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Growth-rate-dependent and nutrient-specific gene
expression resource allocation in fission yeast
Istvan T Kleijn1,2,3,* , Amalia Martı́nez-Segura1,2,*, François Bertaux1,2,3 , Malika Saint1,2 , Holger Kramer1,2 ,
Vahid Shahrezaei3 , Samuel Marguerat1,2

Cellular resources are limited and their relative allocation to gene
expression programmes determines physiological states and
global properties such as the growth rate. Here, we determined
the importance of the growth rate in explaining relative changes
in protein and mRNA levels in the simple eukaryote Schizo-
saccharomyces pombe grown on non-limiting nitrogen sources.
Although expression of half of fission yeast genes was signifi-
cantly correlated with the growth rate, this came alongside
wide-spread nutrient-specific regulation. Proteome and tran-
scriptome often showed coordinated regulation but with no-
table exceptions, such as metabolic enzymes. Genes positively
correlated with growth rate participated in every level of protein
production apart from RNA polymerase II–dependent transcription.
Negatively correlated genes belonged mainly to the environmental
stress response programme. Critically, metabolic enzymes, which
represent ~55–70% of the proteome by mass, showed mostly
condition-specific regulation. In summary, we provide a rich account
of resource allocation to gene expression in a simple eukaryote,
advancing our basic understanding of the interplay between growth-
rate-dependent and nutrient-specific gene expression.
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Introduction

Cellular growth is the process by which cells increase in mass. It is a
fundamental systemic process that impacts most aspects of cell
physiology. Growth can be very fast, for example, yeast cells can
double in mass every few hours, and certain bacteria only require
minutes. Conversely, slower growth is observed in multicellular
organisms, in which several cell types take days to grow and divide.
Crucially, the cellular growth rate changes in response to external
cues such as nutrient quality, stressing agents, or growth factors.

Measurements of biomass composition in unicellular organisms
have long-established cellular growth rates as a covariate of cell

physiology (Schaechter et al, 1958; Mitchison & Lark, 1962; Waldron
& Lacroute, 1975; Fantes & Nurse, 1977; Neidhardt et al, 1990; Bremer
& Dennis, 2008). In the last decade, quantitative experimental work,
together with mathematical modelling, have described this rela-
tionship (reviewed in Klumpp and Hwa [2014], Shahrezaei and
Marguerat [2015], Jun et al [2018], and Bruggeman et al [2020]).
This body of work has emphasised how the macromolecular
composition of the cell is tightly connected to growth rate. Spe-
cifically, for cultures undergoing balanced exponential growth
modulated by external nutrients, the total RNA abundance per unit
of biomass and the growth rate are correlated linearly. This phe-
nomenological relationship is called the first or ribosomal growth
law and reflects an increased requirement for ribosomes during
faster growth to support protein synthesis. The demand for ribo-
somes is also felt at the protein level, where it induces a trade-off
between proteins involved in translation and those involved in
catabolism. It was shown that about half of the total proteinmass in
Escherichia coli responded to growth modulations by nutrient
limitation and translational inhibition (Scott et al, 2010; You et al,
2013). These observations were formalised in a phenomenological
model separating the proteome into three broad sectors based on
their growth rate correlations. Proteins showing expression levels
positively correlated with the cellular growth rate during nutrient
limitation and negatively during translational inhibition form the
R-sector (as many of them are constituents of the ribosome).
Conversely, proteins with expression levels negatively correlated
with the growth rate form the P-sector. Proteins that do not respond
to the growth rate belong to the Q-sector (Scott et al, 2010). The
concept of proteome sectors has been the basis of several phe-
nomenological and coarse-grained mechanistic models relating
optimal resource allocation to protein abundance and cellular
growth rates (Molenaar et al, 2009; Scott et al, 2014; Maitra & Dill,
2015; Weiße et al, 2015; Pandey & Jain, 2016; Liao et al, 2017; Bertaux et
al, 2020; Hu et al, 2020).

The molecular mechanisms behind the phenomenological as-
signment to the three proteome sectors remain less well understood.

1Medical Research Council London Institute of Medical Sciences (MRC LMS), London, UK 2Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London,
London, UK 3Department of Mathematics, Faculty of Natural Sciences, Imperial College London, London, UK

Correspondence: v.shahrezaei@imperial.ac.uk; samuel.marguerat@ucl.ac.uk
François Bertaux’s present address is Institut Pasteur, Paris, France.
Samuel Marguerat’s present address is UCL Cancer Institute, University College London, London, UK.
*Istvan T Kleijn and Amalia Martı́nez-Segura contributed equally to this work.

© 2022 Kleijn et al. https://doi.org/10.26508/lsa.202101223 vol 5 | no 5 | e202101223 1 of 23

on 21 March, 2022life-science-alliance.org Downloaded from 
http://doi.org/10.26508/lsa.202101223Published Online: 28 February, 2022 | Supp Info: 

http://crossmark.crossref.org/dialog/?doi=10.26508/lsa.202101223&domain=pdf
https://orcid.org/0000-0001-9466-9167
https://orcid.org/0000-0001-9466-9167
https://orcid.org/0000-0002-0942-6142
https://orcid.org/0000-0002-0942-6142
https://orcid.org/0000-0001-7509-0619
https://orcid.org/0000-0001-7509-0619
https://orcid.org/0000-0002-6400-0945
https://orcid.org/0000-0002-6400-0945
https://orcid.org/0000-0002-4013-5458
https://orcid.org/0000-0002-4013-5458
https://orcid.org/0000-0002-2402-3165
https://orcid.org/0000-0002-2402-3165
https://doi.org/10.26508/lsa.202101223
mailto:v.shahrezaei@imperial.ac.uk
https://doi.org/10.26508/lsa.202101223
http://www.life-science-alliance.org/
http://doi.org/10.26508/lsa.202101223


R-sector proteins are universally involved in translation and ribosome
biogenesis and many of them are controlled by global signalling
pathways such as guanosine tetraphosphate (ppGpp) in prokaryotes
or the target of rapamycin complex 1 (TORC1) in eukaryotes (Irving et
al, 2020; Petibon et al, 2020). P-sector proteins, on the other hand, are
more diverse and often involved in metabolic adaptation and stress
response (Brauer et al, 2008; You et al, 2013; Hui et al, 2015; Schmidt et
al, 2016). In E. coli, the master regulator CRP-cAMP has been proposed
to control the P-sector assignments of carbon catabolism enzymes
when growth rate was modulated by the quality of abundant carbon
sources (You et al, 2013). Under other growth modulations and in
other organisms, whether the regulation of P-sector proteins is as
directly mechanistically linked to the growth rate as for R-proteins is
less clear.

Transcriptomics and proteomics have been instrumental in
characterising the coordination between gene expression and
cellular growth. The ribosomal growth law was first confirmed in the
E. coli proteome in continuous cultures limited by carbon avail-
ability (Peebo et al, 2015), under titrations of carbon, nitrogen, and
translational inhibition (Hui et al, 2015), and in an extensive study of
22 growth conditions (Schmidt et al, 2016). In addition, the Hui study
proposed that the P-sector could be divided into subsectors related
to different metabolic functions depending on the type of nutrient
limitation. In the budding yeast Saccharomyces cerevisiae, a seminal
microarray study showed strong correlations between hundreds of
transcripts with the chemostat dilution rate across six nutrient ti-
trations (Brauer et al, 2008). The observed correlations agreed with
the ribosomal growth law and highlighted stress response as a
component of the P-sector alongside metabolic functions. More
recently, Metzl-Raz et al (2017) observed the ribosomal growth law
in the proteome of budding yeast after combining existing data
sets of cultures grown in a variety of carbon sources (Paulo et al,
2015, 2016) with data obtained under nitrogen and phosphorus
limitation (Metzl-Raz et al, 2017). They also proposed that a pool of
non-translating ribosomes is available as a buffer during changing
growth conditions, a strategy also observed in prokaryotes (Dai et al,
2016; Mori et al, 2017; Kohanim et al, 2018). This suggests that resource
allocation may not be fully optimised for maximal cell growth. Signs
of excess capacity have also been reported for metabolic pathways,
including glucose catabolism (Yu et al, 2020). Further omics studies in
S. cerevisiae have defined additional characteristics of resource
allocation such as reallocation of proteome mass from amino acid
biosynthesis to protein translation upon amino acid supplementa-
tion (Björkeroth et al, 2020), or the respective contribution of tran-
scription and translation to different allocation strategies (Yu et al,
2021). Thus, genome-wide omics experiments have been key to improve
our understanding of resource allocation in E. coli and S. cerevisiae by
connecting proteome sectors to specific physiological functions.

The cellular growth rate reflects the metabolic state of the cell
and in limiting nutrient conditions metabolic enzymes are often part
of the P-sector (Hui et al, 2015; Schmidt et al, 2016). This suggests that
expression levels of specific metabolic enzymes when responding to
external conditions can be directly regulated alongside the growth
rate. The cell metabolism however is an exquisitely complex network
of interconnected processes and perturbation of single pathways
can have wide-spread systemic effects. Central carbon metabolism
(CCM) relies on three pathways: glycolysis, the pentose phosphate

pathway, and the tricarboxylic acid (TCA) cycle. Together, these
generate energy in the form of ATP, in a process mediated by re-
ducing agents such as NADH, and produce building blocks for bio-
synthesis. ATP can be generated anaerobically via fermentation; a
process which consists of glycolysis and the subsequent degradation
of pyruvate, or aerobically via respiration, which requires the TCA
cycle and subsequent oxidative phosphorylation (OXPHOS). The
extent of fermentative versus respiratory metabolism affects the
NAD+/NADH redox balance and vice versa, as NAD+ reduction during
glycolysis and the TCA cycle must be balanced by NADH oxidation
occurring during pyruvate degradation and OXPHOS (Vemuri et al,
2007; vanHoek&Merks, 2012; Campbell et al, 2018; Luengo et al, 2020).
In eukaryotes, these reactions are compartmentalised between the
cytoplasm and the mitochondria, with the latter housing the re-
spiratory enzymes and functioning as hubs that connect diverse
metabolic pathways including CCM and amino acid metabolism
(Spinelli & Haigis, 2018). For instance, amino acid degradation en-
ables the assimilation of nitrogen as ammonium or glutamate via de-
or transamination reactions. The remaining carbon backbone is
recycled into the cell’s biomass or excreted, and the associated
metabolites affect carbon metabolism (Godard et al, 2007). Im-
portantly, mitochondrial intermediates are required for amino
acid biosynthesis even during fermentative energy generation (Malecki
et al, 2020). In fission yeast, a single point mutation in the pyruvate
kinase Pyk1, affecting its activity, has been shown to rebalance the
fluxes through the fermentation and respiration pathways alongside
shifts in the transcriptome and proteome composition (Kamrad et al,
2020), giving a prime example of how the cell co-adjusts perturbations
in metabolic fluxes and expression burdens. Taken together, shifts in
the metabolic demand propagate throughout the cell, as most met-
abolic pathways are tightly interlinked (Chubukov et al, 2014).

The expression levels of CCM enzymes, and therefore the fluxes
through the pathways depend on external conditions and stress
levels. As a result, cellular states and metabolic strategies are linked
to resource allocation to different gene expression programmes. For
example, during rapid growth on glucose, yeast utilises the fer-
mentative pathway alongside the TCA cycle even in the presence of
oxygen, a phenomenon known as aerobic glycolysis or the Crabtree
effect (Shimizu & Matsuoka, 2018). Aerobic glycolysis is also a
characteristic of tumour cells, for which it is known as the Warburg
effect (Vander Heiden et al, 2009). This strategy appears counter-
intuitive as fermentation generates fewer molecules of ATP per
glucose molecule than respiration. Several hypotheses have
been proposed to resolve this paradox. All require a second
growth-limiting constraint besides glucose uptake which would
be specific to respiro-fermentative growth (de Groot et al, 2019).
Examples include the cytoplasmic density of macromolecules
(Vazquez et al, 2008; Goelzer et al, 2015), total proteome allocation
(Basan et al, 2015), and membrane area availability (Szenk et al,
2017). Thus, a whole-cell understanding of cellular trade-offs
between multiple constraints must take into account gene ex-
pression alongside metabolic maps (Goelzer & Fromion, 2017;
Yang et al, 2018; Dahal et al, 2020). Resource allocation constraints
have been successfully introduced into genome-wide metabolic
models of several organisms as more high-quality expression
data hane become available (O’Brien et al, 2013; Sánchez et al,
2017; Chen et al, 2021). In summary, quantitative surveys of the
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gene expression cost of metabolic pathways are key to under-
standing cell physiology.

Here, we define the growth-rate-dependent and nutrient-specific
resource allocation to the fission yeast Schizosaccharomyces pombe
proteome and transcriptome. We find that both types of regulation are
interconnected and define protein synthesis and stress response as
the processes positively and negatively regulated with the growth rate.
We then study the plasticity of the gene expression burden of met-
abolic pathways in response to changes in nutrients and their reliance
on transcriptional and post-transcriptional regulation. Altogether we
provide a rich account of resource allocation in a simple eukaryote as a
function of external conditions.

Results

Fission yeast gene expression shows growth-rate-related and
condition-specific components

To generate cell populations that grow at different rates but not
limited for nutrients, we used eight defined culture media, each con-
taining a unique source of nitrogen. S. pombe 972 h− prototroph wild-
type cells were grown in turbidostats at constant concentrations of
OD600 ~ 0.4 (3–5 × 106 cells/ml) in triplicates (Fig 1A). Like in che-
mostats, turbidostat cultures are diluted by the addition of fresh
medium. In the case of the turbidostat system, however, it is the cell
concentration that is directly measured and maintained constant
and not the proliferation rate. This ensures that cellular growth is not
limited by a lack of nutrients, but rather determined by the quality of
the provided nitrogen source and the resulting internal allocation
patterns. Growth rates were measured halfway through the proce-
dure during a twofold dilution cycle (Fig 1B and Table S1). Cells were
then let to reach the target OD600 again, grown for a second period of
stable OD600 to ensure that they were at steady state, and harvested
(Fig 1B and Table S1). The growth media have been extensively
characterised elsewhere (Fantes & Nurse, 1977; Carlson et al, 1999;
Petersen & Russell, 2016). Seven media contained 20 mM of a single
amino acid (Trp, Gly, Phe, Ser, Ile, Pro, and Glu), and one 93.5 mM of
ammonium chloride (NH4Cl, referred to as Amm) as a reference. In
our hands, this design achieved growth rates ranging 0.05–0.28 h−1

for 43–143 h (6–28 generations depending on the nitrogen source)
(Fig 1C–E and Table S1) (Takahashi et al, 2015). To measure the
proteome and transcriptome allocation as a function of the growth
rate, we performed label-free proteomics and RNA sequencing (RNA-
Seq) analysis of cells from each culture condition (see the Materials
and Methods section and Tables S2–S5).

We first asked whether the fission yeast proteome composition
differed significantly between the eight growth conditions. Strikingly,
~45% of the 1,988 protein groups robustly detected in all samples
were significantly more variable across conditions than among bi-
ological replicates (Holm-adjusted PANOVA < 0.05). This pervasive level
of gene regulation was also apparent at the transcriptome level
where ~52% of mRNAs showed significant variability. These results
indicate that the composition of the proteome and transcriptome are
both strongly affected by conditions that change the growth rate.

To investigate this variability further, we used the z-score trans-
formed protein fraction of each gene for hierarchical clustering

(Fig 2A, see the Materials and Methods section). This treatment
enabled normalisation for protein expression levels across the
proteome while preserving the variation of each protein between
conditions. We defined 10 clusters that revealed two major features
of the data sets (Fig 2A–C). First, all clusters showed clear differences
in protein expression across one or more conditions. Second, the
expression of several proteins was not strictly condition-specific but
instead showed a coordinated linear increase with growth rate
(clusters 7 and 8). Interestingly, the total baseline expression of the
condition-specific clusters was positively (clusters 7, 8, and 9), or
negatively (clusters 1, 2, 3, and 6) correlated with the growth rate. Apart
from clusters 1, 4, and 10, clusters were enriched for defined functional
categories, indicating that the shifting balance between condition-
specific regulation and growth rate regulation may have physiological
consequences related to the enriched functions (Figs 2A and S1).

Both modes of regulation were also apparent in the tran-
scriptome data for coding (Figs 2C and S2A and B) and non-coding
RNA (ncRNA) (Fig S3A and B). Interestingly, most ncRNAs showed
clear and reproducible condition-specific expression between
replicates, suggesting the presence of active regulation, consistent
with analyses using different genetic and physiological conditions
(Atkinson et al, 2018). To test this hypothesis, we compared the
expression patterns of ncRNA from each cluster with the expression
of their flanking coding genes (Fig S3C and D). We found that, apart
from the growth-rate-correlated cluster 1, expression of individual
ncRNAs was not mirrored by expression of their neighbouring
mRNAs. This indicates that many ncRNA are subjected to some level
of independent regulation. In summary, we find that regulation of
gene expression programmes across conditions that affect the
growth rate has two components; one which is condition-specific
and another which is coordinated with growth rate.

Growth-dependent gene expression is an important determinant
of the cell protein and mRNA composition

We first focused our analysis on the growth-dependent compo-
nent of fission yeast gene expression. Linear correlations between
the expression of individual genes and the growth rate have been
observed in several organisms under different types of growth
limitation (Brauer et al, 2008; Hui et al, 2015; Peebo et al, 2015;
Schmidt et al, 2016; Metzl-Raz et al, 2017; Zavřel et al, 2019). Fol-
lowing the terminology used in prokaryotes, we divided proteins
and mRNA into three sectors depending on whether they show a
growth-dependent component that was positively (R), negatively
(P), or not significantly (Q) correlatedwith the growth rate (Scott et al,
2010, 2014). We used repeated-median linear models to quantify the
linear coordination of each protein and mRNA quantity with growth.
Thismodelfits a linear dependence in the presence of largenumbers
of outliers and is therefore robust to the condition-specific com-
ponent of gene expression (see the Materials and Methods section,
Fig S4A–F and Table S6).

The linear fits generated two useful parameters. First, the slope
of the linear regression is a measure of the strength of the de-
pendence of a protein’s concentration on the growth rate. Second,
its y-intercept represents the fraction of the protein numbers that is
not directly dependent on growth. Both parameters are directly
correlated with expression levels making it difficult to disentangle
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the strength of the growth-rate-related regulation from anmRNA or
protein from its abundance. To take this into account, we developed
a normalised measure of growth dependence, defined as the ratio
of the difference in expression level between zero and maximum
growth and the median expression. It therefore denotes the “fold
change” or FC of growth rate changes relative to an intermediate
baseline (see the Materials and Methods section, Fig S4G and H). FC
values are a combination of the regression slope and y-intercept
which do not scale with abundance, thereby enabling a direct

comparison of the growth dependence of single genes or groups
thereof.

Repeated-median linear models captured the growth-dependent
component of the 10 clusters from Fig 2, and proteins from the
R- and P-sectors dominated the clusters that were positively and
negatively correlated with growth, respectively (Fig S5). Of all the
genes detected in the proteome across the eight conditions ex-
amined, we found that 22% of proteins and 37% of mRNA belonged
to the R-sector; similarly, 24% and 21% of the proteins and mRNA

Figure 1. Characterisation of culture growth in turbidostats across eight minimal media.
(A) Illustration of the turbidostat culture chamber with the control flow and analysis pipeline. (B) Example growth curve (Ile replicate 2) showing different growth phases
in the turbidostat. (C) Estimated growth rates μ based on a twofold dilution and regrowth cycle for the eight growth media using three biological replicates each. Amm,
ammonium chloride, equal to standard EMM2 medium. (D) Total number of generations each culture spent in a turbidostat. (E) Total time in hours each culture spent in a
turbidostat, with the duration of individual growth phases coloured as in B. Note that, with NG the number of generations, T the time spent in the turbidostat, μ the
growth rate, and Td the doubling time, Td = ln(2)/μ and NG = T/Td.
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Figure 2. Fission yeast gene expression shows growth-rate-dependent and nutrient-specific components.
(A)Hierarchical clustering of z-score transformed protein expression fractions for the 1,988 protein groups detected across all conditions for cells grown in seven single
amino acids or NH4Cl (Amm) using three biological replicates. Growth conditions are ordered by increasing growth rate. 10 clusters are labelled on the left together with
manual summary of enriched functional categories (see Fig S1). The colour scale was truncated at z-scores of −3 and +3. (B) Summed protein mass fractions for the 10
clusters defined in A as a function of the growth rate. Repeated-median linear model (RMLM) fit is shown as a black line and the predicted 2.5th–97.5th percentile
confidence interval (CI) of the fit as the grey shaded area. (C) As shown in (B), for DESeq2-normalised RNA-Seq counts. (D) Assignment of 2,030 proteins detected across all
conditions and their respective transcripts to the R (orange), P (blue), and Q (grey) sectors based on protein fractions (left) and DESeq2-normalised counts (right). Each
protein is connected to its corresponding transcript by a line and colours are according to the protein sectors. (E) Sum of protein fractions for the R- (orange), P- (blue),
andQ- (grey) sectors as a function of growth conditions. The figure includes all 3,498 protein groups detected in at least one condition. Best fit and predicted CI are plotted
for the ordinary least squares linear model. (F) As shown in (E), for DESeq2-normalised RNA-Seq counts for 5,135 detected genes. Abbreviations: PP, QP, RP: protein groups
assigned to P-, Q-, and R-sector. PT9, QT9, RT9: transcripts corresponding to protein groups detected across all conditions assigned to P-, Q-, and R-sector. PT, QT, RT: all
transcripts assigned to P-, Q-, and R-sector.
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belonged to the P-sector, respectively. The protein and mRNA of a
given gene belonged to the same sector in 53% of the cases (Fig 2D).
When they did not, the mRNA of P- or R-proteins were mostly
assigned to the Q-sector and vice versa, with only 19 R-proteins
having P-sector mRNA, and 55 P-proteins having R-sector mRNA,
out of the 2,033 proteins detected.

In quantitative terms, the total proteome mass fraction of the
fission yeast R-sector ranged between ~20% at zero growth and 55%
for the fastest measured growth rate, whereas the mass fraction of
the P-sector similarly ranged from ~30 to 10% (Fig 2E). The sum of all
Q-sector proteins was negatively correlated with the growth rate
because proteome fractions add up to one by definition. However,
none of the individual proteins showed significant correlation with
the growth rate. At the mRNA level, the R-fraction ranged from 38 to
59% of the total normalised counts, and the P-fraction from 19 to
10% (Fig 2F). Thus, during fast growth, over half of the gene ex-
pression burden is dedicated to factors that increase in concen-
tration with growth rate and may therefore be limiting. Moreover,
the amplitude of the variability in the concentration of fission yeast
proteins and mRNA that depend on the growth rate alone is in the
order of magnitude of the cut-offs that are commonly used for
differential expression analysis. Therefore, differences in growth
rate are important factors that affect interpretation of tran-
scriptomics and proteomics data (Yu et al, 2021).

Growth-dependent gene expression is preserved between mRNA
and protein

Having performed both transcriptomics and proteomics data on the
same cells enabled us to compare the two levels of gene expression
in a unified data set. To perform a like-for-like comparison, we
converted our expression measure in both data sets to relative
number fractions (Balakrishnan et al, 2021 Preprint). First, we ex-
plored the correlation between protein and mRNA levels averaged
across all genes, using the Spearman correction to account for the
varying reproducibility of the data (Csárdi et al, 2015; Franks et al,
2017) (see the Materials and Methods section). Messenger RNA
reliabilities were in the range of 97.5–99.8% and protein reliabilities
were between 92.8 and 97.6% indicating high concordance between
biological repeats (Figs S6 and S7 and Table S7). Spearman-
corrected correlations of log-transformed relative protein and mRNA
levelswere ~0.8 formost conditions, with a slightly elevated correlation
in EMM2 reference medium and slightly smaller correlation in Trp
medium suggesting marginal medium-specific effects (Figs 3A and S8).
Furthermore, we found evidence of post-transcriptional amplification:
the ratio of protein tomRNAgenerally increasedwithprotein expression,
but a plateau was reached at very high expressions (Fig S9). This
agrees with earlier observations (Marguerat et al, 2012). In summary,
our analysis indicates that mRNA expression levels are globally good
predictors of proteome composition in our system.

Second, we explored the extent of post-transcriptional regula-
tion for each given gene in different growth media. For each gene,
we calculated the log2-transformed ratio of protein and mRNA
relative number fractions and subtracted from this the median
ratio across conditions (Franks et al, 2017) (see the Materials and
Methods section, Table S8). Subsequently, we performed hierar-
chical clustering analysis (Fig 3B) and a functional enrichment of

the clusters (Fig S10). There was little growth-dependent variation
in the resulting residual protein-to-RNA ratios of many genes,
including ribosomal proteins (RPs) (Fig 3B cluster 10, Fig S10).
However, some genes showed signs of medium-specific post-
transcriptional regulation, prominent in Trp, Ile, and Glu (clusters
1–6). Notably, clusters 4 and 5 contained genes with elevated
protein-to-mRNA ratios in Ile and Glu, but repressed ratios in Pro,
Ser, Phe, and (chiefly) Trp. The enrichment analysis highlighted a
moderate enrichment for metabolism in cluster 5.

Next, we compared the size of the growth-rate-dependent ef-
fects between protein and mRNA by contrasting the fold change
measures of genes present in both data sets. As shown in Fig 3C and
in accordance with Figs 2D and S5, the RMLMs showed good
agreement between the two types of data. Protein FC measures
were generally larger than transcript FCs, again highlighting the
post-transcriptional amplification. Further study of the disagreeing
genes showed a minor enrichment of proteasomal genes in the
group with negative growth rate correlations in the proteome and
positive growth rate correlations in the transcriptome (Fig S11).

Finally, we compared mRNA and protein growth-related regu-
lation for a series of functional categories using an unbiased gene
set enrichment analysis, ranking genes on the signed significance
measure used to determine the P- and R-sector (see the Materials
and Methods section, Tables S9 and S10). This showed that most
categories showed a similar growth-related regulation for both
mRNA and proteins (Fig 3D). This finding is robust to changing the
ranking variable to the effect size (FC) instead of the significance
(Tables S11 and S12 and Fig S12B). Transcripts for transcription
factors, and for proteins generally bound to the chromosome, were
an exception. This was due to limited coverage in the proteomics
data for these categories (Fig S12A). Specific functional categories
will be discussed below.

R-sector proteins participate in all steps of the protein synthesis
process

We next queried the cellular processes that had a strong R com-
ponent and could therefore be either limiting for growth or reg-
ulated by it. We used a curated list of macromolecular complexes
spanning most cellular processes and calculated the proportion of
each complex subunit that was growth-rate-dependent in each cat-
egory (Figs 4A and S13 and Table S13) (Gene Ontology Consortium, 2019;
Lock et al, 2019). As observed in prokaryotes and budding yeast, the top
four categories relying the most on R-proteins belonged to a single
process: the synthesis of proteins (Fig 4AB). Strikingly, R complexeswere
found at every single step of protein synthesis: the transcription of
rRNAs and tRNAs and their processing, assembly andpost-translational
modification of the ribosome, and initiation and termination of
translation (Fig 4B). Interestingly, expression of the chromatin-modifying
complexes NuA4 and Ino80 were part of the R-sector (Fig 4C), suggesting
theymay be involved in ribosome biogenesis in fission yeast as has been
proposed forNuA4 inbuddingyeast (Upretyet al, 2015). Alternatively, these
results could indicate that the chromatin structure and levels of histone
modification may be limiting for growth.

The overall correlation between growth and the factors involved
in protein synthesis had a notable exception. Although RNA po-
lymerase (RNAP) I and specific subunits of RNAPIII were part of the
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R-sector, RNA polymerase II specific subunits were not significantly
correlated with growth rate (Fig 4B–D). Therefore, the number of RNAP
II complexes is unlikely to be a limiting step in protein production
during growth. Interestingly, RNAP II numbers were found to be
limiting for the scaling of gene expression to cell size, indicating that
coordination of gene expression to cell size and growth rate follow
different mechanisms (Padovan-Merhar et al, 2015; Sun et al, 2020).

The stoichiometry of translation complexes changes with the
growth rate

Differences in FC values between protein complexes indicate that
their relative levels or stoichiometry changes with the growth rate.

We hypothesised that these variations could provide mechanistic
insights into the functioning of these complexes. To investigate this
in the context of protein translation, we analysed three non-
overlapping subclasses of translation proteins: the RP, the ribo-
some biogenesis regulon (RiBi), and the translation initiation,
elongation and termination factors (IET) (see the Materials and
Methods section, Table S14). The FC value for the IET class was the
smallest of the three, whereas the trend line for RPs was the
steepest (Figs 5A and S14A). As a result, the ratios between IET and
RPs were significantly higher at slow growth (Fig 5B). It has been
shown that RPs are held in reserve at slow growth rates (Metzl-Raz
et al, 2017); these results suggest that an even larger fraction of IET
and possibly RiBi proteins could be held in reserve. The relative

Figure 3. Comparison of proteome and
transcriptome.
(A) Raw pairwise correlations between mRNA and
protein number fractions (small circles) with their
geometric means (large circles) and Spearman-
corrected best estimates (squares). (B) Heat map of
residual log2-transformed ratios of protein and
transcript number fractions (ψP/ψM) showing
medium-specific differences in protein-to-mRNA ratio
(see the Materials and Methods section). (C) Transcript
and protein fold change (FC) measures of the
repeated-median linear models (RMLMs) of 2,030
genes detected in both data sets. Colours indicate
assignment to proteome and transcriptome sectors
(PP, RP: protein assigned to P- and R-sector; PT, RT:
transcripts assigned to P- and R-sector). An enrichment
analysis of genes with non-matching protein and
transcript sector assignments is shown in Fig S11.
(D) Scatter plot of normalised enrichment scores (NES)
of GO-slim–based gene set enrichment analyses in
transcriptome and proteome. Genes were ranked
according to the P-values associated with the transcript
and protein RMLM, respectively. GO-slim terms are
coloured as indicated according to the adjusted
P-values from the gene set enrichment analyses,
and terms with at least one padj < 10−9 are labelled.
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Figure 4. Proteins from the R-sector are involved in every level of the protein production programme.
(A) Fraction of R- (orange), P- (blue), and Q- (grey) proteins in manually curated broad categories of protein complexes. The number of complexes (C) and genes (G) in
each category are shown in parentheses. The four leftmost categories encompass the protein production programme. (B) Volcano plot of protein complexes belonging to
the broad categories “snoRNA regulation,” “Protein translation,” “Ribosomal proteins,” and “Ribosome biogenesis” in the protein production programme. The plot shows
the -log10 of the q-value of the repeated-median linear model (RMLM) fit on the sum of normalised counts in each protein complex as a function of the growth rate
against a normalised estimate of the slope of the fit (see the Materials and Methods section). (C) As shown in (B) for complexes belonging to the “mRNA regulation” and
“Chromatin regulation” categories. (D) Sums of DESeq2-normalised counts for subunits of RNAP I (left), II (middle) and III (right) are plotted as a function of the growth rate.
The sums of subunits unique to a given complex are plotted in orange and of all subunits are plotted in grey. RMLM fits are shown as lines and the predicted 2.5th–97.5th

percentile confidence interval (CI) of the fit as shaded areas.
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abundances in EMM of IET:RiBi:RP were ~4:1:8 for the proteomemass
fractions and 5:4:64 for the transcriptome RPKMs (Fig 5A and B). This
confirms earlier observations that the burden on transcription for
RP synthesis is higher than for the rest of the proteome (Schmidt et
al, 2007; Marguerat et al, 2012). The growth laws for the initiation and
elongation factors were almost identical to each other, suggesting
constant stoichiometry with the growth rate (Fig S14B and C). Within
the IET category, elongation factors were about three times as
abundant as initiation factors, and about 50 times compared with
termination factors (Fig S14B and C). This is in line with biochemical
evidence showing that translation initiation is a limiting step for
protein synthesis (Aylett & Ban, 2017). Taken together, we have
shown how the growth law can inform on the regulation of gene
expression through changes in the stoichiometry of factors with the
growth rate.

Furthermore, the large burden of RPs during fast growth resulted
from the coordinated growth-related expression of most individual
RPs and from a growth dependence component steeper than that
of IET and RiBi (Fig 5C). This indicates that the aggregate burden of
RPs results from coordinated regulation at the level of single genes
(Petibon et al, 2020). The IET and RiBi categories also contained
more proteins that were assigned to the P- andQ-sectors, and whose
expression data were not well explained by the robust model be-
cause of significant condition-dependent expression (Figs S15 and
S16). For instance, the initiation factor eIF3e was present in sub-
stoichiometric amounts relative to eIF3a. Interestingly eIF3e has been
shown to selectively regulate the translation of transcripts coding for
metabolic enzymes (Shah et al, 2016).

16 protein groups annotated as RPs were assigned to the
Q-sector because their expression was not significantly positively
correlated with the growth rate and we here explore these Q-RPs
further (Fig S16). Their relative protein abundances were slightly
lower than those of RPs that did belong to the R sector (R-RPs, see Fig
S16A). However, median transcript abundances and FC values were not
significantly different between Q-RPs and R-RPs (Fig S16B). This opens
the possibility of regulatory feedback at the post-transcriptional level.
Interestingly, half of these Q-RPs (Rlp7, Rpl102, Rpl2501, Rpl35A02,
Rps1502, Rps20, Rps27, Rps2801, and Rps2802) are annotated with
functions in ribosome biogenesis on the PomBase database (Lock et
al, 2019). In addition, the budding yeast orthologue of Q-RP Rps20 has
been proposed to regulate RNAPIII transcription, providing a po-
tential link between ribosomes and tRNA synthesis (Warner &
McIntosh, 2009). The proteome expression data for all Q-RPs is
plotted in Fig S16C. Together, this suggests that Q-RPs could be
attractive candidate proteins that could have additional functions
outside of the ribosome.

Principles of proteome allocation are often conserved in pro-
karyotes and eukaryotes despite significant mechanistic differ-
ences in the way genes are transcribed and translated (Dai & Zhu,
2020). Therefore, we thought to compare our findings in fission
yeast with published data sets from the budding yeast S. cerevisiae
and the bacterium E. coli (Schmidt et al, 2016; Metzl-Raz et al, 2017).
We reanalysed published proteomics data for E. coli cells growing at
different rates in a series of environmental conditions to extract
the relative proteome fractions, and we subsequently computed
the growth law parameters for translational proteins (see the
Materials and Methods section, Table S15) (Schmidt et al, 2016). For

S. cerevisiae, we merely used growth law parameters of RPs published
elsewhere (Metzl-Raz et al, 2017). We found that E. coli could sustain
a given growth rate with a smaller fraction of RPs than both yeasts,
which was due to a smaller growth law slope (Fig 5D). This suggests
that the effective translation rate in the yeasts is lower than that of
E. coli. Among the two yeasts, fission yeast used its RPs significantly
more efficiently—using a smaller RP mass fraction to sustain any
given growth rate than the budding yeast trend line—but the effect
could not be assigned to a significant difference in either the slope
or the intercept parameter specifically. Next, we asked whether the
changes in stoichiometry of translational proteins during slow
growth were conserved in E. coli. Again, both the IET/RP and
RiBi/RP ratios were higher during slower growth (Fig S17A and B)
because the individual RPs had steeper growth laws (Fig S17C). A
steeper growth law of RPs than that of elongation factors was
recently predicted by a model of E. coli that minimised the total
expression cost (Hu et al, 2020). Our results indicate that allocation
strategies are conserved even though protein production differs
mechanistically between the two kingdoms.

P-sector proteins are part of the core environmental stress
response programme

To complement our analysis of the R-sector, we next examined
fission yeast proteins from the P-sector, that is, proteins with a
negative growth-dependent component. In contrast to the R-sector
clusters 1 and 2, we could not identify P-sector clusters whose
expression could be explained exclusively by a negative growth rate
correlation (Fig 2A–C). This indicates that proteins with a strong P
component are also often regulated in response to specific ni-
trogen sources. Moreover, the growth component for P-proteins
was less significant overall than for R-proteins (Fig S18A and B).
These results suggest that regulation of the R- and P-sectors may
differ mechanistically.

Unlike R-proteins, which are mostly involved in protein pro-
duction, P-proteins belonged to a diverse set of complexes par-
ticipating in a large array of functions (Fig 4A). As individual
proteins, they showed weaker correlations than R sector complexes
(Fig S18C and D). To analyse whether this diverse set of P-proteins
was participating in a common higher level functional programme
we analysed the fission yeast GO-slims alongside 21 lists covering
fission yeast physiology and environmental responses (Figs 5E and
S19A) (Mata et al, 2002; Chen et al, 2003; Rustici et al, 2004; Marguerat
et al, 2012; Rallis et al, 2013; Saint et al, 2019; Kamrad et al, 2020).
Functional classes with strong P-sector components included
vacuole biology, endosome and phagosome, transport and genes
induced in the adaptation to nitrogen removal, and/or after treat-
ment with caffeine and rapamycin. The latter two classes, which had
the strongest response, are thought to be controlled by TORC1 (Mata
et al, 2002; Rallis et al, 2013). This suggests that nitrogen sources
supporting slower growth rates trigger a form of metabolic stress
response. Accordingly, the total expression of the fission yeast core
environmental stress response programme up-regulated genes
(CESR up) was negatively correlated with the growth rate (Fig 5F). This
stress module comprises genes induced in response to a wide range
of environmental and genetic perturbations (Chen et al, 2003;
Pancaldi et al, 2010). Conversely, genes down-regulated as part of the
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Figure 5. Stoichiometries of translation complexes, comparison of ribosomal growth law with other species, and functional analysis of P-sector.
(A) Sum of the protein fractions plotted as a function of the growth rate for factors involved in translation initiation, elongation, and termination (IET; left), ribosome
biogenesis (RiBi; middle), or ribosomal proteins (RP; right). The best fit and bootstrapped 95% confidence interval (CI) are shown in black and grey, respectively. The fold
change (FC) values ± standard deviations of the bootstrapped values are shown. (B) Proteome mass ratio plotted as a function of the growth rate for the following
comparisons: IET versus RP (left), RiBi versus IET (middle), and RiBi versus RP (right). Shown in black/grey are the predictions and 95% CIs as given by the linear models
fitted to the data in (A). (C) FC values for proteins of the IET, RiBi, and RP categories plotted as a function of their median expression. Proteins assigned to the R-, P-, and Q-
sectors are coloured in orange, blue, and grey, respectively. (D) Total proteomemass fraction allocated to RPs as a function of growth rate for S. cerevisiae (red) (Metzl-Raz
et al, 2017), Schizosaccharomyces pombe (green), and Escherichia coli (grey) (data from Schmidt et al [2016]). RMLM fits and 95% CIs are shown as lines and shaded areas,
respectively. (E) The −log10 Q-value of repeated-median linear model (RMLM) fits plotted against their respective FC values for proteins belonging to GO-slim and
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CESR response (CESR down, also called growth module) belonged to
the R-sector (Figs 5F and G and S19B). This finding validates the
longstanding hypothesis that the balanced expression of the fission
yeast stress response is quantitatively connected with the growth
rate (López-Maury et al, 2008). In addition, P-proteins were enriched
for factors regulated during the S phases of the cell cycle, which is
consistent with evidence that the cell-cycle phase length differs
between nitrogen sources, in particular growth on Trp (Figs 5E and
S19C andD) (Carlson et al, 1999; Rustici et al, 2004). Notably, wedidnot
observe a simple relationship between the expression of cell cycle
markers and the growth rate (Fig S19E). This is in line with earlier flow
cytometry and microscopy data, which did not find a straightforward
relationship between the length of cell cycle phases and the growth
rate upon growth on different nitrogen sources (Carlson et al, 1999).

Notably, the functional classes involved in metabolism were not
strongly negatively correlated with the growth rate (Fig 5E), and the
fission yeast P-sector was only marginally enriched in proteins
involved in central and energy metabolism (Fig S20). This contrasts
with previous data from E. coli and S. cerevisiae where metabolic
genes have been reported to be important components of the P-
sector (Hui et al, 2015; Schmidt et al, 2016; Metzl-Raz et al, 2017).
However, when considered globally, the sum of protein mass
fractions dedicated to metabolic enzymes was clearly anti-correlated
with growth in fission yeast, ranging from ~70% of the proteome in poor
nitrogen sources to ~55% in the fastestmedia (Fig 6A). This indicates that
in our system which does not rely on titration of a limiting nutrient to
modulate the growth rate, the total protein burden on metabolism is
linked to the growth rate, whereas allocation to specific enzymes is not.
Therefore, the global anti-correlation of metabolic enzymes with growth
rate observed in our data may be a manifestation of the trade-off
between metabolism and translation, and not the result of the
direct quantitative regulation of metabolic enzymes expression
with the growth rate.

The burden of specific metabolic pathways is principally
condition-dependent

On top of the growth-dependent components, many fission yeast
proteins show clear condition-specific gene regulation (Fig 2A–C).
Functional analysis indicated an enrichment of these genes for
functions related to metabolism. This is consistent with the
adoption of distinct metabolic allocation strategies in response to
growth with different nitrogen sources (Alam et al, 2016; Mülleder et
al, 2016). We classified metabolic genes into six non-overlapping
classes based on the following GO terms: canonical glycolysis
(GO:0061621), generation of precursors and energy (GO:0006091),
cellular amino acid metabolic process (GO:0006520, which includes the
interconversion of ammonium, glutamate, and glutamine), lipid met-
abolic process (GO:0006629), vitamin metabolic process (GO:0006766),
and all other metabolic pathways (including transport of

metabolites) (Figs 6B and S21 and Table S16). To avoid over-
estimating the burden of gene expression by double-counting
genes assigned to multiple terms, each protein was assigned
only to the first of these GO-terms it was annotated with. The
relative allocation to each class was condition-specific, indicating
that metabolic states rely differentially on specific pathways (Fig
6B). We note that similar growth rates can be supported by different
allocation strategies, as in the case of the Trp and Gly containing
media in which cells channelled resources preferentially towards
glycolysis (Trp) or amino acid metabolism (Gly) (Figs 6B and S21).
The growth-related components of those categories were weak,
except for the vitamin metabolism proteins which belonged to the
R-sector and the precursor/energy proteins that showed a sig-
nificant P component (see below, Fig S21). Most coenzymes are
stablemolecules synthesised only asmuch as necessary to support
growth (Hartl et al, 2017). The strong positive correlation of vitamin
metabolism expression with growth rate suggests that cells also
minimise the translation burden of vitamin metabolic enzymes. In
summary, expression of metabolic enzymes in our system, although
connected to the growth rate, is mainly condition- and pathway-
specific.

We next took a closer look at the energy metabolism pathways
and their negative correlation with the growth rate. Nutrient quality,
cell growth, and energy metabolism are intimately connected. The
generation of ATP through fermentation is often favoured in
conditions that support faster growth, whereas slow-growing cells
in limiting conditions tend to switch to respiratory metabolism
(Vander Heiden et al, 2009; Shimizu & Matsuoka, 2018). Therefore,
we asked whether protein allocation to either energy metabolism
pathway was correlated with the nitrogen sources used and/or
growth rate. To this end, we split the non-glycolytic generation of
precursors and energy category into the fermentative enzymes
pyruvate decarboxylase (Pdc101) and alcohol dehydrogenase
(Adh1), and the respiration process into tricarboxylic acid cycle
(TCA, GO: 0006099) and oxidative phosphorylation (OXPHOS,
GO:0006119) enzymes (Fig 6C and S22). Surprisingly, none of the
categories were consistently correlated with the growth rate. Instead,
condition-specific expression was dominant, and a clear repression
of all OXPHOS complexes upon growth on serine was observed (Fig
S23). A recent report showed that serine catabolism generates high
levels of reactive oxygen species (ROS) in S. pombe, suggesting that
respiration may be repressed upon growth on serine to avoid a
further increase in ROS (Kanou et al, 2020). Notably, expression of
the fermentative enzymes Adh1 and Pdc101, although variable
between conditions, was consistently higher than the total ex-
pression of the respiratory enzymes. Moreover, respiratory enzymes
were not induced in nitrogen sources supporting slow growth.
Taken together, the expression balance between fermentation and
respiratory enzymes was not quantitatively connected to the
growth rate, but depended on the nutrient properties.

literature lists (Mata et al, 2002; Chen et al, 2003; Rustici et al, 2004; Rallis et al, 2013; Kamrad et al, 2020). List with a significant negative slope (q-value < 0.001) are
highlighted in blue. BP GO-slim terms related to metabolism are highlighted in green, stress/growth modules from Chen et al (2003) in vermillion, and cell cycle induced
modules from Rustici et al (2004) in orange. (F) Sum of protein fractions plotted as a function of the growth rate for the core environmental stress response (CESR)
repressed (growth module) or induced (stress module) genes. RMLM fit and predicted 95% CI as in (A). (G) Assignment of growth and stress module proteins (Prot)
detected in all samples and their respective transcripts (Trans) to the R- (orange), P- (blue), and Q- (grey) sectors based on protein fraction expression and DESeq2
normalised counts. Each protein is connected to its corresponding transcript by a line and the colours correspond to the protein sectors.
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To complement this analysis, we searched for condition-specific
patterns of protein expression that were not related to the growth
rate in our proteomics data set using principal component analysis

(Fig S24A–E). The first principal component (PC1) explained 29% of
the total variance and split the culture conditions in two irre-
spective of the growth rate with Trp (W), Phe (F), Ser (S), and Pro (P)

Figure 6. The coordination of energy metabolism enzymes with the growth rate is marginal.
(A) Sum of protein fractions of proteins involved in translation and ribosome biogenesis (red, see Fig 5A), energy metabolism, and transport (green, see Fig 5E) or all
other genes (grey) plotted as a function of the growth rate. (B) Relative proteome fractions of five categories of proteins involved in metabolism. The median of the three
replicates from each condition was used for calculating the protein fractions and plotting growth rates. (C) As shown in (B), for proteins of the OXPHOS and TCA pathways,
the Adh1 and Pdc101 fermentation proteins, and proteins annotated as “generation of precursor metabolites and energy” and not included in the other four categories
or glycolysis. (D) Protein expression as a function of growth rate as exhibited by the first principal component (PC1). (E) Comparison of the first two principal components
(principal component analysis biplot) for each protein group detected in the proteome across all conditions. Areas with >50% variance explained by PC1 correlation are
highlighted in yellow (negative correlation, WFSP−) and pink (positive correlation, WFSP+). Genes related to glycolysis and ethanol fermentation are indicated in blue.
(F) Topology of the glycolysis and ethanol fermentation pathway showing genes, cofactors, and selected metabolites, with colours as in (E). (G) Left: ratio of protein
fractions for Adh1/Tdh1 plotted as a function of the growth rate. Right: diagram showing Adh1 and Tdh1 functioning together with median proteome fractions of both
proteins in each condition. Colours are as annotated in (D). (H) As shown in G for Nde1 and Ndi1. (I) Ratio of protein fractions of Idh2 and Idh1 plotted as a function of the
growth rate. Colours are as annotated in (D). (J) As shown in I for the ratio of the protein fractions of Dld1 and Kgd1 plotted as a function of growth rate.
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in one group (from here on termed the WFSP media) and Gly (G), Ile
(I), Glu (E), and Amm in the other (Fig 6D). Strikingly, 24% (474/1,988)
of proteins had more than 50% of their variance explained by PC1.
We defined two large classes of protein based on their response to
this component: (i) WFSP+ consisting of 259 proteins that were
positively correlated with PC1 and therefore induced in the WFSP
media; (ii) WFSP− characterised by 215 proteins with expression
negatively correlated with PC1 and therefore repressed in the WFSP
media (Table S17). Interestingly, no single principal component was
dominated by growth rate correlation (Fig S24E), reinforcing the
point that nutrient-specific and growth-dependent components of
gene expression coexist for many proteins.

Glycolytic and NAD-dependent enzymes were the two major
classes of proteins overrepresented in the WFSP lists. First, most
glycolytic enzymes belonged to one of the two WFSP classes (Figs 6E
and F and S25). These enzymes were highly expressed across
conditions, amounting to ~15–30% of the total proteome mass
(Figs 6B and S21). Therefore, the total gene expression burden of
cellular metabolism across the WFSP conditions was heavily af-
fected by the abundance of a small number of enzymes. Second,
the two enzymes glyceraldehyde-3-phosphate (G3P) dehydroge-
nase Tdh1 and alcohol dehydrogenase Adh1 were assigned to
opposing WFSP lists, and the ratio of Adh1/Tdh1 protein abun-
dance was highly elevated in the WFSP conditions (Fig 6F and G
and S26). Fermentation of a single molecule of glucose generates
two molecules of ethanol and carbon dioxide. During the process,
Tdh1 reduces two NAD+ molecules and Adh1 oxidises two NADH
molecules. Therefore, the elevated Adh1/Tdh1 balance exerts a
pressure on the NAD+/NADH equilibrium towards the NAD+ side.
The induction of Adh1 and repression of Tdh1 proteins may be a
controlled response to maintain homeostasis under disruptions
to the NAD+/NADH redox balance. This way, differential resource
allocation towards the NAD-cycling glycolytic fermentation
pathway may indicate that the metabolic rewiring invoked by the
WFSP nitrogen sources could result from changes in the cell redox
balance.

To follow up on this observation, we further investigated the
burden of NAD-dependent pathways. NADH is oxidised by NADH
dehydrogenases that are situated in the inner mitochondrial
membrane; the enzyme transfers two electrons per NADH mol-
ecule to the electron transport chain to power ATP synthesis. On
the other hand, NAD+ is reduced several times during each it-
eration of the TCA cycle by the α-ketoglutarate (αKG) dehydro-
genase complex (KGDHC), the isocitrate dehydrogenase (IDH)
complex, and themalic enzymes. Fission yeast is thought to have two
separate NADH dehydrogenase enzymes, Ndi1 and Nde1, with the
NAD-binding domain of Ndi1 facing the mitochondrion and Nde1
facing the cytosol. We examined the expression burden of these
enzymes in our data and found that, although neither belonged to
one of the WFSP lists, the ratio of Nde1/Ndi1 expression was strongly
elevated in the WFSP conditions (Figs 6H and S26). The IDH complex
comprises the two subunits Idh1 and Idh2, and KGDHC consists of
four subunits: Kgd1, Kgd2, Ymr31, and Dld1, the latter being part of
multiple complexes. Dld1 and Idh2 were part of the WFSP+ class,
unlike any of the other subunits. As above, the ratio of protein
abundances for Dld1/Kgd1 and Idh2/Idh1 were elevated in the WFSP
conditions (Figs 6I and J and S26). Therefore, the response to the

WFSP nitrogen sources altered the stoichiometry of NAD-dependent
enzymatic complexes.

Importantly, these signatures were not detected in our tran-
scriptomics data, suggesting a role for post-transcriptional regu-
lation. In line with this, ubiquitin and its related pathways, as well as
the translation factors eIF3e and eIF5a, showed strong WFSP pat-
terns suggesting a role for protein stability (Figs S4E and S15B–D
and Table S17). In summary, we identified two distinct cellular states
that differed in the expression of enzymes involved in fermentation
and the cell’s redox balance that were not correlated with the
growth rate.

Correcting for growth rate dependence revealed additional
transcriptional signatures of growth on single amino acid sources

Defining the heterogeneity of metabolic states is key to a mech-
anistic understanding of cell population evolution, but this requires
disentangling the gene signatures that depend on the growth rate
from those that are purely nutrient specific. Our data set has the
unique capacity to achieve this. We performed differential ex-
pression analysis on our RNA-Seq data set, by comparing each
growth condition to a reference transcriptome obtained via aver-
aging all the conditions, and corrected for the growth-dependent
component of gene expression (see the Materials and Methods
section). We defined 10 signatures (termed R1–R10) by clustering
the log2-transformed fold change ratios with respect to the syn-
thetic reference of all genes that were significantly enriched in at
least one condition (Figs 7A and S27 and Table S18).

The 10 signatures covered the differential expression of 2,140
genes in total, representing ~43% of the fission yeast transcriptome.
Five signatures (R2, R3, R5, R6, and R8) were also visible at the
proteome level (Fig 7B). About 67% of the mRNA present in the
transcriptomic signatures were quantified in at least one condition
in the proteome and ~38% were detected in all conditions, indi-
cating that this relatively limited agreement was not due to the
lower coverage of the proteomics data.

We next performed functional enrichment analyses of the
transcriptomics clusters (see the Materials and Methods section),
using Gene Ontology annotations (Gene Ontology Consortium, 2019;
Lock et al, 2019). Broader functional categories were captured using
GO-slim analysis (Fig 7C), and specific pathways using terms from
the biological_process ontology with at most 50 annotations. List
overlap analyses (Fig S28) as well as gene set enrichment analyses,
ranking genes based on their log2 fold change over the synthetic
reference after shrinkage, were performed for each growth medium
(Table S19 and Fig S29). In agreement with our observation that
respiratory genes were repressed in Ser medium, the Ser repressed
cluster R3 was strongly enriched for genes related to mitochondrial
metabolism. In addition, genes from clusters R6 and R10, which
were induced in the Ser medium, were enriched for detoxification
(Figs S28 and S29). The Ser response also contained oxidoreduc-
tases and proteins involved in metal ion homeostasis, which is
compatible with the recently reported high levels of ROS generated
by serine catabolism (Kanou et al, 2020). The Trp repressed cluster
R2 was enriched for genes related to amino acid metabolism (Fig
S28) and the corresponding GO-term also had a negative NES value
(Fig S29), again suggesting that the slow growth sustained by the Trp
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Figure 7. Transcriptomic signatures for growth on amino acid sources.
(A) DESeq2 log2 fold change ratios after shrinkage for the 10 signatures R1-R10 (scale capped at abs(log2(fc)) = 5). Fold changes are relative to the RMLM-predicted
synthetic reference (see the Materials and Methods section). Columns are ordered according to the growth rate and rows are ordered by hierarchical clustering (Fig S27).
(B) The log2-transformed ratios of observed versus RMLM-predicted protein fractions for genes in the R1-R10 signatures. Row and column orders are as described in (A).
Genes missing from the proteomics data are in grey. (C) Functional analysis of the transcriptomics clusters R1-R10 as shown in (A). Enrichment for GO slim terms
belonging to the “biological process” (top), “cellular component” (middle), and “molecular function” (bottom) categories are shown. The colour scheme denotes the local
false discovery rate (lfdr, capped at 1 × 10−6 and printed on the figure if capped) from a Fisher’s exact one-sided test for the overlap of each cluster with functional lists. Only
significant lists are shown (lfdr < 0.05) and the number of genes in each category and cluster are shown in parentheses.
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medium was not due to any additional expression burden of
disrupted amino acid synthesis. The small cluster R7 was enriched
for genes related to pheromone activity (M-factor precursors),
signalling, and the induction of meiosis (Fig S28). Interestingly, the
signature expression across conditions for these genes (induced in
Trp, Phe, Pro, and Glu containing media) mirrored that of Mae2 (Fig
S4F), which removes excess carbon from the TCA cycle. As meiosis is
usually induced by nitrogen starvation (Petersen & Russell, 2016),
this result suggests that the state of CCM may also play a role in the
meiotic transition, as (elemental) nitrogen was abundant in all
growth media used. Altogether, we identified a rich set of metabolic
signatures that were not dependent on the growth rate, but ex-
clusively reflect changes in external nutrients.

Discussion

In this study, we quantified the proteome and transcriptome of the
fission yeast S. pombe grown in eight defined media that affect the
growth rate. Each medium contained a single nonlimiting source of
nitrogen, such that variations in gene expression were determined
by system-level resource allocation and not by the response of a
single pathway to the titration of a limiting nutrient. This setup is in
contrast to other studies which relied on a specific limiting nutrient
to perturb resource allocation while affecting the growth rate
(Brauer et al, 2008; Hui et al, 2015), or leaving it constant (Yu et al,
2020). In chemostats, the growth rate is affected externally by the
nutrient quantity, and the same growth rate can be obtained by
limiting several different nutrients (Airoldi et al, 2016). Our turbi-
dostat cultures were more alike to continuous flask cultures, where
the growth rate was determined by internal allocation in response
to the nutrient quality. This made it possible to determine the effect
on growth and metabolism of the medium composition because
each growth medium gave rise to a reproducible steady state.

Using this orthogonal approach, we propose a model in which
shifts in resource allocation trigger two layers of gene expression
regulation. The first layer consists of gene expression that is
significantly correlated with growth rate and the second is con-
dition specific, depending solely on nutrients. Many proteins and
mRNAs showed a combination of both layers of regulation. This
suggests that condition-specific responses occur on top of a
global level gene regulation that is coordinated with the growth
rate (Shahrezaei & Marguerat, 2015). Importantly, the global layer
of regulation discussed here affects relative abundances of
proteins and of mRNAs, and we did not obtain data on the size of
the total mRNA and protein pools. It is therefore distinct from the
scaling of gene expression to the growth rate which ensures
constant biomolecule concentrations (Chávez et al, 2016). The
mechanisms behind the observation that a large number of mRNA
and proteins show some level of global scaling with the growth
rate are not entirely clear. It could be related to the fact that
expression of the protein production machinery itself increases
with the growth rate and to changes in levels of TOR signalling for
instance (see below). This could result in different cellular states
that feedback globally on gene expression (Keren et al, 2013). It is
of note that the growth-rate-dependent component defined in
this study might in some cases complicate the interpretation of

condition-specific responses and should then be taken into ac-
count (Pancaldi et al, 2010; Yu et al, 2021).

Eukaryotic growth-rate-related gene expression depends to
some extent on the TORC1 axis of gene regulation, which is widely
conserved across eukaryotes (Weisman, 2016; González & Hall, 2017;
Morozumi & Shiozaki, 2021). TORC1 activity is affected by a variety of
stressors including nutrient starvation. Upstream of TORC1, the
adenosine monophosphate kinase AMPK has been proposed to
mediate the response to nitrogen starvation, and intriguingly, the
two complexes can inhibit each other (Davie et al, 2015; Ling et al,
2020). Downstream, the TORC1 pathway is a key regulator of the
balance between the stress and growth modules (López-Maury et
al, 2008; Rallis et al, 2013, 2014), with targets including eukaryotic
initiation factor 2 subunit α (eIF2α) (Valbuena et al, 2012), the SAGA
complex (Laboucarié et al, 2017), and the rate of fermentation
through Greatwall and PP2AB55δ (Watanabe et al, 2019). These
questions are often studied during adaptation to changing con-
ditions and our system using continuous culture in turbidostats
provides an attractive setup for future studies of the mechanisms
that maintain the stress versus growth gene expression balance in
steady-state conditions.

We found that known chromatin modifiers belonged to the
R-sector. This is intriguing as expression of histones themselves
was not dependent on the growth rate (Table S6). This may suggest
that number of histones modifying enzymes and levels of modi-
fications are rate limiting for transcription, or alternatively mediate
an orthogonal function such as signalling the cell metabolic state
through covalent protein modifications (Mellor, 2016; Figlia et al,
2020; Morgan & Shilatifard, 2020). This illustrates the intricate re-
lationship of chromatin structure with the cell metabolism.
Moreover, we found that RNAP II expression was not increasing with
the growth rate suggesting that, unlike for gene expression scaling
to cell size, its numbers are not limiting for the rate of growth
(Padovan-Merhar et al, 2015; Sun et al, 2020). Yet, maintaining
constant mRNA concentrations requires synthesis or degradation
rates to adjust to cell growth. Therefore, other mechanisms such as
transcription elongation or mRNA decay rates are likely to be
modulated with the growth rate as suggested in budding yeast
(Chávez et al, 2016).

Discussing protein allocation in term of factors limiting for
growth relies on the assumption that expression of all proteins is
optimised for growth in any given condition. Recent evidence has
challenged this view and has suggested that significant parts of E.
coli (Valgepea et al, 2013; Peebo et al, 2015; Mori et al, 2017) and
budding yeast (Metzl-Raz et al, 2017; Yu et al, 2020) gene expression
are not immediately required for sustaining the growth rate and are
instead held in reserve. This reserve pool of protein could support
cell adaption to sudden environmental changes. It has furthermore
been suggested that CCM has a large reserve capacity, suggesting
that many enzymes may also not be used solely to maximise
metabolic fluxes (O’Brien et al, 2016; Christodoulou et al, 2018; Yu et
al, 2020). In this study, whereas several nutrient-specific regulatory
programmes were detected in both the transcriptome and the
proteome, such as specific responses to Ser and Trp, this was not
true for the WFSP pattern and other transcriptomics signatures
(Figs 6 and 7). This disconnect could means that metabolic path-
ways are differentially buffered through protein levels and stability
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which could in turn be interpreted in term of reserve capacity. A
better understanding of post-transcriptional regulation in fission
yeast will be important to fully understand what causes the high
translational burden of metabolism.

We found that expression of metabolic enzymes was strongly
condition-specific and only marginally anti-correlated with the
growth rate. This condition-specific regulation represented a large
change in the gene expression burden, driven by glycolytic proteins
and enzymes and complexes relying on NAD turnover. Interestingly,
this large variation in expression burden of the carbon metabolism
resulted from changes in nitrogen source and occurred in the
presence of abundant external glucose. This highlights the fact that
metabolic adaptation to external condition is pervasive not only in
term of fluxes but also in term of gene expression burden. The
catabolism of the backbones of the amino acids used as nitrogen
sources could provide a link between nitrogen and carbon meta-
bolism in our system. Our data provide a rich resource to constrain
future genome-scale models of fission yeast that integrate metabolism
and gene expression, which will allow testing this hypothesis
(O’Brien et al, 2013; Sánchez et al, 2017; Chen et al, 2021).

An improved understanding of the fundamental principles be-
hind cellular growth and the physiological and translational bur-
den of metabolism across evolutionarily diverse biological systems
would influence a wide range of research areas such as microbi-
ology, synthetic biology, and cancer research. Cellular models of
growth should integrate strategies used by a variety of organisms
under a wide range of conditions, to identify common principles.
Beyond its contribution to our understanding of gene regulation,
this work will support future experimental and modelling efforts
aimed at defining the nature of the trade-offs involved in growth,
stress resistance, and metabolism across the tree of life.

Materials and Methods

Culture conditions

Cells were grown in continuous culture in turbidostats using
Edinburgh minimal media (EMM2) with saturating amounts of
carbon and nitrogen (Petersen & Russell, 2016). This ensured that
the cells could reach balanced exponential growth, limited only by
internal gene expression patterns. In addition to the standard EMM2
media where nitrogen is provided by 93.5 mM of ammonium chloride
(NH4Cl, referred to as Amm), we used seven alternative nitrogen
sources where 20 mM of a single amino acid replaced the NH4Cl:
glutamate (Glu), proline (Pro), isoleucine (Ile), serine (Ser), phenyl-
alanine (Phe), glycine (Gly), and tryptophan (Trp) (Sigma-Aldrich).

Cells were grown and harvested as follows: 972 h− cells from frozen
glycerol stocks were precultured on YES agar plates. Single colonies
were inoculated in 5–10 ml of EMM2 in glass flasks and grown
overnight at 32°C. Approximately 1 ml of culture was transferred to a
fresh flask containing EMM2 and the final nitrogen source and grown
to large ~5 × 106 cells/ml. These cells were used to inoculate the
continuous culture setup at 0.5–1 × 106 cells/ml. The process was
repeated for biological triplicates grown from three different colonies.

To generate the final cultures, cells were grown in turbidostats
(Takahashi et al, 2015), with media flow controlled using customised

Python scripts (Saint et al, 2019). Cell cultures were monitored every
30 s and fresh growth medium was added whenever the optical
density OD600 exceeded 0.4. This resulted in 1–2% dilution cycles,
keeping the total culture volume constant throughout. Cells were
kept in the turbidostats for ~10 generations at 32°C. To measure the
growth rate, cells were diluted twofold approximately halfway
through the experiment and regrown to the reference level of
OD600 = 0.4. The growth rate for each sample was determined by
fitting an exponential curve to the ODmeasures acquired every 30 s
during the regrowth phase. The final culture volumes were ~30 ml,
fromwhich 10ml was used for transcriptomics, 10ml for proteomics
analysis, and 10 ml was saved as a backup. The cells were harvested
by centrifugation, washed twice with PBS and stored at −80°C until
RNA-Seq and proteomics sample preparation was performed.

RNA-Seq

A 10-ml aliquot of the culture was centrifuged at 3,000 rpm for 3 min
in a 5810R Eppendorf centrifuge. After removing the supernatant,
cell pellets were frozen in dry ice and kept at −80°C until the library
preparation was performed. Total RNA from the pellets was
extracted using the hot-phenol method (Lyne et al, 2003) and the
RNA obtained was quantified using a BioDrop (biochrom). Poly(A)
enrichment was performed using 500 ng of total RNA with the
NEBNext Poly(A) mRNA Magnetic Isolation Module (NEB) kit
according to the manufacturer’s instructions. The remaining mRNA
was used for stranded RNA-Seq library preparation using the
NEBNext Ultra II Directional RNA Library Prep Kit for Illumina (NEB)
according to themanufacturer’s instructions. The resulting libraries
were quality checked and quantified using the Bioanalyser (Agilent)
and a Qubit dsDNA BR Assay Kit (Invitrogen), respectively.

Libraries were sequenced on an Illumina HiSeq 2500 instrument
(Illumina). Data were processed using RTA version 1.18.54 and
1.18.64, with default filter and quality settings. The reads were
demultiplexed with CASAVA 1.8.4 and 2.17 (allowing 0 mismatches).
Transcripts were mapped to the genome sequences (available from
PomBase) using TopHat2 (Kim et al, 2013; Lock et al, 2019). HTSeq
was used to count the number of reads per exon (Anders et al, 2015;
Lock et al, 2019). The reads across exons were summed to obtain the
total number of reads per gene. This procedure yielded raw counts
cijk for each gene i, growth medium j, and biological replicate k. Per
sample normalisation was performed using the DESeq2 estima-
teSizeFactors function, yielding size factors Sjk for each sample
(Love et al, 2014). The normalised counts were calculated as follows:

nijk =
cijk
Sjk

: (1)

Unless otherwise noted, RNA-Seq analyses were performed
using these normalised counts, which enabled between-sample
comparison of the expression of genes or sets of genes.

Transcripts were processed as mRNA if they were assigned
protein-coding status by PomBase. Non-coding RNAs were defined
as those with PomBase identifiers starting “SPNCRNA,” which are
antisense and lincRNAs. tRNA and rRNA were excluded because
their repetitiveness and high abundance made them difficult to
sequence with the traditional RNA-seq protocols used in this study.
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Proteomics

Cell pellets from 10 ml of each turbidostat culture was frozen in dry
ice and stored at −80°C until sample preparation. Once thawed,
cells were resuspended in lysis buffer (1% sodium deoxycholate
and 1% ammonium bicarbonate). Lysis was performed in a FastPrep
instrument (MP Biomedical) for five pulses at a speed of 6 m/s.
Total cell extracts were treated with 5 mM tris(2-carboxyethyl)
phosphine (TCEP) for 15 min at room temperature to reduce the
disulphide bonds. An alkylation reaction was performed with
the addition of 10mM iodoacetamide for 30min at 25°C in the dark. The
reaction was quenched using 12 mM N-acetyl-cysteine for 10 min. The
proteins were quantified using a BCA Protein Assay Reducing Agent
Compatible kit (Thermo Fisher Scientific) and 100μg of total proteinwas
used for digestion. To improve the cleavage efficiency, protein extracts
underwent a double digestion, first with Lys-C (Wako Chemicals) for 4 h
at 37°C using a 1:200 (w/w) ratio, and then overnight with porcine
trypsin at 37°C using a 1:100 (w/w) ratio. Digestion was stopped by
lowering the pH with TFA at a final volume of 1%. The sodium deoxy-
cholate precipitate formed because of the lowered pH was removed by
centrifuging the samples at 4°C for 15 min at 14,000 rpm. The pre-
cipitated detergent was then discarded. The digested peptides were
vacuum dried and stored at −80°C until required for analysis.

The protein digests were analysed by liquid chromatography-
tandem mass spectrometry (LC-MS/MS) via an untargeted analysis
approach using data-dependent acquisition (DDA) (Ducret et al,
1998). The rawMS data were analysed using MaxQuant (Cox &Mann,
2008) and applying the Label-free Quantification algorithm (Cox et
al, 2014) for DDA data analysis.

Protein digests were reconstituted in 0.1% TFA and transferred to
autosampler vials for LC-MS/MS analysis. The tryptic peptides were
separated using an Ultimate 3000 RSLC nano liquid chromatography
system (Thermo Fisher Scientific) coupled to a Q-Exactive tandem
mass spectrometer (Thermo Fisher Scientific) via an EASY-Spray
source. Sample volumes were loaded onto a trap column (Acclaim
PepMap 100 C18, 100 μm × 2 cm) at 8 μl/min of 2% acetonitrile, 0.1%
TFA. Peptideswere eluted on-line to an analytical column (EASY-Spray
PepMap C18, 75 μm × 75 cm). Peptides were separated at 200 nl/min
with a ramped 180 min gradient using 4–30% buffer B (buffer A: 2%
acetonitrile, 0.1% formic acid; buffer B: 80% acetonitrile, 0.1% formic
acid) over 150 min, and 30–45% buffer B over 30 min. Eluted peptides
were analysed by operating in positive polarity using a DDA mode.
Ions for fragmentation were determined from an initial MS1 survey
scan at 70,000 resolution (at m/z 200) in the Orbitrap followed by
higher energy collisional dissociation (HCD) of the top 12 most
abundant. MS1 and MS2 scan AGC targets set to 3 × 106 and 5 × 104 for
maximum injection times of 50 and 110ms, respectively. A survey scan
covering the range of 400–1,800 m/z was used, with HCD parameters
of isolation width 2.0 m/z and a normalised collision energy of 27%.

DDA data were processed using the MaxQuant software platform
(v1.6.2.3) (Cox & Mann, 2008) with database searches performed by
the in-built Andromeda search engine against the PomBase da-
tabase (5,138 entries, v.20190507) (Lock et al, 2019). A reverse decoy
database was created, and the results displayed at a 1% false dis-
covery rate (fdr) for peptide spectrum matches and identified pro-
teins. The search parameters included trypsin, twomissed cleavages,
fixed modification of cysteine carbamidomethylation, and variable

modifications of methionine oxidation, asparagine deamidation,
N-terminal glutamine to pyroglutamate modification, and protein
N-terminal acetylation. Label-free quantification was enabled with
an LFQminimum ratio count of 2. The “match between runs” function
was used with match and alignment time limits of 0.7 and 20 min,
respectively.

Intensities were based on identified unique and razor peptides,
and intensity-based absolute quantification (iBAQ) was calculated
as the raw intensity/number of obtainable tryptic peptides. For the
post-processing of the MaxQuant output, the data were filtered for
detection in all three biological replicates. Subsequently, proteome
mass fractions ϕij were calculated for each protein group i, sample
from growth medium j, replicate k from the reported protein
masses mi, and the iBAQ quantities Bijk as follows:

ϕijk =
miBijk

�lmlBljk
: (2)

Repeated median linear models

As shown in the main text, several genes were enriched in one or
more growth conditions in addition to growth rate correlations. The
presence of such outliers affected the fit quality of the standard
ordinary least squares linearmodel fits. To account for this, we used
repeated median linear models (RMLM) for fitting regression lines
(Siegel, 1982), as implemented in the R package “mblm.” This
method is robust when up to 50% of outliers are present in the data,
and the working is described below.

In general, the data can be described asN pairs of the growth rate μ
and some expression value y (N = 24 if expression was detected across
all samples, or a smaller multiple of 3 when data were missing). From
each observation (μ, y)i, a line is drawn to each of the otherN – 1 points
(μ, y)j, and the median slope and y-intercept of these N – 1 lines is
associated with the data point i. The regression coefficients for the
slope and y-intercept of the repeatedmedian linearmodel are defined
as the medians of all N slopes and y-intercepts.

The regression slope and intercept are both proportional to the
average expression level of a gene (protein). A fair comparison of
the steepness of the growth rate dependencies between proteins or
transcripts with different expression levels can therefore not use
the regression parameters directly. To compare the growth law
shape of protein groups with varying absolute abundances, the
fold-change FC was defined from the RMLM as the ratio

FC = yðμ = μmaxÞ − yðμ = 0Þ
yðμ = 0:5μmaxÞ

; (3)

with μmax = 0.3 h−1. This can be expressed in terms of the fitted slope
a and the y-intercept b as follows:

FC = μmax
0:5μmax + b=a

: (4)

Hierarchical clustering

We used z-scores to normalise for variations in absolute expression
levels. For each gene or protein group i in the sample with medium j
and replicate k, the z-score was calculated as follows:
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zijk =
yijk −μi

σi
; (5)

from the expression values yijk, where μi and σi are the mean and
standard deviations across all samples. The analysis was per-
formed only on genes or protein groups that were detected across
all 24 samples. The resulting matrices of the z-scores were analysed
using hierarchical clustering and principal component analysis.

Hierarchical clustering on genes/protein groups was performed
using the Euclidean distance and Ward linkage (“ward.D2”), using
the “hclust” implementation of the R statistical language (v.3.5.3). In
the transcriptome analysis, separate dendrograms were con-
structed for coding and non-coding RNAs, using the protein-coding
list from PomBase and selecting ncRNAs from the presence of
“NCRNA” in the systematic IDs.

Sector assignment

For each gene or protein group i, we calculated R-squared (R2),
defined as follows:

R2
i = 1 −

�j;kr
2
ijk

�j;k
�
yijk −μi

�2 ; (6)

and the associated P-values using the “summary.lm”method. Here,
rijk denotes the residuals from the RMLM fit, yijk the expression
(normalised counts or proteome fractions), μi the mean expression
across samples, and the summation was performed across all N
samples where the genewas detected. We calculated the tail-based
fdr (or q-values) and local fdr using the “fdrtool” R package and the
false non-discovery rate cut-off method (Strimmer, 2008). Genes or
protein groups were assigned to the P- or R-sector when their tail-
based fdr < 0.1. R- and P-sector genes had positive and negative
slopes, respectively, as determined by the fitted RMLM. In Table S6,
hits with local fdr < 0.1 were flagged as confident.

To assess fit quality, in addition to R2, we used a normalised sum
of squared residuals, defined as follows:

SSRnorm;i =
1

N − 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�j;kr2ijk

r
μi

; (7)

with the notations as described in the previous paragraph.

Protein-to-RNA ratios

For each protein group or gene i, and sample from growth medium j
and replicate k, the proteome number fraction was calculated from
the iBAQ quantities Bijk as follows:

ψP;ijk =
Bijk

�lBljk
; (8)

and the transcriptome number fraction was calculated from the
normalised counts nijk and the transcript lengths li as follows:

ψM;ijk =

nijk

li

�l

�
nljk

li

� : (9)

These two number fractions are directly comparable. Note that
the ratio ψP,ijk/ψM,ijk is proportional to the ratio of absolute protein
and mRNA numbers per cell (denoted NP,ijk and NM,ijk, respectively)
with a sample-specific normalisation:

ψP;ijk

ψM;ijk
=

NP;ijk

NM;ijk

Mjk

Pjk
; (10)

where Mjk and Pjk denote the total number of transcripts and
proteins per cell, respectively.

As seen in Fig S9, the protein-to-mRNA ratio is heavily dependent
on the average expression level. To perform ameaningful analysis of
between-sample protein-to-mRNA ratio differences, this effect was
removed in the following way (Franks et al, 2017). The residual log-
transformed protein-to-mRNA ratio was calculated as follows:

residual log2

 
ψP;ijk

ψM;ijk

!
= log2

 
ψP;ijk

ψM;ijk

!
−median

j;k

"
log2

 
ψP;ijk

ψM;ijk

!#
:

(11)

This way, the across-sample variation in protein-to-mRNA ratios
could be compared between genes with wildly varying average
expression levels, as in Fig 3B.

Spearman correction

Noise in observations causes observed correlations between these
observations to underrepresent true underlying correlations.
However, a so-called Spearman correction can be used to mitigate
this effect; it has previously been applied to omics data (Csárdi et al,
2015; Franks et al, 2017). Central to the method are the reliabilities rP,j
and rM,j of the protein andmRNAdata. For our data, these are defined
for each condition j as the geometric mean of observed pairwise
Pearson correlations between the three biological replicates:

rP;j =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρPj;1:2ρPj;1:3ρPj;2:3

3
q

(12)

and

rM;j =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρMj;1:2ρMj;1:3ρMj;2:3

3
q

: (13)

Here, ρPj;k1:k2 represents the Pearson correlation between the ob-
served log2-transformed proteome number fractions in condition j for
replicates k1 and k2, and ρMj;k1:k2 that for the correlations between log2-
transformed transcriptome number fractions. Likewise, a first, un-
corrected, estimate of the protein–mRNA correlation is calculated as
the geometric mean of observed pairwise protein–mRNA correlations:

ρ̂j =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρj;1:1ρj;1:2ρj;1:3ρj;2:2ρj;2:3ρj;3:36

p
: (14)

The final, corrected, estimate of the protein–mRNA correlation is
now given by the following equation:
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Rj =
ρ̂jffiffiffiffiffiffiffiffiffiffiffiffiffirP;jrM;j

p : (15)

Gene set enrichment analysis

A multilevel gene set enrichment analysis was performed against
the three S. pombe GO-slims (Gene Ontology Consortium, 2019; Lock
et al, 2019) using the fgsea package (v1.16.0) (Korotkevich et al, 2021
Preprint), with boundary parameter ε = 0. Genes (protein groups in
the proteomics analysis) were ranked based on the following
signed measure of significance:

−signðaiÞlog10ðpiÞ ; (16)

Here, ai and pi are the slope and P-value associated with the
RMLM growth rate fit for gene (protein group) i, and sign (ai) equals
1, 0, or −1 when ai is positive, zero, or negative, respectively. This
resulted in a list where the R-sector was at the top of the list, and
the P-sector at the bottom. Unlike the traditional functional en-
richment, however, this analysis does not require an arbitrary cut-
off point.

Bootstrapping

For the analysis illustrated in Figs 5A and B, S14, and S17, 1,000
bootstrap samples were generated using the bootstraps function
from the “rsample” package (v0.0.8). The RMLM analysis was re-
peated on the bootstrapped samples, resulting in sample distri-
butions for the RMLM slopes, intercepts, and FCs. Plots of the
2.5–97.5% confidence interval were drawn using the RMLM pre-
dictions on a 101-point grid spanning 0–0.3 h−1.

Other confidence intervals were drawn using the geo-
m_smooth function in ggplot2 (v3.3.2) (Wickham, 2016) with the
default 95% confidence interval and the RMLM method, unless
otherwise noted.

Barcode plots

For the barcode plots in Figs S23 and 6G and H, the directed length lij
of the bar for protein i and medium j was calculated from the
median proteome mass fractions across the three biological
replicates,

xij = median
k=1;2;3

ϕijk ; (17)

and the median across all samples,

Mi = median
j;k

ϕijk ; (18)

in the following way:

lij =
xij −Mi

Mi
; (19)

with missing data imputed to zero. The scale was capped at −1 <
lij < 2.

Differential expression analysis

To identify differential expression in the transcriptome on top of
growth-rate-mediated effects, we performed an analysis using
“DESeq2” (v1.22.2) from the Bioconductor suite (v3.8) (Love et al, 2014;
Huber et al, 2015), comparing the residual expression in each condition
to a synthetic reference condition. The fold change obtained by this
procedure can be interpreted as the ratio of observed normalised
counts and the counts predicted by the RMLM, and the associated
P-value provides an interpretable estimate of significance.

The DESeq2 analysis pipeline enables the introduction of per-
gene, per-sample normalisation factors that are commonly used to
correct for batch-dependent GC-content or length biases. We
adapted this functionality to normalise the growth rate bias of each
gene, by introducing factors Nijk that converted between the
measured raw counts cijk and RMLM-predicted raw counts qijk:

qijk =
cijk
Nijk

; (20)

in analogy to the definition of size factors in Equation (1). However,
the fitting of RMLMs yielded per-gene, per-sample predictions pijk
of the normalised counts. Using the sample-dependent size factors,
we converted these to predictions of raw counts as follows:

qijk = pijkSjk : (21)

Therefore, the normalisation factors were calculated as follows:

Nijk =
cijk

Sjkpijk
=
nijk

pijk
: (22)

We excluded genes with negative predicted raw counts and
rescaled the normalisation factors across samples for each gene to
have a geometric mean of 1 for numerical accuracy.

Using the RMLM-predicted raw counts, we further defined a
synthetic reference condition with three biological replicates by
using the median predicted count across all growth media for each
replicate as follows:

sik = int median
j

qijk
� �

: (23)

These reference counts were rounded to the nearest integer, as
they represent raw counts in the DESeq2 pipeline. By design, the qijk
have no residual growth rate trend.

Subsequently, the analysis proceeded on the constructed data
set with nine conditions: the original eight and the synthetic one,
with each set having three biological replicates. Pairwise fold-
changes F and the associated P-values (both uncorrected and
adjusted padj) are reported between the eight growthmedia and the
synthetic reference. Fold-changes were shrunk using the lfcShrink
function of DESeq2, using the “apeglm”method (Love et al, 2014; Zhu
et al, 2019). Genes were reported as differentially expressed (DE) if
padj < 0.01 and |log2 F| > 0.5 for at least one condition.

Functional enrichment

We performed one-sided Fisher’s exact tests to assess the en-
richment of DE genes across the S. pombe GO-slims and terms from
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the biological_process GO with at most 50 annotations in S. pombe
(Gene Ontology Consortium, 2019; Lock et al, 2019). From the
resulting P-values, local false discovery rates (lfdr) were calculated
using the “fdrtool”s false non-discovery rate method (Strimmer,
2008).

In the enrichment plots for the GO-slim terms (Figs 7B and S1),
terms with lfdr < 0.05 were deemed significant, and the terms were
ordered from top to bottom by increasing the smallest lfdr to aid
interpretation. For the biological_process enrichment plot (Fig S28),
the significance threshold was local fdr < 0.001. The significant
terms were clustered hierarchically using the Euclidean distance
and Ward linkage (“ward.D2”), using the “hclust” implementation of
the R statistical language (v.3.5.3).The terms were ordered by the
smallest lfdr as much as possible, while remaining consistent with
the clustering constraint.

Data Availability

Proteomics data are deposited in PRIDE (PXD027835) and RNA-Seq
data in ArrayExpress (E-MTAB-10778). For the purpose of open
access, the authors have applied a CC BY public copyright licence
to any Author Accepted Manuscript version arising from this
submission.

Supplementary Information

Supplementary Information is available at https://doi.org/10.26508/lsa.
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The common message of constraint-based optimization approaches:
Overflow metabolism is caused by two growth-limiting constraints.
Cell Mol Life Sci 77: 441–453. doi:10.1007/s00018-019-03380-2

Ducret A, Van Oostveen I, Eng JK, Yates JR, Aebersold R (1998) High throughput
protein characterization by automated reverse-phase
chromatography/electrospray tandem mass spectrometry. Protein
Sci 7: 706–719. doi:10.1002/pro.5560070320

Fantes P, Nurse P (1977) Control of cell size at division in fission yeast by a
growth-modulated size control over nuclear division. Exp Cell Res 107:
377–386. doi:10.1016/0014-4827(77)90359-7

Figlia G, Willnow P, Teleman AA (2020) Metabolites regulate cell signaling and
growth via covalent modification of proteins. Dev Cell 54: 156–170.
doi:10.1016/j.devcel.2020.06.036

Franks A, Airoldi E, Slavov N (2017) Post-transcriptional regulation across
human tissues. PLoS Comput Biol 13: e1005535. doi:10.1371/
journal.pcbi.1005535

Gene Ontology Consortium (2019) The gene ontology resource: 20 years and
still GOing strong. Nucleic Acids Res 47: D330–D338. doi:10.1093/nar/
gky1055

Godard P, Urrestarazu A, Vissers S, Kontos K, Bontempi G, van Helden J, André
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K, Bauer M, Aebersold R, Heinemann M (2016) The quantitative and
condition-dependent Escherichia coli proteome. Nat Biotechnol 34:
104–110. doi:10.1038/nbt.3418

Schmidt MW, Houseman A, Ivanov AR, Wolf DA (2007) Comparative proteomic
and transcriptomic profiling of the fission yeast Schizosaccharomyces
pombe. Mol Syst Biol 3: 79. doi:10.1038/msb4100117

Scott M, Gunderson CW, Mateescu EM, Zhang Z, Hwa T (2010)
Interdependence of cell growth and gene expression: Origins and
consequences. Science 330: 1099–1102. doi:10.1126/science.1192588

Scott M, Klumpp S, Mateescu EM, Hwa T (2014) Emergence of robust growth
laws from optimal regulation of ribosome synthesis. Mol Syst Biol 10:
747. doi:10.15252/msb.20145379

Shah M, Su D, Scheliga JS, Pluskal T, Boronat S, Motamedchaboki K, Campos
AR, Qi F, Hidalgo E, Yanagida M, et al (2016) A transcript-specific eIF3
complex mediates global translational control of energy metabolism.
Cell Rep 16: 1891–1902. doi:10.1016/j.celrep.2016.07.006

Shahrezaei V, Marguerat S (2015) Connecting growth with gene expression: Of
noise and numbers. Curr Opin Microbiol 25: 127–135. doi:10.1016/
j.mib.2015.05.012

Shimizu K, Matsuoka Y (2018) Regulation of glycolytic flux and overflow
metabolism depending on the source of energy generation for energy
demand. Biotechnol Adv 37: 284–305. doi:10.1016/j.biotechadv.2018.12.007

Siegel AF (1982) Robust regression using repeated medians. Biometrika 69:
242–244. doi:10.1093/biomet/69.1.242

Spinelli JB, Haigis MC (2018) The multifaceted contributions of mitochondria
to cellular metabolism. Nat Cell Biol 20: 745–754. doi:10.1038/s41556-
018-0124-1

Strimmer K (2008) fdrtool: A versatile R package for estimating local and tail
area-based false discovery rates. Bioinformatics 24: 1461–1462.
doi:10.1093/bioinformatics/btn209

Sun XM, Bowman A, Priestman M, Bertaux F, Martinez-Segura A, Tang W,
Whilding C, Dormann D, Shahrezaei V, Marguerat S (2020) Size-
dependent increase in RNA polymerase II initiation rates mediates
gene expression scaling with cell size. Curr Biol 30: 1217–1230.e7.
doi:10.1016/j.cub.2020.01.053

Szenk M, Dill KA, de Graff AMR (2017) Why do fast-growing bacteria enter
overflow metabolism? Testing the membrane real estate hypothesis.
Cell Syst 5: 95–104. doi:10.1016/j.cels.2017.06.005

Takahashi CN, Miller AW, Ekness F, Dunham MJ, Klavins E (2015) A low cost,
customizable turbidostat for use in synthetic circuit characterization.
ACS Synth Biol 4: 32–38. doi:10.1021/sb500165g

Uprety B, Sen R, Bhaumik SR (2015) Eaf1p is required for recruitment of NuA4
in targeting TFIID to the promoters of the ribosomal protein genes for
transcriptional initiation in vivo. Mol Cell Biol 35: 2947–2964.
doi:10.1128/MCB.01524-14

Valbuena N, Rozalén AE, Moreno S (2012) Fission yeast TORC1 prevents eIF2α
phosphorylation in response to nitrogen and amino acids via Gcn2
kinase. J Cell Sci 125: 5955–5959. doi:10.1242/jcs.105395

Valgepea K, Adamberg K, Seiman A, Vilu R (2013) Escherichia coli achieves
faster growth by increasing catalytic and translation rates of proteins.
Mol Biosyst 9: 2344–2358. doi:10.1039/c3mb70119k

van Hoek MJ, Merks RM (2012) Redox balance is key to explaining full vs.
partial switching to low-yield metabolism. BMC Syst Biol 6: 22.
doi:10.1186/1752-0509-6-22

Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the
Warburg effect: The metabolic requirements of cell proliferation.
Science 324: 1029–1033. doi:10.1126/science.1160809

Vazquez A, Beg QK, deMenezes MA, Ernst J, Bar-Joseph Z, Barabási AL, Boros
LG, Oltvai ZN (2008) Impact of the solvent capacity constraint on E. coli
metabolism. BMC Syst Biol 2: 7. doi:10.1186/1752-0509-2-7

Vemuri GN, Eiteman MA, McEwen JE, Olsson L, Nielsen J (2007) Increasing
NADH oxidation reduces overflow metabolism in Saccharomyces
cerevisiae. Proc Natl Acad Sci U S A 104: 2402–2407. doi:10.1073/
pnas.0607469104

Waldron C, Lacroute F (1975) Effect of growth rate on the amounts of
ribosomal and transfer ribonucleic acids in yeast. J Bacteriol 122:
855–865. doi:10.1128/JB.122.3.855-865.1975

Warner JR, McIntosh KB (2009) How common are extraribosomal
functions of ribosomal proteins? Mol Cell 34: 3–11. doi:10.1016/
j.molcel.2009.03.006

Watanabe D, Kajihara T, Sugimoto Y, Takagi K, Mizuno M, Zhou Y, Chen J,
Takeda K, Tatebe H, Shiozaki K, et al (2019) Nutrient signaling via the
TORC1-greatwall-PP2AB55δ pathway is responsible for the high initial
rates of alcoholic fermentation in sake yeast strains of
Saccharomyces cerevisiae. Appl Environ Microbiol 85: e02083–18.
doi:10.1128/AEM.02083-18

Weisman R (2016) Target of rapamycin (TOR) regulates growth in response to
nutritional signals. Microbiol Spectr 4: FUNK-0006-2016. doi:10.1128/
microbiolspec.FUNK-0006-2016

Weiße AY, Oyarzún DA, Danos V, Swain PS (2015) Mechanistic links between
cellular trade-offs, gene expression, and growth. Proc Natl Acad Sci U
S A 112: E1038–E1047. doi:10.1073/pnas.1416533112

Wickham H (2016) ggplot2: Elegant Graphics for Data Analysis. New York:
Springer-Verlag.

Yang L, Yurkovich JT, King ZA, Palsson BO (2018) Modeling the multi-scale
mechanisms of macromolecular resource allocation. Curr Opin
Microbiol 45: 8–15. doi:10.1016/j.mib.2018.01.002

You C, Okano H, Hui S, Zhang Z, Kim M, Gunderson CW, Wang YP, Lenz P, Yan
D, Hwa T (2013) Coordination of bacterial proteome with metabolism
by cyclic AMP signalling. Nature 500: 301–306. doi:10.1038/
nature12446

Yu R, Campbell K, Pereira R, Björkeroth J, Qi Q, Vorontsov E, Sihlbom C, Nielsen
J (2020) Nitrogen limitation reveals large reserves in metabolic and
translational capacities of yeast. Nat Commun 11: 1881–1912.
doi:10.1038/s41467-020-15749-0

Yu R, Vorontsov E, Sihlbom C, Nielsen J (2021) Quantifying absolute gene
expression profiles reveals distinct regulation of central carbon
metabolism genes in yeast. Elife 10: e65722. doi:10.7554/eLife.65722

Zavřel T, Faizi M, Loureiro C, Poschmann G, Stühler K, Sinetova M, Zorina A,
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