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Simple Summary: Radiation-induced lung damage (RILD) is a common side effect of treating lung
cancer with radiotherapy (RT). RILD is visible on CT imaging, and its radiological appearance can
vary dramatically from patient to patient as well as across different sub-regions of the lung and
treatment volumes. A classification system for RILD able to differentiate radiological damage on
a local level would allow us to better understand the underlying patterns of RILD, see how they
change over time post irradiation, and link it with clinical outcomes. In this work we propose
a five-class morphological lung tissue classification system that can describe parenchymal tissue
changes at the voxel level. The classifier was implemented in a fully automated manner using an
optimised deep-learning method, then trained and tested using data acquired through a multi-centre
clinical trial. The proposed method performed well on an unseen testing dataset. The automated
segmentation achieved considerable overlap with manual segmentations (ranging between 26% and
98% for the five classes) and was graded as acceptable by a clinical expert in 88% of cases. This
demonstrates it to be suitable for application on a large dataset to help uncover different patterns of
changes in the population.

Abstract: Radiation-induced lung damage (RILD) is a common side effect of radiotherapy (RT).
The ability to automatically segment, classify, and quantify different types of lung parenchymal
change is essential to uncover underlying patterns of RILD and their evolution over time. A RILD
dedicated tissue classification system was developed to describe lung parenchymal tissue changes
on a voxel-wise level. The classification system was automated for segmentation of five lung tissue
classes on computed tomography (CT) scans that described incrementally increasing tissue density,
ranging from normal lung (Class 1) to consolidation (Class 5). For ground truth data generation,
we employed a two-stage data annotation approach, akin to active learning. Manual segmentation
was used to train a stage one auto-segmentation method. These results were manually refined and
used to train the stage two auto-segmentation algorithm. The stage two auto-segmentation algorithm
was an ensemble of six 2D Unets using different loss functions and numbers of input channels. The
development dataset used in this study consisted of 40 cases, each with a pre-radiotherapy, 3-, 6-, 12-,
and 24-month follow-up CT scans (n = 200 CT scans). The method was assessed on a hold-out test
dataset of 6 cases (n = 30 CT scans). The global Dice score coefficients (DSC) achieved for each tissue
class were: Class (1) 99% and 98%, Class (2) 71% and 44%, Class (3) 56% and 26%, Class (4) 79% and
47%, and Class (5) 96% and 92%, for development and test subsets, respectively. The lowest values for
the test subsets were caused by imaging artefacts or reflected subgroups that occurred infrequently
and with smaller overall parenchymal volumes. We performed qualitative evaluation on the test
dataset presenting manual and auto-segmentation to a blinded independent radiologist to rate them
as ‘acceptable’, ‘minor disagreement’ or ‘major disagreement’. The auto-segmentation ratings were
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similar to the manual segmentation, both having approximately 90% of cases rated as acceptable.
The proposed framework for auto-segmentation of different lung tissue classes produces acceptable
results in the majority of cases and has the potential to facilitate future large studies of RILD.

Keywords: radiation induced lung damage; lung segmentation; lung tissue classification;
deep learning

1. Introduction

Lung diseases are one of the leading causes of death worldwide [1], with lung cancer
being the most common cause of cancer death [2]. Radiation-induced lung damage (RILD)
is a common side effect of treatment for lung cancer and is one of the main factors reducing
quality of life in lung cancer survivors [3]. RILD is usually distinguished into (a) acute
phase appearances—pneumonitis, which occurs within 6 months following radiotherapy,
and (b) permanent fibrosis, stabilising up to 24 months after the radiotherapy [4]. Until re-
cently, poor long-term survival of lung-cancer patients limited interest in RILD research [5].
Current state-of-the-art treatment, however, results in longer survival [6]. Therefore it is
more important to consider the quality of life of survivors and, in turn, the underlying
mechanisms of RILD.

RILD can be characterized using computed tomography (CT) imaging. CT scans are
routinely acquired prior to radiotherapy treatment to assess the tumour and the lung, and
CT imaging is repeated after radiotherapy to monitor for disease recurrence and assess for
RILD. The follow-up scans can be used to study lung damage associated with radiotherapy
by comparing the imaging to the baseline scans obtained before treatment. Typical post-
radiotherapy radiological findings include parenchymal damage, lung volume shrinkage,
and anatomical distortion, which can be used to describe and quantify RILD with image
analysis techniques [7]. Our team has previously proposed a suite of CT imaging-based
RILD biomarkers [8] that describe common changes in the anatomy and shape of the respi-
ratory system. They characterize normal lung volume shrinkage, increase in parenchymal
consolidation volumes, and changes in: shape of the lungs, diaphragm, central airways,
mediastinum, and pleura. Their applicability has been successfully presented on a cohort
of homogeneously treated patients on serial CT imaging of up to 24 months post-RT [9].
Most of the RILD biomarkers were focused on describing and measuring changes to the
shape and anatomy of the lungs rather than morphology of lung parenchyma. The original
biomarker used to characterise parenchymal change quantified ‘consolidation volume’
as the ratio of high-intensity volume normalised to the contralateral lung. Such a binary
classification of parenchymal tissue, based on thresholding, included vessels as part of the
volume of damaged lung and over-simplified the complex gradation of changes visually
observed in the scans. Furthermore, thresholding is susceptible to acquisition artefacts and
intensity variability caused by different imaging protocols (inspiration, expiration, contrast
enhancement, 4D CT, etc). An additional challenge might be related to the fact that a system-
atic increase in volume of the contralateral lung post-RT has been observed [9]. Therefore,
that approach might not be well suited for distinguishing morphological sub-types or
accounting for changes in the contralateral lung.

The ability to identify and quantify localised RILD changes within the lung parenchyma
can provide an additional dimension to the study of RILD. Ultimately, this will allow us
to track local disease involvement and longitudinal evolution of damage and relate it
to radiotherapy dose and clinical outcomes [10]. Analysis of the temporal evolution of
RILD parenchymal changes can provide new insights into radiotherapy dose and time
relations. Early and accurate diagnosis of different types of lung parenchymal changes
has already been shown to be crucial in ensuring that patients with interstitial lung dis-
ease (ILD) are treated optimally [11]. That, however, required detailed consideration of
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clinical, radiological, and histopathological features, including different types on lung
tissue patterns.

The existing global lung tissue damage scoring systems, such as the Radiation Ther-
apy Oncology Group (RTOG) or European Organization for Research and Treatment of
Cancer (EORTC), describe radiologic parenchyma changes in the lungs as slight, patchy,
or dense [12]. They can be subjective, with users regularly interpreting patchy areas as
ground-glass opacities and dense areas as consolidation. In the Common Terminology
Criteria for Adverse Events (CTCAE), the degree of “radiologic pulmonary fibrosis” can
range from <25% to <75% for grades 1 to 3, and in grade 4 includes the presence of severe
“honeycombing” [13]. The differences in RTOG/EORTC and CTCAE guidelines lead to
significant variations in grading depending on the system used. For instance, in the multi-
centre, non-randomized, phase 1/2 chemo-radiation trial of stage II/III non-small cell lung
cancer, the IDEAL-CRT [14], 12 months follow-up scans were mostly scored as 2 or 3 using
RTOG classification, at the same time being given grade 1 using CTCEA classification [8].
This is because across the majority of scans RILD changes were present (thereby scoring
2 and 3 in RTOG), but were restricted in terms of volume (resulting in grade 1 CTCEA
scores). Another limitation of these approaches is their global nature, where a single score
is given to the whole scan [8,15]. These scoring criteria are therefore inadequate for detailed
descriptions of the complex heterogeneous nature of the RILD parenchymal changes and
cannot describe the changes in a localised, voxel-wise manner.

The local parenchymal changes, especially their spatial distribution and temporal
evolution due to RILD, have not been widely studied. There are studies looking directly
into mean Hounsfield unit (HU) changes as a measure of lung density changes associated
with RILD [16,17]. Bernchou et al. investigated regional CT density changes following
intensity modulated radiotherapy (IMRT) for non-small-cell lung cancer (NSCLC) with
relation to the prescribed local doses [18]. The analysis relies purely on HU as the lung
density description, which might be susceptible to the level of inhalation, contralateral
lung hyperinflation, imaging artefacts, or acquisition protocols, and does not incorporate
texture features of the lung parenchyma. There have been attempts to classify and quantify
RILD using multiple radiomics-based approaches [19], where 20 features were identified in
randomly chosen patches to assess the correlation between change in the features before
and after radiotherapy with relation to the prescribed dose. In that study, most features
were strongly related to the mean HU of the patch and only higher order features repre-
sented patterns. Another study looked at differences in inter- and intra-observer variability
in delineation of fibrotic lung regions [20]. However, there was no comprehensive classi-
fication method introduced dedicated to studying the general morphology of RILD. In a
recent study, Al Feghali et al. looked at lung density changes relying directly on differences
in HUs of CT scans after performing rigid registration between different time point im-
ages [21]. Such an approach is prone to errors originating from different levels of inhalation
that rigid registration cannot compensate for, requires CT scans acquired with the same
acquisition protocol (without contrast, and the same CT reconstruction kernels), and limits
the interpretability of observed lung tissue patterns. In [22] the authors highlight that RILD
could be divided into even finer temporal stages: early, latent, exudative, intermediate, and
fibrotic phases. However, the lack of a tissue classification system suitable for describing
the local changes present at different stages, along with the need for manual annotations
for such a process, limits the ability to explore their radiological appearances and their
evolution over time on a larger dataset. Therefore, the existing approaches either lack
ability to describe local radiological changes or are limited in their power to describe the
range of morphological patterns encountered in RILD.

There is currently no established classification system of local parenchymal changes
due to RILD and no available annotated RILD dataset, which could be used for training an
automatic segmentation method. That is most likely for two reasons: first, the definition of
lung tissue patterns to be annotated is a challenge itself, and second, performing manual
annotations is a laborious task. In the context of other lung diseases, commercial software
tools, like CALIPER [23], are available for automatic lung tissue classification. However,
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CALIPER was designed for automatic segmentation of different radiological lung patterns
most commonly observed with interstitial lung disease (ILD) and is not suitable for RILD
application. CALIPER requires high spatial resolution scans acquired at breath-hold and
works optimally on data acquired with specific reconstruction filters, and it is not intended
for contrast enhanced scans, which are commonly used in lung cancer surveillance scans.
Existing voxel-wise annotated datasets, which include an ILD dataset [24], are not designed
to allow the analysis of RILD, as several patterns included in these datasets are rarely if ever
seen in RILD. The other limiting factor of the ILD dataset is its sparse annotation, where
only sections of an individual slice, and a limited number of slices from a volumetric scan,
were labelled. These labelled areas usually represent regions where the annotator had high
confidence in the labels. Such an approach provides good examples for certain tissue classes,
but makes global evaluation challenging, particularly for the less represented classes.

The existing methods of describing RILD parenchymal changes are either global in
nature and lacked spatial specificity [12,13,15] or do not characterise the different morpho-
logical patterns present in the scans in detail [16,17,20], therefore, are not well suited for
investigating longitudinal characteristics of RILD parenchymal change. The main goal of
this work was to develop, implement, and validate a novel image analysis method for lung
tissue classification in the context of RILD. Therefore, our contributions in this work are:

• The use of a novel ‘two-stage’ data labelling approach that allows us to co-develop:

– A novel image-based grading system for RILD that is able to describe at the voxel
level the morphological patterns of RILD;

– An automated method based on standard deep-learning approaches to perform
the classifications;

• Quantitative and qualitative validation of the automated classification system.

To the best of our knowledge, it is the first attempt to produce an automated, detailed,
and voxel-wise description of RILD.

2. Materials and Methods
2.1. Patient and Imaging Characteristics

Our dataset consisted of 46 patients for which imaging data were available at five time
points: before radiotherapy treatment, and at four follow-up time points: 3, 6, 12, and
24 months post-RT. The pre-radiotherapy baseline scan was for most cases a diagnostic CT;
a non-diagnostic image, which may be planning (3-dimensional free-breathing or average
4DCT) or PET/CT (breath-hold), was used when a diagnostic scan was not available. These
patients were a subgroup of the IDEAL-CRT [14], a nonrandomized phase 1/2 multicentre
trial, for which imaging data were available at all five time points. This trial enrolled
patients with stage II/III non-small cell lung cancer to receive isotoxic tumor RT doses
between 63 and 73 Gy in 30 fractions over 6 weeks (daily) or 63 to 71 Gy in 30 fractions over
5 weeks (2 fractions delivered in a single day once a week) concurrent with two cycles of
cisplatin and vinorelbine. Tumor prescription dose was defined to achieve a mean lung
dose of 18.2 Gy (in equivalent dose of 2-Gy fractions). Acquisition parameters and image
resolution varied both intra- and inter-patient, with most of the scans being diagnostic and
acquired at breath-hold. The axial resolution of the scans ranged from 0.57 × 0.57 mm2 to
1.40 × 1.40 mm2, and slice thickness was in a range of 0.7 mm to 5 mm, amongst all scans
across different time points.

2.2. RILD Tissue Classification System

As there is uncertainty in the clinical interpretation of the RILD related parenchymal
changes seen in CT scans, we decided to propose a set of tissue classes based purely on the
morphological appearance of the tissue. The proposed lung parenchyma labels include:

Class 1: represents normal, healthy, or emphysematous lung without any high-density
abnormality and represents most of the lung parenchymal tissue prior to radiation,
as well as areas not affected during the radiotherapy.
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Class 2: represents areas mostly characterized by changes similar to ground-glass opacity,
which is: “hazy increased opacity of lung, with preservation of bronchial and
vascular margins. Ground-glass opacity is less opaque than consolidation, in
which bronchovascular margins are obscured” [25].

Class 3: represents areas with mixed ground-glass opacity and overlaid reticulation.
Class 4: represents mostly solid lung tissue, either aerated opaque tissue or tissue with a

density just below dense opacity.
Class 5: represents homogeneous, dense lung tissue and could represent a number of

pathological entities including tumour, pleural effusion, or collapse [26].

Figure 1 shows example images representing the classes described above with corre-
sponding labels in colors, and their distribution in our dataset is shown in Table 1.

Figure 1. Examples of scans representing all classes and corresponding label maps.

Table 1. The distribution of the label classes in the development dataset when all slices were used for
training and when only slices where at least 1% of pathology (Classes 2 to 5) was present.

Volume [%]

All Slices Only 1% of Pathology

Class 1 93.72% 85.39%
Class 2 3.49% 7.7%
Class 3 0.32% 0.77%
Class 4 0.47% 1.16%
Class 5 2.01% 4.59%

The data were manually annotated by an expert (EC, radiation oncologist) in a voxel-
wise manner using ITK-SNAP [27]. The initial five cases (across all time points: 25 CT
volumes) were reviewed by JJ (thoracic radiologist with 10+ years of experience), who
served as an external radiologist. The remaining 35 cases were manually annotated accord-
ing to the same criteria by EC to create the stage one ground truth labels.
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2.3. Automated Segmentation Method

As a backbone segmentation method we have applied the well known 2D UNet, which
was explicitly designed for medical image segmentation tasks [28]. Only lung regions were
presented to the networks; anatomy beyond the lungs was masked. We used manual
annotations of the lung tissue to extract lung masks. The input images had a large variety
of resolutions and represented slices of varying thickness. The network was presented with
images cropped to the lungs and fitted to the size of a fixed input as far as was possible.
We kept the original resolution wherever possible, adjusting the cropping range, as that
the network was robust to different resolution and scan quality. To avoid downsampling
and changing the ratio of the images, we applied a rectangular input images of (288, 384),
which resulted in downsampling of only 10% of images. We decided to downsample some
of the images rather than use a patch-based approach to allow for inclusion of lung shape
knowledge, which might have been lost with patches. The chosen size of input images
was made to best fit the lungs from an axial view, which creates a rectangular bounding
box, and to allow for multiple reduction stages by the networks at the encoding stage. We
applied four reduction stages in the UNet architecture with instance normalisation [29]. Our
networks were configured as multiclass segmentation, so the final layer was softmax. We
did not apply any form of postprocessing of the output segmentations apart from excluding
regions outside the lung using the existing lung masks. Detailed description of the applied
network, configurations and parameters can be found in the Supplementary Materials.

Our dataset (46 cases) was split into 40 cases used for development (200 CTs) and
6 cases (30 CTs) which were withheld as a testing dataset. The development dataset was
further divided into training (28 cases, 140 CTs) and validation sets (12 cases, 60 CTs). To
prevent information leakage, the data were split on a patient basis, i.e., scans from all
time points from a single patient went to the same training, validation, or testing subset.
The testing dataset was not used during the development stage and no changes to the
method were applied after the evaluation on that dataset. The testing dataset was entirely
manually annotated and was not included in the two stage annotation approach described
above. The test cases were the last to be annotated, only after the labels on training dataset
were finalised.

The distribution of the abnormalities in the lungs was uneven (Table 1). Parenchymal
change characteristic of RILD is a local effect, and therefore expected to be more pronounced
in the regions of the lungs receiving higher radiation doses. This results in a severe label
imbalance problem for the segmentation task, where on average approximately 93.7% of
total lung volume was assigned with Class 1, and only approximately 6% of total volume
was distributed among the other four classes. To mitigate for such a strong class imbalance,
only slices where at least 1% of lung tissue was labelled with Classes 2 to 5 were used.
This improved the distribution balance, with approximately 85% of the remaining lung
volume being labelled with Class 1, and now approximately 15% was distributed among
other classes. Using all slices, our dataset consisted of 31,264 2D slices, whereas the dataset
containing of at least 1% consisted of 11,237 2D slices.

2.4. Two-Stage Ground Truth Data Generation

We applied a two stage ground truth data generation approach, akin to active learning
methods [30,31], which is shown schematically in Figure 2. First, the initial ’draft’ manual
labels were drawn. We assumed that the labels were not final and would require additional
revision or refinement. The ’draft’ labels were then used to train CNN models to perform
automated annotations. At the second stage of data annotation, for each of the scans,
two segmentations (manual and automatic) were presented to the annotator. The labels
generated by the CNNs were manually reviewed and carefully compared with manual
labels looking at any discrepancies between them, deciding whether the CNN label or
manual label was correct. This required also checking adjacent slices (to detect artefacts that
the CNNs may have mislabelled). After that, the labelling (manual or automatic) that was
considered to require less correction was chosen to be refined to create the stage two ground
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truth label. That process was performed for each CT scan. The reason for using such an
approach was related to the continuous spectrum of patterns, which implies that there is a
large degree of uncertainty when assigning a specific class to some regions. Using the two
stage approach we were able to address this subjective and somewhat ill defined problem,
as the classes were refined at the same time as performing the labelling. Our chosen joint-
machine-and-human learning approach should lead to more consistent labels that better
represent the variability in the data than is achievable with a single stage approach.

Figure 2. Workflow of the proposed two stage ground truth data generation approach.

2.4.1. Stage One

We used an ensemble of three networks in the form of 2D UNets with different loss
functions (weighted cross entropy (WCE) or Lovasz loss [32]) and number of filters used
(32 or 64). We hypothesized that an ensemble of the networks will give better results
than any of the individual configurations, but to confirm this we assessed the individual
networks as well as the ensemble. The WCE was adjusted for the frequency of the classes’
appearance, setting its weight depending on the classes presence as a form of mitigation for
the class imbalance. The networks with WCE loss was used with 32 filters, whereas Lovasz
loss was used with 32 and 64, resulting in three different configurations in total. The results
of the individual networks were combined into an ensemble by summing the logit scores
of all of the networks in a channel-wise manner and only then applying argmax operation.
Such an approach allowed us to take into account the confidence of each of the networks
compared to naive averaging of the final labels.

2.4.2. Stage Two

The revised dataset after stage two ground truth data generation was used for training
the new ensemble of CNNs that were applied for the classification of subsequent datasets.
Our observation from the initial experiments was that the ensemble of the networks
performed better than any individual network, therefore we decided to include more
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networks in our ensemble. For stage two auto-segmentation we used three different loss
functions: Dice, Lovasz, and weighted cross entropy. Each of them was employed with 32
and 64 channels at the initial layer. The decision of inclusion of Dice loss was made based
on observed variability in the results between Lovasz and CE. There was some level of
disagreement between the two and we expected that by enlarging the ensemble of networks
we would improve the consistency of the results. We kept the same approach in combining
the stage two results in the ensemble by summing the logit scores of all of the networks in
a channel-wise manner and only then applying argmax operation.

2.5. Evaluation

The quantitative evaluation was performed based on a Dice score coefficient. The Dice
score coefficient was calculated for the whole dataset for each of the labels, rather than for
each individual scan/patient and then averaged. In such a way we had just one score for
each of the labels rather than a mean value and standard deviation. The advantage of such
an approach is that it takes into account the fact that in some scans the less represented
labels might consist of a very small number of voxels. If in such cases those few voxels
are misclassified, it could potentially lead to distorted results. We will refer to the chosen
approach of presenting the Dice score coefficient as global Dice.

2.5.1. Stage One/Stage Two Development Dataset Evaluation

The proposed method was first evaluated quantitatively (based on global Dice) on the
development dataset using the stage one network configuration and splitting the data into
training and validation (equivalent to using a single fold).

After revising the labels and creating the stage two dataset, we trained new networks
using the stage two configurations. We evaluated the performance of the stage two net-
works using the same training and validation split as in the stage one and using global
Dice as a metric.

2.5.2. 5-Fold Cross Validation on Development Dataset

Next we performed the quantitative evaluation on the development dataset in a
5-fold cross validation fashion. We used different folds from those used in the stage one
experiments. Five experiments were performed with each fold being used as a validation
subset and the remaining used for training.

Following that, we retrained the stage two networks on the whole development dataset
and performed quantitative and qualitative evaluation on the withheld testing dataset.

2.5.3. Evaluation of the Method on the Test Dataset

Following the quantitative evaluation of the method on the development dataset, we
conducted experiments on the hold-out testing dataset of 6 cases (30 CT scans) using global
Dice as a metric.

The qualitative evaluation of our method was conducted by presenting the results of
manual and automatic segmentation to an independent expert radiologist (JJ). Although
JJ was involved in the initial development of the annotations and revised a number of
early cases from the development dataset, he had not previously seen the testing cases.
The manual and automatic segmentations were presented in a blinded way, randomly
renaming them as Seg_A and Seg_B. For each of the cases, JJ evaluated both segmentation
results, providing a set of scores between 1 and 3: 1—Acceptable, 2—Minor disagreement,
3—Major disagreement for each of the classes for each of the scans.

3. Results
3.1. Stage One/Stage Two Development Dataset Evaluation

We present here the numerical results of global Dice (in %) from the development
dataset for the networks used for the two stage ground truth labels generation (weighted
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cross entropy loss—WCE, Lovasz loss—LV, 32 filters at first layer—32, 64 filters at first
layer—64), on the draft labels and after the refinement.

In (a) in Table 2, we present the results of the networks’ performance when the draft
labels (i.e., before the label refinement approach was applied) were used at stage one. We
observed a lower performance on the validation dataset than on the training. The ensemble
of the three networks performed better on the validation dataset than any individual
network, when means of all classes were considered.

Table 2. (a) Global Dice (in %) of the networks evaluated on validation subset of the stage one manual
draft segmentations. (b) Global Dice (in %) of the stage two networks evaluated on training and
validation datasets. In bold the best results are shown for a class in an individual subset of data.
(weighted cross entropy loss—WCE, Lovasz loss—LV, 32 filters at first layer—32, 64 filters at first
layer—64).

(a) Stage One—Global Dice [%]

Training Subset Validation Subset

Tissue Class WCE 32 LV 32 LV 64 Ensemble WCE 32 LV 32 LV 64 Ensemble

Class 1 99.15 99.06 97.5 98.97 98.32 98.45 97.14 98.32
Class 2 71.43 70.23 42.85 68.78 51.46 48.20 32.8 48.05
Class 3 46.09 52.43 16.33 53.37 3.15 14.78 9.22 13.1
Class 4 70.47 76.53 68.45 76.99 41.85 44.88 43.83 46.58
Class 5 89.78 91.62 90.23 91.7 93.16 93.34 93.00 93.69

AVG 75.38 77.97 63.07 77.96 57.59 59.93 55.2 59.95

(b) Stage Two—Global Dice [%]

Training Subset Validation Subset

Tissue Class WCE 32 LV 32 LV 64 Ensemble WCE 32 LV 32 LV 64 Ensemble

Class 1 96.28 98.71 98.84 98.81 96.65 98.98 98.94 98.91
Class 2 45.01 66.03 69.41 67.28 46.9 69.54 72.19 69.89
Class 3 35.13 37.46 31.8 39.99 27.12 32.15 26.67 32.91
Class 4 71.66 80.98 79.57 80.00 60.22 74.06 72.37 74.31
Class 5 89.22 93.71 93.36 93.57 92.86 96.21 96.22 96.35

AVG 67.46 75.38 74.6 75.93 64.75 74.19 73.28 74.47

In Table 3, we show a percentage of manual and automatic segmentations after stage
one of labelling from the training and validation datasets chosen to be refined in the
second stage of ground truth data generation. These represent the segmentations that were
considered as closer to the real ground truth, therefore requiring fewer corrections to be
made. We show how it differed between the training dataset (seen by the network) and the
validation dataset (not seen by the network). A slightly higher number of manual scans
were chosen in the validation (18.33%) than in training dataset (12.86%).

Table 3. Comparison in percentage of segmentation (manual or automatic) scans chosen to be refined
in the second stage of ground truth data generation. The segmentations chosen to be refined were
closer to the target ground truth, therefore requiring fewer corrections to be made.

Training Dataset Validation Dataset

Manual 12.86% 18.33%
Automatic 87.14% 81.67%

Table 2 part (b) summarises the results of the experiment where the stage two networks
were retrained on the refined dataset after the proposed two stage ground truth data
generation procedure. The global Dice scores in the training subset were comparable
with those from (a) in Table 2; only Class 3 showed noticeably lower performance, 53.37%
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during the initial experiment compared with 39.99% after the refinement. However, the
scores in the validation subset improved for all labels, with the largest improvement for
the Class 3, from 13.1% to 32.91%. That was just slightly lower than in the training set,
39.99%, compared to 32.91% for the validation dataset. In the initial split, the performance
of the method in the validation subset was almost four times lower (13.1% compared to
53.37%), indicating that agreement between the human and the network has improved
after the labels had been revised. Although there was still considerable disagreement for
Class 3, when images and labels were inspected, we concluded that this was mostly due to
ambiguities between classes 2, 3, and 4, and most of the misclassifications were by only
one class.

3.2. 5-Fold Cross Validation on Development Dataset

After the initial stage one/stage two evaluation, the stage two networks were retrained
on the dataset split into different folds. In Table 4, we summarize the results for the 5-fold
cross validation, presenting the global Dice scores calculated for each of the classes for each
individual networks as well as for their ensembles. The ensemble of all networks gave the
best overall results. Even when individual networks or other ensembles gave marginally
better results for one class, the scores for some of the remaining classes were lower than the
ensemble of all networks. That observations supports our decision to enhance the range of
networks used in the ensemble.

Table 4. Global Dice (in %): performance of the individual networks and ensembles of networks on
development dataset from 5-fold cross validation. Only results from validation folds are reported.
The results in the green fields show scores for the network ensembles over loss functions for a
particular filter number (three networks), whereas in the red fields are results for networks with
different number of filters combined for a particular loss function (two networks). The violet fields
show the final ensemble where all six networks were combined. The best overall global Dice scores
for each class across all configurations (single networks or ensembles) are shown in bold.

Global Dice [%]

Nr of Filters Tissue Class WCE DC LV Ensemble

Class 1 94.54 98.63 97.39 98.62

Class 2 32.88 63.69 50.72 65.42

32 Class 3 21.3 40.3 20.04 39.87

Class 4 62.88 70.89 65.46 72.11

Class 5 88.53 93.83 93.05 94.12

Class 1 95.2 98.74 98.39 98.64

Class 2 35.26 64.87 62.18 64.27

64 Class 3 24.63 38.19 21.82 37.55

Class 4 61.92 71.31 73.08 70.39

Class 5 88.26 93.77 94.11 93.8

Class 1 95.43 98.74 98.51 98.7

Class 2 36.91 65.75 64.19 66.45

Ensemble Class 3 27.13 40.71 23.99 40.89

Class 4 65.22 72.25 73.88 73.27

Class 5 89.6 94.22 94.46 94.31

A box plot presenting the results for the 5-fold cross validation is shown in Figure 3. It
can be observed that results for the validation subsets were performing slightly worse than
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for the training, with the lowest scores observed for the Class 3, which was also the least
represented class. In Table 5, we show numerical details of the 5-fold cross validation, with
the mean values for each of the classes, their standard deviations, and confidence intervals.

Figure 3. Box plot of global Dice (in %) scores for 5-fold cross validation on the development dataset
for five tissue classes. The global Dice distribution is shown with respect to the folds.

Table 5. We present details of the 5-fold cross validation experiment, with the mean, std, and lower
and higher confidence intervals (ci95lo, ci95hi) corresponding to Figure 3.

Global Dice [%]

Class Data Type Mean std ci95hi ci95lo

Class 1 Training 99.06 0.13 99.12 99.00
Validation 98.86 0.18 99.02 98.70

Class 2 Training 73.56 3.38 75.04 72.08
Validation 68.02 2.14 69.89 66.14

Class 3 Training 54.59 7.55 57.89 51.28
Validation 38.86 6.37 44.44 33.28

Class 4 Training 80.75 4.48 82.71 78.79
Validation 72.03 5.92 77.22 66.84

Class 5 Training 94.31 3.23 95.73 92.90
Validation 92.59 4.48 96.51 88.66

In Figure 4, we present visual comparison of the segmentations for two cases (two
slices for each) across all folds, and in the final row when all development data were used
for training. There was little visual difference between the folds or when all folds (whole
development dataset) were used for training. For both presented cases (and also overall
across the whole dataset) the results from the different folds as well as using all folds are
very similar between them and with the ground truth. That indicates that the network can
robustly model the tissue classifications for this patient. Subtle differences can be observed
between adjacent classes, e.g., 3 and 4, or 4 and 5. For areas where they do not agree,
discrepancies are usually only by 1 class, and often the predicted labels could be considered
reasonable based on the CT images. No clearly wrong annotations can be identified.

3.3. Evaluation of the Method on the Test Dataset

In Figure 5, we show visual results for each of the six test patients as a comparison
between the automatic and manual annotations at the time points where the most abnor-
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malities were observed. The visual results from Figure 5 followed a similar pattern to those
from Figure 4, with overall good agreement between predicted and ground truth labels.

Figure 4. Example of comparison between the folds for two cases (A and B). Overall reasonably good
agreement between predicted and ground truth labels can be observed. For areas where they do not
agree, discrepancies are usually only by 1 class, and often the predicted labels could be considered
reasonable based on the CT images.
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Figure 5. Visual comparison of the segmentation results on the testing set. For each of the cases the
time point where the most of the lung parenchymal abnormality was present was chosen.

The discrepancies are again observed mostly between adjacent classes (for instance
Class 2 and Class 3). The automatic method seems to label more lung regions as Class 2
than the manual annotator. That observation was later confirmed by a confusion matrix
(Figure 6), showing that Class 1 in both datasets was mislabelled in 2% of cases as Class 2.
It also can be noted that the automatic methods found it challenging to identify Class 3,
mostly confusing it with Class 2. Clearly wrong annotations were mostly observed in the
regions with imaging or motion artefacts.

3.3.1. Quantitative Evaluation

For quantitative evaluation we calculated global Dice scores for the whole testing
dataset when the whole development dataset was used for training. Table 6 summarises the
scores observed for the training dataset and testing dataset (six cases). We observed similar
results for the training subset to those reported in Section 3.2. However, the results for the
testing dataset were lower than those for the validation from Section 3.2. To investigate
where the errors originated from, we calculated confusion matrices from both sets, shown
in Figure 6. It can be seen that the errors mostly happened among the adjacent classes,
which confirmed our observations from visual inspection of the results conducted earlier.
Class 3 was particularly challenging in annotation, where most of the voxels had been
incorrectly classified as Class 2, and 23% were classified as Class 1, which is more than
were correctly classified (19%).
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Table 6. Global Dice (in %) for ensemble of six networks on final data.

Global Dice [%]

Tissue Class Training Testing

Class 1 98.88 98.46
Class 2 71.38 43.71
Class 3 55.79 26.09
Class 4 79.49 47.21
Class 5 95.70 92.44

Training dataset Testing dataset

Figure 6. Comparison of confusion matrices calculated for training and testing datasets.

3.3.2. Qualitative Evaluation

The results of the qualitative scores given by the independent observer for manual and
automatic segmentations are summarised in Table 7. Both approaches showed similar levels
of acceptable segmentations across all classes, with the manual scoring on average 92.7%
compared to 88% for the automatic one, across all classes. Surprisingly, the lowest scores for
both methods were given to Class 1, and the highest scores to Classes 3 and 4, which was
the opposite to what has been observed in the quantitative evaluation. The main difference
between the two annotation methods is that automatic segmentations were identified in
approximately 7.3% as requiring major changes, whereas for manual annotations it was
reported in only 1.3% of results. The poorer performance of the automatic method was
mostly influenced by Classes 1 and 2, where in 13.3% of cases score 3 was given. After
reviewing the visual results and based on the notes from the independent observer, we
found that most disagreements for these classes were related to mislabelling resulting
from imaging artefacts, e.g., blurring of the diaphragm due to breathing motion being
labelled as Class 2. The manual and automated annotations had a similar number of minor
disagreements, with 6% and 4.7%, respectively. For the manual annotations, more of the
minor disagreements were seen in Classes 1 and 2, whereas for the automatic annotations,
the minor disagreements were more evenly spread over all classes.
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Table 7. A class by class qualitative evaluation of the manual and automatic segmentations by an
independent observer on a case basis.

Manual Automated

Tissue Class 1 2 3 1 2 3

Class 1 83.3% 16.6% 0% 80% 6.7% 13.3% 1—Acceptable
Class 2 90% 10% 0% 83.3% 3.3% 13.3% 2—Minor Disagreement
Class 3 100% 0% 0% 96.7% 3.3% 0% 3—Major Disagreement
Class 4 96.7% 3.3% 0% 93.3% 6.7% 0%
Class 5 93.3% 0% 6.7% 86.7% 3.3% 10%

AVG All Classes 92.7% 6% 1.3% 88% 4.7% 7.3%

4. Discussion

In this work we introduced a novel RILD-dedicated morphological lung tissue clas-
sification system. We used a two-stage ground truth label generation method, similar to
the active learning approach. We developed a deep-learning framework, involving an
ensemble of different 2D methods, to automatically generate the proposed labels. The
work presented in this study addresses two challenges, first to introduce a labelling system
suitable for capturing changes on longitudinal CT imaging that may be applicable to local
RILD parenchymal change, and second to develop an automatic tool for their segmentation
from unseen new data. It has been shown before that the global RILD characteristics
change longitudinally [9], however, local evolution of lung parenchymal changes remains
rarely investigated.

During the development of the lung tissue labels, the main aim was to best capture
RILD lung tissue parenchymal patterns in terms of lung tissue density and texture. The
labels were devised with close discussion with an experienced thoracic radiologist. The
main reason for creating morphological classes, rather than pathophysiological classes (for
instance following classes used to describe ILD patterns, as in [23,24]), is that the pathophys-
iology of RILD parenchymal changes is not yet well understood, so defining classes based
on morphology rather than pathophysiology allows for unbiased investigation of the radio-
logically observed changes in the parenchymal tissue. As RILD is very complicated and
influenced by many factors including treatment, genetics, and underlying conditions [22],
the existing pre-assumptions originating from other lung pathologies could result in false
interpretations. Solely morphological patterns could allow for novel insights in the analysis
of their spatial and temporal evolution, without the context (e.g. patient history, treatment,
or information from previous scans) that could potentially bias segmentation decisions.
Our aim was first to establish a method of measuring the changes that can be observed in
the scans. The images were annotated independently at every time point, which limited
the bias of pre-assumptions imposed from the previous time points.

After thorough review of our data, we opted for five classes, as this allowed the
annotators to robustly and confidently assign distinct labels to the classes, at the same
time allowed for their meaningful gradation. In the process of developing the proposed
classification system, some other classes were initially considered but eventually combined
with one of the proposed classes if they were rarely present or were not well suited to
describe RILD changes. For instance, pleural abnormalities were initially considered as a
separate class, but this was subsumed under the Class 5 (describing opaque patterns) in
order to maintain a purely morphological taxonomy. Pleural thickening is often continuous
with lung parenchyma and a definitive boundary can often not be reliably distinguished
on CT. Another class that was initially trialled aimed to describe ‘fibrosis’ and included
honeycombing and reticulation (both representing irreversible lung damage in fibrotic lung
disease). However, it was difficult to distinguish this pattern from traction bronchiectasis
occurring on a background of emphysema based on its radiological appearance without
context [33], so it was included in Class 3. Additionally, it was a very rare label (present
only in a handful of scans with a very small volume), and we assumed that it would be
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challenging to reliably train and evaluate an algorithm to segment such a minor class. In
most of the cases the patients from our dataset presented with pre-existing damage in the
lungs, which is unsurprising in a lung cancer population where smoking-induced lung
damage is frequent. The proposed labelling system is not only capable of describing the
RILD changes, but could potentially also be suitable for measuring other non-radiation
induced pathologies, such as pneumonitis in patients receiving immunotherapy rather
than radiotherapy. It is still possible to further subdivide the proposed classes, for instance
to allow emphysematous lung or lung with air-trapping to be distinguished from normal
lung in Class 1. We intend to do that in future work by relabelling emphysematous regions
by a network trained on another dataset, for instance, ILD data.

Our method goes far beyond the other approaches investigated so far for RILD
parenchymal changes, where only HU changes were considered [16,17]. The proposed
method explores a wider range of tissue classes than just fibrosis [20], allowing for a more
detailed description of RILD paranchymal changes. Recently, much attention has been
focused on COVID-19 lung related pathologies, when the majority of the approaches used
binary abnormality classification [34], with only a few studies extending analysis to more
classes [35].

The manual labelling process was inherently challenging due to the continuous nature
of lung tissue changes, the subjective nature of assigning the labels, and the laborious
nature of manual annotation in a voxel-wise manner of each individual scan. CNNs,
with their ability to uncover differences in the images, as well as being trained on all of
the images at once, had the potential to label the data in a more self-consistent manner.
Ultimately, we wanted to develop an automatic CNN-based method to annotate the labels;
therefore, we trained CNNs on the stage one manual labels with the aim of using the CNN
labels and stage one manual labels to generate a revised set of ’ground-truth’ labels on
the development dataset. During the revision step of the stage one manual and CNN
generated labels for the same scans, it was often found that the CNN results were more
consistent across the dataset. That was most likely due to the fact that the CNNs were
effectively labelling them all at once. Indeed, the reason for using the two-stage approach
was primarily because we hypothesized that it would result in more consistent and objective
labels than doing a single stage of manual labelling.

In the ideal fully supervised approach, the labelling process would be conducted by
a group of experts, providing an independent set of labels or by reaching consensus on
the labels, which would serve as the ultimate ground truth. In the real world, this is very
challenging due to human resource requirements. Based on our experience dealing with
such a challenging segmentation task, we would still recommend a two-stage approach to
help refine the classes, even if labels from multiple observers were available. The method
can be perceived as joint work between a human and a machine, one supervising another,
and to a certain extent serving the purpose of two annotators. The proposed two-stage
data generation method can be applied to other tasks, where manual ground truth data
are required but need to be generated, especially when the labels are initially not clear
and subjective. The primary application of such approach would be to labels that are
morphological, as CNNs are very well suited for finding underlying similarity in patterns
and appearance, where context may act as a confounding factor.

When the final network was evaluated on the hold out test dataset, the global Dice
values were noticeably reduced when compared to the values for the validation data. The
main reason for this is likely that the two-stage data labelling approach was used to produce
the ground truth labels for the development dataset, but not for the test dataset. We did
not want to apply the two-stage approach to the test data, as that could have potentially
biased the development of the method and hence the results. However, this means that
the test labels are likely less consistent and contain higher uncertainty than the labels for
the development dataset. When the results of our automated segmentation method were
compared visually with the ground truth, such as in Figure 5, they showed a good level of
visual agreement, even with very complicated underlying pathology.
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The qualitative evaluation supports the conclusion that our method is performing
well, with almost as many cases being considered acceptable (88%) as for the manual
segmentations (92.7%). We found that although the quantitative results for different classes
varied on the testing dataset, ranging from 26% to 98% in terms of global Dice, they all
performed more comparably in qualitative evaluation. An interesting observation is that
the more represented classes, with theoretically higher confidence in annotation, received
lower scores than underrepresented and more uncertain ones. This is in contrast to the
quantitative evaluation observations, where more represented classes had superior global
Dice values to the underrepresented ones. One potential explanation is that for classes with
higher confidence in annotations, it is easier to identify when the segmentation is wrong
(or not acceptable) but for the classes where there is more uncertainty it is harder to say the
segmentations are definitely wrong, so they are considered acceptable.

The global Dice scores for the different classes were strongly influenced by the preva-
lence of each class in the data. The classes that included many voxels and were present in
most or all slices had high global Dice values, whereas the classes that were only present in
a few slices and were completely absent for some scans had low global Dice values [36].
This is a well-known limitation of the Dice metric [37] and is particularly evident for
our application where there is also a high degree of uncertainty in the precise voxel-wise
labelling of the classes, especially in the hold out test dataset. The Dice metric can be a
useful tool for comparing the performance of different networks or methods on the same
structures/classes, but it should be used with caution when comparing the performance of
a method on different structures/classes, and in general is not an appropriate measure for
validating that results are suitable for a specific application.

The data used in our study were from a multi-centre clinical trial. There were therefore
significant differences in the scan resolution, acquisition protocols, and application of
contrast. Acquisition parameters and image resolution in our dataset varied between
patients and between time points for individual patients, with slice thickness ranging from
0.95 to 5 mm. We consider using such diverse data as a major strength of our work, as
they better represent the diversity in scans seen in standard clinical practice. Therefore we
would expect better generalisation of our trained networks on other datasets, although
this will need to be verified and will be the focus of our future work. The diversity in the
acquisition protocols and data quality was one of the reasons that supported our decision
to apply a 2D approach. Otherwise we would need to resample the data or use patches
containing a different anatomical region of the lungs. Using a 2D approach, our method
could operate on 2D images similar to how a human observer would look at and segment
CT images. That, however, restricted the field of view presented to the networks to just
one slice.

One of the identified limitations of our automatic segmentation approach was its
susceptibility to breathing motion artefacts or partial volume effect consequences, especially
in the scans with larger slice thickness, when healthy regions close to diaphragm were
occasionally classified as damaged tissue. These should have been limited at the image
acquisition stage, when the scans are acquired at a breath-hold, therefore we were not
initially considering any mitigation actions against them. Such artefacts might need an
additional preprocessing or assessment step, which would identify cases that we suspect
might not be suitable for being automatically processed or would require visual inspection.
Alternatively, regions where motion artefacts were identified could be excluded from
further analysis or classified as a new ’tissue class’ and used in the automated tissue
training stage. Another possibility would be to include a dedicated data augmentation
strategy at the training stage to help to limit their influence. The way in which a human
observer deals with these challenges is by looking at adjacent slices and determining
whether a pattern represents a manifestation of pathology or an acquisition artefact. That
could be addressed by either incorporating 3D patches [38,39], which, however, comes
with aforementioned challenges, or using only a few adjacent slices to predict labels for the
middle slice [40,41], which we plan to explore in future.
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In the proposed method we used manually segmented lung masks which were avail-
able for our dataset. Accurate segmentation of severely damaged lungs is very challenging
by itself, and in this work we wanted to focus on the tissue classification task. For future
work we would like to combine the proposed framework with an automatic lung segmen-
tation method so it is suitable for fully automatic analysis of large volumes of data. A
combination of the lung segmentation and tissue classification methods would have the
ability to identify severely damaged or collapsed lungs, as, for instance, those with high
level of opacity. That could help to identify cases where lung segmentation might perform
sub-optimally and require manual inspection or corrections. It has been shown in a number
of earlier studies that automatic lung segmentation methods tend to perform well in mild
to moderately damaged lungs but mostly fail in severely damaged cases [42,43].

In this work we used an ensemble of relatively standard 2D UNets with well-known
loss functions, as these have shown promising results in a wide range of medical imaging
applications. Although these produced satisfactory results given the challenging and
subjective nature of assigning voxel-wise tissue classifications, future work will explore
state-of-the-art networks and methods that may give superior results to the standard
networks used here.

In future work we aim to use our classes to investigate if and how tissue changes are
linked to RILD pathophysiology. We have already conducted an analysis where we applied
the presented classification method to investigate the degree of radiological change [44]. In
that study, the longitudinal data of 24 months follow up were registered to planning scans
using a dedicated multi-channel deformable registration method [45], tailored to deal with
large anatomical changes. The analysis was conducted to investigate the distribution and
evolution of the lung tissue classes with respect to the dose delivered to the tumour and
the change in lung function of lung cancer patients. We observed a strong dose-dependent
relationship between the proposed classes characteristics and locally prescribed doses.

5. Conclusions

We have proposed and automated a lung tissue classification system capable of de-
scribing local RILD parenchymal tissue changes. The method was trained and tested on
multi-centre clinical trial data, proving to be suitable for application on larger datasets
to help uncover different patterns of changes in the population. The auto-segmentation
ratings were similar to the manual segmentations, having 88% of cases rated as acceptable
by an external radiologist evaluation the scores. The results indicate that the developed
method is of sufficient quality to be used for future studies of RILD.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cancers14051341/s1, Figure S1: A schematic description of a single 2D UNET network used as
a segmentation method. We present here a version with 64 channels at the initial layer. In our work
we used both 64 and 32 filters at the initial layer. Figure S2: A schematic description of an ensemble of
three networks used in our stage one ground truth data generation method. Prior to combining them
in the ensemble they were individually trained as in Figure S1. Figure S3: A schematic description of
an ensemble of six networks used in our stage two ground truth data generation method. Prior to
combining them in the ensemble they were individually trained as in Figure S1. Table S1: Summary
of parameters used for training and inference of the CNNs.
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