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Abstract
Various earthquake early warning (EEW) methodologies have been pro-
posed globally for speedily estimating information (i.e., location, magnitude,
ground-shaking intensities, and/or potential consequences) about ongoing
seismic events for real-time/near real-time earthquake risk management.
Conventional EEW algorithms have often been based on the inferred physics
of a fault rupture combined with simplified empirical models to estimate the
source parameters and intensity measures of interest. Given the recent boost
in computational resources, data-driven methods/models are now widely
accepted as effective alternatives for EEW. This study introduces a highly
accurate deep-learning-based computational framework named ROSERS (i.e.,
Real-time On-Site Estimation of Response Spectra) to estimate the acceleration
response spectrum (Sa(T)) of the expected on-site ground-motion waveforms
using early non-damage-causing early p-waves and site characteristics. The
framework is trained using a carefully selected extensive database of recorded
ground motions. Due to the well-known correlation of Sa(T) with structures’
seismic response and resulting damage/losses, rapid and accurate knowledge
of expected on-site Sa(T) values is highly beneficial to various end-users to
make well-informed real-time and near-real-time decisions. The framework is
thoroughly assessed and investigated through multiple statistical tests under
three historical earthquake events. These analyses demonstrate that the overall
framework leads to excellent prediction power and, on average, has an accuracy
above 85% for hazard-consistent early-warning trigger classification.

1 INTRODUCTION

Earthquake early warning (EEW) computational frame-
works are generally developed to define different alert
levels for life and asset protection from earthquake-
induced ground shaking before reaching a given target
site. Research on EEW is mainly oriented to efficiently
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provide timely and accurate warnings and support risk-
management decision-making during an earthquake
event, that is, from the time of fault rupture to when
the ground shaking ends at the target site. In a real-time
setting, EEW utilizes information from the fast-traveling
longitudinal p-waves (characterized by low-amplitude
and generally non-damaging) of the arriving earthquake
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waveform to trigger alerts for preparing against the
high-amplitude (destructive) transverse s-waves. Typi-
cally, p-waves are 1.7 times faster than s-waves in any
given material (Kramer, 1995). EEW systems exploit this
time lag between the arrival of the p-waves and s-waves
to predict various parameters of interest for real-time
decision-making purposes.
EEW systems mainly consist of two general sub-classes:

(1) regional and (2) on-site. A regional EEW system is
a network-based system consisting of seismic sensors
installed near a seismic source zone. When an earthquake
is detected, a regional EEW system uses the information
from the initial seconds of the ground motions (mainly
p-waves) recorded at several stations close to the source to
alert target sites farther from the source. The alert is gen-
erally based upon the rapid estimation of the earthquake
location and magnitude, which are then used as inputs
to pre-calibrated ground-motion models (GMMs). These
GMMs estimate the distribution of intensity measures
(IMs) of the expected ground-motion at a given site
(Bhardwaj et al., 2016; Cremen & Galasso, 2020; Li et al.,
2013; Mu & Yuen, 2016). This type of approach leads to
large variabilities in the IM estimates due to the propa-
gation of uncertainty for estimating source parameters
(location and magnitude) and the uncertainties, both
epistemic and aleatory, in GMMs (Iervolino et al., 2009).
Various regionals EEW methodologies attempt to directly
predict ground-motion IMs at target sites bypassing the
source parameter estimation (Hoshiba & Aoki, 2015;
Münchmeyer et al., 2020). However, these approaches are
not ideal for regions in the vicinity of a seismic source
(generally known as blind zones) due to multiple reasons
such as longer computation times and the requirement of
a dense array of sensors, limiting the handing of maximal
information in a real-time setting. Some studies, such as
Panakkat and Adeli (2009) and Rafiei and Adeli (2017),
have also proposed detailed methodologies to forecast an
earthquake event parameter (such as location), weeks
to days before its occurrence (such methods fall under
a separate class of short-term earthquake forecasting
frameworks, known as operational earthquake forecasting
[OEF]). Panakkat and Adeli (2008) presented several
advances made in OEF methods.
On the other hand, an on-site EEW system is a stan-

dalone system based on a single sensor (or a small array of
sensors) located in the proximity of the target sites. Within
this setting, the characteristics of early p-waves observed
on-site are used to estimate the earthquake source param-
eters or the IMs of the expected groundmotion thatmainly
comprise the late s-waves and surface waves at the same
site. This approach is specifically beneficial for sites located
within blind zones as the expected shaking levels are esti-
mated for the same site observing the ground-motion,

thereby requiring minimum time. Most of the on-site
EEW approaches utilize pre-trained parametric or non-
parametric models to estimate amplitude-based, energy-
based, frequency-based, and duration-based IMs using the
initial seconds of the ground-motion waveforms in real-
time (e.g., Brondi et al., 2015; Caruso et al., 2017; Colombelli
& Zollo, 2015; Hsu et al., 2013; Münchmeyer et al., 2020;
Wu&Kanamori, 2008). However, the development of such
methods requires careful attention in terms of using IMs
that provide (statistically) sufficient and efficient informa-
tion for real-time decision-making. For instance, most of
the existing on-site EEW algorithms (such as Caruso et al.,
2017; Colombelli & Zollo, 2015; Hsu et al., 2013; Münch-
meyer et al., 2020) are trained to estimate scalar quan-
tities such as peak ground acceleration (PGA) or peak
ground velocity (PGV). These only provide information
about the shaking of the ground and not their potential
consequences on the structures/infrastructure in the area.
The use of poorly informative IMs can, in turn, lead to
sub-optimal EEW decision-making (i.e., increased occur-
rences of false and missed EEW alarms) with the current
approaches. Such insufficient EEW frameworks can have
a detrimental impact on the socio-economic conditions of
the affected region. False positives (cases in which a wrong
prediction of high shaking is made, i.e., false alarms) can
result in long downtimes and panic. On the other hand,
false negatives (cases in which a wrong prediction of low
shaking is made, i.e., missed alarm) have self-evident con-
sequences in terms of economic losses and even casual-
ties. Furthermore, false negatives severely increase a com-
munity’s vulnerability since a population convinced that
it is likely to be warned before high levels of shaking are
likely to be less prepared. Such cases are already noticed
in research studies (Meier, 2017; Minson et al., 2019; Wald,
2020), which have criticized the uses of EEW systems and
demonstrated mistrust in EEW. Studies such as those by
Wu et al. (2013) and Hsu et al. (2016) proposed relevant
approaches that can assist EEW in reducing false alarms.
In particular, Wu et al. (2013) proposed an earthquake
probability-based automated decision-making framework.
The framework uses basic decision theory and existing
cost–benefit analysis procedure (i.e., based on conven-
tional GMMs) to suggest a general decision criterion in
EEW. Coupling such decision-making methods with an
accurate IM prediction method (as proposed in this study)
can lead to more robust EEW systems.
In the field of performance-based earthquake engineer-

ing, the acceleration response spectrum, Sa(T), is a widely
used IM that can effectively integrate the characteristics
of the ground-motion waveform (such as amplitude,
frequency content, etc.) with the dynamic behavior of a
structural system idealized as a single-degree-of-freedom
system (SDoF; Bazzurro et al., 1998; Vamvatsikos & Allin
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Cornell, 2002). An accurate estimation of the ground-
motion Sa(T) values in real time can help stakeholders
better design engineering applications of EEW, including
those relying on risk-informed decision support systems
(Cremen & Galasso, 2021). Recently, Iaccarino et al.
(2020) and Jozinović et al. (2020) proposed data-driven
methods (such as mixed-effect model and convolutional
neural networks, respectively) to obtain Sa(T) values for
few periods using initial seconds of the arriving ground
motions; however, based on the results presented in their
work, the frameworks’ accuracy and robustness to work
efficiently in real time could be further improved.
This paper contributes to extending the objectives of cur-

rent EEW frameworks to be accurate, timely, and both
structurally- and ground-motion- informed. In particu-
lar, this study proposes a highly precise and novel on-site
EEW framework named real-time on-site estimation of
response spectra (ROSERS) developed using a deep neu-
ral network (DNN) and a variational autoencoder (VAE).
The framework uses site characteristics (SC) of the record-
ing station(s) and an IM vector (representing amplitude,
energy, duration, and frequency content) of the initial
3 s of the arriving ground-motion (after detection of p-
waves) to estimate a vector of PGA (PGA is also referred
to Sa(T = 0)) and spectral ordinates (i.e., the Sa(T) spec-
trum for 95 SDoF periods (T)) for the expected on-site com-
plete ground-motion waveform. The framework utilizes a
trained feed-forwardDNN to concurrently estimate a set of
twomathematical-representative latent variables using the
SC and the considered IM vector as inputs. The obtained
latent variables are then inputted to a trained VAE decoder
to develop the 96-period Sa(T) spectrum (including PGA)
of the expected on-site ground-motion. The framework
is evaluated through rigorous statistical tests and testbed
studies for three historic earthquakes events. Hence, apart
from utilizing a more structurally informed IM as a target
decision variable for EEW, this study utilizes an advanced
neural-network approach to optimally conduct dimen-
sionality reduction of the Sa(T) spectrum into surrogate
latent variables that can be practically used in real time.
Furthermore, using data-driven and deep-learning-based
methodsminimizes the assumptions involved in themodel
development and makes the framework flexible and easily
re-trainable. In addition, the high dimensional interpola-
tive and extrapolative nature of DNNs makes this study
more robust than non-deep learning-based and traditional
methods (Gustafson et al., 1990; Xu et al., 2021). The pro-
posed framework is observed to perform well on the used
dataset, and based on the findings of this paper, it can be
highly beneficial to advance EEW research and support
various end-users.
The paper starts by introducing the proposed framework

and its key implementation steps. Then, the considered

ground-motion database, algorithms, and models used to
develop the framework are explained, and the results of
various statistical tests are presented. Finally, the proposed
framework is illustrated by applying it to three historical
earthquake events recorded in California, used as testbeds.
The illustration is conducted to test the performance
of the proposed framework in hazard-consistent alarm
triggering.

2 PROPOSED FRAMEWORK

The proposedROSERS framework is illustrated in Figure 1.
A digital recording station continuously monitors ground
shaking at a given location. As the seismic sensor detects
the initial p-waves of the arriving ground-motion (e.g.,
Akazawa, 2004; Kalkan, 2016; Sleeman & van Eck, 1999),
the ROSERS framework stands by to receive 3 s of the
incoming ground-motion. While any picker algorithm
can be used to detect p-waves arrival, this study uses
the PPHASEPICKER algorithm by Kalkan (2016). ROSERS
utilizes the first 3 s of the observed ground-motion in
real time to compute a vector of seven intensity measures
denoted as IM3s. The vector IM3s correspond to the
amplitude, energy, frequency, and significant duration
of the initial 3 s of the ground-motion waveform after
detection of p-waves. The computed IM3s is combined
with the vector of site characteristics (denoted as SC) of the
recording station, known a-priori. The obtained IM3s and
SC are then used as inputs to a pre-trained feed-forward
DNN estimating two mean latent variables (𝜇𝑧1 and 𝜇𝑧2),
which are then cascaded to a pre-trained VAE decoder. It
should be noted here that the two latent variables are not
physically derived but represent a two-dimensional statis-
tical surrogacy of the complete 𝑆𝑎(𝑇) spectrum, which is
obtained by training a VAE. The VAE decoder transforms
the estimated mean latent variables (𝜇𝑧1 and 𝜇𝑧2) into the
vector of PGA and 95-period Sa(T) spectrum (denoted as
Sa). The obtained Sa vector can be utilized by various end-
users/stakeholders to informatively alert a community
through risk-informed EEW decision support systems,
develop shakemaps, perform structural control, and other
similar applications in real-time (Cremen & Galasso,
2021). The estimation of the Sa vector through ROSERS
takes less than 1 s on average, thereby providing end-users
with an ample amount of time for decision-making.

3 GROUND-MOTION DATABASE

The framework is developed and trained using the
recorded ground motions available in the comprehensive
database of the Next-Generation AttenuationWest version
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F IGURE 1 Illustration of the real-time on-site estimation of response spectra (ROSERS) framework. The illustration flows from left to
right. The implementation of this ROSERS framework, on average, takes ∼0.75 s on a modern personal computing machine

2 (NGA-West2) project (Ancheta et al., 2014). The database
utilized in this study consists of 13,916 ground-motion com-
ponents from 277 seismic events recorded worldwide and
are processed based on the recommendations of (Boore &
Bommer, 2005). It is worth noting that ground motions in
real time are generally not processed in the same man-
ner, and the processing usually involves the use of simplis-
tic techniques such as trend removals and low-pass and
high-pass filtering (Caruso et al., 2017; Hsu et al., 2013).
However, this assumption is not expected to significantly
change the proposed framework’s predictive performance:
The data-driven nature of the artificial neural networks,
with sufficient training, can quickly make the framework
adapt to any minor deviances and noise (Borodinov et al.,
2019; Jumper et al., 2021). The moment magnitude (M)
and closest rupture distance (Rrup) metadata of the con-
sidered database is provided in Figure 2a. Other details of
the metadata can be obtained from (Fayaz et al., 2021). As
can be observed from Figure 2a, the database is skewed
toward events with 𝑀 ≤ 5.5. Hence, in this study, the
ground motions with 𝑀 ≤ 5.5 (majority class) are under-
sampled (Lemaitre et al., 2017) such that the number of
ground motions with 𝑀 ≤ 5.5 and 𝑀 > 5.5 is equivalent
while maintaining the distributions of 𝑅𝑟𝑢𝑝 and site’s aver-
age shear-wave velocity of the soil up to 30 m (𝑉𝑠30). This
results in 6,392 ground-motion components whose event
data is presented in Figure 2b. The distributions for ground
motions with𝑀 ≤ 5.5 and𝑀 > 5.5 are observed to be simi-
lar. The bimodal shape of theM histograms is inherited in

the data as not enough seismic recordings are available for
5≤ 𝑀 ≤ 6. For the obtained groundmotions, their acceler-
ation response spectra at 96 periods (Sa(T) for periods from
0 to 5 s) is computed.
To assess the ground-motion time used by the pro-

posed framework (i.e., initial 3 s after the detection of
p-waves) with respect to the ground-motion duration for
the undersampled dataset, the overall duration (𝐷𝐺𝑀)
and time to PGA after detection of p-waves is computed.
To avoid the inclusion of zeros and very small accelera-
tion values (< 10–5 g) in the computation of 𝐷𝐺𝑀 (which
are padded while processing of ground motions in NGA-
West2), 𝐷𝐺𝑀 is computed by obtaining the time differ-
ence between attainment of 99.9% and 0.1% of 𝐼𝑎 (similar
to the computation of significant duration 𝐷5−95; Kramer,
1995). Figure 3a,b shows the 𝐷𝐺𝑀 and time to PGA of the
undersampled ground-motion dataset, respectively. It is
observed that 𝐷𝐺𝑀 has a mode of about 40 s, and the time
to PGA has a mode of about 30 s. This means that the pre-
dictions made within the initial 3 s of the on-site ground
motions (after detection of p-waves) can still allow an
ample amount of warning time for decision-making. Thus,
the proposed framework can assist in taking real-time risk
mitigation actions such as the start of evacuation proce-
dures/move to safer locations within a structure, auto-
matic emergency responses, road closures, and so forth,
before the arrival of the peak acceleration and before shak-
ing ends. This further indicates the framework’s usefulness
to perform well in a real-time setting.
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F IGURE 2 Ground-motion database before (a); and after (b) undersampling

F IGURE 3 (a) 𝐷𝐺𝑀 (s); and (b) time to peak ground acceleration (s) of the undersampled dataset

3.1 p-phase arrival-time picker

Though the ground motions in the NGA-West2 database
are already processed, the ground-motion records do not
necessarily start with p-waves and may contain additional
zeros and early station noise in the recordings. Hence it
is crucial to detect the p-waves in the ground motions to
develop the proposed EEW framework. This study obtains
the p-waves arrival time in the ground-motion time
histories using an automated p-phase picker approach
developed by Kalkan (2016). Unlike other approaches
(Akazawa, 2004; Sleeman & van Eck, 1999), the proposed
method for picking p-phase arrival times in single-

component acceleration or broadband velocity records
does not require any detection interval or threshold set-
ting. The algorithm PPHASEPICKER obtains the response of
an SDoF oscillator with viscous damping subjected to the
input ground-motion and then measures the dissipated
damping energy. The rate of change (power) of the mea-
sured damping energy is then used to pick p-wave phases
(Kalkan, 2016). The SDoF oscillator is developed to possess
a short natural period and consequently a high resonant
frequency. This is done to ensure that the natural fre-
quency of the SDoF is higher than the frequencies mostly
observed in seismic waves, which prevents the effects of
resonance. Phases angles are maintained as the SDoF is
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provided with a high damping ratio (60% of critical) at
which the frequency response reaches the Butterworth
maximally flat magnitude filter. The relative input energy
imparted to the oscillator by the input ground-motion is
converted to elastic strain energy and then dispelled by
the damping element as damping energy. The computed
damping energy generates a smooth envelope over the
duration of the seismic ground-motion. The envelope
is close to zero at the beginning of the signal before the
arrival of p-phase and builds up swiftly with the arrival
of the p-wave. The considerable change in the damping
energy function at the onset of the p-wave is used to track
and pick the arrival of p-phase. The PPHASEPICKER par-
ticularly detects the onset of p-phase using the histogram
method (Anon, 2011; Solomon et al., 2001). The histogram
method is used as the picking algorithm, as it does not
require any detection interval or threshold settings. The
6,392 ground-motion components are analyzed using
the PPHASEPICKER algorithm to obtain their correspond-
ing p-wave arrival time, and only the ground-motion
time histories after p-wave arrival are considered for
the computation of IM3s and further analysis in this
study.

4 COMPONENTS OF THE ROSERS
FRAMEWORK

This section presents the details of the models used in
the proposed framework and the statistical analysis results
conducted to test their prediction power. The section first
explains the details of the VAE model that is used to
project the 𝑺a vector into the two latent-variable space.
Then the DNN model used to estimate the mean of the
two latent variables is discussed; finally, the hierarchical
mixed-effects regression of the residual is described. For
each sub-section, the model is explained first, and then its
prediction power is described.

4.1 Variational autoencoder

The 𝑺𝑎 vector computed for the 6,392 ground-motion com-
ponents for the 96 periods is used as input to be recon-
structed in the VAE (Kingma & Welling, 2019). The VAE
is bottlenecked to have two independent normally dis-
tributed latent variables (denoted as 𝑧1 and 𝑧2 with means
𝜇𝑧1and 𝜇𝑧2 and variances 𝜎

2
𝑧1
and 𝜎2𝑧2 , respectively) in the

sampling layer. A two-dimensional latent variable space is
used as it results in a good trade-off between higher recon-
struction power and a lower number of latent dimensions.
The neural network-based VAE is trained through cross-

validation using a randomly split 80% of the dataset while
the remaining 20% is used as the final test set. The train-
ing and testing of the VAE are performed using a log trans-
formation of 𝑆𝑎(𝑇) as the ground-motion IMs are gener-
ally observed to be lognormally distributed (Zarrin et al.,
2020). VAE provides a probabilistic approach to describe
a vectorial observation in their latent variable space. This
is done using a neural network-based encoder (recogni-
tion model) trained in conjunction with a neural network-
based decoder (generative model) that can use the latent
variable space to reconstruct the observations. This means
that the encoder describes a probability distribution for
each latent attribute fromwhich values are randomly sam-
pled to be fed into the decoder that is expected to accurately
reconstruct the input. Hence, the latent space is essentially
compelled to possess continuous and smooth representa-
tions. Consequently, nearby values in the latent space cor-
respond to similar reconstructions using the decoder. It is
worth mentioning that while there are other approaches
to this aim, such as principal component analysis, sin-
gular value decomposition, regular autoencoders, and so
forth, such methods do not necessarily provide a continu-
ous probabilistic space of reduced dimensions (i.e., latent
variables) along with such high accuracy and reconstruc-
tion power.
The underlying idea of training the VAE relies on the

basic Bayes’ rule given in Equation (1), where 𝒙 repre-
sents the true vector of input variables and 𝒛 represents
the latent variable space. Due to its intractability, 𝑝(𝒙) can
be estimated using variational inference (Blei et al., 2017).
This relies on estimating 𝑝(𝒛|𝒙) by another distribution
𝑞(𝒛|𝒙), which is defined such that it has a tractable distri-
bution. By defining 𝑞(𝒛|𝒙) such that it is very similar to
𝑝(𝒛|𝒙), it can be used to perform approximate inference
of the intractable distribution. This is done by minimiz-
ing the Kullback and Leibler (KL) divergence (Kullback &
Leibler, 1951) between 𝑞(𝒛|𝒙) and 𝑝(𝒛|𝒙) shown in Equa-
tion (3), where the KL divergence between any two distri-
butions 𝑝 and 𝑞 can be computed using Equation (2). The
minimization process of Equation (3) can be conducted by
maximizing the expression given in Equation (4) where
𝐸𝑞(𝒛|𝒙) log 𝑝(𝒙|𝒛) represents the reconstruction likelihood,
and KL[𝑞(𝒛|𝒙)||𝑝(𝒛)] ensures that the learned posterior
distribution 𝑞(𝒛|𝒙) is similar to the prior distribution 𝑝(𝒛),
which is assumed to be a standard Gaussian distribution
(∼ 𝑁(0, 1)) for each latent variable. 𝐸𝑞(𝒛|𝒙) log 𝑝(𝒙|𝒛) is the
mean-squared error (L2 loss) between 𝒙 and 𝒙̂ (Kingma &
Welling, 2019).

𝑝 (𝒛|𝒙) = 𝑝 (𝒙|𝒛) 𝑝 (𝒛)
𝑝 (𝒙)

(1)
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F IGURE 4 Exploration of the mean latent variables (𝜇𝑧1and 𝜇𝑧2 ) against (a) magnitude (M); (b) rupture distance (Rrup)

KL[𝑞|𝑝] =
𝑁∑
𝑖=1

𝑞 (𝑦𝑖) log
𝑞 (𝑦𝑖)

𝑝 (𝑦𝑖)
(2)

min|KL[𝑞 (𝒛|𝒙) ||𝑝 (𝒛|𝒙)]| (3)

max|𝐸𝑞(𝒛|𝒙) log 𝑝 (𝒙|𝒛) − KL[𝑞 (𝒛|𝒙) ||𝑝 (𝒛)]| (4)

The proposed VAE consists of eight layers in the encoder
and decoder (including the input and output layers) with
a total of 850 neurons and two-dimensional latent variable
space. The VAE is trained with the train set in epochs
using the Adaptive Moment Estimation (Adam) (Kingma
& Ba, 2014) optimizer and early stopping (Chollet, 2018)
regularization. The means of the two latent variable
distributions are presented in Figure 4, where the colors
of the markers represent the magnitude (M) of the seismic
event (Figure 4a) and rupture distance (𝑅𝑟𝑢𝑝) of the station
site (Figure 4b). It can be observed from Figure 4a that
smaller magnitudes (M < 5.5) tend to have 𝜇𝑧1> 0 and
𝜇𝑧2> 0, and larger magnitudes (𝑀 > 5.5) tend to have
𝜇𝑧1< 0 and 𝜇𝑧2< 0. In general, 𝜇𝑧1 and 𝜇𝑧2 tend to decrease
with an increase in magnitudes. Similarly, from Figure 4b,
it can be observed that smaller rupture distances (𝑅𝑟𝑢𝑝<
45 km) tend to have 𝜇𝑧1< 0 and 𝜇𝑧2< 0, and larger rupture
distances (𝑅𝑟𝑢𝑝 > 45 km) tend to have 𝜇𝑧1> 0 and 𝜇𝑧2> 0.
In general, 𝜇𝑧1 and 𝜇𝑧2 tend to increase with an increase in
rupture distances. This shows that the latent variables have
an inverse attenuation relation with the 𝑀 and 𝑅𝑟𝑢𝑝, as
they decrease with an increase in𝑀 and decrease in 𝑅𝑟𝑢𝑝.
Furthermore, Figure 5a,b shows two examples of the

true 𝑺a spectrum and reconstructed 𝑺𝐚 spectrum for differ-
ent levels of shaking intensities. It can be observed from the

F IGURE 5 Examples of randomly selected true versus
reconstructed 𝑺𝑎 with (a) 𝑺𝑎 > 1 g; and (b) 𝑺𝑎 <1 g

figures that the trained VAE performs well in reconstruing
the spectrum using the mean latent variables without any
clear bias toward any level of shaking.
The overall results of the developed VAE are presented

inFigure 6a,b. The coefficient of determinationR2 between
the true 𝑺a and reconstructed 𝑺a for the 96 periods for both
train and test sets are presented in Figure 6a. R2 for all
periods is observed to be above 0.98, demonstrating excel-
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F IGURE 6 (a) R2 of reconstructed 𝑆𝑎(𝑇) at various periods;
and (b) true versus reconstructed 𝑆𝑎(𝑇)

lent reconstruction power of the developed VAEwithmin-
imal bias and variance. This can be further observed from
Figure 6b, where the true versus reconstructed 𝑆𝑎(𝑇) are
presented for periods 0.2, 0.5, 1, 2, 5, and 0 s (PGA). For all
the cases, it is observed that the true vs. reconstructed𝑆𝑎(𝑇)
follow the identity line (1:1) very closely for all ranges of val-
ues, demonstrating no bias and high reconstruction power
of the VAE. Even with just a visual comparison (since a
comparable goodness-of-fit measure is not reported in the
reference studies) of Figure 6b with other state-of-practice
EEW frameworks (Münchmeyer et al., 2020; Caruso et al.,
2017; Colombelli & Zollo, 2015; Hsu et al., 2013), the supe-
riority of the proposed framework can be observed. Based
on Figure 6a,b, it is clear that the mean latent variables
𝑧1 and 𝑧2 can adequately reconstruct the 𝑺a using the
VAE decoder. Hence, if one can estimate the mean latent
variables 𝜇𝑧1and 𝜇𝑧2of the ground motions accurately, the
trained VAE decoder can be used to transform the esti-
mated latent variables into the 𝑺a. It is worth mention-
ing that, although a VAE is primarily used as a genera-
tive model (Gorijala & Dukkipati, 2017), the idea of dimen-
sionality reduction coupled with a VAE’s requirement to
possess continuous and smooth representations of latent
variablesmakes it a perfect candidate for the real-time esti-
mation of the 𝑺a of the incoming ground motions. The
latent variables for new observations can be easily interpo-

F IGURE 7 𝑅2
𝐴𝑣𝑔

of linear regression versus ground-motion
time windows

lated and extrapolated, leading to good construction of the
corresponding spectrum. Also, the utilization of the surro-
gacy and dimensionality reduction leads to the estimated
𝑺a that is inherently cross-correlated as the prediction is
made jointly for the complete 𝑆𝑎(𝑇) spectrum at 96 peri-
ods.

4.2 Estimation of latent variables

In a real-time setting, to construct the 𝑺a of the expected
ground-motion, it is essential to accurately estimate the
mean latent variables 𝜇𝑧1and 𝜇𝑧2 , which can then be used
in the VAE decoder. To allow ample on-site warning time
during the occurring ground-motion,which can last up to 1
to 2 min in some conditions (Figure 3a; Fayaz, et al., 2020),
only a few early seconds of the arriving waveform can be
practically used for any predictions and earlywarning. Var-
ious initial time windows (ranging from 1 to 10 s) after
detection of p-wave arrival were considered for computing
the considered ground-motion IMs. For each timewindow,
the mean latent variables were used as the target variables
for linear regression, and the computed seven IMs and two
site characteristics were used as the predictors. During this
exercise, the time window of 3 s was observed to be a good
trade-off between the prediction power to estimate 𝜇𝑧1and
𝜇𝑧2 and the requirement of a short time window. Predic-
tion power was decided in terms of the average R2 (𝑅2

𝐴𝑣𝑔
)

obtained for estimating 𝜇𝑧1and 𝜇𝑧2 ; it was observed that
IMs obtained from time windows longer than 3 s did not
lead to a significant increase in the average R2. Figure 7
presents the observed 𝑅2

𝐴𝑣𝑔
for the different time windows.

The final IMs used in this study include: Arias Inten-
sity (𝐼𝑎; in m/s), significant duration (𝐷5−95; in s), mean
period (𝑇𝑚; in s), PGA (in g), PGV (in m/s), PGD (in m),
and cumulative absolute velocity (CAV; in m/s), which
are described in Equations (5) to (11), where 𝑎(𝑡) repre-
sents the acceleration time history of the ground-motion,
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TABLE 1 Correlations of mean latent variables against selected SC and IM3s

𝑉𝑠30 𝑍2.5 𝐼𝑎3𝑠 𝐶𝐴𝑉3𝑠 𝑃𝐺𝐴3𝑠 𝑃𝐺𝑉3𝑠 𝑃𝐺𝐷3𝑠 𝑇𝑚3𝑠
𝐷5−953𝑠 𝜇𝑍1

𝜇𝑍1 −0.27 −0.21 −0.83 −0.91 −0.82 −0.89 −0.91 −0.57 0.19 1
𝜇𝑍2 −0.19 −0.07 −0.93 −0.91 −0.92 −0.92 −0.90 −0.36 0.27 0.88

Abbreviations: IM3s, the vector of intensity measures of first 3 s of the observed ground-motion in real-time.

𝑇𝑖 represents the time instance, 𝐶𝑖 is the Fourier ampli-
tude spectrum of acceleration at linearly spaced frequen-
cies, 𝑓𝑖 , spanning the range 0.25 ≤ 𝑓𝑖 ≤ 20 Hz. Site char-
acteristics are quantified using the site shear-wave velocity
(𝑉𝑠30) and basin depth to a shear velocity of 2.5 km/s (𝑍2.5).
Several other IMs such as root mean square acceleration
(𝑎𝑅𝑀𝑆), characteristic intensity (𝐼𝑐), predominant period
(𝑇𝑝), basin depth to a shear velocity of 1 km/s (𝑍1), and so
forth, were used in the trials to train the framework. The
final selection of the seven IMs and two site-characteristics
was based on three criteria: (1) correlation with the mean
latent variables; (2) minimal collinearity with other IMs;
and (3) ease of real-time computation.

𝐼𝑎 =
𝜋

2𝑔 ∫ 𝑎(𝑡)
2
𝑑𝑡 (5)

𝐷5−95 = 𝑇𝑖
(
𝐼𝑎@95%

)
− 𝑇𝑖

(
𝐼𝑎@5%

)
(6)

𝑇𝑚 =

∑
𝐶2
𝑖 (1∕𝑓𝑖)∑
𝐶2
𝑖

(7)

PGA = max (|𝑎 (𝑡)|) (8)

PGV = max (|∫ 𝑎 (𝑡) 𝑑𝑡|) (9)

PGD = max (|∫ ∫ 𝑎 (𝑡) 𝑑𝑡𝑑𝑡|) (10)

CAV = ∫ |∫ 𝑎 (𝑡) 𝑑𝑡| 𝑑𝑡 (11)

Table 1 presents the correlations of the mean latent vari-
ables 𝜇𝑧1and 𝜇𝑧2 against the vector of SC and IMs com-
puted for the initial 3 s (IM3s) for the 6392 ground-motion
components. The above defined notations of IMs are sub-
scripted with ‘3s’ to specify that they are computed using
early three seconds of ground-motions. It can be observed
from Table 1 that both SC and IM3s vectors are highly cor-
related with 𝜇𝑍1 and 𝜇𝑍2 emphasizing their importance in
the real-time prediction process. 𝜇𝑧1 and 𝜇𝑧2 are observed
to be positively correlated with each other and negatively
correlated with the IM3s and SC. Thus, the two mean

latent variables demonstrate inverse attenuation relations
with the SC and IM3s.
To estimate the 𝜇𝑧1 and 𝜇𝑧2 using the SC and IM3s

vectors, four types of regression models were utilized:
(1) linear regression (Freedman, 2009); (2) support vector
machines (Cortes et al., 1995; Radial Basis Function (RBF)
kernel); (3) XGBoost (Chen & Guestrin, 2016; with max-
imum depth = 10); and (4) DNN (Chollet, 2018; Rosen-
blatt, 1958). For all four regressions, the predictors (SC
and IM3s) are transformed to the log domain, while for
the target variables (𝜇𝑧1 and 𝜇𝑧2) the log (𝑥 + 1) trans-
formation is used as their values consist of both positive
and negative values close to zero. The regressions are con-
ducted using a training dataset (randomly selected as 80%
of the entire dataset), while evaluations are conducted on
the remaining test dataset. In all four cases, the average
𝑅2 of the predictions for both mean latent variables are
observed to be greater than 0.7, with the highest value
of ∼0.91 observed for DNNs. Apart from high prediction
power, another advantage of using DNNs is that both the
mean latent variables are estimated simultaneously, ensur-
ing that the estimations are implicitly linked, that is, prop-
erly reflecting their internal correlation. It can be observed
fromTable 1 that bothmean latent variables𝜇𝑧1 and𝜇𝑧2 are
inherently correlated. Since the tested regression Methods
1–3, mainly involve the prediction of one target variable at
a time (disjoint estimates), they would lead to independent
predictions of 𝜇𝑧1 and 𝜇𝑧2 , which requires postprocessing
to explicitly model the observed correlation between 𝜇𝑧1
and 𝜇𝑧2 .
Hence, a 15-layeredDNNwith two nodes and linear acti-

vation function in the output layer is trained and used as
the final method to estimate 𝜇𝑧1 and 𝜇𝑧2 using SC and
IM3s. The DNN is trained using a training dataset (ran-
domly selected as 80% of the entire dataset), while eval-
uations are conducted on the remaining test dataset. The
training is conducted using stochastic gradient descent
with dropout and early stopping regularizations (Chol-
let, 2018). The true versus predicted 𝜇𝑧1 and 𝜇𝑧2 from the
trainedDNNare presented in Figure 8a,b, respectively. The
nature of predictions is observed to be very close to the
identity line (1:1) for both train and test sets, thereby indi-
cating the good prediction power of the proposed DNN
to estimate the two mean latent variables. The mean pre-
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F IGURE 8 True versus predicted 𝜇𝑧1 and 𝜇𝑧2 from the trained
deep neural network

dictions of the trained DNN led to 𝑅2 of 0.91 and 0.93
for 𝜇𝑧1 and 𝜇𝑧2 , respectively. A correlation coefficient of
0.91 was observed in DNN’s predictions of 𝜇𝑧1 and 𝜇𝑧2 as
compared to the true correlation coefficient of 0.88. This
means the trained DNNs are highly successful in estimat-
ing 𝜇𝑧1 and 𝜇𝑧2 jointly. Due to the hierarchical nature of
the data (i.e., multiple recordings from the same event
and multiple recordings from different events), the resid-
uals from the DNN–VAE framework are further used to
conduct a mixed-effects regression (Demidenko, 2004) to
develop inter-event (𝚽) and within-event (𝑻) covariance
matrices for the 96 periods. Since various available EEW
systems compute different IMs for the incoming ground-
motion and possess different site-characteristics, a sepa-
rate DNN (which is usually less computationally expen-
sive) allows the users to efficiently retrain themodel to esti-
mate the two latent variables as per their requirements.

4.3 Residual structure

Due to the hierarchical structure of the ground motions
arising from multiple recordings from the same event and
recordings from different events, the residuals between the
𝑺𝑎𝑖𝑗 and predictions of DNN–VAE 𝑺𝑎𝑖𝑗 are used to com-

F IGURE 9 Correlation structure of the residuals

pute 96 values of inter-event and within-event variabilities
for the ith event and jth recording. This is done by fitting
a mixed-effects regression (Demidenko, 2004) model to
the residuals as given in Equation (12) where 𝜂𝑖 represents
the between-event variability with 𝑻 variance matrix for
96 periods, 𝜀𝑖𝑗 represents the within-event variability with
𝚽 variance matrix for the 96 periods, and 𝑐0 represents
any pending bias in the residuals for the 96 periods. 𝑐0 was
observed to be very close to zero (failing the hypothesis
test) and dropped in the overall analysis. Also, empirical
Pearson correlations are computed for the residuals of the
96 periods (presented in Figure 9), which is then used to
convert the inter-event andwithin-event variancematrices
into their respective covariance matrices. In summary, the
overall DNN–VAE framework is developed for mean pre-
dictions, and the residuals are used to construct between-
event (𝚽) and within-event (𝐓) covariance matrices.

𝑺𝑎𝑖𝑗 − 𝑺𝑎𝑖𝑗 = 𝑐0 + 𝜂𝑖 (0, 𝑻) + 𝜀𝑖𝑗 (0, 𝚽) (12)

5 IMPLEMENTATION OF ROSERS ON
EXAMPLE SEISMIC EVENTS

The developed framework is exercised on three notable
seismic events recorded in California (Ancheta, et al.,
2014): (1) Northridge (M = 6.69, 1994); (2) Loma Prieta
(M = 6.93, 1989); and (3) Whittier (M = 5.99, 1987). These
events are considered pivotal points in the history of
earthquake engineering as the reconnaissance data col-
lected after these events led to substantial changes to
the principles of structural analysis and design (Popov,
et al., 1998). Apart from being historically significant
seismic events, the three selected events were recorded
at a relatively large number of stations, making them
ideal candidates for validating the proposed ROSERS
framework. Based on the criteria of 𝑅𝑟𝑢𝑝 ≤ 90 km, NGA-
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F IGURE 10 𝑆𝑎,ℎ𝑎𝑧(𝑇) (g) versus 𝑅𝑟𝑢𝑝 (km) for: (a) Northridge (𝑇 = 0.5 s); (b) Loma Prieta (𝑇 = 0.5 s); (c) Whittier (𝑇 = 0.5 s); (d)
Northridge (𝑇 = 1.0 s); (e) Loma Prieta (𝑇 = 1.0 s); and (f) Whittier (𝑇 = 1.0 s)

West2 database contains recordings at (1) 137 stations
for Northridge; (2) 79 stations for Loma Prieta; and (3)
108 stations for Whittier events. In this implementation
example, the ROSERS framework is employed to conduct
a seismic warning trigger classification for the selected
three events. This means that for each event and station,
decision analysis is performed based on whether the
expected level of 𝑆𝑎(𝑇) (using the ROSERS framework)
exceeds a hazard-consistent threshold 𝑆𝑎,ℎ𝑎𝑧(𝑇) for two
natural periods, that is, 0.5 and 1.0 s. Due to the difference
in the seismicity of each site, unlike other studies, this
study does not utilize one strict 𝑆𝑎(𝑇) the threshold for
all sites of the event. For example, a site close to an active
seismic fault, 𝑆𝑎(𝑇) = 0.1 g may correspond to a frequent
return period, and hence the structure/infrastructure of
interest would not be highly susceptible to the resulting
shaking. However, for a site away from active seismic
faults, 𝑆𝑎(𝑇) = 0.1 g may represent a seismic event of
significant hazard level and would lead to infrastructural
devastation/disruption. Hence this study utilizes a hazard-
consistent approach of trigger classification rather than a
strict threshold. 𝑆𝑎,ℎ𝑎𝑧(𝑇) is determined for each station
site by independently obtaining their respective 𝑆𝑎(𝑇)
hazard curves using the US Geological Survey Unified
Hazard Tool (2014; Petersen et al., 2020; developed by
conducting probabilistic seismic hazard analysis [PSHA]
for the target site) and computing 𝑆𝑎(𝑇) corresponding to

six hazard levels, including mean return periods of 25, 50,
75, 100, 150, and 200 years. In simple terms, 𝑆𝑎,ℎ𝑎𝑧(𝑇) is
the expected level of 𝑆𝑎(𝑇) for a given period and hazard
level, which is obtained by considering all the known
faults around the target site and performing a rigorous
PSHA. Figure 10 presents the obtained 𝑆𝑎,ℎ𝑎𝑧(𝑇) (in units
of g) against the 𝑅𝑟𝑢𝑝 (in units of km) of their respective
station sites for the three considered seismic events and
two periods. As expected, for all the station sites, 𝑆𝑎,ℎ𝑎𝑧(𝑇)
increases as the mean return period increases and for the
same hazard level and site, 𝑆𝑎,ℎ𝑎𝑧 (T= 0.5 s; reaching up to
∼1.5 g) is greater than 𝑆𝑎,ℎ𝑎𝑧 (T= 1.0 s; reaching up to ∼1.2
g). It should be noted here that though the 𝑆𝑎(𝑇) for the
selected events are expected to attenuate with an increase
in 𝑅𝑟𝑢𝑝, 𝑆𝑎,ℎ𝑎𝑧(𝑇) remains unaffected as it represents the
hazard-targeted 𝑆𝑎(𝑇) computed for each site representing
its modeled seismicity (Field et al., 2009, 2014).
For the three seismic events, the 𝑆𝑎,ℎ𝑎𝑧(𝑇) values

obtained for their respective station sites (for the six haz-
ard levels and two periods) are used as thresholds to clas-
sify whether to trigger EEW warnings. For each event and
station, the true 𝑆𝑎(𝑇) is known from the seismic record-
ing and compared against their respective 𝑆𝑎,ℎ𝑎𝑧(𝑇). If the
true 𝑆𝑎(𝑇) ≥ 𝑆𝑎,ℎ𝑎𝑧(𝑇), then the seismic warning must be
triggered (positive case) for the particular hazard level and
period, while if 𝑆𝑎(𝑇) < 𝑆𝑎,ℎ𝑎𝑧(𝑇) no warning should be
issued (negative case). For the selected events and stations,
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F IGURE 11 Confusion matrix for Northridge event (137 stations) for 𝑆𝑎(𝑇 = 1.0 s) for hazard levels of: (a) 25 years, (b) 50 years, (c) 75
years, (d) 100 years,( e) 150 years, and (f) 200 years; accuracy of trigger classification for the six hazard levels for: (g) Northridge (137 stations);
(h) Loma Prieta (78 stations); and (i) Whittier (108 stations)

the initial 3 s of the seismic recordings are used in the pro-
posed ROSERS framework to obtain 𝑆𝑎(𝑇) predictions and
conduct trigger classification. The trigger classifications
conducted using the ROSERS framework are compared
against the true classification in twoways, using determin-
istic confusion matrices and probabilistic receiver operat-
ing characteristic (ROC) curves (Brown & Davis, 2006).

5.1 Trigger classification using
confusion matrices

First, the mean predictions 𝑆𝑎(𝑇) are compared against
𝑆𝑎,ℎ𝑎𝑧(𝑇) as deterministic estimates to develop confu-
sion matrices for each hazard level, event, and period.
Figure 11a–f presents the confusion matrices generated

for the Northridge event (consisting of 137 stations) for
𝑆𝑎(𝑇 = 1.0 s ) for the six hazard levels, where TN, FP, FN,
and TP represent true negative, false positive, false nega-
tive, and true positive cases, respectively. In all cases, the
percentages of TP and TN are significantly higher than FP
and FN, which shows the high classification power of the
proposed ROSERS framework. As observed in Figure 10,
𝑆𝑎,ℎ𝑎𝑧(𝑇) increaseswith the increase in hazard level, which
leads to a lower number of stations with true 𝑆𝑎(𝑇) ≥
𝑆𝑎,ℎ𝑎𝑧(𝑇). Hence, in Figure 11e,f, it can be observed that
the percentage of TP and FN cases are lower than those
in Figure 11a–d. However, in general, it can be observed
that TP and TN are significantly higher than FP and FN,
thereby demonstrating the high classification accuracy of
ROSERS. Similar confusion matrices were developed and
analyzed for all other cases. To summarize the results,
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F IGURE 1 2 Receiver operating characteristic curves for Northridge event (137 stations) for hazard levels of: (a) 25 years, (b) 50 years, (c)
75 years, (d) 100 years, (e) 150 years, and (f) 200 years; AUC of trigger classification for the six hazard levels for: (g) Northridge (137
stations),(h) Loma Prieta (78 stations), and (i) Whittier (108 stations)

the accuracies (i.e., (TP + TN)∕(TP + TN + FP + FN)) for
the six hazard levels and two periods are presented in
Figure 11g,h,i for the Northridge, Loma Prieta, and Whit-
tier events, respectively. In these figures, the color shade
of the markers represents the percentage of stations with
true 𝑆𝑎(𝑇) ≥ 𝑆𝑎,ℎ𝑎𝑧(𝑇) (i.e., FN + TP). It can be observed
in Figure 11g–i that, with an increase in hazard level, the
accuracy of classification increases from ∼80% to ∼99% for
both periods and three seismic events. This means that the
proposed framework is capable of accurately estimating
whether 𝑆𝑎(𝑇) ≥ 𝑆𝑎,ℎ𝑎𝑧(𝑇) and conduct trigger classifica-
tion for low-rise (∼T = 0.5 s) as well as mid-rise (∼T = 1 s)
structures. Furthermore, as mentioned earlier, it can be

observed from all cases that, with an increase in hazard
level, the color shades of the scatter plots tend to fade, indi-
cating that a lower number of stations lead to true 𝑆𝑎(𝑇) ≥
𝑆𝑎,ℎ𝑎𝑧(𝑇). This indicates that the shaking observed at the
stations for their respective earthquake events is gener-
ally lower than the expected shaking computed through
PSHA of the region/sites for higher hazard levels. Due
to this, a lower number of TP cases and a more signif-
icant number of TNs are noticed for the increased haz-
ard levels for all three events. However, the framework is
continuously observed to lead to higher accuracies with
a more significant number of TNs and a smaller number
of FPs. Consequently, the proposed framework can help
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in decreasing the number of false alarms, thereby reduc-
ing the nuisance and hindrance caused to a community.
In general, the results indicate that the framework’s accu-
racy for all events and periods is above ∼80% and tends
to increase for shaking levels with longer return periods
(higher hazard levels), leading up to ∼99% for a 200-year
return period. Given that the predictions of the proposed
framework are tested against hazard-consistent levels of
𝑆𝑎(𝑇) (unlike previous studies such as Münchmeyer et al.
(2020), Caruso et al. (2017), Colombelli & Zollo (2015), Hsu
et al. (2013); that use a constant 𝑆𝑎(𝑇) level for testing), the
classification results are observed to be on the high end of
accuracy.

5.2 Trigger classification using
ROC-AUC curves

In the second set of comparisons, the mean predictions
𝑆𝑎(𝑇) are combined with their inter-event and within-
event variabilities of the residuals to construct a proba-
bilistic distribution of the predictions for the particular
period. The probabilistic distributions are used to obtain
𝑃(𝑆𝑎(𝑇) ≥ 𝑆𝑎,ℎ𝑎𝑧(𝑇)) for all three events, six hazard lev-
els, and two natural periods, which are compared against
the true classification of 𝑆𝑎(𝑇) ≥ 𝑆𝑎,ℎ𝑎𝑧(𝑇) using the ROC
curves. The area under the ROC curve is termed Area
Under Curve (AUC), representing the degree or measure
of separability between TP and FP rates for various thresh-
olds. The ROC-AUC curves for the six hazard levels for
𝑆𝑎(𝑇 = 1.0 s) for the Northridge event are presented in
Figure 12a–f; the AUC scores of the cases are shown in
Figure 12g–i for the three events and two periods. Simi-
lar to the observation made in terms of prediction accu-
racies, AUC values are observed to be higher than ∼0.8
for all cases and tend to increase with an increase in haz-
ard levels. The ROC curves in Figure 12a–f show how the
ROSERS framework’s distinguishing power between the
two classes improves for 𝑆𝑎(𝑇) with a higher hazard level
(i.e., more critical) leading up to AUC = 0.95 for a 200-
year return period. This further highlights the accuracy of
the decision-making power of the proposed framework to
issue probabilistic warnings during a seismic event, espe-
cially for more dangerous shaking levels (higher return
periods).

6 CONCLUSIONS

This study introduced a deep learning-based on-site EEW
framework named. The framework utilizes a pre-trained
DNN to estimate twomean latent variables (that represent
statistical surrogates of the 𝑆𝑎(𝑇) spectrum) using the SC

and initial 3 s of on-site ground-motion after p-wave detec-
tion. The initial 3 s of the on-site ground-motion waveform
are used to compute seven IMs representing the energy,
amplitude, significant duration, and frequency content
of the initial seconds (mainly p-waves) of the 3 s of the
arriving ground-motion waveform. The computed IMs are
combinedwith two site- parameters and used as inputs to a
trained DNN that estimates two mean latent variables that
are used in a trained decoder of VAE to estimate PGA and
95-period spectral acceleration (𝑆𝑎(𝑇)) response spectrum
of the expected on-site ground-motion.
The trained framework performs well on the used

dataset and leads to high prediction power. The prediction
of the complete 𝑆𝑎(𝑇) spectrum (while inherently main-
taining the cross-correlations) with only 3 s of the ini-
tial ground-motion waveform in a highly accurate man-
ner (coupled with an average prediction time of less than
1 s) makes the proposed framework valuable for real-time
EEW decision-making and near-real-time rapid response
systems.
The proposed ROSERS framework was first trained and

tested on the NGA-West2 database and then exercised
on over 300 recording stations of three historical seismic
events recorded in California. The expectation for EEW is
that if 𝑆𝑎(𝑇) > 𝑆𝑎,ℎ𝑎𝑧(𝑇) for the target site, then the alarm
must be triggered. For the three events, the true recorded
𝑆𝑎(𝑇) and 𝑆𝑎,ℎ𝑎𝑧(𝑇) is available; hence, the true labels
and thresholds are known. Using the first 3 s (after detec-
tion of p-waves) of the available recordings, the ROSERS
framework was implemented for all stations of the three
events for two hazard levels and periods. The outputs of
the ROSERS framework were analyzed using confusion
matrices and ROC curves. Results of the confusion matri-
ces show that the ROSERS framework leads to high accu-
racy (> 80%) in most cases of the decision classification.
Furthermore, the framework leads to 0.8 <AUC < 0.95
demonstrating excellent classification power even for the
infrequent earthquake events.
The framework developed in this study can help

improve existing on-site EEW approaches. While the anal-
ysis presented in this paper demonstrate that the frame-
work has good prediction power to accurately estimate the
𝑆𝑎(𝑇) spectrum using the initial 3 s of the groundmotions,
future analyses should extend the reliability and confi-
dence in the proposed framework, particularly in actual
real-time settings. Currently, the framework is mainly
trained using a database of processed crustal ground
motions. Testing it on unprocessed datasets can be valu-
able for validation in a real-time setting. However, the
framework’s performance is not expected to significantly
change within this backdrop as the data-driven nature of
the framework would adapt to any discrepancies due to
the addition of station noise in the considered few sec-
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onds of early p-waves. Furthermore, the framework can be
extended to regional EEWsystems by utilizing the spatially
correlated prior estimates of the latent variables at stations
farther from the source. In addition, similar to GMMs, the
proposed framework can be trained independently for dif-
ferent geographic regions to obtain their localized latent
spaces and DNN structures. This can also accelerate the
understanding of regional seismicity from a mathematical
perspective.
Finally, the developed framework can be tested by con-

ducting a consequential analysis on the false positives and
false negatives cases to make end-users and stakeholders
aware of the significances of various decisions. In general,
as quoted by J. R. Tolkien, “False hopes are more dan-
gerous than fears,”—It is believed that false negatives are
riskier than false positives; however, the case is not so evi-
dent in earthquakes as even false positives can lead to sig-
nificant economic losses for downtime, shutdowns, and
panic. Furthermore, a community may also face psycho-
logical hindrances to return to work after a false alarm.
However, on the flip side, false positives can also be ben-
eficial in some ways, such as conducting unplanned drills
for seismic events, checks for preparedness, and so forth
(Velazquez et al., 2020).

DATA AND RESOURCE AVAILAB IL ITY
The recorded ground motions used in this study can
be obtained from NGAWest2 database (https://ngawest2.
berkeley.edu/). The authors have also developed an exe-
cutable software to utilize the proposed ROSERS frame-
work. The software can be download from the GitHub
repository (https://github.com/jfayaz/ROSERS).
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