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LIGO and Virgo have initiated the era of gravitational-wave (GW) astronomy; but in order to fully
explore GW frequency spectrum, we must turn our attention to innovative techniques for GW detection.
One such approach is to use binary systems as dynamical GW detectors by studying the subtle
perturbations to their orbits caused by impinging GWs. We present a powerful new formalism for
calculating the orbital evolution of a generic binary coupled to a stochastic background of GWs, deriving
from first principles a secularly-averaged Fokker-Planck equation which fully characterizes the statistical
evolution of all six of the binary’s orbital elements. We also develop practical tools for numerically
integrating this equation, and derive the necessary statistical formalism to search for GWs in observational
data from binary pulsars and laser-ranging experiments.
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I. INTRODUCTION

We have entered the era of gravitational-wave (GW)
astronomy. The advanced laser interferometers LIGO [1],
Virgo [2], and KAGRA [3] now form a global GW
observatory network [4], which has already proved its
capabilities by detecting dozens of GW signals in the
10–1000 Hz band from coalescing compact binaries [5].
Concurrently, GW searches in the nHz band with pulsar
timing arrays (PTAs) [6–9] are, after more than a decade of
continuous operation, widely expected to make their first
detections in the coming few years, with the NANOGrav
Collaboration having possibly already seen the first hints of
a GW detection in their 12.5-yr dataset [10]. By the mid-
2030s, these experiments are expected to be superseded by
third generation interferometers such as Einstein Telescope
[11] and PTA campaigns by next-generation radio tele-
scopes such as the Square Kilometre Array [12], as well
as the space-based interferometer LISA [13], which
will survey the as-yet-unexplored mHz frequency band.
Further proposals to cover the intermediate frequency band
between LISA and LIGO/Virgo/KAGRA include the atom
interferometers AION [14] and MAGIS [15].
These experiments each hold enormous scientific poten-

tial, and together will probe a dizzying range of exotic
astrophysical and cosmological phenomena throughout the

history of the Universe. However, practical and technical
limitations restrict the sensitivity of each experiment to a
narrow frequency band, leaving broad swathes of the GW
frequency spectrum essentially unexplored. These gaps in
the GW spectrum could contain signals which are inac-
cessible to any current or planned GWobservatory; perhaps
the clearest example is the GW signal expected from a
cosmological first-order phase transition [16–18], which is
sharply peaked and could, for a broad range of the physical
parameter space, be missed by all of the GW experiments
listed above. There is also the distinct possibility of such
unexplored frequency bands containing unexpected sig-
nals, with the potential for exciting discoveries beyond just
those models that have been proposed in the literature.
This problem motivates us to explore alternatives that

can bridge these gaps in the GW spectrum. One possibility
is to study the interaction between GWs and astronomical
binary systems. Rather than searching for oscillations in the
proper distance between the test masses in an interferom-
eter (as in LIGO/Virgo/KAGRA, etc.), or between pulsars
and the Earth (as in PTAs), we consider here the GW-
induced oscillations between two freely-falling masses in a
gravitationally-bound orbit. While these oscillations are
extremely challenging to observe directly for any realistic
binary, they can leave lasting imprints on the binary’s orbit,
particularly if they occur at an integer multiple of the
binary’s orbital frequency, as this causes the perturbations
to be resonantly amplified. For long-duration GW signals,
these imprints accumulate over time, eventually giving rise
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to observable deviations which can be used to infer the GW

amplitude, turning the binary into a dynamical GW detector
(as illustrated in Fig. 1). This idea has a long history
[19–33], and has been used to search for GWs with the orbit
of the binary pulsar B1913þ 16 [34].1 Nonetheless, this
binary GW resonance effect has received relatively little
attention in the GW community, and, we feel, has not yet
been exploited to its full potential.
In this paper we develop, from first principles, a new

formalism for calculating the GW-induced evolution of a
generic binary system. Motivated by the requirements
for the GW signal to be persistent (so that the orbital
deviations accumulate over time) and broadband (so that
the frequency content of the signal overlaps with the narrow
resonant frequencies bands of the binary), we focus on the
stochastic GW background (SGWB) [40–45]: a pseudo-
random signal formed from the incoherent superposition of
many independent GW sources throughout cosmic history.
The stochastic nature of this signal means that we cannot
deterministically calculate the evolution of a given binary;
insteadwe treat eachof thebinary’sorbital elementsasa time-
dependent random variable, and study the statistics of the
orbital perturbations over time. Our key result is a secularly-
averaged Fokker-Planck equation (FPE) which fully spec-
ifies the evolution of the probability distribution for all six
orbital elements. By comparing solutions of this FPE with
high-precision orbital data from various binary systems, one
can place stringent new constraints on the SGWBat frequen-
cies that are inaccessible to all other current and future GW
observatories, as we demonstrate in a companion paper [46].
The remainder of this paper is structured as follows.

In Sec. II we give a brief, self-contained overview of

Keplerian orbits, orbital perturbations, and the formalism
of osculating orbital elements. In Sec. III we specialize
this formalism to perturbations from the SGWB, and
develop a FPE for the orbital elements, expressing the
coefficients of the equation in terms of GW transfer
functions. In Sec. IV we derive these coefficients explic-
itly as functions of the orbital elements, and briefly discuss
their properties. In Sec. V we obtain some exact late-time
results for the case where the binary’s eccentricity is held
fixed at zero, which greatly simplifies the FPE. In Sec. VI
we tackle the more complicated general-eccentricity case,
consider practical approaches for solving the FPE on
observational timescales, and present some example
results for the Hulse-Taylor binary pulsar B1913þ 16.
In Sec. VII we develop the necessary statistical formalism
to search for SGWB-induced orbital perturbations in
observational data, discussing how to compute upper
limits and sensitivity forecasts, and how to apply these
tools to pulsar timing and laser-ranging experiments. We
summarize our results in Sec. VIII. The Appendices give
various technical details for the derivation of the FPE
coefficients. We use units where c ¼ 1 throughout, but
keep G ≠ 1.

II. BINARY DYNAMICS

In this section we introduce the machinery of osculating
orbital elements. We start by recalling the basic properties
of Keplerian orbits (i.e., orbits of two point masses
interacting only through Newtonian gravity), before
introducing the equations of motion (EOM) for the
osculating elements, and discussing the most important
contribution to these EOM from relativistic effects. We
also introduce alternative sets of orbital elements that are
useful in cases where the eccentricity or inclination of the
orbit are small.

FIG. 1. Cartoon illustration of the binary resonance effect. Stochastic fluctuations in the background spacetime geometry due to
incoming GWs perturb the trajectories of two orbiting masses, causing cumulative changes to their orbital elements.

1Similar ideas have also been used to search for orbital changes
induced by ultralight dark matter [35–39].
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A. Keplerian orbits

We start with a Keplerian binary, working in cylindrical
coordinates ðr̂; θ̂; l̂Þ in a frame with the center of mass
fixed at the origin. We also introduce a fixed Cartesian
reference frame ðx̂; ŷ; ẑÞ, such the line of sight of the
observer is in the positive ẑ direction. The unperturbed
EOM for the separation vector r is

̈rþ GM
r2

r̂ ¼ 0; ð2:1Þ

where r≡ jrj is the radial separation, r̂≡ r=r is the radial
unit vector, and M ≡m1 þm2 is the total mass. We define
the energy and angular momentum of the binary (in units of
the reduced mass μ≡m1m2=M) by

E ¼ 1

2
_r · _r −

GM
r

;

l ¼ r × _r ¼ r2 _θ l̂ : ð2:2Þ

For the total angular momentum we write l≡ jlj ¼ r2 _θ.
These are all conserved, since

_E ¼ _r ·
�̈
rþ GM

r2
r̂
�

¼ 0;

_l ¼ r × ̈r ¼ r ×

�
−
GM
r2

r̂

�
¼ 0; ð2:3Þ

where we used _r ¼ _r · r̂. The fact that _l ¼ 0 means that the
binary orbit is confined to a fixed 2D plane, which is
specified with respect to the ðx̂; ŷ; ẑÞ reference frame by two
angles: the inclination I, which is the angle between the
binary’s angular momentum vector l and the observer’s
line of sight ẑ, and the longitude of ascending node Ω,
which is the angle between x̂ and the point where the orbit
passes through the reference plane with positive velocity in
the ẑ direction. (These angles are illustrated in Fig. 2.)
We can find the shape of the orbit in this plane

by integrating Eq. (2.1), yielding a family of elliptical
solutions

r¼ l2=ðGMÞ
1þ e cosψ

; E ¼ −
GM
2a

; l¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GMað1− e2Þ

q
;

ð2:4Þ

with the shape of the ellipse described by its semimajor axis
a and eccentricity e. Here we have introduced the true
anomaly ψ as the angular position of the orbit within the
orbital plane, defined such that the pericenter (minimum
separation) occurs at ψ ¼ 0. The point at which this occurs
is defined by the argument of pericenter ω≡ θ − ψ, which
is measured relative to the ascending node. Since ω is
constant, the orbit is closed and the motion of the binary is

periodic in time, with period P related to the semimajor axis
by Kepler’s third law,

GM
a3

¼
�
2π

P

�
2

: ð2:5Þ

(In what follows, we work entirely in terms of the period
rather than the semimajor axis, as the former is more
closely linked to the resonant frequencies of the orbit.)
The five constants ðP; e; I;Ω;ωÞ are almost enough

information to specify a particular Keplerian orbit; all that
remains is to specify the time at which the binary is at
pericenter, t0. In practice, it is more convenient to replace t0
with the compensated mean anomaly,

ε≡ 2π

P
ðt − t0Þ −

Z
t

0

dt0
2π

Pðt0Þ ; ð2:6Þ

FIG. 2. Schematic diagram of a Keplerian orbit. The plane of
the orbit (shown in blue) is defined relative to the fixed reference
frame ðx̂; ŷ; ẑÞ (shown in black) by the inclination I and the
longitude of ascending node Ω, while the orientation of the orbit
within this plane is specified by the argument of pericenter ω. The
true anomaly ψ acts as an angular coordinate for the position of
the orbit within the orbital plane, measured relative to the
pericenter. The polarization tensors describing the effects of an
incoming plane GW are described in terms of the basis ðn̂; û; v̂Þ
(shown in red), which is related to the reference frame by the
angles ϑ and ϕ. (Note that the wavelength of the GW is not shown
to scale here—our analysis assumes a wavelength much larger
than the size of the orbit).
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as this is more well behaved when the orbit is perturbed
[47]. Note that in the absence of perturbations this reduces
to ε ¼ −2πt0=P. We call the set ðP; e; I;Ω;ω; εÞ the orbital
elements of a binary.

B. Perturbations and osculating orbits

Now, following Refs. [34,35,48,49], suppose the binary
is acted upon by some small perturbing force

δ̈r ¼ rðF rr̂þ F θθ̂þ F ll̂Þ; ð2:7Þ

so that the EOM is instead

̈rþ GM
r2

r̂ ¼ δ̈r: ð2:8Þ

[The factor of r in Eq. (2.7) is included for later
convenience, as the GW perturbations we consider are
proportional to the orbital separation.] Inserting this into
Eq. (2.3) gives

_E ¼ _r · δ̈r ¼ r_rF r þ r2 _θF θ;

_l ¼ r × δ̈r ¼ r2F θl̂ − r2F lθ̂; ð2:9Þ

so the binary’s energy and angular momentum are no
longer constant. As a result, the binary is no longer
described by a fixed set of orbital elements. However,
the orbit is still tangent to some Keplerian ellipse at each
moment in time. We therefore define ðP; e; I;Ω;ω; εÞ as
functions of time which track the evolution of this tangent
ellipse; these are called the osculating orbital elements.
A full derivation of the EOM for the osculating elements

is given in, e.g., Refs. [48,49]; here we simply quote the
resulting set of equations,

_P ¼ 3P2γ

2π

�
e sinψF r

1þ e cosψ
þ F θ

�
;

_e ¼
_Pγ2

3Pe
−

Pγ5F θ

2πeð1þ e cosψÞ2 ;

_I ¼ Pγ3 cos θF l

2πð1þ e cosψÞ2 ;

_Ω ¼ tan θ
sin I

_I;

_ω ¼ Pγ3

2πe

�ð2þ e cosψÞ sinψF θ

ð1þ e cosψÞ2 −
cosψF r

1þ e cosψ

�
− cos I _Ω;

_ε ¼ −
Pγ4F r

πð1þ e cosψÞ2 − γðcos I _Ωþ _ωÞ; ð2:10Þ

where we have defined the dimensionless angular
momentum,

γ ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
¼ lffiffiffiffiffiffiffiffiffiffiffi

GMa
p : ð2:11Þ

Note that the size and shape of the orbit (determined by P
and e) is only affected by forces within the plane (i.e., F r
and F θ), while the plane of the orbit (determined by I and
Ω) is only affected by forces normal to the plane (i.e., F l),
and the radial and angular phases of the orbit (determined
by ω and ε) are affected by both.

C. Secular evolution due to relativistic effects

In Sec. III, we use Eq. (2.10) to calculate the perturba-
tions to the osculating orbital elements caused by resonance
with the SGWB. However, we can use the same set of
equations to calculate the perturbations caused by relativ-
istic corrections to the equations of motion, which are
particularly important for binaries with short periods.
Following Ref. [50], we write the relativistic force compo-
nents to leading post-Newtonian (PN) order as

F r ¼
�
2π

P

�
2 v2P
γ8

ð1þ e cosψÞ3
�
3 − η − e2ð1þ 3ηÞ

þ eð2 − 4ηÞ cosψ þ e2
8 − η

2
sin2ψ

�
;

F θ ¼
�
2π

P

�
2 2ev2P

γ8
sinψð1þ e cosψÞ4ð2 − ηÞ;

F l ¼ 0; ð2:12Þ

where

vP ≡
�
2πGM

P

�
1=3

; ð2:13Þ

is the binary’s rms velocity, and

η≡ μ

M
¼ m1m2

ðm1 þm2Þ2
; ð2:14Þ

is the dimensionless mass ratio. Inserting these expressions
into Eq. (2.10), we average over the orbit to find the secular
perturbations, using the fact that _ψ ¼ l=r2 for Keplerian
orbits to write

_Xsec ≡
Z

t0þP

t0

dt
P

_X ¼
Z

2π

0

dψ
2π

γ3 _X
ð1þ e cosψÞ2 ; ð2:15Þ

where X ∈ ðP; e; I;Ω;ω; εÞ. The only nonvanishing per-
turbations to the osculating elements in this case are then

_ωsec¼
6πv2P
Pγ2

; _εsec¼
2πv2P
P

�
6−7η−

15−9η

γ

�
; ð2:16Þ
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where the first equality is the famous perihelion precession.
These are both 1PN corrections (i.e., order v2P).
Note that the above implies that the binary’s period and

eccentricity are conserved at 1PN order. However, since
these are typically the most precisely-measured orbital
elements, it is worth including their leading-order relativ-
istic evolution, even if this is at higher PN order and is thus
much smaller than the terms in Eq. (2.16) for most binaries.
This leading-order evolution of the period and eccentricity
is due to GW radiation reaction, and can be calculated by
applying simple energy-balance arguments to the unper-
turbed Keplerian orbit [51], giving

_Psec ¼ −
192πηv5P

5γ7

�
1þ 73

24
e2 þ 37

96
e4
�
;

_esec ¼ −
608πηv5P
15Pγ5

�
eþ 121

304
e3
�
: ð2:17Þ

We see that these are both 2.5PN effects (i.e., order v5P).
The inclination and longitude of ascending node are both
conserved at this PN order.

D. Small-eccentricity and small-inclination orbits

For binaries where the eccentricity is small (e≲ 10−3)
the argument of pericenter ω becomes ill defined, and this
in turn means that the compensated mean anomaly ε
becomes ill defined, as this is defined relative to the time
at which the binary is at pericenter, t0. These issues can be
resolved by defining

ζ ≡ e sinω; κ ≡ e cosω; ξ≡ ωþ ε: ð2:18Þ
The first two quantities here are sometimes called the
“Laplace-Lagrange eccentric parameters,” while the latter
is the compensated mean argument. We can then describe
the orbit of a near-circular binary in terms of the alternative
set of osculating elements ðP; ζ; κ; I;Ω; ξÞ [49,52]. These
evolve according to

_ζ ¼ _e sinωþ _ωe cosω;

_κ ¼ _e cosω − _ωe sinω;

_ξ ¼ _ωþ _ε; ð2:19Þ
with _e, _Ω, _ω, and _ε given by Eq. (2.10). For the relativistic
perturbations (2.12), we thus have

_ζsec ¼
6πv2P
P

�
κ −

304

45
ηv3Pζ

�
;

_κsec ¼ −
6πv2P
P

�
ζ þ 304

45
ηv3Pκ

�
;

_ξsec ¼ −
4πv2P
P

ð3 − ηÞ; ð2:20Þ

where we have neglected Oðe2Þ terms.

Similarly, Ω is ill defined for orbits with very small
inclination, so in this case we define

p≡ I sinΩ; q≡ I cosΩ; λ ¼ Ωþ ξ; ð2:21Þ

and describe the orbit using ðP; ζ; κ; p; q; λÞ.

III. RESONANT GRAVITATIONAL-WAVE
PERTURBATIONS

In this section we calculate the evolution of the osculat-
ing orbital elements of a binary system due to resonance
with the SGWB.We start by specifying the perturbing force
associated with an incoming plane GW in the limit where
the wavelength is much larger than the size of the orbit.
This allows us to write down a Langevin equation describ-
ing individual random realizations of the stochastic evo-
lution of the osculating elements. Using the statistical
properties of the SGWB, we then derive a secularly
averaged FPE which describes the evolution of the full
statistical distribution of the orbital elements over time-
scales much longer than the binary period.

A. Coupling to the gravitational-wave
polarization modes

The response of a binary to an impinging plane GW can
be expressed in the proper detector frame (i.e., using Fermi
normal coordinates to construct a freely falling frame with
the binary’s center of mass fixed at the origin, in which
coordinate distances correspond to proper distances to a
good approximation, and in which we can treat the GWas a
perturbing Newtonian force) as [20,53]

δ̈ri ¼ 1

2
ḧijrj; ð3:1Þ

so that the resulting evolution of the binary is described in
terms of the perturbing force terms

F r¼
1

2
ḧijr̂ir̂j; F θ¼

1

2
ḧijr̂iθ̂

j; F l¼
1

2
ḧijr̂il̂

j; ð3:2Þ

where hijðtÞ is the transverse-traceless part of the metric
perturbation at the position of the binary’s center of mass.
We decompose the GW strain in terms of plane waves of

each polarization arriving from each direction on the sky,

hijðtÞ ¼
Z
S2
d2n̂eAijðn̂ÞhAðt; n̂Þ; ð3:3Þ

where A ¼ þ;× are the two GW polarizations, and
summation over the repeated polarization index is implied.
We define the standard polarization tensors

eþij ¼ ûiûj − v̂iv̂j; e×ij ¼ ûiv̂i þ v̂iûj; ð3:4Þ
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with û; v̂ unit vectors that are orthogonal to the GW
propagation direction n̂ and to each other, as illustrated
in Fig. 2. We therefore write

F α ¼
1

2

Z
S2
d2n̂eAijr̂

iα̂jḧA; ð3:5Þ

where α runs over the cylindrical coordinates ðr; θ;lÞ.
Note that Eq. (3.1) is only correct in the limit where the

GW wavelength λ is much larger than the size of the
binary’s orbit, λ ≫ a. Using Kepler’s third law (2.5), this
condition can be rewritten as

fP ≪ 1=vP; ð3:6Þ

where f is the GW frequency. Since we are interested in
GW frequencies which are harmonics of the binary period
(f ¼ n=P for some n ∈ Zþ), this tells us that the analysis
below, based on Eq. (3.1), is only valid for harmonics that
satisfy n ≪ 1=vP. This is not an impediment, since in the
cases we are interested in the binary is subrelativistic,
vP ≪ 1, and the strongest contribution typically comes
from the lowest few harmonics anyway.

B. Langevin formulation

The stochastic evolution of the binary is described by the
evolution equations derived in Sec. II B, with the perturbing
force terms given by Eq. (3.5). All this can be rewritten as a
coupled set of nonlinear Langevin equations,

_XiðX; tÞ ¼ ViðXÞ þ ΓiðX; tÞ; ð3:7Þ

where Xi runs over the set of orbital elements [either
ðP; e; I;Ω;ω; εÞ, or the small-eccentricity and/or small-
inclination alternatives described in Sec. II D], V is the
deterministic drift term due to the relativistic effects
described in Sec. II C, and Γ is the stochastic diffusion
term due to resonance with the SGWB. The latter can be
written as

ΓiðX; tÞ ¼
Z
S2
d2n̂TA

i ðX; t; n̂ÞḧAðt; n̂Þ; ð3:8Þ

where the TA
i are transfer functions describing the coupling

between the SGWB strain and the orbital elements. For
example, using Eqs. (2.10) and (3.5), the transfer functions
for the period P are

TA
P ¼ 3P2γ

4π

�
e sinψ

1þ e cosψ
r̂i þ θ̂i

�
r̂jeAij: ð3:9Þ

(The full set of transfer functions are written out in
Appendix B in terms of their Fourier components.)
The explicit time-dependence in the transfer functions

is via the true anomaly ψðtÞ, due to the variation of the

binary’s response over the course of each orbit. These
variations occur only on timescales less than or equal to
the orbital period P, which is much shorter than the
timescales over which the orbital elements evolve,
X= _X ≫ P. The latter are secular effects, whereas the
former are resonant ones, which contribute only at integer
multiples of the fundamental frequency 1=P. This property
of the resonant spectrum, combined with the separation of
scales between the resonant and secular evolution, allows
us to approximate the transfer functions as Fourier series
with period P,

TA
i ðX; t; n̂Þ ¼

Xþ∞

n¼−∞
e−2πint=PTA

i;nðX; n̂Þ: ð3:10Þ

In Sec. III D, we recast Eq. (3.7) as a FPE, allowing us to
calculate the ensemble-averaged properties of the binary’s
orbital evolution. However, in order to do so, we must first
describe the statistical properties of the SGWB strain,
which we do in Sec. III C below.

C. Statistical properties of the stochastic background

The stochastic GW strain components hA are time-
dependent random variables whose statistical properties
are usually specified in terms of their Fourier transforms,

h̃Aðf; n̂Þ ¼
Z þ∞

−∞
dte2πifthAðt; n̂Þ: ð3:11Þ

Since the SGWB is generated by the superposition of a
large number of statistically independent sources, it is
usually assumed that the SGWB strain is Gaussian by the
central limit theorem. This implies that the statistics of the
strain Fourier components are fully specified by their first
two moments. With the further standard assumptions that
the SGWB is isotropic, stationary, unpolarized, and has
zero phase correlation between different sky locations,
these moments can be written as

hh̃Aðf; n̂Þi ¼ 0;

hh̃Aðf; n̂Þh̃�A0 ðf0; n̂0Þi ¼ 3H2
0ΩðfÞ

32π3jfj3 δAA0δðf − f0Þδðn̂; n̂0Þ;

ð3:12Þ

with ΩðfÞ the one-sided SGWB energy density spectrum,

ΩðfÞ≡ 1

ρcrit

dρgw
dðln fÞ ; ð3:13Þ

which is normalized with respect to the cosmological
critical density ρcrit ≡ 3H2

0=ð8πGÞ, where H0 is the Hubble
constant.
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We are interested in the statistics of the second time
derivative of the strain, which is related to the Fourier
components by

ḧA ¼ d2

dt2

Z þ∞

−∞
dfe−2πifth̃A

¼ −4π2
Z þ∞

−∞
dfe−2πiftf2h̃A: ð3:14Þ

The corresponding moments are therefore

hḧAðt; n̂Þi ¼ 0;

hḧAðt; n̂ÞḧA0 ðt0; n̂0Þi ¼ 3πH2
0δAA0δðn̂; n̂0Þ

×
Z

∞

0

df cos½2πfðt − t0Þ�fΩðfÞ:

ð3:15Þ

D. From the Langevin equation
to the Fokker-Planck equation

Solving the Langevin equation (3.7) gives individual
random trajectories of the binary through parameter space,
corresponding to different random realizations of the
SGWB. However, we are more interested in the ensemble
of all possible random trajectories, which we describe in
terms of the time-dependent distribution function (DF) for
the orbital elements, WðX; tÞ. This is defined such that
the probability of the orbital elements X belonging to any
region X of parameter space at time t is given by the
corresponding integral over the DF,

PrðX ∈ X jtÞ ¼
Z
X
dXWðX; tÞ: ð3:16Þ

This DF can either be interpreted as the probability density
function for the stochastic orbital elements of an individual
binary, or as the cumulative distribution for the orbital
elements of a population of multiple binaries.
Formally, we can write down the time evolution of

the DF in terms of the Kramers-Moyal (KM) forward
expansion [54,55],

∂W
∂t ¼

X∞
n¼1

ð−Þn ∂n

∂Xi1∂Xi2 � � � ∂Xin

ðDðnÞ
i1i2���inWÞ; ð3:17Þ

where repeated indices are summed over. This is deter-
mined by the KM coefficients,

DðnÞ
i1i2���inðX;tÞ≡ lim

τ→0

1

τn!

�Yn
j¼1

½XijðtþτÞ−XijðtÞ�
�
; ð3:18Þ

with angle brackets indicating an ensemble average under
the distribution W at time t. Since we take the SGWB as

Gaussian, the KM coefficients for orders n ≥ 3 all vanish,2

leaving just the first two coefficients,

Dð1Þ
i ¼ lim

τ→0

1

τ
hXiðtþ τÞ − XiðtÞi;

Dð2Þ
ij ¼ lim

τ→0

1

2τ
h½Xiðtþ τÞ − XiðtÞ�½Xjðtþ τÞ − XjðtÞ�i;

ð3:19Þ

which we call the drift vector and the diffusion matrix,
respectively. The KM forward expansion (3.17) then
becomes the Fokker-Planck equation (FPE),

∂W
∂t ¼ −∂iðDð1Þ

i WÞ þ ∂i∂jðDð2Þ
ij WÞ; ð3:20Þ

with ∂i ≡ ∂=∂Xi.
We can calculate the KM coefficients by directly

integrating the Langevin equation (3.7), from some initial
time t where the orbital elements are “sharp” (i.e., known
exactly rather than randomly distributed), XiðtÞ≡ xi, over
some small time interval τ,

XiðtþτÞ−xi¼
Z

tþτ

t
dt0½ViðXðt0ÞÞþΓiðXðt0Þ;t0Þ�: ð3:21Þ

(This derivation closely follows that in Sec. 3.3.2 of
Ref. [54].) Both terms under the integral on the right-hand
side (rhs) are random, due to the random spread in the
orbital elements for all times t0 > t. However, we can
express these in terms of the sharp values xi by Taylor
expanding,

ViðXðt0ÞÞ ¼ ViðxÞ þ ∂jViðxÞ½Xjðt0Þ − xj� þ � � � ;
ΓiðXðt0Þ; t0Þ ¼ Γiðx; t0Þ þ ∂jΓiðx; t0Þ½Xjðt0Þ − xj� þ � � � :

ð3:22Þ

Wherever Xiðt0Þ − xi appears on the rhs of Eq. (3.22) we
can insert Eq. (3.21) and iterate, such that the only orbital
elements that appear are the sharp initial values xi. Then the
only randomness is through the stochastic term Γi, whose
statistics are completely specified in terms of the SGWB
moments (3.15).

2One could derive this explicitly by using the approach
described later in this section to show that Dð3Þ

ijk ¼ 0, as the
Pawula theorem [54,56] then implies that all higher-order
coefficients n > 3 must vanish in order to guarantee that the
DF is normalized.
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The first few terms in the iterative expansion are

Xiðtþ τÞ − xi ¼
Z

tþτ

t
dt0ViðxÞ þ

Z
tþτ

t
dt0∂jViðxÞ

Z
t0

t
dt00½VjðxÞ þ Γjðx; t00Þ� þ � � �

þ
Z

tþτ

t
dt0Γiðx; t0Þ þ

Z
tþτ

t
dt0∂jΓiðx; t0Þ

Z
t0

t
dt00½VjðxÞ þ Γjðx; t00Þ� þ � � � : ð3:23Þ

By virtue of the time-independence of the sharp drift term ViðxÞ, this immediately simplifies to

Xiðtþ τÞ − xi ¼ τViðxÞ þ
1

2
τ2VjðxÞ∂jViðxÞ þ ∂jViðxÞ

Z
tþτ

t
dt0

Z
t0

t
dt00Γjðx; t00Þ þ � � �

þ
Z

tþτ

t
dt0Γiðx; t0Þ þ VjðxÞ

Z
tþτ

t
dt0ðt0 − tÞ∂jΓiðx; t0Þ þ

Z
tþτ

t
dt0∂jΓiðx; t0Þ

Z
t0

t
dt00Γjðx; t00Þ þ � � � :

ð3:24Þ

Taking the first moment of Eq. (3.24), all terms linear in Γi
vanish, and we are left with

hXiðtþ τÞ − xii

¼ τViðxÞ þ
1

2
τ2VjðxÞ∂jViðxÞ þ � � �

þ
Z

tþτ

t
dt0

Z
t0

t
dt00hΓjðx; t00Þ∂jΓiðx; t0Þi þ � � � ;

ð3:25Þ

so that the drift vector is given by

Dð1Þ
i ¼ Vi þ lim

τ→0

1

τ

Z
tþτ

t
dt0

Z
t0

t
dt00hΓjðx; t00Þ∂jΓiðx; t0Þi:

ð3:26Þ

Similarly, when taking the second moment of Eq. (3.24)
and taking the τ → 0 limit, the only term that survives for
the diffusion matrix is

Dð2Þ
ij ¼ lim

τ→0

1

2τ

Z
tþτ

t
dt0

Z
tþτ

t
dt00hΓiðx;t0ÞΓjðx;t00Þi: ð3:27Þ

By calculating the KM coefficients from Eqs. (3.26) and
(3.27), we can then obtain the full DF for the orbital
elements by integrating the FPE (3.20).

E. Secular drift and diffusion

We rewrite the integrands of Eqs. (3.26) and (3.27) in
terms of the GW strain and the binary transfer functions
using Eq. (3.8). We can then use Eq. (3.15) to specify the
SGWB strain covariance, and insert Eq. (3.10) to form a
sum over harmonics of the binary’s orbital frequency,
f ¼ n=P. The resulting expressions are

hΓiðx; t0ÞΓjðx; t00Þi ¼ 3πH2
0

Xþ∞

n¼−∞

Xþ∞

m¼−∞

Z
S2
d2n̂TA�

i;nT
A
j;m

Z
∞

0

dfe2πiðnt0−mt00Þ=P cos½2πfðt0 − t00Þ�fΩðfÞ;

hΓjðx; t00Þ∂jΓiðx; t0Þi ¼ 3πH2
0

Xþ∞

n¼−∞

Xþ∞

m¼−∞

Z
S2
d2n̂TA

j;m∂jTA�
i;n

Z
∞

0

dfe2πiðnt0−mt00Þ=P cos½2πfðt0 − t00Þ�fΩðfÞ: ð3:28Þ

In order to derive the corresponding KM coefficients, we must evaluate two oscillatory time integrals,

Z
tþτ

t
dt0

Z
tþτ

t
dt00e−2πiðf−n=PÞt0e2πiðf−m=PÞt00 ;

Z
tþτ

t
dt0

Z
t0

t
dt00e−2πiðf−n=PÞt0e2πiðf−m=PÞt00 : ð3:29Þ

To do so, we recall that the timescales ≲P associated with the binary’s resonant frequencies are much shorter than the
secular timescales X= _X we are interested in.3 Even though we will later take the limit τ → 0, all we really require to derive a
FPE valid on secular timescales ∼X= _X is that τ ≪ X= _X, and since we have P ≪ X= _X, we can consistently also demand that
τ ≫ P. In this limit, the first integral in Eq. (3.29) is approximated by

3It would also be interesting to study the dynamics on suborbital timescales, as was done in Refs. [38,57] for the case of ultralight dark
matter. We leave this for future work.
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Z
tþτ

t
dt0

Z
tþτ

t
dt00e−2πiðf−n=PÞt0e2πiðf−m=PÞt00

≃ τδmnδðf − n=PÞ: ð3:30Þ

For the second integral, notice that we can write

τδmnδðf − n=PÞ

≃
Z

tþτ

t
dt0

Z
tþτ

t
dt00e−2πiðf−n=PÞt0e2πiðf−m=PÞt00

¼
Z

tþτ

t
dt0

Z
t0

t
dt00e−2πiðf−n=PÞt0e2πiðf−m=PÞt00

þ
Z

tþτ

t
dt0

Z
tþτ

t0
dt00e−2πiðf−n=PÞt0e2πiðf−m=PÞt00 ; ð3:31Þ

and that in the limit τ ≫ P the latter two terms are
approximately equal to each other, so that

Z
tþτ

t
dt0

Z
t0

t
dt00e−2πiðf−n=PÞt0e2πiðf−m=PÞt00

≃
1

2
τδmnδðf − n=PÞ: ð3:32Þ

Plugging this back in to Eqs. (3.26), (3.27), and (3.28), we
are able to write the KM coefficients directly in terms of the
GW transfer functions,

Dð1Þ
i ¼ Vi þ

3π

2
H2

0

X∞
n¼1

Z
S2
d2n̂

nΩn

P
ReðTA

j;n∂jTA�
i;nÞ;

Dð2Þ
ij ¼ 3π

2
H2

0

X∞
n¼1

Z
S2
d2n̂

nΩn

P
ReðTA�

i;nT
A
j;nÞ; ð3:33Þ

where we have used Ti;−n ¼ T�
i;n, and where Ωn ≡Ωðn=PÞ

is the SGWB energy density at the binary’s nth harmonic
frequency. (We always take only the real part when
defining the KM coefficients, so for brevity we will leave
this implicit from now on.) Equation (3.33) describes the
secular drift and diffusion of the orbital elements over
timescales much longer than the orbital period P.
Note that the drift vector includes not just the expected

deterministic drift Vi, but also a stochastic term. As we
show below, this “noise-induced drift” leads to a net
evolution of the mean values of the orbital elements,
and not just their variance. This is somewhat counterin-
tuitive, and justifies the careful derivation presented in
this section; otherwise, it would be tempting to assume that
the SGWB affects only the variance of the orbital elements
(as was assumed in Ref. [34], for example). One can
understand this drift as being the result of a “diffusion
gradient” due to the nonlinear coupling between the
SGWB and the binary: the orbital elements change in
response to the GW strain, thereby changing the values
of the transfer functions and modifying the response to

the strain, with the resulting feedback loop creating a
preferred direction in parameter space for the orbital
elements to evolve toward. The partial derivative acting
on the transfer function in Eq. (3.33) shows that this term
would vanish in the linear case (i.e., where the transfer
functions are constant), and therefore that this is a purely
nonlinear effect.
The stochastic drift is also a result of our treatment of the

SGWB strain, as we have started with a finite correlation
time and taken the limit where this vanishes, rather than
specifying zero correlation time from the start. (Physically,
the SGWB strain at time t1 cannot be uncorrelated with that
at t2 for arbitrarily small jt1 − t2j, as this would require
ΩðfÞ to remain finite as f → ∞, which would make the
total GW energy density diverge. However, the time over
which the strain is correlated is still much shorter than the
timescale over which the orbital elements evolve.) This is
the Stratonovich prescription [58], which is appropriate for
most physical applications, rather than the more formal Itô
prescription [59]. For further discussion of the two pre-
scriptions see, e.g., Ref. [54].

IV. CALCULATING THE KRAMERS-MOYAL
COEFFICIENTS

In this section we use Eq. (3.33) to derive explicit
expressions for the KM coefficients as functions of the
binary orbital elements and the SGWB spectrum. We start
with the most general expressions, before specializing to
the cases of small eccentricity and small inclination.

A. General orbits

We present here the secular KM coefficients for general
eccentricity e ∈ ð0; 1Þ. The details of this calculation are
lengthy and unimportant for the final results, so we
quote only the final expressions here, with some further
details given in the Appendices. In particular, Appendix A
derives the necessary projections of the GW polarization
tensors onto the binary’s cylindrical coordinate basis;
Appendix B uses these projections to write down the
transfer functions for all six orbital elements
ðP; e; I;Ω;ω; εÞ in terms of functions of the eccentricity
called Hansen coefficients, which we introduce below;
Appendix C derives the equations describing how each of
the KM coefficients transforms under a change of the
reference frame, allowing us to select a particular frame
which simplifies the calculations; Appendix D presents
the values of the KM coefficients in this frame in terms of
the Hansen coefficients; and Appendix E writes out all
of the necessary Hansen coefficients explicitly as functions
of eccentricity.
Putting all of these ingredients together, we find that the

secular drift vector Dð1Þ
i is given in terms of the Hansen

coefficients ðClm
n ; Slmn ; Elm

n Þ by
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Dð1Þ
P ¼ VP þ 9P2γ2

4

X∞
n¼1

nH2
0Ωn

�
jE02

n þ e
2
ðE11

n − E13
n Þj2 − 1þ 4e2

15
ðS11n Þ2 − eγ2

15
S11

0
n S11n

þ γ2

10e

�
E02
n þ e

2
ðE11

n − E13
n Þ

�
ð3E11

n þ E13
n þ eE20

n þ 4E21
n þ 4eE22

n − 4E23
n − eE24

n þ 2E020
n þ eðE110

n − E130
n ÞÞ�

−
γ4

10e
E22
n ðE11

n − E13
n þ 2E020

n þ eðE110
n − E130

n ÞÞ�
�
;

Dð1Þ
e ¼ Ve −

Pγ6

20

X∞
n¼1

nH2
0Ωn

�
S11

0
n S11n þ 3

e3

�
E02
n þ e

2
ðE11

n − E13
n Þ − γ2E22

n

�

× ðE02
n − E22

n − eðE11
n þ E13

n þ 2E21
n − 2E23

n þ E020
n − γ2E220

n Þ − e2

2
ðE20

n þ 10E22
n − E24

n þ E110
n − E130

n ÞÞ�
�
;

Dð1Þ
I ¼ sin 2I

2
Dð2Þ

ΩΩ; Dð1Þ
Ω ¼ −2 cot IDð2Þ

IΩ ;

Dð1Þ
ω ¼ Vω þ 3Pγ6

40
sin 2ω

2 − sin2I
sin2I

X∞
n¼1

nH2
0ΩnE20

n ðE22
n Þ�; Dð1Þ

ε ¼ Vε; ð4:1Þ

while the secular diffusion matrix Dð2Þ
ij is given by

Dð2Þ
PP ¼ 27P3γ2

20

X∞
n¼1

nH2
0Ωn

�
jE02

n þ e
2
ðE11

n − E13
n Þj2 − ðeS11n Þ2

3

�
;

Dð2Þ
Pe ¼ γ2Dð2Þ

PP

3Pe
−
9P2γ6

40

X∞
n¼1

nH2
0ΩnE22

n

�
2

e
E02
n þ E11

n − E13
n

��
;

Dð2Þ
ee ¼ 3Pγ6

20e2
X∞
n¼1

nH2
0Ωn

�
jE02

n þ e
2
ðE11

n − E13
n Þ − γ2E22

n j2 − ðeS11n Þ2
3

�
;

Dð2Þ
II ¼ 3Pγ6

80

X∞
n¼1

nH2
0Ωn½jE20

n j2 þ jE22
n j2 þ 2 cos 2ωE20

n ðE22
n Þ��;

Dð2Þ
IΩ ¼ 3Pγ6

40

sin 2ω
sin I

X∞
n¼1

nH2
0ΩnE20

n ðE22
n Þ�;

Dð2Þ
Iω ¼ −

3Pγ6

40

sin 2ω
tan I

X∞
n¼1

nH2
0ΩnE20

n ðE22
n Þ�;

Dð2Þ
ΩΩ ¼ 3Pγ6

80sin2I

X∞
n¼1

nH2
0Ωn½jE20

n j2 þ jE22
n j2 − 2 cos 2ωE20

n ðE22
n Þ��;

Dð2Þ
Ωω ¼ − cos IDð2Þ

ΩΩ;

Dð2Þ
ωω ¼ cos2IDð2Þ

ΩΩ þ 3Pγ6

80e2
X∞
n¼1

nH2
0Ωn

�
jE11

n þ E13
n þ 2E21

n − 2E23
n þ e

2
ðE20

n − E24
n Þj2 þ 4

3
ðC11

n Þ2
�
;

Dð2Þ
ωε ¼ −

3Pγ7

80e2
X∞
n¼1

nH2
0Ωn

�
jE11

n þ E13
n þ 2ðE21

n − E23
n Þ þ e

2
ðE20

n − 4E22
n − E24

n Þj2 þ 4

3
C11
n ðC11

n − 2eC20
n Þ − 4jeE22

n j2
�
;

Dð2Þ
εε ¼ 3Pγ8

80e2
X∞
n¼1

nH2
0Ωn

�
jE11

n þ E13
n þ 2ðE21

n − E23
n Þ þ e

2
ðE20

n − 8E22
n − E24

n Þj2 þ 4

3
ðC11

n − 2eC20
n Þ2

�
;

Dð2Þ
PI ¼ Dð2Þ

Pω ¼ Dð2Þ
PΩ ¼ Dð2Þ

Pε ¼ Dð2Þ
eI ¼ Dð2Þ

eω ¼ Dð2Þ
eΩ ¼ Dð2Þ

eε ¼ Dð2Þ
Iε ¼ Dð2Þ

Ωε ¼ 0: ð4:2Þ
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The Hansen coefficients are defined by

Clm
n ðeÞ≡

Z
t0þP

t0

dt
P
exp

�
2πint
P

�
cosmψ

ð1þ e cosψÞl ;

Slmn ðeÞ≡
Z

t0þP

t0

dt
P
exp

�
2πint
P

�
sinmψ

ð1þ e cosψÞl ;

Elm
n ðeÞ≡ Clm

n ðeÞ þ Slmn ðeÞ; ð4:3Þ

with primes indicating eccentricity derivatives, and the
deterministic drift terms are those given in Sec. II C,

VP ¼ −
192πηv5P

5γ7

�
1þ 73

24
e2 þ 37

96
e4
�
;

Ve ¼ −
608πηv5P
15Pγ5

�
eþ 121

304
e3
�
;

Vω ¼ 6πv2P
Pγ2

;

Vε ¼
2πv2P
P

�
6 − 7η −

15 − 9η

γ

�
: ð4:4Þ

The values of some of these drift and diffusion coef-
ficients as functions of eccentricity and harmonic frequency
are shown in Figs. 3–6; we focus on the coefficients
pertaining to the period and eccentricity of the binary, as
these are the most important for our envisaged observa-
tional applications. These coefficients, describing the
evolution of the size and shape of the orbit, are independent
of the remaining four orbital elements ðI;Ω;ω; εÞ,
which all describe the orientation of the orbit in space.
In Figs. 4 and 3 we plot the coefficients against eccentricity,
assuming various power-law SGWB spectra ΩðfÞ ∼ fα,
α ∈ ½−2;þ2�. There are two particularly striking features

that are worth mentioning: the first is that Dð2Þ
Pe and Dð2Þ

ee

both vanish as e → 1, regardless of the SGWB spectrum;

and the second is that Dð1Þ
e changes sign at an eccentricity

e ≈ 0.4 that is approximately (though not exactly) inde-
pendent of the SGWB spectrum; the significance of this
near-universal crossover eccentricity is not immediately
clear.
In Figs. 5 and 6 we plot the contributions from each of

the binary’s harmonic frequencies f ¼ n=P. We see that the
evolution of the period is driven by the n ¼ 2 harmonic for
near-circular binaries, with all other harmonics having zero

contribution to Dð2Þ
PP and Dð1Þ

P in the circular limit e → 0.
This mirrors the frequency content of GW emission from
binaries, which is also dominated by the n ¼ 2 harmonic
for small eccentricity. The significance of n ¼ 2 here can be
understood by recognising that advancing a circular orbit in
time by P=2 (i.e. the inverse of the n ¼ 2 harmonic) is
equivalent to exchanging the positions of the two bodies,
resulting in a setup which has the same GW emission and
absorption properties. The eccentricity evolution, on the

other hand, is dominated by the n ¼ 1 and n ¼ 3 harmonics
when e is small. In all cases, the contribution from higher
harmonics becomes stronger for larger eccentricities, as the
Fourier spectrum of the binary’s response to GWs becomes
richer. (Again, this is the same qualitative pattern that one
finds in the case of GW emission by the binary.) In the limit
e → 1, we see a very simple pattern emerge in which each
coefficient approaches a power law in the harmonic number

n (except for Dð2Þ
ee , which vanishes in this limit).

The qualitative link between the GW emission and
absorption spectra of binaries noted above is intriguing,
and raises the question of whether this relationship can be
established more formally. This might lead to deeper
insights into binary–GW interactions, for example by
allowing us to prove something akin to a fluctuation-
dissipation theorem for this system. It would also be
interesting to make contact with existing results on the
scattering of GWs by binaries [60]. However, on the face
of it there are several important differences between the
GW absorption and emission processes: for example, the
masses of the orbiting bodies are crucial in determining
the radiated GW flux, but have no influence at all on GW
absorption, since the GW-induced oscillations in the
orbital separation are independent of the masses. (This
last statement is a manifestation of the equivalence
principle.) We leave a more thorough exploration of these
questions for future work.
Inserting the coefficients in Eqs. (4.1) and (4.2) into

Eq. (3.20), we obtain a FPE which completely describes
the secular evolution of a general binary system under
SGWB resonance; this is the main result of our analysis.
Sections V, VI, and VII explore various strategies for
solving this equation, and for using these solutions to place
constraints on the SGWB spectrum. Before moving on, we
derive some simplified expressions for the KM coefficients
in the cases where the eccentricity and/or the inclination
are small.

B. Small-eccentricity and small-inclination orbits

For binaries with very small eccentricity, we want to
recast the results above in terms of the alternative
orbital elements ðP; ζ; κ; I;Ω; ξÞ, as defined in
Eq. (2.18). We do this using the coordinate transformation
laws for the KM coefficients (see, e.g., Sec. 4.9 of Ref. [54]
for a derivation),

Dð1Þ
i ¼ ∂Xi

∂Xi0
Dð1Þ

i0 þ ∂2Xi

∂Xi0∂Xj0
Dð2Þ

i0j0 ;

Dð2Þ
ij ¼ ∂Xi

∂Xi0

∂Xj

∂Xj0
Dð2Þ

i0j0 ; ð4:5Þ

where summation over the primed indices is implied.
Neglecting terms of order e2 ∼ ζ2 ∼ ζκ ∼ κ2, we find the
drift coefficients
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FIG. 3. The secular diffusion coefficients Dð2Þ
PP, D

ð2Þ
Pe , and Dð2Þ

ee (first, second, and third rows, respectively) as functions of eccentricity,
for various power-law SGWB spectra, ΩðfÞ ∼ fα. The left column shows positive power-law indices, α ¼ 0;…; 2, while the right
column shows negative indices, α ¼ 0;…;−2.

DIEGO BLAS and ALEXANDER C. JENKINS PHYS. REV. D 105, 064021 (2022)

064021-12



Dð1Þ
P ¼ VP þ 3P2

160
H2

0ð−79Ω1 þ 288Ω2 − 27Ω3Þ;

Dð1Þ
ζ ¼ Vζ þ

P
160

ζ

ζ2 þ κ2
H2

0ð25Ω1 − 27Ω3Þ;

Dð1Þ
κ ¼ Vκ þ

P
160

κ

ζ2 þ κ2
H2

0ð25Ω1 − 27Ω3Þ;

Dð1Þ
I ¼ 3P

80
H2

0Ω2 cot I;

Dð1Þ
Ω ¼ 0;

Dð1Þ
ξ ¼ Vξ; ð4:6Þ

where the deterministic drift terms are given by

Vζ ¼
6πv2P
P

�
κ −

304

45
ηv3Pζ

�
;

Vκ ¼ −
6πv2P
P

�
ζ þ 304

45
ηv3Pκ

�
;

Vξ ¼ −
4πv2P
P

ð3 − ηÞ; ð4:7Þ
and the diffusion coefficients are

Dð2Þ
PP ¼ 27P3

20
H2

0Ω2;

Dð2Þ
Pζ ¼ −

3Pζ
160

H2
0ð25Ω1 þ 12Ω2 − 27Ω3Þ;

Dð2Þ
Pκ ¼ −

3Pκ
160

H2
0ð25Ω1 þ 12Ω2 − 27Ω3Þ;

FIG. 4. Stochastic parts of the secular drift coefficients Dð1Þ
P (first row) and Dð1Þ

e (second row) as functions of eccentricity, for various
power-law SGWB spectra, ΩðfÞ ∼ fα. The left column shows positive power-law indices, α ¼ 0;…; 2, while the right column shows
negative indices, α ¼ 0;…;−2.
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Dð2Þ
ζζ ¼ Dð2Þ

κκ ¼ P
160

H2
0ð29Ω1 þ 9Ω3Þ;

Dð2Þ
ζΩ ¼ −

3Pκ
80

H2
0Ω2

cos I
sin2 I

;

Dð2Þ
ζξ ¼ −

Pκ
320

H2
0½203Ω1 − 12Ω2ð20þ cot2 IÞ þ 63Ω3�;

Dð2Þ
κΩ ¼ 3Pζ

80
H2

0Ω2

cos I
sin2 I

;

Dð2Þ
κξ ¼ Pζ

320
H2

0½203Ω1 − 12Ω2ð20þ cot2 IÞ þ 63Ω3�;

Dð2Þ
II ¼ 3P

80
H2

0Ω2;

Dð2Þ
ΩΩ ¼ 3P

80
H2

0Ω2 csc2 I;

Dð2Þ
Ωξ ¼ −

3P
80

H2
0Ω2

cos I
sin2 I

;

Dð2Þ
ξξ ¼ 3P

80
H2

0Ω2ð16þ cot2 IÞ;

Dð2Þ
PI ¼ Dð2Þ

PΩ ¼ Dð2Þ
Pξ ¼ Dð2Þ

ζκ

¼ Dð2Þ
ζI ¼ Dð2Þ

κI ¼ Dð2Þ
IΩ ¼ Dð2Þ

Iξ ¼ 0: ð4:8Þ

(We have checked explicitly that the Dð2Þ
PP coefficient here

matches the corresponding result in Ref. [34].)
We see from Eq. (4.6) that the stochastic drift term for the

period P is usually positive, and can thus be interpreted
physically as describing the softening of the binary due to
the absorption of energy from the SGWB (the term can
become negative if Ω2 is significantly smaller than Ω1

and/or Ω3, but SGWB spectra typically vary sufficiently
slowly with frequency that this does not occur). Interestingly,

this implies that the net secular drift of the binary period
(deterministic plus stochastic) generally changes sign at
some critical value of P; e.g., for a scale-invariant SGWB
ΩðfÞ ¼ constant, this value is given by

Pcrit ¼
�
1024πη

91H2
0Ω

�
3=11

ð2πGMÞ5=11

≈ 95 yr ×

�
Ω

10−6
1=4
η

�
−3=11

�
M
M⊙

�
5=11

; ð4:9Þ

which corresponds to a semimajor axis of

acrit ≈ 21au ×

�
Ω

10−6
1=4
η

�
−2=11

�
M
M⊙

�
1=3

: ð4:10Þ

Binaries with P < Pcrit will decay through GW emission,
decreasing their period further, whereas binaries with
P > Pcrit undergo a net softening through SGWB absorp-
tion, leading to a further increase in their period. The point
P ¼ Pcrit is thus an unstable fixed point of the Langevin
equation for P.4 Note however that random diffusion due to

FIG. 5. Contributions to the secular diffusion coefficients Dð2Þ
PP (left panel) and Dð2Þ

ee (right panel) from different harmonic frequencies,
for binaries with various eccentricities e ¼ 0;…; 1. (The subscript “n” here indicates that we have extracted the contribution from the
nth harmonic.) We set ΩðfÞ ¼ constant here, so that each harmonic receives equal weighting; alternative SGWB spectra will give

different weighting to each harmonic. Note that Dð2Þ
ee ¼ 0 when e → 1.

4We can understand this instability through a thermodynamic
analogy. In the absence of the SGWB, a binary system radiates
GWenergy with increasing intensity as it inspirals; its dynamical
“temperature” grows as it loses energy, meaning that it has a
negative heat capacity. Similarly, the SGWB acts as a heat
reservoir and imparts energy to the binary (on average), therefore
slowing the orbital motion and decreasing the system’s temper-
ature. A conventional thermodynamic system with positive heat
capacity would equilibrate at a point where the heat loss from
GW radiation balanced the heat gain from the SGWB. Instead,
the binary undergoes a runaway increase or decrease in its
temperature due to its negative heat capacity.
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Dð2Þ
PP acts on a similar timescale [see Fig. 7 and Eqs. (5.7) and

(5.8)], and can easily push the system either side of this
critical point.
We find a similar phenomenon for the eccentricity.

Transforming back from the Laplace-Lagrange variables
ζ, κ for now, Eqs. (4.6) and (4.8) give

Dð1Þ
e ¼ Ve þ

9P
80e

H2
0ð3Ω1 − Ω3Þ; ð4:11Þ

so that the (usually positive) stochastic drift diverges as
e → 0, while the (always negative) deterministic part
vanishes as e → 0. The net eccentricity drift thus changes
sign at a critical value, just as it does for the period. For
example, assuming a scale-invariant SGWB spectrum, this
critical value is

ecrit ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27H2

0Ω
4864πηv5P

s

≈ 5.9 × 10−5 ×

�
Ω

10−6
1=4
η

�
1=2

�
M
M⊙

�
−5=6

�
P
yr

�
11=6

:

ð4:12Þ

Since ∂eD
ð1Þ
e < 0 at this point, ecrit is a stable fixed point of

the corresponding Langevin equation: binaries with larger
eccentricity will tend to circularize through GW emission
until they reach ecrit, while binaries with smaller eccentricity
will on average have their eccentricity excited through
SGWB resonance. This is particularly interesting from an
observational point of view, as it suggests that eccentricities
smaller than ecrit might be less frequently observed in
sufficiently old systems, though random diffusion due to

Dð2Þ
ee can still push systems below this point.
We also see from Eq. (4.6) that the stochastic drift term

for the inclination changes sign at I ¼ π=2 [this is also
true in the general-eccentricity case, see Eq. (4.1)]. Since

∂ID
ð1Þ
I < 0 at I ¼ π=2, this is a stable fixed point of the

FIG. 6. Contributions to the stochastic parts of the secular drift coefficients Dð1Þ
P (left panel) and Dð1Þ

e (right panel) from different
harmonic frequencies, for binaries with various eccentricities e ¼ 0;…; 1. (The subscript “n” here indicates that we have extracted the
contribution from the nth harmonic.) We show the absolute values, as the drift coefficients have both positive and negative contributions.

Note that Dð1Þ
e → þ∞ as e → 0.

FIG. 7. Evolution timescales for the DF of a circular binary
with total mass M ¼ M⊙ immersed in a scale-invariant SGWB
ΩðfÞ ¼ constant. Solid curves show the drift timescale (5.7),
which is dominated by GW emission at “short” periods P≲ Pcrit
and by GW absorption from the SGWB at “long” periods
P≳ Pcrit. Dashed curves show the diffusion timescale (5.8).
The dotted black curve shows τ ¼ P; the region below this curve
corresponds to a timescale faster than the binary period, which
breaks our secular averaging assumption and should thus be taken
with a grain of salt.
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corresponding Langevin equation; stochastic drift will, on
average, drive binaries toward I ¼ π=2. This effect is
counteracted, however, by binaries diffusing away from
I ¼ π=2. As we show explicitly in Sec. V, on extremely
long timescales these two effects balance each other,
leaving an isotropic distribution for the inclination with
mean hIi ¼ π=2.
In the limit where the binary’s inclination is also small,

we rewrite the KM coefficients in terms of the orbital
elements ðP; ζ; κ; p; q; λÞ. This gives the drift coefficients

Dð1Þ
p ¼ −

Pp
40

H2
0Ω2;

Dð1Þ
q ¼ −

Pq
40

H2
0Ω2; ð4:13Þ

and the diffusion coefficients,

Dð2Þ
ζλ ¼ −

Pκ
320

H2
0ð203Ω1 − 240Ω2 þ 63Ω3Þ;

Dð2Þ
κλ ¼ Pζ

320
H2

0ð203Ω1 − 240Ω2 þ 63Ω3Þ;

Dð2Þ
pp ¼ Dð2Þ

qq ¼ 3P
80

H2
0Ω2;

Dð2Þ
pλ ¼ 3Pq

160
H2

0Ω2

Dð2Þ
qλ ¼ −

3Pp
160

H2
0Ω2

Dð2Þ
λλ ¼ 3P

5
H2

0Ω2;

Dð2Þ
Pp ¼ Dð2Þ

Pq ¼ Dð2Þ
Pλ ¼ Dð2Þ

ζκ ¼ Dð2Þ
ζp

¼ Dð2Þ
ζq ¼ Dð2Þ

κp ¼ Dð2Þ
κq ¼ Dð2Þ

pq ¼ 0; ð4:14Þ

where the coefficients not listed are identical to those in
Eqs. (4.6) and (4.8). Note that this implies

Dð1Þ
I ¼ 3P

80I
H2

0Ω2; ð4:15Þ

which diverges as I → 0. This means that binaries are
quickly excited away from zero inclination, similar to what
happens for the eccentricity as e → 0.

V. SOME EXACT RESULTS FOR CIRCULAR
BINARIES

We have shown that the osculating orbital elements of a
binary coupled to the SGWB evolve according to a
nonlinear six-dimensional FPE, for which no analytical
solution is generally available. However, in the small-
eccentricity limit e → 0, we found in Eqs. (4.6) and (4.8)
that the drift and diffusion of the binary period P are
independent of all of the other orbital elements. This allows
us to treat P separately by solving the one-dimensional FPE

∂W
∂t ¼ −

∂J
∂P ; ð5:1Þ

where WðP; tÞ is now the single-variable DF for P,
marginalized over the other orbital elements, and where

JðP; tÞ≡Dð1ÞW − ∂PðDð2ÞWÞ ð5:2Þ

is the probability current [54,55]. (We have suppressed the
P subscripts on the drift and diffusion coefficients for this
single-variable case.) In this section, we derive some exact
results for this simplified equation. These results highlight
the power of our Fokker-Planck formalism, which allows
us to answer these questions about the full shape of the DF
in a way that previous analyses are unable to.

A. Quasistationary period distribution

The simplest kind of solution to look for is a stationary
(i.e., time-independent) distribution, corresponding to con-
stant probability current throughout the parameter space.
Setting J ¼ constant in Eq. (5.2), we can use the integrating
factor (which is defined up to an arbitrary constant
multiplicative factor)

IðPÞ≡ exp

�Z
dP

Dð1Þ

Dð2Þ

�
ð5:3Þ

to obtain

W ¼ IðPÞ
Dð2Þ

�
C − J

Z
dP
IðPÞ

�
; ð5:4Þ

with C a constant which, for a given value of J, is fixed by
the normalization of the DF. Clearly, the functional form
of Eq. (5.4) depends on the SGWB energy spectrum ΩðfÞ.
As a simple example, consider a scale-invariant SGWB,
ΩðfÞ ¼ constant, which has

Dð1Þ ¼ VP þ 273

80
P2H2

0Ω; Dð2Þ ¼ 27

20
P3H2

0Ω;

IðPÞ ∝ P91=36 exp

�
91

132

�
Pcrit

P

�
11=3

�
: ð5:5Þ

A full exploration of spectra beyond this simple scale-
invariant case is beyond our scope here, but we expect the
qualitative results of this section to be reasonably robust to
this choice.
We can fix J andC by imposing the appropriate boundary

conditions. For some minimum value of P the binary merges
or is tidally disrupted, whereas for some maximum value the
binary becomes gravitationally unbound, so at both extremes
we require absorbing boundary conditions—i.e., theDFmust
go to zero at both boundaries. Systems with absorbing
boundary conditions do not admit nonzero stationary sol-
utions [55]; formally, the conditional probability of the binary
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havingperiodP at time t, given that it initially hadperiodP0 at
time zero, obeys

lim
t→∞

WðP; tjP0; 0Þ ¼ 0 ð5:6Þ

across the entire parameter space. Intuitively, this is
because all of the initial probability mass is eventually
absorbed by one or other of the boundaries. We can also
understand this in terms of the instability discussed in
Sec. IV B; binaries either side of the critical period Pcrit
undergo a runaway evolution away from this point, reach-
ing one of the two boundaries within finite time, thus
leaving an empty distribution in the limit t → ∞.
In practice, however, the timescale over which the binary

evolves is set by its period, and binaries with short periods
will approach stationarity much faster than binaries with
long periods. More concretely, for a flat SGWB spectrum
we have a drift timescale

τdrift ≡ P

jDð1Þj ≃
8<
:

80
273PH2

0
Ω ; P ≫ Pcrit;

5P8=3

192πηð2πFMÞ5=3 ; P ≪ Pcrit;
ð5:7Þ

and a diffusion timescale

τdiff ≡ P2

jDð2Þj ¼
20

27PH2
0Ω

: ð5:8Þ

As shown in Fig. 7, the fastest timescale is many orders of
magnitude shorter near the lower boundary than it is near
the upper boundary. It may be reasonable, therefore, to look
for “quasistationary” solutions, where equilibrium is estab-
lished near the lower boundary, but where the boundary
condition for long periods is neglected. We achieve this by
choosing J and C such that the DF goes to zero at the lower
boundary, and such that the DF is normalized, but without
enforcing any condition at the upper boundary.
As a simple example, consider a scale-invariant SGWB

spectrum ΩðfÞ ¼ constant, and fix the DF to be zero at the
period corresponding to the binary’s innermost stable
circular orbit (ISCO),

PISCO ≡ 63=2 × 2πGM; ð5:9Þ

with the binary assumed to merge at periods shorter
than this. The corresponding quasistationary distribution
is then given in terms of the dimensionless variable
ϱ≡ P=PISCO by

Wqs∝ exp
�

λ

ϱ11=3

��
E77=132ðλϱ−11=3Þ

ϱ2
−
E77=132ðλÞ
ϱ17=36

�
; ð5:10Þ

where EnðzÞ≡ R∞
1 dte−ztt−n is the exponential integral

function, and

λ≡ 91

132

�
Pcrit

PISCO

�
11=3

¼
ffiffiffi
2

p
ηðGMH0Þ−2
8019

ffiffiffi
3

p
πΩ

≫ 1 ð5:11Þ

is a dimensionless constant which quantifies the strength
of the deterministic drift VP relative to the secular diffusion
Dð2Þ. While the functional form of Eq. (5.10) is somewhat
opaque, one can show that it approximately interpolates
between Wqs ∼ P5=3 for PISCO ≪ P ≪ Pcrit and Wqs ∼
P−17=36 for P ≫ Pcrit (this broken-power-law behavior is
clearly seen in Fig. 8). We normalize Eq. (5.10) by
integrating up to some maximum period, which we choose
to be the age of the Universe. By substituting Eq. (5.10)
into Eq. (5.2) and evaluating at ϱ ¼ 1 where W ¼ 0 and
∂W=∂P > 0, we see that the probability current is strictly
negative, J < 0. Since we specified that J ¼ constant, this
means there is a uniform net flow toward shorter periods
throughout the parameter space.
For hard binaries with P < Pcrit it is obvious that we

should have J < 0, as the negative deterministic drift is the
most important effect and quickly drives the binary toward
merger. For soft binaries with P > Pcrit the negative
probability current is less immediately obvious; it shows
us that, while there is a net drift Dð1Þ pushing these binaries
toward longer periods, on average they are nonetheless
expected to flow toward shorter periods. We can understand
this somewhat counterintuitive behavior by including

FIG. 8. The quasistationary distribution (5.10) for the period P
of a binary with mass M ¼ M⊙ coupled to a scale-invariant
SGWB, ΩðfÞ ¼ constant. The upper and lower cutoffs are due to
the age of the Universe and the binary’s ISCO period (5.9),
respectively. The dashed vertical lines indicate the value of Pcrit
for each Ω, as defined by Eq. (4.9)—this is roughly the peak of
the distribution in each case. Binaries with periods P < Pcrit
decay deterministically through GW emission and are removed
from the distribution, whereas binaries with P > Pcrit are sup-
ported against decay by resonant absorption of the SGWB. As we
lower the SGWB intensity Ω, the resonance becomes weaker, and
the binaries must have longer periods to avoid decay.
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diffusion as well as drift effects. Indeed, note that by
Eq. (5.2), the condition J < 0 is equivalent to

∂ðlnDð2ÞWÞ
∂ðlnPÞ >

PDð1Þ

Dð2Þ ¼ 91

36
½1 − ðP=PcritÞ−11=3�; ð5:12Þ

where the rhs tends to a positive constant value in the
P ≫ Pcrit region we are interested in. What this is telling us
is that, despite the positive drift coefficient, we can still
have a negative probability current if and only if the
diffusion coefficient Dð2Þ grows sufficiently quickly with
P, as this makes it sufficiently likely for the binary’s
random walk to wander below Pcrit and then rapidly
approach short periods through GW emission.
Interestingly, we find that for the quasistationary distribu-
tion we have ∂ðlnDð2ÞWqsÞ=∂ðlnPÞ ≃ 91=36, so this dif-
fusive effect is only just strong enough to cause a net
negative probability current.
We can repeat the calculations above for any given

SGWB spectrum to write down a corresponding quasista-
tionary solution for the period of a circular binary.
However, the time taken to relax to this distribution is
extremely long for typical SGWB spectra (see Fig. 7), so
these solutions are physically uninteresting in most cases.
Besides, the assumption of a perfectly circular binary is
overly simplistic, as we have shown in Sec. IV B that the
eccentricity distribution relaxes away from zero on shorter
timescales. Nonetheless, the approach in this section is still
useful for building intuitive understanding of the dynamics
of the full DF, and may be useful for, e.g., studies of the
orbital element distributions of old populations of binaries,
where the full shape of the distribution is vitally important.
Finding quasistationary solutions for the full multivariate
FPE is much more challenging, and for eccentric binaries
there is no guarantee that such a solution with the
appropriate lower boundary condition even exists.

B. Mean coalescence time

For any one-dimensional FPE, it is possible to write
down an explicit formula for the mean first passage time at
either of its boundaries—i.e., the average time taken for an
individual random trajectory to reach that boundary, as a
function of the initial position [55]. In our case, this is
a useful tool for understanding how the presence of a
particular SGWB spectrum impacts upon the eventual fate
of a binary system. Applying this to our lower absorbing
boundary at the ISCO, we thus have the mean coalescence
time of a binary coupled to the SGWB, as a function of its
initial period Pi,

hτðPiÞi ¼
Z

Pi

PISCO

dP
Z

Pmax

P
dP0 IðP0Þ

IðPÞDð2ÞðP0Þ ; ð5:13Þ

where IðPÞ is the integrating factor defined in Eq. (5.3).

Returning to the example of a scale-invariant SGWB,
this becomes

hτðPiÞi¼
Z

ϱi

1

dϱ

ϱ91=36

Z
ϱmax

ϱ

dϱ0

ϱ017=36
20eλðϱ0−11=3−ϱ−11=3Þ

27PISCOH2
0Ω

: ð5:14Þ

This double integral is challenging to evaluate in general.
However, we can easily verify Eq. (5.14) by showing that
it reproduces the standard expression for the coalescence
time due to deterministic GW emission in cases where
the SGWB resonance is weak. Setting Pi ≪ Pcrit, we can
safely take the limit λ → ∞ and extract the leading-order
and next-to-leading-order terms,

hτðPiÞi ≃
405GM
16η

�
Pi

PISCO

�
8=3

×

�
1 −

96

91
e−

91
132

ðPcrit=PiÞ11=3 P151=36
max

P19=36
i P11=3

crit

�
: ð5:15Þ

The leading-order term agrees with the deterministic
coalescence time one finds by integrating VP, as expected.
There is a small negative contribution from the next-to-
leading-order term, which indicates that SGWB resonance
slightly speeds up the coalescence in this regime. We can
understand this by noticing that the term associated with
Dð2Þ in Eq. (5.2) is always negative for the quasistationary
distribution, so that diffusion always has a net negative
contribution to the probability current and thus, on average,
always help drive binaries toward merger.

C. Including the remaining orbital elements

Having found a quasistationary period distribution, it is
now relatively easy to obtain stationary distributions for the
remaining orbital elements ðI;Ω; ξÞ, so long as we hold ζ
and κ fixed at zero. To do so, we write the full FPE as

∂W
∂t ¼ −∂iJi; Ji ≡Dð1Þ

i W − ∂jðDð2Þ
ij WÞ; ð5:16Þ

whereW is now interpreted as the multivariate DF over the
four orbital elements ðP; I;Ω; ξÞ, and the four correspond-
ing probability currents are

JP ¼ Dð1Þ
P W − ∂PðDð2Þ

PPWÞ;
JI ¼ Dð1Þ

I W −Dð2Þ
II ∂IW;

JΩ ¼ −Dð2Þ
ΩΩ∂ΩW −Dð2Þ

Ωξ∂ξW;

Jξ ¼ VξW −Dð2Þ
Ωξ∂ΩW −Dð2Þ

ξξ ∂ξW: ð5:17Þ

We have used Eqs. (4.6) and (4.8) to simplify these
expressions, in particular using the independence of the
diffusion terms from most of the orbital elements to take
them outside the partial derivatives.
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We first consider the inclination I. By definition, this is
constrained to lie in the interval ½0; π�. Unlike for the period
P, a binary reaching one of the boundaries of this interval is
not removed from the distribution; instead of absorbing
boundary conditions, we have reflecting boundary con-
ditions, i.e., the probability current JI vanishes at both
boundaries. However, if the distribution is stationary then
JI ¼ constant, so the current must vanish everywhere on
½0; π�. Setting JI ¼ 0 in Eq. (5.17) gives

∂I lnW ¼ Dð1Þ
I =Dð2Þ

II ¼ cot I: ð5:18Þ

Integrating this, we find

W ∝ sin I; ð5:19Þ

which corresponds to an isotropic distribution (since cos I
is uniformly distributed). This makes intuitive sense: on
long timescales, SGWB resonance causes the binary to
“forget” its initial orbital plane, such that the resulting
stationary distribution is spherically symmetric. This also

agrees with our finding in Sec. IV B that Dð1Þ
I ¼ 0 at

I ¼ π=2, which is the mean inclination of an isotropic
distribution.
For Ω and ξ it is natural to impose periodic boundary

conditions for the DF and for the probability currents,

WðP; I;Ω; ξ; tÞ ¼ WðP; I;Ωþ 2π; ξ; tÞ
¼ WðP; I;Ω; ξþ 2π; tÞ;

JiðP; I;Ω; ξ; tÞ ¼ JiðP; I;Ωþ 2π; ξ; tÞ
¼ JiðP; I;Ω; ξþ 2π; tÞ: ð5:20Þ

Stationarity requires ∂ΩJΩ ¼ ∂ξJξ ¼ 0. By inspection, we
see that this is achieved if ∂ΩW ¼ ∂ξW ¼ 0, so that the DF
depends only on P and I. This corresponds toΩ and ξ being
uniformly distributed, which also satisfies the periodic
boundary conditions; Ω then has zero probability current,
while ξ has a uniform negative current due to the deter-
ministic drift Vξ, which depends only on the period.

VI. SOLVING THE FULL FOKKER-PLANCK
EQUATION

We now consider the full FPE for all six orbital elements
ðP; e; I;Ω;ω; εÞ. Allowing nonzero eccentricity e > 0
leads to much more complicated KM coefficients, and
means that the results of Sec. V are no longer applicable.
Nonetheless, we can use the fact that diffusion of the orbital
elements due to the SGWB takes place on very long
timescales τdiff ∼ 1=ðPH2

0ΩÞ ≫ P (see Fig. 7). This allows
us to develop some useful approximate solution schemes
for much shorter observational timescales.

A. Perturbative short-time solution

The FPE can be written as an operator equation

∂W
∂t ¼ LFPW; ð6:1Þ

defined by the linear differential operator,

LFPðXÞ≡ −∂iD
ð1Þ
i þ ∂i∂jD

ð2Þ
ij : ð6:2Þ

This has the formal solution5

WðX; tÞ ¼ etLFPWðX; 0Þ; ð6:3Þ

which, for short times t ≪ τdiff , can be expanded as

WðX; tÞ ¼ ½1þ tLFPðX; 0Þ þOðt=τdiffÞ2�WðX; 0Þ; ð6:4Þ

where the rhs depends only on data at time zero.
Suppose that at time zero the binary’s orbital elements

take on the “sharp” values xi. The initial condition for the
DF is then

WðX; 0Þ ¼ δð6ÞðX − xÞ: ð6:5Þ

By using a Fourier representation of the delta function, we
can evaluate Eq. (6.4) to find [54]

WðX;tÞ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det4πtDð2Þp

×exp

	
−
½Dð2Þ�−1ij

4t
ðXi−xi−D

ð1Þ
i tÞðXj−xj−D

ð1Þ
j tÞ



þOðt=τdiffÞ2; ð6:6Þ

i.e., on short timescales, the DF is a multivariate Gaussian

with mean xi þDð1Þ
i t and covariance matrix 2tDð2Þ

ij . Here

½Dð2Þ�−1ij represents the elements of the inverse of the
diffusion matrix, and both the drift vector and diffusion
matrix are evaluated at ðX; tÞ ¼ ðx; 0Þ.

B. Evolution of moments of the orbital elements

The short-time expansion shows that on observational
timescales the DF of the orbital elements is approximately
Gaussian, and is therefore completely characterized by its
first two moments: the mean and the covariance matrix,
which we write as

5Here we take advantage of the time-independence of the
secular KM coefficients. For time-dependent coefficients, one
would need to instead construct a time-ordered Dyson series [54],
though this gives the same result for short times.
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X̄i ≡ hXii;
Cij ≡ Cov½Xi; Xj� ¼ hðXi − X̄iÞðXj − X̄jÞi: ð6:7Þ

It is therefore useful to take moments of the FPE to find the
time evolution of these quantities, rather than attempting to
calculate the full time-dependent DF. In doing so, we can
calculate the backreaction of perturbations on the evolution
of the binary, obtaining corrections to the linear growth
found in Eq. (6.6).
The first moment of the FPE gives

_̄Xi¼
∂
∂t
Z

dXXiW¼
Z

dXXi
∂W
∂t

¼−
Z

dXXi∂jðDð1Þ
j WÞþ

Z
dXXi∂j∂kðDð2Þ

jk WÞ: ð6:8Þ

We integrate by parts, and assume that the DF falls off fast
enough that all boundary terms vanish, leaving

_̄Xi ¼
Z

dXDð1Þ
i W ¼ hDð1Þ

i i: ð6:9Þ

This fall-off assumption is very reasonable here, as the
diffusion rate is extremely small for realistic binaries, so the
DF will only have support very near to the mean value.
Doing the same for the second moment gives

d
dt
hXiXji ¼

Z
dXXiXj

∂W
∂t

¼ −
Z

dXXiXj∂kðDð1Þ
k WÞ

þ
Z

dXXiXj∂k∂lðDð2Þ
klWÞ

¼
Z

dXðXiD
ð1Þ
j þ XjD

ð1Þ
i ÞW þ 2

Z
dXDð2Þ

ij W

¼ hXiD
ð1Þ
j i þ hXjD

ð1Þ
i i þ 2hDð2Þ

ij i: ð6:10Þ

We can combine these to give the evolution equation for the
covariance matrix,

_Cij ¼
d
dt
ðhXiXji − X̄iX̄jÞ

¼ hXiD
ð1Þ
j i þ hXjD

ð1Þ
i i þ 2hDð2Þ

ij i
− hXiihDð1Þ

j i − hXjihDð1Þ
i i

¼ Cov½Xi;D
ð1Þ
j � þ Cov½Xj;D

ð1Þ
i � þ 2hDð2Þ

ij i: ð6:11Þ

C. The slow-diffusion approximation

Eqs. (6.9) and (6.11) fully describe the evolution of
the mean and covariance of the orbital elements. However,
they are given in terms of ensemble averages over nonlinear

functions of the orbital elements, which we cannot perform
without knowing the full DF. Even if we were to evaluate
them approximately by assuming a Gaussian distribution,
the resulting expressions would be very cumbersome.
In the case where the variance is small and any given

orbital element Xi is “close” to its mean value hXii (in a
probabilistic sense), one can instead Taylor expand an
arbitrary function of the elements around the mean,

fðXÞ ¼ fðX̄Þ þ ðXi − X̄iÞ∂ifðX̄Þ

þ 1

2
ðXi − X̄iÞðXj − X̄jÞ∂i∂jfðX̄Þ þ � � � ; ð6:12Þ

so that the mean of the function is approximated by

hfðXÞi ≃ fðX̄Þ þ 1

2
Cij∂i∂jfðX̄Þ: ð6:13Þ

(Note that the first-order term in the expansion vanishes
when taking the mean, as the first central moment is
identically zero.)
We can justify using Eq. (6.13) by noting that the

diffusion matrix calculated in Sec. IV is very small in
most physical situations. To keep track of how this small-
ness propagates into the evolution equations, we introduce
a formal small parameter ϵ (which we will later set to
unity), writing

Dð2Þ
ij → ϵDð2Þ

ij : ð6:14Þ

For sharp initial conditions X̄i ¼ xi, Cij ¼ 0, we see from
Eq. (6.11) that Cij ¼ OðϵÞ, as the Cov½X; Dð1Þ� terms are
initially zero. We therefore also write

Cij → ϵCij: ð6:15Þ

We thus see that Eq. (6.13) is justified if we neglect terms of
order ϵ2. We call this the slow-diffusion approximation, as it
relies on the fact that the timescale τdiff over which the
covariance grows is long compared to the observation time.
Note that the stochastic contribution to the drift vector is
generally of the same order as the diffusion matrix, so we
also write

Dð1Þ
i ¼ Vi þ ϵδDð1Þ

i ; ð6:16Þ

where the stochastic term δDð1Þ
i is suppressed by a factor

of ϵ.
Applying this approximation to Eqs. (6.9) and (6.11), we

obtain the moment evolution equations to first order in ϵ,
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_̄Xi ¼ Vi þ ϵδDð1Þ
i þ 1

2
ϵCjk∂j∂kVi þOðϵ2Þ;

ϵ _Cij ¼ 2ϵDð2Þ
ij þ ϵCik∂kVj þ ϵCjk∂kVi þOðϵ2Þ; ð6:17Þ

where the drift vector and diffusion matrix are both
evaluated at X̄.
We see that the evolution equation (6.17) for the mean

orbital elements includes both Oðϵ0Þ and Oðϵ1Þ terms.
For numerical reasons, it is convenient to separate these.
We therefore write the mean orbital elements as

X̄ðtÞ ¼ X̄0ðtÞ þ ϵδX̄ðtÞ; ð6:18Þ

where X̄0 represents the values the elements would take in
the absence of the SGWB, which obey the deterministic
evolution equation

_̄X0;i ¼ ViðX̄0Þ: ð6:19Þ

(Note that this separation of deterministic and stochastic
parts of the drift is always possible, regardless of the size
of the deterministic term.) Meanwhile δX̄ represents the
deviation in the mean due to SGWB resonance, and evolves
according to

ϵδ _̄Xi ¼ ViðX̄Þ − ViðX̄0Þ þ ϵδDð1Þ
i ðX̄Þ

þ 1

2
ϵCjk∂j∂kViðX̄Þ þOðϵ2Þ: ð6:20Þ

We can Taylor-expand the terms that are evaluated at
X̄ ¼ X̄0 þ ϵδX̄ to give

ϵδ _̄Xi ¼ ϵδX̄j∂jViðX̄0Þ þ ϵδDð1Þ
i ðX̄0Þ

þ 1

2
ϵCjk∂j∂kViðX̄0Þ þOðϵ2Þ: ð6:21Þ

With the appropriate terms identified, we can send
ϵ → 1. Our full set of evolution equations, to leading order
in the slow-diffusion approximation, reads

_̄X0;i ¼ Vi;

δ _̄Xi ≃ δDð1Þ
i þ δX̄j∂jVi þ

1

2
Cjk∂j∂kVi;

_Cij ≃ 2Dð2Þ
ij þ Cik∂kVj þ Cjk∂kVi; ð6:22Þ

with all terms evaluated at the deterministic mean
elements X̄0.
It is interesting to note that, starting from sharp initial

conditions, some elements of the covariance matrix remain
fixed at zero under Eq. (6.22):

CPI ¼ CPΩ ¼ CeI ¼ CeΩ ¼ CIε ¼ CΩε ¼ 0; ð6:23Þ

i.e., stochastic perturbations to these pairs of orbital
elements remain statistically uncorrelated at first order
in the slow-diffusion approximation. This is due to the
vanishing of the corresponding elements of the diffusion

matrix Dð2Þ
ij in Eq. (4.2), as well as the fact that

VI ¼ VΩ ¼ 0. However, all other elements of the covari-
ance matrix generically grow over time.
In Fig. 9, we show an example of an integration of

Eq. (6.22) for the Hulse-Taylor binary pulsar B1913þ 16
[61]. We see that, in this example, the period-eccentricity
sector of the covariance matrix grows linearly with time,

CPP ∼ CPe ∼ Cee ∼ t; ð6:24Þ

indicating that the right-hand side of Eq. (6.22) is domi-
nated by the Dð2Þ term for these components. In contrast,
many of the components involving the argument of peri-
center and compensated mean anomaly (specifically CPω,
CPε, Ceω, Ceε, Cωω, Cωε, and Cεε) have relatively smaller
values for the diffusion matrix, and are instead driven by
the C∂V terms, leading them to grow like ∼t2 (since the
components of the covariance matrix sourcing them grow
like C ∼ t). The components CII, CIΩ, CIω, CΩΩ, and CΩω

evolve more erratically; this is due to the presence of
sin 2ω, cos 2ω terms in the corresponding components of
the diffusion matrix [see Eq. (4.2)], which oscillate on a
timescale π= _ωsec ≈ 43 yr due to the perihelion precession
of the Hulse-Taylor system [62,63]. Finally, the remaining
six components of the covariance matrix are zero through-
out the integration time, as expected from Eq. (6.23).
In Fig. 10 we show the distribution of the orbital

elements at the end of the integration in Fig. 9. We see
that the orbital elements are, on the whole, weakly
correlated with each other, with the notable exceptions
of the pairs ðP;ωÞ, ðP; eÞ, and particularly ðω; εÞ, which are
highly covariant. Note that these distributions include the
overall offset due to stochastic drift, but that this is less
important than diffusion in this case, and is therefore harder
to distinguish by eye.

D. Growth rate of non-Gaussianity

By using Eq. (6.22) we have neglected all higher-order
moments of the distribution, and thus fail to capture any
non-Gaussianities in the DF. We can measure the departure
from Gaussianity by tracking the evolution of the third
central moment,

Sijk ≡ hðXi − X̄iÞðXj − X̄jÞðXk − X̄kÞi; ð6:25Þ

as this vanishes identically for a Gaussian distribution. In
particular, for each individual orbital element Xi we have,
to leading order in the slow-diffusion approximation,

_Siii ≃ −3X̄iCij∂jVi; ð6:26Þ
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(with no summation over i). Unlike the equations for the
first two moments, the rhs of Eq. (6.26) is initially zero—
non-Gaussianity is only sourced once the covariance has
had a chance to grow. We also see that non-Gaussianity can
only be sourced at leading order for orbital elements which
have a nonzero deterministic drift Vi; the inclination I and
longitude of ascending node Ω remain Gaussian at leading
order. This justifies our assumption that the distribution is
Gaussian on observational timescales. However, studies of,
e.g., the properties of old binary populations will require us
to drop this assumption and solve for the full DF. The
results of Sec. Vare an important first step in studying cases
like these.

VII. OBSERVATIONAL APPLICATIONS

In this section we describe how to estimate the sensitivity
of a given binary to a generic SGWB spectrum using
two different high-precision probes of binary dynamics:
timing of millisecond pulsars, and laser ranging experi-
ments. This will allow us to compute forecasts for the upper
limits that each observational probe will be able to place on
various SGWB spectra.

A. Distribution of the observed orbital elements

Consider a set of observations of a binary system,
which are broken up into intervals much longer than the
orbital period, but much shorter than the orbital diffusion
timescale. These observations give us a discrete series
of measurements of the orbital elements XðtÞ, one for each
interval, with the intervals being labeled by t. (It is
necessary to split up the data into intervals, since each
high-precision measurement of the orbital elements
requires a large number of individual data points.) We
assume these measurements are made with Gaussian noise
and zero bias. The measured values X̂ðtÞ are thus drawn
from a multivariate Gaussian distribution centered on the
true values XðtÞ, with log-likelihood L ¼ lnp given by

−2LðX̂jXÞ ¼
X
t

ln det 2πMþ ðX̂ − XÞTM−1ðX̂ − XÞ;

ð7:1Þ

where the measurement noise is described by the covari-
ance matrix M. The form of the covariance matrix depends

FIG. 9. The covariance matrix CijðtÞ of the orbital elements of the binary pulsar B1913þ 16 (the Hulse-Taylor system) over a 1 kyr
interval, assuming a scale-invariant SGWB spectrumΩðfÞ ¼ 10−5, and including the first 400 harmonics. The blue dashed curves show
numerical solutions of the evolution equations (6.22), while the pale red curves show the naive solution t × _Cij, which is exact only

when _Cij ¼ constant.

DIEGO BLAS and ALEXANDER C. JENKINS PHYS. REV. D 105, 064021 (2022)

064021-22



on how sensitive the timing residuals are to each orbital
element—we discuss this further below.
The true orbital elements XðtÞ are themselves random

due to the uncertainty caused by SGWB resonance. As
discussed in Sec. VI, we can usually approximate the
distribution of the elements as Gaussian (at least on
observational timescales), so that the log-likelihood reads

−2LðXjΩÞ ¼
X
t

ln det 2πCþ ðX − X̄ÞTC−1ðX − X̄Þ;

ð7:2Þ

where the mean values X̄ðtÞ and covariance matrix CðtÞ
both depend on the SGWB spectrum ΩðfÞ, and are
computed as described in Sec. VI.

We can marginalize over the unknown “true” elements
XðtÞ to obtain a likelihood function for the measured
elements X̂ðtÞ for a given SGWB spectrum,

−2LðX̂jΩÞ≡ −2 ln
�Z

dXpðX̂jXÞpðXjΩÞ
�

¼
X
t

ln det 2πNþ ðX̂ − X̄ÞTN−1ðX̂ − X̄Þ;

ð7:3Þ

where

N≡Mþ C ð7:4Þ

FIG. 10. Corner plot showing the distribution of the orbital elements of B1913þ 16 at the end of the 1 kyr numerical integration
shown in Fig. 9.
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is the combined covariance matrix, incorporating the
measurement uncertainty as well as the stochasticity of
the orbital elements.

B. Likelihood-ratio test

Given a set of measured orbital elements X̂, we can
phrase the SGWB detection problem as a hypothesis
test, where

(i) H0 is the null hypothesis, that there is no SGWB
present, Ω ¼ 0.

(ii) HΩ is the alternative hypothesis, that there is a
SGWB present, Ω ≠ 0.

The simplest version of this problem is when we are
searching for a SGWB with a fixed spectral shape (e.g., a
power law), in which case the only unknown is a single
parameter setting the overall amplitude, which we
denote Ω. (Concretely, this parameter Ω should then refer
to the amplitude of the SGWB at some fixed reference
frequency.)
A very natural way of carrying out such a hypothesis test

is by using the log-likelihood-ratio statistic

ΛðX̂Þ≡ 2max
Ω>0

½LðX̂jΩÞ − LðX̂j0Þ�; ð7:5Þ

i.e., we compare the likelihood (7.3) in the case of the null
hypothesis Ω ¼ 0 with the maximum value of the like-
lihood as a function of Ω in the case of the alternative
hypothesis. Since the maximum value of the likelihood
over the entire range of values ofΩ is always greater than or
equal to its value at Ω ¼ 0, we see that Λ ≥ 0.
Using Eq. (7.3), along with the fact that N ¼ M when

Ω ¼ 0, we find

ΛðX̂Þ ¼ max
Ω>0

X
t

ðX̂ − X̄0ÞTM−1ðX̂ − X̄0Þ

− ðX̂ − X̄ÞTN−1ðX̂ − X̄Þ − ln detðIþM−1CÞ;
ð7:6Þ

where X̄0 is the value of X̄ when Ω ¼ 0, and where we
have used

detN
detM

¼ detM−1N ¼ detðIþM−1CÞ: ð7:7Þ

Given a set of measurements X̂ðtÞ, we can therefore
compute the likelihood ratio statistic using Eq. (7.6) by
solving the FPE to find X̄ðtÞ and CðtÞ for a large number of
possible of values of Ω in order to maximize the likelihood.
If the resulting value of Λ is large enough, then we reject
the null hypothesis and claim a detection of the SGWB.
An obvious question is: What value of Λ is “large

enough?” To define the detection threshold, we need to
know the distribution of Λ in the case where H0 is true.
Comparing the observed value of Λ with this null

distribution then allows us to directly infer the statistical
significance of the results. Since Λ is a complicated
function of the data X̂, it is difficult to find an exact
distribution, even though we have fully specified how the
data are distributed. However, in the limit where we have a
large number of measurements (i.e., the data cover a large
number of time intervals t), Wilks’ theorem tells us that Λ
follows a chi-squared distribution [64],

lim
nt→∞

Λ ∼ χ21; ð7:8Þ

where nt is the number of time segments. (In this case the
chi-squared distribution has one degree of freedom, as HΩ
has one free parameter compared to H0; we could imagine
using a more complicated model for the SGWB with k
parameters, in which case the appropriate distribution
would be χ2k.) In this limit, we can therefore set the
threshold for detecting the SGWB at a given confidence
level according to the corresponding p-value of χ21; e.g., a
detection with 95% confidence would require Λ ≥ 3.841.

C. Sensitivity forecasts

We can also use the likelihood-ratio statistic discussed
above to estimate the sensitivity of future observing
campaigns to different SGWB spectra. To do so, we simply
compute the expected value of Λ under the SGWB
hypothesis HΩ, and find the smallest value of Ω for which
this expectation surpasses the detection threshold—this
tells us the weakest SGWB that we can expect to detect
with a given set of observations.
Let us use h� � �iΩ to denote an expectation value under

HΩ. By definition, we have

hX̂iiΩ ¼ X̄i;

hðX̂i − X̄iÞðX̂j − X̄jÞiΩ ¼ Nij; ð7:9Þ

where the mean vector X̄ and covariance matrix C here
are computed using the true underlying value of Ω. In
principle, this true Ω is different from the value Ω̂ that
maximizes the likelihood, and it is the latter which
determines the values for X̄ and C that appear in the
statistic Λ. However, in the nt → ∞ limit discussed above
we have Ω̂ → Ω (in statistics parlance, the maximum-
likelihood estimator is efficient [64]), so the two are
interchangeable. It is thus straightforward to show that,
in this limit, the expected value of Λ under HΩ is

hΛiΩ ¼
X
t

δX̄TM−1δX̄ þ trM−1C − ln detðIþM−1CÞ:

ð7:10Þ

We see that the stochastic drift in the orbital elements
appears quadratically here, which means that it typically
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contributes less to the detectability of the SGWB than
diffusion, which enters linearly through the covariance
matrix.
Once we have specified the covariance matrix M for

our observations, we can compute Eq. (7.10) and find the
smallest value of Ω that we can expect to detect.

D. Application to pulsar timing

While the formalism we have developed above is
applicable to a very broad class of astrophysical binary
systems, one of the main applications is in the case where
one member of the binary is a millisecond pulsar (MSP)
[65]. Analysis of the timing data from this MSP then
allows us to determine its orbit with incredible precision,
with uncertainties as small as a few parts per billion in
some cases. These precision measurements allow us to
search for the very small stochastic perturbations to the
orbit described above. (The same principle has been used
to set novel constraints on ultralight dark matter, due to
its resonant effects on binary pulsar orbits [35–39].)
Here we follow the approach of Refs. [66–68] to estimate
the covariance matrix M for the orbital elements of a
binary pulsar.
For each of the nt observation intervals used to construct

the likelihood ratio statistic above, one must observe some
number nobs of pulse arrival times, compare these arrival
times with a timing formula for the binary, and thereby infer
the binary’s orbital elements at that time from the timing
residuals. In the limit nobs → ∞, the resulting covariance
matrix M describing the uncertainty in the orbital elements
is given by the inverse of the Fisher matrix,

M ¼ F−1; Fij ≡ −h∂i∂jLðtjXÞi; ð7:11Þ

where L is the log-likelihood describing the distribution of
arrival times t ¼ ðt1; t2;…; tnobsÞ as a function of the orbital
elements X, and the angle brackets here denote an expect-
ation value under that distribution. We make the standard
assumptions that the pulse arrival times form a set of
uncorrelated Gaussian random variables with constant
variance σ2 (i.e., the timing noise is independent of the
binary’s orbit), and with mean values given by the timing
formula,

htai≡ T aðXÞ; Cov½ta; tb�≡ δabσ
2; ð7:12Þ

so that the log-likelihood is given by

−2LðtjXÞ ¼
Xnobs
a¼1

ln 2πσ2 þ 1

σ2
ðta − T aÞ2: ð7:13Þ

The Fisher matrix for a likelihood of this form (as derived
in, e.g., Ref. [69]) is

Fij ≡ 1

σ2
Xnobs
a¼1

∂T a

∂Xi

∂T a

∂Xj
: ð7:14Þ

To evaluate the Fisher matrix, we therefore need the
derivatives of the timing formula T with respect to each of
the orbital elements. Using the standard Blandford-
Teukolsky timing formula [66], we write these as

∂T
∂P ¼ vP sin I

1þm1=m2

×
E − e sinE

2πð1 − e cosEÞ ðsinω sinE − γ cosω cosEÞ;
∂T
∂e ¼ −

P
2π

vP sin I
1þm1=m2

×

�
sinωð1þ sin2EÞ þ cosω sinE

γ
ðe − γ2 cosEÞ

�
;

∂T
∂I ¼ P

2π

vP cos I
1þm1=m2

½sinωðcosE − eÞ þ γ cosω sinE�;
∂T
∂Ω ¼ 0;

∂T
∂ω ¼ P

2π

vP sin I
1þm1=m2

½cosωðcosE − eÞ − γ sinω sinE�;
∂T
∂ε ¼ −

P
2π

vP sin I
1þm1=m2

sinω sinE − γ cosω cosE
1 − e cosE

;

ð7:15Þ

where the eccentric anomaly EðtÞ is defined by

r ¼ að1 − e cosEÞ; cosψ ¼ cosE − e
1 − e cosE

; ð7:16Þ

and acts as an alternative to the true anomaly ψ as a way of
parametrizing the orbital ellipse. We see that the timing
formula does not depend on the longitude of ascending
node, ∂T =∂Ω ¼ 0, which means that Ω cannot be deter-
mined with pulsar timing (physically this is because Ω
corresponds to a rotation around the line-of-sight axis,
and thus does not affect the observable motion parallel to
the line of sight).
In the limit of many observed pulses, nobs → ∞, and

assuming that these observations are distributed uniformly
in time, we can replace the sum in Eq. (7.14) with an
integral to obtain

Fij ≃
nobs

Tobsσ
2

Z
Tobs

0

dt
∂T
∂Xi

∂T
∂Xj

≃
nobs

Tobsσ
2

P
2π

Z
2πTobs=P

0

dEð1 − e cosEÞ ∂T∂Xi

∂T
∂Xj

;

ð7:17Þ
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where Tobs is the time interval over which the nobs pulse
measurements are made, and where we have used Kepler’s
equation,

dE
dt

¼ 2π=P
1 − e cosE

: ð7:18Þ

For simplicity, we assume that Tobs is an integer multiple of
the binary period P, and begins when the binary is at
pericenter; if this is not the case, then the following
formulas contain additional phase factors which do not
affect the order of magnitude of the results.
We find that it is convenient to define

Fij ¼
nobsP2

16π2σ2

�
vP sin I

1þm1=m2

�
2

F̃ij; ð7:19Þ

pulling out some factors which appear in all of the Fisher
matrix elements. Inserting the derivatives (7.15) into
Eq. (7.17), we find that this factorized form of the
Fisher matrix is given by

F̃PP ¼ 8e
P2

�
1þ 1

4
e2
�
þ cos 2ω

P2
f1ðeÞ

þ 2πTobs

P3
sin 2ωf2ðeÞ

þ 8π2T2
obs

3P4

�
1 −

1

4
cos 2ωf3ðeÞ

�
;

F̃Pe ¼
4

P

�
1þ 3

8
e

��
1 −

1

6
e2
�
þ πTobse

P2γ
sin 2ω

−
8 cos 2ω

3P

�
1þ 3

4
eþ 1

6
e2 þ 1

16
e3
�
;

F̃PI ¼
cot I
P

�
2e

�
1þ 1

4
e

�
þ cos 2ω

�
1 − 2e −

3

2
e2
��

;

F̃Pω ¼ −
sin 2ω
P

�
1 − 2e −

3

2
e2
�
−
2πTobsγ

P2
;

F̃Pε ¼ −
sin 2ω
P

f2ðeÞ −
2πTobs

P2

�
1 −

1

4
cos 2ωf3ðeÞ

�
;

F̃ee ¼
5

γ2

�
1 −

3

4
e2 −

1

20
e4

−
9

10
cos 2ω

�
1 −

23

18
e2 þ 1

18
e4
��

;

F̃eI ¼ 3e cot I

�
1þ 1

12
e2 −

11

6
cos 2ω

�
1 −

1

22
e2
��

;

F̃eω ¼ 11

2
e sin 2ω

�
1 −

1

22
e2
�
;

F̃eε ¼
e
γ
sin 2ω;

F̃II ¼ 2cot2I

�
1þ 3

2
e2 −

5

2
e2 cos 2ω

�
;

F̃Iω ¼ 5e2 cot I sin 2ω;

F̃Iε ¼ 0;

F̃ωω ¼ 2þ 3e2 þ 5e2 cos 2ω;

F̃ωε ¼ 2γ;

F̃εε ¼ 4
sin2ωþ γcos2ω

1þ γ
; ð7:20Þ

where the fiðeÞ are functions of eccentricity, which are
given to Oðe14Þ by

f1ðeÞ ≃ 1þ 8

9
e −

3

16
e2 −

448

225
e3 −

175

288
e4 −

11584

11025
e5

−
2975

9216
e6 −

67264

99225
e7 −

96733

460800
e8 −

5818432

12006225
e9

−
278579

1843200
e10 −

149726912

405810405
e11 −

20910823

180633600
e12;

f2ðeÞ ≃ 1þ 4

3
eþ 5

8
e2 þ 2

15
e3 þ 1

48
e4 þ 1

210
e5

−
29

768
e6 −

31

1260
e7 −

359

7680
e8 −

3559

110880
e9

−
469

10240
e10 −

19087

576576
e11 −

6099

143360
e12;

f3ðeÞ ≃ e2 þ 1

2
e4 þ 5

16
e6 þ 7

32
e8 þ 21

128
e10 þ 33

256
e12:

ð7:21Þ

We have checked numerically that these expressions are
accurate to within ≈2% even at large eccentricity, e ¼ 0.95;
for smaller eccentricities, the accuracy is even better.
For binaries with small eccentricity, we can change to the

alternative orbital elements ðP; ζ; κ; I;Ω; ξÞ to find

F̃PP ¼ 1

P2

�
−
ζ2 − κ2

ζ2 þ κ2
þ 4πTobs

P
ζκ

ζ2 þ κ2
þ 8π2T2

obs

3P2

�
;

F̃Pζ ¼
4ζ

3P
5ζ2 þ 6κ2

ðζ2 þ κ2Þ3=2 ;

F̃Pκ ¼
4κ

3P
κ2

ðζ2 þ κ2Þ3=2 ;

F̃PI ¼ −
cot I
P

ζ2 − κ2

ζ2 þ κ2
;

F̃Pξ ¼ −
2

P

�
ζκ

ζ2 þ κ2
þ πTobs

P

�
;

F̃ζζ ¼
19

2
;
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F̃ζκ ¼
3

4
ζκ;

F̃ζI ¼
1

2
ζ cot I

�
15þ 2ζ2

ζ2 þ κ2

�
;

F̃ζξ ¼ 2κ
ζ2 − κ2

ζ2 þ κ2
;

F̃κκ ¼
1

2
;

F̃κI ¼ −
1

2
κ cot I

�
5 −

2ζ2

ζ2 þ κ2

�
;

F̃κξ ¼ ζ

�
5

2
−

ζ2

ζ2 þ κ2

�
;

F̃II ¼ 2cot2I;

F̃Iξ ¼ 0;

F̃ξξ ¼ 2: ð7:22Þ

Assuming some values for the observation interval Tobs,
number of observations nobs, and rms timing noise σ, we
can thus use the Fisher matrix elements given above to
calculate the expected likelihood ratio (7.10) for a given
SGWB spectrum, and therefore compute upper limit
forecasts.

E. Application to laser ranging

Another extremely precise observational probe of binary
dynamics is laser ranging (LR), in which laser pulses are
fired at retroreflectors on bodies orbiting the Earth; typi-
cally the Moon (lunar laser ranging, LLR) [70] or artificial
satellites (satellite laser ranging, SLR) [71]. By measuring
the round-trip times of these pulses, the size of the orbit can
be tracked over time with millimeter precision.
We estimate the sensitivity of a generic LR experiment

in a very similar way to our treatment of pulsar timing
above. Individual range measurements are assumed to be
unbiased, with uncorrelated Gaussian noise of variance σ2.
We write their mean value at time t in terms of the eccentric
anomaly,

rðtÞ ¼ að1 − e cosEðtÞÞ; ð7:23Þ

and define the Fisher matrix in the limit of many uniformly-
spaced observations analogously to Eq. (7.17),

Fij≃
nobs

Tobsσ
2

P
2π

Z
2πTobs=P

0

dEð1−ecosEÞ ∂r∂Xi

∂r
∂Xj

: ð7:24Þ

The necessary partial derivatives are given by

∂r
∂P ¼ 2a

3P
ð1 − e cosEÞ − ae sinE

P
E − e sinE
1 − e cosE

;

∂r
∂e ¼ a

e − cosE
1 − e cosE

;

∂r
∂ε ¼

ae sinE
1 − e cosE

; ð7:25Þ

where we have used Kepler’s equation,

E − e sinE ¼ 2πt
P

þ ε: ð7:26Þ

Note that we have neglected the three angles describing the
orientation of the orbital plane in space, ðI;Ω;ωÞ, as these
are not directly measured by the round-trip times of the
laser pulses.
Inserting Eq. (7.25) into Eq. (7.24), we obtain the Fisher

matrix,

FPP ≃
4nobsa2

9P2σ2

�
3π2T2

obs

2P2

�
e2 þ 1

4
e4
�

þ 1þ 3eþ 27

16
e2 þ 4e3 þ 315

256
e4
�
;

FPe ≃
3nobsa2

4Pσ2

�
eþ 8

9
e2 þ 5

8
e3 þ 8

45
e4
�
;

FPε ≃ −
πnobsTobsa2

2P2σ2

�
e2 þ 1

4
e4
�
;

Fee ¼
nobsa2

σ2

�
2 − γ −

1 − γ

e2

�
;

Fεε ¼
nobsa2

σ2
ð1 − γÞ: ð7:27Þ

We have neglected Oðe6Þ terms for the first three entries
here, since the Moon and the artificial satellites that are
typically tracked with SLR have small eccentricities (e.g.,
the lunar eccentricity is e☾ ≈ 0.055).

VIII. SUMMARY AND OUTLOOK

In this paperwe have developed a powerful new formalism
for calculating the statistical evolution of binary systems
coupled to theSGWB, deriving a secular FPEwhich captures
the full probability distribution of all six orbital elements on
timescales much longer than the binary period. The KM
coefficients describing this FPE, given inEqs. (4.1) and (4.2),
and illustrated in Figs. 3–6, encapsulate the rich dynamical
structure that arises from the interactions between tensorial
GW perturbations and elliptical orbits.
The full FPE is a six-dimensional nonlinear PDE,

and it is therefore challenging to find exact solutions.
Nonetheless, we have extracted some qualitative features of
the late-time behavior in Sec. V by fixing the eccentricity to
zero. This analysis illustrates one of the key advantages of
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our formalism over previous approaches: its ability to
capture the full shape of the DF. We find that, while the
stochastic drift effect due to the SGWB tends to increase
the energy of the binary and counteract its orbital decay
through GW emission, diffusion tends to have the opposite
effect, so that the net influence of SGWB resonance is to
drive the binary toward merger. At the same time, the
SGWB perturbations act to erase any memory of the
binary’s initial configuration in space, driving the orbit
toward an isotropic distribution in the inclination I, and
uniform distributions in the other angular variables. We
also find, however, that there is a strong drive toward larger
eccentricities in the e → 0 limit, so these results with e ¼ 0
must be taken with a pinch of salt.
We have also developed, in Sec. VI, a practical approach

for numerically integrating the full FPE with general
eccentricity e ∈ ð0; 1Þ on observational timescales, taking
advantage of the fact that these are typically much shorter
than the diffusion timescale. The resulting set of equa-
tions (6.22) are illustrated in Figs. 9 and 10, using the
binary pulsar B1913þ 16 as an example. Combined with
the statistical tools developed in Sec. VII, this allows us to
calculate SGWB sensitivity curves for probes of binary
dynamics such as pulsar timing and lunar/satellite laser
ranging, which we present in a companion paper [46],
showing that these can improve upon existing bounds in the
μHz frequency band by several orders of magnitude.
Our results motivate further work to develop binary

resonance into a precision tool for GW astronomy. The
most important task will be to develop the necessary data
analysis pipelines to conduct GW searches with pulsar-
timing and laser-ranging data, in a way that fully utilizes the
theoretical developments in this work. However, there also
many possible avenues for developing our theoretical
formalism further. One important problem is to develop
practical numerical integration schemes that go beyond the
approach in Sec. VI and capture non-Gaussian features in
the DF, thereby taking full advantage of the Fokker-Planck
approach (this will be particularly important for studies of
populations of binaries [72,73]). It would also be interest-
ing to relax some of our assumptions, for example
abandoning the secular-averaging approach and attempting
to capture the evolution of binaries within a single orbital
period, or perhaps relaxing some of the usual assumptions
about the GW strain statistics to develop searches for
SGWBs that are non-Gaussian, anisotropic, or have non-
standard polarization content. One could also explore the
sensitivity of binaries to narrowband sources, using a
similar approach to Ref. [39] to consider GW frequencies
between the binary’s resonant frequencies. There is also no
reason to restrict ourselves to just binaries; in future work,
we plan to consider the SGWB-driven evolution of
other gravitationally-bound systems such as hierarchical
triples or many-body systems such as galaxies and
globular clusters. Finally, our work could be extended

even further by considering other stochastic perturbing
fields which may exist in the Universe, such as ultralight
scalars [74–77].
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APPENDIX A: POLARIZATION TENSORS IN
THE BINARY’S COORDINATE FRAME

In order to describe the GW polarization tensors eAij, we
introduce the orthonormal frame ðû; v̂; n̂Þ, where n̂ is the
GW propagation direction (see Fig. 2). We want to find
the components of these basis vectors in the frame of the
binary, ðr̂; θ̂; l̂Þ, as this determines the binary’s response to
the GW. First, we transform from the GW frame to the fixed
reference frame ðx̂; ŷ; ẑÞ by applying the standard rotations
with respect to the zenith ϑ and azimuth ϕ,0

B@
x

y

z

1
CA ¼ RϕRϑ

0
B@

u

v

n

1
CA; ðA1Þ

where

Rϑ ¼

0
B@

cosϑ 0 sin ϑ

0 1 0

− sin ϑ 0 cosϑ

1
CA;

Rϕ ¼

0
B@

cosϕ − sinϕ 0

sinϕ cosϕ 0

0 0 1

1
CA: ðA2Þ

This reference frame is transformed to the binary frame
ðr̂; θ̂; l̂Þ with three further rotations, which specify the
inclination I, the longitude of ascending node Ω, and the
argument of the binary in the orbital plane θ ¼ ψ þ ω [49],0

B@
r

θ

l

1
CA ¼ RθRIRΩ

0
B@

x

y

z

1
CA; ðA3Þ
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where

RΩ ¼

0
B@

cosΩ sinΩ 0

− sinΩ cosΩ 0

0 0 1

1
CA;

RI ¼

0
B@

1 0 0

0 cos I sin I

0 − sin I cos I

1
CA;

Rθ ¼

0
B@

cos θ sin θ 0

− sin θ cos θ 0

0 0 1

1
CA: ðA4Þ

We thus obtain the desired relationship between
the binary frame and the GW frame by applying all five
rotations,

0
B@

r

θ

l

1
CA ¼ RθRIRΩRϕRϑ

0
B@

u

v

n

1
CA: ðA5Þ

The various contractions with the polarization tensors are
then given by

eþij r̂
ir̂j ¼ −½cosφ cos I sin θ − sinφ cos θ�2 þ ½sinϑ sin I sin θ − cosϑðcosφ cos θ þ sinφ cos I sin θÞ�2;

e×ijr̂
ir̂j ¼ 2ðcosφ cos I sin θ − sinφ cos θÞ½cos ϑðcosφ cos θ þ sinφ cos I sin θÞ − sinϑ sin I sin θ�;

eþijr̂
iθ̂j ¼ ðsinφ cos θ − cosφ cos I sin θÞðcosφ cos I cos θ þ sinφ sin θÞ

− ½cosϑ cosφ sin θ þ ðsinϑ sin I − cosϑ sinφ cos IÞ cos θ�
× ½cos ϑðcosφ cos θ þ sinφ cos I sin θÞ − sin ϑ sin I sin θ�;

e×ijr̂
iθ̂j ¼ cos ϑ cos 2φ cos I cos 2θ þ sinϑ sin Iðsinφ cos 2θ − cosφ cos I sin 2θÞ

þ 1

2
cosϑ sin 2φð1þ cos2 IÞ sin 2θ;

eþij r̂
il̂j ¼ cosφ sin Iðcosφ cos I sin θ − sinφ cos θÞ − ðsinϑ cos I þ cos ϑ sinφ sin IÞ

× ½cos ϑðcosφ cos θ þ sinφ cos I sin θÞ − sin ϑ sin I sin θ�;
e×ijr̂

il̂j ¼ sin ϑðsinφ cos I cos θ − cosφ cos 2I sin θÞ − cos ϑ sin Iðcos 2φ cos θ þ sin 2φ cos I sin θÞ; ðA6Þ

where we define φ≡ ϕ −Ω. We recall that ϑ;ϕ are the
spherical coordinates of the incoming plane GW, Ω is the
longitude of ascending node, and θ≡ ψ þ ω is the orbital
argument with respect to the ascending node, with ψ the
true anomaly and ω the argument of pericenter; these are all
illustrated in Fig. 2.

APPENDIX B: TRANSFER FUNCTIONS

The Fourier components of the transfer functions are
defined in terms of the polarization tensor contractions
discussed in Appendix A by

TA
P;n ¼

3P2γ

4π

�
e sinψ

1þ e cosψ
eAijr̂ir̂j þ eAijr̂iθ̂j

�
n
;

TA
e;n ¼

γ2TA
P;n

3Pe
−
Pγ5

4πe

�
eAijr̂iθ̂j

ð1þ e cosψÞ2
�

n
;

TA
I;n ¼

Pγ3

4π

�
cos θ

ð1þ e cosψÞ2 e
A
ijr̂il̂j

�
n
;

TA
Ω;n ¼

Pγ3

4π sin I

�
sin θ

ð1þ e cosψÞ2 e
A
ijr̂il̂j

�
n
;

TA
ω;n ¼

Pγ3

4πe

�
sinψð2þ e cosψÞ
ð1þ e cosψÞ2 eAijr̂iθ̂j −

cosψeAijr̂ir̂j
1þ e cosψ

�
n

− TA
Ω;n cos I;

TA
ε;n ¼ −

Pγ4

2π

�
eAijr̂ir̂j

ð1þ e cosψÞ2
�

n
− γ cos ITA

Ω;n − γTA
ω;n;

ðB1Þ

where we have introduced the secular averaging operation

h� � �in ≡
Z

P

0

dt
P
exp

�
2πint
P

�
ð� � �Þ ðB2Þ

which extracts the nth-order Fourier coefficient of a given
function of the true anomaly ψðtÞ, holding the orbital
elements fixed (as they vary over much longer timescales).
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The subscript n distinguishes this from the ensemble
average h� � �i.
The Fourier components arising in the eccentric transfer

functions can be expressed in terms of Hansen coefficients,
Clm
n , Slmn [82]. These are functions of eccentricity that have

been used for centuries in celestial mechanics to describe
Keplerian motion. We define them here by

Clm
n ðeÞ ¼

�
cosmψ

ð1þ e cosψÞl
�

n
;

Slmn ðeÞ ¼
�

sinmψ

ð1þ e cosψÞl
�

n
; ðB3Þ

with explicit expressions for particular sets of ðl; mÞ given
in Appendix E.
Inserting Eq. (A6) into Eq. (B1) and using Eq. (B3), we

can thus write the transfer functions as linear combinations
of the Hansen coefficients. These are then the input to
computing the KM coefficients.

APPENDIX C: TRANSFORMING THE
REFERENCE FRAME

The polarization tensor contractions in Eq. (A6) are
completely general and apply to any choice of reference
frame. However, the corresponding expressions for the

transfer functions are very lengthy, making it prohibitively
difficult to calculate the KM coefficients. We circumvent
this difficulty by choosing a particular reference frame in
which the transfer functions are much simpler, before
transforming back to a general reference frame.
Given two reference frames, ðx̂; ŷ; ẑÞ and ðx0; y0; z0Þ, we

have two corresponding sets of orbital elements for the
binary, X ¼ ðP; e; I;Ω;ω; εÞ and X0 ¼ ðP; e; I0;Ω0;ω0; εÞ
(the period, eccentricity, and compensated mean anomaly
are the same in both frames, as they do not depend on the
orientation of the binary in space). The KM coefficients for
the unprimed elements are given in terms of those for the
primed ones by (see, e.g., Sec. 4.9 of Ref. [54] for a
derivation)

Dð1Þ
i ¼ ∂Xi

∂Xi0
Dð1Þ

i0 þ ∂2Xi

∂Xi0∂Xj0
Dð2Þ

i0j0 ;

Dð2Þ
ij ¼ ∂Xi

∂Xi0

∂Xj

∂Xj0
Dð2Þ

i0j0 ; ðC1Þ

where primed indices run over the primed orbital elements.
We therefore require the first and second partial derivatives
of the unprimed elements with respect to the primed ones.
These can be deduced from the following relations, which
are derived from Sec. 2.8 of Ref. [49],

cos I ¼ sI0 sin I0 sinΩ0x̂0 · ẑ − sI0 sin I0 cosΩ0ŷ0 · ẑþ cos I0ẑ0 · ẑ;

sin I sinΩ ¼ sI0 sin I0 sinΩ0x̂0 · x̂ − sI0 sin I0 cosΩ0ŷ0 · x̂þ cos I0ẑ0 · x̂;

sin I sinω ¼ ðcosΩ0 cosω0 − cos I0 sinΩ0 sinω0Þx̂0 · ẑþ ðsinΩ0 cosω0 þ cos I0 cosΩ0 sinω0Þŷ0 · ẑþ sin I0 sinωẑ0 · ẑ; ðC2Þ

where

sI0 ≡
	þ1 if cos I0 > 0;

−1 if cos I0 < 0:
ðC3Þ

We are now free to specify the primed frame such that the
KM coefficients are easier to compute. One particularly
simple choice is to choose ðx̂0; ŷ0; ẑ0Þ such that I0 ¼ π=4 and
Ω0 ¼ ω0 ¼ 0. (It may seem at first that I0 ¼ 0 is a simpler
choice, as the reference frame then coincides with the

binary’s frame. However, there is a coordinate singularity
associated with I0 ¼ 0 which makes some of the associated
coefficients poorly behaved. Taking I0 ¼ π=4 is much
easier, particularly since we then have sin I0 ¼ cos I0, which
simplifies many of the resulting expressions.)
Having specified the primed frame, we require the first

and second derivatives to transform back to the unprimed
frame, which is relevant for a general observer. Using
Eq. (C2), we find that the nonzero derivatives, evaluated at
ðI0;Ω0;ω0Þ ¼ ðπ

4
; 0; 0Þ, are given by

∂I
∂I0 ¼ cosω;

∂I
∂Ω0 ¼ −

sinωffiffiffi
2

p ;
∂Ω
∂I0 ¼

sinω
sin I

;
∂Ω
∂Ω0 ¼

cosωffiffiffi
2

p
sin I

;

∂ω
∂I0 ¼ −

sinω
tan I

;
∂ω
∂Ω0 ¼

1ffiffiffi
2

p
�
1 −

cosω
tan I

�
;

∂ω
∂ω0 ¼ 1;

∂2I
∂I02 ¼

sin2ω
tan I

;
∂2I

∂I0∂Ω0 ¼
sinωffiffiffi

2
p

�
cosω
tan I

− 1

�
;

∂2I
∂Ω02 ¼

cosω
2

�
cosω
tan I

− 1

�
;
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∂2Ω

∂I02 ¼ −
sin 2ω

sin I tan I
;

∂2Ω

∂I0∂Ω0 ¼
cosω − cos 2ω cot Iffiffiffi

2
p

sin I
;

∂2Ω

∂Ω02 ¼
sinω
sin I

�
cosω
tan I

−
1

2

�
;

∂2ω

∂I02 ¼ sin 2ω
2 − sin2I
2sin2I

;
∂2ω

∂I0∂Ω0 ¼
1

2
ffiffiffi
2

p
�
cos 2ω

2 − sin2I
sin2I

−
2 cosω
tan I

− 1

�
;

∂2ω

∂Ω02 ¼
sinω
tan I

�
1

2
− cosω

2 − sin2I
sin 2I

�
:

ðC4Þ

It is straightforward to confirm that these are well-behaved and take on the appropriate values when ðI;Ω;ωÞ → ðI0;Ω0;ω0Þ.
We thus find that the unprimed drift coefficients are given in terms of those in the primed frame by

Dð1Þ
I ¼ cosω

�
Dð1Þ

I0 þ
�
cosω
tan I

− 1

�
Dð2Þ

Ω0Ω0

2

�
þ sin2ω

tan I
Dð2Þ

I0I0 ;

Dð1Þ
Ω ¼ 1

sin I

�
sinωDð1Þ

I0 −
sin 2ω
tan I

Dð2Þ
I0I0 þ sinω

�
cosω
tan I

−
1

2

�
Dð2Þ

Ω0Ω0

�
;

Dð1Þ
ω ¼ sinω

sin I

�
− cos IDð1Þ

I0 þ cosω
2 − sin2I
sin I

Dð2Þ
I0I0 þ

�
cos I − cosω

2 − sin2I
sin I

�
Dð2Þ

Ω0Ω0

2

�
; ðC5Þ

with the diffusion coefficients given by

Dð2Þ
XI ¼ Dð2Þ

XΩ ¼ Dð2Þ
Xω ¼ Dð2Þ

Xε ¼ Dð2Þ
Iε ¼ Dð2Þ

Ωε ¼ 0;

Dð2Þ
II ¼ cos2ωDð2Þ

I0I0 þ
sin2ω
2

Dð2Þ
Ω0Ω0 ;

Dð2Þ
IΩ ¼ sin 2ω

2 sin I

�
Dð2Þ

I0I0 −
1

2
Dð2Þ

Ω0Ω0

�
;

Dð2Þ
Iω ¼ sinω

�
−
cosω
tan I

Dð2Þ
I0I0 þ

1

2

�
cosω
tan I

− 1

�
Dð2Þ

Ω0Ω0 −
1ffiffiffi
2

p Dð2Þ
Ω0ω0

�
;

Dð2Þ
ΩΩ ¼ 1

sin2I

�
sin2ωDð2Þ

I0I0 þ
cos2ω
2

Dð2Þ
Ω0Ω0

�
;

Dð2Þ
Ωω ¼ 1

sin I

�
−
sin2ω
tan I

Dð2Þ
I0I0 þ

cosω
2

�
1 −

cosω
tan I

�
Dð2Þ

Ω0Ω0 þ cosωffiffiffi
2

p Dð2Þ
Ω0ω0

�
;

Dð2Þ
ωω ¼ sin2ω

tan2I
Dð2Þ

I0I0 þ
1

2

�
1 −

cosω
tan I

�
2

Dð2Þ
Ω0Ω0 þ

ffiffiffi
2

p �
1 −

cosω
tan I

�
Dð2Þ

Ω0ω0 þDð2Þ
ω0ω0 ;

Dð2Þ
ωε ¼ Dð2Þ

ω0ε; ðC6Þ

where X here stands for P or e.

APPENDIX D: KRAMERS-MOYAL COEFFICIENTS IN THE PRIMED FRAME

Here we give the KM coefficients evaluated in the primed coordinate frame ðI0;Ω0;ω0Þ ¼ ðπ
4
; 0; 0Þ. To calculate these,

we first evaluate the polarization tensor contractions from Appendix A in the primed frame, and insert these into
Eq. (B1) to find the appropriate GW transfer functions, expressing the secular averages in terms of Hansen coefficients
that are listed below in Appendix E. These secular transfer functions are then inserted into Eq. (3.33), integrating
over the GW propagation direction n̂ ¼ ðϑ;ϕÞ to obtain the KM coefficients. The resulting expressions for the diffusion
matrix are
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;
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0ΩnjE20

n þ E22
n j2;

Dð2Þ
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nH2
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n j2;

Dð2Þ
Ω0ω0 ¼ −
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2

p Dð2Þ
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Dð2Þ
ω0ω0 ¼ 1
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while the drift vector is given by
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;

Dð1Þ
I0 ¼ 1
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Ω0Ω0 ;
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Ω0 ¼ 0;

Dð1Þ
ω0 ¼ Vω0 ;

Dð1Þ
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where primes on the Hansen coefficients denote derivatives with respect to eccentricity. These KM coefficients can be
transformed back to a general reference frame using Eqs. (C5) and (C6), resulting in the expressions given in Sec. IV.
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APPENDIX E: HANSEN COEFFICIENTS

Using various formulas given in Ref. [82], we write the Hansen coefficients as

Clm
n ¼ 2F1ð−l −m − 1;−lþm − 1; 1; β2Þ

2γ2lð1þ β2Þlþ1
½Jn−mðneÞ þ JnþmðneÞ�

þ
X∞
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	 ð−lþm − 1Þkβk
2k!γ2lð1þ β2Þlþ1 2F1ð−l −m − 1;−lþm − 1þ k; 1þ k; β2Þ½Jn−m−kðneÞ þ JnþmþkðneÞ�

þ ð−l −m − 1Þkβk
2k!γ2lð1þ β2Þlþ1 2F1ð−l −m − 1þ k;−lþm − 1; 1þ k; β2Þ½Jn−mþkðneÞ þ Jnþm−kðneÞ�



;

Slmn ¼ i2F1ð−l −m − 1;−lþm − 1; 1; β2Þ
2γ2lð1þ β2Þlþ1

½Jn−mðneÞ − JnþmðneÞ�

þ
X∞
k¼1

	
ið−lþm − 1Þkβk
2k!γ2lð1þ β2Þlþ1 2F1ð−l −m − 1;−lþm − 1þ k; 1þ k; β2Þ½Jn−m−kðneÞ − JnþmþkðneÞ�

þ ið−l −m − 1Þkβk
2k!γ2lð1þ β2Þlþ1 2F1ð−l −m − 1þ k;−lþm − 1; 1þ k; β2Þ½Jn−mþkðneÞ − Jnþm−kðneÞ�



; ðE1Þ

where we define the expansion variable

β≡ e
1þ γ

; ðE2Þ

and where ð� � �Þk is a rising Pochhammer symbol, defined by

ðnÞk ≡ nðnþ 1Þðnþ 2Þ � � � ðnþ k − 1Þ; ðE3Þ

while 2F1ða; b; c; zÞ is a hypergeometric function, and JnðzÞ is a Bessel function of the first kind. We see that in the circular
case e ¼ 0 we have β ¼ 0, 2F1ða; b; c; 0Þ ¼ 1, and Jnð0Þ ¼ δn;0, and these expressions in Eq. (E1) simplify to

Clm
n ¼ 1

2
ðδn;m þ δn;−mÞ; Slmn ¼ i

2
ðδn;m − δn;−mÞ; ðE4Þ

which can be confirmed by directly integrating Eq. (B3). Note also that for general eccentricity e ∈ ð0; 1Þ, from the
definition of the Pochhammer symbol Eq. (E3), the sums over k in Eq. (E1) terminate if and only ifm ≤ lþ 1, otherwise the
corresponding Hansen coefficients will have an infinite number of terms.
Using Eq. (E1), we can directly compute all the Hansen coefficients that appear in Eqs. (4.1) and (4.2), obtaining the

cosine coefficients
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and the sine coefficients,
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Note that all the Bessel functions appearing in Eqs. (E5) and (E6) have their argument equal to ne, even if they are not of
order n; we suppress this argument for brevity.

[1] J. Aasi et al. (LIGO Scientific Collaboration), Advanced
LIGO, Classical Quantum Gravity 32, 074001 (2015).

[2] F. Acernese et al. (Virgo Collaboration), Advanced Virgo: A
second-generation interferometric gravitational wave detec-
tor, Classical Quantum Gravity 32, 024001 (2015).

[3] T. Akutsu et al. (KAGRA Collaboration), KAGRA: 2.5
Generation interferometric gravitational wave detector, Nat.
Astron. 3, 35 (2019).

[4] B. P. Abbott et al. (KAGRA, LIGO Scientific, Virgo
Collaborations), Prospects for observing and localizing

DIEGO BLAS and ALEXANDER C. JENKINS PHYS. REV. D 105, 064021 (2022)

064021-34

https://doi.org/10.1088/0264-9381/32/7/074001
https://doi.org/10.1088/0264-9381/32/2/024001
https://doi.org/10.1038/s41550-018-0658-y
https://doi.org/10.1038/s41550-018-0658-y


gravitational-wave transients with Advanced LIGO, Ad-
vanced Virgo and KAGRA, Living Rev. Relativity 21, 3
(2018).

[5] R. Abbott et al. (LIGO Scientific, Virgo Collaborations),
GWTC-2: Compact Binary Coalescences Observed by
LIGO and Virgo During the First Half of the Third
Observing Run, Phys. Rev. X 11, 021053 (2021).

[6] M. Kramer and D. J. Champion, The European pulsar
timing array and the large European array for pulsars,
Classical Quantum Gravity 30, 224009 (2013).

[7] M. A. McLaughlin, The North American nanohertz
observatory for gravitational waves, Classical Quantum
Gravity 30, 224008 (2013).

[8] G. Hobbs, The parkes pulsar timing array, Classical Quan-
tum Gravity 30, 224007 (2013).

[9] R. N. Manchester, The international pulsar timing array,
Classical Quantum Gravity 30, 224010 (2013).

[10] Z. Arzoumanian et al. (NANOGrav Collaboration), The
NANOGrav 12.5 yr Data Set: Search for an Isotropic
Stochastic Gravitational-wave Background, Astrophys. J.
Lett. 905, L34 (2020).

[11] M. Punturo et al., The Einstein Telescope: A third-
generation gravitational wave observatory, Classical Quan-
tum Gravity 27, 194002 (2010).

[12] G. Janssen, G. Hobbs, M. McLaughlin, C. Bassa, A. T.
Deller, M. Kramer, K. Lee, C. Mingarelli, P. Rosado, S.
Sanidas, A. Sesana, L. Shao, I. Stairs, B. W. Stapper, and J.
Verbiest, Gravitational wave astronomy with the SKA,
Proc. Sci., AASKA14 05 (2015) 037 [arXiv:1501.00127]
10.22323/1.215.0037.

[13] P. Amaro-Seoane et al. (LISA Consortium Collaboration),
Laser interferometer space antenna, arXiv:1702.00786.

[14] L. Badurina et al., AION: An Atom Interferometer Observa-
tory and Network, J. Cosmol. Astropart. Phys. 05 (2020) 011.

[15] M. Abe et al., Matter-wave atomic gradiometer interfero-
metric sensor (MAGIS-100), Quantum Sci. Technol. 6,
044003 (2021).

[16] M. Kamionkowski, A. Kosowsky, and M. S. Turner, Gravi-
tational radiation from first order phase transitions, Phys.
Rev. D 49, 2837 (1994).

[17] C. Caprini, M. Hindmarsh, S. Huber, T. Konstandin, J.
Kozaczuk, G. Nardini, J. M. No, A. Petiteau, P. Schwaller,
G. Servant, and D. J. Weir, Science with the space-based
interferometer eLISA. II: Gravitational waves from cosmo-
logical phase transitions, J. Cosmol. Astropart. Phys. 04
(2016) 001.

[18] C. Caprini, M. Chala, G. C. Dorsch, M. Hindmarsh, S. J.
Huber, T. Konstandin, J. Kozaczuk, G. Nardini, J. M. No, K.
Rummukainen, P. Schwaller, G. Servant, A. Tranberg, and
D. J. Weir, Detecting gravitational waves from cosmological
phase transitions with LISA: An update, J. Cosmol. As-
tropart. Phys. 03 (2020) 024.

[19] B. Bertotti, Is the solar system gravitationally closed?,
Astrophys. Lett. 14, 51 (1973), https://ui.adsabs.harvard
.edu/abs/1973ApL....14...51B/abstract.

[20] C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation
(W. H. Freeman, San Francisco, 1973).

[21] V. N. Rudenko, Test bodies under the effect of gravitational
radiation, Sov. Astron. 19, 270 (1975), https://ui.adsabs
.harvard.edu/abs/1975AZh....52..444R/abstract.

[22] B. Mashhoon, On tidal resonance, Astrophys. J. 223, 285
(1978).

[23] M. S. Turner, Influence of a weak gravitational wave on a
bound system of two point-masses., Astrophys. J. 233, 685
(1979).

[24] T. Futamase and T. Matsuda, Resonance between primordial
gravitational waves and gravitationally bound systems,
Prog. Theor. Phys. 61, 86 (1979).

[25] B. Mashhoon, B. J. Carr, and B. L. Hu, The influence of
cosmological gravitational waves on a Newtonian binary
system, Astrophys. J. 246, 569 (1981).

[26] B. Linet, Absorption of gravitational waves by nearly
Newtonian systems, Gen. Relativ. Gravit. 14, 479 (1982).

[27] L. A. Nelson and W. Y. Chau, Orbital perturbations of a
gravitationally bound two-body system with the passage of
gravitational waves, Astrophys. J. 254, 735 (1982), https://
ui.adsabs.harvard.edu/abs/1982ApJ...254..735N/abstract.

[28] C. Chicone, B. Mashhoon, and D. G. Retzloff, Gravitational
ionization: Periodic orbits of binary systems perturbed by
gravitational radiation, Ann. Inst. H. Poincare Phys. Theor.
64, 87 (1996), https://ui.adsabs.harvard.edu/abs/1996AIHS.
..64...87C/abstract.

[29] C. Chicone, B. Mashhoon, and D. G. Retzloff, On the
ionization of a Keplerian binary system by periodic gravi-
tational radiation, J. Math. Phys. (N.Y.) 37, 3997 (1996); 38,
544(E) (1997).

[30] C. Chicone, B. Mashhoon, and D. G. Retzloff, Gravitational
ionization: A chaotic net in the Kepler system, Classical
Quantum Gravity 14, 699 (1997).

[31] C. Chicone, B. Mashhoon, and D. G. Retzloff, Sustained
resonance: A binary system perturbed by gravitational
radiation, J. Phys. A 33, 513 (2000).

[32] L. Iorio, Orbital effects of a monochromatic plane
gravitational wave with ultra-low frequency incident
on a gravitationally bound two-body system, ScienceOpen
Res. 0, 13 (2014).

[33] L. Iorio and M. L. Ruggiero, Perturbations of the orbital
elements due to the magnetic-like part of the field of a
plane gravitational wave, Int. J. Mod. Phys. D 30, 2150088
(2021).

[34] L. Hui, S. T. McWilliams, and I.-S. Yang, Binary systems as
resonance detectors for gravitational waves, Phys. Rev. D
87, 084009 (2013).

[35] D. Blas, D. L. Nacir, and S. Sibiryakov, Ultralight Dark
Matter Resonates with Binary Pulsars, Phys. Rev. Lett. 118,
261102 (2017).

[36] D. López Nacir and F. R. Urban, Vector fuzzy dark matter,
fifth forces, and binary pulsars, J. Cosmol. Astropart. Phys.
10 (2018) 044.

[37] J. M. Armaleo, D. López Nacir, and F. R. Urban, Binary
pulsars as probes for spin-2 ultralight dark matter, J.
Cosmol. Astropart. Phys. 01 (2020) 053.

[38] V. Desjacques, E. Grishin, and Y. B. Ginat, Axion oscil-
lations in binary systems: Angle-action surgery, Astrophys.
J. 901, 85 (2020).

[39] D. Blas, D. López Nacir, and S. Sibiryakov, Secular effects
of ultralight dark matter on binary pulsars, Phys. Rev. D
101, 063016 (2020).

[40] B. Allen, The stochastic gravity wave background:
Sources and detection, in Les Houches School of Physics:

DETECTING STOCHASTIC GRAVITATIONAL WAVES WITH … PHYS. REV. D 105, 064021 (2022)

064021-35

https://doi.org/10.1007/s41114-018-0012-9
https://doi.org/10.1007/s41114-018-0012-9
https://doi.org/10.1103/PhysRevX.11.021053
https://doi.org/10.1088/0264-9381/30/22/224009
https://doi.org/10.1088/0264-9381/30/22/224008
https://doi.org/10.1088/0264-9381/30/22/224008
https://doi.org/10.1088/0264-9381/30/22/224007
https://doi.org/10.1088/0264-9381/30/22/224007
https://doi.org/10.1088/0264-9381/30/22/224010
https://doi.org/10.3847/2041-8213/abd401
https://doi.org/10.3847/2041-8213/abd401
https://doi.org/10.1088/0264-9381/27/19/194002
https://doi.org/10.1088/0264-9381/27/19/194002
https://arXiv.org/abs/1501.00127
https://doi.org/10.22323/1.215.0037
https://arXiv.org/abs/1702.00786
https://doi.org/10.1088/1475-7516/2020/05/011
https://doi.org/10.1088/2058-9565/abf719
https://doi.org/10.1088/2058-9565/abf719
https://doi.org/10.1103/PhysRevD.49.2837
https://doi.org/10.1103/PhysRevD.49.2837
https://doi.org/10.1088/1475-7516/2016/04/001
https://doi.org/10.1088/1475-7516/2016/04/001
https://doi.org/10.1088/1475-7516/2020/03/024
https://doi.org/10.1088/1475-7516/2020/03/024
https://ui.adsabs.harvard.edu/abs/1973ApL....14...51B/abstract
https://ui.adsabs.harvard.edu/abs/1973ApL....14...51B/abstract
https://ui.adsabs.harvard.edu/abs/1973ApL....14...51B/abstract
https://ui.adsabs.harvard.edu/abs/1973ApL....14...51B/abstract
https://ui.adsabs.harvard.edu/abs/1973ApL....14...51B/abstract
https://ui.adsabs.harvard.edu/abs/1973ApL....14...51B/abstract
https://ui.adsabs.harvard.edu/abs/1973ApL....14...51B/abstract
https://ui.adsabs.harvard.edu/abs/1973ApL....14...51B/abstract
https://ui.adsabs.harvard.edu/abs/1973ApL....14...51B/abstract
https://ui.adsabs.harvard.edu/abs/1973ApL....14...51B/abstract
https://ui.adsabs.harvard.edu/abs/1973ApL....14...51B/abstract
https://ui.adsabs.harvard.edu/abs/1975AZh....52..444R/abstract
https://ui.adsabs.harvard.edu/abs/1975AZh....52..444R/abstract
https://ui.adsabs.harvard.edu/abs/1975AZh....52..444R/abstract
https://ui.adsabs.harvard.edu/abs/1975AZh....52..444R/abstract
https://ui.adsabs.harvard.edu/abs/1975AZh....52..444R/abstract
https://ui.adsabs.harvard.edu/abs/1975AZh....52..444R/abstract
https://ui.adsabs.harvard.edu/abs/1975AZh....52..444R/abstract
https://ui.adsabs.harvard.edu/abs/1975AZh....52..444R/abstract
https://ui.adsabs.harvard.edu/abs/1975AZh....52..444R/abstract
https://ui.adsabs.harvard.edu/abs/1975AZh....52..444R/abstract
https://doi.org/10.1086/156262
https://doi.org/10.1086/156262
https://doi.org/10.1086/157429
https://doi.org/10.1086/157429
https://doi.org/10.1143/PTP.61.86
https://doi.org/10.1086/158957
https://doi.org/10.1007/BF00756331
https://ui.adsabs.harvard.edu/abs/1982ApJ...254..735N/abstract
https://ui.adsabs.harvard.edu/abs/1982ApJ...254..735N/abstract
https://ui.adsabs.harvard.edu/abs/1982ApJ...254..735N/abstract
https://ui.adsabs.harvard.edu/abs/1982ApJ...254..735N/abstract
https://ui.adsabs.harvard.edu/abs/1982ApJ...254..735N/abstract
https://ui.adsabs.harvard.edu/abs/1982ApJ...254..735N/abstract
https://ui.adsabs.harvard.edu/abs/1982ApJ...254..735N/abstract
https://ui.adsabs.harvard.edu/abs/1982ApJ...254..735N/abstract
https://ui.adsabs.harvard.edu/abs/1982ApJ...254..735N/abstract
https://ui.adsabs.harvard.edu/abs/1982ApJ...254..735N/abstract
https://ui.adsabs.harvard.edu/abs/1996AIHS...64...87C/abstract
https://ui.adsabs.harvard.edu/abs/1996AIHS...64...87C/abstract
https://ui.adsabs.harvard.edu/abs/1996AIHS...64...87C/abstract
https://ui.adsabs.harvard.edu/abs/1996AIHS...64...87C/abstract
https://ui.adsabs.harvard.edu/abs/1996AIHS...64...87C/abstract
https://ui.adsabs.harvard.edu/abs/1996AIHS...64...87C/abstract
https://ui.adsabs.harvard.edu/abs/1996AIHS...64...87C/abstract
https://ui.adsabs.harvard.edu/abs/1996AIHS...64...87C/abstract
https://ui.adsabs.harvard.edu/abs/1996AIHS...64...87C/abstract
https://ui.adsabs.harvard.edu/abs/1996AIHS...64...87C/abstract
https://doi.org/10.1063/1.531795
https://doi.org/10.1063/1.531834
https://doi.org/10.1063/1.531834
https://doi.org/10.1088/0264-9381/14/3/013
https://doi.org/10.1088/0264-9381/14/3/013
https://doi.org/10.1088/0305-4470/33/3/307
https://doi.org/10.14293/S2199-1006.1.SOR-ASTRO.AWXWIL.v2
https://doi.org/10.14293/S2199-1006.1.SOR-ASTRO.AWXWIL.v2
https://doi.org/10.1142/S0218271821500887
https://doi.org/10.1142/S0218271821500887
https://doi.org/10.1103/PhysRevD.87.084009
https://doi.org/10.1103/PhysRevD.87.084009
https://doi.org/10.1103/PhysRevLett.118.261102
https://doi.org/10.1103/PhysRevLett.118.261102
https://doi.org/10.1088/1475-7516/2018/10/044
https://doi.org/10.1088/1475-7516/2018/10/044
https://doi.org/10.1088/1475-7516/2020/01/053
https://doi.org/10.1088/1475-7516/2020/01/053
https://doi.org/10.3847/1538-4357/abaefc
https://doi.org/10.3847/1538-4357/abaefc
https://doi.org/10.1103/PhysRevD.101.063016
https://doi.org/10.1103/PhysRevD.101.063016


Astrophysical Sources of Gravitational Radiation, arXiv:gr
-qc/9604033.

[41] M. Maggiore, Gravitational wave experiments and early
universe cosmology, Phys. Rep. 331, 283 (2000).

[42] T. Regimbau, The astrophysical gravitational wave stochas-
tic background, Res. Astron. Astrophys. 11, 369 (2011).

[43] J. D. Romano and N. J. Cornish, Detection methods for
stochastic gravitational-wave backgrounds: A unified treat-
ment, Living Rev. Relativity 20, 2 (2017).

[44] N. Christensen, Stochastic gravitational wave backgrounds,
Rep. Prog. Phys. 82, 016903 (2019).

[45] C. Caprini and D. G. Figueroa, Cosmological backgrounds
of gravitational waves, Classical Quantum Gravity 35,
163001 (2018).

[46] D. Blas and A. C. Jenkins, companion Letter, Bridging the
μHz Gap in the Gravitational-Wave Landscape with Binary
Resonance, Phys. Rev. Lett. 128, 101103 (2022).

[47] D. Brouwer and G. M. Clemence, Methods of Celestial
Mechanics (Academic Press, New York, 1961).

[48] J. A. Burns, Elementary derivation of the perturbation equa-
tions of celestial mechanics, Am. J. Phys. 44, 944 (1976).

[49] C. D. Murray and S. F. Dermott, Solar System Dynamics
(Cambridge University Press, Cambridge, England, 2000).

[50] E. Poisson and C. M. Will, Gravity: Newtonian, Post-
Newtonian, Relativistic (Cambridge University Press,
Cambridge, England, 2014).

[51] P. C. Peters and J. Mathews, Gravitational radiation from
point masses in a Keplerian orbit, Phys. Rev. 131, 435 (1963).

[52] C. Lange, F. Camilo, N. Wex, M. Kramer, D. C. Backer,
A. G. Lyne, and O. Doroshenko, Precision timing measure-
ments of PSR J1012+5307, Mon. Not. R. Astron. Soc. 326,
274 (2001).

[53] M. Maggiore, Gravitational Waves. Vol. 1: Theory and
Experiments, Oxford Master Series in Physics (Oxford
University Press, New York, 2007).

[54] H. Risken, The Fokker-Planck Equation: Methods of
Solution and Applications, 2nd ed. (Springer-Verlag, Berlin,
1989).

[55] C.W. Gardiner,Handbook of Stochastic Methods for Physics,
Chemistry and the Natural Sciences, 3rd ed., Springer Series
in Synergetics (Springer-Verlag, Berlin, 2004).

[56] R. Pawula, Approximation of the linear Boltzmann equation
by the Fokker-Planck equation, Phys. Rev. 162, 186 (1967).

[57] M. Rozner, E. Grishin, Y. B. Ginat, A. P. Igoshev, and V.
Desjacques, Axion resonances in binary pulsar systems,
J. Cosmol. Astropart. Phys. 03 (2020) 061.

[58] R. L. Stratonovich, Conditional Markov Processes and
Their Application to the Theory of Optimal Control, Modern
analytic and computational methods in science and math-
ematics (Elsevier, New York, 1968).

[59] K. Itô, Stochastic integral, Proc. Imp. Acad. 20, 519 (1944).
[60] L. Annulli, L. Bernard, D. Blas, and V. Cardoso, Scattering

of scalar, electromagnetic and gravitational waves from
binary systems, Phys. Rev. D 98, 084001 (2018).

[61] R. A. Hulse and J. H. Taylor, Discovery of a pulsar in a
binary system, Astrophys. J. Lett. 195, L51 (1975).

[62] J. M. Weisberg, D. J. Nice, and J. H. Taylor, Timing mea-
surements of the relativistic binary pulsar PSR B1913þ 16,
Astrophys. J. 722, 1030 (2010).

[63] J. M. Weisberg and Y. Huang, Relativistic measurements
from timing the binary pulsar PSR B1913þ 16, Astrophys.
J. 829, 55 (2016).

[64] G. Casella and R. L. Berger, Statistical Inference, 2nd ed.
(Duxbury, Pacific Grove, California, 2002).

[65] D. R. Lorimer, Binary and millisecond pulsars, Living Rev.
Relativity 11, 8 (2008).

[66] R. Blandford and S. A. Teukolsky, Arrival-time analysis for
a pulsar in a binary system, Astrophys. J. 205, 580 (1976).

[67] R. Epstein, The binary pulsar: Post-Newtonian timing
effects, Astrophys. J. 216, 92 (1977).

[68] T. Damour and N. Deruelle, General relativistic celestial
mechanics of binary systems II. The post-Newtonian timing
formula, Ann. Inst. Henri Poincaré Phys. Théor. 44, 263
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