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Soft, stiffness-controllable sensing tip for
on-demand force range adjustment with angled

force direction identification
Duncan G. Raitt, Sara-Adela Abad, Shervanthi Homer-Vanniasinkam, and Helge A. Wurdemann.

Abstract— Force sensors are essential for
measuring and controlling robot-object
interactions. However, current force sensors
have limited usability in applications such
as grasping and palpation, where the range
of angled forces changes between tasks. To
address this limitation this paper proposes a
novel optical-based soft-tipped force sensor
capable of adjusting its range and sensitivity
through pneumatic modulation. This research
describes the sensor’s design and examines
the relationship between the internal pressure
of the sensor and its sensing range, sensitivity,
single-axis force-sensing accuracy, and
capability of measuring the angle and
magnitude of non-normal forces. Results
indicate that by increasing the pressure in the
sensor, the sensing range can be increased
and the sensitivity decreased. These results demonstrate that the sensor can measure normal forces reliably at each
pressure using 4th order fits with root-mean-square error (RMSE)∈ [0.032 N 0.110 N]. Finally, it is also demonstrated that
by using a neural network, the sensor can measure the angle and magnitude of non-normal forces with RMSEs on trained
variables of 0.0120 Rad for Y-angle (θY) measurements, 0.0109 Rad for X-angle (θX) measurements, and 0.102 N for force
measurements.

Index Terms— adjustable range, force sensor, neural network, soft sensor, variable stiffness

I. INTRODUCTION

FORCE-SENSING is a key part of tactile sensing
in robotics. Force sensors mounted on the tip of a

mechanism gather information about interactions between
the mechanism tip and other bodies. These devices can be
found throughout the field of robotics, including in haptic
grippers [1], [2], manufacturing tools [2], [3], and medical
robotics [2], [4]–[6].

Traditionally, force-sensing is achieved by tracking the
displacement of a hard-tipped device with known stiffness
as it interacts with an object. Many technologies have
been used to construct force-sensing tips, including force-
sensitive resistors [7], capacitive-based sensing cells [8], [9],
piezoresistive sensors [9], [10], fiber Bragg gratings [11]–[13]
and optical deformation sensing [14].

Whilst most devices measure force on a solid tip interacting
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with an object, some devices measure the deformation of a soft
membrane to find the applied force. This reduces damage to
the object. There have been a number of soft sensors produced,
using sensing methods such as, optical sensing [15], [16],
giant magnetoresistance [17], hall effect sensing [18], [19] and
inductance [20]. Whilst many of these papers do not address
the sensor’s accuracy, those that do have average errors and
root-mean-square errors (RMSE) for flat normal force sensing
ranging from 5% to 10% of the sensor’s range [16], [17].
To adjust the range of any of these sensors requires them to
be reconstructed with different materials or geometry. This
restricts the applications they can be used in as they are not
able to quickly adapt to the changing force range that may be
required in a dynamic task.

To solve this issue and make soft force sensors more
adaptable, researchers have been looking into variable stiffness
soft force sensors. For example, Gaudeni et al. produced a
mathematical model for deriving force from pressure change
in a small pneumatic balloon with a known inflating pressure
and radius at that pressure [21]. This model was validated
with the manual pushing of the inflated balloon against a hard
flat ATI F/T sensor. Results showed a mean error of 9.14%
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Fig. 1. (a) Side view and (b) 3D cross-sectional view of our proposed
sensor with variable force range and sensitivity through a pneumatically
pressurized elastic membrane. An integrated visual camera tracks
points on the inner surface of the membrane that will be displaced during
deformation.

in calculating peak force. The range and sensitivity of this
device may be adjustable by varying the pressure, however,
this has not been investigated, and the mathematical model
cannot measure the angle of non-normal forces.

In line with this approach, Zhang et al. developed a variable
stiffness force sensor [22]. This sensor uses a 3D hall effect
sensor to measure normal forces and can adjust its range
and sensitivity by changing its internal pressure. It was tested
using several materials with a wide and narrow indenter over a
pressure range of 0 to 27.5 kPa; a genetic program was trained
to fit the data to intermediate pressures. This sensor was only
tested with normal forces, and the variability and accuracy of
the sensor were not analyzed.

Parallel with this, in previous work, we produced a 3D
printed variable stiffness force sensor [23]. This sensor
measures normal forces using a camera to measure the
displacement of tracking points on an air pressurized
membrane. The range and sensitivity of the sensor can be
adjusted by changing its internal pressure. Regression analysis
of a second-order fit on one of the sensor’s outer tracking
points demonstrated an average R2 of 0.956 and an average
RMSE of 0.13 N (5.8% of average range). Whilst these soft-
tipped devices can vary their range, they have not been shown
to measure non-normal forces. This prevents them from being
used in applications were contact at different angles may occur.

In related research, Bewley et al. used a Tactip sensor with
an adjustable internal pressure to detect small surface and
embedded lumps within a silicone matrix [24], demonstrating
that increasing the sensor pressure allowed deeper lumps to
be detected more accurately. This sensor has a similar design
and function to the sensor developed in this paper and our
previous research, illustrating the large range of applications
for which this sensor type can be used.

In this paper, we present an optical-based soft-tipped sensor

Fig. 2. Dimensions and cross-sectional view of the PMOT sensor where
the camera is highlighted in blue.

that can measure the angle and magnitude of forces, and adjust
its range using stiffness control. To do this, we build on our
previous work [23] to produce a sensor that can measure
non-normal forces. This sensor is referred to as a pressure
modulated optical tracking (PMOT) force sensor. The PMOT
sensor uniquely combines the use of a pressurizable sealed
chamber with a deformable membrane covered with low lying
tracking points that are tracked by a camera. This enables
it to vary its stiffness through pressurization and measure
deformations of the membrane at different locations. These
advantages allow it to be used in tasks where the force range
of angled forces may change between tasks such as palpation
and gripping different objects.
This paper aims to:

1) present the sensing principle, design, and fabrication
process of the sensor.

2) demonstrate experimentally that the PMOT sensor can
measure the magnitude of normal forces using a
polynomial fit, and show that the range and sensitivity
of the sensor can be adjusted by changing the internal
pressure of the sensor.

3) prove with experiments that, using a neural network, the
sensor can measure the angle and magnitude of non-
normal forces at different internal pressures.

II. SENSING PRINCIPLE AND MECHANICAL DESIGN

A. Sensing Principle
The PMOT force sensor measures the deformation of a

pressurized elastomer membrane under force loads. By varying
the stiffness of the membrane, the range and sensitivity of the
sensor can be controlled. The stiffness of the sensor increases
with pressure due to two main factors. Firstly, the increase
of the internal pressure causes the internal air mass to rise
in line with the ideal gas equation, leading to an increase in
internal stiffness [25]. Secondly, the membrane increases in
strain as the internal pressure grows, causing the membrane
to stiffen. Additionally, increasing the internal pressure of the
sensor increases the initial inflation height of the membrane,
further increasing the range of the sensor.

B. Mechanical Design and Fabrication
The PMOT force sensor and its internal components are

shown in Fig. 1, whilst Fig. 2 shows a cross-sectional view
and its dimensions.
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Fig. 3. (a) Experimental setup: A Force/Torque sensor mounted on a robotized linear rail exerts forces on the elastic membrane of our sensor
prototype. As a result, (b) the projected locations of the tracking points are visually monitored and analyzed.

The PMOT sensor housing was produced from Formlabs
Tough 2000 and printed on a Form 3 printer. The outer
diameter of the housing is 20 mm with an inner diameter
of 16 mm. The membrane is attached at the distal end
of the housing. In our previous work, the membrane was
3D printed with plastic tracking points to ensure fast and
reproducible fabrication with adaptable geometry. In this
paper, the membrane is cast from a platinum catalysed silicone
elastomer . This allows the membrane to be more robust and
isotropic, whilst providing more choices in membrane stiffness
and reducing reflections. The dome-shaped membrane with an
outer dome radius of 16 mm and a thickness of 1 mm was
cast from Ecoflex 00-30. The Ecoflex was mixed with a ratio
of 5 g part A to 5 g part B, into which two drops of Silc Pig
black was added to make the membrane black. This mixture
was poured into casting moulds and degassed. The membrane
is covered in nine 0.7 mm radius tracking points arranged with
one in the centre and eight in a circle with a radius of 4 mm.
The tracking points are painted with cyan to ensure they can
be tracked by the camera. Where the membrane meets the
housing, it has an outer diameter of 20 mm, an inner diameter
of 18 mm, and overlaps the housing by 2 mm. The membrane
is glued and taped to the housing to ensure a strong, airtight
seal.

Holes in the housing are used to insert the pneumatic piping
and a USB endoscopic camera. The 4 mm diameter pneumatic
piping, shown in Fig. 2, is connected to a pressure regulator
used to control the pressurisation of the membrane. The 1.3
MP camera measures 5.5 mm in diameter and is held halfway
down the housing to increase its stability during measurement;
it is positioned with the lens 20 mm from the end of the
housing. This camera captures the location of the tracking
points.

Data from the camera is fed to a computer that calculates
and records the position of the centre of each tracking point.
This is done using a set of commands in the OpenCV
library [26]. A colour mask is used to segment the tracking
points, Canny edge detection with a threshold of 80 detects
and isolates boundaries, and a find contours algorithm extracts
borders from the boundaries. The displacements of the tracking
points in the camera image are a projection of the tracking
points movements in all three dimensions projected onto a
plane.

III. METHODOLOGIES

Two experiments were carried out to assess the performance
of the sensor. Experiment 1 tested the normal force sensing
accuracy and reliability of the sensor, and analyzed how the
sensor’s internal pressure affected its range and sensitivity.

• The sensor is pressed at different normal forces against
an F/T sensor by a linear rail.

• The displacement of the tracking points is recorded as
the sensor input.

• The Force data from the F/T sensor is extracted as a
ground truth for training and testing.

• The internal pressure of the sensor is varied between
experiments.

Experiment 2 assessed the sensor’s ability to measure the
angle and magnitude of non-normal forces at different internal
pressures using a neural network.

• The sensor is pressed at different forces against an F/T
sensor by a linear rail.

• The displacement of the tracking points and pressure is
recorded as the sensor input.
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• The Force data from the F/T sensor and angles of contact
are extracted as a ground truths for training, validation
and testing.

• The internal pressure of the sensor and the angle of
contact is varied between experiments.

• A neural network is used to establish the relationships
between the sensor inputs and ground truths.

A. Experiment 1: Normal Force Sensing Methodology

This experiment was designed to obtain the tracking points’
positions and displacements in Cartesian coordinates from the
PMOT sensor camera, and the force in Newton (N), measured
with a IIT-FT17 F/T sensor during loading and unloading of
the membrane. The PMOT sensor was mounted on a platform
opposite the F/T sensor on a linear rail. These were positioned
so that as the F/T sensor was brought into contact with
the membrane, it would remain parallel to, and concentric
with, the membrane. F/T sensors mounted on linear rails are
commonly used to calibrate and validate force sensors as
they allow multiple forces to be automatically tested in quick
succession [12]–[14], [17]. Our experiments were run in line
with these previous works with only minor variations for the
sensors range and sensing process. The diameter of the F/T
sensor was larger than the membrane ensuring complete and
flat contact. This setup is shown in Fig. 3.

The F/T sensor was set to its home position 20 mm from the
membrane. The PMOT sensor was pressurized to the required
pressure. The linear rail then moved the F/T sensor towards
the membrane until the contact force surpassed 0.2 N. The F/T
sensor was moved back 3 mm to ensure no contact was made
prior to sampling. Following this, the linear rail was moved
in 0.1 mm steps towards the PMOT sensor. The rail stopped
for 1 s at each step to allow the membrane to adjust, then the
force and tracking point locations were sampled 5 times, with
a 0.2 s gap between samples. Steps were repeated until the F/T
sensor had moved 12 mm or the force became greater than 5
N. Following this, steps and sampling were repeated, moving
away from the PMOT sensor until the F/T sensor reached its
starting position.

This experiment was repeated 15 times per pressure at
internal pressures of 2, 4, and 6 kPa. Ten tests were designated
as training data whilst five tests were designated as testing
data. Three priming runs of the experiment were carried
out whenever the experiment was set up; these results were
discarded. Internal pressures of up to 6 kPa were chosen
to avoid the sensor approaching the pressure limit of the
membrane-housing bond (10 kPa) even with large pressure
variations, and to avoid the tracking points leaving the view
of the camera, which was observed at 8 kPa.

Data was extracted and processed for each point at each
pressure during loading and unloading. Tracking point data
was converted to polar coordinates around the central point to
find the radial displacement (∆r) in pixels (px) and angular
displacement (∆θ) in degrees (◦) of the tracking points.
∆r measures the tracking point’s change in distance from
the centre point whilst ∆θ measures the change in angular
displacement around a circumference with an origin at the

Fig. 4. Matrix showing the combinations of Y-angles, X-angles, and
internal pressures used for training and testing, for intermediate test
sets, and for fully distinct test sets.

central point. This allows the direction and displacement of the
tracking points’ movements to be assessed whilst also allowing
the effects of torsion on the membrane to be removed. The
average radial displacement (∆r) was obtained by averaging
the ∆r for all tracking points at each measurement.

B. Experiment 2: Angled Force Sensing Methodology
The experiment in Subsection III-A was repeated with the

sensor rotated around the Y-axis and X-axis as shown in
Fig. 3. The experiment was carried out with Y-angles (θY )
of 0, 2π/32, 4π/32 and 6π/32 radians (Rad), X-angles (θX )
of 0, 2π/32 and 4π/32 Rad, internal pressures of 4 and 6
kPa, and combinations of these parameters. These were all
repeated 17 times. The entire data set was divided into three
groups: ten repetitions were used for training, two were used
for verification, setting the hyper-parameters and selecting a
model, and five were used for testing. It should be noted that
when there is no rotation around the Y-axis, i.e., contact is
normal to the sensor, rotating the sensor around the X-axis
produces no variation in output and could, therefore, not be
used as training data.

A θY range of 6π/32 Rad was chosen because after this
point the F/T sensor makes insufficient contact with the sensor
to be processed when the internal pressure is 4 kPa. A θX
range of 4π/32 Rad was chosen as the tracking points are
placed radially symmetrical at intervals of 8π/32 Rad with
an axis of symmetry between them. This means that results
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Fig. 5. Neural network architecture showing inputs, nodes and outputs.

within a range of 4π/32 Rad can be extrapolated to contact
at any θX .

On top of this, the experiment was repeated with
intermediate variables for testing, paired with all trained
variables. These were: θY of π/32, 3π/32 and 5π/32 Rad,
θX of π/32 and 3π/32 Rad, and an internal pressure of 5 kPa.
These intermediate variables were also paired with each other
to produce fully distinct training data. Each combination was
repeated five times. Fig. 4 shows all combinations of variables
used in this experiment, denoting if the combinations were
were used for training and testing, for intermediate test sets,
or to produce fully distinct test data.

All data below 0.05 N and above the range at each pressure
obtained in the normal force-sensing results were removed.
This was because the angle of contact would have no effect
prior to contact and at negligible forces, and the deformation
of the membrane does not correlate to force after contact
with the housing. For angled force-sensing analysis, tracking
point data was transferred to polar coordinates around each
tracking point’s initial position with the reference direction
pointing away from the centre point. This allows the motion of
individual tracking points to be monitored and compared more
easily. The pressure (P) in kPa, and the radial displacement
(∆r) in px and angular displacement (∆θ) in ◦ for each
tracking point were exported as sensor inputs. Whilst the Force
(F) in N, and contact angles (θY ) and (θX ) in Rad were
exported as expected outputs. This experiment produced 6465
lines of training data, 1383 lines of validation data, and 7657
lines of test data.

IV. NEURAL NETWORK ARCHITECTURE

Data from Experiment 2 was processed using a multi-
output regression deep neural network. Neural networks have
started to be used for force sensing when the relationships
between inputs are too complex for traditional mathematical
algorithms [27]–[29]. All data was standardized and shuffled
before being processed, and the network used an Adam
optimization algorithm. The validation data was used to select
the algorithm architecture. The final architecture, shown in
Fig. 5, consisted of five hidden layers with 80 nodes each.

Fig. 6. Sensitivity and range with different internal pressures. It
demonstrates that as internal pressure is increased, range increases
whilst sensitivity decreases.

All nodes used a Rectified Linear Unit (ReLU) activation
function. The algorithm was trained for 100 epochs and was
compared to the validation data every 50 iterations. The output
network was selected as the network that performed best with
the validation data.

V. RESULTS

A. Experiment 1: Normal Force Sensing Results
The results from Experiment 1 were analyzed in three steps.

Firstly, the change in the sensor’s range and sensitivity with
internal pressure was examined. Secondly, the performance of
the sensor was assessed using the training data, and the sensor
parameters were obtained. Finally, testing data was used to
evaluate the accuracy of the sensor.

The average ∆θ across all points, internal pressures,
and forces was 0.008◦, showing negligible torsional effects.
Therefore, only ∆r will be analyzed in the results.

1) Inter-Pressure Results: Training data was compared
between internal pressures to examine how changing the
internal pressure of the PMOT sensor affected the sensitivity
and range of the sensor. This was done by comparing force
data to ∆r between pressures, combining all experiments

Fig. 7. Force-displacement 4th order fit at each pressure with
confidence intervals. At each pressure, a single value of displacement
corresponds to a single value of force. Further, it is demonstrated that
the sensitivity at each pressure decreases across its sensing range.
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Fig. 8. Visual data analysis of angled force sensing data. Graphs show how the polar coordinates of all nine tracking points, with the reference
direction pointing away from the centre point, change with force. These are compared amongst changes in pressure P, contact θY , and contact
θX . (a) P = 4 kPa, θY = 0 Rad, θX = 0 Rad. (b) P = 6 kPa, θY = 0 Rad, θX = 0 Rad. (c) P = 6 kPa, θY = 6π/32 Rad, θX = 0 Rad. (d) P = 6
kPa, θY = 6π/32 Rad, θX = 4π/32 Rad.

during loading and unloading. The range of the sensor at
each pressure was taken to be the force reading before the
membrane was pushed against the housing during loading
testing. This was determined as the point in the latter half
of the loading data, where the change in force with linear rail
displacement exceeded six times the average gradient from all
preceding samples. A best fit straight line is used to find the
sensitivity of the device at each pressure. The sensitivity and
range of the sensor at each pressure are compared in Fig. 6.

2) Performance Analysis Results: The training data was
fitted to a polynomial, and the goodness of fit was analyzed.
The performance of the sensor was further analyzed using
training data fits to find the sensor parameters.

From the training data, force against ∆r was fitted to a
4th order polynomial at each internal pressure. A 4th order
polynomial was chosen as it produced the highest average
coefficient of determination (adjusted R2) across all training
data when compared to all other polynomials up to 6th order.
The goodness of fit and data variability was analyzed through
regression analysis to compare the fits to training data points
over the range shown in Fig. 6. Table I shows the adjusted R2

and RMSE in Newtons, and as a percentage of the range, for
the fits at each pressure. The 4th order fits and 95% confidence
intervals for each internal pressure are shown in Fig. 7.
Although a 4th order fit was used, each value of displacement
correlates to only a single value of force. Furthermore, the
results demonstrate that the sensitivity decreases as the force
increases at each pressure. To analyze the sensor function,
sensor parameters are calculated. These sensor parameters
are summarized in Table II. The inter-point root-mean-square
deviation (RMSD) was analyzed by comparing the ∆r of each
tracking point to ∆r at all data points over each experiment.

The mean and standard deviation (SD) of these values for each
pressure was calculated. This was compared to the sensors
maximum output to obtain the deviation as a percentage.

The non-repeatability was obtained by measuring the
maximum difference between readings at the same sample,
and the maximum value for each pressure was extracted from
all samples in all experiments. This was compared to the
sensor’s maximum output to obtain the non-repeatability as
a percentage.

Hysteresis was obtained by fitting 6th order polynomials to
loading and unloading data separately; the difference between
these fits were obtained at 0.1 N intervals over their ranges
shown in Fig. 6, and the maximum difference for each
experiment was recorded. The mean and SD of these values
for each pressure was calculated. These were also compared
to the sensor’s maximum output to obtain the hysteresis as a

TABLE I
NORMAL FORCE SENSING VARIABILITY

Internal Pressure
2 kPa 4 kPa 6 kPa

∂4 Adjusted R2 0.981 0.978 0.974
∂4 RMSE (N) 0.0322 0.0659 0.1097
∂4 RMSE (%) 3.41 3.84 3.92

TABLE II
NORMAL FORCE SENSING PARAMETERS

Internal Pressure
2 kPa 4 kPa 6 kPa

Inter-point Deviation (Mean RMSD %) 13.1 13.0 15.4
(SD RMSD %) 0.325 0.303 0.507

Non-repeatability (%) 10.37 9.39 9.95

Hysteresis (Mean %) 7.44 8.57 11.05
(SD %) 1.273 1.737 0.748
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TABLE III
NORMAL FORCE SENSING TEST DATA RESULTS

Internal Pressure
2 kPa 4 kPa 6 kPa

Accuracy
(RMSE N) 0.0342 0.0611 0.1220
(RMSE %) 3.63 3.56 4.36

(Max Error %) 26.2 17.9 21.8

TABLE IV
ANGLED SENSING NETWORK ACCURACY

Trained Intermediate Intermediate Intermediate Fully
Variables Pressures θY θX Intermediate

Force (N) 0.102 0.297 0.320 0.226 0.398
RMSE (%) 3.64 10.61 11.43 8.08 14.22
θY (Rad) 0.0120 0.0188 0.0410 0.0202 0.0570

RMSE (%) 2.04 3.19 6.96 3.43 9.68
θX (Rad) 0.0109 0.0162 0.0300 0.0500 0.0472

RMSE (%) 2.78 4.13 7.64 12.73 12.02

percentage.
3) Test Data Results: Sensor accuracy was assessed by

comparing test data to the 4th order polynomials fit obtained
from the training data. The RMSE and maximum error in
Newtons and as a percentage of the range were obtained; these
results are shown in Table III.

B. Experiment 2: Angled Force Sensing Results

1) Visual Data Analysis: Data was first visually analyzed
to spot trends before training the neural network. In Fig. 8,
graphs show how the position of each tracking point changes
with force. A diagram above each graph shows the variable
that is altered between each graph; these variables are the
internal pressure and the θY and θX of contact. There is a
clear difference in tracking point displacement with force when
the pressure of the sensor, or the θY or θX of the force, are
adjusted.

2) Overall Neural Network Results: The data was then
combined and fed into the neural network as described in
Section IV. The accuracy of the network was obtained by
comparing the network’s predicted outputs to those recorded
in the experiment for the trained variables and for each set
of intermediate variables, and calculating the RMSE. These
are shown in Table IV both in Newtons and radians, and as a
percentage of their range. The range of force was the same as
that shown in Fig. 6 at 6 kPa, whilst the ranges for θY and θX
sensing were taken to be 6π/32 and 4π/32 respectively. The
errors in each measurement vary between data sets. Across all
data the RMSEs for Force, θY and θX were 0.2760 N, 0.0310
Rad and 0.0328 Rad respectively, or 9.86%, 5.26% and 8.35%
of their respective ranges.

3) Performance Analysis: To further understand where the
errors were occurring in the angle measurements, confusion
matrices were produced. These show the value predicted by the
neural network, rounded to the nearest π/32 , as a percentage
of data-points at each true value. These are shown in Table V.
Table VI compares the errors obtained at high and low forces
and at high and low angles to determine if there is any
correlation. The low and high force divide was set to 1 N
as this is half of the range at an internal pressure of 4 kPa.

TABLE V
CONFUSION MATRIX OF ALL ANGLE SENSING TEST DATA. THIS SHOWS

THE TRUE VALUE OF THE TEST DATA COMPARED TO THE PREDICTED

VALUE FROM THE NEURAL NETWORK, ROUNDED TO THE NEAREST

π/32. (A) SHOWS θY PREDICTION RATE AND (B) SHOWS θX
PREDICTION RATE. ALL VALUES ARE GIVEN AS A PERCENTAGE OF THE

TOTAL NUMBER OF DATA POINTS FOR THAT TRUE VALUE.

TABLE VI
RELATIONSHIP BETWEEN ERRORS IN EACH VARIABLE, AND THE

MAGNITUDE AND θY OF THE FORCE
Low θY High θY

(0 - 2π/32 Rad) (4π/32 - 6π/32 Rad)
n 2385 2340

Force RMSE (N) 0.108 0.239 Low Force
θY RMSE (Rad) 0.0295 0.0213 (< 1 N)
θX RMSE (Rad) 0.0378 0.0253

n 881 584
Force RMSE (N) 0.450 0.376 High Force
θY RMSE (Rad) 0.0175 0.0144 (> 1 N)
θX RMSE (Rad) 0.0253 0.0196

TABLE VII
ANGLED SENSING ACCURACY WITH PRESSURE

Internal Pressure
4 kPa 6 kPa

Force RMSE (N) 0.170 0.287
θY RMSE (Rad) 0.0270 0.0317
θX RMSE (Rad) 0.0302 0.0370
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T-tests of absolute errors were used to assess the significance
of each of the relationships in Table VI. Errors in force sensing
were significantly higher at high θY than at low θY , t(6188) =
5.14, p < 0.001 , and significantly higher at high forces than
at low forces, t(6188) = 29.8, p < 0.001 . Errors in θY
sensing were significantly higher at low θY than at high θY ,
t(6188) = 2.03, p = 0.04, and significantly higher at low
forces than at high forces, t(6188) = 10.4, p < 0.001 . Errors
in θX sensing were significantly higher at low θY than at high
θY , t(6188) = 7.18, p < 0.001 , and significantly higher at
low forces than at high forces, t(6188) = 8.48, p < 0.001 .

Results were analysed between 4 kPa and 6 kPa internal
pressure as shown in Table VII. This shows higher errors in
every variable at 6 kPa than at 4 kPa. T-tests of absolute errors
in each variable between pressures showed that errors in force
and θX sensing were significantly higher at 6 kPa than at 4
kPa, t(5413) = 5.47, p < 0.001 & t(5413) = 4.62, p < 0.001.
However, differences in errors in θY sensing with pressure
were not significant, t(5413) = 0.126, p = 0.900.

VI. DISCUSSION

A. Experiment 1: Normal Force Sensing Discussion

Inter-pressure results show that increasing the pressure of
the sensor caused the range of the sensor to rise (0.943 N to
2.799 N) and the sensitivity of the sensor to fall (42.6 px/N
to 17.7 px/N). This is illustrated in Figs. 6 and 7. The larger
range of the sensor is due to the sensor stiffening as the internal
pressure is increased.

Results in Table I showed an average R2 of 0.978 and
an average RMSE of 0.069 N or 3.69% of range, over all
pressures. These results show that the change in ∆r with force
can be fitted well with a 4th order polynomial and that there is
low variance between samples and experiments. Likewise, as
the pressure, and therefore the range of the sensor, increased,
the RMSE also increased (0.0322 N to 0.1097 N) and the R2

decreased (0.981 to 0.974).
Sensor parameters, shown in Table II, demonstrated the

sources of errors in the sensor. Inter-point deviation shows
the asymmetries in the device caused by fabrication or errors
caused by imperfect experimental setup. Results showed an
average RMSD between points of 13.8% of range. These
deviations may be due to imperfections in the alignment of
the lens or sensor in the camera, alignment of the camera
in the housing, casting of the membrane, painting of the
tracking points, gluing or taping of the membrane to the
housing, or alignment of the membrane and the F/T sensor.
These errors are removed by combining displacements into
∆r in experiment 1 and by training each point separately in
experiment 2. Improving fabrication methods such as using
a more accurately aligned camera and producing a jig for
colouring the tracking points would allow for fewer errors.
However, these would increase the cost of manufacturing the
sensor.

Non-repeatability shows the maximum difference in sensor
reading in the exact same conditions. Results, averaging 9.95%
of range, demonstrate that it is beneficial to take multiple
readings when measuring force.

Hysteresis shows the maximum difference between loading
and unloading data. The hysteresis readings, averaging 9.02%
of range, are likely due to the elastic properties of the
membrane. Changing the material of the membrane may
decrease the hysteresis.

Test data results in Table III confirm that the fit works
on non-trained data to measure the force with an accuracy,
measured as the average RMSE, of 3.85% of range. These
errors are lower than other soft sensors covered in this
paper [16], [17], [21]. These results also verify that by
increasing the internal pressure of the sensor, the RMSE in
N is increased (0.0342 N to 0.1220 N), corresponding to
the decreased sensitivity. Max errors, averaging 22.0% of
range, show that readings should be verified with multiple
measurements.

B. Experiment 2: Angles Force Sensing Discussion

Visual data analysis (Fig. 8) showed variation between
force and tracking point location. As the internal pressure
was increased from 4 kPa in Fig. 8-a to 6 kPa in Fig. 8
b, higher forces were required to produce the same tracking
point displacement. In Fig. 8-c and d, the path the tracking
point moves with force is altered as the Y-angle and X-angle
were changed. At the high angles used in visualisation (Fig. 8-
c and d), the tracking points close to where the force was
applied move away from this location, whilst the tracking
points on the other side of the sensor do not move. This aspect
allows us to visually assess where the force is coming from.
These results suggest that an algorithm should be able to relate
internal pressure and tracking point locations to the angle and
magnitude of a force.

Visual data analysis was confirmed in the overall neural
network results, which showed that the direction and
magnitude of force could be measured by the sensor using a
neural network. The highest accuracy , RMSEs for Force, θY
and θX of 0.102 N, 0.0120 Rad and 0.0109 Rad respectively,
was achieved in data sets where the conditions were similar
to training data sets (Table IV). A high correlation could be
seen between the type of untrained data introduced and the
errors resulting from it. Intermediate θY produced the highest
errors in θY sensing and intermediate θX produced the highest
errors in θX sensing. Force sensing errors were high with
intermediate pressures and intermediate θY . Fully intermediate
data had the highest errors in force and θY sensing, and the
second-highest errors in θX sensing. Increasing the spread
of training variables would reduce the difference between
trained and intermediate variables, thereby reducing the errors
in intermediate variable sensing towards those of trained
variables. The average force sensing RMSE of 9.86% of range
is in line with other soft sensors covered in this paper [16],
[17], [21].

The confusion matrices show where the errors in force
sensing are large enough to be close to another tested angle.
These further demonstrate lower errors in trained variable
sensing, even when paired with other untrained variables,
with all trained values having true positive values above 85%.
Further analysis for tests with a θY of 3π/32, where the lowest
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true positive value was observed showed an RMSE of 0.0511
Rad. Comparing this to the difference between tested angles
of 0.0982 Rad, the RMSE is more than half of the difference
between the angles, leading to the results shown in Table V.
However, this error is still low compared to the angle between
tracking points of 0.7854 Rad, showing that the accuracy of
the sensor is not limited to the spacing of the tracking points.
The confusion matrices also show that intermediate values
tend to be underestimated for rotation around both axes; this
suggests a non-linear relationship that may not be captured in
the model.

Based on the results, Table IV and the T-tests demonstrate
that increasing the angle or magnitude of the force alters the
accuracy of measurements. The force measurements become
less accurate in line with the results seen in Fig. 7 which
shows higher sensitivity with low force. Meanwhile, the X-
and Y-angle measurements become more accurate in line with
Fig. 8, which shows less correlation between θY and θX and
tracking point displacement at low forces.

The analysis of angled sensing accuracy with pressure,
Table VII and the T-tests align the results from experiment
1. This reinforces that increasing the stiffness of the sensor,
decreases its force sensing accuracy. This was further shown
to extend to a decrease in θX sensing accuracy .

VII. CONCLUSION AND FUTURE WORK

This paper presented an optical-based soft-tipped sensor for
measuring the angle and magnitude of forces with a range that
is adjustable through stiffness control. We demonstrated the
viability of the PMOT sensor for adjustable single-axis force-
sensing via experiments and showed its ability to measure the
angle and magnitude of non-normal forces at different internal
pressures.

Normal force-sensing results showed that the range and
sensitivity of the sensor could be controlled by adjusting
the sensor’s internal pressure. The range could be varied
between 0.943 and 2.799 N. Using a 4th order fit allowed
the sensor to measure forces with an accuracy (RMSE) of
0.032 to 0.110 N. Additionally, some errors in force sensing
are mitigated through the sensing procedure whilst the others
may be decreased by investigating changes to sensor materials
and fabrication. The sensor uses a neural network to measure
the angle and magnitude of a force. RMSEs of 0.102 N for
force measurement, 0.0120 Rad for θY measurement, and
0.0109 Rad for θX measurement were achieved on trained
data. Demonstrating that the sensor can measure angles much
lower than the angles between tracking points. The accuracy of
measurements decreased when untrained data was introduced;
this effect could be reduced by increasing the spread of
training data.

Overall, the results shown in this paper demonstrate that this
force sensor can be used in a wide range of applications due to
its unique combination of attributes. The soft membrane allows
the sensor to interact with objects without damaging them. The
dynamically adjustable range allows the sensor to preform
well in operations where the load ranges may vary within
or between tasks. Additionally, the ability of the sensor to

measure angles allows it to be used in applications with diverse
angles of contact and where knowing the angle of contact
is beneficial, such as in palpation and object manipulation
in grippers. In future work, the sensor’s ability to measure
shear and torsional forces will be evaluated, and the sensor
will be tested in application settings, such as palpation. An
analysis will also be carried out about how the membrane
material affects the performance and range of the sensor.
The sensor behaviour will be analyzed when the pressure is
changed during contact with an object in line with [30], and
the dynamic characteristics of the sensor will be examined
through cyclic loading and pressurisation.
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