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There are numerous ways to control objects in the Stokes regime, with microscale
examples ranging from the use of optical tweezers to the application of external magnetic
fields. In contrast, there are relatively few explorations of theoretical controllability, which
investigate whether or not refined and precise control is indeed possible in a given
system. In this work, seeking to highlight the utility and broad applicability of such
rigorous analysis, we recount and illustrate key concepts of geometric control theory in
the context of multiple particles in Stokesian fluids interacting with each other, such
that they may be readily and widely applied in this largely unexplored fluid-dynamical
setting. Motivated both by experimental and abstract questions of control, we exemplify
these techniques by explicit and detailed application to multiple problems concerning the
control of two particles, such as the motion of tracers in flow and the guidance of one
sphere by another. Further, we showcase how this analysis of controllability can directly
lead to the construction of schemes for control, in addition to facilitating explorations
of mechanical efficiency and contributing to our overall understanding of non-local
hydrodynamic interactions in the Stokes limit.

Key words: control theory

1. Introduction

Some notion of control is widely sought in many contexts. In fluid dynamics, particularly
on the microscale, experimental techniques such as optical tweezers, flow modulation and
applied magnetic fields are capable of precisely influencing the microfluidic environment,
with the potential to realise refined control. The subjects of such control are varied,
spanning both synthetic and biological agents, including the canonical spermatozoon
(Zaferani, Cheong & Abbaspourrad 2018). Correspondingly, the intended outcomes of
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control are broad, from the delivery of therapeutics in medicine (Kei Cheang et al. 2014;
Yasa et al. 2018; Tsang et al. 2020) to the trapping and sorting of cells in microdevices
(Walker et al. 2018; Zaferani et al. 2018).

Recently, many studies have sought to control microswimmers. Many examples concern
the directed motion of magnetotactic helical microswimmers (Mahoney et al. 2011; Tottori
et al. 2012; Liu et al. 2017; Wang et al. 2018) part of the broader class of magnetic
micromachines (Tierno et al. 2008; Grosjean et al. 2015; Khalil et al. 2020). Abstracted
away from the modality of control, a noteworthy and increasingly popular approach to the
design of control schemes is the application of machine learning techniques (Colabrese
et al. 2017; Schneider & Stark 2019), with a particularly remarkable example being the
reinforcement-learning scheme of Mirzakhanloo, Esmaeilzadeh & Alam (2020) that is
used to enact theoretical hydrodynamic cloaking. Many of these modern methodologies
are evaluated via a number of simulated or experimental examples, with efficacy justified
by successful realisation of control in these cases. Although such a trial-based validation
is reassuring, there is often an absence of a complimentary theoretical basis that provides
rigorous assurances that control is indeed possible from a given configuration, a desirable
if not necessary property when seeking to elicit control and guidance in practice. The topic
of such an uncommon analysis is that of controllability, a broad field that, in this context,
seeks to determine the conditions in which a given system can be controlled, querying the
theoretical existence of a trajectory in the state space that connects given initial and target
configurations. This topic is rich, varied and often framed abstractly; thus, as a practical
introduction, we aim to concretely summarise elementary but powerful aspects of control
theory, with a view to application in the Stokes regime.

In the context of microswimming, there has been extensive exploration of the specific
cases of general deformable or propulsive bodies (Martín, Takahashi & Tucsnak 2007;
Lohéac, Scheid & Tucsnak 2013; Lohéac & Munnier 2014; Dal Maso, DeSimone &
Morandotti 2015; Lohéac & Takahashi 2020) and model microrobots, formed of connected
spheres (Desimone et al. 2012; Alouges 2013; Alouges et al. 2013b; Gérard-Varet &
Giraldi 2015; DeSimone 2020) or links (Alouges et al. 2013a). These studies utilise the
gauge field formulation of force- and torque-free microswimming first posed by Shapere
& Wilczek (1987, 1989b), in which the swimming velocity of a deformable body is
described in a form linearly related to the surface deformation velocity. As such, the control
functions considered in these works are invariably given by the shape. This geometrical
phase theory has been used extensively for computing efficient locomotion (Shapere &
Wilczek 1989a; Ramasamy & Hatton 2017; Bittner, Hatton & Revzen 2018; Ramasamy
& Hatton 2019), and was recently extended to a more-general swimmer including the
case with external forces (Koens & Lauga 2021). Recent studies have also addressed the
controllability of magneto-elastic microrobots (Giraldi & Pomet 2017; Moreau 2019), with
the control function being an external magnetic field, requiring characteristically different
but nevertheless case-specific analysis than the standard geometrical phase theory.

These studies have each assessed the controllability of a single object immersed in fluid,
though the applicability of their conclusions to multi-swimmer systems remains unclear.
Indeed, the long-range hydrodynamic interactions present in the Stokes limit can lead to
surprising and complex behaviours, such as flagellar synchronisation (Brumley et al. 2014;
Bruot & Cicuta 2016) and the bound swimming states of algae (Drescher et al. 2009). With
this richness of emergent behaviours, the consideration of multi-particle controllability
thereby warrants the treatment of non-local interactions, of particular relevance given
recent developments in experimental control via optical tweezers (Zou et al. 2020).
One such exploration, though notably in the case of inviscid flows, considered the control
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of a passive particle in a two-dimensional fluid, with control effected by the movement of
a cylinder and the induced flow (Or et al. 2009), though similar such evaluations in Stokes
flow are currently lacking, to the best of the authors’ knowledge.

Thus, as a further significant aim of this work, we investigate the theoretical control
and controllability of particles via hydrodynamic interactions, considering both accurate
and simplified descriptions of canonical Stokes problems, with such justification currently
lacking for even the most simple multi-object settings in the Stokes limit. Further, we seek
to highlight additional benefits of conducting such an analysis, with particular regard to
the notion of mechanical efficiency.

Hence, and as the principal aim of this work, we seek to demonstrate the broad utility
of controllability analysis in the context of particle motion and hydrodynamic interactions
in the Stokes limit. In doing so, and as an additional aim of this study, we evaluate and
explore the controllability of experimentally motivated and seemingly simple systems of
particles in a Stokesian fluid, which, despite their idealised nature, give rise to non-trivial
control and hydrodynamic problems. To begin, in § 2, we recount key principles and
definitions of control theory, cast in a readily applicable form that may be easily translated
to other Stokes problems. Equipped with such a framework, we then investigate the
controllability of multi-sphere systems in detail, focusing in particular on two-particle
problems. In the first instance, motivated by exemplar modalities of actuation on the
microscale, in § 3, we evaluate the degree to which two differently sized spheres can
be controlled by the application of forces or torques to one of the particles, resulting
in a sufficient controllability condition for a pair of particles in three dimensions in the
Stokes regime and an integrable system of torque control. Moving to assess the efficiency
of aspects of force-driven control, we make use of both high-accuracy and far-field
hydrodynamic approximations to the interactions of these spheres, noting differences
in predicted controllability and future extensions to many-sphere systems. Next, in §§ 4
and 5, we consider the same problem setting in the limit where the passive spheres are
of vanishing size, moving to establish the controllability of passive tracer particles that
are advected by the flow due to a force-driven finite-sized sphere, later considering a
further simplification of this system. Finally, in § 6, by highlighting and exemplifying
the constructive process of Lafferriere & Sussmann (1992), we demonstrate how these
analyses can be used to explicitly formulate controls that effect a desired state change,
in this case the targeted motion of spheres along prescribed trajectories by both applied
forces and the resulting flows.

2. Controllability

In this study, we consider the motion of N spheres of potentially unequal radius in a
Newtonian fluid in the regime of vanishing Reynolds number, with the fluid velocity u
and the pressure p being described by the Stokes equations,

μ∇2u = ∇p. (2.1)

The flow also satisfies the incompressibility condition ∇ · u = 0 and the fluid viscosity
μ is assumed to be constant. We assume that all quantities have been appropriately
non-dimensionalised, considering dimensionless mobility coefficients throughout. Let xi
(i = 1, 2, . . . , N) be the position of the ith sphere, with U i and Ω i being its translational
and rotational velocities, respectively. Here and in § 3, we focus on the effects of external
forces and torques, denoted by f i and mi, respectively, on the N-sphere system, in contrast
to the numerous aforementioned studies of shape-deforming swimmers and motivated
by the manipulation of microparticles by optical tweezers and the actuated spinning of
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magnetic rotors. By the linearity of the Stokes equations, the dynamics of the spheres may
be written as (Kim & Karrila 2005)

[U1; · · · ;UN;Ω1; · · · ;ΩN] = A[ f 1; · · · ; f N;m1; · · · ;mN]. (2.2)

Here, a semicolon denotes vertical concatenation, with the resulting composite force and
velocity vectors being of scalar dimension 6N. The 6N × 6N tensor A, often termed
the grand mobility tensor, is symmetric and positive-definite, noting that any stresslet
contributions vanish in the absence of background flow. Further, due to the boundary-value
nature of Stokes flow, this mobility tensor is completely determined by the shape of the
fluid boundary. Thus, for the systems of spheres considered in this work, this tensor
depends only on the positions and relative sizes of the spheres, with individual symmetry
naturally removing any rotational dependence. For convenience, let n = 3N and m = 6N,
which represent the composite dimension of the vectors of sphere positions and velocities,
respectively. We introduce the n-dimensional position vector

X = [x1; x2; · · · ; xN] (2.3)

and the m-dimensional external control vector

F = [f 1; f 2; · · · ; f N;m1;m2; · · · ;mN], (2.4)

so that, by linearity, we may write the translational evolution of the sphere system in the
form

dX
dt
= GF . (2.5)

identifying G with the upper half of A from (2.2) and with sphere orientation now implicit.
Representing the n× m tensor G = G(X ) by its column vectors g1, . . . , gm, with G =
[g1, g2, . . . gm], leads to the system

dX
dt
=

m∑
i=1

Fi(t)gi(X ), (2.6)

which is the standard form of a driftless control-affine system. Here, the n-dimensional
vector X is the state of the system, evolving in the state space P ⊂ R

n, and the Fi(t) are
our control functions, which correspond here to components of applied forces and torques.
Of note, the hydrodynamic interactions between the spheres are included in the m column
vectors gi, whose time dependence is only via the state X due to the Stokes limit, a property
that will generally hold for problems of Stokes flow. Following Coron (2007), to which we
refer the interested reader for a detailed summary of the theory of control, we define the
term controllable (in any time) for the sphere system of (2.6).

DEFINITION 2.1. The system is controllable within a state set Q ⊂ P if, for any given
start state X 0 ∈ Q, end state X 1 ∈ Q and duration of time T > 0, there exists a control
function F (t) that transports the set of spheres from X 0 at t = 0 to X 1 at t = T .

As the field gi associated with the control Fi(t) is tangent to the trajectory of the
dynamical system, it might seem that the number of scalar controls needs to be as large
as the dimension of the system in order to yield a controllable system. However, as two
fields do not commute in general, a sequence of controls may generate additional reachable
directions and, thus, give rise to controllability in a system of relatively high dimension.
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(b)(a) (c)
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[gi, gj](X0)

–gj (X3)
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X0

X0

X3

Figure 1. Schematic of (a) the Lie bracket, (b) the control system in R
n and (c) the controllable state set.

(a) The Lie bracket, [gi, gj], can be computed by considering sequences of controls with infinitesimal duration
of time. (b) The controllability of the system guarantees that one can effect evolution from an initial state X 0
to a final state X 1 at a given time T . In a driftless control-affine system, the field gi(X ) associated with a
control Fi(t) is a tangent of the trajectory but, if the system is controllable, one can nevertheless control the
state around a prescribed path (dashed line). The realised path in the state space is shown as a solid curve,
approximately coincident with the prescribed path. (c) The controllable state set S is a subspace of P(⊂ R

n),
though the system is only controllable within connected subsets of S.

This non-commutativity is mathematically represented by a Lie bracket, defined for two
fields gi and gj as

[gi, gj](X ) = (∇X gj)gi − (∇X gi)gj, (2.7)

where ∇X gj = [∂gj/∂X1 · · · ∂gj/∂Xn] denotes the n× n Jacobian matrix. The Lie bracket
satisfies [gi, gj] = −[gj, gi], so that [gi, gi] = 0, as well as the Jacobi identity.

As an explicit example, for τ � 1 consider the following sequence of controls on the
short time interval t ∈ [0, 4τ ]:

F (t) =

⎧⎪⎨
⎪⎩

Fi = +1, for t ∈ [0, τ ),

Fj = +1, for t ∈ [τ, 2τ),

Fi = −1, for t ∈ [2τ, 3τ),

Fj = −1, for t ∈ [3τ, 4τ ],

(2.8)

where all unspecified components of F are assumed to be zero. Under this control, the
state X (0) at t = 0 evolves to

X (4τ) = X (0)+ τ 2[gi, gj](X (0))+ O(τ 3), (2.9)

as illustrated in figure 1(a), with a potential lack of commutativity leading to a non-zero
final displacement. This reasoning extends to higher-order Lie brackets, with these terms
together spanning all the reachable directions around the state X via F . This set of all
possible Lie brackets, which includes the original fields gi, is denoted by Lie(g1, . . . , gm),
and may be written explicitly as

Lie(g1, . . . , gm) = {g1, . . . , gm, [g1, g2], . . . , [g1, [g1, g2]], . . . , [g1, [g1, [g1, g2]]] . . .}.
(2.10)

In what follows, we refer to the original fields gi as the first-order brackets, with
[gi, gj] being termed a second-order bracket and this convention naturally extending to
higher-order terms. The elements of Lie(g1, . . . , gm), each evaluated at a state X ∈ P,
naturally span a vector space B(X ) when seen as elements of R

n. We can then define the
controllable state set S ⊆ P, as illustrated in figure 1(c), to be the set of states from which
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x2

x1
r

x2
end

x1
end

f (t)

x2
start

x1
start

Figure 2. Schematic of the control of two spheres by moving one sphere. The force-control problem queries
the existence of a forcing function f (t) that transports the two spheres between given initial and end positions
in a given time T . Moreover, the full-rank condition in the sphere system allows us to control the spheres to
approximately follow prescribed trajectories (dashed lines) in the controllable space.

one can move in any direction in the state space or, perhaps more simply,

S := {X ∈ P : dim B(X ) = n} . (2.11)

As intuition suggests, S is inherently related to the controllability of the system (Coron
2007):

THEOREM 2.2 (Rashevski–Chow theorem). The driftless control-affine system of (2.6) is
controllable within any connected subset of the controllable state set S.

Therefore, in what follows, we seek to establish the controllability of our N-sphere
system by determining the dimension of the vector space B(X ) associated with each state
X ∈ P, thereby constructing the controllable state set S.

Further, a driftless control-affine system that satisfies this full-rank condition also enjoys
a property known as small-time local controllability (STLC) at every X ∈ S, which, in
the context of this work, guarantees that a prescribed trajectory in the controllable state
space can be followed with arbitrary accuracy, as illustrated in figure 1(b). We revisit this
property briefly in § 6 and refer the interested reader to the work of Coron (2007) for a
thorough definition of STLC.

3. Finite size spheres

3.1. Geometry and hydrodynamics
As a particular case of the N-sphere system introduced above, we consider the motion
of two spheres with the further restriction that only a single sphere may be externally
driven, as illustrated in figure 2. With subscripts of 1 and 2 corresponding to the driven
control sphere and the other passive sphere, respectively, these assumptions amount to
taking f 2 = m2 = 0 and we write f 1 = f and m1 = m for convenience. The fixed
dimensionless radii of the two spheres are denoted by a1 and a2, respectively, from which
we define their ratio λ = a2/a1 and henceforth assume that the radius of the control sphere
is unity, without loss of generality. In addition, we proceed by assuming that the spheres
do not overlap or make contact with one another, so that the state space is given by
P = {X ∈ R

6 : ‖x2 − x1‖ > 1+ λ}.
942 A1-6
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With these definitions, the general equation of motion (2.5) may be written as

d
dt

[
x1
x2

]
=
[

M
N

]
f −

[
MT
NT

]
m, (3.1)

exploiting the symmetry of the two-sphere problem to simplify the form of the
hydrodynamic force–velocity relations. Writing r = x2 − x1 for the position of the passive
sphere relative to that of the control sphere, the resulting 3× 3 tensors M , N , MT , and NT
are given exactly by

M = M‖
rrT

‖r‖2 +M⊥
(

I − rrT

‖r‖2
)

and N = N‖
rrT

r2 + N⊥
(

I − rrT

‖r‖2
)

, (3.2a,b)

MT = MT
ε · r
‖r‖ and NT = NT

ε · r
‖r‖ , (3.3a,b)

respectively, by simple symmetry arguments. Here, I is the 3× 3 identity tensor and ε is
the Levi-Civita tensor. The scalar mobility coefficients M‖, M⊥, N‖, N⊥, MT and NT are
all functions of only r := ‖r‖, owing to the symmetry of the problem. Further, physical
interpretation of each of the coefficients suggests that all but NT are strictly positive, and
that NT < 0. However, although positivity may be rigorously deduced for M‖ and M⊥
via calculations of energy dissipation, which we later present in § 3.3, we are not aware
of similar reasoning that applies to the remaining coefficients. Therefore, to support this
intuition, we numerically evaluate these coefficients in Appendix A, shown in figure 9,
with these findings being consistent with expected signs of these mobility coefficients. Of
note, the convergence of the calculation of MT described in Appendix A is not sufficiently
fast to conclude that MT is strictly positive for λ� 1, though this does not affect our later
explorations.

If we additionally introduce m = M − N and mT = MT − NT , each functions of r, we
may further simplify the above into the control-affine form

dX̃
dt
=
∑

j

fj(t)gj(X̃ )+
∑

j

mj(t)hj(X̃ ), (3.4)

where j ∈ {x, y, z} and we henceforth adopt these natural Latin subscripts to refer to the
components of forces and torques that act in the directions of the right-handed orthonormal
triad {ex, ey, ez}, which forms the fixed basis of the laboratory frame. We similarly index
gj and hj, with gj and hj being the fields associated with fj and mj, respectively. Here, the
modified state and the fields are defined by

X̃ =
[

x1
r

]
, [gx, gy, gz] =

[
M(r)
−m(r)

]
, and [hx, hy, hz] =

[−MT(r)
mT(r)

]
. (3.5a–c)

More verbosely, defining m‖ = M‖ − N‖, m⊥ = M⊥ − N⊥ and mT = MT − NT /=MT ,
each functions of r, the control-affine system of (3.4) may be written as

dX̃
dt
= d

dt

[
x1
r

]
=

⎡
⎢⎢⎣

M‖(r)
rrT

‖r‖2 +M⊥(r)
(

I − rrT

‖r‖2
)

−m‖(r)
rrT

‖r‖2 − m⊥(r)
(

I − rrT

‖r‖2
)
⎤
⎥⎥⎦ f +

⎡
⎣−MT(r)

ε · r
r

mT(r)
ε · r

r

⎤
⎦m. (3.6)

In the remainder of this section, we consider only this relative two-sphere control
system and, therefore, drop the tilde on the relative composite state vector for notational
convenience, hereafter representing the relative state by X .
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3.2. Establishing controllability

3.2.1. Control by external force
We first consider the controllability of the two-sphere system when m = 0, so that only
an external force acts on the control sphere through the fields gx, gy and gz. As we
are therefore seeking to control a six-dimensional system with three scalar controls,
computation of the Lie brackets of the gi is warranted. Writing r = (rx, ry, rz) with respect
to {ex, ey, ez}, we compute

[gi, gj]
(

X̃
)
=

⎡
⎢⎢⎣
(

m‖M′⊥−m⊥
M‖ −M⊥

r

)
rjei − riej

r

−
(

m‖m′⊥−m⊥
m‖ − m⊥

r

)
rjei − riej

r

⎤
⎥⎥⎦ , (3.7)

where a prime indicates a derivative with respect to r.
The evaluation of the fields gi and the second-order brackets [gi, gj] at a general state

X ∈ P ⊂ R
6 would yield notationally cumbersome expressions for the Lie bracket, which

would be a barrier to further analysis. However, owing to the symmetry of the two-sphere
problem, we may, without loss of generality, evaluate the system at a particular state X ∗,
in which the control sphere is located at the origin and the target sphere lies on the ex axis
at a distance r, i.e. x1 = 0 and r = rex. This reduced configuration is clearly equivalent
to a general state up to rotation and translation, with controllability invariant under such
transformations in this context. In this parameterised state, the fields gi reduce to

gx(X
∗) = [M‖, 0, 0,−m‖, 0, 0]T, (3.8)

gy(X
∗) = [0, M⊥, 0, 0,−m⊥, 0]T , (3.9)

gz(X
∗) = [0, 0, M⊥, 0, 0,−m⊥]T . (3.10)

Evaluating the second-order brackets at X ∗, we have

[gx, gy](X ∗) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

−m‖M′⊥ + m⊥
M‖ −M⊥

r
0
0

m‖m′⊥ − m⊥
m‖ − m⊥

r
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.11a)

[gx, gz](X
∗) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0

−m‖M′⊥ + m⊥
M‖ −M⊥

r
0
0

m‖m′⊥ − m⊥
m‖ − m⊥

r

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.11b)

whereas [gy, gz](X
∗) = 0. Clearly, additional elements are required in order to span a

space of dimension six. Hence, we consider the third-order Lie brackets given by

[gi, [gj, gk]] =
(

Lijk
�ijk

)
, (3.12)
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The control of particles in the Stokes limit

where the three-dimensional field Lijk is explicitly given by

Lijk = M‖ −M⊥
r3

(
m‖m⊥′ − m⊥

m‖ − m⊥
r

)
(rjrkei + rjδikr − rirkej − riδjkr)

− m⊥
r

(
m‖M⊥′ − m⊥

M‖ −M⊥
r

)[
(δkjei − δikej)+

(rirk

r2 ej − rjrk

r2 ei

)]

− m‖
r2

[(
m‖M⊥′ − m⊥

M‖ −M⊥
r

)′]
(rjrkei − rirkej) (3.13)

and �ijk is obtained by replacing M‖ and M⊥ with −m‖ and −m⊥, respectively, in the
above expression. Here, the Kronecker delta is such that δij = ei · ej and primes again
denote differentiation with respect to r, with i, j, k ∈ {x, y, z}. As before, this cumbersome
expression simplifies significantly when evaluating at X ∗. In particular, [gy, [gx, gy]]
conditionally generates the additional dimension required to yield controllability and is
explicitly given by

[gy, [gx, gy]](X ∗)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−(M‖ −M⊥)

(
m‖m′⊥

r
− m⊥(m‖ − m⊥)

r2

)
− m⊥

(
m‖M′⊥

r
− m⊥(M‖ −M⊥)

r2

)
0
0

m‖
(

m‖m′⊥
r
− m⊥(m‖ − m⊥)

r2

)
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(3.14)

Additional third-order brackets are simply linear combinations of the lower-order brackets,
with the exception of [gz, [gx, gz]], which is parallel to [gy, [gx, gy]] by the symmetry of
the two-sphere problem. Together, the six terms of (3.10), (3.11a,b) and (3.14) in general
span a space of dimension six, with this property holding unless these fields are linearly
dependent. This condition may be succinctly investigated by considering the determinant
of the 6× 6 controllability matrix

C = [gx, gy, gz, [gx, gy], [gx, gz], [gy, [gx, gy]]], (3.15)

with the full-rank controllability condition being satisfied if det C /= 0. Of particular note,
det C = 0 only implies that the controllability condition is not satisfied by this particular
controllability matrix, with the dimension of the Lie algebra being bounded below by the
rank of any controllability matrix. Here, this determinant is explicitly given by

det C = m‖4m⊥6

r

[
1
r

(
M‖
m‖
− M⊥

m⊥

)
−
(

M⊥
m⊥

)′]3

, (3.16)

where we recall that all mobility coefficients are functions of the separation r for a given
sphere size ratio λ.

In general, closed-form expressions for the mobility coefficients are unavailable, though
the coefficients may be obtained as infinite series (Jeffrey & Onishi 1984). Therefore,
as detailed in Appendix A, we numerically evaluate these coefficients and compute the
value of det C, which we show in figure 3 as solid black lines for a range of separations
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Figure 3. Values of the determinant det C as a function of separation d = r − (1+ λ) for different relative
sphere radii λ. The determinants corresponding to the far-field approximation are shown as dotted red curves,
whereas those corresponding to the full coefficients are shown in black, each evaluated numerically to a
precision beyond the resolution of these plots. The strict positivity of each of these curves as d→∞ is
confirmed by the leading-order expression of (3.18). The dotted line in (c) corresponds to det C = 0.

d = r − (a1 + a2) = r − (1+ λ) and relative sphere radii λ. For d > 0, we observe that
the determinant does not vanish. Thus, we conclude that the controllability matrix C is
of rank six throughout the entire admissible state space P = {X ∈ R

6 : d > 0}, so that
dim B(X ) = 6 on all of P and, hence, S = P. Therefore, by the Rashevski–Chow theorem,
the force-driven two-sphere problem is controllable everywhere, excluding the trivial case
when the spheres intersect with one another.

Though we have used accurate expressions for the mobility coefficients in the above
analysis, the widespread use of leading-order far-field approximations in the study
of motion in Stokes flow motivates repeating the above calculation with the far-field
analogues of the mobility coefficients. In this case, having non-dimensionalised forces
relative to the mobility coefficient M⊥, the far-field approximations to the mobility
coefficients are simply

M‖ = M⊥ = 1, m‖ = 1− 3
2r

, m⊥ = 1− 3
4r

, (3.17a–c)

independent of λ in the far-field, with the far-field approximation to the determinant being

det C = 27
512

(2r − 3)(8r − 9)3

(4r − 3)r9 , (3.18)

shown as red dotted lines in figure 3. Should this determinant vanish, this would
entail that there is a linear dependence in the constituent Lie brackets and a non-trivial
nullspace, corresponding to the existence of directions that are not controllable via these
Lie brackets. Hence, as can be seen from the expression of (3.18), and as is evident
in the figure, this far-field approximation does not yield an everywhere-controllable
system for λ > 1/2 and this choice of C, with the determinant vanishing at r = 3/2 and
r = 9/8. In these cases, the image of C corresponds to the reachable directions. When
r = 3/2, the direction [0, 0, 0, 1, 0, 0]T is unreachable, corresponding to increasing sphere
separation, whereas, when r = 9/2, there are two unreachable directions, [0, 1, 0, 0, 3, 0]T

and [0, 0, 1, 0, 0, 3]T, which each correspond to particular weighted motions of both
the control sphere and passive sphere perpendicular to the displacement vector r. The
zeros of the determinant can be seen in figure 3(c) and correspond to d = 1/2− λ and
d = 1/8− λ, respectively. Despite this, as should be expected, good agreement between
the two determinant calculations is evident for d � 2, though the far-field theory fails to
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The control of particles in the Stokes limit

predict the local maxima in the determinant seen in figures 3(a) and 3(b). Of note, when
the determinant is non-zero but near vanishing, this can be associated with some notion of
poor controllability in certain directions, which we discuss and explore further in § 3.3.

3.2.2. Control via an external torque
Complimentary to the above enquiry, we now seek to evaluate the controllability of
a torque-driven system, taking f = 0 instead of m = 0. As in the analysis of the
force-driven system, we exploit the symmetry of the two-sphere problem to evaluate B(X )

on a reduced set of states, which we again denote by X ∗, without loss of generality. First,
however, we compute the second-order Lie brackets, which may be written as

[hi, hj] =

⎡
⎢⎣
−2mTMT

r2 (rjei − riej)

2m2
T

r2 (rjei − riej)

⎤
⎥⎦ , (3.19)

where i, j ∈ {x, y, z}. Evaluated at a state in the reduced space, these become

[hx, hy](X ∗) =
[

0,
2mTMT

r
, 0, 0,−2m2

T
r

, 0

]T

(3.20)

[hx, hz](X ∗) =
[

0, 0,
2mTMT

r
, 0, 0,−2m2

T
r

]T

, (3.21)

and [hy, hz](X ∗) = 0, whereas the fields corresponding to the control are simply

hx(X ∗) = [0, 0, 0, 0, 0, 0]T (3.22)

hy(X ∗) = [0, 0, MT , 0, 0,−mT ]T , (3.23)

hz(X ∗) = [0,−MT , 0, 0, mT , 0]T . (3.24)

Immediately, and perhaps surprisingly, we see that [hx, hy] is parallel to hz, whereas
[hx, hz] is parallel to hy, so that these Lie brackets do not generate additional directions
in this example. Thus, so far, we have demonstrated only that dim B(X ∗) ≥ 2, spanned
by hy and hz, noting that mT /=MT . In seeking higher-dimensional control, one might be
tempted to consider higher-order Lie brackets, such as [hx, [hx, hy]].

However, this lower bound on dim B(X ∗) is in fact sharp, though drawing such a
conclusion from direct consideration of Lie(hx, hy, hz) can be cumbersome in general,
in this case requiring inductive arguments on the iterated Lie brackets; hence, we reason
directly from the dynamical system of (3.6). First, it is clear from symmetry that the
torque-driven system is not controllable along the r direction, with direct calculation
of d ‖r‖2 /dt via (3.6) highlighting that the distance between the spheres is unchanged
throughout the motion. Explicitly, recalling (3.6), we have

1
2

d ‖r‖2
dt
= rT dr

dt
= mT(r)

r
rT(ε · r)m = 0 (3.25)

by the antisymmetry of the Levi-Civita tensor. Thus, the dimension of B(X ) is at most
five. Further, introducing the weighted point xh = (mTx1 +MTr), simple calculation
yields that dxh/dt = 0, irrespective of the applied torque, with the mobility coefficients
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being explicit functions of only geometry. In more detail, noting from (3.6) that dr/dt =
−(mT/Mt) dx/dt when f = 0, we compute

dxh

dt
= mT

dx
dt
+MT

dr
dt
= mT

dx
dt
+MT

(
−mT

MT

dx
dt

)
= 0, (3.26)

recalling that we have shown that r is constant in time in this scenario, so that the mobility
coefficients are also constant in time. Hence, with this last constraint imposing three scalar
conditions, we can view the system as evolving in a smaller state space P′ of dimension
two, namely

P′ = {X ∈ R
6 : r = const., xh = const.}, (3.27)

and, further, note that the controllable state set within this new state space is found
to be S = P′. Therefore, by the Rashevski–Chow theorem applied to this subspace, the
torque-driven system is controllable in S, indicating that one may control the two spheres
around the point xh with a fixed distance between them.

3.3. Efficient control
As demonstrated in the previous section, control in the entire state space cannot be effected
by a simple torque control. Hence, with controllability naturally being a desirable property,
we consider only the controllable force-driven problem in further detail. In particular, the
presence of local maxima in figure 3 is suggestive of some notion of optimally efficient
control, with the determinant providing an estimate for the volume of the state space
explored by the columns of the controllability matrix C. This is a measure that we can
conceptually relate, in the framework of geometric control theory, to the size of the
sub-Riemannian ball estimated by the ball-box theorem (Bellaïche 1997), though notably
in a different context. Motivated by this, we now look to examine the mechanical efficiency
of the force-driven control problem of § 3.2.1.

Let us consider the energy dissipation E that occurs whilst attempting to control the
spheres in a particular direction for a small time τ from a state X ∗. We focus on the six
fields that make up the columns of C in (3.15), as they span the space around X ∗, whereas
higher-order brackets are generally associated with lower efficiencies, an example of which
we show later. For a given motion, the energy dissipation rate Ė is given by

Ė = U1 · f 1, (3.28)

which can be written as the quadratic form

Ė(t) = dX 1

dt
· f = f T

[
M‖

rrT

‖r‖2 +M⊥
(

I − rrT

‖r‖2
)]

f ≥ 0. (3.29)

The total energy dissipation E can then be calculated by the time integral of Ė.
Let γ denote the magnitude of the external force and, in the first instance, set f =

[γ, 0, 0]T, independent of time. The six-dimensional displacement after time τ under this
control is simply given by Δx = εgx(X

∗), where we have neglected higher-order terms in
ε := γ τ � 1. Defining the projection map 〈·〉r such that 〈[a; b]〉r = b ∈ R

3 for [a; b] ∈
R

6, the change in relative position during this motion may be written simply as 〈Δx〉r.
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The control of particles in the Stokes limit

The energy Ex corresponding to this process is given by the integral of (3.29), explicitly

Ex =
∫ τ

0
γ 2M‖ dt = γ 2τM‖ = εγ M‖ (3.30)

to leading order in ε. We now define the mechanical efficiency for this process as the
relative change in displacement r per unit energy consumption, the reciprocal of the widely
used ‘cost of transport’, written

ηx = 〈Δx〉r · 〈gx〉r
Ex‖〈gx〉r‖

, (3.31)

where displacement is being measured in the gx direction and we are suppressing the
argument X ∗ of gx for brevity. Making use of the expression of (3.10), the unit vector
〈gx〉r/‖〈gx〉r‖ is simply equal to −ex, though we note that this may not always be the case
when considering the far-field approximation of the mobility coefficients.

Similarly, we may calculate the displacement and energy consumption for the other
control fields gy and gz, giving

Δy = εgy(X
∗), Δz = εgz(X

∗), Ey = Ez = εγ M⊥. (3.32a–c)

We may then define ηy and ηz as the relative displacement in the gy(X
∗) and

gz(X
∗) directions, respectively, per unit mechanical energy consumption by the control,

analogously to (3.31). These definitions can be easily extended to the other elements of
B(X ), recalling that Lie brackets represent piecewise sequences of applied external forces.
The displacements and energies associated with [gx, gy] and [gx, gz] are, to leading order
in ε,

Δxy = ε2[gx, gy](X ∗), Δxz = ε2[gx, gz](X
∗), Exy = Exz = 2εγ (M‖ +M⊥),

(3.33a–c)

respectively. The iterated Lie bracket [gy, [gx, gy]] gives rise to a displacement on the order
of ε3,

Δyxy = ε3[gy, [gx, gy]](X ∗), (3.34)

with brackets of higher order giving rise to displacements of even higher order. The energy
consumption of this term is given by

Eyxy = 2εγ (2M‖ + 3M⊥), (3.35)

which we note is the same order of ε as the other Lie brackets.
We now similarly define the mechanical efficiencies of each of the considered Lie

brackets, denoting them by ηxy, ηxz and ηyxy for each of [gx, gy], [gx, gz] and [gy, [gx, gy]],
respectively, the latter of which is given explicitly by

ηyxy = ε2 〈Δyxy〉r · 〈gyxy〉r
γ (4M‖ + 6M⊥)‖〈gyxy〉r‖

, (3.36)

making use of the compact notation gyxy ≡ [gy, [gx, gy]]. In figure 4, we compute ηyxy

for various relative radii λ, each normalised by ε2/γ . For completeness, we also repeat
the above calculations using the far-field approximation for the hydrodynamics, with the
resulting efficiencies plotted as dotted red curves in figure 4. Of note, the direction of
[gy, [gx, gy]](X ∗) reverses around d = 0.5 in figure 4(c) for the far-field case, giving rise
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Figure 4. Values of the mechanical efficiency ηyxy normalised by ε2/γ for different sphere radius ratios λ. The
results of the full calculations are shown in black, whereas the analogous results for the far-field hydrodynamic
approximation are shown as dotted red curves.
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Figure 5. Efficiency, determinant and optimisation. (a) Optimal distance in terms of the mechanical efficiency
ηyxy as a function of relative sphere radius λ, with the λ axis scaled logarithmically. (b) The relationship between
the determinant of the controllability matrix and the mechanical efficiencies, plotted for λ = 1. All quantities
in (b) are normalised by their respective maxima.

to a non-smooth efficiency. Returning to the full mobility coefficients, we also note the
presence of a local maximum in each of these plots, a property shared with ηxy (not shown),
which corresponds to the energy-optimal distance at which this control should be applied.

We compute this optimal separation d∗ as a function of the relative radius λ, shown in
figure 5(a), from which we observe that the optimal separation increases to d∗ ≈ 1 as the
size of the passive particle decreases (λ→ 0) and attains a local minimum around λ = 1,
when the spheres are of equal size. Further, as ηyxy = O(ε2), whereas the other efficiencies
are O(1) or O(ε), the optimisation of ηyxy corresponds to improving the minimally efficient
component of a control scheme utilising the considered elements of Lie(gx, gy, gz), which
may be desirable in the context of seeking out efficient schemes for sphere control. One
might also attempt to optimise the other efficiencies, for example ηx and ηy, though, in
fact, these do not possess the local maxima of ηxy and ηyxy (not shown). Instead, these
efficiencies are monotonically increasing functions of the sphere separation d, highlighting
that simple controls, such as f = [γ, 0, 0]T, are relatively inefficient methods for altering
the separation r of the spheres when they are close to one another, as might be intuitively
expected, which warrants the use of more-complex Lie bracket controls.

Finally, in order to investigate a potential link between mechanical efficiency and the
determinant of figure 3, we plot the various efficiencies against the corresponding values
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The control of particles in the Stokes limit

of det C in figure 5(b), fixing λ = 1 and normalising each quantity with respect to its
maximum. We observe a surprising correlation between the efficiency ηyxy and det C,
with their maxima being approximately coincident, though this agreement is not present
to the same extent in the other computed efficiencies. Thus, this partially supports the
hypothesised link between efficiency and the determinant of the controllability matrix,
though it remains pertinent to consider alternative definitions of efficiency and thoroughly
explore the design of efficient controls.

4. Tracer limit

4.1. Far-field hydrodynamics
A natural limit of the force-controlled finite-size sphere scenario is for λ� 1, in which the
passive spheres are of negligible size relative to the control sphere. These dynamics are of
tracer particles being advected by the flow induced by a translating sphere, which, to a first
approximation, is simply that of a Stokeslet. Explicitly, with the position of the control
sphere as x and the relative positions of the passive tracers as r1, . . . , rN−1, mirroring the
previous notation, we have

drk

dt
= 3

4

(
I

‖rk‖ +
rkrT

k

‖rk‖3
)

f − f (4.1)

for k = 1, . . . , N − 1, where the final term arises from subtracting ẋ = f to give the
relative velocity of the tracers, noting that the dimensionless mobility coefficient is simply
unity in the tracer limit. Written together, we have the 3N-dimensional control system

d
dt

⎡
⎢⎢⎣

r1
...

rN−1
x

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

3
4

(
I

‖r1‖ +
r1rT

1

‖r1‖3
)
− I

...

3
4

(
I

‖rN−1‖ +
rN−1rT

N−1

‖rN−1‖3
)
− I

I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

f =
∑

i∈{x,y,z}
fi(t)gi(X ), (4.2)

having concatenated the equations for tracer evolution from (4.1) along with the simple
equation of motion dx/dt = f for the control sphere, whose position is denoted by x. We
particularly note that the position of the control sphere can only be controlled directly,
i.e. not with any Lie brackets that are second order or higher, as the x components of the
fields gi commute with one another, corresponding to the lower block of (4.2). Therefore,
the problem of controllability reduces to asking if we can control the relative position
of the tracers using only second-order or higher Lie brackets. For brevity, we define
the restricted three-dimensional fields g̃i,k as the rk = (rx,k, ry,k, rz,k) components of gi.
Fixing k ∈ {1, . . . , N − 1}, straightforward calculation shows that an iterated Lie bracket l
of order p of the fields g̃i,k (in particular, p = 1 corresponds to the original fields) has
components of the form lj = Ljr

−5( p−1)−3
k . Here, Lj is a homogeneous polynomial of

degree 3( p− 1)+ 2 in rx,k, ry,k, and rz,k, whose coefficients depend on (3
4 − rk), where

rk = ‖rk‖. Moreover, given the polynomials Lj of l, the components of the bracket [g̃i,k, l]
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can be obtained recursively via the relation

r5p+3
k [g̃i,k, l]j = r2

k

(
3
4
− rk

)(
∂Lj

∂ri,k
r2

k − pri,kLj

)

+ 3
4

3∑
q=1

Lq(3ri,krj,krq,k − r2
k (δiqrj,k + δjqri,k − δijrq,k)). (4.3)

After some simplifications, this gives the order two brackets as

[g̃i,k, g̃j,k] = 3(9− 8rk)

16r4
k

(rj,kei − ri,kej). (4.4)

The expression of (4.4) allows us to immediately conclude that the second-order Lie
brackets span a space of dimension two, except when rk = 9/8, which we recall also
prohibited controllability in the far-field case of § 3.2.1. Here, however, the inclusion of
third-order brackets, in particular [g̃x, [g̃x, g̃y]] and [g̃x, [g̃x, g̃z]], is sufficient to ensure
that the Lie brackets indeed span a space of dimension at least two.

In order to make further progress without lengthy calculation, we now restrict to the
case with a single tracer, taking N = 2. Hence, we suppress the second subscript of k in
g̃i,k, with k simply being unity. With this simplification, we may again make use of the
state-space reduction of § 3, exploiting the invariance of the controllability of this system
to translation and rotation, evaluating the Lie brackets at a reduced configuration in which
x = 0 and r1 ≡ r = rex, without loss of generality. In this reduced state, the space spanned
by [g̃x, [g̃x, g̃y]] and [g̃x, [g̃x, g̃z]] is spanned by ey and ez, with the ex direction seemingly
uncontrollable.

In an attempt to yield controllability in this final direction, we consider the ex
components of further Lie brackets, with these components having been identically zero
for those brackets considered thus far. The lowest-order brackets with a non-zero ex
component are [g̃y, [g̃x, g̃y]] and [g̃z, [g̃x, g̃z]], with this shared component being explicitly
given as

3
32

(2r − 3)(8r − 9)

r5 . (4.5)

Vanishing when r = 3/2 and r = 9/8, this closely mirrors the structure of (3.18), with
these values seemingly being an emergent feature of the far-field approximation. From
these third-order Lie brackets, we can therefore conclude that the two-particle tracer-limit
system is controllable by the Rashevski–Chow theorem, except when r = 3/2 or r =
9/8. Although these both correspond to the spheres being in close proximity, with the
far-field approximation almost certainly being inappropriate here, it is instructive to
further consider the former of these two cases, with controllability able to be readily
established at r = 9/8 via either of the fourth-order Lie brackets [g̃y, [g̃x, [g̃x, g̃y]]] and
[g̃x, [g̃y, [g̃x, g̃y]]].

In order to best examine the scenario where r = 3/2, we consider the evolution of the
squared separation distance ‖r‖2, as in § 3.2.2. This is simply given by

d ‖r‖2
dt
= 2rT dr

dt
= 3− 2 ‖r‖

‖r‖ rTf , (4.6)

vanishing and independent of the control f when ‖r‖ = 3/2. Hence, if the tracer is located
at this distance from the control sphere, the particle will remain trapped at this separation,
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The control of particles in the Stokes limit

irrespective of the applied control, thus is not controllable from this configuration. It
should be noted, however, that confounding factors in a physical system, such as the
presence of noise or other objects in the flow, may act to move the particle away from
such a zero-measure configuration, with the particle rendered controllable.

Therefore, in summary, we have found that the force-driven sphere-tracer system, with
the flow due to the sphere being approximated with simply a Stokeslet and only one tracer
being considered, is controllable unless the object centres are separated by a distance of
3/2, with the controllable state set formally written as

S = {X ∈ P : ‖r‖ /= 3/2}. (4.7)

4.2. Including the potential dipole
It is well known that the exact solution for Stokes flow around a translating sphere
includes a potential-dipole correction to the Stokeslet term of (4.2) (Kim & Karrila 2005),
which captures finite-volume effects and satisfies the no-slip condition on the surface
of the sphere. Hence, noting the difference in controllability found in § 3 when using
hydrodynamic representations of differing accuracy, we modify the system of (4.2), again
taking N = 2 for simplicity, to include the weighted potential dipole contribution, which
we write as

dr
dt
= 3

4

(
I

‖r‖ +
rrT

‖r‖3
)

f + 1
4

(
I

‖r‖3 −
3rrT

‖r‖5
)

f − f . (4.8)

This can readily be seen to satisfy dr/dt = 0 when ‖r‖ = 1. For completeness, the full
control system is now given by

d
dt

[
r
x

]
=
⎡
⎣3

4

(
I

‖r‖ +
rrT

‖r‖3
)
+ 1

4

(
I

‖r‖3 −
3rrT

‖r‖5
)
− I

I

⎤
⎦ f =

∑
i∈{x,y,z}

figi. (4.9)

We now seek to repeat the analysis of § 4.1 with this improved representation of the
hydrodynamics and, by doing so, assess the result of finite-volume effects on tracer
controllability. By the same reasoning as above, we seek to establish the controllability
of the tracer using only Lie bracket terms, and write g̃i for the r components of gi. The
second-order brackets corresponding to this augmented control system are given by

[g̃i, g̃j] =
−3(r − 1)2(8r3 + 7r2 + 6r + 3)

16r8 (rjei − riej). (4.10)

As with the far-field approximation, these span a space of dimension two, but now
without the condition r = 9/8. Indeed, the polynomial factor in (4.10) is non-zero for
r > 1, unsurprisingly vanishing when the tracer touches the control sphere at r = 1.
When evaluated in the reduced configuration, where x = 0 and r = rex, without loss of
generality, these Lie brackets unconditionally span the eyez plane from any point in the
admissible state space P := {X ∈ R

6 : ‖r‖ > 1}. Analogously to § 4.1, the final direction,
ex, is generated by the additional brackets [g̃y, [g̃x, g̃y]] and [g̃z, [g̃x, g̃z]], with their shared
ex entry being

3(r − 1)4(2r + 1)(8r3 + 7r2 + 6r + 3)

32r11 . (4.11)

However, in contrast to the previous analysis, this component is non-zero for all admissible
r, vanishing at r = 1 and two points inside the control sphere, with the direction
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generated unconditionally. Hence, having considered a tracer that is advected by the exact
velocity field around a translating sphere, though still neglecting any disturbance by the
tracer particle, we can now conclude that the sphere-tracer system is, in fact, controllable
everywhere, in stark contrast to the partial controllability result obtained when considering
only the Stokeslet flow induced by the control sphere. This highlights that some degree of
care should be taken in accurately specifying the hydrodynamics that govern the evolution
of the control system. Nevertheless, we do note some level of robustness, at least in this
case, with the difference in theoretical controllability between the Stokeslet and exact
flow representations only being for a single separation, though questions of practical
controllability, such as mechanical efficiency, may be differently affected and warrant
future exploration.

5. Tracers in Stokeslet flow

5.1. Geometry and hydrodynamics
In order to facilitate progress in the tracer limit above, we simplified the sphere–tracer
system to only a single tracer particle. Seeking to consider the controllability of multiple
tracer particles in a shared domain, we now make an alternative simplification that allows
for ready evaluation of multi-tracer controllability. Further, we employ and exemplify a
systematic approach for establishing controllability using multiple controllability matrices,
which can be applied in more-general contexts.

In the far-field limit, with the separation of the spheres large compared with their
sizes, all interaction terms between the particles vanish, as can be seen explicitly for
the two-sphere case in (3.17a–c), where M‖, M⊥, m‖ and m⊥ all approach unity in this
limit. With the grand mobility tensor of (2.2) thereby rendered diagonal, it is clear that the
control of one particle by another is no longer plausible. Taking this large-separation limit
and removing any driving forces or torques on the particles, a scenario that corresponds
to a dilute suspension of passive tracers, we consider a different modality of control,
one in which tracer motion is effected by an externally imposed flow. Motivated by the
far-field approximation used in § 4.1 and recent experimental trappings of self-propelling
microswimmers (Zou et al. 2020), we investigate the motion of tracers in the flow field
produced by a dimensionless Stokeslet of strength f (t), though other flows may be
similarly considered. In contrast to the exploration of the previous section, here we control
the strength of a fixed-position Stokeslet directly, leading to a characteristically different
control system to that considered above, which used a moving Stokeslet as the far-field
approximation to the flow induced by a moving sphere.

Concretely, subject to the above assumptions and indexing each tracer by k ∈
{1, . . . , N}, the evolution of the kth tracer in the laboratory frame is simply given by

dxk

dt
=
(

I

‖xk‖ +
xkxT

k

‖xk‖3
)

f , (5.1)

where xk is the swimmer position and the fixed Stokeslet is located at the origin, without
loss of generality. Concatenating the xk into X ∈ R

3N as in § 2 and forming composite gx,
gy and gz in the same manner, these equations of motion combine to yield the N-tracer
driftless control-affine system

dX
dt
=

∑
i∈{x,y,z}

fi(t)gi(X ). (5.2)
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x1
x2

ez
ey

ey

ex

ex

f

f

X1 = [1, 0, 0]T

X2 = [x, y, 0]T

(b)(a)

Figure 6. A reduced two-tracer state space for evaluating controllability. The original six-dimensional state
space (a), with x1 and x2 being general points in R

3 and the Stokeslet situated at the origin, labelled f ,
is instantaneously equivalent to the reduced planar configuration (b) up to rotation and rescaling, noting the
invariance of controllability properties to such transformations in the context of the Stokeslet-driven control
system of (5.2). Of note, the reduced system still admits unrestricted motion of each tracer in R

3, with the
instantaneous controllability properties merely being evaluated in this notationally reduced but nevertheless
general configuration.

We now restrict to the case where N = 2, corresponding to the motion of two inert
tracers in Stokeslet flow, and again make use of compact notation for the left-iterated
Lie bracket, writing gxyz = [gx, [gy, gz]] and similarly for other iterated brackets, with
gyxxy = [gy, [gx, [gx, gy]]], for example. With i, j ∈ {x, y, z}, the second-order brackets are
explicitly given by

g̃ij,k =
3
‖xk‖2

[(xk · ej)ei − (xk · ei)ej], (5.3)

where, for k ∈ {1, 2}, g̃∗,k denotes the xk components of g∗, analogous to the notation of
§ 4.

As in § 3, we compute the determinants of controllability matrices, seeking to identify
the points of the six-dimensional state space P at which these matrices are of full rank, with
P = {[x1; x2] ∈ R

6 : x1, x2 /= 0}. However, the evaluation of these expressions would
prove to be cumbersome should we retain the six-dimensional representation of the control
system. Previously, noting the invariance of controllability to rotations and translations in
these systems, we successfully reduced the state space to facilitate simple analysis, which
remains valid in this case. Indeed, we may now simplify even further, with this tracer
system being self-similar with respect to rescalings in space, compensated for by rescalings
in time. Thus, we rotate and rescale the spatial description of the two-tracer problem,
taking x1 = ex and x2 = xex + yey and omitting the subscripts on the components of x2 for
notational convenience. We also remark that we may take y ≥ 0, without loss of generality.
This significantly reduced configuration is illustrated in figure 6.

Of particular note, although we later evaluate controllability matrices at points in this
reduced two-dimensional space, with elements denoted by X ∗, motion out of the plane of
this instantaneous configuration is still permitted. Indeed, f need not lie within this plane.
Hence, we duly seek to identify controllability matrices of rank six, despite evaluating
their entries in this notationally and computationally convenient two-dimensional setting.
We refer to this reduced space as P̃ = {(x, y) ∈ R

2 : y ≥ 0, (x, y) /=(0, 0)}, noting that
controllability on P̃ is equivalent to controllability on P.
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x

y

–1.5
0

0.2

0.4

0.6

–1.0

(i) (ii) (iii)

–0.5 0 0.5 1.0 1.5

Z1

Z2

Figure 7. Sets Z1 and Z2 on which det C1 and det C2 in turn vanish, shown as black and grey curves,
respectively. Their intersections are marked as black points, corresponding to three cases: (i) x1 = −x2, the
tracers are mirror images in the Stokeslet; (ii) x2 = 0, the tracer is at the singular point of the flow, excluded
from P (shown open); (iii) x1 = x2, the tracers share location and the system is degenerate.

5.2. Establishing controllability
Seeking a controllability matrix C of rank six, the natural and perhaps minimal choice of
C = [gx, gy, gz, gxy, gxz, gyz] leads to det C = 0 identically, with higher-order Lie brackets
therefore warranted in order to yield controllability. In what follows, we consider the three
controllability matrices

C1 = [gx, gy, gz, gxy, gyz, gxxy], (5.4)

C2 = [gx, gy, gz, gxy, gxz, gyxy], (5.5)

C3 = [gx, gy, gz, gxy, gxz, gyxxy], (5.6)

which differ only in the final two columns. For completeness, the full expressions for
C1, C2, and C3 are given in Appendix B along with their determinants. As also further
explained in Appendix B, we now identify the controllable sets S1, S2, S3 ⊆ P̃ where each
of C1, C2, and C3 have non-vanishing determinant, respectively, noting that the system is
controllable at a point p ∈ P̃ in the reduced configuration space if p ∈ S1 ∪ S2 ∪ S3 by the
Rashevski–Chow theorem.

The set Z1 := P̃ \ S1, on which det C1 vanishes, is found to be a subset of the upper
right quadrant and the x axis. The analogously defined Z2 intersects with Z1 at precisely
two points (x, y) ∈ {(−1, 0), (1, 0)}, with the origin excluded from P̃. These sets and their
points of intersection are shown in figure 7, with controllability established everywhere
except at these intersections. Notably, the process of identifying potentially uncontrollable
states may be streamlined once Z1 is found, with only the intersection Z1 ∩ Z2, rather
than the whole of Z2, being needed to further interrogate controllability, as demonstrated
explicitly in Appendix B.

The two points of intersection each correspond to a simple configuration. For (x, y) =
(1, 0) the tracers overlap and share position for all time, so that x1 = x2, with independent
control of both x1 and x2 clearly impossible. The second case, however, entails only
that x1 = −x2, so that the two tracers are mirror images with respect to the location
of the Stokeslet, a configuration that does not obviously prohibit controllability. Indeed,
consideration of the matrix C3 is sufficient to provide controllability in this circumstance,
which may be easily established by noting that det C3 is non-zero at (x, y) = (−1, 0). Thus,
(−1, 0) /∈ Z3, so that Z1 ∩ Z2 ∩ Z3 = {(1, 0)}. Therefore, S1 ∪ S2 ∪ S3 = P̃ \ {(1, 0)} and
we have demonstrated controllability on all of the reduced space, excluding the degenerate
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point where the tracers overlap. Though controllable, the requirement of a fourth-order
bracket when x1 = −x2 entails that control is somewhat more challenging in this
configuration, with higher-order brackets needing more-intricate controls to realise in
practice.

Recalling that the three considered controllability matrices differed only in their
final two columns, a succinct summary of the above calculations is that the composite
controllability matrix

C = [gx, gy, gz, gxy, gyz, gxz, gxxy, gyxy, gyxxy] (5.7)

is of rank six everywhere in P̃ apart from when the tracers are coincident. Therefore, the
two-tracer system is controllable from any such configuration.

6. Constructing control schemes

Controllability analysis theoretically predicts that driving a system from any state X 0
to any target state X 1 is possible within the controllable state space, though, as yet, it
may be unclear how such a transition can be achieved. In fact, exploiting the directions
given by the Lie brackets found to span in the previous sections, it is possible to
explicitly design control policies that realise this goal, as described for the first time
in the celebrated work of Lafferriere & Sussmann (1992), which contributed a general
motion planning algorithm for non-holonomic driftless control-affine systems. Since
then, additional schemes for motion planning have been devised, such as the so-called
sinusoidal methodology of Murray & Sastry (1993) and the approach of Melli, Rowley
& Rufat (2006), the latter being presented in the context of articulated bodies. In this
section, we briefly describe and numerically exemplify the algorithm of Lafferriere
and Sussmann as applied to the two-sphere system of § 3, inheriting its motivation
and context. For the sake of legibility, we reduce the dimension of the system and
focus only on planar motion; carrying out the algorithm in higher dimensions is strictly
analogous.

Let X0 be the initial state and X1 a target state for the two-sphere system. We have
proved in § 3.2.1 that force control of one sphere allows controllability of the system, owing
to the controllability matrix composed of four fields, C = (gx, gy, [gx, gy], [gy, [gx, gy]]),
having full rank everywhere in the state space. The principal idea of the motion
planning scheme is to utilise these fields and consider the extended control
system

Ẋ = v1gx + v2gy + v3[gx, gy]+ v4[gy, [gx, gy]] = Cv, (6.1)

with a new set of four controls v = (v1, v2, v3, v4). Now having as many controls as
equations, we can build a control v that drives the system along a set trajectory X̄ (t) that
links X 0 to X 1 on a set time interval [0, T] by simply inverting system (6.1):

v(t) = C−1 ˙̄X (t). (6.2)

We typically choose X̄ as a straight line between X 0 and X 1, in which case X̄ (t) = tX 1 +
(T − t)X 0 and v(t) = v = C−1(X 1 − X 0) is constant. Note that, for other control systems,
such as that of § 5, the overall controllability matrix C may not be square, in which case v
may be defined with a pseudoinverse of C instead of C−1.
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By construction, with v defined as in (6.2), we have X (T) = X 1. Next, we wish
to use this control v to build controls ( fx, fy) that will drive the original two-sphere
system to the same target. This can be done by following an elegant, albeit technical,
process of calculating so-called Philip Hall coordinates of the solution X , which requires
formal calculation with non-commutative indeterminates X and Y that represent the fields
gx and gy. For more detail on this formalism, we refer the reader to Lafferriere &
Sussmann (1992) or the more comprehensive introduction to geometric control theory
of Kawski & Sussmann (1997). A Philip Hall basis of the polynomials in (X, Y) up to
order three is defined as (X, Y, [X, Y], [Y, [X, Y]], [X, [X, Y]]), with the first four elements
corresponding to the brackets used to define the controllability matrix C. Then, one can
associate the Philip Hall coordinates (h1, h2, h3, h4, h5) to the formal trajectory X̃ in such
a way that

X̃ (t) = eh1(t)X eh2(t)Y eh3(t)[X,Y] eh4(t)[Y,[X,Y]] eh5(t)[X,[X,Y]], (6.3)

decomposing the trajectory with respect to the directions given by each of
the (formal) brackets in the Philip Hall basis. Moreover, via the well-known
Baker–Campbell–Hausdorff formula, these coordinates (h1, h2, h3, h4, h5) may be easily
computed as algebraic expressions of the solution to a simple ordinary differential equation
(ODE) system, which is, in turn, dependent on v:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

h1 = g1,

h2 = g2,

h3 = g3 − g1g2,

h4 = g4 − g2g3 + 1
2 g1g2

2 − 1
6 g2

1g2,

h5 = g4 − g1g3 + 1
2 g2

1g2 + 1
6 g1g2

2,

where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ġ1 = v1,

ġ2 = v2,

ġ3 = v3 + g1v2,

ġ4 = v4 + g1g2v2,

ġ5 = 1
2 g2

1v2 + g1v3,

gi(0) = 0, i = 1 . . . 5.

(6.4)

Finally, the controls fx and fy can be used to intuitively generate each term in (6.3) at
t = T . For example, the first term eh1(T)X can be generated by setting fx(t) = h1(T) for t ∈
[0, 1]. Terms associated with higher-order brackets are obtained through concatenations
of fx and fy, as demonstrated in (2.8) of § 2. As an explicit example in this context,
the second-order bracket direction eh3(T)[X,Y] can be achieved on [0, 4] with the control
policy

f (t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

fx = ζ, for t ∈ [0, 1),

fy = ζ, for t ∈ [1, 2),

fx = −ζ, for t ∈ [2, 3),

fy = −ζ, for t ∈ [3, 4],

(6.5)

with ζ = h3(T)1/2 if h3(T) ≥ 0; if h3(T) < 0, we simply interchange the roles of fx and
fy in this description. In this example, the controls are specified as piecewise constant
functions, but one may instead utilise smoother controls, as further remarked upon in
Appendix C. Repeating this process for the brackets of third order and performing some
minor simplifications, we can define a control policy made of 23 steps that drives X 0
to X 1, which we give explicitly in Appendix C. However, it should be noted that this
control policy only reaches the approximate location of the target, as we have neglected
the effects of brackets of order four and higher in the above calculations. To reduce the
effects of these higher-order terms, one can subdivide the trajectory into smaller steps
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by defining intermediate targets, a process with guaranteed convergence (Lafferriere &
Sussmann 1992). In more detail, given a step size of Δ and a final error tolerance of δ, the
algorithm can be summarised as

Y 0 ← X 0
while ‖Y 0 − X 1‖ � δ do

Y 1 ← Y 0 +min
(

1, 

‖X 0−Y 0‖

)
(X 1 − Y 0)

compute v driving Y 0 to Y 1 using (6.2)
compute Philip Hall coordinates using (6.4)
define controls fx, fy for t ∈ [0, 24] using (C2)
compute the trajectory Y starting at Y 0 with controls fx, fy for t ∈ [0, 24]
Y 0 ← Y (t = 24)

end while

We numerically apply this algorithm to control our two-sphere system using the
MATLAB ODE solver ode45 (Shampine & Reichelt 1997), with the results displayed in
figure 8 and Movies 1 and 2 of the Supplementary Material available at https://doi.org/10.
1017/jfm.2022.253. Figures 8(a)–8(c) and Movie 1 of the Supplementary Material show
the character of the trajectory produced by the algorithm on a simple example, with step
size Δ = 0.5. The trajectory of each sphere after one iteration is displayed in figure 8(b),
from which we note that generating motion in the target direction requires moving the
sphere around a ‘loop’ whose length is significantly greater than the final displacement.
This serves to validate the study of efficiency in § 3.3, which suggested that the third-order
brackets require high-energy input due the factor ε2 appearing in (3.35). With this value
of Δ, the algorithm converges after seven iterations, with the results shown in figure 8(c).
The size of the ‘loop’ can be reduced by decreasing the value of Δ, which naturally entails
that the target will be reached after more iterations. This is shown in figure 8(e) and Movie
2 of the Supplementary Material, in which the same target is reached with Δ = 0.1 after
27 iterations. Finally, this algorithm may be applied repeatedly, allowing control of the
spheres over more-complex trajectories, as illustrated in figure 8( f ).

Thus, via this concrete example, we have seen how a controllability analysis may be
leveraged practically to design and explicitly construct motion planning policies to realise
a control task, with the presented approach also being immediately generalisable. This
basic description may be readily augmented and refined, with smoother, more-direct
trajectories being obtained via a combination of adaptive step sizing and the considered
design of control combinations when seeking to generate the Lie bracket directions, of
likely pertinence to potential applications and experimental set-ups. This exploration has
also served to validate the controllability analysis of this two-sphere control system, with
control able to be effected using the controllability matrix of § 3.2.1.

7. Discussion

In this work, we have presented an introduction to control and controllability in the context
of multiple particles in Stokes flow, illustrated by a number of explicit examples of quite
general control problems involving hydrodynamic particle–particle interactions, with this
framework contrasting with other explorations of controllability in this regime (Shapere
& Wilczek 1989b; Martín et al. 2007; Desimone et al. 2012; Alouges et al. 2013a; Lohéac
& Munnier 2014; Hatton & Choset 2015; Lohéac & Takahashi 2020). In doing so, we
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Figure 8. Application of the motion planning algorithm to the finite-size two-sphere control problem. The
initial configuration is shown in (a), with the control sphere in red centred at (0, 1) and the passive sphere
in green centred at (3, 3), both having a radius of unity. The target positions of the spheres, (0, 0) and (1, 3),
are represented on the graph by black and blue crosses, respectively. (b) The position of the spheres and their
trajectory after one iteration of the motion planning algorithm, whereas (c) shows the full trajectory that results
in the spheres reaching their targets after seven iterations. (d) The controls fx and fy to be applied to generate
the trajectories on (b). (e) The trajectory after one iteration for a smaller value of Δ (Δ = 0.1), reducing
the size of the loops made by the spheres. The black and blue crosses indicate the positions of the spheres
after each iteration of the algorithm until they reach the target positions. ( f ) A more elaborate trajectory
where the control and passive spheres are assigned to reach successive targets, along a circle and a square,
respectively, each shown as a red line. The full trajectories of the spheres are represented as light grey lines.
The respective initial positions of the control and passive sphere are (−0.5, 1.5) and (−1,−1) and they traverse
their target trajectories anticlockwise and clockwise, respectively. In addition to this figure, Movies 1 and 2 of
the Supplementary Material display the trajectories presented on (c) and ( f ), respectively.

have seen how rigorous controllability can be established with elementary, if cumbersome,
calculation, highlighting the potential for the systematic justification of controllability in
other studies, which is often lacking in contemporary works. This broad applicability
draws from the time stationarity of many Stokes flow problems, with explicit reference
to time being absent from the governing equations of motion. As we have seen in the
cases presented in this study, this can give rise to systems in control-affine form, with
simple yet powerful results of geometric control theory then being readily wielded to
interrogate the controllability. Absent from the problems considered here, the presence
of drift terms, those with no dependence on any control, such as propulsive velocities or
prescribed background flows, somewhat complicate the analysis of controllability, though
similar tools are able to query the property of STLC, leading to results pertaining to
local rather than global control. Such systems are of particular relevance to self-propelled
microswimmers, with an analysis of such a swimmer in a controlled background flow
being presented by Moreau et al. (2021).
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Though illustrative of a general approach to controllability in the Stokes regime, the
particular examples explored in this study may be interpreted in physical or biophysical
contexts. For instance, the force-driven controls that we have studied can be interpreted
as being effected in practice by optical tweezers, a methodology that may also be used
to generate the Stokeslet flow considered in § 5 (Zou et al. 2020). Facilitating many
of the control modalities explored in this work, hydrodynamic interactions between
particles have also been studied in various biophysical contexts, such as the enhancement
of hydrodynamic capturing of swimming sperm near an egg (Ishimoto, Cosson &
Gaffney 2016), the colonisation of bacteria near a nutrient source (Desai, Shaik &
Ardekani 2019) and bacterial predator–prey dynamics (Ishimoto, Gaffney & Walker 2020).
Further, flow-mediated particle control has been discussed in the context of nutrition
uptake in microorganisms and ciliated cells (Riisgård & Larsen 2010; Kiørboe et al.
2014). Hydrodynamic interactions between particles are also utilised as a mechanism
of cargo transport in an active colloid system (Demirörs et al. 2018; Wang &
Simmchen 2019; Yang & Bevan 2020; Zou et al. 2020), with the controllability results
established in the present study rigorously guaranteeing that this particle transportation
is possible. However, this analysis has also indicated the relative inefficiency of particle
repulsion and attraction via hydrodynamic interactions when objects are in very close
proximity.

As a consequence of the explicit manner in which we have established control
throughout this study, identifying spanning elements of the problem-specific Lie algebra,
we have been able to constructively and systematically design schemes for control
towards a particular goal, employing the approach of Lafferriere & Sussmann (1992).
Indeed, by utilising the spanning sets found in our analysis, this methodology constructs
an appropriate control, with the resulting control policy demonstrating the key role
that non-commutativity can play in realising the manipulation of high-dimensional
systems with low-dimensional control modalities. This inherently constructive approach
is starkly different to many modern methods for identifying suitable controls, with
popular and powerful techniques such as machine learning and high-dimensional nonlinear
optimisation being in common use. In contrast to these ‘black-box’ methods, the
highlighted explicit approach of Lafferriere & Sussmann (1992) has the potential to readily
develop our understanding of the physics of the control systems considered, with the
aforementioned importance of non-commutative controls being a significant example of
this.

Bordering on the related field of optimal control, we have also explored the mechanical
efficiency of aspects of control, reporting on the efficiency-optimal distances at which
particular controls should be applied. The dependence of these optimal distances on the
sphere-size ratio λ suggests further investigation in the noted biophysical interpretations
of the two-sphere problem, such as the efficient capture of prey and the realisation of
sperm–egg encounters (Jabbarzadeh & Fu 2018). There also remains significant scope
for the consideration of optimality in further generality, with possible extensions of
the explicit method of Lafferriere & Sussmann (1992) being a likely topic of further
investigation. In particular, informed by the analysis of the force-driven sphere system
in § 3.3, we expect that optimal controls for maximising efficiency would make minimal
use of terms that correspond to higher-order Lie brackets, with these typically requiring
significant additional control input in order to realise comparable changes in state to
lower-order brackets. In a practical context, alternative definitions of efficiency, or indeed
optimality, may be appropriate, with the investigation of these settings being an additional
direction for exploration.
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A further theoretical limitation present in this study lies in the geometric nature of the
steady Stokes equations. If the oscillatory frequency of the control force were to be large,
the commonplace assumption of negligible inertial effects may no longer be valid. For such
a rapidly oscillating force actuation, one might seek to apply the unsteady Stokes equations
and the associated Stokeslet, called the oscillet, which leads to a correction in the far-field
(Wei et al. 2021). In this work, we have exploited symmetry to improve the computational
tractability of the systems that we have considered, a property not present in many-sphere
settings or in more-complex geometries. Indeed, with confinement having been noted to
enhance the controllability of a microrobot (Alouges & Giraldi 2013), assessing the control
properties of torque-driven spheres near a boundary may be of great interest. With the
boundary modifying the mobility coefficients of the spheres, one can imagine that they
may be sufficiently modified to enhance controllability, which we have seen is otherwise
limited in an unbounded domain. The extension to many-sphere systems, be they finite-size
or tracer particles, represents a likely direction for future work; indeed, the principle of the
analysis presented in this work is readily applicable to higher-dimensional systems, with
the caveat of increased algebraic and notational complexity. However, if such multi-sphere
systems are driven with relatively few degrees of freedom, as we have done in this study,
their control will almost certainly require the use of high-order Lie brackets, with practical
control perhaps limited by this likely necessity.

In summary, we have explored the controllability of multiple physically inspired
problems in the Stokes regime, highlighting how explicit assessments of controllability
can both facilitate the constructive design of controls and deepen our understanding of
underlying fluid mechanics. In examining these example cases, which has also led to
an evaluation of mechanical efficiency and its optimisation, we have summarised and
demonstrated the application of key principles of geometric control theory such that they
may be readily translated to other research contexts, overall serving to illustrate how these
simple yet powerful tools can be utilised to rigorously evaluate control in the Stokes limit.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2022.253.
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Appendix A. Mobility coefficients

The mobility coefficients, M‖, N‖, m‖, M⊥, N⊥, m⊥, MT , NT and mT of § 3 are obtained
by the inversion of a corresponding resistance matrix. This matrix is constructed from the
widely used expressions of Jeffrey & Onishi (1984), in which they connect the far-field
expansion of the hydrodynamics, up to O(1/r11), with results from lubrication theory.
These intricate expressions are evaluated numerically, with select cases plotted in figure 9.
Of note, for λ� 1, the series expression for MT does not converge sufficiently fast to
enable us to conclude that it is non-negative, even if the series is summed up to O(1/r300).
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Figure 9. Mobility coefficients for various relative sphere sizes, as computed from the expressions of Jeffrey
& Onishi (1984). For λ = 0.1, MT is not distinguishable from zero at the resolution of this plot.

Appendix B. Explicit analysis of two tracers in flow

With reference to the set-up of § 5.2, the controllability matrices C1, C2 and C3 are given
explicitly by

C1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 0 0 0 0 0
0 1 0 −3 0 21
0 0 1 0 0 0

x2

r3 +
1
r

xy
r3 0

3y
r4 0 −27xy

r7

xy
r3

y2

r3 +
1
r

0 −3x
r4 0

3
(
7x2 − 2y2)

r7

0 0
1
r

0 −3y
r4 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (B1)

C2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 0 0 0 0 6
0 1 0 −3 0 0
0 0 1 0 −3 0

x2

r3 +
1
r

xy
r3 0

3y
r4 0

3
(
2x2 − 7y2)

r7

xy
r3

y2

r3 +
1
r

0 −3x
r4 0

27xy
r7

0 0
1
r

0 −3x
r4 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (B2)
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C3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 0 0 0 0 −21
0 1 0 −3 0 0
0 0 1 0 −3 0

x2

r3 +
1
r

xy
r3 0

3y
r4 0

27xy2 ( y2 − 2x2)+ 6xy2 (x2 − 2y2)− 21x3 (x2 − 2y2)
r12

xy
r3

y2

r3 +
1
r

0 −3x
r4 0 −3

(
9x2y

(
x2 + 4y2)+ 7x2y

(
x2 − 2y2)+ 2y3 (2y2 − x2))

r12

0 0
1
r

0 −3x
r4 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(B3)

where r =
√

x2 + y2 and these matrices are evaluated at X ∗ in the reduced two-tracer
space P̃. The determinants may be computed as

det C1 = −
108y2 (7r4 − 8xr + 1

)
r13 , (B4)

det C2 = −
108

(
r10 − 2xr7 + 7y2r4 + 2xr3 − 8xy2r − x2)

r13 (B5)

and

det C3 = 54r−16(7r13 − 14xr10 + 7r9 − 7y2r7 − 7xr6 + 14r5

+ 21xy2r4 − 31y2r3 − 7xr2 + 21y4r + 3xy2). (B6)

We next identify Z1 := P̃ \ S1, the set on which det C1 vanishes. This trivially includes
all points with y = 0, with the remaining elements X ∗ ∈ P̃ necessarily satisfying

8xr = 7r4 + 1. (B7)

This latter relation admits solutions only when x > 0 and, thus, defines a curve in the upper
right quadrant of the xy plane. With controllability thereby already broadly established,
though still lacking on Z1, we now consider the zeros of det C2. Notably, for the purpose
of establishing controllability, we may restrict our rootfinding to Z1, computing the
intersection Z1 ∩ Z2, which significantly simplifies the necessary calculation. First seeking
solutions with y = 0, the condition det C2 = 0 reduces to

x10 − 2x |x|7 + 2x |x|3 − x2 = 0, (B8)

which holds precisely when x ∈ {−1, 0, 1}. Hence, {(−1, 0), (1, 0)} ⊆ Z1 ∩ Z2, recalling
that {(0, 0)} �∈ P̃. The remaining elements of Z1 ∩ Z2 are solutions of the simultaneous
equations

0 = 7r4 + 1− 8xr, (B9)

0 = r10 − 2xr7 + 7y2r4 + 2xr3 − 8xy2r − x2. (B10)

Recalling that the first equation admits solutions only for x > 0, this system can be solved
analytically via elementary manipulations, leading to the single solution (x, y) = (1, 0).
Therefore, we in fact have that Z1 ∩ Z2 = {(−1, 0), (1, 0)} precisely, with controllability of
the two-tracer system thereby established except at these three points of the reduced space.
Both Z1 and Z2 are illustrated in figure 7, computed numerically and with their three points
of intersection shown as black dots. The controllability analysis is now readily completed
by evaluating det C3 on Z1 ∩ Z2, which vanishes only at (1, 0). Hence, S1 ∪ S2 ∪ S3 =
P̃ \ {(1, 0)}.
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Appendix C. Equations for constructing control schemes

The piecewise-constant control policies built from the Philip Hall coordinates
(h1, h2, h3, h4, h5) are defined on t = [0, 24] as follows. We define

α = h1(T), β = h2(T), γ =
√
|h3(T)|,

δ =
(

h5(T)− 1
2γ 3

)1/3
, ε =

(
h4(T)+ 1

2γ 3
)1/3

.

⎫⎬
⎭ (C1a–e)

The terms 1
2γ 3 in the definition of δ and ε are used to remove the third-order residuals

generated by the control policy generating the direction [gx, gy]. Then, if h3(T) � 0, we
define

fx(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

α on [0, 1),

γ on [2, 3),

−γ on [4, 5),

δ on [6, 8) ∪ [13, 14),

−δ on [9, 10) ∪ [11, 12) ∪ [15, 16),

ε on [17, 18) ∪ [21, 22),

−ε on [19, 20) ∪ [23, 24),

fy(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

β on [1, 2),

γ on [3, 4),

−γ on [5, 6),

δ on [8, 9) ∪ [12, 13),

−δ on [10, 11) ∪ [14, 15),

ε on [16, 17) ∪ [18, 19),

−ε on [20, 21) ∪ [22, 23),

(C2)

and, if h3(T) < 0, we instead define

fx(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

α on [0, 1),

γ on [3, 4),

−γ on [5, 6),

δ on [8, 9) ∪ [12, 13),

−δ on [10, 11) ∪ [14, 15),

ε on [16, 17) ∪ [18, 19),

−ε on [20, 21) ∪ [22, 23),

fy(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

β on [1, 2),

γ on [2, 3),

−γ on [4, 5),

δ on [6, 8) ∪ [13, 14),

−δ on [9, 10) ∪ [11, 12) ∪ [15, 16),

ε on [17, 18) ∪ [21, 22),

−ε on [19, 20) ∪ [23, 24),

(C3)

Smoother controls can be obtained by multiplying the constant value set on an interval
[T0, T0 + 1] by any function ϕ supported on this interval whose integral is unity. For the
control policies displayed in figure 8(d), we have made use of ϕ(t) = 2 sin2(π(t − T0)).
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