies of this approach can also be studied. These

are: Loss of information, difficulties in updating its contents and difficulties

in rebuilding of original document. The mapping techniques of this approach

can generally be classified into two tracks: Schemaless-centric technique

 2

and schema–centric (Dweib et al., 2008). Schemaless-centric technique is

used to make use of XML document structure to manage mapping process

(Zhang & Tompa, 2004; Yoshikawa et al., 2001; Jiang et al., 2002;

Tatarinov et al., 2002; Soltan and Rahgozar, 2006). In schema–centric, XML

schema information is used to develop a relational storage for XML

documents (Shanmugasundaram et al., 1999; Atay et al., 2005; Yahia et al,

2004; Lee et al, 2006; Knudsen et al., 2005; Fujimoto et al., 2005, Xing et

al., 2007). Unfortunately, relational storages constructed from schema-

centric approach need database reconstruction as any change in the XML

schema is very expensive. Each approach introduced some solutions for the

mapping process but failed to solve others.

In this thesis we will concentrate on a new approach for mapping XML

documents into relational database which is called MAXDOR (i.e. Mapping

XML Document into Relational database). The model does not make use of

any XML schemas to manage mapping process. In this model, the document

structure and document contents are stored in relational database tables. It

uses multi-links to reserve document structure and elements relations within

the document as parent-child, ancestor-descendant, left- sibling and right-

sibling. The use of multi-links will make the insertion process cost for new

elements and attributes any where in the document close to constant value,

since there is no need to relabel the elements and the attributes following the

inserted element or attribute. Other models (Tatarinov et al., 2002) (Torsten

et al., 2004) which consider the element or attribute label as an identifier to

reserve document structure, the cost of insertion in this case will vary

depending on the position of insertion, since relabeling is needed after each

insertion to maintain the document order.

The proposed model uses a process of four steps: (1) Mapping XML

document into relational database. To achieve this objective, a fixed

 3

relational schema is presented and used to maintain document contents

relations and manage the contents. (2) Building XML document from

relational database without a need to the original document. To achieve this

objective, the document contents are retrieved from the relational database

and a new XML document file is created for it, and its name is represented

by the document identification. (3) Updating XML document contents within

the relational database without going back to the original document. To

achieve this objective, an editor is created to browse the document as tree

structure with a tool bar identifying the position of insertion for the new

token in reference to the candidate token. (4) Querying and retrieving

document contents through the use of XPath language. To achieve this

objective, an editor is created to write the XPath expression, execute and

display the results as tree view and grid view.

1.1. Problem Definition

The transformation method of XML documents to RDB should fulfill many

requirements while each requirement is to fulfil certain application needs. In

some applications it is extremely important to maintain nodes' order such as

properties of an XML tag. However, in others order is not so significant.

Some of these requirements are the following:

1. Maintain document structure without losing information during
shredding.

2. Ease of process, transforming a fresh document should be an easy task,
and updating an already transformed document should also be straight
forward.

3. To reconstruct the XML document or part of it from relational database.

4. To perform semantic search.

5. To preserve the ordering nature of XML data and its structure.

 4

From previous sections, it can be seen that some studies work on optimizing

query time (Torsten, 2002;Soltan and Rahgozar, 2006), but they fail to

update XML document stored in relational database. That is because each

insertion requires a lot of nodes to be relabelled after insertion of new node

or subtree. Others (Chung and Jesurajaiah, 2005;Li and Moon, 2001;O’Neil

et al., 2004) solve partially the updating problem by creating a gap within the

label, but there is still a need for relabeling after consuming the reserved

space. Other studies (Fujimoto et al., 2005;Shanmugasundaram et al.,

1999;Tan et al., 2005;Chen et al., 2003;Amer-Yahia et al., 2004;Xing et al.,

2007a;Atay et al., 2007b) work on storage optimization and create a

relational schema depending on XML schema. Redundant data are removed

by creating new relation for each recursive child (or inlining some child in

parent relation to reduce the number of created relation). Sometimes a large

number of relations are needed to be created for some complex document.

Consequently, large numbers of joins are needed to retrieve document

information from a relational database. Also sometimes XML schema is not

available for some documents which require reconstructing XML schema

first from document structure, and creating relational schema based on it.

XML reconstruction is considered as a time overhead in this case. In some

studies like (Zhang and Tompa, 2004b), they do a map for some parts of the

XML document. They used the query to optimize the mapping time from

XML document to relational database. They did not store the entire content

of a document in a relational database. This method requires a mapping for

each query, and can not make use of other data stored in relational database.

It can be concluded that there is still a problem while updating an XML

document content stored in relational database. A lot of data in a relational

database is needed to be overwritten after inserting each new element or

attribute in XML document. That is done to maintain XML document

 5

structure and reserve elements and elements' attributes order within the

document.

1.2. Research Aim

The aim of this research is to minimize the updating execution time cost of

XML document without affecting its structure. It seeks to achieve this aim

throughout fulfilling the following two goals:

• Building XML document contents relations in an efficient way to

maintain document structure and minimize updating execution cost.

• Forwarding queries to a subset of nodes that is most likely to have

relevant information.

The above goals are achieved in the current research by the following

objectives:

1. Relational engine will not be modified that may result in consistency

problem.

2. The model will be efficient and will perform well for large XML

documents.

3. The model is schema-independent. The model design does not

depend on the schema information for the mapping process, since

relational storages based on schema-centric approach need database

reconstruction as any change in the XML schema.

4. Identify fixed relational schema to reserve XML document contents

and structure depending on the previous objective.

5. Build XML document from relational database after updating its

contents without significant difference in the execution time of

building the original one.

 6

6. Make the scheme of objective 2 applicable to queries, in such away

that a query is forwarded to a set of nodes that cache information

about desired XPath expression.

1.3. Contributions

The following are the main contributions presented throughout this thesis:

XML document mapping into relational database: a novel method is

introduced to partition XML document into tokens (elements and attributes).

It relies on assigning a tuple in relational table for each token information

and relations with its neighbours. The method works efficiently and

performs well for large XML documents.

Building XML document from relational database: a novel method is

introduced to rebuild original XML document or update one from relational

database. It relies on retrieving document contents depending on token links

and token level which formulate XML document as a group of subtrees.

Updating XML document contents: a novel method is used to update (i.e.

insert new token or modify its name or value) XML document contents

stored in relational database. It is based on creating links for each token with

its neighbours to maintain document structure without a need to relabel or re-

index document contents.

Querying and retrieving XML document: a novel method is introduced to

access most of XPath axes preceding-sibling, following-sibling and

descendant without storing all possible XPath information for document

contents. It relies on creating a dummy table “XPathQuery table” for the

desired XPath expression storing all interested tokens.

 7

1.4. Thesis Outline

We present a brief outline of the thesis:

In Chapter 2, the research background is discussed. This includes XML

model, XML query languages, XML schema languages, XML Application

Program Interface, XML documents types, XML data storage approaches,

relational database model, and the similarities and differences between XML

model and relational database model.

In Chapter 3, the approaches for storing XML documents in relational

databases and for querying and retrieving XML Data from relational

databases will be discussed according to their classification into schema-

based mapping and schema-less mapping. Commercial Database

Management System such as, DB2, Oracle, and SQL Server solutions to

support XML will be discussed and reviewed. Rebuilding XML from

RDBMS, their issues and approaches will be reviewed. Comparison of

mapping approaches, their advantages and disadvantages will be discussed in

the last sections.

In Chapter 4, a full description of a novel model is given and introduced in

the thesis for Mapping XML Document into Relational database. This is

called MAXDOR. This includes the main mathematical concepts that are

used in this model. A description of the labelling method used to label the

XML document and identifying its contents, the design framework for

maintaining document structure, (i.e. parent-child, ancestor-descendant and

siblings relations) between document contents is given. Mapping XML to

relational database algorithm, building XML document from relational

database algorithms using SAX parser, and updating of XML document

contents which is stored in relational database algorithm are presented.

 8

Translating XPath query to SQL statements algorithm is included along with

the query results in XML format.

In Chapter 5, a presentation of the system architecture, and the tools used

for implementing the system of MAXDOR model is given. Theory

implementation on a case study is also presented. The main classes for

mapping XML document into relational database, building XML document

from relational database, updating XML document contents stored in

relational database and XpathToSql query translation and building the result

in XML format methods, are also presented. XML data sets from selected

XML bench marks and XML data repository will be identified to be used for

testing and evaluating the model.

In Chapter 6, a description of the experiment setup is given through

experiment environment and performance measurement. In fact, a set of

experiments are performed on mapping XML document into relational

database, building XML document from relational database, updating XML

document stored in relational database and retrieving document contents

from relational database using XPath expressions. These experiments are

performed to check the scalability and effectiveness of our model. Then, the

model will be compared with the Global Encoding model (Tatarinov et al.,

2002) and the Accelerating XPath model (Torsten et al., 2004). The

comparison is performed in four stages of mapping, building, updating and

retrieving, since the other studies just took one or two stages and did not

address the others. Some took retrieving, while others took updating or

updating and retrieving, but most of them did not consider mapping and

rebuilding.

Finally, in Chapter 7, a summary of the thesis and discussion of further

research directions are presented.

 9

CHAPTER 2 RESEARCH BACKGROUND

In this chapter the research background will be discussed. This includes

XML model, XML query languages, XML schema languages, XML

Application Program Interface, XML documents types, XML data storage

approaches, relational database model, and the similarities and differences

between XML model and relational database model. Finally the chapter

summary is given.

2.1. XML Model

“EXtensible Markup Language (XML), is a W3C Recommendation in 1998

for marking up data” (Bray et al., 2007). It is designed for publishing and

exchanging a large scale of digital data over the Internet. It is a Markup

language that is used to define the structure of information and its elements’

contents, where HTML is used to define the way in which the elements are

displayed on a web page. It can also be considered as an ideal format for

server-to-server transfer of structured data (Bansal and Alam, 2001).

The importance of XML documents transformation is largely increased.

Moreover different XML models have common requirements and limitations

as tools for data management. For rich data to be shared among different

groups, all concepts need to be placed into a common frame of reference.

XML schemas must be globally standardized among groups, or mapping

must be created between all pairs of related data. Parsing and text conversion

slows down the access of the data.

A well-formed XML document is one that corresponds to the XML 1.0

(Bray et al., 2007) grammar specified by W3C. It has exactly one root

element, which is called document element. Each starting element tag should

 10

have a corresponding closing tag. The elements should be nested within one

another. The tags and nesting rules allow XML to represent information in a

hierarchical manner. Figure 2.1 shows an example for valid XML

document.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<Books>
 <Book Price="39.99" id="101">
 <Name>Visual Basic programming</Name>
 <Authors>
 <Author id="A100">Tom, Criss</Author>
 <Author id="A150">Jim, Divad</Author>
 </Authors>
 <ISBN>1254315121</ISBN>
 </Book>
 <Book Price="59.99" id="102">
 <Name>Visual C# with SQL</Name>
 <Authors>
 <Author id="A150" >Mike, Roudy</Author>
 </Authors>
 <ISBN>487524545</ISBN>
 </Book>
</Books>

Figure 2.1: An example of XML document

In recent years, significant development in the XML domain has been

achieved. Many languages based upon XML Markup have been designed;

XML Schema and XML XQuery have been developed. These standardized

technologies augment the data processing abilities of XML. The following

sections give a brief description of a variety of XML based languages and

technologies.

 11

2.2. XML Query Languages

XML query languages are used to enable the user to retrieve data from a

single XML document using XPath language, or from multi-documents

using XQuery language.

2.2.1 XPath Language:

XPath stands for the XML Path Language(Berglund et al., 2007). It is used

for retrieving parts of a single XML document by using a path notation, like

those used in URLs. Every XPath expression evaluates to one of four basic

types:

• Node-set (An unordered list of nodes)

• Boolean

• Number (floating-point number)

• String (a sequence of UCS characters)

An XPath location can be either a relative or an absolute location in an XML

document. It can deal with seven node types:

• Root node

• Element nodes

• Attribute nodes

• Namespace nodes

• Processing instruction nodes

• Text nodes

• Comment nodes

The amount of nodes matched by an XPath location can be restricted further

by specifying additional requirements for a match like comparison operators,

functions or predefined variables. XPath supports equality operators and

 12

helper functions operating on the four basic types (i.e. node-set, Boolean,

number and string), for instance substring extraction, summation of the

values in a node-set or the number of nodes in a node-set to name a few.

Table 2.1 shows an example of some XPath expressions to retrieve data

from the XML document in Figure 2.1.

Table 2.1: Example of some XPath expressions

./author All <author> elements within the current context. Note that this
is equivalent to the expression in the next row.

author All <author> elements within the current context.

/books The document element (<books>) of this document.

//author All <author> elements in the document.

book/ISBN All <ISBN> elements that are children of a <book> element.

books//name All <name> elements one or more levels deep in the <books>
element (arbitrary descendants). Note that this is different from
the expression in the next row.

books/*/name All <name> elements that are grandchildren of <books>
elements.

author[1] The first <author> element in the current context node.

book/* All elements that are the children of <book> elements.

book[@price
< "60.0"]

All <book> elements where price attribute is less than "60.0".

ancestor::name[
parent::book][1
]

The nearest <name> ancestor in the current context and this
<name> element is a child of a <book> element.

2.2.2 XML XQuery 1.0 Language:

XQuery (Boag et al., 2007) is an XML Query Language according to W3C

Candidate Recommendation on 23rd January 2007. The mission of the XML

Query project is to provide flexible query facilities to extract data from real

 13

and virtual documents on the World Wide Web. Users can retrieve data from

multiple XML documents using complex nested query expressions by

XQuery. Therefore, it is providing eventually the needed interaction between

the Web World and the database world.

XQuery is an extension of XPath version 2.0; it does not operate on the

syntax of an XML document, but on its abstract, logical structure known as

the XQuery 1.0 and XPath 2.0 data model. The XQuery language does not

utilize XML Markup but has a syntactic grammar of its own.

The special feature of XQuery is that it has FLWOR expressions. FLWOR is

a shortcut for FOR-LET-WHERE-ORDER BY-RETURN and it works

similarly to SELECT-FROM-WHERE-ORDER BY statements in SQL.

FLWOR expressions are used to combine and restructure XML data; it binds

variables to values in “for” and “let”, clauses. Such binding of a variable to

some value is called a tuple. The “for” clauses produce a stream of tuples.

This tuple stream can be stored by a let clause into a variable. This variable

can be used later by “where”, “order by” and “return” statements.

Table 2.2 shows some XQuery expressions that can be used to retrieve data

from the XML document in Figure 2.1. The first three expressions look like

XPath expressions and the last one looks like an SQL statement. The last two

expressions give the same results, but they are different in form. So, users

can use any one of the two forms to retrieve their data.

 14

Table 2.2: Example for some XQuery expressions

doc("books.xml")/books/book/
name

Select all the name elements in the
"books.xml" file

doc("books.xml")/books/book[
@price<30]

Select all the book elements under the
books element that have a price attribute
with a value that is less than 30

doc("books.xml")/books/book[
@price>30]/name

Select all the name elements under the
book elements that are under the books
element that have a price attribute with a
value that is higher than 30.

for $x in
doc("books.xml")/books/book
where $x/@price>30
order by $x/name
return $x/name

Select exactly the same as the path
expression above. Except names are sorted
using order by clause.

2.3. Schema Languages for XML

XML Schema languages (i.e. DTDs, XML Schema (Fallside and Walmsley,

2004;Thompson et al., 2004), RELAX NG (Murata et al., 2001), DSD

(Møller, 2005), Schematron (Jelliffe, 2006)) are used to validate XML

documents. Validating a document is the process of verifying whether XML

documents conform to a set of structural and content rules expressed in one

of many schema languages; it works as firewall against invalid documents

and allows skipping document validation in data processing applications

because the parser will have already validated the document. Validation

occurs on at least four levels: (Ray, 2003)

1. Structure: the use and placement of Markup elements and attributes.

2. Data typing: patterns of character data (e.g. numbers, dates, text).

3. Integrity: the status of links between nodes and resources.

4. Business rules: miscellaneous tests such as spelling checks,

checksum results, and so on.

 15

2.3.1 Document Type Definition (DTD) has been used for validating

SGML structures (OASIS, 2002), and then it has become in use to provide

validation for XML documents. It provides a regular expression language for

imposing constraints on the content model (i.e. elements and subelements),

but it is very limited in the control of attributes and data elements as it is not

designed originally for XML data. Figure 2.2 shows a DTD example, which

can be used to validate the XML document in Figure 2.1.

<!ELEMENT books (book*)
<!ELEMENT book (name, authors, ISBN)
<!ATTLIST book price CDATA #REQUIRED>
<!ATTLIST book id ID #REQUIRED>
<!ELEMENT name (#PCDATA) >
<!ELEMENT authors(author*)>
<!ELEMENT author(#PCDATA)>
<!ATTLIST author id ID #REQUIRED>
<!ATTLIST author address CDATA>
<!ELEMENT ISBN (#PCDATA)>

Figure 2.2: DTD example

2.3.2 XML Schema is a W3C recommendation aimed for replacing DTDs

as the official schema language for XML documents (Fallside and

Walmsley, 2004;Thompson et al., 2004). It provides a large number of

improvements over DTDs. The first and most evident improvement is the

switch to an XML-based syntax, which improves it in terms of flexibility

and automatic process ability. Moreover XML Schema is completely

namespace-aware. Another major contribution of XML Schema is the Post

Schema Validation Infoset (PSVI), i.e., the additional information that the

validation adds to the nodes of the XML document so that downstream

applications can make use of it for their own purposes. The most important

advantage of PSVI is certainly the type, or the set of legal values that a node

can have. Types in XML Schema are either simple (strings with various

 16

constraints) or complex (Markup substructures of the XML document

including elements, attributes and text nodes). A large number of built-in

simple types are provided, ranging from integers to dates, times, and URIs.

Figure 2.3 shows an example for XML Schema, which can be used to

validate the XML document in Figure 2.1.

2.3.3 RELAX NG is a schema language for XML developed by an

international working group, ISO/IEC JTC1/SC34/WG1 (Murata et al.,

2001). It is based on two preceding languages: Tree Regular Expressions for

XML (TREX) (Clark, 2001), designed by James Clark, and Regular

Language description for XML (RELAX) (Makoto, 2002), designed by

Murata Makoto. Patterns are the central concept of RELAX NG. They widen

the scope of the concept of content model, while in DTDs a content model is

an expression over elements that are limited to text. In RELAX NG a pattern

is an expression of elements, text nodes and attributes. External definitions

of data types can be used for constraining the set of values of text nodes and

attributes. Figure 2.4 shows an example for RELAX NG Schema, which can

be used to validate the XML document in Figure 2.1.

2.3.4 Document Structure Description (DSD) is a schema language

developed jointly by AT&T Labs and BRICS (Møller, 2005;Klarlund et al.,

2000). Constraints are the central concept in DSD. A constraint is used to

specify the content of an element, its attributes and its context (i.e. the

sequence of nodes from the root to the element). An element definition is

specified as a pair consisting of an element name and a constraint. The

element content is constrained by a content expression, that is, a regular

expression over element definitions. Context patterns are used to enforce

constraints on the context of an element.

 17

<?xml version="1.0" encoding="ISO-8859-1" ?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<!-- definition of simple elements -->
<xs:element name="name" type="xs:string"/>
<xs:element name="author" type="xs:string"/>
<xs:element name="ISBN" type="xs:string"/>
<!-- definition of attributes -->
<xs: attribute name="price" type="xs:decimal"/>
<xs: attribute name="id" type="xs: positiveInteger "/>
<xs:attribute name="address" type="xs:string"/>
<!-- definition of complex elements -->
<xs:element name="books">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="book"/>
</xs:sequence>
 </xs:complexType>
</xs:element>
<xs:element name="book">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="name"/>
 <xs:element ref="authors"/>
 <xs:element ref="ISBN/>
 </xs:sequence>
<xs:attribute ref="price" use="required"/>
<xs:attribute ref="id" use="required"/>
 </xs:complexType>
</xs:element>
<xs:element name="authors">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="author" minOccurs="1"/>
 </xs:sequence>
<xs:attribute ref="id" use="required"/>
<xs:attribute ref="address" minOccurs="0"/>
 </xs:complexType>
</xs:element>
</xs:schema>

Figure 2.3: Shows an example for XML Schema

 18

<?xml version="1.0" encoding="UTF-8"?>
<element name="books"
xmlns="http://relaxng.org/ns/structure/1.0">
 <element name="book"
 <attribute name="price"/>
 <attribute name="id"/>
 <element name="name"><text/></element>
 <element name="authors"
 <element name="author"><text/>
 <attribute name="id"/>
 <optional>
 <attribute name="address"/>
 </optional>
 </element>
 </element>
 <element name="ISBN"><text/></element>
 </element>
</element>

Figure 2.4: Shows an example for RELAX NG schema

2.3.5 Schematron is a rule-based schema language created by Rick Jelliffe

at the Academia Sinica Computing Centre (ASCC) (Jelliffe, 2006). It is

mainly used to check co-constraints in XML instance documents. A

Schematron document defines a sequence of <rule>s, logically grouped in

<pattern> elements. Each rule has a context attribute where XPath pattern

determines the elements in the instance document to which the rule applies.

Within a rule, a sequence of <report> and <assert> elements is specified

having a test attribute which is an XPath expression evaluated to a Boolean

value for each node in the context. The content of both <report> and

<assert> is an assertion which is a declarative sentence in natural language.

When the test of a <report> succeeds, its content becomes output.

 19

2.4. XML API

The XML Application Program Interfaces (XML APIs) has been designed to

allow a programmer in most programming languages, such as Java, C++,

and Perl, to access their XML documents information without writing a

parser in their Programming Language.

2.4.1 DOM Parser

DOM (Document Object Model) parser is used as a hierarchical object

model to access the XML document information. It reads the entire

document information and forms its corresponding DOM object tree of

nodes in the main memory. This approach makes XML parser suitable for

small XML document that can fit in the memory. DOM parser can be used

for the documents in which the sequence of elements is very important (i.e.

document centric documents) since it preserves the sequence of elements

that it reads from the XML documents. It contains functions for traversing

XML trees, inserting, deleting, and accessing nodes. Table 2.3 shows some

properties and methods used by DOM parser. (Hégaret et al., 2005;W3C,

2005)

2.4.2 SAX Parser

SAX (Simple Application Interface for XML) parser gives access to XML

document information as a sequence of events, which makes it faster than

DOM parser. It fires an event for every open tag, every closing tag,

#PCDATA and CDATA section. The document handler will have to

interpret these events and the sequence in which these events are fired. SAX

can be used for large XML documents, since the documents do not need to

be parsed in the main memory first. It can also be suitable for structured

XML documents since elements order is not necessary. Another point of

 20

difference between SAX and DOM is worth mentioning here. SAX has a

limitation in that no insertion of new contents can be done on the document,

i.e., read only. DOM has the ability to do that through some methods and

function for accessing, inserting and deleting nodes, i.e., read and write over

XML document. Table 2.4 shows main methods used by most XML SAX

parsers. (www.Altova.com/XMLSpy, 2008)

Table 2.3: Some properties and methods used by DOM parser

Some XML DOM properties:

• x.nodeName - the name of x

• x.nodeValue - the value of x

• x.parentNode - the parent node of x

• x.childNodes - the child nodes of x

• x.nextSibling - the right sibling of node x

• x.attributes - the attributes nodes of x

• x.previousSibling - the left sibling of node x

Some XML DOM Methods:

• x.getElementsByTagName(name) - get all elements with a specified
tag name

• x.appendChild(node) - insert a child node to x

• x.removeChild(node) - remove a child node from x

Where x is referring to a node object.

 21

Table 2.4: Some methods used by SAX parser

startDocument () Invoked when the Parser encounter document
start

endDocument () Invoked when the Parser encounter document
end

startElement (String
name, AttributeList attrs)

Invoked when the Parser encounter element
starting tag> The attributeList parameter has
the list of all attributes declared for the current
element in the XML File

endElement (String
name)

Invoked when the Parser encounter element
closing tag.

characters (char buf [], int
offset, int len)

Invoked when the Parser encounter extra
characters like space or enter character are
encountered.

processingInstruction
(String target, String data)

Invoked when the parser encounters a
processing Instruction which is declared like

2.5. XML Documents Types

Using of XML technology in most web services such as e-business, e-

commerce, e-banking, e-mail, e-library, e-government generates different

types of XML data. These data can be classified according to their

structure into: 1) Document centric documents, 2) Data centric documents,

and 3) Mixed documents. (Bourret, 2005)

A comparison between XML document types are shown in Table 2.5.

Characterizing XML documents as data-centric or document centric will

help in deciding the kind of database to use. As a general rule, data can be

stored in a traditional database, such as a relational, object-oriented, or

hierarchical database. This can be done by third-party middleware or by

capacity built into the database itself. In the latter case, the database is said to

be XML-enabled. Documents can be stored in a native XML database, (i.e. a

 22

database designed especially for storing XML), or a content management

system (i.e. an application designed to manage documents and built on top of

a native XML database).

These rules are not absolute. Data, especially semi-structured data, can be

stored in native XML databases and documents can be stored in traditional

databases where few XML-specific features are needed. Furthermore, the

boundaries between traditional databases and native XML databases are

beginning to fade away, as traditional databases add native XML capabilities

and in turn native XML databases support the storage of document

fragments in external databases, which are usually relational databases.

 23

Table 2.5: Overview of XML documents types

 Document
type Used for Document

characteristics
Order of sibling

element
Document
originality Examples

1. Data-
Centric

data
transportation,
machine
consumption

fairly regular
structure, fine-
grained data

generally not
significant,
except when
validating the
document

database Sales orders, flight schedules,
scientific data

2. Document-
centric

data publishing,
human
consumption

less regular or
irregular structure,
larger grained data

significant RTF, PDF, or
SGML,
Documents then
converted to
XML

Books, emails, advertisements,
user's manual, and almost any
hand-written XHTML
documents.

3. Mixed
Document

A + B types, or
B + A types

A + B types, or
B + A types

insignificant part
+ significant part

database &
other document
types (A + B)

- Invoice, might contain large-
grained, irregularly structured
data, such as a part description.
- Books, might contain fine-
grained, regularly structured
data, such as an author's name
and a publication date

 24

2.6. XML Data Storage Approaches

Since XML inception in 1998, a lot of research studies have looked for

efficient storage and query medium for storing XML documents. Athena

Vakali discussed existing options of XML storage which depends on the

underlying framework's particular level showing their storage format, main

advantages and main disadvantages (Vakali et al., 2005). Table 2.6

summarises these options. The discussion shows that Relational Database

Management System (RDBMS), Object Oriented Database Management

System (OODBMS) and native XML database are the most accepted

approaches.

2.6.1 RDBMS

Relational Database Management System (RDBMS) which has been

proposed by Codd in 1970s is reliable, widespread and a well established

medium for storing and retrieving data in the business area. Some

approaches have been proposed to store XML documents into relational

database and retrieve its content again from relational database (Fujimoto et

al., 2005; Shanmugasundaram et al., 1999; Tan et al., 2005; Zhang and

Tompa, 2004b; Xing et al., 2007b). Relational database has power capabilities

in indexes, triggers, data integrity, security, multi-user access, query optimization

by SQL query language, and crash recovery. The youth XML technology is looking

for achieving some of these capabilities.

2.6.2 OODBMS

Object Oriented Database Management System (OODBMS) can deal with

complex applications such as multimedia data and geographic information

systems. However, there are some limitations: 1) OODBMS is language

dependent often, (i.e. a specific API of specific language is used only to

 25

access the data), 2) it is schema dependent, (i.e. any modification to the

schema or any class should be done to the classes interacting with instances

of this class) This will involve the system in a wide recompile and will

extend the time for updating the entire instance object within the database

according to its size. But there are some works for storing XML documents

in OODBS since both of XML and OODBS are hierarchical in their nature

structure (Chung and Jesurajaiah, 2005).

2.6.3 XML database

A new set of languages are dedicated for XML documents which are the

native XML database (Jagadish et al., 2003;Grinev et al., 2004). These

languages which include XLink, XPath, XQuery and XSLT are designed for

the particular purpose of storing and querying XML documents (Bray et al.,

2007). Also XML languages do not reach the power capabilities of existing

relational database system; they do not allow users to query data in XML

documents and other data in RDBMS simultaneous.

The above discussion has shown that RDBMS is the most suitable storage

for XML data until now; in addition, it has a widespread implementation as a

storage and retrieval medium in the business area. But there is a difference in

the structure between the hierarchical ordered XML and tabular unordered

RDB. This difference expresses the need for mapping techniques from XML

documents to RDB in order to utilize their advantages and make the XML

technology more acceptable by the RDB users.

 26

Table 2.6: Overview of popular XML storage approaches (Vakali et al., 2005)

Framework XML Storage Format Main Advantages Main Disadvantages
File-system-
oriented

- ASCII files stored in the
file system or database
- management system
(DBMS) as binary large
objects (Blobs) or
character large objects
(Clobs)

- Easy implementation
- Suitable for small XML sets

- Accessing and updating are
difficult

Relational
DBMS

- Tables - Scalability and reliability

- Easy implementation

- Requires many joins due to
XML document factorization

Object-relational
DBMS

- Tables and objects - Easy implementation
- Abstract data type support

- XML document factorization

Native XML - Ad hoc data models or
typical database models

- Flexibility
- Improved access performance

- Less mature than conventional
DBMSs (such as RDBMSs)

Directory servers - Tree structure - Optimized for queries
- Effective data retrieval

- Low update performance

 27

2.7. RDBMS Model

A database can be defined as a collection of related files. The relation

between these files depends on the model used to describe these data,

relational, hierarchical network or object-oriented model. Currently,

RDBMS is the one used most often (Codd, 1970; Codd, 1971; Delobel,

1978; Codd, 1983). The relational model can be determined by some rules

and facts such as:

1- Database is a collection of related tables (relations).

2- Each table consists of a set of records (tuples).

3- Each record consists of a fixed number of fields (attributes) which give

descriptions for an object or a person.

4- Each field gives a specific characterization of data for the object, (i.e.

single data type: name, age, or date). Relational model supports many data

types including number, string, varchar, memo, date and Boolean.

5- One of those fields should uniquely identify the object; for example,

student number in student table. This field is called the primary key.

6- The primary key in a table can be used as an additional field in other

tables to create relations among them. This field is called a secondary key.

So, the relations inside the database can be preserved using those primary

and secondary keys.

7- The relation type between tables can be one-to-one relation or one-to-

many relation which depends on the number of occurrence of the secondary

key in one of them.

8- The relational model provides a set of relational operators’ including

selection, production, join, and cartesian product to process data in the

database.

 28

9- Database normalization helps to reduce data duplication and to increase

data integrity.

10- Structured Query Language (SQL) offers a set of commands for

accessing database through inserting, deleting and updating data.

2.8. The Similarities and Differences between XML Model

and RDB Model

XML was originally proposed to represent, publish and exchange data

between business applications on the Internet (Bray et al., 2007) in 1998.

RDB was proposed by Codd in the 1970s for storing and retrieving data

(Codd, 1971;Codd, 1970). XML and its related technologies provide

something found in database as XML documents for storing, DTDs and

XML Schema for validating, XPath and XQuery for querying, and DOM and

SAX for parsing XML documents. But, XML languages lack many things

that are found in traditional databases such as indexes, triggers, data

integrity, security, crash recovery, and multi-user access (Zhou et al., 2006).

XML can organize data in a hierarchical, object-oriented, and

multidimensional way in the form of a tree with an arbitrary depth and width

(Chen et al., 2006;Wang and Meng, 2005) as shown in Figure 2.5.

Meanwhile, a traditional relational database table can be thought of as a tree

of depth two with unbounded fan-out at the first level, and fixed fan-out at

the second level, with the first level representing tuples (rows) and the

second level representing fields (columns). Figure 2.6 and Figure 2.7 show

a sample of relational database representation (i.e., as tree and table

respectively). An XML tree is clearly a more expressive way of representing

data as no constraints are placed on either depth or width.

 29

Students table
St_ID St_name St_level
C03334 Jack 3

Figure 2.7: A sample of relational database table representation.

A comparison between XML technology and RDB technology was given in

(Bansal and Alam, 2001) as shown in Table 2.7. The comparison in Table

 2.7 shows that there is a structural hole between hierarchical ordered XML

and tabular unordered RDB. As a result, mapping between the XML and

RDB is the best solution to exploit their advantages, and makes the XML

technology more acceptable by the RDB users. For this reason, mapping

Figure 2.5: A sample of XML tree representation (Chen et al., 2006)

Student

St ID St name St level

C03334 Jack 3

Figure 2.6: A sample of relational database tree
representation

 30

XML documents to RDB has been studied by many researchers, and

relational database vendors (e.g., Oracle, DB2, and SQL Server).

Table 2.7: A comparison between XML and RDBMS (Bansal and Alam,
2001)

XML RDBMS
Data in single hierarchical structure Data in multiple tables
Nodes have element and/or attribute
values

Cells have a single value

Elements can be nested Atomic cell values
Elements are ordered Row/column order not defined
Elements can be recursive Little support for recursive elements
Schema optional Schema required
Direct storage/retrieval of XML
documents

Joins often necessary to retrieve data

Query with XML standards
(XQuery, XPath)

Query with SQL

Human and machine readable Machine readable

2.9. Summary

In this chapter, a review of the XML language and other supporting

languages, XPath, XQuery, XSLT, and XML schema were given. This

review shows that XML technology has received a lot of attention from

researchers and database vendors to improve and to make this technology

available to the market and user in a highly standard form. Also, it shows

that this technology needs a lot of work to solve data processing problems

such as multi-user access, security, crash recovery, concurrency control, data

querying and retrieving, and data integrity, which have been already solved

by database management and object oriented databases. These issues show

the need to think of other storage options for storing and retrieving XML

data. Reviews of these options were presented in this chapter and a

comparison between them was made. Relational database is the mostly

expected candidate for this choice since it solves most problems of data

access issues. Some rules and facts about the relational database model were

 31

raised, and a comparison with XML model was introduced. The comparison

shows the need for mapping techniques to map XML data to relational

database to take advantages of their attributes since there is a gap between

the two models. In chapter three, different mapping techniques for storing,

rebuilding, and retrieving XML data from relational databases are discussed.

 32

CHAPTER 3 STATE OF THE ART TECHNOLOGY

This chapter presents the state of the art approaches for storing and retrieving

the XML documents from relational databases. Approaches are classified

into schema-based mapping and schemaless-based mapping. It also discusses

the solutions which are included in Database Management Systems such as

SQL Server, Oracle and DB2. The discussion will address the issues of:

rebuilding XML from RDBMS approaches, and comparison of mapping

approaches: their advantages and disadvantages. The chapter concludes of

the issues addressed.

3.1. Approaches for storing and querying XML

A number of different techniques for storing XML documents in a RDB

have been established. These techniques can be divided into two groups: the

schemaless-centric technique and the schema–centric technique (Dweib et

al., 2008). The first one makes use of XML document structure to manage

the mapping process (Tatarinov et al., 2002;Dweib et al., 2008;Soltan and

Rahgozar, 2006;Zhang and Tompa, 2004b;Jiang et al., 2002;Yoshikawa et

al., 2001). The second one depends on schema information to develop a

relational schema for XML documents (Fujimoto et al., 2005;

Shanmugasundaram et al., 1999; Amer-Yahia et al., 2004; Atay et al.,

2007b; Xing et al., 2007b; Knudsen et al., 2005; Lee et al., 2006).

The aim of mapping XML documents into relational database is to make use

of the capabilities of the relational database which are: indexes, triggers, data

integrity, security, multi-user access, and query optimization by SQL query

language. In the meanwhile XML technology is trying to gain the above-

mentioned capabilities, developed for RDBs, and efficiently store, retrieve,

and rebuild XML data from RDBs.

 33

The studies that address the problem of mapping XML document into RDB

take care of the above issues, and attempt to translate users’ XML queries,

either XPath expression (Berglund et al., 2007) or W3C’s recommendation

XQuery expression (Boag et al., 2007), into SQL queries (Oracle, n. a.).

XQuery gives power to the translation method since XQuery comprises

XPath, and it is recommended by W3C, while XPath is not. The translation

method should also consider its ability to rebuild, the stored XML document

without losing information, and retrieve it in an acceptable time. Many

studies have tried to address translation and restore constructing labelling

methods. Labelling methods aim to reserve nodes order, parent-child and

ancestor-descendant relationships, and document structure(Tatarinov et al.,

2002;Chung and Jesurajaiah, 2005;Soltan and Rahgozar, 2006;Li and Moon,

2001;O’Neil et al., 2004;Wu et al., 2004;Kobayashi et al., 2005).

3.1.1 Schema-Based Mapping

One of the early studies in this area was conducted by (Shanmugasundaram

et al., 1999) from the University of Wisconsin-Madison. They proposed

three mapping techniques: Basic, Shared, and Hybrid Inlining. These are

proposed to map DTDs into relational schemas. Basic Inlining proposed

building a separated table for each element in the DTD while in the Shared

Inlining each element is represented in one table. The Hybrid Inlining

technique inlines shares an element which is not repeated or recursively

related. These techniques are different from one another in the degree of

redundancy; they vary from being highly redundant in Basic Inlining, to

containing no redundancy in Hybrid Inlining.

The above approach offers limited structures to represent the features of

XML data, such as nested relationships, ordering of XML documents, and

the DBMS schema representations. Querying these structures is usually

complex since the end users are not familiar with them.

 34

Mapping algorithms for XML DTDs to relational schemas were proposed by

Atay et al. (2007b) from Wayne State University . They attempted to

enhance the shared-inlining algorithm (Shanmugasundaram et al., 1999), in

away to overcome its incompleteness and eliminate redundancies caused by

the shared elements. They claimed that the algorithm can deal with any

DTDs including arbitrary cyclic DTDs, but shared-inlining algorithm deals

merely with two mutually recursive elements. Dealing with cycles which

involve more than two elements in a DTDs is not clear. Figure 3.1 shows the

three cases they considered in their inlining procedure. In case 1, a node a is

connected to a node b by a normal edge, and b has no other incoming edges.

In this case, node b is inlined into its parent node a, and the parent-child

relationships are maintained between b and its children. In case 2, node a is

connected to node b by a normal edge where b has other incoming edges (i.e.

b is a shared node). In this case node b is not inlined into its parent node a

since b has multiple parents. In case 3, node a is connected to a node b by a

star edge, such that every node of a can contain multiple occurrences of b. In

this case, the node b is not combined into its parent node a in order to avoid

redundancy. Figure 3.2 gives an example of the idea of the inlining

procedure clear. Figures 3.2.A and 3.2.C show the DTD graphs, where the

inlining results are shown in Figures 3.2.B and 3.2.D after applying the

inlining algorithm. It could be noted from figures that nodes which are

connected by, -edge or *-edge and,-edge must point to a shared node.

 35

Figure 3.1: The three case of inlining (Atay et al., 2007b)

Figure 3.2: Inlining DTD graphs (Atay et al., 2007b)

Redundancy reduction XML storage in relations (RRXS) within XML

Functional Dependency (XFD) was proposed by (Chen et al., 2003). They

 36

defined constraints to capture the structural constraints as well as semantic

information. It makes use of XML schema semantic constraints. Using the

semantics of a document could reduce the redundancy since node identifiers

can be removed where value based keys are still available for particular

elements. Unfortunately the suggested rewrite rules are not complete. So,

this algorithm cannot guarantee redundancy reduction.

SPIDER (Schema-based Path IDentifiER) is an approach for a node labelling

scheme identified by Fujimoto et al. (2005), from Nagoya University and the

Nara Institute of Science and Technology. They aimed to preserve XML

tree structure. The approach used document’s DTD information to give

unique numbers for all paths from the root node. It assigns unique integers to

each sequence of elements and attributes from the root node to any node in

the XML tree. Since SPIDER could not distinguish between multiple nodes

appearing in the same path, Fujimoto et al. introduced Sibling Dewey Order

to identify such nodes. Consequently, several nodes are to be relabelled in

order to insert a new node into an XML document, and to maintain nodes

order. Only Sibling Dewey Order is relabelled but SPIDER is not affected.

Figure 3.3 and Figure 3.4 show the difference between SPIDER labels and

SPIDER and Sibling Dewey Order labels for XML tree. And Figure 3.5

shows the relational schema used by SPIDER. Four relational tables are used

each of which handles a different type of information; one for elements, one

for attributes, one for texts and the last for paths of the document.

SPIDER uses string matching to handle the path that contains ancestor

relation "//". This matching requires joining "element" and "path" relations,

causes degradation of the approach performance. Moreover, this method

cannot exactly preserve node order in some cases such as in the case of

multiple components in the DTD declaration which have the same name but

appear in different places. On the other hand, node indexing involves large

 37

extra space relative to the size of the original data. And indexing a document

with a large number of nodes is very difficult. As a consequence, this

method needs extra time overhead that is consumed to rebuild the original

XML document.

.

Figure 3.3 : Node labelling using SPIDER (Fujimoto et al., 2005)

 38

Figure 3.4 : Node labelling using SPIDER and Sibling Dewey Order

(Fujimoto et al., 2005)

Element (docID, nodeID, spider, sibling, parentID)
Attribute (docID, nodeID, spider, sibling, parentID, value)
Text (docID, nodeID, spider, sibling, parentID, value)
Path (spider, path, pathexp)

Figure 3.5: SPIDER relational schema

Space reduction is needed to store XML documents which is a requirement

to improve the performance of querying data. To reduce the space that is

used to store the labels, and to make rebuilding of original XML documents

easier, methods for indexing a group of XML nodes have been proposed by

(Xing et al., 2007a). These methods include: using path information to refine

the storage, indexing a group of XML nodes instead of an individual node,

and query evaluation based on the "nodes of interest".

Introducing nodes of interest can reduce the number of path joins required to

process the query. Figure 3.6 shows the way of grouping nodes in the XML

tree. Each group of nodes is stored in one or at most two tables which can be

linked together under the”label” field.

 39

Amer-Yahia et al. (2004) at the AT & T Labs, proposed ShreX a mapping

framework which stores the XML document in a RDBMS. XML schema

was used to simplify the mapping process in ShreX by using a generic

shredding process, which also translated XQuery into SQL. An extension of

Shrex Mapping, called XShreX was proposed by Lee et al. (2006), from the

National University of Singapore. Thus, XShreX mapped more constraints.

They also developed semantic keys to replace the auto-generated keys of the

ShreX in order to reduce redundancy and to decrease the size of the

generated database.

Figure 3.6: Grouped nodes

 40

3.1.2 Schema-Less Mapping

One of the issues of mapping XML to RDB is the loss of information due to

the XML documents’ shredding and inlining into RDB tables

(Shanmugasundaram et al., 1999). A dynamic shredding was proposed by

Zhang and Tompa (2004b) in order to preserve the original XML document

information and to solve the problem of the document size limitation.

Documents are shredded to meaningful fragments according to users’

judgement. These fragmentations are stored depending on relational schema.

XML queries in XQuery are also needed to be translated by the users into

SQL statements to retrieve shredded documents. The main idea of this

approach is to keep the original document untouched; so, there will be no

need to rebuild it. But that will make it impossible to connect with the data

which already exists in the relational database since the XML document will

not be saved in the relational database. In addition, there will be a need to

translate each XQuery with a support of appropriate structured text

operators.

XRel (Yoshikawa et al., 2001) and XParent approaches (Jiang et al., 2002)

are used to store XML documents in RDB. Both approaches are path-based

approaches and use predefined fixed relational schema for storing the XML

tree information. The relational schemas that are used in both approaches are

shown in Figure 3.7 and Figure 3.8 respectively. In XRel, elements,

attributes and text are stored in different tables (i.e. element, text and

attributes tables). The region (i.e. starts and end positions) of each node of

element, attribute and text along with its ordinal and pathID are stored in the

tables. The fourth table is used as a path table for document paths where the

path is the sequence of elements from the root to the candidate element.

In XParent, element table stores each element in the document, and data

table stores attributes and text values. LabelPath table stores all paths in the

 41

document and the length of each path. DataPath table stores all parent-child

relations.

Path (PathID, PathExp)
Element (DocId, PathID, start, End, Index, Reindex)
Text (DocID, PathID, Start, End, Value)
Attribute (DocID, PathID, start, End, Value)

Figure 3.7: XRel relational schema

XRel and XParnet make a path expression to be easily evaluated by

comparing path IDs. But allocating one code for each element in both

approaches result in larger storage for large XML documents, and larger

number of path joins to process a query.

LabelPath (ID, Len, Path)
DataPath(PID, CID)
Element (PathID, DID, Ordinal)
Data (PathID, DID, Ordinal, Value)

Figure 3.8: XParent relational schema

Tatarinov et al. (2002) proposed Global, Local and Dewey for labelling

XML tree. In Global label each node is assigned a number that represents the

node's absolute position in the document as in

Figure 3.9. In this label, dynamic update is very difficult since all the nodes

placed after the inserted node need to be relabelled. And extracting the

parent-child and ancestor-descendant relationship is also impossible.

In the Local Labelling, each node is assigned a number that represents its

relative position among its siblings, as in Figure 3.10. In this label, a

combination of node's position and that of its ancestors forms a path vector

that identifies the absolute position of the node within the document.

Updating the Local label has led to better performance than in the Global

 42

label because only the following siblings of the new node need to be

renumbered. But it is still hard to extract the parent-child and ancestor-

descendant relationships.

Figure 3.9: Global labels for XML Tree

Figure 3.10: Local labels for XML tree

1
books

7
book

2
book

10
chapter

9
title

8
author

5
title

4
author

6
chapter

3
author

1
books

2
book

1
book

3
chapter

2
title

1
author

3
title

2
author

4
chapter

1
author

 43

Figure 3.11: Dewey labels for XML tree

In the Dewey label, a node label is generated by combing its parent label and

private integer number. Figure 3.11 shows an example of labelling using

Dewey labels. Extracting node label from its ancestors is very easy. But a

large sized RDB could be generated in this case because a private label is

given for each node, and an update of the following nodes labels is needed

when new node is inserted.

ORDPATH, a hierarchical labelling schema implemented in Microsoft SQL

Server 2005, was introduced by O’Neil et al. (2004). Nodes labelling of

XML tree in this approach does not need an XML schema. It used two tables

to store XML data. Figure 3.12 shows ORDPATH relational schema.

Node (OrdPathCode, Tag, NodeType, Value, PathID)
Path (PathID, PathExp)

Figure 3.12: ORDPATH relational schema (O’Neil et al., 2004)

Contrast to the Dewey Labelling method, ORDPATH makes it possible to

insert new nodes in uninformed locations in the XML tree without the need

to update old nodes labels. This is because only positive odd integers are

assigned to the nodes for the first scan, and even-number and negative

integers are reserved for future insertions in the existing tree. Labels are

1
books

1.2
book

1.1
book

1.2.3
chapter

1.2.2
title

1.2.1
author

1.1.3
title

1.1.2
author

1.1.4
chapter

1.1.1
author

 44

assigned during initial loading. Figure 3.13 shows ORDPATH labelling for

an XML document. ORDPATH labelling update is efficient and it can

maintain XML document structure. But it fails to perform semantic search or

path search.

Figure 3.13: ORDPATH labels for XML tree

Pre-order and post-order traversing of tree structure is presented by Torsten,

(2002). The method is designed to maintain nodes’ ordering within the

document, and identifies parent-child and ancestor-descendant relationships.

The idea of this method can be described as follows:

1- Area A: where (post-order > Node(post-order)) and (pre-order <

Node(pre-order)), consider nodes as ancestors to candidate node,

which are identify by the path from the root to this node.

2- Area B: where (post-order > Node(post-order)) and (pre-order

>Node(pre-order)), consider nodes as following the candidate node.

3- Area C: where (post-order < Node(post-order)) and (pre-order

>Node(pre-order)), consider nodes as descendant of the candidate

node, i.e. they are forming a subtree rooted by the candidate node.

Subtrees are used to form the nested subtree that fragments the XML

document.

1
Books

1.3
book

1.1
book

1.3.5
chapter

1.3.3
title

1.3.1
author

1.1.5
title

1.1.3
author

1.1.7
chapter

1.1.1
author

1.3.4
inserted node

 45

4- Area D: where (post-order < Node (post-order)) and (pre-order

<Node (pre-order)), consider nodes as preceding the candidate node.

Pre-order and post-order method optimizes the XML query by minimizing

the area of search.

Figure 3.14 and Figure 3.15 highlight how the pre-order and post-order

method could minimize the area of search in the XML document. But this

method encounters high cost of inserting a new node or new subtree since all

nodes of pre-order label following the inserted node are to be relabelled and

all nodes of post-order label for the following nodes and ancestors nodes for

inserted node are to be relabelled.

Figure 3.14: Tree representation for XML document with pre-order post-

order labelling

Candidate
Node

Ancestor

A

B K

D G O

1, 16

C

F E IH

J

L

N M P

2, 8

3, 1
4, 4

7, 7

5, 2

10, 9

9, 68, 5
6, 3

11, 15

12, 12

15, 14

13, 10
14, 11

16, 13

Following Descendant Preceding

 46

1; 16

2; 8

3; 1

4; 4

5; 2

6; 3

7; 7

8; 5

9; 6

10; 9

11; 15

12; 12

13; 10

14; 11

15; 14

16; 13

0

2

4

6

8

10

12

14

16

18

0 2 4 6 8 10 12 14 16 18

PREORDER

PO
ST

O
R

D
ER

POSTORDER

H

I

A

B

D

E
C

L

M

J

F

N

K

O

P

Parent
&Ancestor
nodes of G

Preceding
nodes of G

Following
nodes of G

Child &
Decendant nodes

of G

G

Ps < G(ps) & Pr
> G(pr)

Ps > G(ps) &
Pr < G(pr)

Ps < G(ps) &
Pr < G(pr)

Ps > G(ps) &
Pr > G(pr)

Nodes here
Identify Subtree

Rooted by G

Nodes here
Identify Path to

node G

Also this area
can be used to
Identify nested

subtrees

Figure 3.15: Pre-order post-order label optimization areas

A clustering-based scheme for labelling XML trees was proposed by Soltan

and Rahgozar (2006). It uses a label for a group of elements not for each

single element, and classifies elements into different groups in which each

group is assigned for all sibling elements. And this group of elements are

stored in a single relational record. Figure 3.16 and Figure 3.17 show

clustered labelling method for an XML tree and its relational schema

respectively. In this way, the database size needed for the mapping process is

reduced because relational records numbers are less than those of using

single record for each node. It also reduces the number of path joins needed

to process the query, and makes the rebuilding of XML document from

RDMB faster. But it experiences a problem of dynamic update; i.e. many

 47

nodes should be relabelled when a new node is inserted. But it fails in

performing path and semantic search.

Figure 3.16: Clustered labels for XML Tree (Soltan and Rahgozar, 2006)

Node (ClusteredCode, Tag, NodeType, Value, PathID)
Path (PathID, PathExp)

Figure 3.17: Clustered relational schema (Soltan and Rahgozar, 2006)

 XTRON Min et al. (2008) is a schemaless system to manage XML data as

relational database. It merges the edge and the region approaches to manage

parent-child and ancestor-descendant relationships. The edge approach is

used to manage parent-child relationship, and the region approach is used to

manage ancestor-descendant relationship. An extra space is used to maintain

renumbering at each new node insertion. If the XML schema is not available,

then document structural information is extracted. The system needs six

tables to represent the merged numbering approach. The path information is

transformed into intervals to speed up the query performance. But enhancing

query performance increases size of the relational database. And there will

be a very high cost of renumbering a larger number of relational fields.

 48

3.2. Commercial DBMS XML Solutions

3.2.1 IBM DB2 Extender: using the XML Extender Document Access

Definition (DAD) as XML Schema for mapping XML document into RDB.

DADs can be used for storing XML document into RDB and for publishing

RDB as XML. It provides two functions:

• dxxShredXML() function is used to decompose an XML document

and store it in relational database, and

• dxxGenXML() function is used to build a shredded XML from

relational database.

IBM DB2 provided some procedures for handling XML columns:

• XMLVarCharFromFile() is used for type conversion.

• Varchar(XMLVarChar) is used for retrieval.

• Update(xmlobj, path,value) is used for update.

• ExtractVarChar() is used as selection function.

In IBM DB2, XML columns can be assigned a type of:

• XMLCLOB is used for large documents;

• XMLFile is used for documents stored outside DB2.

• XMLVARCHAR is used for small documents

XML Extender also provides an XML DTD repository. Each XML database

contains a DTD reference table called DTD REF which is used to store Meta

information on users’ mappings. The user can access this table to insert their

own DTDs. These DTDs can be used to validate XML documents. Given the

mapping, the system reads an arbitrary XML document and loads it into a

DB2 database. IBM DB2 is using CLOBs (Character Large OBjects) and

some extra tables for indexing structured data contained in the text for mixed

 49

content XML documents. These extra tables are updated automatically when

new documents are added.

3.2.2 Oracle: XML was first supported in Orcale8i. This support was

limited for publishing relational data in XML format. In Oracle9i Database

Release 1 XDK, a number of tools are added for storing XML into relational

database and generating XML from relational database. These tools include:

XML Parsers, XSLT Processor, XML Schema Processor and XML SQL

Utility to generate XML documents, DTDs and schemas from SQL queries.

New data types for supporting XML storage were added to the kernel, which

are XMLType and URI-Ref types. Several operators are linked to XMLType

to facilitate processing XML data such as extract(), getNumberVal(),

getStringVal() and existsNode().

Oracle XML DB was introduced in Oracle9i Database Release 2 (Oracle

9iR2). XML DB offers two options for mapping XML Schema either created

automatically or by the user. Then, XML DB loads the schema file, stores

mapping information internally and creates SQL types and tables’ indexes.

Oracle 10g gave two solutions through Oracle XMLDB (DB, n.a). In the

first solution, XML document is stored as CLOB in a single special type

field (XMLType), or shredding the content of an XML document in a set of

rows. The second gives an option for XML document shredding, either

automated or controlled by the user, depending on the XML schema. SQL

standards have been developed such as to be compatible with XML features.

Database connectivity for SQL, XPath, XQuery and ODBC are provided.

But XML schema is required before transmission to relational schema for

shredding options. Oracle solutions are adapted only to Oracle systems

which is expensive and not available for other DBMS.

 50

3.2.3 Microsoft SQL Server:

To publish relational data as XML documents, Microsoft SQL Server uses

the FOR XML clause as extension to the SQL. It uses three publishing

modes: RAW, AUTO and EXPLICIT:

• RAW creates flat XML documents by converting each SQL result

row into an XML element and each non-NULL column value to an

attribute.

• AUTO mode uses query results to build nested documents where

each table in the FROM clause is represented as an XML element.

The columns listed in the SELECT clause are mapped onto attributes

or sub-elements.

• EXPLICIT mode defines an SQL view to gather related rows.

Special column names such as Tag and Parent are used. Nesting is

explicitly specified as part of the query.

Microsoft implements three solutions for storing XML documents:

• The generic Edge technique.

• Users’ annotation of an XML schema in order to determine the

XML-to-relations mapping.

• OpenXML that compiles an XML documents into an internal DOM

representation using sp_xml_preparedocument procedure.

These solutions are created using the XML Schema Definition (XSD), and

are used to create the mapping schema that could be used for validating the

XML document that is loaded in the relational database.

SQL Server 2005 adds a new XML data type to the relational table by using

Transact SQL (T-SQL) or SQL Server Management Studio (Pal et al.,

December 2005). Adding a new XML data type incorporates a definition of

the following options:

 51

1. The type of the XML field: Either typed (specify a Schema collection) or

un-typed (well-formed XML).

2. Document storage: Either stores the complete documents or fragment of it.

3. Schema: To store XML document depending on either a single or multiple

schemas.

Microsoft provides storing XML documents as CLOBs. But, unlike IBM

DB2 Extender, no extra tables are provided for indexing mixed content data.

In SQL Server, the relational database schema is constructed from XSD,

which makes it difficult to query the XML data from other resources. SQL

Server XML side can not be applied to other DBMSs such as DB2 or Oracle.

Consequently, each database vendor has to carry out special research for the

development of XML support. Solutions are dedicated to the vendor’s

products and can not be used in other products. Therefore, many research

efforts are needed to leverage and utilize relational database and XML

technologies and their advantages.

3.3. Rebuilding XML from RDB

Storing XML documents into relational databases makes use of relational

database management systems facilities, (i.e. multi-user access, data

integrity, security, crash recovery) and makes use of its high potential query

language SQL. Using original XML document after the mapping process

will be out of use if any updating is done on the document. This makes

rebuilding of XML documents from relational databases is equally important

as a big deal. The rebuilding process raises a lot of issues to be considered,

such as: 1) Reserving the structure of the original document, including nodes

order and relationships when efficient labelling methods are used for

rebuilding (i.e., parent-child, ancestor-descendant and preceding-following

relationships), 2) Making sure that all document contents are stored

 52

(elements, attributes, comments … etc), 3) The rebuilding process should be

efficient for the entire document or some parts of it.

These rebuilding solutions depend on the method used for mapping, and the

way of labelling the contents of XML document in relational database.

3.4. Comparison of Mapping Approaches

Table 3.1 and Table 3.2 show a comparison between some procedures of

mapping of XML documents into relational database. The bases that are used

for comparison are: schema-less or schema-based, number of tables used in

relational schema, recursive consideration, and the query language (XPath or

XQuery) used for retrieving the data. Mapping could be classified also

according to the method used for labelling XML documents because the

efficiency of the labelling method affects the performance of querying and

updating documents' contents. Table 3.2 reviews some methods presented in

the literature for labelling XML document contents including elements and

elements attributes.

 53

Table 3.1: A summary of XML to RDB related works

Technique Schema/
Schemaless

No. of
Tables

Cost-
based

Preserve
Order

preserve
Constraints

Recursive
consideration

XML query
XPath/XQuery

(Shanmugasundaram et al., 1999) Schema > 2 yes no yes no XPath
XRel (Yoshikawa et al., 2001) Schemaless 4 no Yes No no XPath
Dewey (Tatarinov et al., 2002) Schemaless 4 no Yes No no XPath
XParent (Jiang et al., 2002) Schemaless 4 no Yes Yes no N/A
(Zhang and Tompa, 2004b) Schemaless > 2 no yes yes no XQuery
ORDPATH (O’Neil et al., 2004) Schemaless 2 no Yes Yes No XPath
ShreX (Amer-Yahia et al., 2004) Schema > 2 No Yes No no Partial XPath

RELAXML (Knudsen et al., 2005) Schema > 2 yes yes no no N/A
SPIDER (Fujimoto et al., 2005) Schema 4 yes Yes yes no XPath

(Atay et al., 2007b) Schema > 2 yes yes yes yes N/A
LegoDB & FleXMap (Ramanath, 2006) Schema > 2 yes No No yes XPath
XShreX (Lee et al., 2006) Schema > 2 yes Yes Yes yes XPath

(Soltan and Rahgozar, 2006) Schemaless 2 no Yes Yes No N/A

Oracle interMedia Text, 2006 Schemaless
/Schema

1 no Yes yes - XPath, XQuery

DB2 Text Extender, 2006 Schemaless
/Schema

1 no Yes No - N/A

XTRON (Min et al., 2008) Schemaless 6 no Yes Yes No Partial XQuery

 54

Table 3.2: A summary of XML labelling methods

Technique Name Advantages disadvantages
(Li and Moon,

2001)
Interval encoding based
on the number of words Partially solves dynamic update problem Relabelling of many nodes is needed in case of

inserted data size exceeding reserved space

(Tatarinov et al.,
2002) Global order label It can help in answering XPath queries such as

following and following-sibling.

All nodes of higher label than inserted node
must be relabelled. It is difficult to answer

ancestor-descendant relationship

(Tatarinov et al.,
2002) Local order label Only the following siblings of the inserted node

need to be relabelled.

Just Sibling nodes following inserted node must
be relabelled. Maintain parent-child relation is

not easy.
(Tatarinov et al.,

2002) Dewey order label It is easy to maintain parent-child and ancestor-
descendant relation

Sibling nodes right to the inserted node and
their descendant must be relabelled

(Torsten, 2002) Pre-order post-order It minimizes the searching area within the
document to accelerate XPath location step

All following nodes are needed to be relabelled
after an insertion of new node. So, an insertion

cost depends on the location where the new
node is inserted.

(O’Neil et al.,
2004) ORDPATH

It provides an ability for nodes insertion without a
cost to relabel any existing node. Also it reserved

parent-child relation

Many nodes need to be relabelled after the
reserved space is used up.

It fails in performing path and semantic search

(Wu et al., 2004) Prime number labelling

It is easy to identify ancestor-descendant
relationship as it depends on whether their labels
are divisible or not. Also insertion of new node

and giving it prime number is easy.

- Large space size since candidate node
label is self-label product from the root
to node.

- To reflect document order, they use
simultaneous congruence value based
on Chinese Reminder Theorem. And
these value need to be re-calculated is
considered time consuming.

- Insertion between parent and child
nodes is not supported.

 55

Technique Name Advantages disadvantages

(Kobayashi et al.,
2005)

Variable Length Endless
Insertable (VLEI Code)

Parent-child and ancestor-descendant relationship
are reserved. It reduces insertion cost since

relabelling it not needed. Using octal number with
“9” delimiter reduces the space needed for

labelling.

Using octal and “9” delimiter instead of “.” As
character reduces the space but increases the
time for relabelling since it as Dewey without

space

(Soltan and
Rahgozar, 2006) Cluster based order

It is easy to maintain parent-child and ancestor-
descendant relation. Also it decreases the # of

records in the table

All sibling cluster right to the inserted cluster
and their descendant must be relabelled

(Chung and
Jesurajaiah, 2005)

Dynamic interval-based
labelling

Parent-child and ancestor-descendant relationship
are reserved. It solves partial insertion and

updating issues.

Still some nodes need to be relabelled if no
space available at the position of insertion. Also,

extra space is needed for identifying each
element. The querying process becomes high

when the label is too long

 56

3.4.1 Advantages and Disadvantages of Previous Approaches

Schema-less centric techniques reviewed above do not require an XML DTD

or XML Schema. Present proposals depend on XML document's structure to

manage the mapping process. In such approaches, XML document is entirely

stored as a large solid object data type (CLOBs, BLOBs1 for example).

Another way is to map the tree or graph of the XML document generically

onto predefined relations. These approaches depend on using a long-

character-string data type, such as CLOB in SQL, to store XML documents

or fragments as texts in columns of tables. The advantages of these

approaches are: (1) They could provide textual fidelity since they preserve

the original XML at the character string level, and (2) there is no need for an

XML schema in the storing process. The drawbacks of these methods are:

(1) They can not make use of the XML Markup structural information, (2)

they don’t take into account the query workload while constructing the

relational schema, (3) the XML document structure is not preserved, and (4)

it is difficult to deal with huge XML documents.

Schema centric techniques need XML schema to develop the relational

schema. Such techniques need to create a relational schema to store the

XML schema. The created schema is used during and after shredding the

XML documents. The data that is captured from the XML document is

stored in the created relational tables. The advantages of these techniques

are: (1) They restrict XML structure to the defined schema (i.e. assign and

use of Markup elements and attributes according to the defined schema), (2)

they enforce referential constraints, primary and foreign key relationships,

and (3) they simplify the mapping process because users are not involved in

addressing a new mapping language. But, the techniques reviewed above are

(1) all heuristic; (2) do not consider multiple possible relational mappings so

1 Are data types provided by most relational database vendors (e.g., Oracle interMedia Text,
DB2 Text Extender)

 57

as to choose the optimal one; (3) moreover, fixed shredding of XML

documents will lead to a loss of information from the original one, (Atay et

al., 2007b is an exception), (4) XML schemas are sometimes not available,

so there is a need to construct the schema first and then do the mapping. 5) A

reconstruction of database schema is needed as any change in the XML

schema happens, which makes it very expensive in this case. 6) Sometimes,

a large number of relations need to be created depending on the XML

schema; consequently, a lot of joins are needed to retrieve XML document

information.

3.5. Summary

In this chapter, a review and discussion of related methods and techniques

for mapping XML documents into relational database have been presented.

Maintaining document structure and reserving nodes' order within XML

documents are too important as in document-centric documents (i.e. books,

emails). Nodes labelling is another issue in mapping XML document into

relational database, since relational database structure is an unordered tabular

form, and XML document has a hierarchically ordered structure by nature.

Some labelling methods for XML documents contents have also been

discussed in this chapter.

The discussion shows that most of the labelling methods are concerned with

the increase of query performance, but they ignore or fail to achieve efficient

updating of XML document. The reason for that fail is a lot of elements and

attributes are needed to be overwritten in case new elements or attributes are

inserted into the document.

In general, transformation methods from XML document to relational

database should satisfy many requirements. The significance of each

requirement is application-dependant. In some applications it is extremely

 58

important to maintain order of nodes such as emails, books, journals and

documents. In other applications, such as bank transactions, sales order and

flight schedules documents, order is insignificant. Some of the requirements

that should be met are the following:

1. Maintain document structure without loss of information while
shredding.

2. Make the process of transforming a fresh document an easy task, and the
updating of an already transformed document done with a constant time
cost.

3. Ability to reconstruct the XML document or part of it from relational
database.

4. Ability to perform semantic search.

5. Preserve the ordering nature of XML data and its structure.

In next chapters, the mapping model (MAXDOR) and the labelling

technique introduced in this thesis will be represented. This model attempts

to meet some of these requirements which are not available in the literature

including the update problem.

 59

CHAPTER 4 MAXDOR MODEL

This chapter gives a full description of the proposed model introduced by the

author of this thesis. The new model is called MAXDOR for mapping XML

document into relational database. The description includes mathematical

concepts that are used in this model; the labelling method used to label XML

document and identify its content, the design framework used to maintain the

document structure, parent-child, ancestor-descendant, and siblings relations

among document contents. It also presents a set of algorithms for mapping,

reconstructing, updating and retrieving XML documents

4.1. MAXDOR Theory

Storing XML document into relational database means storing ordered,

hierarchical and structured information into an unordered tables. XML

manipulation is still facing some problems such as retrieving information,

updating data contents, concurrency control and multi-user access. These

problems can be overcome by using relational database to store, update and

retrieve XML documents contents. Labelling techniques are used in order to

preserve XML document structure, and the relations among its contents.

MAXDOR adopts the Global Labelling method with some modifications

(Tatarinov et al., 2002). Global Labelling is modified to make the cost of the

execution time of XML document updating constant, and to preserve parent-

child and ancestor-descendant relationships. The modified method uses

document structure information to guide the mapping process, Consequently

DTD or XML Schema information availability is not required.

 60

4.1.1 Theory Background

The hierarchy of XML document could be represented as a tree structure.

XML tree can clearly represent the relationships between nodes of document

content. Definitions 1 and 2 identify composite and associative relations

between XML document elements, both as parent-child and ancestor-

descendant relations. These relations help retrieve XML document contents

as regular XPath expressions, and optimize query process. More details are

given in section 4.2.4.

Definition 1: Composite relation

Given that f is a parent-child relation between X and Y, in away that f: X →

Y, and g is a parent-child relation between Y and Z, g: Y → Z, then the

composition h: g ○ f is ancestor-descendant relation between X and Z as h: X

→ Z, (Oosten, July 2002). Figure 4.1 illustrates this composite relation.

Definition 2: Associative relation

Suppose f is a parent-child relation between X and Y as f: X → Y, g is a

parent-child relation between Y and Z as g: Y → Z, and h: is a parent-child

relation between Z and W as h: Z → W, then the composition i: g ○ f is

ancestor-descendant relation between X and Z, j: h ○ g is ancestor-

descendant relation between Y and W, and K: (h ○ g) ○ f = h ○ (g ○ f) is also

ancestor- descendant relation between X and W, (Oosten, July 2002). Figure

 4.2 illustrates this associative relation.

 61

Where: P :: Parent, C :: Child, A :: Ancestor, D :: Descendant

Figure 4.1: Composite parent-child relations

Figure 4.2: Associative ancestor-descendant relations

Definition 3: An XML tree is a collection of many nested subtrees of depth

two. It can be denoted as follows:

∑∑
= =

=
n

i

m

j
jiST

1 1
 (4.1)

where:

 J = 1, 2, 3 … m represent the order of subtree number within ith level;

 I = 1, 2 …. n represents tree level number and 1 also represents the

tree root; and

 Sij represents a subtree structure and is denoted as

 (4.2)

 62

where:

 Eij represents the root of the subtree Sij

l1 represents number of text (X) in subree Sij

l2 represents number of attributes (A) in subree Sij

l3 represents number of elements (E) in subree Sij

Gi,z is a finite set of edges between Eij and its childs

representing parent-child relationship (l2+l3).

An XML document is a tree of nested elements, each element can have zero

or more attributes. There can only be one root element, which is called

document element. Each element has a starting and ending tag, closed by

angle brackets, with content in between:

<element>…content…</element>

The content can contain other elements, or can consist entirely of other

elements, or might be empty. Attributes are named values which are given

in the start tag, with the values surrounded by single or double quotations:

<element attribute1="value1" attribute2="value2">

One of the important characteristics of XML document is 'well-formed'. A

well-formed XML document conforms to some rules, such as:

• Having only one root element.

• All start tags have matching end tags.

• Elements must be nested properly.

• Attribute values must always be quoted.

• Tags are case sensitive.

These restrictions on XML document structure makes shredding process and

storing of XML document in relational database easier.

 63

Definition 3 moves the organization of XML document, from being a tree of

multi-dimensional way with arbitrary depth and width, to a tree structure of

depth two. The resultant tree is unbounded fan-out at first level and fixed

fan-out at the second level. The first level can be represented in relational

database as tuples (i.e. rows) and the second level can be represented by

fields (i.e. columns).

The processing and handling XML content is very important in optimizing

data updating and retrieval. The search space is reduced into a subtree

instead of working with the entire document tree. Consequently, definitions

4 and 5 given below make it possible to deal with an XML document as a

dynamic-sized partition.

Definition 4: A dynamic fragment (shred) df(i) is defined to be the attributes

and text (i.e. child leaves) of the subtree i of the XML tree plus its root ri-1,

as follows:

df(i) = (Ai, Xi, ri-1) (4.3)

where:

Ai is a finite set of attributes in the level i

Xi is a finite set of text in the level i.

ri-1 is the root of the leaves in level i.

Definition 5: The root of the fragment (shred) is the node that has an out-

degree more than one.

Definition 6: A multiple linked list is a data structure in which each node

has its data and contains links to the preceding node, the following node, and

to the parent node.

 64

Multiple linked lists give the ability to access its content in different

directions, and to insert a new node in constant number of operations. This

makes it possible to update document in contact time cost, and efficiently

retrieve preceding sibling element, following sibling, and parent-child. But

more space is needed to create this type of linked list than single and double

linked list. This issue is considered as a drawback for multiple linked list

over single and double linked list.

Figure 4.3 gives an overview on the multiple linked list and the relations

between its nodes.

 ♦
 ♦ A ♦

Parent

 ♦ ♦ ♦
♦ C ♦

 ♦ B ♦
 ♦ D ♦

left sibling origin Right sibling

Children nodes

Figure 4.3: Multiple linked list over view

4.2. Mapping Framework

The mapping framework includes an algorithm to map XML documents into

relational database and an algorithm to reconstruct XML documents from

relational database. It also includes a method for updating stored XML

document in relational database and querying and retrieving stored data from

relational database. User’s queries in XQuery or XPath languages are

transformed into SQL statements, and SQL results are constructed into XML

 65

data format. Our approach considers well formed XML documents, which

are shredded and decomposed into elements and attributes, and then these

elements and attributes are inserted into the relational database tables. It does

not consider the XML schema for the following reasons:

• Many applications need highly flexible XML documents whose

structure is not easy to define by DTD or fixed schema. Therefore,

schema-less approach is better to deal with such XML documents.

• It is not practical to design many candidate relational schemas for all

potential XML data which may have different XML schema.

4.2.1 Labelling Method

Four Dimensional Links (FDLs) are used to maintain the XML document

contents. FDLs’ uses a global labelling approach that gives labels for XML

elements and attributes. A unique label is given for each element and

attribute. The sequence of label is not essential as (Tatarinov et al., 2002;

Soltan and Rahgozar, 2006). Point out, an initial pre-order traversing for the

XML document is performed to assign a label for each element or attribute.

No re-labelling is needed for XML document elements and attributes

(tokens) in case of adding new element or attribute. In contrast (Tatarinov et

al., 2002), (Torsten, 2002), (Soltan and Rahgozar, 2006), and (Torsten et al.,

2004); proved the reverse, all tokens that follow the new inserted token

should be relabelled. In pre-order, post-order two labels are to be updated. In

order to achieve this objective, FDLs uses the following format to identify a

token:

- Token (tokenID, leftID, parentID, rightID, prevID)

- tokenID is a unique label given to identify each token.

- leftID (Left-sibling) is the tokenID of the preceding sibling token.

- parentID (Parent) is the tokenID of the current token parent.

- rightID (Right-sibling) is the tokenID of the following sibling token.

 66

- prevID is the tokenID of the previous token of the current token in

the document structure.

Figure 4.4 shows an example of FDLs labelling method for XML tree

structure and identifies the relationships between its contents.

The tokenID and parentID are used to maintain the parent-child and

ancestor-descendant relationships, while leftID and rightID together with

tokenID are used to maintain elements and attributes order as siblings and

brothers relationships within the documents structure.

Figure 4.4: A tree representation for XML document

A fixed relational schema consisting of three tables is used to store XML

documents' contents and their structure. The first table is called "documents

table”; it preserves XML documents information. The second table is called

"tokens table”; it preserves XML documents contents and structure. The

third table is called “XpathQuery table”; it is a temporary table used to

 67

preserve token paths for a desired XPath expression from a document’s root

down to the desired token.

4.2.2 Relational Schema

This section gives a description of the relational schema used in FDLs,

which consists of the following tables:

1. Document master table: It is called "documents table". This table keeps

information about documents themselves; its minimal structure is:

Documents(documentID, documentName, Header, docElement,

schemaInfo, maxTokenId, XpathCount)

a. DocumentID is a unique ID generated for each document.

b. DocumentName is the external name for XML document.

c. Header is used to keep document header which specifies document

encoding.

d. SchemaInfo keeps the document’s schema if it exists for documentation

purpose.

e. DocElement represents the document's root.

f. MaxTokenId represents the number of tokens in the document (i.e. total

number of elements and attributes). It is used for future insertion, since

a new inserted token is given a new ID following the last token number

given in the document.

g. XpathCount keeps the number of paths created for a specified query.

2. "Tokens table" A table to store the actual content and structure for all

documents. Documents will be shredded into pieces of data called

tokens. Each document element, or element attribute will be considered

as a token. The “tokens table” will have the following structure:

 68

Tokens(documentID, tokenID, leftID, parentID, rightID, treeLevel,

prevID, tokenName, tokenValue, tokenType)

a. TokenID field is the primary generated ID for each token.

b. DocumentID field is a foreign key linking the “tokens table” with the

“documents table” to achieve referential integrity constraint.

c. LeftID (left-sibling) field keeps the ID of the left sibling token of current

node. It is used to preserve tokens’ order and document's structure.

d. ParentID field keeps the ID of parent’s node. It is used to preserve

parent-child and ancestor-descendant relations.

e. RightID (Right-sibling) field keeps the ID of the right sibling token of

current node. It is to preserve the document's structure and tokens’ order.

f. PrevID field keeps the ID of the previous token in the document

structure.

g. TreeLevel field reserved the token level in the document or tree. It is

starting from 1 for document element and increases by 1 for the nested

element.

h. TokenName field is the tag name or the property name as found in the

original XML document.

i. TokenValue field is the text value of the XML tag property.

j. TokenType field is used to differentiate between elements and attributes.

(1 = element, 2 = attribute).

3. “XpathQuery table”: A dummy table that is used to store all tokens

involved in desired XPath expression. This table will have the following

structure:

XpathQuery(documentID, XpathID,tokenID, TreeLevel, ParentID,

tokenName, TokenValue, TokenType)

 69

a. DocumentID field is a foreign key linking the “XpathQuery table” with

the “documents table” to achieve referential integrity constraint.

b. TokenID field is the primary generated ID for each token.

c. ParentID field keeps the ID of parent’s node. It is used to preserve

parent-child and ancestor-descendant relations.

d. TreeLevel field reserved the token level in the document or tree. It is

starting from 1 for document element and increases by 1 for the nested

element.

e. TokenName field is the tag name or the attribute name as found in the

original XML document.

f. TokenValue field is the text value of the XML tag property.

g. TokenType field is used to differentiate between elements and attributes.

(1 = element, 2 = attribute).

Figure 4.5 represents the Entity-Relationship (ER) diagram for MAXDOR

model showing the entities and the relation types connecting them. While

Figure 4.6 represents the relational schema used in MAXDOR model and

shows the three tables (i.e., “Documents table”, “Tokens table”, and

“XpathQuery table”), their attributes and primary keys.

 70

Figure 4.5: The entity-relationship diagram ER of MAXDOR model

docElement

maxTokenID

XPathCount

documentID

documentName

schemaInfo

DocumentID

tokenID

leftID

RightID

PrevID

treeLevel

tokenName

TokenValue

TokenType

ParentID

treeLevel

tokenName

TokenValue

DocumentID

PathID

XPathID

TokenType

ParentID

Tokens XpathQuery Has

n1
n n

Documents

Contains Contains

11

 71

- Documents(documentID, documentName, docElement, maxTokenId,
maxPathId, schemaInfo)

- Tokens(documentID, tokenID, leftID, parentID, rightID, treeLevel,
prevID, tokenName, tokenValue, tokenType)

- XpathQuery(documentID, XpathID, tokenId, TreeLevel, ParentId,
tokenName, TokenValue, TokenType)

Figure 4.6: Relational schema

4.2.3 SAX-Based Approach

SAX parser (Megginson, 27-April 2004) is used for parsing XML

document in order to store it in relational database. It is used instead of

DOM (Document Object Model) to deal with large XML documents. SAX

parses XML document as a sequence of events (i.e., startDocument,

endDocument, startElement, endElement … etc), in the contrary of DOM

that constructs the whole document tree (in memory) first and then parses it.

DOM has an advantage over SAX that it offers XML update, but SAX

provides XML for read only. In our approach updating XML contents is

provided over the data stored in relational database and not on the XML

document itself.

4.2.3.1 Mapping XML Document to Relational Database Algorithm

In this algorithm, the XML document is scanned once and is shredded into

tokens. Each token represents one element or an element attribute in the

document. The hierarchical structure of XML document imposes the use of a

stack data structure. The stack is used to preserve element information that

establishes links between sibling elements. These links (ParentID, leftID and

rightID, prevID) are used to preserve document structure and the order of

elements within the document.

 72

The system automatically assigns each document a unique identification

(DocumentID). During document scanning, maximum token identification is

automatically generated for each new token. And any new inserted element

or attribute will be assigned a new token ID following the maxTokenID

value.

A document is scanned sequentially as tree structure in pre-order traversal.

And the generated elements and elements' attributes are assigned token IDs

in that order. As the document scanned sequentially, all descendant elements

are pushed into the stack buffer formulating a full path from the document

root (i.e. document element) going down through descendant element until

reaching leaf nodes.

Attributes of elements are written directly to the “Token table”, since they

are leaf nodes listed in order at the starting tag of an element, and their

relations (Parent-child, preceding-sibling, and following-sibling) are easily

formulated at this stage. The left-sibling of the first attribute is assigned zero

identifier. While the right-sibling and left-sibling links between element

attributes are assigned incremental identifiers as a new attribute is caught.

The right-sibling of the last attribute is assigned zero identifier.

The stack reserves information of elements in order to create the links

between sibling elements. A right-sibling of the current element can not be

assigned until the next sibling is caught, which can not be done until all the

descendant elements of the current element are scanned. Once the right

sibling of an element is caught, or an element whose tree level is less than

the element’s level which is found at the top of the stack, all elements in the

stack will have tree levels. This is greater or equal to that element level

which popped from the stack and the appropriate links are established for

these elements. Finally, the new element is pushed to the stack.

Stack size depends on two factors:

 73

1- The depth of the document; stack size is directly proportional in this case

to the document depth.

2- The length of elements' names and values. Also in this case, stack size is

directly proportional to the length of elements’ names and values.

Stack size can be managed as follows: In most document-centric XML,

document depth is less than that of data-centric document, while elements'

names and elements' values are larger than that of data-centric document.

Experiments in Chapter 6 applied to selected data sets will give more

clarification on this statement.

An implementation of this algorithm is described in Chapter 5 as XML2Base

class, and experiments on different data sets are done in Chapter 6 to test the

algorithm usability and performance.

4.2.3.2 Rebuilding XML Document from RDB

The rebuilding process of XML document from relational database is needed

for the following reasons:

1. To make sure that the mapping method, used in the research, efficiently

maintain the entire XML document without losing information.

2. To update document content after being mapped into relational database;

updating takes place in the relational database. So, the original XML file

become obsolete; i.e. not reflecting the current state of the content of

database table.

For the preceding factors, a rebuilding algorithm is used to:

1. rebuild the entire XML document that can be exchanged or exported by

the user somewhere, or

2. rebuild part or some parts of the document as a result of user queries

using XPath or XQuery that are translated into SQL statements retrieved

by relational database system.

 74

Reconstruction or rebuild algorithm depends on the labelling method and the

relational schema described in previous sections used for MAXDOR model.

It manages the rebuilding process in two ways:

1. Fresh document or un-updated (unchanged) document: In this case, the

document is built as it was read from relational database, and in the

sequence it was stripped in. A stack data structure is used to reserve

ending tags of ancestor elements. As a starting tag of the element and its

attributes (if it exists) are written directly to the output XML document

file. The algorithm uses treeLevel in order to manage nested elements.

As new element is identified to be next element, its treeLevel is

compared to the top element of the stack; if it is less than the top of the

stack, then pop the stack, write the popped element to the output file,

write elements' closing tag, until the top of the stack becomes less than or

equal to the new element. Finally, the new element closing tag is pushed

into the stack. The process is repeated until building the entire document

is completed.

2. Updated document: to manage document fragmentation that resulted

from updates (insertion and deletion) on a document, three stack data

structure are being used because no relabeling is allowed for document

contents after insertion to reserve element order. These stacks are:

I. A stack for pending elements: It is used to hold elements that can not

be written directly to the output file since new inserted elements are

assigned labels not in the same order of their predecessor elements in

the document structure. Those elements should be written to the

output file before their new successors after pended elements on the

stack.

 75

II. A stack for element attributes: It is used to manage element

attributes in their logical order to be written in the same order as their

order is in the element starting tag.

III. A stack for nested elements closing tags: It is used to reserve

ancestors' closing tags because processing goes from parent to child.

If a new element is caught and its treeLevel is less than that of the

element treeLevel in the stack, then all elements of treeLevel greater

than that or equal to treeLevel of the new element pop and their

closing tags are written to the output file as XML document.

Whenever a new element is caught, and before writing it to the output file,

its attributes are popped from the attributes' stack and appended to it.

An implementation of this algorithm is described in Chapter 5 as

xbsXML2Base class. In addition, some experiments on reconstructing XML

documents from relational database are conducted in Chapter 6.

4.3. Updating XML Document Contents

4.3.1 Insertion of New Token

This section gives more evidence that the method used in this research

makes insertion time cost of new token, anywhere in the document, constant;

this, one of the main objectives of the research is achieved. The insertion

process can be clarified by the following rules:

a. Insertion of a new token to the left of a subtree, left to S1:

1) The new token T gets a label tokenID following the maxTokenID in

the document. TokenID(T) = maxTokenID + 1.

2) RightID(T) = RightID(S1)

3) LeftID(T) = 0

4) LeftID(S1) = tokenID(T)

 76

5) ParentID(T) = ParentID(S1)

6) prevID(T) = prevID(S1)

7) PrevID(S1) = tokenID(T)

b. Insertion of a new token to the right of a subtree, right to S1:

1) The new token T gets a label tokenID following the maxTokenID in

the document. TokenID(T) = maxTokenID + 1.

2) LeftID(T) = TokenID(S1)

3) RightID(T) = 0

4) RightID(S1) = tokenID(T)

5) ParentID(T) = ParentID(S1)

6) prevID(T) = prevID(followS1)

7) PrevID(followS1) = tokenID(T)

c. Insertion of a new token T as a leaf and child of S1:

1) The new token T gets a label tokenID following the maxTokenID in

the document. TokenID(T) = maxTokenID + 1.

2) LeftID(T) =0

3) RightID(T) = 0

4) ParentID(T) = TokenID(S1)

5) prevID(T) = tokenID(S1)

6) PrevID(followS1) = tokenID(T)

d. Insertion of a new token T as a parent of S1:

1) The new token T gets a label tokenID following the maxTokenID in

the document. TokenID(T) = maxTokenID + 1.

2) LeftID(T) =LeffID(S1)

3) RightID(T) = RightId(S1)

4) ParentID(T) = ParentID(S1)

 77

5) TreeLevel(T) = TreeLevel(S1)

6) prevID(T) = prevID(S1)

7) PrevID(S1) = tokenID(T)

8) LeftID(S1) = 0

9) RightID(S1) = 0

10) Look for all descendant and update treeLevel by 1

Figure 4.7 gives an overview of inserting new token (i.e. element or

attribute) in the XML document. In the figure, the new element “subject” is

inserted between “author” (labelled [4, N, 2, 6]) and “title” of label [6, 4, 2,

N]. The new element is given tokenID equals to maxTokenID + 1, which is

11. And the token links are updated as follows:

1) rightID(subject) = rightID(author)

2) leftID(subject) =leftID(title)

3) rightID(author) = tokenID(subject)

4) leftID(title) = tokenID(subject)

5) prevID(subject) = prevID(title)

6) prevID(title)= tokenID(subject)

7) ParentID(subject) = ParentID(title)

 78

Figure 4.7: Inserting new token in XML tree

As seen from the previous example, there is no need for relabeling the tokens

that follow the inserted token "subject". All tokens' labels in the document

remain as they were before the insertion process. While in (Tatarinov et al.,

2002) (Torsten, 2002) (Soltan and Rahgozar, 2006), all the following nodes

of new inserted element “subject” must be relabelled, and the cost of

relabeling depends on the location of the new inserted element. The highest

cost is gained when the insertion happens at the beginning of the document,

and the lowest cost is gained when the insertion takes place at the end of the

document.

An implementation of this algorithm is described in Chapter 5 as dbxTokens

class. And an evidence of the previous claim that insertion of new tokens

anywhere in the document is done on constant time cost is shown as the

experiments in Chapter 6 demonstrate.

 79

4.3.2 Deletion of a Token:

Deletion of existing tokens from any location or level in the XML document

can be done also with constant cost. This deletion process follows the

following rules:

Note: The maxTokenID field will not be changed (i.e. not decremented),

since no relabeling of the tokens within the document will be done.

a. Deletion of a token T between two siblings, S1 and S2:

1) RightID(S1) = RightID(T)

2) LeftID(S2) = LeftID(T)

3) prevID(s2) = prevID(T)

b. Deletion of a token from the left side of a subtree, to the left of S1:

1) LeftID(S1) = 0

2) prevID(followT) = prevID(T)

c. Deletion of a token from the right of a subtree, to the right to S1:

1) RightID(S1) = 0

2) prevID(followT) = prevID(T)

d. Deletion of a complex element:

Deletion of a subtree can be handled as a single token by one of the previous

three cases, but all its descendants should also be deleted.

4.4. Retrieving and Querying XML Data Stored in

Relational Database

Mapping XML documents into relational database is not just for storage and

back-up. This data is stored so as to be efficiently updated and retrieved. In

our proposed method, the XML Path Language (XPath) is used as a source

tool for retrieving and querying the XML data stored in the relational

 80

database. The XPath expressions will be translated into its equivalent SQL

statements in order to get the results from the relational database.

“XpathQuery table” is used as a temporary table to isolate XPath query

results at run time from the database main tables. Its content is the result of

walking through the tree side by side according to the XPath command,

filtered as required, and getting the records (nodes) while doing so. This

method has minimal cost, since in path methods we have to select the

records too. It is different from Path table methods since those approaches

building a table of all expected queries in the DBMS during the mapping

time will result in increasing the database size (O'Neil et al., 2004; Jiang et

al., 2002; Yoshikawa et al., 2001),.

In the following sub-section, a discussion for XPath axes (i.e. parent, child,

ancestor, descendant, following, following-sibling, preceding, and

preceding-sibling), translating of XPath expression to SQL statements, and

building their results in XML format are also presented.

4.4.1 XPath Axes

XPath has mainly 8 axes used for retrieving XML document content. Figure

 4.8 gives a clearer view of these axes. Consider G as a candidate node, and

the nodes:

• Node B is a parent of G.

• Nodes H and I are children of G.

• Nodes A and B are ancestor of G.

• Nodes H, I and J are descendant of G.

• Nodes C, D, E and F are preceding of G.

• Nodes C and E are preceding-sibling for G.

• Nodes K, M, L and N are following for G.

 81

• Nodes K and M are following-sibling for G.

Here is an explanation of how MAXDOR labelling method supports these

axes. Given x and y as nodes in the XML document n:

I. Parent and child axes: node x is a parent of node y if and only if its

tokenID is assigned as parentID of node y and its level is greater than

its parent level by 1.

Figure 4.8 Nodes relationship in XML tree structure

 82

D
oc

um
en

t I
D

To
ke

nI
D

Pa
re

nt
ID

Le
ftI

D

R
ig

ht
ID

To
ke

nN
am

e

To
ke

nV
al

ue

To
ke

nT
yp

e

n 1 0 0 1 x B 1

n 6 1 4 10 y G 1

II. Ancestor axis: All ancestor nodes of node x can be retrieved as nested

parent axes starting from node x in reverse order. All ancestor nodes of

x are formulated and located on the same path.

III. Descendant axis: All descendant nodes of a node x can be retrieved as

nested parent-child axes. They are retrieved recursively from left to

right, as each of its children is a subree. The left most child of x has

leftID equal to zero. Move right until the right most child having

rightID = 0.

IV. Following axis: All nodes following a node x can be retrieved as

follows:

1. If RighID of x is not equal to zero, then the right node of x is

considered as a starting node to be retrieved, and retrieve all of its

following nodes. The process applies in the same way building the

whole document, but the resultant XML document may not be well-

formed.

2. If RightID of x is equal to zero, then find the node whose prevID

equals the ID of node x. If it exists, consider it as the starting node to be

retrieved and retrieve all of its following nodes. As in case 1, the

process applies to building the whole document, but resultant XML

document may not be well-formed

 83

V. Preceding axis: All preceding nodes of a node x can be retrieved as

follows:

1. The process goes through the candidate node path starting from it up

to the root node (i.e., node x and its ancestor nodes in reverse order),

check the left-sibling of each parent. If its leftID is not equal to zero

then push it to the stack.

2. The parent nodes starting from the top are popped from the stack, and

their preceding-sibling nodes are retrieved along with their descendant

nodes according to cases VII and III.

VI. Following-sibling axis: All following-sibling nodes of a node x that has

the same parent as x can be retrieved from rightID link, starting from

rightID node of node x, as a sequence, until the right most sibling node(

with rightID equals to zero) is reached.

VII. Preceding-sibling axis: All preceding-sibling nodes of node x, which

has the same parent as x, can be retrieved from leftID link, starting from

leftID node of node x, as a sequence, until the left most sibling node

(with leftID equals to zero) is reached. In this case a stack data structure

can be used to retrieve preceding sibling from left to right instead of

right to left.

VIII. Attribute Axis: All attributes of a node x can be retrieved as an attribute

whose parentID equals X's tokenID. To retrieve them from left to right,

start by the attribute of leftID= 0, and move right by following rightID

links until the right most attribute is reached.

Other Axes, as ancestor-or-self axis and descendant-or-self axis can be

processed as ancestor or descendant axes including the context node.

 84

4.4.2 XPath Syntax:

XPath uses path expression to select a node or a set of node from the XML

document by following a path or a step. According to W3C (Berglund et al.,

2007), this selection can be performed as follows:

1- Nodes selection: This selection can be done through some expressions

which appear in Table 4.1.

Table 4.1: XPath expressions (Berglund et al., 2007)

Expression Description Comments

nodename Selects children nodes of the
named node

/ Selects nodes from the root
node

This expression is considered
as absolute expression

// Selects document nodes from
the current node no matter
where they are

This expression is considered
as relative expression

. Selects the current node
.. Selects the parent of current

node

@ Selects attributes of the
current node

In this case retrieving XPath results can be dealt with as follows:

a- Expression of one step like /books or //name, the process can directly use

the tokens table as:

SELECT t1.* FROM tokens as t1
WHERE t1.tokenName = x
And t1.documentId=n;

Where x is the specified token name and n represents the current document

ID. But if the expression has multi step as /books/book or

//book/authors/author, then nested inner joins on “Tokens” table and relation

 85

between “XPathQuery” table is needed to retrieve the desired tokens which

have this path.

b- For “.” expression to select current node, the SQL statement for this

expression is:

SELECT t1.tokenName, t1.tokenValue FROM tokens as t1
WHERE t1.tokenID = x And t1.documentId= n;

Where x represents the current token ID

c- For “@” expressions, the SQL can be:

SELECT t1.tokenName, t1.tokenValue FROM tokens as t1, token AS
t2 WHERE t1.parentId = t2.tokenID
And t2.tokenID = x
And t1.documentID = n
And t1.tokenType= 2;

2- Path expression including predicates: Predicates in XPath are used to find

a specific node, or a node that has a specific value. Usually, predicates are

surrounded by square brackets. Table 4.2 shows some path expressions that

use predicates. In this case retrieving XPath results can be dealt with as

follows:

a- For path expressions number 1 and 2, a nested inner joins between

“XPathQuery” table and “Tokens” table are used to retrieve the desired

elements that have this path. Left link or right link of selected tokens is also

retrieved. In expression 1, leftID should be zero for the selected token, while

in expression 2 rightID should be zero for the selected token. The following

two SQL statements represent expression 1 and expression 2 respectively.

 86

Table 4.2: Path expressions with predicate

No. Path expression Description

1. /books/book[1] Select the first book element that is a
child of books element.

2. /books/book[last()] Select the last book element that is a child
of books element.

3. /books/book[last()]/isbn Select the isbn element of last book
element that is a child of books element.

4. /books/book[isbn=’42516
8’]/title

Select the title element of book element
which its isbn = ‘425168’ and is a child of
books element

b- For path expressions number 3 and number 4, the process goes for

expression 1 and 2, and after identifying the desired tokens. Then a selection

of tokens whose parent is in the selected set will be performed.

Where x represents the left part of “[“, and y represents the right part of “]”.

For both expressions 3 and 4 farther step is needed to identify the desired

child.

An implementation of mapping XPath expressions into SQL statements

algorithm is described in Chapter 5 as frmQuery class. And some

experiments on different forms of XPath expressions are conducted in

Chapter 6.

4.4.3 XML Sub-tree Reconstruction (Query's Result Translation to

XML)

A user query result could be a group of separated single elements, or

attributes or nested elements that can be consider in this case as a subtree. In

case of group of separated elements or attributes, a “starting tag” and

 87

“closing tag” can be used to group the results as a single level tree which

rooted by query result. This procedure helps in forming the result as a well-

formed document. In case the result is a nested element, it can be built the

same way as building an entire document, starting by the lowest level

element as a root node instead of the document element. In both cases, the

algorithm that is used for reconstructing XML document from relational

database can be used also for building queries' results from relational format

into XML format.

4.5. Chapter Summary

In this Chapter, a detailed description is given for the MAXDOR model. The

description includes: the theory used for this model and tree facilities for

representing and accessing XML document as the two structures are both

hierarchical and nested. The labelling method used in designing the

MAXDOR model is represented as Four Dimensional Links (FDLs), since a

multiple linked list is used in our case. The links are used for parent node,

left node, right node and previous node in the structure. Those links make

the insertion time cost of new element or attributes anywhere in the

document realized with a constant number of operations. Also the retrieving

process of document contents can be done smoothly as the relations between

its nodes are identified through those links. For example, left-sibling can be

identified by leftID, right-sibling by rightID, parent by parentID, complex

element by previous ID. The relational model used in the model is

introduced as Entity-Relational diagram and relational schema. As three

relational tables are used, two used to store document metadata, which are

“documents table” and “XpathQuery table” while the third one “tokens

table” is used to store document contents. A description of mapping XML

document into relational database algorithm has been given with the data

structure that is used to optimize the process. The rebuilding of XML

 88

document from relational database algorithm has been presented with two

options. The first option is to reconstruct updated documents and the other to

reconstruct documents that are updated within insertion or deletion

processes. The update of XML document contents in relational database

include inserting, deleting and allocating processes algorithm have been

presented, and operations on different locations in the document have been

done to show that the updating time cost is constant. At the end, a querying

and retrieving document contents algorithm has been presented with some

XPath axes and XPath expressions translated into SQL statements.

An implementation of MAXDOR model will be offered in the next chapter,

(i.e. Chapter 5). This includes system architecture, the tools used, software

needed for implementation, classes implemented for the model, data

structure used for enhancing the model performance and the XML data set

used for testing.

 89

CHAPTER 5 SYSTEM ARCHITECTURE AND
IMPLEMENTATION

This chapter presents the system architecture, and implementation tools used

for evaluating the MAXDOR model. The chapter also presents the main

classes created to demonstrate the methodology for Mapping XML

document into relational database, Rebuilding XML document from

relational database, Updating the content of XML document stored in

relational database, and XPath-To-SQL query translation, and building the

result in XML format. Application on a case study is also presented. XML

data sets from selected XML bench marks and XML data repository will be

identified to be used for testing and evaluating the model. Finally, the

chapter concludes with a summary.

5.1. System Architecture and the Used Tools

5.1.1 System Architecture

System architecture consists of four main components each of which

represents one of the project requirements. Those components are:

1- Mapping XML document into relational database: the system loads

the XML document and parses it using XML SAX parser as a

sequence of events, shreds the document content into tokens, and

inserts these tokens into predefined relational database schema.

Detail of the relational schema has been given in chapter 4.

2- Reconstructing XML document from relational database: this

component goes through the relational tables and reconstructs the

requested XML document to check the method for lossless of XML

 90

document information in Part one or to exchange or export the

document to other location.

3- Updating XML document stored in relational database: by this

component, the user is given the facility to update the XML

document stored in relational database. Update includes: inserting

new tokens as element or element attributes, delete tokens or tokens'

re-allocation within the document, and modify tokens' name and

values.

4- Retrieving and querying XML document stored in relational

database: throughout this component, XPath queries are translated

into SQL statements. The resultant SQL statements are fired against

the database engine so as to retrieve XML data results. The retrieved

results are reconstructed as XML hierarchical format and returned to

the user. Figure 5.1 gives an overview of the system architecture.

The above listed components will be tested and evaluated in Chapter 6 for

the MAXDOR model described in chapter 4. The following points are taken

into consideration during system design; i.e. components of the system

should be:

• Testable against requirements - every requirement should be easy

to test.

• Structured – the system structure should be clear, read and its code

should be easy and understandable.

• Reusable – the system design should be reusable and repeatable.

5.1.2 Tools Used

The tools used in the project can be classified into:

 91

1- XML interface: both input and output documents are XML format and

relational database technology is a target tool for storing XML documents'

contents and structure; so, the relational database capabilities are used for

internal processing of data.

2- XPath or XQuery as source languages provided for users to represent their

requests. SQL query language is a target language used against relational

database to answer users’ queries. XPath is used for the following two

reasons:

FrmEditor

Updating Algorithm

Updating XML data

Load XML document

Relational database

XML rebuilding

Relational data

Base2XML

Stack Mediator

XML document

XPath Expression

Parse XPath Exp

Query mapping

XPath2SQL

SQL statement

Relational result

Reconstruct XML

XML document

Xml2Base Convertor
SAX Parser

XML mapping

Relational data

Relational database

Figure 5.1: MAXDOR Architecture

 92

• XPath is simpler than XQuery, and hence would be better to achieve

the objective of testing our model in current situation.

• Its structure is included in XQuery, so it is easier to be upgraded into

XQuery.

3- Visual Basic 6.0 programming language is used as a tool to create the

GUI and to implement the system components. It is used for the following

reasons:

• VB structure is simple, mainly as to the executable code.

• VB is easy for building graphical user interfaces.

• VB application is easily connected with Microsoft Access database.

4- Microsoft Office Access is used as a relational database management

system (RDBMS). It is used for the following reasons:

• It can be easily used with visual basic programming language.

• Access database can be easily sited on a website for access by remote

users. Simple screens can be built in Access, Data Access Pages. Or

it can be employed using Active Server Page (ASP) scripting.

5.2. System Implementation

5.2.1 Requirements for System Implementation

1- Microsoft Office 2003 or 2007 is required since we are using Microsoft

Access as the development DBMS for the system.

2- Microsoft Windows 2000 with service pack 3 (sp3), Windows XP, or

later, because Microsoft Office Access 2003 is used, and this is its minimum

requirement of the operating system.

3- Minimum hardware requirements are given in Table 5.1.

 93

Table 5.1: Hardware requirements for Microsoft Office 2003 (Corporation,

2009)

Computer and
processor

Personal computer with an Intel Pentium 233-MHz or
faster processor (Pentium III recommended)

Memory 128 MB of RAM or greater

Hard disk 150 MB of available hard-disk space; optional installation
files cache (recommended) requires an additional 200 MB
of available hard-disk space

Drive CD-ROM or DVD drive

Display Super VGA (800 × 600) or higher-resolution monitor

5.2.2 Classes of the MAXDOR Model

In the following sections a description of the main classes used for system

implementation is given. These classes are xbsXml2Base, xbsBase2XML,

dbxTokens classes and frmQuery.

5.2.2.1 XbsXml2Base Class

The data model used for the mapping algorithm uses the W3C's Simple

Application Program Interface for XML (SAX parsing) (Megginson, 2004).

A stack is also used to traverse the XML document. Each child of the

element is pushed to preserve and identify nodes' order, element siblings and

parent-child relationship. SAX parser fires actions on many events including

document start, document end, element start, element end, characters,

element attributes, and processing instruction. These events help in

shredding XML document and store its contents into relational database

tables. Four more links are added to token description, its parent ID, left

sibling ID, right sibling ID, and previous token ID in the document structure.

Left and right sibling IDs are used to make the time needed for future

insertion in the document constant since these IDs could be updated as new

 94

node or subtree is added or relocated in the document. Previous token ID

helps in rebuilding XML document with minimum cost because the

document is built in sequential order, on top-down bases, (i.e. moving down

through parent-child relationship and forward through sibling relationship).

A description of xbsXML2Base class is given below. The class takes XML

document as input and generates its relational database tables as output. It

mainly depends on the XMLSAX Contenthandler class (i.e. a custom class

implementing the IVBSAXContentHandler interface). Figure 5.2 shows the

state transition diagram for this class. Few private methods are added to the

class and their description is given below. The coding of the class is

presented in Appendix B.

 95

Figure 5.2: State transition Diagram for xbsXml2RDB class

The startDocument method is called just one time for each document. As it is

called by SAX parser, the relational database tables are prepared to receive

document information in “document table” and “tokens table”.

The three methods, startElelment, characters and endElement are called

back by SAX parser depending on the document contents and contents

sequences.

1- The startElement method is called by SAX parser whenever it

encounters an XML start tag as <book id=”bk210”>. The parser

gives tag name and the list of attributes if any. In this method, a stack

data structure is used to manage document structure and build

relations between document contents in our model.

 96

2- The characters method is called whenever text content is seen as

input in the document.

3- The endElement method is called whenever the corresponding end

tag </book> is seen. In this method, a return to previous level is

performed.

If SAX parser encounters Document end, it calls endDocument method. In

this method, all pending elements in the stack are inserted into “Tokens

table”.

The stack data structure in this class is used to preserve parent-child and

sibling relationships. The stack is used to hold the tokens' information of all

elements for one path of the document, (i.e., ancestors’ nodes of the current

node). And that path identifies the size of the stack since the path size

depends on the tree level or depth. In this case, the relation between the path

size and the stack size can be considered proportional, and may decrease the

performance of the method for documents with very deep levels.

5.2.2.2 XbsBase2Xml Class

The class is used to rebuild XML documents back from relational database

to create new XML document from scratch since original document contents

could be updated. The class depends mainly on two methods: DirectBuild

and BuildProps. Figure 5.3 shows the main processes of this class. A brief

description for these processes is given below and the coding of the class is

presented in Appendix B:

• The select document elements process is used to select the entire

candidate document elements from “tokens table”.

• ” Open output file” process is used to open an output XML file for

writing the candidate document contents in XML format.

 97

Figure 5.3: Rebuilding XML document from relational database state

diagram

• Buildprops method: This method is used to read all attributes and put

them on a stack for later use in a form of “attribute vectors”; each

vector corresponds to a unique element (i.e. the attributes parent) and

is composed of an ordered list of attributes in their original order.

• The Building Elements process: This is used to rebuild document

elements depending on the prevID and treeLevel for elements in

order to identify elements sequence and parent-child relation. The

element starting tag, its attributes (if any is found on the “attribute

vectors”), and value are written to output file. If the current element

has children, its closing tag will not be written out but put onto a

 98

stack till all sub-children are processed. The process uses a stack

called Clpending to temporarily hold the elements that can not be

written directly to XML file since newly inserted elements would

break the sequence order of the labels.

• The Bending EndTags process: This is used to write all bending

closing tags off the stack to the output files.

• The Closing output file process: This is used to close the output file

and terminates the building process.

5.2.2.3 DbxTokens Class

This class consists of three groups of subroutines for editing XML

documents: inserting, updating and deleting the tokens. Figure 5.4 shows

the state transition diagram for this class and the coding of the class is

presented in Appendix B.

The editing process starts by loading the XML document contents from

relational database using the “frmeditor”. When the document is loaded into

the editor and a candidate element is selected, any one of the following

processes can be performed:

I. Adding (i.e. inserting) new elements: Four different methods are used to

perform this process depending on the position of insertion which are

InsTagBefore, InsTagAfter, InsTagBelow and InsTagAbove. These four

methods are used to insert new elements as left-sibling, right-sibling, child

and parent respectively for the candidate element. The methods are different

since different links have to be updated depending on the position of

insertion. Insertion of new elements as a parent needs to update all

descendent tokens level of candidate element.

 99

II. Update element: Candidate element’s name and value can be updated in

this process.

III. Deleting selected token: This process is used to delete a candidate

element and its entire descendant tokens (if any).

Figure 5.4: State transition diagram for updating the XML document

IV. Adding an attribute: This process is used to add an attribute to the

candidate element.

V. Select candidate attributes for selected elements. In this process any one

of the following can be performed:

1- Add (i.e. insert) new attribute before or after the candidate

attribute.

2- Delete the candidate attribute.

3- Update the candidate attributes name or value.

 100

5.2.2.4 FrmQuery Form:

Executing XPath queries pass through four stages: validating XPath

expression, parsing XPath expression, generating “XPathQuery table”, and

building the results in XML tree format. Figure 5.5 shows the state

transition diagram for these main processes and the coding of the form is

presented in Appendix B.

Figure 5.5: Main processes of XPath expression Execution

A brief description of these processes is given below:

I. “Validate XPath expression” process is to ensure that the given XPath

expression conforms to XPath expression structure rules before parsing

it.

II. “Parsing XPath expression” process is used to parse and simplify the

XPath expression into multiple steps and identify relevant conditions in

order to create equivalent SQL statements. These SQL statements will

be used to generate the output into a temporary dummy table for the next

stage (i.e. cursors alternative).

 101

III. “Generate XPathQuery table process” is used to dynamically create

result subtree(s) on the fly using the records from the temporary table

generated on the previous step.

IV. “Show results process” is used to show the query results in two forms,

grid view and tree view. In grid view, the results of the query, (i.e.

XPathQuery table contents) are displayed in tabular format which shows

tokenIDs, parentID, token name and token value. While in tree view, the

results are shown in a tree-like format representing the XML structure.

5.3. Case Study

In this section, a case study is presented to illustrate the implementation of

MAXDOR model. Consider the sample XML document (i.e. books.xml) in

Figure 5.6. The hierarchical structure of XML document makes it possible

to represent it as a rooted, labelled tree. Figure 5.7 presents an XML tree for

the XML document in Figure 5.6. Our approach gives each node a global

label in pre-order traversal in the first scan while any new inserted token is

given an identification label following the last label used for the document.

This label can be taken from maxTokenID from “documents table”. So the

label of a token does not reflect its location in the document structure.

Consequently, a label, in our approach, is used to identify a token where

each token represents an element or attribute of the XML document. Other

researchers use a label to represent the structure of the contents of a

document and nodes order (cf. Tatarinov et al., 2002; Torsten et al., 2004;

Soltan and Rahgozar, 2006).

After mapping, a single record is assigned for this document in “documents

table”, for example with documentID = 1, as in Figure 5.8, and document

elements and elements’ attributes are represented as records in the “tokens

 102

table”, as shown in Figure 5.9. Each record gives a full description of an

element or element’s attribute and its structure.

<books>
 <book id="bk210" >
 <author id="a1" >M. John</author>
 <title>C++ </title>
 </book>
 <book id="bk211">
 <subject>Math</subject >
 <title> Calculus </title>
 <price> 45.50 </title>
 </book>
</books>

Figure 5.6: XML document

Figure 5.7: A tree representations for XML document

 103

documentID documentName docElement maxTokenID
1 Catalog Books 11

Figure 5.8: Documents table

After storing XML document content and structure in a relational database,

MAXDOR gives the ability to update document contents. Update includes

inserting new elements or elements' attributes, deleting elements or

attributes, modifying elements' names or values and modifying attributes

names or values in a way to keep the document in well formed condition.

The update is performed on the relational database version of the document.

Thus, there will be no need to keep the original XML document as it does

not reflect the contents of the relational database.

 104

do
cu

m
en

tID

to
ke

nI
d

le
ftI

D

pa
re

nt
ID

R
ig

ht
ID

pr
ev

ID

tre
eL

ev
el

to
ke

nN
am

e

to
ke

nV
al

ue

to
ke

nT
yp

e

1 1 0 N 0 0 1 books Null 1
1 2 0 1 7 1 2 book Null 1
1 3 0 2 0 2 3 id bk210 2
1 4 0 2 6 3 3 author M. John 1
1 5 0 4 0 4 4 id a1 2
1 6 4 2 0 5 3 title C++ 1
1 7 2 1 0 6 2 book Null 1
1 8 0 7 0 7 3 id bk211 2
1 9 0 7 10 8 3 subject Math 1
1 10 9 7 11 9 3 title Calculus 1
1 11 10 7 0 10 3 Price 45.50 1

Figure 5.9: Tokens table

Inserting new element: Inserting a new element can be executed in four

locations in reference to the selected element; these locations can be as a

child, parent, left-sibling or right-sibling. The following discussion shows

how to insert new “book” element between the two existing ones, (i.e. before

token # 7). Figure 5.10 shows the XML element "book”, Figure 5.11 reflects

the XML modification after inserting the new element. It is a complex

element (i.e. subtree) of one attribute and 2 simple elements. Subtree tokens

(i.e. elements and attributes) are assigned new IDs that succeed the last

assigned label in the previous shredding process for initial mapping or

element insertion. For example, the “Book” elements’ tokenID becomes 12,

and the “book id” elements’ tokenID will be 13, the “author” tokenID will be

equal to 14, while the “title” elements’ tokenID will be equal to 15. Figure

 5.12 shows the equivalent relational tuples for the "book" element and the

required updated links for this operation. The right sibling of token number 2

points to the new element which is 12 and the left sibling of node 7 points to

 105

the new element which is 12. The left sibling of the new element (i.e.

subtree root) points to the element whose TokenID equals to 2 and the right

sibling of the new element points to the element whose TokenID equals to 7.

PrevID of token 7 is changed to point to the last token in the new subtree

which is 15. And prevID of token number 12 points to token number 6.

Other tokens' links of the new complex element are shown in Figure 5.12.

<book id="bk106">
 <author>Mike</author>
 <title>Applied Geometry </title>
</book>

Figure 5.10: XML document element (subtree)

The process is trivial for updating selected element’s name or value as this

process does not involve updating of document structure. To delete selected

element, just update its left and right sibling links and ensure that all its

descendant tokens are also deleted.

 106

Figure 5.11: A tree representation for updated XML document

do
cu

m
en

tId

to
ke

nI
d

le
ftI

d

pa
re

nt
Id

R
ig

ht
Id

pr
ev

Id

tre
eL

ev
el

to
ke

nN
am

e

to
ke

nV
al

ue

to
ke

nT
yp

e
… … … … … … … … … …
… … … … … … … … … …
1 2 0 1 12 1 2 book Null 1
… … … … … … … … … …
1 7 12 1 0 15 2 book Null 1
… … … … … … … … … …
1 12 2 1 7 6 2 book Null 1
1 13 0 12 0 12 3 Id bk106 2
1 14 0 12 15 13 3 Author Mike 1
1 15 14 12 0 14 3 title Applied

Geometry
1

Figure 5.12: Updated “Tokens table”

 107

5.4. XML Data Sets Used for Testing the Model

In order to assess the usability and efficiency of our MAXDOR model, three

XML benchmarks are used: XML benchmark from Washington University

(Washington University, 2002), XMark benchmark (Busse et al., 2002) and

Michigan XML benchmark (Runapongsa et al., 2006). XML document

generator XMLgen from XMark is used to create documents of different

sizes using factors of the original one.

“Tree-bank” document is taken from Washington benchmark, “Auction

documents” from XMark, and “Xbench-TCSD-small” and “Xbench-TCSD-

normal” from Michigan benchmark. These documents characteristics are

shown in Table 5.2:

Table 5.2: XML data sets of equally sizes

Document Size(MB) # of Token # of Paths Max
depth

Auction11 11 200358 502 12
Xbench-TCSD-small 11 283312 26 8

Auction82 82 1485699 502 12
Tree-bank 82 2437667 168123 36

Auction107 107 1946203 502 12
Xbench-TCSD-Normal 107 2757084 26 8

Michigan XML benchmark data sets are used for evaluating the performance

of the model against the complicated characteristics of XML documents such

as depth, fan-out in “tree-bank” document. The tree depth has significant

effect on performance in cases, of creating and evaluating containment

relationships between nodes, namely identifying nodes with ancestor-

descendant relations. Nodes fan-out can affect the way in which the DBMS

stores data, and affect queries based on retrieving children in precise order,

such as the first or last child of a node (Runapongsa et al., 2006). Scaling a

benchmark data set in the relational model is done by increasing the number

 108

of records. Scaling in XML, however, can be done by increasing depth,

number of nodes, or fan-outs. The data sets in Table 5.2 and Table 5.3 are

used to evaluate the model performance and usability in both directions, for

mapping the documents into relational database and for rebuilding the

mapped documents from relational database.

Table 5.3: XML datasets of equal depths and different sizes

Document
Name

Factor
used

Document
Size (MB)

Max
depth

of nodes

Auction_1 0.1 11.3 12 206130
Auction_2 0.2 22.8 12 413111
Auction_3 0.3 34.0 12 616229
Auction_4 0.4 45.3 12 820438
Auction_5 0.5 56.2 12 1024073
Auction10 1.0 113.0 12 2048193

For evaluating the update performance of our model, we used th set of

documents in Table 5.4. The documents are created from auction document

using XMLgen. We choose small factor between 0.001 and 0.006 to get

small size document that can be managed by our editor. Many experiments

can be performed to insert new tokens in different places: In the beginning,

in the middle and at the end. They can also have different relationship with

the candidate element such as parent, child, left-sibling and right-sibling.

Table 5.4: Auction documents of small factor

Document
Name

Factor
used

Document
Size (KB)

of nodes

Auction_0.001 0.001 115 2086
Auction_0.002 0.002 210 3684
Auction_0.003 0.003 318 6284
Auction_0.004 0.004 457 7957
Auction_0.005 0.005 567 10492
Auction_0.006 0.006 682 11911

 109

For evaluating the query performance of our model, a set of XPath queries

are selected from different resources, Table 5.5 shows those XPath queries

and the features which they evaluate.

Table 5.5: XPath expression sets

XPath expression name Used for
/root/listing Q1 Short simple path
/root/listing/auction_info/higher_bidder/bi
dder_rating

Q2 Long simple path

//higher_bidder/bidder_name Q3 Regular expression,
single ‘//’

//auction_info//bidder_rating Q4 Regular expression,
double ‘//’

/root/listing/seller_info[seller_rating=’2’] Q5 Text matching
/root/listing[last] Q6 index
/root/listing/seller_info[seller_rating=’2’]/
seller_name

Q7 Text matching

5.5. Chapter Summary

In this chapter, a description of the system architecture, and the tools used in

building the project are given in section 5.1. These tools include XML tools

for generating XML documents, XPath tools for querying and retrieving an

XML document or parts of it. RDBMS tools (i.e. Microsoft Access) for

storing XML document and SQL for retrieving XPath expression from

relational database. To this end, Visual Basic programming language is used

as a programming tool.

System implementation description is given in section 5.2. Software and

hardware requirements for system implementation have been presented. A

description of the classes implemented in Visual Basic for the four main

components of the project is offered. XbsXml2Base Class is used for

mapping XML document into relational database. XbsBase2XML Class is

used for rebuilding XML document from relational database. DbxTokens

Class is used for editing XML document contents within a relational

 110

database. That includes update, insert or delete of document element’s name,

element’s value, attribute’s name or value. “fmrquery” form is used for

parsing XPath expression, formulating of equivalent SQL statement, getting

the results and building it in XML tree format.

Section 5.3 presents theory implementation on a sample case study which

shows the process of mapping an XML document into relational database

and the process of how to update the XML document within the relational

database.

Section 5.4 shows different XML data sets from various XML benchmarks

and XPath expression sets for testing and evaluating the usability and

performance of MAXDOR model.

The experiments and their resultant assessments will be given in the next

chapter, Chapter 6.

 111

CHAPTER 6 EXPERIMENTS AND THEIR ASSESSMENT

In this chapter we will give a description of the experiment setup consisting

of experiment environment and performance measurement. We will perform

experiments on mapping XML document into relational database, building

XML document from relational database, updating XML document stored in

relational database and retrieving document content from relational database

using XPath expressions. These experiments will be done to check the

scalability and effectiveness of our model. Then we will compare our model

with the Global Encoding model (Tatarinov et al., 2002) and the

Accelerating XPath model (Torsten et al., 2004). The comparison consist of

four stages: mapping, building, updating and retrieving, as most of other

studies just took one or two stage and forgot the others. Some of them took

retrieving, others took updating and others took updating and retrieving, but

most of them did not consider mapping and rebuilding.

6.1. Experiment Setup

6.1.1 Experiment Environment

All experiments tests are conducted on a PC of an Intel Core2 Quad Q9550

2.83 GHz CPU, 4.00 GB RAM, running Windows 7 Professional. Visual

Basic 6 programming language is used to implement MAXDOR model, and

Microsoft Access 2007 is used as a target relational database for storing

XML document contents on local hard drive. In addition, a disk file is named

with document number in the document table and with an XML extension

created for reconstructed XML document from relational database.

 112

6.1.2 Performance Measurement

• Mapping XML document into RDB execution time.

• Rebuilding of XML document from RDB execution time.

• Dealing with any document size.

• Inserting nodes processing time (number of nodes to be relabelled).

• Query processing execution time.

The execution time is used as an evaluation scale in this research rather than

storage space since the former is crucial nowadays for the users, while

storage space is available in a very huge size with reasonable prices.

6.2. Testing Strategies

6.2.1 Mapping XML Document into Relational Database

Performance.

 The experiment is performed as follows:

Face 1, scalability test: An XML document generator from XMark (Busse

et al., 2002) is used to create documents of different sizes with factors of 0.1,

0.2, 0.3, 0.4 and 0.5. The documents characteristics are shown in Table 6.1.

In this experiment, our model shows performance in a linear and scalable

manner as document size is increasing. The mapping result over different

sizes of the same document is shown in Figure 6.1.

Table 6.1: Different sizes of Auction document

Document
Name

Factor used Document
Size (MB)

of
nodes

Auction_1 0.1 11.3 206130
Auction_2 0.2 22.8 413111
Auction_3 0.3 34.0 616229
Auction_4 0.4 45.3 820438
Auction_5 0.5 56.2 1024073

 113

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

11.3 22.8 34.0 45.3 56.2

Document size (MB)

M
ap

pi
ng

 T
im

e
(S

ec
)

Mapping Time(Sec)

Figure 6.1: Mapping time for dataset in Table 6.1

Face 2, effectiveness test: Three groups of documents of different sizes

11MB, 82MB and 107MB but with different structure and different numbers

of token are included in this experiment. Table 6.2 shows documents

properties and their mapping and rebuilding time. Figure 6.2 shows the time

required for mapping XML documents into relational database which

consistently increases as the number of tokens increases in the document.

Considering the results shown in Figure 6.1 for homogenous documents and

those shown in Table 6.2 and Figure 6.2 for heterogeneous documents

coupled with calculating the correlation coefficient between document size

and mapping time in the two cases r1=0.99988 and r2=0.8751 on the one

hand, and the number of tokens and mapping time in the two cases r3=

0.99991 and r4=0.9991 on the other hand, we can conclude that the time

required for mapping the document largely depends on the number of tokens

(i.e., elements and attributes) in the document, the document size and

document depth (r=0.1752) respectively.

 114

Table 6.2: XML Dataset of different structures

Document Doc Size
(MB) # of Token # of

XPath
Mapping

(Sec)
Building

(Sec)
Auction11 11 200358 502 25.50 13.41

Xbench-TCSD-
small 11 283312 26 36.75881 17.39469

Auction82 82 1485699 502 186.7157 141
Tree-bank 82 2437667 168123 325.2331 150

Auction107 107 1946203 502 260.3572 200
Xbench-TCSD-

Normal 107 2757084 26 376.7195 181

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

0 500000 1000000 1500000 2000000 2500000 3000000

No. of tokens

M
ap

pi
ng

 ti
m

es
 (s

ec
)

Mapping (Sec)

Figure 6.2: Mapping time for documents in Table 6.2

Now let us compare MAXDOR model with Global Encoding for (Tatarinov

et al., 2002) and Accelerating XPath for (Torsten et al., 2004), since the

three models are using the same general number encoding to identify the

XML document of elements and attributes (tokens). A detail description for

Global Encoding and Accelerating XPath is given in Chapter 3.

The three models use one scan to shred the document contents, assign an

identifier for each token, reserve node information, (i.e. token name and

token value) to store them in one tuple in relational database. Global

Encoding adds another table for tokens path from the document element

passing through until the candidate token. MAXDOR and Accelerating

XPath are similar in using just one table to store documents contents. Both

 115

also use a stack collection to manage post-order label in Acceleration XPath

and RightID link in MAXDOR.

Based on previous experiment, one finds that mapping time mainly depends

on the number of tokens in the document. Based on that, we may consider

the following assumptions:

t for both MAXDOR and Accelerating XPath,
T=

t + tp for Global encoding,
(6.1)

where T is the mapping time and tp is the time required to process the tokens

path.

tp = (t/n)* m (6.2)

where n is the number of tokens in the document and m is the number of

distinct paths in the document.

Now we can use the results of experiments 1 and 2 for mapping XML

documents into relational database and compare our model with the other

two models.

From Table 6.3 and Figure 6.3 we can see that MAXDOR and Accelerating

XPath are identical while Global Encoding is closed to the other two models

in homogeneous documents where the number of paths is small and the gap

becomes larger for heterogeneous documents where the number of paths

becomes very large as in tree_bank document.

Table 6.3: Mapping time for MAXDOR, Accelerating XPath and Global
Encoding in seconds

Doc. Size
(MB)

of
Token

Different
path

M-
MAXDOR M-Accel M-Global

11 200358 502 25.4965 25.4965 25.56038
11 283312 26 36.7588 36.7588 36.76218
82 1485699 502 186.7157 186.7157 186.77879

107 1946203 502 260.3572 260.3572 260.42436
82 2437667 168123 325.2331 325.2331 347.66404

107 2757084 26 376.7195 376.7195 376.72305

 116

0

50

100

150

200

250

300

350

400

200358 283312 1485699 1946203 2437667 2757084

Number of tokens

M
ap

pi
ng

 ti
m

e
(s

ec
)

M-MAXDOR
M-Accel
M-Global

Figure 6.3: Mapping Comparison between MAXDOR, Accelerating XPath
and Global Encoding

6.2.2 Rebuilding XML Document from Relational Database

Performance

The experiment is done at different stages as follows:

Face 1, scalability test: the auction documents in Table 6.1 mapped before

will be built in this experiment to see the scalability of MAXDOR in

rebuilding XML documents from relational database.

From the results shown in Figure 6.4, we find that our model performs well

for rebuilding the XML document. The time for rebuilding a document of

11.3MB size is 14.14 seconds and for 56.2MB size is 88.00 seconds. This

shows that the relation between rebuilding time and document size is

approximately linear as it passes through the origin and is given as follows:

t = 1.644989 s (6.3)

where t is the time in seconds for rebuilding the document and s is the size

of the document in MB.

 117

0.00

20.00

40.00

60.00

80.00

100.00

0.0 20.0 40.0 60.0

Document Size (MB)

B
ui

ld
in

g
tim

e
(S

ec
)

Building Time (Sec)

Figure 6.4: Building time for documents in Table 6.1

0.00

50.00

100.00

150.00

200.00

250.00

300.00

0.0 20.0 40.0 60.0 80.0 100.0 120.0

Document Size (MB)

Ti
m

e
(S

ec
)

Mapping Time(Sec) Building Time (Sec)

Figure 6.5: Mapping and building time for XML documents of different sizes

Figure 6.5 is a combination of Figure 6.1 and Figure 6.4 for mapping and

rebuilding of the same XML documents, in addition to an extra document

which is the original auction document of 113.0MB. From the Figure we can

conclude that our model still behaves linearly for both mapping and

rebuilding of large sizes of documents.

 118

Face 2, effectiveness test: The same sets of documents from Table 6.2 are

also used to check the ability of MAXDOR in dealing with different XML

document types. The documents are grouped by size and every two have the

same size.

From the experiments done and results shown in Figure 6.6, it can be

concluded that the time of rebuilding the document is influenced by the

number of tokens formulating the document because two documents of the

same size need different amounts of time for rebuilding.

0.00

50.00

100.00

150.00

200.00

250.00

0 500000 1000000 1500000 2000000 2500000 3000000

of tokens

Ti
m

e
(s

ec
)

Building (Sec)

Figure 6.6: Building time for documents in Table 6.2

From the results shown in Figure 6.4 for homogenous documents and results

shown in Table 6.2 and Figure 6.6 for heterogeneous document, and after

calculating the correlation coefficient between document size and rebuilding

time (r1= 0.998795203, r2= 0.926455747), and number of tokens and

rebuilding time (r3= 0.999311324, r4= 0.308485455), we can conclude that

the time required for rebuilding the document mainly depends on the

document size, the number of tokens (elements and attributes) that exist in

the document and the document depth (r= 0.214860654) respectively.

 119

Face 4, Building XML document after the insertion of elements in three

locations:

1. At the beginning of the document.

2. In the middle of the document

3. At the end of the document.

Table 6.4 and Table 6.5 show results of rebuilding auction document of

several values of n, where n is the number of tokens in the document. In

Table 6.4, column 3 shows the time required for rebuilding the documents

before any update, column 4 after inserting a token at the beginning of the

documents, column 5 after inserting a new token at the middle and column 6

after inserting a new token at the end of the documents. Table 6.5 shows the

difference between the required time for rebuilding the document after

inserting the defined location and the rebuilding time of the original

document and the percentages of that difference.

The averages of percentages are different. The cost of rebuilding the

document depends mainly on the location of inserting the new tokens. The

cost decreases from 1.24*t at location L1 to t at location L3, where L1 denotes

token number 2 and L3 denotes token number n + 1, and t represents the time

required for rebuilding the original document before any insertion.

Next, we will compare our model with the models of Tatarinov et al. (2002)

and Torsten et al. (2004). The comparison will be based on the rebuilding

document cost in time (BCDT) and the time of inserting a new token

(element or attribute) (ICDT). The comparison will make use of the

discussion above. In the following results, we will give the expected value of

the BCDT and ICDT for the models under study.

Theorem-6.1:

(a) Under the following assumptions:

 120

1- We will assume that the locations of insertion have the same probability,

P[X = x] = 1/n, x = 2, 3, … n+1 (6.4)

where X denote the location of insertion.

2- We will assume that the time decreases from 1.24*t at location 2 to t at

location n+1 uniformly, i.e.

P[Y= 1.24 – [0.24*(y-2)/(n-1)]*t] = 1/n, y= 2,3 … n+1 (6.5)

where Y denotes the time required to build the document after inserting a

new token at position y, we have:

E11=EMAXDOR[BCDT] = 1.24*t – 0.12*t (n-1)/n (6.6)

(b) E12 = EBlobal[BCDT] = t (6.7)

(c) E13 = EAcc[BCDT] = t (6.8)

where Emodel denotes the expected value of BCDT under the model. The

Proof of Theorem 6.1 (a) will be given in Appendix A.

For E12 and E13, in both cases the tokens there are sorted in sequential order

and the time needed for building the document is equal to t

 Remark: the motivation of the assumptions 1 and 2 in the theorem are based

on the experiment results in Table 6.4 and Table 6.5.

Table 6.4: Building time after update

Insertion Location Document
Size (KB)

of
Tokens

Before
insertion Begin Middle End

115 2086 0.1256 0.1598 0.1384 0.12623
210 3684 0.2264 0.2759 0.2474 0.22581
318 6284 0.3854 0.4799 0.4341 0.37913
457 7957 0.4963 0.6134 0.5671 0.49238
567 10492 0.6419 0.8116 0.7307 0.64538
682 11911 0.7295 0.8924 0.8245 0.73666

 121

Table 6.5: Differences in building time

Differences Percent
Document
Size (KB) Begin L1

Middle
L2

End
L3 Begin Middle End

115 0.03425 0.01281 0.00067 27% 10% 1%
210 0.04950 0.02100 -0.00056 22% 9% 0%
318 0.09450 0.04869 -0.00631 25% 13% -2%
457 0.11719 0.07088 -0.00388 24% 14% -1%
567 0.16969 0.08875 0.00344 26% 14% 1%
682 0.16291 0.09497 0.00716 22% 13% 1%

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

1.0000

115 210 318 457 567 682

Document size (KB)

Ti
m

e
(S

ec
) Before insertion
In-Beginning
In-Middle
In-End

Figure 6.7: Comparison of building after insertion in different location

6.2.3 Updating Performance

To evaluate our model updating performance, the experiment is performed

as follows:

a. Inserting a child node in different location in the document and at

different levels.

b. Inserting a preceding-sibling (i.e. before) node in different locations in

the document and at different levels.

 122

c. Inserting a following-sibling (i.e. after) node in different locations in the

document and at different levels.

d. Inserting a parent node in different location in the document and for

different levels.

Table 6.6 shows the time in seconds needed to process the inserting nodes in

documents that have 2086, 3684, 6284 tokens. The figures in the table show

that the number of tokens (i.e. size of the document) has an influence on the

processing time wherever the insert on process occurs, in the beginning of

the document, in the middle or at the end. For cases of inserting a token as a

child or before (i.e. left-sibling), the time cost is constant, but for the other

two cases, parent and after (i.e. right-sibling), the cost is variable. For the

parent node since we have an identifier for token level in the document, all

descendant nodes tree level should be updated (i.e. incremented by 1). While

for after nodes (right-sibling) we should look at descendant nodes for the

proper PrevID link for the new node. That means, there is an increase in the

cost of insertion time depending on the size of the candidate node (i.e.

number of descendant nodes) for the two cases. The differences in cost for

parent and after tokens are shown in Table 6.6.

Table 6.6: Time cost of insertion of a token in different location

Insert Location (time in Sec) Location in
Document Parent Child Before After

of token in
Document

In-Beginning 0.046875 0.015625 0.015625 0.015625
At-Middle 0.015625 0.015625 0.015625 0.015625
At-End 0.015625 0.015625 0.015625 0.078125

2086

In-Beginning 0.0625 0.015625 0.015625 0.03125
At-Middle 0.015625 0.015625 0.015625 0.015625
At-End 0.015625 0.015625 0.015625 0.015625

3684

In-Beginning 0.046875 0.015625 0.015625 0.03125
At-Middle 0.0625 0.015625 0.015625 0.015625
At-End 0.015625 0.015625 0.015625 0.015625

6284

 123

Theorem-6.2:

(a) Under the following assumptions:

1- We will assume that the locations of insertion have the same probability,

P[X = x] = 1/n, x = 2, 3 … n+1 (6.9)

where X denotes the location of insertion.

2- We will assume that the time decreases from n*t0 at location 2 to t0 at

location n+1 uniformly, i.e.

P[Z= t0 [n – z + 2] = 1/n, y= 2,3 … n+1, (6.10)

where Z denotes the time required to insert the new node at position z, we

have:

E22 = EGlobal[ICDT] = t1 n/2 + t0/(n+1) (6.11)

(b) E21=EMAXDOR[ICDT] = t0 (6.12)

(c) E23 = EAcc[ICDT] = t1 n + t0/(n+1) (6.13)

where Emodel denotes the expected value of ICDT under the model:

Proof of Theorem 6.2 (a) will be given in Appendix A.

b) For E21, since there is no relabeling needed after insertion of a new token.

Then, the cost of inserting a new node is equal to t0.

c) For E23, since there is a need to update the pre-order and post-order label,

the cost of update will be double the cost of update one of label after

insertion of a new token.

Remark: the motivation of the assumptions 1 and 2 in the theorem are based

on the experiment results in Table 6.4 and Table 6.5.

 124

6.2.4 Query Performance

To evaluate the query performance of our model, we execute the following

XPath expressions against the stored XML document in relational database.

After that, we will compare the results with the other two models, Global

Encoding and Accelerating XPath. To make sure that our experiments run in

reproducable form, we create different sizes of XML documents from

auction document using the generator XMLgen from XMark benchmark

(Busse et al., 2002). Table 6.7 shows these documents and their

characteristics.

For each XPath expression in Table 6.8, we run the experiment for each

document in Table 6.7.

Table 6.7: XML documents sizes and # of tokens in them

Document size (MB) Number of
Nodes

Factor value

0.11 2086 0.001
0.22 3684 0.002
0.44 7956 0.004
0.55 10492 0.005
0.66 11911 0.06
1.1 21051 0.01
11.0 200358 0.1

Table 6.8: XPath expressions under evaluation

XPath expression name
/site/regions Q1
/site/regions/Africa/item/location Q2
/site/regions/Africa/item[@id=”item1”]/location Q3

 125

Table 6.9: XPath traversals for query Q1

Document
size (MB)

Result
Nodes

of interest
result

t(ms)

0.11 2 1 7.8125
0.22 2 1 4.882813
0.44 2 1 6.835938
0.55 2 1 7.8125
0.66 2 1 5.859375
1.1 2 1 7.8125
11.0 2 1 7.8125

Table 6.10: XPath traversals for query Q2

Document
size (MB)

Result
Nodes

of interest
result

t(ms)

0.11 5 1 7.8125
0.22 5 1 11.23047
0.44 7 2 11.23047
0.55 7 2 7.8125
0.66 9 3 11.23047
1.1 13 5 11.23047
11.0 113 55 15.625

Table 6.11: XPath traversals for query Q3

Document
size (MB)

Result
Nodes

of interest
result

t(ms)

0.11 5 1 23.4375
0.22 5 1 31.73828
0.44 5 1 38.08594
0.55 5 1 46.875
0.66 5 1 45.89844
1.1 5 1 70.3125
11.0 5 1 60.15625

For Q1, we can see that the execution time is almost the same, since there

are just two select statements to get the desired results of one token. For Q2,

we can see from the Table 6.10, there is a difference between the number of

selected nodes and the number of interest nodes. This difference becomes as

 126

a result of selecting the ancestors on the desired result, and the cost will

become high for large homogeneous documents. For Q3, the execution time

increases as the document size increases, since there is more time needed to

execute the condition.

6.3. Model Analysis and Comparison

We will compare the models, MAXDOR, Global encoding and Accelerating

XPath using the total expectations of the cost of building the document

(BCDT) and the cost of insertion of a new token (ICDT) (whose expression

are given in Theorems 6.1 and Theorem 6.2) as follows:

E1 = E11 + E21 = 1.24 t – 0.12 t (n-1)/n + t0 (6.14)

E2 = E12 + E22 = t + (t1 n/2 + t0/(n+1)) (6.15)

E3 = E13 + E23 = t + (t1 n + t0/(n+1)) (6.16)

Where t denotes the time in seconds required for building the document, t0

denotes the time in seconds required for inserting the new token and t1

denotes the time required to update the label.

In Table 6.12, we calculated the total expectation time for building XML

documents from relational database and for inserting new tokens in different

positions in the document with probability 1/n, where n is the number of

tokens in the document. t0 is the time required to insert a new token, t1 is the

time required to update the label and t is the time required to build the

document, E1, E2 and E3 which is the total expectation time for MAXDOR,

Global Encoding and Accelerating XPath respectively.

 127

Table 6.12: Total expectation time for building and inserting tokens for the
three models (in Sec)

n t0 t t1 E1 E2 E3

2086 0.015625 0.1256 0.00488 0.15882 5.21734 10.30907
3684 0.015625 0.2264 0.00488 0.27373 9.21870 18.21099
6284 0.015625 0.3854 0.00488 0.45499 15.72405 31.06270
7957 0.015625 0.4963 0.00488 0.58142 19.91858 39.34086
10492 0.015625 0.6419 0.00488 0.74740 26.25188 51.86185
11911 0.015625 0.7295 0.00488 0.84726 29.80312 58.87674

Total Exptectation time

0.00

10.00
20.00

30.00

40.00

50.00
60.00

70.00

2086 3684 6284 7957 10492 11911

of tokens

Ti
m

e
in

 S
ec E1

E2
E3

Figure 6.8: Total expectation time for the three models, MAXDOR, Global
Encoding, and Accelerating XPath

From Table 6.12 and Figure 6.8 we can see that our model MAXDOR out

perform the two models for the total expectation time. And the difference

becomes large for a large number of tokens n.

In the following figures, snapshots for some run of MAXDOR system are

shown. Figure 6.9 shows snapshot for a run to map and rebuild Auction

XML document of size 11MB. The time in seconds for mapping and

rebuilding is also shown.

 128

Figure 6.9: Snapshot for mapping and building of XML document

Figure 6.10 and Figure 6.11 show snapshots for inserting new element

before and after element “africa” in the auction document respectively. The

time required for both processes is displayed as messages on the screen.

Figure 6.10: Snapshot for inserting new element before candidate one

 129

Figure 6.11: Snapshot for inserting new element after candidate one

Figure 6.12 and Figure 6.13 Show snapshots for an execution of an XPath

expression (q2) against the auction document. The figures show the results in

tree view and grid view respectively.

Figure 6.12: Snapshot for executing XPath in tree view

 130

Figure 6.13: Snapshot for executing XPath in tree view

 131

CHAPTER 7 : CONCLUSIONS AND FURTHER
RESEARCH

In this thesis, we have characterized a new model for mapping XML

documents into relational database. The model examined the problem of

solving the structural hole between ordered hierarchical XML and unordered

tabular relational database to enable us to use the relational database systems

for storing, updating and querying XML data. We have introduced and

implemented a mapping system called MAXDOR to solve the problem.

7.1 Contributions

The following are the main contributions presented throughout this thesis:

XML Document mapping into relational database: a novel method is

introduced to partition XML document into tokens (i.e. element and

attributes). It relies on assigning a tuple in a relational table for each token

information and relations with its neighbours. The method works efficient

and performs well for large XML documents.

Building XML document from relational database: a novel method is

introduced to build original XML document or update one from relational

database. It relies on retrieving document contents depending on token links

and token levels which formulate XML document as a group of subtrees.

Updating XML document contents: a novel method is used to update (i.e.

insert new token or modify its name or value) XML document contents

stored in relational database. It is based on creating links for each token with

its neighbours to maintain document structure without a need to relabel or re-

index document contents.

 132

Querying and retrieving many XPath axes of XML document: a novel

method is introduced to access most of XPath axes preceding-sibling,

following-sibling and descendant without storing all possible XPath

information for document contents (Tatarinov et al., 2002; O'Neil et al.,

2004) . It relies on dynamically creating result subtree(s) on the fly using a

temporary table “XPathQuery table” for the desired XPath expression

storing all interested tokens.

7.2 Advantages

• High Flexibility of updating: MAXDOR approach performed

updating processes of inserting new tokens in any location in the

document and at any level of relevance to the candidate element (i.e.

parent, child, left-sibling and right-sibling), updating token name and

value at constant cost of execution time since there is no need to

relabel following tokens IDs or overwrite tokens paths.

• Stability: The approach worked fine in both directions; mapping and

rebuilding for large documents: “Auction” document with 600MB

size and 9244050 tokens can be processed without trouble.

7.3 Recommendations:

1. Our model is strongly recommended for a system where XML

document contents needs to be updated very frequently.

2. Our model is strongly recommended for a system where maintaining

document structure is important as in document-centric documents.

7.4 Drawbacks and Limitations

• Loss of Information: Our mapping algorithm does not consider some

information in the original XML document such as processing

 133

instructions, comments, CDATA sections and external entities.

Furthermore, it needs an enhancement to consider multiple

occurrences of texts in one element.

• Since XPath query expression is used for retrieving information from

XML document, it ascribes two limitations to our approach:

1. Only one query upon one document will be applied at the time.

2. XPath language doesn’t have commands to insert or update an

XML document content that enforces us to add an editor to

manage updating process. The editor can manage small

documents only.

• Our approach uses fixed schema in relational database and one table

“tokens table” is used to store document contents. In addition,

maximum table size in Microsoft Access is limited to 2GB including

System Objects and indexes. These limitations restrict the maximum

XML document size to be mapped in our approach to 600MB

approximately

7.5 Further Research

There is still room enough for improvement. This includes:

• Enhancing our document editor to manage large XML documents.

• Conducting further study on XPath parser in order to evaluate our

model for the querying and retrieving parts since it is not finalized

yet.

• Using of XQuery Language for the retrieving and updating contents

of XML documents.

• Using MSSQL, MYSQL or Oracle as an alternative to Microsoft

Access to solve the problem of maximum document size of around

 134

550M to achieve faster response in building XML documents on the

fly XPath queries using DBMS memory cursors.

• Since multiple links are used in our model, an optimization of labels

sizes may reduce the size of “Tokens Table” and indexes used for

these links.

• Other performance measurement for evaluation needs to be

considered such as storage space and mapping accuracy.

• Ancestor-descendant relationship is executed indirectly through multi

parent-child relationship. This increases the execution time for

accessing XPath expression of this form. Looking for an efficient

solution to decrease this cost becomes necessary.

Enhance our model to consider multiple occurrences of texts in one element

and other document information like processing instructions, external

entities, and CDATA sections.

 135

REFERENCES:

Chen, Q., Lim, A., Ong, K. W. & Tang, J. Q. (2006). Indexing Graph-
Structured XML Data for Efficient Structural Join Operation. Data &
Knowledge Engineering 58: 21.

Fujimoto, K., Yoshikawa, T., Kha, D. D., Yashikawa, M. & Amagasa, T.
(2005) A Mapping Scheme of XML Documents into Relational
Databases Using Schema-based Path Identifiers. International
Workshop on Challenges in Web Information and Integration
(WIRI'05).

Tatarinov, I., Viglas, S. D., Beyer, K., Shanmugasundaram, J., Shekita, E. &
Zhang, C. (2002) Storing and Querying Ordered XML using a
Relational Database System. SIGMOD pp. 204-215).

Torsten, G., Keulen, M. V. & Jens, T. (2004). Accelerating XPath
Evaluation in Any RDBMS. ACM Transactions on Database
Technology 29: 40.

Jagadish, H., Al-khalifa, S., Chapman, A., Lakshmanan, L., Nierman, A.,
Paparizos, S., Patel, J., Srivastava, D., Wiwatwattana, N., Wu, Y. &
Yu, C. (2003) TIMBER: A Native XML Database. In: SIGMOD, San
Diego, CA.

M. Grinev, A. Fomichev & Kuznetsov, S. (2004) Sedna: A Native XML
DBMS. MODIS ISPRAS.

Chung, S. M. & Jesurajaiah, S. B. (2005) Schemaless XML document
management in object-oriented databases. Information Technology:
Coding and Computing, 2005. ITCC 2005. International Conference
on pp. 261-266 Vol. 261).

Zhang, H. & Tompa, F. W. (2004a) Querying XML documents by dynamic
shredding. In: Proceedings of the 2004 ACM symposium on
Document engineering. ACM, Milwaukee, Wisconsin, USA.

Shanmugasundaram, J., Tufte, K., Zhang, C., He, G., DeWitt, D. J. &
Naughton, J. F. (1999) Relational Databases for Querying XML
Documents: Limitations and Opportunities. VLDB pp. 302–314).

O'Neil, P., O'Neil, E., Pal, S., Cseri, I., Schaller, G. & Westbury, N. (2004)
ORDPATHs: insert-friendly XML node labels. In: Proceedings of the
2004 ACM SIGMOD international conference on Management of
data. ACM, Paris, France.

Tan, Z., Xu, J., Wang, W. & Shi, B. (2005) Storing Normalized XML
Documents in Normalized Relations. the Fifth International

 136

Conference on Computer and Information Technology (CIT'05) pp.
123-129).

Leonardi, E. & Bhowmick, S. S. (Nov 2005). XANDY: A scalable change
detection technique for ordered XML documents using relational
databases. Data & Knowledge Engineering 59: 32.

Atay, M. (2006) XML2REL: An Efficient System for Storing and Querying
XML Documents Using Relational Databases. In: Graduate School,
p. 127. Wayne State University, Detroit, Michigan.

Atay, M., Chebotko, A., Liu, D., Lu, S. & Fotouhi, F. (2007a) Efficient
schema-based XML-to-Relational data mapping, pp. 458-476.
Elsevier Science Ltd.

Min, J.-K., Lee, C.-H. & Chung, C.-W. (2008). XTRON: An XML data
management system using relational databa. Information and
Software Technology 50: 18.

Yun, J.-H. & Chung, C.-W. (2008). Dynamic interval-based labeling scheme
for efficient XML query and update processing. Journal of Systems
and Software 81: 56-70.

Ahlgren, P. & Colliander, C. (2009). Document-document similarity
approaches and science mapping: Experimental comparison of five
approaches. Journal of Informetrics 3: 49-63.

Dweib, I., Awadi, A., Alrahman, S. E. F. & Lu, J. (2008) Schemaless
approach of mapping XML document into Relational Database.
Computer and Information Technology, 2008. CIT 2008. 8th IEEE
International Conference on pp. 167-172).

Torsten, G. (2002) Accelerating XPath location steps. In: Proceedings of the
2002 ACM SIGMOD international conference on Management of
data. ACM, Madison, Wisconsin.

Soltan, S. & Rahgozar, M. (2006). A Clustering-based Scheme for Labeling
XML Trees. IJCSNS International Journal of Computer Science and
Network Security 6: 84-89.

Li, Q. & Moon, B. (2001) Indexing and Querying XML Data for Regular
Path Expressions. Proceedings of the 27th International Conference
on Very Large Data Bases pp. Pp: 361 - 370).

O’Neil, P., O’Neil, E., Pal, S., Cseri, I., Schaller, G. & Westbury, N. (2004)
ORDPATHs: Insert-Friendly XML Node Labels. In: SIGMOD,
Paris, France.

Chen, Y., Davidson, S., Hara, C. & Zheng, Y. (2003) RRXS: redundancy
reducing XML storage in relations. In: Proceedings of the 29th

 137

international conference on Very large data bases - Volume 29.
VLDB Endowment, Berlin, Germany.

Amer-Yahia, S., Du, F. & Freire, J. (2004) A comprehensive Solution to the
XML-to-Relational Mapping Problem. In: WIDM'04, Washington,
DC, USA.

Xing, G., Xia, Z. & Ayers, D. (2007a) X2R: a system for managing XML
documents and key constraints using RDBMS. In: Proceedings of the
45th annual southeast regional conference. ACM, Winston-Salem,
North Carolina.

Atay, M., Chebotko, A., Liu, D., Lu, S. & Fotouhi, F. (2007b). Efficient
schema-based XML-to-Relational data mapping. Information
Systems 32: 458-476.

Zhang, H. & Tompa, F. W. (2004b) Querying XML Documents by Dynamic
Shredding. In: DocEng’04, Milwaukee, Wisconsin, USA.

Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E. & Yergeau, F.
(2007) Extensible Markup Language (XML) 1.0 (Fourth Edition).
W3 Consortium.

Bansal, V. & Alam, A. (2001) Study and Comparison of Techniques to
Efficiently Store and Retrieve XML Data.

Berglund, A., Boag, S., Chamberlin, D., Fernández, M., Kay, M., Robie, J.
& Siméon, J. (2007) XML Path Language (XPath) 2.0. W3
Consortium.

Boag, X., Chamberlin, D., Fernández, M., Florescu, D., Robie, J. & Siméon,
J. (2007) XQuery 1.0: An XML Query Language. W3 Consortium.

Fallside, D. & Walmsley, P. (2004) XML Schema Part 0: Primer Second
Edition. W3 Consortium.

Thompson, H. S., Beech, D., Maloney, M. & Mendelsohn, N. (2004) XML
Schema Part 1: Structures Second Edition. W3 Consortium.

Murata, M., Walsh, N. & McRae, M. (2001) TREX and RELAX Unified as
RELAX NG, a Lightweight XML Language Validation
Specification.

Møller, A. (2005) Document Structure Description.

Jelliffe, R. (2006) Resource Directory (RDDL) for Schematron 1.5.

Ray, E. T. (2003). Learning XML: [creating self-describing data] O'Reilly.

OASIS (2002) SGML: General Introductions and Overviews.

Clark, J. (2001) Tree Regular Expressions for XML (TREX).

 138

Makoto, M. (2002) RELAX (Regular Language description for XML).

Klarlund, N., Møller, A. & Schwartzbach, M. (2000) DSD: A Schema
Language for XML. In: . FMSP’00. . ACM, Portland, Oregon.

Hégaret, P. L., Whitmer, R. & Wood, L. (2005) Document Object Model
(DOM). W3 Consortium.

W3C (2005) Document Object Model (DOM).

www.Altova.com/XMLSpy, w. M. c. (2008) SAX & DOM.

Bourret, R. (2005) XML and Databases.

Vakali, A., Catania, B. & Maddalena, A. (2005). XML Data Stores:
Emerging Practices. IEEE computer March-April 2005.

Xing, G., Xia, Z. & Ayers, D. (2007b) X2R: A System for Managing XML
Documents and Key Constraints Using RDBMS. ACMSE Winston-
Salem, North Carolina, USA.

Grinev, M., Fomichev, A. & Kuznetsov, S. (2004) Sedna: A Native XML
DBMS.

Codd, E. (1971) A database sub-language founded on the relational calculus.
ACM SIGFIDET Workshop Data Description, Access and Control
pp. 35-61).

Codd, E. "". Communications of the ACM, Vol. 13, No. 6, June, pp. 377-
387. (1970). A Relational Model of Data for Large Shared Data
Banks. Communications of the ACM 13: 11.

Delobel, C. (1978) Normalization and hierarchical dependencies in the
relational data model, pp. 201-222. ACM.

Codd, E. (1983) A relational model of data for large shared data banks, pp.
64-69. ACM.

Codd, E. (1970) A relational model of data for large shared data banks, pp.
377-387. ACM.

Zhou, J., Zhang, S., Wang, M. & Sun, H. (2006). XML-RDB Driven Semi-
Structure Data Management. Journal of Information and Computing
Science 1: 9.

Wang, H. & Meng, X. (2005) On the Sequencing of Tree Structures for
XML Indexing. 21st International Conference on Data Engineering
(ICDE 2005).

Jiang, H., Lu, H., Wang, W. & Yu, J. X. (2002) XParent: An Efficient
RDBMS-Based XML Database System. ICDE pp. 335-336).

 139

Yoshikawa, M., Amagasa, T., Shimura, T. & Uemura, S. (2001). XRel: A
Path-Based Approach to Storage and Retrieval of XML documents
using Relational Databases. ACM Transactions on Internet
Technology 1: 32.

Knudsen, S. U., Pedersen, T. B., Thomsen, C. & Torp, K. (2005) RelaXML:
Bidirectional Transfer between Relational and XML Data. 9th
International Database Engineering & (IDEAS'05) pp. 151-162).

Lee, Q., Bressan, S. & Rahayu, W. (2006) XShreX: Maintaining Integrity
Constraints in the Mapping of XML Schema to Relational. 17th
International Conference on Database and Expert Systems
Applications (DEXA'06).

Oracle (n. a.) Oracle XML DB Developer's Guide 10g.

Wu, X., Lee, M. L. & Hsu, W. (2004) A prime number labeling scheme for
dynamic ordered XML trees. Data Engineering, 2004. Proceedings.
20th International Conference on pp. 66-78).

Kobayashi, K., Wenxin, L., Kobayashi, D., Watanabe, A. & Yokota, H.
(2005) VLEI Code: An Efficient Labeling Method for Handling
XML Documents in an RDB. Data Engineering, 2005. ICDE 2005.
Proceedings. 21st International Conference on pp. 386-387).

DB, O. X. (n.a) Oracle XML DB. Oracle Technology Network.

Pal, S., Fussell, M. & Dolobowsky, I. (December 2005) XML Support in
Microsoft SQL Server 2005.

Ramanath, M. (2006) Schema-based Statistics and Storage for XML. In:
Faculty of Engineering, p. 175. INDIAN INSTITUTE OF SCIENCE,
BANGALORE – 560 012, INDIA.

Oosten, J. v. (July 2002) Basic Category Theory, Department of
Mathematics, Utrecht University, The Netherlands.

Megginson, D. (27-April 2004) Simple API for XML. SAX.

Corporation, M. (2009) Microsoft Office Word 2003 system requirements.
Microsoft Corporation.

Washington University, C. S. E. R. (2002) XMLData Repository.

Busse, R., Carey, M., Florescu, D. & Kersten, M. (2002) XMark- An XML
Benchmark Project.

Runapongsa, K., Patel, J. M., Jagadish, H., Chen, Y. & Al-Khalifa, S.
(2006). The Michigan benchmark: towards XML query performance
diagnostics. Information Systems 31: 73-97.

 140

APPENDIX A

Theorem-6.1:

(a) Under the following assumptions:

1- We will assume that the locations of insertion have the same probability, t

P[X = x] = 1/n, x = 2, 3, … n+1

where X denote the location of insertion.

2- We will assume that the time decreases from 1.28 t at location 2 to t at

location n+1 uniformly, i.e.

P[Y= 1.24 – (0.24*(y-2)/(n-1)] t] = 1/n, y= 2,3 … n+1

where Y denotes the time required to build the document after insertion new

token at position y. We have:

E11=EMAXDOR[BCDT] = 1.24 t – 0.12 t (n-1)/n

(b) E12 = EBlobal[BCDT] = t

(c) E13 = EAcc[BCDT] = t

Where Emodel denotes the expected value of BCDT under the model:

Proof: (a)

 141

b) For E12, E13, in both cases the tokens there are sorted in sequential order

and the time needed for building the document is equal to t

 Remark: the motivation of the assumptions 1 and 2 in the theorem are based

on the experiment results in Table 6.4 and Table 6.5.

Theorem-6.2:

(a) Under the following assumptions:

1- We will assume that the locations of insertion have the same probability, t

P[X = x] = 1/n, x = 2, 3 … n+1

where X denote the location of insertion.

2- We will assume that the time decreases from n t0 at location 2 to t0 at

location n+1 uniformly, i.e.

P[Z= t0 [n – z + 2] = 1/n, y= 2,3 … n+1

where Z denotes the time required to insert the new node at position z.

We have:

E22 = EGlobal[ICDT] = t0 (n+1)/2

(b) E21=EMAXDOR[ICDT] = t0

(c) E23 = EAcc[ICDT] = t

where Emodel denotes the expected value of ICDT under the model:

Proof:

a)

 142

b) For E21, since a relabeling is not needed after insertion of new token.

Then, the cost of inserting new node is equal to t0.

c) For E23, since a relabeling is needed after insertion for both pre-order and
post-order then the equation will become as for XML2RDB, but the time
needed for update is multiplied by 2, as follows:

Remark: the motivation of the assumptions 1 and 2 in the theorem are based

on the experiment results in Table 6.4 and Table 6.5.

 143

APPENDIX B

Source program in Visual basic 6 for mapping XML documents into

relational database, rebuilding, updating and querying document contents

from relational database.

It is available as a digital copy attached with the thesis.

