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Abstract

Deep learning models have witnessed immense empirical success over the

last decade. However, in spite of their widespread adoption, a profound

understanding of the generalization behaviour of these over-parameterized

architectures is still missing. In this thesis, we provide one such way via

a data-dependent characterizations of the generalization capability of deep

neural networks based data representations. In particular, by building on

the algorithmic robustness framework, we offer a generalisation error bound

that encapsulates key ingredients associated with the learning problem such

as the complexity of the data space, the cardinality of the training set, and

the Lipschitz properties of a deep neural network.

We then specialize our analysis to a specific class of model based regres-

sion problems, namely the inverse problems. These problems often come

with well defined forward operators that map variables of interest to the

observations. It is therefore natural to ask whether such knowledge of the

forward operator can be exploited in deep learning approaches increasingly

used to solve inverse problems. We offer a generalisation error bound that

– apart from the other factors – depends on the Jacobian of the composition

of the forward operator with the neural network.

Motivated by our analysis, we then propose a ‘plug-and-play’ regu-

lariser that leverages the knowledge of the forward map to improve the

generalization of the network. We likewise also provide a method allow-

ing us to tightly upper bound the norms of the Jacobians of the relevant

operators that is much more computationally efficient than existing ones.
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We demonstrate the efficacy of our model-aware regularised deep learning

algorithms against other state-of-the-art approaches on inverse problems

involving various sub-sampling operators such as those used in classical

compressed sensing setup and inverse problems that are of interest in the

biomedical imaging setup.





Impact Statement

The outstanding performance offered by deep neural networks to long-

standing problems has encouraged its use in a myriad of applications. How-

ever, deep neural networks – often called black boxes – are poorly understood,

leading to predictions that are often not interpretable or explainable. While

in certain application fields this issue may play a secondary role, in high-risk

domains, e.g., healthcare, it is crucial to use machine learning models that

are trustworthy.

In this work, we take a step in this direction by providing a framework

for explaining the various factors that affect the performance of a deep neural

network on a well-known class of problems: inverse problems. This is an

important class of problems that arises in various scientific and engineering

applications including imaging techniques widely used in healthcare. We

offer a principled methodology offering the means to train more robust deep

neural network models.

Our results will have implications both in theory and practice. In partic-

ular, our theoretical results offer insights as to how the forward operator of a

given inverse problem can be exploited to guide the training procedure. Our

proposed regularizers, which ensure generalization in the presence of small

datasets, are critical in scenarios where access to large supervised training

sets is hard or monetarily infeasible, as for example in medical imaging.

Our proposed techniques augment the current model aware data-driven

techniques for inverse problems and will lead to wider adoption of deep

neural networks for such problems.
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Nomenclature

Symbols

R Real Numbers

A Forward Operator

J Jacobian Matrix

W Weight Matrix

D Sample Space Y×X

F Hypothesis Space

NX Covering number of X

S Training Set

X Output Space

Y Input Space

DKL Kullback–Leibler divergence

fS Learning algorithm training on S

p Dimension of the vectors in X

q Dimension of the vectors in Y

m Training set size
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Greek Symbols

δ Covering ball diameter of X

ϵ Maximum absolute difference between loss in a partition

η Noise Level

λ Regularization coefficient

Λa Lipschitz constant of the operator A

Λ f Lipschitz constant of the neural network f

Λ f◦a Lipschitz constant of the composite mappinf f ◦A

ψ Covering ball diameter of D

ρ Product metric

Acronyms

BPDN Basis Persuit Denoising

CNN Convolutional Neural Network

CT Computed Tomography

DL Deep Learning

DNN Deep Neural Network

GE Generalization Error

IID Independently and Identically Distributed

MRI Magnetic Resonance Imaging

PSNR Peak Signal to Noise Ratio

SGD Stochastic Gradient Descent

SSIM Structural Similarity Index Measure
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Notation
We use the following notation: matrices, column vectors, scalars and sets

are denoted by boldface upper-case letters (X), boldface lower-case letters

(x), italic letters (x) and calligraphic upper-case letters (X), respectively. The

i-th element of the vector x is denoted by xi, and the element of the i-th row

and j-th column of the matrix X is denoted by (X)i j . The ℓp norm of vector

x is represented by ∥x∥p and is given by
(∑

i xp
i

)1/p
for p ≥ 1. The Frobenious

norm of the matrix X is denoted by ∥X∥F. The covering number of X with

ℓ2-metric balls of radius δ/2 is denoted by NX(δ/2, ℓ2).
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Chapter 1

Introduction

Mathematical modeling of the physics, underlying the naturally occurring

phenomenon is often motivated by our desire to understand and predict

the behaviour of these systems. An accurate mathematical model allows

us to reliably determine the measurements resulting from the given causal

parameters. These problems – known as the forward or direct problem – are

usually well defined and obtaining a solution is straightforward. In contrast,

a number of problems involve inferring – from a set of indirect observations

– the unknown physical quantities. For instance, constructing an image

from CT measurements or removing noise from a corrupted waveform [7].

These problems are typically known as inverse problems since they start from

the effect and work towards the unknown cause. Inverse problems form

an important branch of mathematical inference tasks and arise in a number

of important applications. As opposed to the direct problem, an inverse

problem is often ill-posed and therefore may not have a unique solution in

the absence of any suitable priors [8]. A comparison of these phenomenons

for an image processing task is shown in Fig. 1.1. The left side of the figure

describes a forward problem where a degradation model is applied to a

clean image resulting in a noisy output. The right side of the image aims to

recover the ground truth image using a reconstruction algorithm. This is an

ill-posed problem since a solution – if it exists – may not be unique.
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Degradation 
Model

Reconstruction 
Algorithm

Forward Problem Inverse Problem

Figure 1.1: Forward and inverse problem in image restoration problem.

Classical signal processing algorithms used to solve such problems –

such as approximate inversion [9], iterative algorithms [10] and other varia-

tional methods [11] – rely on simple, hand-designed algorithms that incorpo-

rate some form of domain knowledge. These knowledge-based algorithms,

carry out inference based on prior information of the data manifold or the

underlying model relating the signal of interest to the observed data. The

success of these methods relies on simplifying assumptions and hand crafted

priors that make them tractable and comprehensible. On the flip side, these

approaches are not robust to the inaccuracies in knowledge of underlying

physics and completely fail in the absence of a suitable prior [12].

Over the last decade, deep learning (DL) has been responsible for the

tremendous empirical advances in many applications – ranging from com-

puter vision [13] to natural language processing [14] to game play [15] –

positioning itself as a major engineering discipline and prompting a general

data-driven mindset. In view of their unprecedented success, these learned

models have been used to solve family of problems that fall under the um-

brella of inverse problems. However, in most of the preliminary works

deep learning models were used as black boxes where simple principled

techniques were replaced with purely data-led pipelines, trained end-to-

end over huge annotated datasets [16]. These model-agnostic approaches

are often prohibitive in scenarios where we lack massive labelled datasets,

or where the underlying model is subject to variations requiring the deep

learning model to be periodically re-trained. Moreover, these models are
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often considered black-boxes and therefore do not offer the interpretability

afforded by the model based methods.

The limitations associated with the use of either knowledge based

techniques or data-driven methods in isolation have given rise to hybrid

knowledge-based data-driven approaches for inverse problems [12]. These

techniques combine traditional signal processing with deep learning to give

task specific solutions. These domain-aware deep learning methods have

demonstrated clear advantage over model-agnostic approaches in terms of

reconstruction quality and the need of large supervised datasets [4, 17].

Moreover, these methods are usually backed by theory that justifies the var-

ious design choices responsible for the impressive results. However, none

of these techniques provides a concrete theoretical basis that explains the

ability of such highly parameterized deep learning architectures to adapt to

unseen inputs. Thus, the generalization behaviour of a learning algorithm

on inverse problems is still not clearly understood.

This work – which aims to fill-in this gap – attempts to resolve two

overarching questions:

• How can we characterize the generalization performance of deep learning

approaches for solving model based inverse problems?

• How can we incorporate domain knowledge in a data-driven approach such

that generalization is guaranteed?

Now that we have described the central themes of this work, it is worth-

while to take some time and shed light on the factors that stimulated our

thought process.

1.1 Yet Another Generalization Bound?
The scientific community has witnessed a paradigm shift over the past

decade, driven in large by the massive progress in the field of deep learning

and artificial intelligence. Theoretical researchers have been trying to catch
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up to the empirical success of these models by providing mathematical char-

acterizations of the various factors that enable this tremendous performance.

One aspect of these parameteric functions that has attracted significant atten-

tion from the researchers is their prodigious ability to generalize to unseen

data points. Since the knowledge of underlying data distribution is missing,

estimating the exact generalization error is not feasible. This has led ma-

chine learning theoreticians to derive upper bounds on the generalization

error of deep learning algorithms [18, 19, 20, 21]. Although, these works

have started to add important layers to the quest of a unified generalization

theory, a profound understanding of the generalization properties of these

models is still missing. In our view, one of the challenges in understanding

the generalization properties of a deep learning classifier is the absence of a

postulated mathematical formulation or an underlying mapping of the data

generation model. But, what if we consider a problem for which a data

model is present? Would we be able to achieve more meaningful bounds

then we have in the past? To this aim, we study the generalization error

bounds for deep learning models in the context of inverse problems – a class

of problems for which the underlying theoretical framework is already well-

developed. Building upon our analysis, we propose a training strategy that

penalizes key quantities associated with the forward map and the neural

network. To interpret the efficacy of our technique, we further compare it to

the the state of art methods present in the classical inverse problem theory

literature.

1.2 Contributions
We have, so far stated in very broad terms, our intentions of studying the

generalization behaviour of DNNs for inverse problems. In particular, in

pursuit of this goal, we build upon the robustness framework introduced by

Xu and Mannor in [22] to achieve the following objectives:

1. We derive generalization error guarantees for feedforward deep neural
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networks, applicable to various tasks under the most popular loss

functions: (1) classification tasks under the log-loss and (2) regression

tasks under the ℓp-loss (Chapter 3).

2. Building upon our proposed generalization error guarantees, we de-

sign new regularizers allowing to learn deep neural network based

data representations applicable to regression and classification prob-

lem. Such regularizers explicitly constrain the spectral norm of the

input-output Jacobian matrix of the network. We also empirically

demonstrate that our bounds – which, in contrast with existing ones,

alleviate the exponential dependence of generalization error on net-

work depth – lead to a regularization strategy offering superior gener-

alization results in comparison with existing regularization strategies

enforcing Lipschitz continuity (Chapter 5).

3. We present generalization error bounds for DNN based inverse prob-

lem solvers. Notably, such bounds depend on various quantities in-

cluding the Jacobian matrix of the neural network along with the Jaco-

bian matrix of the composition of the neural network with the inverse

problem forward map. We also show how our bounds compare with

the ones present in the classical literature, notably BPDN [23], for solv-

ing such sparse approximation problems (Chapter 4).

4. We also propose new regularization strategies that stem from our

bounds and are capable of using knowledge about the inverse problem

model during the neural network learning process via the control of

the spectral and Frobenius norms of such Jacobian matrices. We also

showcase computationally efficient methods to estimate the spectral

and Frobenius norms of the aforementioned Jacobian matrices in or-

der to accelerate the neural network learning process. We demonstrate

the empirical performance of our algorithms on various inverse prob-

lems. These include the reconstruction of high-dimensional data from
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low-dimensional noisy measurements where the forward model is a

compressive random Gaussian matrix (Chapter 5).

5. We present a case study on the use of our model aware regularizers in

the data-driven reconstruction of the popular imaging problems – the

Computed Tomography (CT) and the accelerated Magnetic Resonance

Imaging (MRI) which rely heavily on the theory of inverse problems

(Chapter 6).

6. Finally we provide a brief preliminary generalization error analysis for

inverse problems where we encounter uncertainties in the knowledge

of the underlying model or the data distribution. Following our theo-

retical analysis, we discuss a roadmap and various directions that one

can proceed in for further investigation (Chapter 7).

These contributions have led to the following manuscripts during the course

of my PhD.

1. J. Amjad, Z. Lyu, and M. R.D. Rodrigues, “Deep Learning Model-

Aware Regularization With Applications to Inverse Problems.” IEEE

Transactions on Signal Processing 69 (2021): 6371-6385.

2. J. Amjad, Z, Lyu, M. R.D. Rodrigues, “Regression with Deep Neu-

ral Networks: Generalization Error Guarantees, Learning Algorithms,

and Regularizers.” In 2021 29th European Signal Processing Confer-

ence (EUSIPCO) (pp. 1481-1485). IEEE.

3. J. Amjad, J. Sokolić, and M. R.D. Rodrigues. “On deep learning for in-

verse problems.” In 2018 26th European Signal Processing Conference

(EUSIPCO), pp. 1895-1899. IEEE, 2018.

1.3 Organization
This thesis is organized as follows:
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In Chapter 2, we provide preliminary background that facilitates our

theoretical analysis in the later part of the thesis. In particular, after in-

troducing the supervised learning problem and the key ingredients of a

deep learning algorithm, we briefly survey various theoretical results in the

literature that quantify the performance of deep neural networks.

In Chapter 3, we derive new generalization error bounds for classifica-

tion and regression settings. Our theoretical analyses show that for a neural

network to be robust to the perturbations in the input and generalize well,

the norm of its input-output gradient – the network Jacobian matrix – should

be small.

We extend our generalization error analysis to robust deep learning ar-

chitectures applicable to typical linear inverse problems in Chapter 4. Apart

from the sample space and the Lipschitz constant of the neural network,

our bounds depend on the Lipschitz constant of the product of the forward

map and the neural network which can be tightly bounded by the product

of Jacobian matrix of the forward map and the neural network.

The bounds in Chapter 3 and 4 naturally lead to a training strategy

where norms of the Jacobians of the relevant mappings should be explic-

itly penalized. To this end, in Chapter 5, we propose to optimize a joint

loss function where the empirical risk is augmented with a regularization

term containing the norms of the Jacobians. We empirically demonstrate the

effectiveness of our regularization technique by conducting extensive exper-

imental studies on various classification, regression and inverse problems.

In Chapter 6, we test the performance of the proposed learning tech-

niques on inverse problems that are of practical importance in clinical set-

tings such as Magnetic Resonance Imaging and Computed Tomography.

For these setting, we sample our ground truth data from publicly available

databases and compare the performance of our novel model aware regular-

ization strategies to both data-driven and knowledge based reconstruction

algorithms present in literature.
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Finally, in Chapter 7, we discuss some exciting future research direction

stemming from our work and present concluding remarks.



Chapter 2

Deep Learning & Generalization

In this chapter, we first formally define the supervised learning problem and

the various components of a DL algorithm. We then discuss generalization

error (GE) and briefly review various theoretical bounds in the literature.

2.1 The Supervised Learning Problem

In the supervised learning problem, a set of labelled examples, S = {(yi,xi) :

i = 1, . . . ,m}, is observed by an agent and the task is to produce a rule (also

known as hypothesis) that models the relationship from the input set Y to

the outputs set X. The quality of the chosen hypothesis can be assessed by a

cost function. A successfully trained network is expected to perform well not

only on the samples from the training set S but also on the separate test set

that was not used to obtain the mapping. This is known as generalization. For

the network to make accurate predictions on the test inputs, it is imperative

that the training set be representative of the future unseen inputs. Therefore,

it is assumed that all the training and test samples are drawn IID from

some underlying probability distribution µ on the sample space D =Y×X.

The distribution, however is unknown to the network and can only be

approximated through the training examples.

We will now discuss the learning framework of a DL algorithm and

various design choices that impact its performance.
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2.2 Deep Learning
The three key components of a DL algorithm are the (i) architecture – spec-

ification of the number of neurons/layers in the network and their arrange-

ments; (ii) objective function – quantification of how well the goal of the

learning system is being achieved; and (iii) optimization algorithm – de-

scription of the set of rules for parameter update.

2.2.1 Architecture

The architecture of a DNN depends upon the particular needs of the task

under consideration. A multitude of DNN designs have been proposed in

literature for different application areas. For example, Convolution Neural

Networks (CNN) are most suitable for image processing applications [24].

On the other hand, problems dealing with sequences of data can benefit

more from Recurrent Neural Networks [25]. Nevertheless, regardless of its

particular topology, a DNN can be represented by a directed graph whose

nodes represent neurons and edges denote the weighted links between these

neurons. A neuron can be understood as a processor that performs a simple

function on its inputs. A set of neurons performing similar functions at a

given time can be grouped together to form a layer. Each layer sequentially

processes the output of the previous layer and forwards it to the next as

depicted in Figure 2.1.

Formally, a d-layer DNN fS(y;Θ) – a nonlinear function that exploits the

training set S to produce an estimate of its input y ∈Rq – can mathematically

be expressed as the following sequential function1:

fS(y;Θ) =
(

fθθθd
◦ . . . . . . fθθθ1

)
(y;Θ) (2.1)

where fθθθi , i ∈ {1,2 . . . ,d} represents the non-linear function implemented by

the i-th layer of the DNN and Θ = {θθθi : i = 1, . . . ,d} symbolizes the set of

1In the rest of the report, we omit Θ and denote a deep learning algorithm as fS(y) for
the sake of brevity.
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Figure 2.1: A schematic of a d-layer Deep Neural Network.

tunable parameters θθθi, learned by the DNN during the training mode. fθθθi

is usually composed of the sum of the input to the i-th layer weighted by

the layer wise weights Wi and offset by the bias vector bi. This is followed

by a non-linear activation function. Common activation function include

rectified linear unit (ReLU), sigmoid, hyperbolic tangent (tanh) and softmax

function [26].

2.2.2 Objective Function

Training a DNN using a set S of examples, involves searching the parameter

space for Θ = {θθθ1, . . . ,θθθd} that results in the closeness of the DNN output

fS(y,Θ) and the ultimate target value x that it wants to mimic.

The degree of ‘closeness’ between the network’s output and the ground

truth is mathematically quantified by an objective function l( fS(y),x). The

objective function – also termed as cost function or loss function – measures

how well the network fS(y,Θ) is achieving its goals. Therefore training a

DNN can be thought of as an exercise in function minimization where the

network adjusts the values of its parameters to obtain a minima of the loss

function. The speed with which a DNN learns a function is deeply influ-

enced by the shape of the surface formed by the error measure in parameter

space. Therefore, defining a loss function is an important part of the learn-

ing problem and different applications require appropriate loss functions to

quantify the discrepancy in the DNN output. However, these cost functions
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can be specified without making reference to a specific problem or dataset.

For example cross-entropy is the most commonly used objective function

for gauging the performance of a classifier. Similarly, the pixel wise mean

squared error is the preferred cost function of choice in imaging tasks where

the output takes continuous values. Some of the most commonly used loss

functions are ℓr-loss, logistic loss, hinge loss, cross-entropy loss and 0− 1

loss.

2.2.2.1 Regularization

Regularization, simply put, is the process of biasing the learning model to

prevent overfitting. This is done by introducing additional information.

It can be done by adding a regularization term to the loss function; or by

imposing different training constraints. However, there is no one-fits-all

technique. A regularization strategy that minimizes the generalization error

for one task may not prove fruitful for the other. Below we list some of the

most effective regularization techniques in use by the scientific community:

• Parameter Penalties: This regularization strategy is used when it is pre-

ferred to limit the capacity of a DNN [27]. It is achieved by minimizing

the following regularized loss function instead of the simple empirical

loss (2.6)

L( fS ,Θ) =
1
m

∑
i

l( fS(yi),xi)+λR(Θ) (2.2)

here 1
m
∑

i l( fS(yi),xi) is the unregularized empirical loss computed over

the training set of cardinality m and λ = [0,∞) is the hyperparameter

that controls the effect of the regularizer R(Θ). The greater the value

of λ, the higher the penalty to the objective function. Now, the regu-

larizer term R(Θ) represents the quantity that we wish to control. In

some applications, it is preferable to have small ℓr norm of the weight

matrices Wi, resulting in the following regularization function

R(Θ) =
∑

i

∥Wi∥r (2.3)
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where r can take integer values in [1,∞). Regularization by inducing

an ℓ2 norm penalty is also known as spectral norm regularization

[28, 29, 30]. Frobenious norm punishment of the weight matrices

is commonly referred to as weight decay since it drives the weight

magnitudes towards zero [31]. On the other hand , ℓ1 norm penalty

encourages weight vectors that are sparse [32].

As opposed to reducing the norms of the linear affine mapping W

for each layer towards zero, it is sometimes desirable to orthogonalize

their rows (or columns) [33, 34, 35]. This kind of regularization enforces

the weight matrices to lie on the Stiefel manifold and can be achieved

by formulating a generalized Lagrange function of the following form

[26]:

R(Θ) =
∑

i

∥WT
i Wi− I∥r (2.4)

here I denotes the identity matrix of the appropriate dimension.

• Gradient Penalties: Weight based regularization techniques are often

incorporated in the training procedure to enforce Lipschitz continuity

in the prediction function. However, DNNs are nonlinear functions

and regularizing only the linear layers while ignoring the non-linear

ones results in an under utilization of the Lipschitz capacity [36, 35].

Moreover, in many neural network architectures it is not possible to

easily regularize the affine mappings [37].

These problems can be avoided by penalizing the norm of the input-

output Jacobian matrix of the network. The Jacobian matrix J ∈ Rp×q,

of a vector valued function fS(.), is the matrix containing first-order

partial derivatives of the output fS(y) ∈ Rp with respect to the input
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y ∈Rq and is given by:

J(y) =


∂ fS(y)1
∂y1

· · ·
∂ fS(y)1
∂yq

...
. . .

...
∂ fS(y)p
∂y1

· · ·
∂ fS(y)p
∂yq

 (2.5)

Jacobian regularization offers a model-agnostic technique to impose

smoothness in the neural network and has been shown to result in

increased classification margins [38] and improved robustness to white

and adversarial noise in deep classifiers [39].

• Dropout: Dropout refers to removing certain nodes in a network during

training phase to prevent overfitting. In particular, regularization by

this method removes individual nodes from the DNN with a probabil-

ity (1−τ),0 ≤ τ ≤ 1 [40]. Intuitively, this technique can be interpreted

as randomly producing a sparse network. It has been observed that

DNNs with dropout are able to learn robust features [24].

• Data Augmentation: DNNs are tasked to learn complex functions from

a limited number of examples therefore it is sometimes considered

good practice to augment the training set by including different trans-

formations of the examples already present in the set [41].

• Early Stopping: DNNs often exhibit the phenomenon of over-fitting i.e.,

although the training error is low, similar behaviour is not replicated

on the unseen test examples. Early stopping provides a mechanism to

prevents over-fitting by splitting the training examples into training

and validation set. The network is trained on the training set and the

validation set is used to anticipate the behaviour of learned parameters

on the test set. Training is stopped as soon as the performance starts

getting worse on the validation set [42].

• Batch Normalization: Neural networks are usually trained using mini-
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batch gradient descent. This can sometimes result in the change in

distribution of the input to each layer at each iteration – a phenomenon

known as internal covariate shift – causing the neural network to chase

a moving target. Batch normalization can circumvent this issue by

standardizing the inputs to a layer at each time step [43]. This leads

to a stable and dramatically accelerated learning process of the neural

network.

• Weight Normalization: Inspired by the batch normalization techniques,

weight normalization reparameterizes the weight of each layer by de-

couplig their magnitude and direction [44]. This has been shown to

condition the learning problem and reduce the number epochs re-

quired train the network.

2.2.3 Optimization Algorithm

The problem of training a DNN can be described as a credit assignment

problem. Specifically, it searches for optimum values of network parameters

that result in a minimum empirical loss. The non-linear nature of a DNN

results in a loss function surface which is non-convex. Therefore instead

of using the algorithms that provide global convergence guarantees, deep

networks are trained using iterative gradient based methods that drive the

empirical loss to a minimum in a gradual manner.

We will now briefly describe the basic Gradient Descent (GD) method

for loss minimization. This method operates in two stages – forward prop-

agation and backward propagation.

During the forward propagation phase of GD, DNN takes a sample

from the training set, propagates it through its various layers and computes

fS(.,Θ) for all members of the training set S. The output of the network

is the function of computation rule used at different layers and the initial

values of parameters Θ. Several parameter initialization techniques have

been proposed in literature for favourable training performance [26, 45, 46].
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Once the outputs for all the samples in the training set have been computed,

the average training error is calculated:

lemp( fS) =
1
m

∑
i

l( fS(yi),xi) (2.6)

The information conveyed by this loss function is then propagated back

(via backpropagation algorithm) to adjust the parameters of the network.

Backpropagation is a method for computing, for every weight, the gradient

of the error at the current setting of all the weights and is the most successful

learning procedure and is at the heart of recent successes of machine learning,

including state-of-the-art computer vision, sequence models and natural

language processing.

Specifically, the backpropagation procedure computes the gradient of

loss with respect to individual parameters in the multilayer DNN architec-

ture

∂lemp

∂θθθi
, ∀i ∈ {1, . . . ,d}

Once all the gradients are computed, the parameters are adjusted in propor-

tion to the negative of these values:

θθθ(i)[l] = θθθ(i)[l−1]
−α

∂lemp

∂θθθ(i)
, l = 1, . . . ,L

here the superscript [l] indexes the GD iteration and the learning rate α rep-

resents the fixed step size that the GD algorithm takes towards the minima

in each iteration. The recalibrated values of parameters are passed to next

iteration of GD for the forward propagation. This process continues until

lemp plateaus or maximum number of iterations L is reached.

2.2.3.1 Improvements in GD

The standard batch GD, though the most widely used algorithm for training

a DNN, has several pitfalls [47] – convergence to a local minima being the
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most important. Additionally, even if it learns parameters that result in

desirable loss minimization over the training set, there is a possibility of

poor generalization and over fitting. Several GD variants and optimization

techniques have been proposed to circumvent these issues.

Mini-batch Stochastic Gradient Descent: It is similar to the standard GD

algorithm in principle. The difference lies in the number of samples used

for training [48]. Specifically, in Stochastic Gradient Descent (SGD), a set

of m′ ≪ m members is constructed by randomly selecting samples from

the training set S. This mini-batch of samples is then iteratively used to

minimize the loss function. Repeating this process m/m′ times by selecting

m′ samples randomly at each turn is referred to as running a single epoch of

training.

Training a DNN in this manner, in practice, results in faster convergence

and also helps prevent over fitting.

Other Variants: Though SGD results in improved training performance,

there are still instances when the DNN gets trapped in the local minima

or saddle points. This results in a painfully slow convergence rate. This

problem can be avoided by adapting the learning rate at each iteration of

the SGD. There are several ways of achieving this. For example in SGD with

momentum, a fraction of the gradient step in the previous iteration is added

to the update vector of the current iteration [49]. This prevents the gradients

from diminishing. Other methods for adapting the learning rate include

Adagard [50], Adam [51], Nadam [52], Adadelta [53] and AMSGrad [13].

2.3 Generalization Error

Most prominent DNN architectures in use today have number of neurons

that far exceed the samples in the training set. Despite the formidable

capacities represented by these hypothesis spaces, efficient algorithms such

as SGD are able to achieve arbitrarily small amount of empirical loss on

a myriad of tasks. However, the goal of training a DNN is not only to
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minimize empirical loss but for it to learn a mapping that generalizes well

on the previously unobserved inputs. This ability of a network to perform

well on the new, unseen inputs is quantified by the generalization error:

GE( fS) = |lexp( fS)− lemp( fS)| (2.7)

corresponding to the difference between the expected and empirical losses

given by:

lexp( fS) = E(y,x)∼µ[l( fS(y),x)], lemp( fS) =
1
m

∑
i

l( fS(yi),xi) (2.8)

where l(·, ·) is an appropriate pre-specified loss function that depends on the

specific task, lemp( fS) is the empirical loss computed over the training set S

and lexp is the expected value of loss incurred by the network which is cal-

culated by taking expectation over all the possible samples (y,x), drawn ac-

cording to the probability distribution µ, that the network might encounter.

Since µ is not known, it is not possible to estimate GE for a particular DNN.

A number of empirical works in literature have attempted to find a complex-

ity measure of the network or loss landscape that can predict generalization

[54, 55, 56]. However, a more principled approach to study generalization

is to compute an upper bound on the expected error or the generalization

gap in (2.7). Various theoretically motivated complexity measures measures

have been proposed in literature to bound the GE [57, 58, 59, 21]. Most of

these results, however, consider DNNs only in the context of classification.

Next, we briefly discuss some of the notable bounds present in literature.

2.3.1 Vapnik-Chervonenkis (VC) - Dimension

VC-Dimension provides a capacity based performance characterization of a

hypothesis class that can be learned via a binary classification algorithm.

Definition 2.1. ([60]) Consider a hypothesis class F from the set Y to {±1}.

Now let, U = {u1,u2 . . .um} ⊂Y. Then the shattering coefficient, sh(F,m) of
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class F is the maximum number of functions that can be derived from U to

{±1}. The Vapnik-Chervonenkis (VC) -dimension of the hypothesis class F

is then defined as

VC(F) = sup{m : sh(F,m) = 2m
} (2.9)

A class F is said to have infinite VC-dimension if sh(F,m) = 2m for an arbi-

trarily large value of m.

The VC-Dimension of a hypothesis class F can be understood as the

maximum cardinality m of a training set S for which, some hypothesis from

a class of binary classifiers F achieves zero training error. The following

bound on the GE of F then holds with probability 1−ζ

lexp− lemp ≤ o

√
VC(F)

m
(2.10)

An upper bound on the VC-dimension of FC feed-forward DNNs was re-

cently derived in [61].

Theorem 2.1. Consider a d-layer fully connected feed forward DNN f , that

has t parameters in each layer and has ReLU non-linearities. Let F denote

the class of all such DNNs. Then the VC-dimension of F is

VC(F) = o
(
d2t2

)
(2.11)

As a consequence of Theorem 2.1 and (2.10), the GE of f is upper

bounded by:

GE( f ) ≤ o

√
d2 f 2

m
(2.12)

The GE bound in (2.12) is not particularly useful for dealing with over-

parametrized learning algorithms such as DNNs on two accounts; 1) The

bound becomes very loose for large number of parameters, 2) This bound

does not explain the empirically observed behaviour of DNNs that tend to

generalize well with the increase in the number of parameters [62].



2.3. Generalization Error 36

2.3.2 Rademacher Complexity

Unlike VC-dimension, which only takes into account the binary hypotheses

classes, Rademacher Complexity is a data-dependant statistic that measures

the richness of real-valued functions [58].

Definition 2.2. Consider a space Y. Let F denote a class of hypotheses

f : Y→ R. Now, consider a set U = {u1,u2, . . . ,um} drawn IID from the

distribution µy over Y. Then the empirical Rademacher complexity of F is,

R̂m(F,U) = Ez

sup
f∈F

 1
m

m∑
i=1

zi f (ui)


 (2.13)

where z = {zi}i≤m is a set of independent random variables chosen uniformly

from {−1,1}. The Rademacher complexity of F is then defined as

Rm(F) = EU∼µy

[
R̂m(F,U)

]
(2.14)

A high value of Rm(F) for a binary classifier is reflective of its richness,

namely, it has the ability to fit random noise.

The following GE bound holds with a probability 1−ζ for all h ∈F

lexp( f )− lemp( f ) ≤ Rm(L)+

√
8log(2/ζ)

m
(2.15)

here L = {(y,x)→ l( f (y),x)} is a loss class defined for a fixed bounded loss

function l( f (y),x) ∈ [0,1].

This bound can be specialized for feed-forward deep neural networks.

The authors of [59] compute a bound for the GE of a d-layer DNN which is

independent of the number of parameters in the network.

Theorem 2.2. Consider a d-layer feed forward DNN f (y)= σ(Wdσ(. . .σ(W1y)))

that has ReLU as activations. Now suppose that the network parameters
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satisfy the following constraints

d∏
i=1

∥Wi∥F ≤ ω

Let F, denote the class of all such DNNs. Then the Rm(F) of a f in F is

bounded by

Rm(F) ≤ o

(
2dω
√

m

)
(2.16)

Though the bound in Theorem 2.2 is independent of the number of

parameters of a DNN classifier, it still scales exponentially with the number

of layers and thus doesn’t explain the remarkable generalization properties

of substantially deep neural nets.

2.3.3 Margin

The margin of a classifier can be understood as the confidence with which

the predictions are made.

Definition 2.3. Consider a p-class predictor f : Rq
→ Rp that assigns real

weights to its p labels. The label with the maximum magnitude is picked as

the output of f . Then the margin is defined as the difference between the

weight of the correct label and the maximum weight of any incorrect label

γ = f (y)x−max
i,x

f (y)i i,x ∈ {1, . . . ,p} (2.17)

The notion of margin is considered important for studying the general-

ization behaviour of classifiers since it has been shown that an improvement

in classification margin results in an improvement in the upper bound on

the GE [63]. Efforts have been made to bound the GE of DNN classifiers

using the margin. Neyshabur et. al recently showed the GE of a DNN can

be controlled using the classification margin and the norm of DNN parame-

ters [64]. The authors of [20] derived similar bounds independently using a

covering number argument. Owing to the similarity of the two results, we

will only include the GE bound in [64].
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Theorem 2.3. Consider the input space Y = {y ∈ Rq : ∥y∥2 ≤ β}. Now, let a

d-layer classifier f : Y→Rp be defined as

f (y) = σ(Wdσ(. . . (σ(W1y)))) (2.18)

where σ denotes the ReLU function. Also, let γ be the maximum margin of

f and t be the upper bound on the maximum number of parameters in any

layer. Then for any γ,ζ > 0 and a training set of size m, the following holds

with probability 1−ζ,

lexp( f ) ≤ lemp,γ+O

√√√√√
β2d2t ln(dt)

∏d
i=1 ∥Wi∥

2
2
∑d

i=1
∥Wi∥

2
F

∥Wi∥
2
2
+ ln dm

ζ

γ2m
(2.19)

here lemp,γ ≤
1
m
∑

i1
[

f (y)x ≤ γ+maxx,i f (y)i
]
.

2.3.4 Algorithmic Stability

The notion of Algorithmic stability gauges the sensitivity of the learning

algorithm with respect to the changes in the training set [65].

Definition 2.4. Given a sample space D and a training set S ⊆D

S = {(y1,x1), . . . , (yi−1,xi−1), (yi,xi), (yi+1,xi+1), . . . , (xm,ym)}

let the set S\i be defined as:

S\i = {(y1,x1), . . . , (yi−1,xi−1), (yi+1,xi+1), . . . , (xm,ym)}

Then a learning algorithm f is said to hold a uniform stability β if

∀S ∈D,∀i ∈ {1, . . . ,m},∥l( fS(y),x)− l( fS\i(y),x)∥∞ ≤ β (2.20)

The algorithmic stability has been used to derive generalization error

bounds of the following form:
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Theorem 2.4. For a learning algorithm f with uniform stability β, the fol-

lowing holds with probability at least 1−ζ,0 ≤ ζ ≤ 1 over the random draw

of the training set S

lexp( fS)− lemp( fS) ≤ 2β+ (4mβ+M)

√
1/ζ
2m

for 0 ≤ l( f (y),x) ≤M for all (y,x) ∈D and all training sets S ∈D.

2.3.5 Compression Based Approaches

Compression based generalization error bounds have been proposed in liter-

ature to provide a tighter evaluation of the generalization error of the neural

networks. These bounds are based on the premise that the SGD implic-

itly learns simple models and therefore a trained model is effectively com-

pressed. Several notable works in literature have attempted to evaluate the

dimensionality of these implicitly compressed models via different measures

such as the layer cushion [66], pruning [67] or spectrum based mechanisms

[68] and have subsequently derived generalization error bounds.

For the sake of brevity, we include the generalization bound derived in

[66].

Definition 2.5. Let GW,s = {gW,s|W ∈W} denote a class of classifiers parame-

terized by the weight matrices W and fixed helper strings s. Then a classifier

f is said to be (γ,S)-compressible via GW,s if there exists W ∈W such that for

any y ∈ S, the following holds for all x,

| f (y)x− gW,s(y)x| ≤ γ

Theorem 2.5. Consider a class of classifiers GW,s = {gW,s|W ∈W}where W, a

set of u parameters each, can at the most have v discrete values. If a trained

classifier f is (γ,S)-compressible with respect to the class of classifier GA,s,
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then with high probability, there exists W ∈W over the training set,

lexp,γ ≤ lemp,γ+O

√
u logv

m

here lexp,γ ≤ E(y,x)∼µ
[

f (y)x ≤ γ+maxx,i f (y)i
]

is the expected margin loss.

Unfortunately, these guarantees are applicable to the compressed net-

work gW only and not the original classifier f . Therefore, it is unable to

explain the generalization properties of over parameterized deep networks.

2.3.6 Algorithmic Robustness

The notion of robustness was introduced by Xu and Mannor as a property

of a fixed learning algorithm rather than a hypothesis class [22]. It is a data-

dependant statistic that measures the performance of a learning algorithm

by exploring sceneries where losses associated with a training sample and a

test sample are close.

Definition 2.6. Let S and D denote the training set and sample space. A

learning algorithm is said to be (K, ϵ(S))-robust if the sample space D can

be partitioned into K disjoint sets Kk, k = 1, . . . ,K, such that for all (yi,xi) ∈ S

and all (y,x) ∈D

(yi,xi), (y,x) ∈Kk =⇒
∣∣∣l( fS(xi),yi)− l( fS(x),y)

∣∣∣ ≤ ϵ(S) (2.21)

An upper-bound on K can be obtained via the covering number of the

sample space D.

Definition 2.7. (Covering Number [69]) For every ψ > 0, the ψ/2-covering

number N(ψ/2;D,ρ) for a metric space (D,ρ) is defined as the minimum

cardinality of set D̂, such that every point in D is at a distance not more than

ψ from some point in D̂.

The algorithmic robustness framework has been used to derive gen-

eralization bounds for deep learning classifiers [38, 33, 30]. Sokolić et al.
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utilized the robustness framework proposed in [22] to derive GE bounds for

large-margin DNN classifiers.

Theorem 2.6. Consider a metric space Y, compact with respect to the metric

ρy. Now consider a large margin DNN classifier f : Y→ {1,2, . . . ,p} that

trains on a training set S. Then f is (p.N(γ/2;N,ρy),0) robust if, ∀s ∈ S there

exists a γ such that,

0 < γ < γρy (2.22)

The GE of the large-margin classifier f in Theorem 2.6 is then upper bounded

by:

GE( f ) ≤
1
√

m

√
2log(2).p.N(γ/2;Y,ρy) (2.23)

Unlike Theorem 2.3, the upper bound in Theorem 2.6 is independent

of network size and depth. However, their GE-bound is a function of the

classification margin γρy that can be bounded by means of the Frobinious

norm of the weights [38].

2.4 Summary
DNNs are learning algorithms that have the ability to learn useful informa-

tion from few examples and extrapolate their knowledge to unseen data.

This chapter provided an overview of various factors that have an impact

on the generalization properties of DNNs. We also reviewed some of the

prominent theoretical guarantees from the literature. As noted in the chap-

ter; most of the bounds present in literature are parameter dependent and

may deteriorate exponentially with depth. In the next chapter, we tackle

this issue and present GE bounds for neural networks that depend upon

the input-output network Jacobian. Our bounds alleviate the issue faced by

parameter dependence in the bounds.



Chapter 3

Generalization Error Bounds for

Robust DL Algorithms

In this chapter, building upon the robustness and generalization framework

developed in [22], we offer new characterizations of the generalization abil-

ity of deep neural networks, when used to learn functions applicable to

either classification or regression tasks. In particular, we derive new gener-

alization error guarantees applicable to such tasks under the most popular

loss functions.

3.1 Prior Work

Our work connects to various other works in the literature. In particular, a

number of papers have in recent years offered characterizations of the gen-

eralization ability of deep neural networks that have in turn inspired new

regularization strategies [70]. For example, both [18] and [20] independently

provided GE bounds for deep neural networks, expressed in terms of dif-

ferent norms associated with the collection of network parameters – such as

group norm, max norm and spectral norm – thus inspiring new regulariz-

ers aiming explicitly at constraining the network complexity by limiting the

value of such norms. In [66], the authors provide a classification framework

to characterize the generalization properties of neural networks, leading to

linear-algebraic algorithms to effectively limit the number of parameters in
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individual layers. In [33], the authors proposed an upper bound to the

GE of a DNN based classifier in the presence of the adversarial perturba-

tions. The authors have also proposed to optimize the network in a manner

that forces the weight matrices to remain on the Stiefel manifold [71], by

forcing the Gram matrix of the weight matrices to be closer to an identity

matrix. However, these works have typically led to somewhat vacuous

bounds depending on quantities like the product of network weight norms

that cannot completely capture the fact that deeper networks generalize bet-

ter than shallower ones [72]. In [38], the authors derive a GE bound for large

margin DNN classifiers under a uniformly bounded 0−1 loss that leads to a

new Jacobian regularizer – involving penalizing the Frobenius norm of the

network Jacobian – that also further boosts a deep neural network perfor-

mance. Our work departs from these works, mainly because we consider

unbounded loss functions in our analysis. Most learning tasks in realistic

settings are optimized over unbounded loss function such as cross entropy

loss function for classification and ℓ2 loss function in regression problems..

It should however be noted that some of the regularizers originating from

our analysis – that propose to penalize an upper bound on the network Lip-

schitz constant – also connect to some regularizers already proposed in the

literature [38, 73].

The fact that enforcing Lipschitz regularity in deep neural net-

works endows them with several desirable properties is well recognized

[28, 74, 75, 76, 33, 77, 73, 38, 35, 78, 30, 79, 39]. For example, a small Lip-

schitz constant has also been shown to result in better generalization error

guarantees [18, 20]. There are various other papers that have in turn sug-

gested a number of regularization strategies based on empirical consider-

ations, showcasing that such regularization approaches can lead to better

performance than conventional ones. In particular [74] propose to explic-

itly enforce an upper bound on the Lipschitz constant of neural networks

– via the operator norm of the weight matrices – in order to improve its
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performance. Various other works [46, 80, 34, 33] have advocated limiting

the spectral norm of the weight matrices. Motivated by the norm preserva-

tion offered by orthogonal weight matrices, [46] propose orthogonal weight

initializations to accelerate the training speed of the neural networks. How-

ever, initialization alone does not guarantee orthogonality throughout the

training process, hence the orthogonality properties of the fine tuned weight

matrices may differ substantially from the original ones. Taking this ap-

proach a step further, [29] propose to initialize the weight matrices by the

technique proposed by [46] but simultaneously manually clip the singular

values of weight matrices in a narrow window around 1 during the training

process in order to maintain orthogonality properties. However, in addition

to being computationally expensive owing to the cost associated with the cal-

culation of singular value decompositions (SVD), this method seems counter

intuitive since the new weight matrix with the clipped singular values may

not be close to the original updated weight matrix, possibly resulting in

performance deterioration. In another work, [81] empirically shows that

regularizing weight matrices to make them orthogonal results in improved

performance for generative networks. Motivated by the benefits offered by

orthogonal regularization, in [34] the authors present a regularization tech-

nique for convolution neural networks that forces the weight matrices of a

convolutional layer to have a small restricted isometry constant [82]. Other

works such as [83] and [84] present efficient algorithms to calculate the spec-

tral norm of the linear transform associated with the convolutional layers.

Weight orthogonalization approaches have also received ample attention in

recurrent neural networks as well [85, 86].

However, many of the existing techniques constrain only the Lipschitz

constants of the layer-wise affine transformations in the network [28, 74, 75,

76, 33]. These approaches do not take into account the non-linearities in

the network and thus under-utilize the Lipschitz capacity of the network

by biasing it to learn simplistic functions [35]. In this work, motivated
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by our analysis, we propose to constrain the spectral norm of the input-

output network Jacobian matrix which serves as a tight upper bound on the

network Lipschitz constant. We also offer an algorithm to efficiently estimate

it without significantly increasing the computational overhead in Chapter 5.

The estimation of true penalty of the Lipschitz constant has been shown to

be computationally infeasible [76]. However, to the best of our knowledge,

the method presented in this work is the tightest and most efficient manner

to bound a deep neural network Lipschitz constant.

3.2 The Learning Problem

We are interested in problems involving the estimation of a functional rela-

tionship between data points y ∈Y and target points x ∈X based on a set of

examples S = {(yi,xi)}i≤m drawn i.i.d. from the space D =Y×X according

to an unknown probability measure µ. These can cover both classification

problems, where the target points are drawn from a finite set, and regres-

sion problems, where the target points are drawn from some non-finite set.

We assume that Y and X are compact metric spaces with respect to some

pre-specified metrics. We also assume that the space D =Y×X is compact

with respect to a product space metric ρ [87].

In this supervised learning setting, we restrict our attention to the use

of deep neural networks fS : Rq
→ Rp that are trained on the training set

S to learn the underlying map between Y and X. Such a feed forward

deep neural network can be represented as a composition of d layer-wise

mappings delivering an output fS(y) ∈ Rp, given the input y ∈ Rq via (2.1).

Our goal is to characterize the quality of such learnt deep neural network

using a well-known measure quantifying the generalization capability of a

machine learning models. In particular, we will use the generalization error

(GE) associated with the learnt deep neural network:

GE( fS) = |lexp( fS)− lemp( fS)| (3.1)
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Our ensuing analysis offers bounds to the GE of deep neural networks

used for classification or regression settings under different losses, as a func-

tion of a number of quantities associated with the learning problem. These

quantities include the covering number of the sample space D, the size of

the training set S, and properties of the network encapsulated in its Jacobian

matrix given (2.5).

3.3 Generalization Error Analysis

We now develop bounds to the generalization error associated with deep

neural networks by leveraging the algorithmic robustness framework in [22].

The algorithmic robustness framework has already been used to derive

generalization bounds for deep learning architectures [38, 33, 77, 30]. We

instead build upon this framework in order to understand how deep neural

networks can underlie the construction of input-output functional relations

for a wide range of tasks including: (1) classification tasks under categorical

loss functions, (2) regression tasks under per pixel (ℓr) loss functions and (3)

regression tasks under perceptual loss functions [88].

Our analysis builds upon a simple characterization of the Lipschitz

continuity of a deep neural network, based on the use of ℓr and ℓt norms to

measure distances on the network input and output respectively. It repre-

sents a generalization of a key result in [38].

Lemma 3.1. ([38]) Let fS(·) be a deep neural network trained on the training

set S. It follows for any y′,y′′ ∈Y that

∥ fS(y′)− fS(y′′)∥r ≤ sup
y∈conv(Y)

∥J(y)∥r,t∥y′−y′∥t

where ℓr and ℓt are the metrics used to measure distances on the network

input and output respectively, J is the input-output network Jacobian matrix

and conv(·) is the convex hull of a set.
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3.3.1 Classification problems

We first consider learning problems associated with multi-class classification

tasks where the input data points y ∈ Y ⊆ Rq represent multi-dimensional

objects such as images and the output data points x ∈X ⊆ {1,2, . . . ,p} rep-

resent the classes associated with the different objects. We assume Y is

compact and we use ℓt to measure distances in Y.

We will characterize the performance of a deep neural network based

classifier with respect to the standard cross-entropy with softmax loss (a.k.a.

log-loss). In particular, given a deep neural network fS(·) trained on a

training set S, a data point y ∈Y, and the data point class x ∈X, the log-loss

quantifies the loss as follows:

l( fS(·), (y,x)) = − fS(y)x+ lse( fS(y)) (3.2)

where

lse( fS(y)) = log
q∑

j=1

exp( fS(y) j) (3.3)

The following theorem – building upon Lemma 3.1 – characterizes the

robustness of such a deep neural network classifier trained under log-loss.

Theorem 3.1. (Robustness) A DNN fS(·) trained on the training set S under

the cross-entropy with softmax loss function in (3.2) isqNY (γ/2, ℓt) ,2 sup
y∈conv(Y)

∥J(y)∥r,tγ

− robust

for any γ > 0 and NY (γ/2, ℓt) <∞.

Proof. We first establish a simple result underlying our theorems that asserts

that the log-sum exponent lse(.) in equation (3.3) is 1-Lipschitz continuous.

To prove this simple result, let us first note that lse(.) is a continuous

function with the gradient i-th element ∇ilse( f (y)) corresponding to the

softmax function. Then, we can use the intermediate value theorem to show
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that for some f (y′), f (y) and f (y′′) such that f (y′) ≤ f (y) ≤ f (y′′) it holds

|lse( f (y′))− lse( f (y′′))| = |∇lse( f (y)) · ( f (y′)− f (y′′))|
(a)
≤

q∑
i=1

∇ilse( f (y))∥ f (y′)− f (y′′)∥t

= ∥ f (y′)− f (y′′)∥t (3.4)

(a) is due to the Hölder’s inequality.

Let NY(γ/2, ℓt) be a γ/2 cover of Y. We can then partition the space D

onto K ≤ qNY (γ/2, ℓt) partitions, such that if (y′,x′) and (y′′,x′′) belong to the

same partition, then x′ = x′′ and ∥y′−y′′∥t ≤ γ.

Let us now consider two data points (y′,x′) ∈ S and (y′′,x′) ∈D associ-

ated with the same partition, implying that x′ = x′′ = x ∈X. Then,

|l( fS , (y′,x′))− l( fS , (y′′,x′′))| =
∣∣∣− f (y′)x+ lse( f (y′))+ f (y′′)x− lse( f (y′′))

∣∣∣
(a)
≤

∣∣∣ f (y′)x− f (y′′)x
∣∣∣+ ∣∣∣lse( f (y′))− lse( f (y′′))

∣∣∣
(b)
≤

∥∥∥ f (y′)− f (y′′)
∥∥∥

t+
∥∥∥ f (y′)− f (y′′)

∥∥∥
t

(c)
≤ 2 sup

y∈conv(Y)
∥J(y)∥r,t∥y′−y′′∥r

where (a) follows from Minkowski’s inequality, (b) follows from norm equiv-

alence together with (3.4) and (c) is due to. Lemma 3.1.

It follows immediately that:

|l( fS , (y′,x))− l( fS , (y′′,x))| ≤ 2 sup
y∈conv(Y)

∥J(x)∥r,tγ

□

The following theorem – building upon the previous robustness result

– now offers a GE bound for a deep neural network classifier trained under

the cross entropy with softmax loss.

Theorem 3.2. A DNN fS(·) trained on the training set S under the cross-
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entropy with softmax loss function in (3.2) obeys with probability 1−ζ, for

any ζ > 0, the GE bound given by:

GE( fS) ≤ 2 sup
y∈conv(Y)

∥J(y)∥r,tγ+M

√
2qNY (γ/2, ℓt) log(2)+2log(1/ζ)

m

for any γ > 0 and M <∞.

Proof. The GE of a robust deep neural network based classifier follows im-

mediately from the robustness result. In particular, it has been shown in

[22], that with probability greater than 1−ζ

GE ≤ ϵ(S)+M

√
2K log(2)+2log(1/ζ)

m
(3.5)

where M represents the maximum value of loss over all the samples in the

sample space D that can be shown to be finite for a Lipschitz continuous

deep neural network [89]. Now, Theorem 3.1 shows that K can be upper

bounded by qNY (γ/2, ℓt), it also shows that ϵ(S) ≤ 2supy∈conv(Y) ∥J(y)∥r,tγ,

leading immediately to the result. □

3.3.2 Regression problems

We now consider learning problems associated with regression tasks where

the input data points y ∈ Y ⊆ Rp and the output data points x ∈X ⊆ Rq.

These problems are applicable to various practical scenarios ranging from

image denoising to image inpainting and super-resolution [90], whereby the

output data corresponds to some corrupted version of the input data. Owing

to the nature of the problems and the ultimate goal, loss functions which

minimizes the per pixel difference between the output of the network and

the ground-truth – such as the ℓr-loss – are usually used as training objective.

Therefore, next we characterize the performance of a deep neural network

regressor fS(·) trained on a training set S with respect to the standard ℓr loss.
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We assume Y and X are compact and we use ℓt and ℓr to measure distances

in Y and X respectively.

3.3.2.1 ℓr loss

The standard ℓr-loss function given by:

l( fS(·), (y,x)) = ∥x− fS(y)∥r (3.6)

where y ∈Y and x ∈X represent the input and ground-truth output data,

respectively.

Leveraging Lemma 3.1 we can now describe the robustness of a deep

neural network regressor trained under a ℓr-loss.

Theorem 3.3. (Robustness under ℓr loss) A DNN fS(·) trained on a training

set S under the ℓr-loss in (3.6) isND

(
ψ/2,ρ

)
,

1+ sup
y∈conv(Y)

∥J(y)∥r,t

ψ
− robust

for any ψ > 0 and ND

(
ψ/2,ρ

)
<∞.

Proof. We can establish a ψ/2 cover of D such that K ≤ ND

(
ψ/2,ρ

)
such that

∀(y′,x′) ∈ S and (y′′,x′′) ∈D, if (y′,x′) and (y′′,x′′) correspond to the same

partition, then ρ((y′,x′), (y′′,x′′)) ≤ ψ.

Let us now consider two data points (y′,x′) ∈ S and (y′′,x′′) ∈D associ-

ated with one of the partitions. Then

|l( fS , (y′,x′))− l( fS , (y′′,x′′)| =
∣∣∣∥x′− fS(y′)∥r−∥x′′− fS(y′′)∥r

∣∣∣
(a)
≤ ∥x′− fS(y′)−x′′+ fS(y′′)∥r
(b)
≤ ∥x′−x′∥r+ ∥ fS(y′)− fS(y′′)∥r
(c)
≤ ∥x′−x′′∥r+ max

conv(Y)
∥J(y)∥r,t∥y′−y′′∥t

(d)
≤

1+ sup
y∈conv(Y)

∥J(y)∥r,t

ρ((y′,x′), (y′′,x′′))
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The inequalities (a), (b) and (c) hold due to reverse triangle inequality,

Minkowski-inequality and Lemma 3.1, respectively, where (d) holds triv-

ially because sup metric ρ upper bounds the distance metric on data space.

It now follows immediately that

|l( fS(y′),x′))− l( fS , (x′′,y′′))| ≤

1+ sup
y∈conv(Y)

∥J(y)∥r,t

ψ
and the theorem follows. □

Finally, leveraging Theorem 3.3, we can also describe a GE bound for a

deep neural network regressor trained under a ℓr-loss.

Theorem 3.4. A DNN fS(·) trained on the training set S under the ℓr-loss in

(3.6) obeys with probability 1−ζ, for any ζ > 0, the GE bound given by:

GE( fS) ≤

1+ sup
y∈conv(Y)

∥J(y)∥r,t

ψ+M

√
2ND

(
ψ/2,ρ

)
log(2)+2log(1/ζ)

m

for any ψ > 0 and M <∞.

Theorem 3.4 derives immediately from Theorem 3.3, by adapting the

proof technique of Theorem 3.2.

3.3.3 Discussion

Theorems 3.2 and 3.4 provide various insights that are also aligned with

previous results in the literature. In particular, the bounds consist of two

terms:

• The second term captures the interplay between the cardinality of the

training set S and the complexity of the data space measured via its

covering number. Intuitively, the generalization error decreases with

the increase in the cardinality of the training set, and it also decreases

with the decrease in the covering number of the data space. It is

generally recognized that real-world data is associated with spaces ex-

hibiting small intrinsic dimension – hence bounded covering numbers
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[38] – where the optimal covering ball radius can be evaluated using

network characteristics [38, 30].

• The first term is associated with the Lipschitz constant of the loss func-

tion that, in turn, is proportional to the Lipschitz constant of the deep

neural network both for cross-entropy with softmax loss function and

the ℓr loss function. This – in sharp contrast with existing parameter

dependent bounds [59, 18, 20] – then suggests that the generalization

capability of a deep neural network does not deteriorate exponentially

with the network size/depth, in view of the fact that the Lipschitz con-

stant of a deep neural network depends on a network input-output

Jacobian operator norm (hence not direcly on the network depth). In

fact, in agreement with empirical results reported in [54], we also show

experimentally (in Chapter 5) that the generalization error tends to be

directly proportional to the operator norm of the network input-output

Jacobian matrix.

It should be noted that the GE bounds derived in our work augment the cur-

rent literature on generalization error in that the existing bounds typically

utilize capacity measures of the hypothesis class – such as the Rademacher

complexity or the VC dimension – to characterize the generalization error.

These bounds, in contrast to ours, ignore the interplay between the gen-

eralization and the properties of the learning algorithm. The algorithmic

robustness framework allow us to capture the dependence of the general-

ization error on the key ingredients of the deep learning algorithm namely

the network architecture, algorithm and the sample space. Moreover, the

current algorithm dependent studies of the generalization error typically

only cater to deep learning classifiers. Our analysis develops GE bounds for

both cross-entropy and ℓ2 loss and therefore is applicable to both regression

and prediction.



3.4. Summary 53

3.4 Summary
In this chapter, we have studied the generalization behaviour of deep neural

networks by building upon the robustness framework. In particular, we

have offered new generalization bounds – applicable both to classification

and regression problems – that encapsulate key quantities associated with

the learning problem, including the complexity of the data space, the car-

dinality of the training set, and the network Jacobian matrix. Notably, our

bounds lead to an entirely new regularization strategy – based on the penal-

ization of the spectral norm of the network Jacobian – that, as we will show

in Chapter 5, clearly outperforms existing regularizers both in classification

and regression problems (see Chapter 5 for details). In the next chapter, we

extend our analysis to include inverse problems – a very important class of

problems for which we have well postulated mathematical forward models.



Chapter 4

Model Aware GE Bounds for

Inverse Problems

4.1 Inverse Problems

In various signal and image processing challenges arising in practice – in-

cluding medical imaging, remote sensing, and many more – one often de-

sires to recover a number of latent variables from physical measurements.

This class of problems – generally known as inverse problems – can often be

modelled as follows:

y =Ax+n (4.1)

where y ∈Y ⊂Rq represents a q-dimensional vector containing the physical

measurements, x ∈X ⊂Rp represents a p-dimensional vector containing the

variables of interest, and n is a bounded perturbation modelling measure-

ment noise (i.e. ∥n∥ ≤ η). The forward operator modelling the relationship

between physical measurements and variables of interests is in turn mod-

elled (in the absence of noise) using a matrix A ∈ Rq×p. This forward op-

erator is usually known and satisfies certain regularity conditions such as
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Λa-Lipschitz continuity whereby 1

∥Ax1−Ax2∥2 ≤Λa∥x1−x2∥2, ∀x1,x2 ∈X (4.2)

The main challenge in solving (ill-posed) inverse problems via traditional

methods relates to the fact that – without any prior assumption – it is not pos-

sible to recover the variables of interest from the observations (even when

the forward model is perfectly known). Two broad classes of approaches

have been adopted to solve inverse problems: (i) model-based methods and

(ii) data-driven methods. Model-based methods exploit knowledge of the for-

ward operator and/or the signal/noise model in order to recover the variables

of interest from the measurements [10]. For example, well-known inverse

problem recovery algorithms often leverage knowledge of data priors cap-

turing stochastic [91] or geometric structure [92]. On the other hand, data-

driven methods do not leverage explicitly the knowledge of the underlying

physical and data models; instead, such methods rely on the availability of

various data pairs (y,x) in order to learn how to invert the forward operator

associated with the inverse problem [90]. The challenge relates to the fact

that these approaches – specially deep learning ones – typically require the

availability of various training examples that are not always available in a

number of applications such as medical image analysis. This inevitably hin-

ders the applicability of data-driven approaches to inverse problems arising

in various scientific and engineering use-cases. Therefore, this has moti-

vated researchers to put forth techniques that leverage both the model and

data driven paradigms to solve inverse problems. Some of the noteworthy

works in this vein include [4, 17]. In this work,we approach this challenge

by offering new generalization guarantees that capture how the generaliza-

tion ability is affected by various key quantities associated with the learning

problem. Such interplay then immediately leads to an entirely new model-

1Note that such forward operators encountered in various applications of interest in-
cluding Magnetic resonance Imaging (MRI), Computed Tomography (CT) etc obey some
form of regularity constraint such as given in (4.2).
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aware regularization strategy acting as a proxy to import knowledge about

the underlying physical model onto the deep learning process 2.

Next, we present an overview of the related work before introducing

our system setup generalization bounds applicable to neural network based

inverse problem solvers.

4.2 Prior Work

4.2.1 Model-based techniques for inverse problems

The main challenge in solving (ill-posed) inverse problems relates to the

fact that – without any prior assumption – it is not possible to recover the

variables of interest from the observations (even when the forward model

is perfectly known). A naive inversion of the forward map without any

structural constraints will not result in meaningful reconstruction. Classical

model-based approaches address this challenge via the formulation of opti-

mization problems that include two terms in the objective: (1) a data fidelity

term and (2) a data regularization one:

argmin
x

l
(
Ax,y

)
+ r(x) (4.3)

The first term in (4.3) encourages the solution to be consistent with the ob-

servations whereas the second, regularization one encourages solutions that

conform to a certain postulated data prior. There are a large number of

model-based approaches in the literature: Popular variational methods use

a regularizer that promotes smoothness of the solutions [93, 94] whereas

sparsity-driven methods use regularizers that promote sparsity of the solu-

tions in some transform domain [95, 96, 97]. In addition to the challenging

task of determining a suitable data prior, these traditional approaches tend

to require relatively complex solvers inevitably restricting their applicability.

2The regularization techniques and empirical results are presented in Chapters 5 and 6.
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4.2.2 Data-driven techniques for inverse problems

The recent years have witnessed a surge of interest in data-driven approaches

– with a focus on deep learning ones – to solve inverse problems [12]. In

particular, inspired by the success of deep learning in classification tasks,

such approaches typically “solve” an inverse problem by using a neural

network that has learnt how to map the model output to the model input

based on a number of input-output examples [90]. Such approaches have

been applied to a large number of inverse problems such as image denoising

[98, 1], image super-resolution [99], MRI reconstruction [100, 101], CT recon-

struction [102], and many more. However, these data-driven approaches

typically require rich enough datasets – which are not always available in

various domains such as medical imaging – in order to learn how to solve

the inverse problem [103].

4.2.3 Model-aware data driven approaches

In view of the fact that the underlying physical model is known in various

scenarios, there are been an increased interest in model-aware data-driven

approaches to inverse problems. Some approaches leverage knowledge

of the forward model to provide a rough estimate of the inverse problem

solution (e.g. using some form of pseudo-inverse of the forward operator)

that is then further processed using a neural network [5, 104, 105]

Another approach that is becoming increasingly popular relies on al-

gorithm unfolding or unrolling [106, 107, 17]. By starting with a typical

optimization based formulation to tackle the underlying inverse problem –

where knowledge of the physical model is explicitly used – unfolding then

maps iterative solvers onto a neural network architecture whose parameters

can be further tuned in a data-driven manner.

Finally there is also a new suite of techniques that leverage the knowl-

edge of forward operator as follows: the reconstruction of the desired data

vector given the measurements vector is carried out using a (regularized)



4.2. Prior Work 58

optimization problem using the underlying model; however, the regularizer

within such an optimization problem is itself learnt directly from a set of

data examples. One such recent (unsupervised) approach relies on the use

of adversarially learnt data dependent regularizers [4]. Another suite of

techniques uses instead data representations learnt directly from data in any

underlying model based optimization problem. For example, in [108], the

authors propose to learn the underlying low dimensional manifold of the

latent signal of interest using a generative adversarial network (GAN). This

allows them to constrain, in any optimization problem, the reconstructed

data to conform to such learnt manifold. While this method yields power-

ful representations, its training hinges upon the acquisition of a sufficient

amount of training data for it to generalize well enough to the test data.

A similar approach which employs the structure of a GAN as an implicit

regularizer was proposed in [109]. The work shows that a hand crafted

network architecture inherently favours solutions that look like natural im-

ages – hence can serve as a suitable prior in image restoration tasks. Finally

there are approaches where a learned denoising autoencoder is treated as a

regularization step in an iterative reconstruction method [110, 111].

Our work departs from these contributions in the sense that – whereas

we also use a deep network to solve an inverse problem – we leverage

knowledge of the underlying forward operator model via appropriate regu-

larization strategies deriving from a principled generalization error analysis.

The proposed approach gives rise to a prior which is tailored to a particular

inverse problem without requiring additional preprocessing.

4.2.4 Other related work

There is a considerable volume of literature offering analysis of the general-

ization ability of deep neural networks demonstrating that the generaliza-

tion error of highly paramterized models can be bounded in terms of certain

parameter norms [19, 20]. To the best of knowledge, all of these bounds

are applicable to classification problems or model-agnostic regression based
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ones. Our current work addresses this issue, offering a study of the gen-

eralization ability of deep neural networks based inverse problems solvers,

leading to entirely new gradient based regularization strategies allowing to

incorporate knowledge into the learning process.

Finally, various works have already proposed approaches to efficiently

introduce Lipschitz regularity in deep neural networks. However, as stated

earlier, none of these results specifically consider problems for which the

knowledge of data generation model is available and therefore fail to lever-

age it. The reader should refer to Section 3.1 for a detailed summary of such

contributions.

4.3 The Setup

We consider the linear observation model in eq. (4.1), with the following

additional assumptions: the input space X ⊆ Rp is compact with respect

to the ℓ2 metric; the noise space E = {n : ∥n∥2 ≤ η} ⊆ Rq is also compact

with respect to the ℓ2 metric; and the output space – which is defined as

Y = {y = Ax+ n : x ∈ X,n ∈ E} ⊆ Rq – can also be shown to be compact

with respect to the ℓ2 metric. Finally, we also define the sample space

D = {(x,y = Ax+ n) : x ∈ X,n ∈ E} that is compact with respect to the ℓ2

metric.

Our approach to solve this problem is based on the standard supervised

learning paradigm. We assume access to a training set S = {(xi,yi = Axi +

ni)}i≤m consisting of m data points drawn independently and identically

distributed (IID) from the sample space D according to the unknown data

distribution µ, consistent with the forward model in (4.1). We use such a

training set to learn a hypothesis fS : Y→X mapping the measurement

variables to variables of interest. We then use such a hypothesis to map new

measurement variables y ∈Y to the variables of interest x ∈X that were not

necessarily originally present in the training set.

We restrict our attention to mappings based on feed-forward neural
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networks fS for this work (2.1). One is typically interested in the perfor-

mance of the learnt neural network not only on the training data but also

on (previously unseen) testing data. Therefore, it is useful to quantify the

generalization error associated with the learnt neural network given by:

GE( fS) = |lexp( fS)− lemp( fS)| (4.4)

where lexp( fS) = Es∼µ[l( fS ,s)] represents the expected error, lemp( fS) =
1
m
∑

i l( fS ,si) represents the empirical error, and the loss function l :Rp
×Rp

→

R+0 — which measures the discrepancy between the neural network predic-

tion and the ground truth — is taken to be the ℓ2 distance given by:

l( fS ,s) = ∥ fS(y)−x∥2 (4.5)

Our ensuing analysis offers bounds to the generalization error in (4.4) of

deep feed-forward neural networks based inverse problems solvers as a

function of a number of relevant quantities. These quantities include the

covering number of the sample space D, the size of the training set S, and

properties of the network encapsulated in its input-output Jacobian matrix

given in eq. (2.5). The bounds also depend on quantities associated with

the linear model in eq. (4.1) such as the forward operator and the noise

bound. Our analysis will therefore also inform how to import knowledge

about the forward-operator associated with the inverse problem onto the

learning procedure in order to improve the generalization error.

4.4 Generalization Error Bounds

Our analysis builds upon the algorithmic robustness framework in [22].

Definition 4.1. A learning algorithm is said to be (K, ϵ(S))-robust if the sam-

ple space D can be partitioned into K disjoint sets Kk, k = 1, . . . ,K, such that

for all(xi,yi =Axi+ni) ∈ S and all (x,y =Ax+n) ∈D
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(xi,yi =Axi+ni), (x,y =Ax+n) ∈Kk

=⇒
∣∣∣l( fS , (xi,yi =Axi+ni))− l( fS , (x,y =Ax+n))

∣∣∣ ≤ ϵ(S)

This notion has already been used to analyse the performance of deep

neural networks in [38, 33, 30] and previously in Chapter 3. However, such

analyses applicable to classification tasks do not carry over immediately to

inverse problems based tasks where – in addition to exploiting knowledge

about the forward operator associated with the inverse problem for the

computation of ϵ(S) and K – there are some technical complications that

may arise due the fact that the loss functions are typically unbounded 3.

We begin addressing these challenges by offering a simple smoothness

based result that showcases how the distance between the neural network

estimates of the variables of interest depends on the distance between the

variables of interest themselves and, importantly, the Jacobian of the net-

work, the Jacobian of the composition of the network with the forward

model associated with the inverse problem, and the noise power associated

with the inverse problem.

This result is important because it shows that in the presence of bounded

Lipschitz constants of the relevant mappings and noise value, the DNN

learns a smooth mapping.

Theorem 4.1. Consider a neural network fS(·) : Y → X based solver of

the inverse problem in (4.1), learnt using a training set S. Then, for any

(x1,y1 =Ax1+n1), (x2,y2 =Ax2+n2) ∈D, it follows that

∥ fS(y2)− fS(y1)∥2 ≤Λ f◦a∥x2−x1∥2+2ηΛ f

where Λ f◦a and Λ f are upper bounds to the Lipschitz constants of the neu-

ral network and the composition of the neural network and the forward
3Existing work applies to uniformly bounded loss function (e.g. [22, 38]).
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operator respectively, given by:

Λ f◦a = sup
y∈conv(Y)

∥J
(
y
)
A∥2, Λ f = sup

y∈conv(Y)
∥J

(
y
)
∥2 (4.6)

Proof. We first note that the line between y1 = Ax1 +n1 and y2 = Ax2 +n2

is given by θ̄y1 +θy2 where θ ∈ (0,1) and θ̄ = 1−θ. Let us now define a

function h(θ) as follows:

h(θ) = fS(θ̄y1+θy2) = fS
(
A

(
θ̄x1+θx2

)
+ θ̄n1+θn2

)
By the generalized fundamental theorem of calculus, it can be shown that:

fS(y2)− fS(y1) =
∫ 1

0

dh(θ)
dθ

dθ

where

d
dθ

(h(θ)) = J
(
θ̄y1+θy2

)
[A (x2−x1)+ (n2−n1)]

Then, from the sub-multiplicative property of matrix norms, it is immediate

to show that:

∥ fS
(
y2

)
− fS

(
y1

)
∥2

=

∥∥∥∥∥∥
∫ 1

0
J
(
θ̄y1+θy2

)
[A (x2−x1)+ (n2−n1)]dθ

∥∥∥∥∥∥
2

≤

∥∥∥∥∥∥
∫ 1

0
J
(
θ̄y1+θy2

)
A(x2−x1)dθ

∥∥∥∥∥∥
2
+

∥∥∥∥∥∥
∫ 1

0
J
(
θ̄y1+θy2

)
(n2−n1)dθ

∥∥∥∥∥∥
2

≤

∥∥∥∥∥∥
∫ 1

0
J
(
θ̄y1+θy2

)
Adθ

∥∥∥∥∥∥
2
∥x2−x1∥2+

∥∥∥∥∥∥
∫ 1

0
J
(
θ̄y1+θy2

)
dθ

∥∥∥∥∥∥
2
∥n2−n1∥2

It is also possible to show that:∥∥∥∥∥∥
∫ 1

0
J
(
θ̄y1+θy2

)
Adθ

∥∥∥∥∥∥
2

(a)
≤

∫ 1

0
∥J

(
θ̄y1+θy2

)
A∥2dθ≤ sup

y1,y2∈Y
θ∈[0,1]

∥J
(
θ̄y1+θy2

)
A∥2



4.4. Generalization Error Bounds 63

Therefore, given that θ̄y1+θy2 is in convex-hull of Y for θ ∈ [0,1], it follows

immediately that:

∥ fS
(
y2

)
− fS

(
y1

)
∥2 ≤ sup

y∈conv(Y)
∥J

(
y
)
A∥2∥x2−x1∥2 + sup

y∈conv(Y
)∥J

(
y
)
∥2∥n2−n1∥2

≤ sup
y∈conv(Y)

∥J
(
y
)
A∥2∥x2−x1∥2 +2η sup

y∈conv(Y)
∥J

(
y
)
∥2 (4.7)

where conv(Y) represents the convex hull of Y. □

We now state another theorem – building upon Theorem 1 – articulating

about the robustness of a deep neural network based solver of an inverse

problem.

Theorem 4.2. A neural network trained to solve the inverse problem in (4.1)

based on a training set S is (K, ϵ(S))-robust such that for any δ > 0,

K ≤ NX(δ,ℓ2), ϵ(S) ≤ 2(1+Λ f◦a)δ+2Λ fη

where NX(δ,ℓ2) is the covering number of X.

Proof. We can construct a finite δ-cover X′ = {x′i , i = 1, . . . ,K} of the compact

space X with K ≤ NX(δ,ℓ2). We can therefore also construct a finite cover

D′ = {(x′i ,Ax′i ),x
′

i ∈X
′, i = 1, . . .K} of the space D = {(x,y =Ax+n) : x ∈X,n ∈

E}.

This implies that the sample space D can be partitioned into K disjoint

subsets Ki, i = 1, . . . ,K where Ki corresponds to the Voronoi region of (x′i ,y
′

i =

Ax′i ),x
′

i ∈X
′. Consequently, for a point (x,y =Ax+n) taken from the subset

Ki we can guarantee:

∥x′i −x∥2 ≤ δ (4.8)

Let us now choose (x1,y1 = Ax1+n1) ∈ S and (x2,y2 = Ax2+n2) ∈D from a
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particular subset in our partitioned D. Then,

|l( fS , (x2,y2))− l( fS , (x1,y1))| = |∥x2− fS(y2)∥2−∥x1− fS(y1)∥2|
(a)
≤ ∥x2−x1∥2+ ∥ fS(y2)− fS(y1)∥2
(b)
≤ ∥x2−x1∥2+Λ f◦a∥x2−x1∥2+Λ f ∥n2−n1∥2
(c)
≤ 2(1+Λ f◦a)δ+2Λ fη (4.9)

where the inequality (a) is due to reverse triangle inequality and Minkowski-

inequality, (b) holds because of Theorem 1. Finally (c) holds due to (4.8) and

because η upper bounds the ℓ2 norm of noise.

We have therefore shown that we can partition the set D onto K non-

overlapping subsets so that if a training sample (x1,y1) ∈ S and another

sample (x2,y2) ∈D belong to the same subset then (4.9) holds 4. □

We now state our main theorem relating to the generalization error of a

deep neural network trained to solve an inverse problem.

Theorem 4.3. A neural network trained to solve the inverse problem in (4.1)

based on a training set S consisting of m i.i.d. training samples obeys with

probability 1−ζ, for any ζ > 0, the GE bound given by:

GE( fS) ≤ 2(1+Λ f◦a)δ+2Λ fη+M

√
2NX(δ,ℓ2) log(2)+2log(1/ζ)

m

for max(x,y=Ax+n) |l( fS , (x,y =Ax+n))| ≤M <∞ and any δ > 0.

Proof. We first establish a simple Lemma.

Lemma 4.1. The Lipschitz constant of a differentiable function f on a com-

pact set Z is bounded.

4Note that this bounding technique produces a slightly different bound than an alterna-
tive one where we would bound the second term ∥ fS(y2)− fS(y1)∥2 on the right hand side
of 4.9(a) by Λ f ∥y2 −y1∥ (instead of Λ f◦a∥x2 − x1∥ which is possible via Theorem 1). How-
ever, the proposed bounding technique results in a tighter characterization of ϵ(S) since
Λ f◦a = supy∈conv(Y) ∥J

(
y
)
A∥2 ≤ supy∈conv(Y) ∥J

(
y
)
∥2∥A∥2 = Λ fΛa.
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Proof. Let f :Rp
→Rq be a differentiable function, defined on a compact set

Z ⊆Rp. Let also g(θ)= f (z′+θ(z′′−z′)), for someθ ∈ [0,1], so that g(0)= f (z′)

and g(1) = f (z′′) where z′,z′′ are any two fixed points taken for Z. Then, by

the fundamental theorem of calculus, we have

f (z′)− f (z′′) =
∫ 1

0
J(z′+θ(z′′−z′))dθ(z′−z′′)

where J(z) is the Jacobian matrix of f at z.

From the multiplicative property of norms, we also have that

∥ f (z′)− f (z′′)∥ ≤

∥∥∥∥∥∥
∫ 1

0
J(z′+θ(z′′−z′))dθ

∥∥∥∥∥∥
2
∥z′−z′′∥2

Next, by the triangle inequality for integrals, it can be shown that∥∥∥∥∥∥
∫ 1

0
J(z′+θ(z′′−z′))dθ

∥∥∥∥∥∥
2
≤ sup

z′,z′′∈Z
θ∈[0,1]

∥J(z′+θ(z′′−z′))∥2

≤ sup
z∈conv(Z)

∥J(z)∥2

where conv(Z) represents the convex hull of the compact set Z. Note that

the Carathéodory’s theorem of convex hulls can be used to prove that the

convex hull of compact set in a finite dimensional space Rp is also compact

[112].

Next, for a continuous function f defined on a compact set, there exists

a finite λ0 such that [113, 89]. ∣∣∣∣∣∣ ∂dz j
( f (z)i)

∣∣∣∣∣∣ ≤ λ0 (4.10)

where ∂
dz j

( f (z)i) is the element at row (i, j)-th element of the Jacobian matrix

J. This, then leads to the following

sup
z∈conv(Z)

∥J(z)∥2
(a)
≤ sup

z∈conv(Z)
c∥J(z)∥∞

(b)
≤ cpλ0
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where (a) is due to the equivalence of matrix norms and c is a constant

dependent on the dimensions of the Jacobian matrix [114]. Finally the last

inequality follows from the definition of the ∥.∥∞ matrix norm [115]. □

We are now in a position to prove the Theorem. In particular, it can be

shown that the GE of a (K, ϵ(S))-robust deep neural network, with probability

greater than 1−ζ, obeys [22]

GE ≤ ϵ(S)+ max
(x,y=Ax+n)

|l( fS , (x,y =Ax+n))|

√
2K log(2)+2log(1/ζ)

m
(4.11)

We can immediately use the robustness result in Theorem 2 to deter-

mine two quantities in this generalization error bound: ϵ(S) and K. How-

ever – in contrast with existing results that assume that the loss function

is uniformly bounded so that max(x,y=Ax+n) |l( fS , (x,y =Ax+n))| ≤ M < ∞

(e.g. see [22]) – the loss function associated with our inverse problem

is not necessarily bounded. However, it is still possible to show that

max(x,y=Ax+n) |l( fS , (x,y =Ax+n))| is finite.

In particular, let us observe that ∀ (x,y =Ax+n), (x′,y′ =Ax′+n′) ∈D

|l( fS , (x,y))− l( fS , (x′,y′))| =
∣∣∣∥x− fS(y)∥2−∥x′− fS(y′)∥2

∣∣∣
≤ ∥x−x′∥2+ ∥ fS(y)− fS(y′)∥2
(a)
≤ ∥x−x′∥2+Λ f ∥y−y′∥2
(b)
≤ (1+Λ f )∥(x,y)− (x′,y′)∥2

where (a) is due to Corollary 2 in [38] and (b) holds because the metric on D

upper bounds the metrics on constituent metric spaces X and Y.

Let us also observe that the Lipschitz constant of the loss function is finite

because – via Lemma 4.1 – the Lipschitz constant of the neural network Λ f

is also finite.

This immediately implies that the loss function is Lipschitz continuous

hence continuous, and – by the Extreme Value theorem [89] – that it is also
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bounded on D, so that max(x,y=Ax+n) |l( fS , (x,y =Ax+n))| ≤M <∞.

The Theorem follows immediately from Theorem 4.2. □

One can derive various insights from this theorem that are applicable

to any differentiable feed forward neural network along with any linear

forward map: (1) first, in line with traditional bounds [19, 21], the gen-

eralization error depends on the size of training set S; (2) second, in line

with more recent bounds [38, 33, 77], the generalization error also depends

on the complexity of the data space D; 5 (3) third, although the ℓ2-loss is

unbounded in nature, on a compact sample space, the DNN is able to pre-

dict samples such that the loss is finite and therefore the GE is provably

bounded; 4) Finally, Theorem 4.3 also reveals that the operator norm of the

Jacobian of the network and the composite map also play a critical role: the

lower the value of these norms, the lower the generalization error. More

importantly, the proposed generalization bound is also non-vacuous in the

network parameters because as opposed to the product of the norms of

layer-wise weight matrices appearing in other generalization error bounds

such as [33, 18, 20], the norm of the network Jacobian matrix does not seem

to exhibit exponential dependence on network depth. This is in sharp con-

trast with existing generalization bounds that typically contain a term that

deteriorates exponentially with depth.

It should also be noted that for the linear inverse problems in imaging,

the input spaceX can be assumed to be a CM regular k-dimensional manifold

[116]. The constant CM varies for different manifolds and represents their

“intrinsic” properties. This is a reasonable assumption for the visual data

and has previously been used to represent such input spaces. The covering

number for such manifolds can be bounded via
(

2CM
δ

)k
[116, 30].

The bound in Theorem 4.3 reveals that a small ∥JA∥2 should translate

to an improvement in the generalization performance of the network on the

5The complexity of the sample space – which can be captured via its covering number
– is often small in view of the fact that in various applications data lies on a manifold with
small intrinsic dimension [38].
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inverse problem. We exploit our analysis to propose regularization strategies

in Chapter 5 and show that penalizing the norms of J and JA indeed results

in better reconstruction performance on the held-out data. A number of

model based deep learning techniques have been proposed in literature that

propose to leverage the knowledge of forward map in the reconstruction

process. However, our proposed techniques are different in that we propose

a plug and play prior which can be incorporated at run time and stems from

a principled generalization error analysis.

We now specialize our bounds to the special case of inverse problems

when the signal of interest is assumed to be sparse.

4.5 Specialization for Sparse Signals

Sparsity is a desirable quality for the recovery of signals that have localized

energy and can be compressed by means of an appropriate basis expansion.

In a large number of inverse problems such as tomography, image super-

resolution, denoising and deblurring [117, 118, 119, 120], it is reasonable to

assume that the signal of interest has sparse representation in some basis.

Therefore, in this section we specialize the GE bounds described in the pre-

vious section for the case when the space X consists of unit ℓ2-norm k-sparse

vectors 6, i.e.

X = {x ∈Rp : ∥x∥0 ≤ k,∥x∥2 ≤ 1} (4.12)

where ∥x∥0 computes the cardinality of non-zero elements of x.

We also consider that an appropriately trained network – using a train-

ing set S – is employed to deliver an estimate of the sparse vector x given

the measurement vector y.

We can now immediately specialize the results appearing in Theorems

4.2 and 4.3 to this particular setting. The following uper bound on the

6The analysis can be easily extended to the settings where the signal of interest, x is
sparse in some basis.
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covering number of the input space will be very useful [121]:

NX

(
δ
2
, ℓ2

)
≤

(pe
k

)k (
1+

4
δ

)k
(4.13)

We are now in a position to present our main result that bounds the gener-

alization error for the sparse signal recovery by DNNs.

Corollary 1. Consider again the spaces X and Y, equipped with a ℓ2 metric,

the space D = X ×Y compact with the ρ, and the Lipschitz continuous

mapping in (4.1). It follows that a d-layer DNN based regressor fS(·) :Y→X

trained on a training set S consisting of m i.i.d. training samples obeys with

probability 1−ζ, for any ζ > 0, the generalization error bound given by:

GE( fS) ≤
(
1+Λ f◦a

)
δ+2ηΛ f +M

√
2(pe/k)k (1+ 4/δ)k log(2)+2log(1/ζ)

m

for any δ > 0 and M <∞.

Proof. The result follows directly from Theorem 4.3 and eq. (4.13). □

The results embodied in Corollary 1 can be used to illuminate further

the performance of sparse approximation based on deep learning networks.

In particular, let us assume we employ a regularization strategy during the

training phase constraining the Lipschitz constant of the network to be less

than one [36].

This leads immediately to another generalization error bound holding

with probability 1−ζ

GE( fS) ≤
(
1+Λ f◦a

)
δ+2ηΛ f +M

√
2(pe/k)k (1+ 4/δ)k log(2)+2log(1/ζ)

m
(4.14)

for any ζ > 0 and any δ > 0, and by setting δ = o
(
m−

1
k
)

and by setting trivially

ζ to be a function of m such that log(1/ζ)/m = o(1), to another generalization
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bound behaving as follows

GE( fS) ≤ 2 ·η+ o(1) (4.15)

This suggests that – with the increase of the number of training samples

m – the generalization ability of a deep neural network is limited only by

the level of the noise independently of the parameter values of the linear

observation model, namely q, p, k, Λ f and Λ f◦a. Instead, these parameters

mainly influence the speed at which the generalization error asymptotics

kick-in. In turn, in view of the fact that the generalization error is upper

bounded by the sum of the expected and empirical error, it is also possible

to upper bound the expected sparse approximation error associated with a

deep neural network as follows:

lexp( fS) ≤ lemp( fS)+GE( fS) ≤ lemp( fS)+2 ·η+ o(1) (4.16)

Recent results suggest that deep neural networks – with a sufficient number

of parameters – tend to memorize the training dataset [122] suggesting that

lexp( fS) ≤ GE( fS) ≤ 2 ·η+ o(1) (4.17)

4.5.1 Comparison with Basis Pursuit Denoising (BPDN)

We conclude by comparing how the performance of a deep neural network

compares to the performance of a well-known algorithm – BPDN – in sparse

approximation problems.

Theorem 4.4 ([95]). Consider the linear observation model in (4.1) where

x ∈X = {x ∈ Rp : ∥x∥0 ≤ k} and y ∈ Y = {y = Ax+n ∈ Rq : ∥x∥0 ≤ k,∥n∥2 ≤ η}.

Consider also the sparse approximation algorithm delivering an estimate of

x from y given knowledge of A:

x̃ = argmin
x∈Rp
∥x∥1 subject to, ∥y−Ax∥2 ≤ ε
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where ϵ ≥ η. It follows – under the assumption that k ≤
(
1+µ

)
/4µ – the error

of the approximation delivered by this algorithm can be bounded as follows:

∥̃x−x∥2 ≤
η+ε√

1−µ(4k−1)

where µ corresponds to the mutual coherence of the matrix A.

This sparse approximation algorithm – along with other sparse approx-

imation algorithms based on convex optimization approaches or greedy

approaches (see [123] and references within) – are known to exhibit a phase

transition. Here, when the data sparsity k ≤
(
1+µ

)
/4µ, the algorithm pro-

vides a reconstruction that scales with the amount of noise η; this is akin

to the behaviour of the sparse approximation delivered by a deep neural

network. On the other hand, when the data sparsity k >
(
1+µ

)
/4µ the al-

gorithm does not give any reconstruction guarantees but the deep neural

network may still be able to deliver an appropriate reconstruction of the

sparse vector given its under-sampled linear observation. In fact, reference

[16] has empirically demonstrated that the performance of a DNN degrades

gradually as q decreases in relation to p and k.

4.6 Summary
In this chapter, we presented a generalisation error analysis for deep learning

methods applicable to inverse problems. Our bound contains key ingredi-

ents associated with the learning problem namely the complexity of the data

space, the size of the training set, upper bound on the Lipschitz constant of

the deep neural network; Lipschitz constant of the forward operator; and

the upper bound on the Lipschitz constant of the composition of the forward

operator with the neural network. We also specialized our analysis for the

setting where the signal of interest is sparse. We also shed light on how

the bounds that we propose compare with the classical results present in

compressed sensing literature.



Chapter 5

Regularization for Robust

Learning

Our generalization error bounds in Chapter 3 demonstrate a direct depen-

dence between the generalization ability and the operator norm of the net-

work input-output Jacobian matrix. This motivates an entirely new regular-

ization strategy that can outperform existing neural network regularization

techniques such as weight decay, weight orthogonalization [33] and penal-

izing the Frobenius norm of the Jacobian [38, 39] as shown in the sequel.

5.1 Model Agnostic Regularization

Building upon the insights associated with our bounds applicable to clas-

sification or regression problems in Chapter 3, we now propose a new reg-

ularization strategy applicable to scenarios where one adopts an ℓ2-metric

both on the network input and output.

In particular, by adopting such an Euclidean metric, the bounds suggest

that the generalization ability of a deep neural network depends on the

maximum value of the spectral norm of the network input-output Jacobian

matrix over the convex hull of the input space. We therefore propose a new

regularization technique that penalizes the sum of the spectral norms of the

network Jacobian matrix evaluated at the various training samples within
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the training set, leading immediately to the training objective given by

1
m

m∑
i=1

l( fS(yi),xi)+λ
m∑

i=1

∥(J(yi)∥22 (5.1)

where ∥ · ∥2 represents the spectral norm of its matrix argument. The hyper-

parameter λ balances between the desire to minimize the empirical error

and the desire to minimize the spectral norm of the network Jacobian

Note that this new training objective encourages the network to explore

solutions in regions in the parameter space associated with Jacobians with

small spectral norms which – owing to the nonlinear nature of a deep neural

network – allows for a broader parameter search space. This is in contrast

to more restrictive techniques such as (1) weight decay that constrains the

network weights to exhibit small norms (hence, these techniques do not

take into account the correlation between the rows of weight matrices) or

else (2) weight orthogonalization that constrains the weights to lie on Stiefel

manifold [33, 30].

5.1.1 Experiments

We now conduct a series of experiments to gauge the effectiveness of the pro-

posed regularizer on classification as well as regression tasks. We consider

both fully connected as well as convolutional neural networks regularized

with our proposed gradient based regularizer (5.1) (referred to as JS) or other

conventional weight based regularizers such as weight decay (WD), weight

orthogonalization (WO) [33, 81], Frobenius norm of the Jacobian (JF) [38, 39].

5.1.1.1 Classification

We consider a standard image classification problem involving the MNIST

dataset. We train feedforward networks composed of 3 fully connected

hidden layers of size 784 and a classification layer, taking images from the

MNIST dataset unrolled into a 784 dimensional vector. We use an SGD based

optimizer to train the network on 2000, 10000 and 40000 samples taken from
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Table 5.1: Generalization error and test accuracy(%) for a 4 layer feed-forward
DNN classifier, trained on MNIST.

2000 samples 10000 samples 40000 samples

acc GE acc GE acc GE

WD 92.3 0.32 96.3 0.14 97.7 0.04
WO 92.2 0.25 96.2 0.11 97.7 0.05

JF 94.5 0.15 96.6 0.13 98.2 0.03
JS 94.5 0.16 97.0 0.06 98.4 0.03

the MNIST training set.

Table 5.1 reports experimental results under WD, WO, JF and JS. These

results suggest that Jacobian based regularizations strategies and specially

JS have a huge advantage over the weight based regularizers in terms of test

accuracy and generalization ability. For small training sets, JS regularization

clearly outperforms the other competing regularizers. For larger training

sets, JS regularization also outperforms other regularizers, though weight

based regularizers appear to become increasingly competitive. Overall, in

line with our analysis, our proposed regularizer appears to generalize much

better by making the network robust to overfitting specially in scenarios

where one has access to limited training data.

5.1.1.2 Regression

We now consider a classical image denoising problem involving the recon-

struction of a clean image given a noisy version of the image (corrupted

with Gaussian noise). The average Peak Signal to Noise Ratio (PSNR) of the

noisy dataset is 25.01 dB. We use the 3-layer version of the classical DnCNN

model from [1] with 32 filters of size 3× 3 followed by ReLU in first layer,

32 filters of dimension 3× 3 followed by batch normalization and ReLU in

the second layer and 1 filter of size 3× 3 in the third layer. We use 64× 64

cutouts of the greyscale images taken from BSD300 dataset for training and

testing purposes. We also use an SGD based optimizer to train the network

on 40, 200 and 400 samples.

We report the performance of the network trained with our proposed

regularizer against networks trained with WD, WO, JF in Table 5.2. Our
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Table 5.2: Generalization error and test PSNR (dB) for a 3-layer DnCNN, trained
for 140 epochs on BSD300.

40 samples 200 samples 400 samples

PSNR GE PSNR GE PSNR GE

WD 25.56 2.05 27.11 1.68 28.17 2.12
WO 25.42 2.18 26.91 1.69 27.72 2.28

JF 26.78 2.63 26.92 1.77 27.55 2.31
JS 27.22 2.49 27.26 1.74 27.94 2.14

results also show that JS outbeat the competing regularizers not only in

terms of PSNR but also in optimization speed. Note that for large training

samples the performance of JS and WD eventually become comparable if

the network is trained for sufficiently large number of epochs. However,

the convergence speed of JS is much faster than that of WD. This not only

shows that JS regularization improves generalization capability but also –

importantly – it shows that our regularizer also improves on the learning

process (in the relevant data-limited regime). A visual comparison of the

reconstructed images has been presented in Figure 5.1.

To conclude, in line with our analysis, we offer one additional result

showcasing that generalization appears to be intimately related to the spec-

tral norm of the network Jacobian. In particular, Figure 5.2 compares the

value of the network input-output Jacobian spectral norm for a deep neural

network trained under standard SGD with no regularization and a deep neu-

ral network trained under SGD for various regularization strategies. It can

be seen that in both cases the spectral norm of the Jacobians decreases grad-

ually with the increase in the number of training epochs. These trends apply

not only to this denoising tasks but also other regression and classification

ones.

5.2 Model-Aware Jacobian Regularization

Our approach to leverage knowledge about the inverse problem model onto

the learning process involves regularization. In particular, Theorem 4.3 sug-

gests that penalizing the spectral norm of the Jacobian of the neural network
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Figure 5.1: Sample results of the denoised images for m = 40 using a 5-layer
DnCNN [1]. (Left to Right) noisy (PSNR = 27.02), WD (PSNR = 28.08), WO
(PSNR = 28.04), JF (PSNR = 28.63), JS (PSNR = 29.03).

Figure 5.2: Sum of the spectral norms of the network input-output Jaco-
bian evaluated on training samples

∑m
i=1 ∥J(yi)∥22 versus number of training

epochs. The neural network is trained using SGD under different regulariz-
ers, for the image denoising task.

and the spectral norm of the Jacobian of the composition of the neural net-

work with the inverse problem forward operator, which incidentally also

serves as an upper bound to the Lipschitz constants of these mappings,

should improve the generalization ability of a neural network based inverse

problem solver.

The use of Lipschitz regularization to improve the generalization ability

of deep neural networks has already been recognized by various works

[33]-[38]. However, the fact that introducing Lipschitz regularity in the

end-to-end mapping involving the composition of the neural network and

the inverse problem forward map may also control generalization does not

appear to have been acknowledged in previous works pertaining to deep

learning approaches to inverse problems. We therefore propose two model-

aware regularization strategies:

Model-Aware Spectral Norm Based Regularization: Our first regular-
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ization strategy directly penalizes the operator norm of the Jacobians for

the neural network and for the composition of the neural network and the

forward map.Training in a minibatch stochastic gradient setup, where the

optimization is carried out over minibatchesB = {(x1,y1), . . . , (x|B|,y|B|)}, leads

to the following objective:

1
|B|

|B|∑
i=1

l( fS(yi),xi)+λ1 max
(y,x)∈B

∥J(y)A∥2+λ2 max
(y,x)∈B

∥J(y)∥2 (5.2)

where λ1,λ2 are hyper-parameters. Note that λ2 = 0 in a noise free setting.

Model-Aware Frobenius Norm Based Regularization: Our second regular-

ization strategy stems from the fact that the Frobenius norm upper bounds

the Spectral norm. Regularisation strategies that punish the Frobenius norm

of the network Jacobian have been associated with significant improvement

in robustness of DNN classifiers [54, 38, 39]. Therefore, our cost function in

(5.2) directly gives rise to the following objective function:

1
|B|

|B|∑
i=1

l( fS(yi),xi)+λ1 max
(y,x)∈B

∥J(y)A∥F+λ2 max
(y,x)∈B

∥J(y)∥F (5.3)

We, however propose to regularize the following upper bound on (5.3) given

by:

1
|B|

|B|∑
i=1

l( fS(yi),xi)+λ1

|B|∑
i=1

∥J(yi)A∥2F+λ2

|B|∑
i=1

∥J(yi)∥2F (5.4)

This is mainly because the sum of square of the Frobenius norm results in

simpler gradient computation. Additionally the regularization terms in (5.4)

can be approximated in a computationally efficient setting as explained in

the sequel.
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Algorithm 1: Estimation of the ∥JA∥2F
Input: Mini-batch B,number of projections n.
Output: Square of the Frobenius norm of the Jacobian AF.
AF← 0
for (y,x) ∈ B do

i← 0
while i < n do

Initialize {z} ∼ N(0,I)
z← z/||z||
AF←AF + p∥vjp( f (y),y,z) ·A∥22/(n|B|)

5.2.1 Efficient Computation of the Jacobian Based Regular-

izers

The challenge associated with the use of the training objectives in (5.2) and

(5.4) relates to the computation of the Spectral norm and Frobenious norm

of both J and JA because computing and storing the Jacobian matrix of deep

neural networks incurs a huge cost. There are already computationally

efficient algorithms to approximate the Frobenius and spectral norm of the

Jacobian [39, 35]. Here, for completeness, we illustrate how to re-purpose

these algorithms within our set-up; we also illustrate that these algorithms

lead to efficient approximation.

5.2.1.1 Frobenious Norm Regularization of JA

The random projection based method proposed in [39] used to approximate

the square of the Frobenius norm of the network Jacobian matrix J can be

immediately extended to approximate the square of the Frobenius norm

of the JA as shown in Algorithm 1. The technique leverages the reverse

mode automatic differentiation to compute vector Jacobian product – the

vjp(·, ·, ·) – of random vector sampled from the unit sphere of dimension p−1

with the network Jacobian. It has been shown in [39] that the proposed

technique converges to the true value as O(n−1/2) where n is the number of

random projections used for the estimation of the Frobenious norm. The

algorithm when used for regularization, has also been shown to result in
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Algorithm 2: Estimation of the spectral norm of JA
Input: Mini-batch B, number of power iterations n.
Output: Maximum singular value, σ, of the matrix JA.
for (y,x) ∈ B do

Initialize {u} ∈Rp

i← 0
while i < n do

v←ATvjp( f (y),y,u)
u← jvp( f (y),y,Av)
i← i+1.

σ← ∥u∥2/∥v∥2

Algorithm 3: Computation of the jvp.
Input: Mini-batch B, model outputs f (y), vector Av.
Output: JAv
Initialize a dummy tensor d.
g← vjp( f (y),y,d)
u← vjp(g,d,Av)
return u

only an inconsequential overhead in compute requirements [39].

5.2.1.2 Spectral Norm Regularization of JA

In turn, the method in [35] used to approximate the spectral norm of the

network Jacobian J can also be immediately re-purposed to approximate the

spectral norm of JA as shown in Algorithm 2. The procedure leverages the

power method [124] to approximate the spectral norm of the Jacobian based

regularization terms in (5.2). It starts by choosing (randomly) an initial

(nonzero) approximation of the left singular vector u in Rp associated with

the highest singular value of the matrix JA. It then leverages the automatic

differentiation to iteratively compute the Jacobian vector product and vector

Jacobian product as follows:

v←AT
[
d f (y)

dy

]T

u, u←
[
d f (y)

dy

]
Av

The spectral norm σ is then equal to ∥u∥2/∥v∥2.

The algorithm exploits the reverse and forward mode automatic differ-
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Table 5.3: Time and memory requirements for training a 4-layer fully connected
NN and 5-layer CNN [1] on the full training set of MNIST with a batch size of 100
and p = q = 784.

4-layer FC NN 5-layer DnCNN

time memory time memory

SGD 29m 595Mb 1h8m 1057Mb
Alg. 2 (n = 1) 47.5m 659Mb 3h,42m 1825Mb
Alg. 2 (n = 2) 1h,1m 787Mb 5h,4m 2849Mb
Alg. 2 (n = 3) 1h,13m 787Mb 6h,31m 4897Mb
Alg. 2 (n = 4) 1h,18m 787Mb 9h,42m 4897Mb

tf batch J (n = 3) 63h,7m 4659Mb −− ≈ 160Gb

entiation to compute the vector Jacobian product vjp(·, ·, ·), and the Jacobian

vector products jvp(·, ·, ·) respectively. All major deep learning frameworks

offer support for the computation of reverse mode vector Jacobian prod-

uct. The forward mode Jacobian vector product can easily be computed via

the reverse mode automatic differentiation using the method described in

Algorithm 3 [125]1.

Note again that the merit of Algorithms 1 and 2 lies in computing the

Frobenius and spectral norms of Jacobians without explicitly computing the

Jacobians themselves that is prohibitive in high-dimensional settings.

5.2.1.3 Algorithm Accuracy and Complexity

We now study the efficacy offered by Algorithm 2 via a simple experiment

involving the reconstruction of MNIST data from its noisy version. We

generate the noisy MNIST data by passing the clean data through the linear

model in (4.1) with the forward operator set to be equal to an identity one.

We also further contaminate the MNIST data with a noise sampled uniformly

from a ℓ2-sphere of radius 0.3. We then reconstruct the data from the noisy

version using two neural networks, a 4-layer fully connected neural network

and a 5-layer convolutional neural network. These networks are trained

using ADAM optimizer for 300 epochs using the ℓ2 loss function in (4.5).

Our experiments have two main goals:

1The spectral norm of the Jacobian matrix can be computed by directly substituting A
with an Identity matrix. A similar technique has been proposed in [35].
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Figure 5.3: Maximum singular values of the batch Jacobians for a 4-layer
fully connected network with p = q = 784.

1. First, we want to test that Algorithm 2 indeed results in a faithful

estimate of the spectral norm of the network Jacobian. To this end,

we compare the output of the Algorithm 2 with the spectral norm

computed using power method applied to a Jacobian matrix explicitly

computed using Tensorflow. It can be seen in Fig. 5.3 that for equal

number of power iterations (n = 3) the results obtained using both

methods are almost identical.

2. Second, we want to quantify the computational benefit afforded to us

by Algorithm 2 – owing to its implicit matrix vector products compu-

tation – in contrast to estimating the spectral norm via explicit matrix

vector products. In particular, Table 5.3 compares computation and

memory requirements of the algorithm against alternatives associated

with the training of both the fully connected and the convolutional

neural networks. It can also be seen that our algorithm provides con-

siderable gains in relation to the alternatives.

In summary, both for fully connected and convolutional neural networks,

our experiments suggest that regularizing the network using Algorithm 2,

offers considerable computational gains in comparison to direct computation

of the spectral norm. In fact, the explicit computation of the network Jacobian
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would be practically impossible even for a modestly sized network. For

example, for convolutional neural networks, even a minibatch Jacobian of

10 samples occupies 16GB of memory making it infeasible to approximate

any norm. In contrast, with Algorithm 2 both jvp and vjp can be computed

approximately in linear time using most major deep learning frameworks.

5.3 Experiments

We now conduct a series of experiments in order to assess the efficacy of

our proposed model-aware deep learning regularization strategy on range

of popular inverse problems. These include (a) the reconstruction of im-

ages from low-dimensional Gaussian measurements (b) the generation of

high-resolution images from a low-resolution version. These various inverse

problems involve different measurement operators, exhibiting different con-

dition numbers, enabling us to verify the merit of our proposed regularizers

under various settings.

5.3.1 Image Reconstruction in the Presence of Gaussian

Measurements

5.3.1.1 Experimental procedure

Our first set of experiments involves the reconstruction of images from noisy

compressive Gaussian measurements. In particular, we consider our linear

model in (4.1) where A is a (wide) random Gaussian matrix with i.i.d. entries

sampled from a Gaussian distribution with mean zero and variance 1/q and

the noise is sampled uniformly from a sphere of radius η. We consider 28×28

greyscale images of handwritten digits taken from the MNIST dataset [126].

We construct a dataset {yi,xi}
n
i=1 whereby the q-dimensional measurement

vector yi is obtained from the p-dimensional vector xi – which is derived

by converting a 28×28 greyscale image onto a 784 dimensional vector – via

the linear model in (4.1). We also scale the pixel values in the images to the

range [0,1] prior to the application of the linear operator.
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For the reconstruction of the original images from the noisy compres-

sive measurements, we consider a 4-layer fully connected neural network

consisting of an input layer of width equal to the measurement size – q,

followed by three layers, each containing neurons equal to the dimension of

the ground truth – p. All the layers except the last one have an associated

Rectified Linear Unit (ReLU) activation function.

The reconstruction network is trained using the ADAM optimizer for

600 epochs using various regularization strategies. These strategies include:

(a) model aware Spectral norm regularization of Jacobian in (5.2) which is de-

noted by SJA&SJ (λ1,λ2 > 0) or only SJA (λ1,λ2 = 0); (b) model-aware Frobe-

nius norm regularization in (5.4) which is denoted by FJA&FA (λ1,λ2 > 0) or

only FJA (λ1,λ2 = 0); and (c) model agnostic regularization approaches such

as weight decay (WD), spectral norm regularization of weights (SW) [28],

Spectral norm regularization of Jacobian (SJ) and Frobenius norm regulariza-

tion of Jacobian (FJ) [39]. Note that comparing our regularization strategies

with WD, SW, SJ and FJ will allow us to assess the benefits of model-aware

regularization since WD, SW, SJ and FJ do not take into account the pres-

ence of the linear operator. The regularization parameters appearing in

the various strategies (including λ1 and λ2 for our regularizers) are always

fine-tuned using a grid search method.

To assess the efficacy of the proposed regularizers on inverse problems

with different levels of ill-posedness and corruption, we conduct various

experimental studies. Specifically, we look at the performance of networks

trained under different regularized loss functions when q is varied such

that it takes values in the set {80,160,320,640} for m = 500 and η fixed at

0.3. Likewise, we also observe the performance of different regularizers

when the noise level η is gradually increased from 0 to 0.6 while keeping m

and q fixed at 500 and 160 respectively. Finally we also gauge how different

regularizers behave under the training sets of size 200,400,600 and 800 while

keeping q fixed at 160 and η = 0.3.
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(a)

(b)

(c)

Figure 5.4: Sample results from the reconstruction from compressed Gaus-
sian measurements using a 4-layer FC neural network regularized with
WD, SW, FJ, SJ, FJA, SJA, FJA&FJ and SJA&SJ. (5.4a) η = 0.3 m = 500 and
q = 320(top row), q = 640(bottom row). (5.4b) η = 0.3, q = 160 and m = 600
(top row), m = 800 (bottom row). (5.4c) m = 500, q = 160 and η = 0.2 (top
row), η = 0 (bottom row).

The reconstruction performance of the various regularization schemes

is compared in terms of visualizations and various quality metrics such as

the generalization gap determined using the generalization error in eq. (4.4)

and other quality metrics such as Structural Similarity Index (SSIM) and

PSNR.

5.3.1.2 Results

Fig. 5.5 and 5.4 present a performance comparison of networks regularized

with our model aware Jacobian regularizers and the baseline techniques for

various training scenarios.
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Figure 5.5: Reconstruction of MNIST images given Gaussian compressive
measurements using a fully connected neural network. (5.5a) (Left) SSIM
versus number of Gaussian measurements, (Centre) PSNR versus number of
Gaussian measurements, (Right) GE versus number of Gaussian measure-
ments for various regularization strategies such that η = 0.3 and m = 500.
(5.5b) (Left) SSIM versus number of training examples, (Centre) PSNR versus
number of training examples, (Right) GE versus number of training exam-
ples for various regularization strategies such that η = 0.3 and q = 160. (5.5c)
(Left) SSIM versus noise level, (Centre) PSNR versus noise level, (Right) GE
versus noise level for various regularization strategies such that m= 500 and
q = 160.

In Fig. 5.5a, we plot the test set SSIM, PSNR and GE of the reconstructed

MNIST images versus the number of measurements q. It can be seen that our

proposed model-aware strategies lead to performance gains in comparison

with existing ones, where the gains are more pronounced with the increase

in the number of measurements. This shows that – owing to the explicit

exploitation of the forward map – model aware regularizers are better able to

leverage the additional measurements. The generalization error between the
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training and the test set for different measurement sizes also shows a similar

trend with model aware regularizers consistently outbeating the competing

baseline techniques. A visual comparison of the quality of the reconstructed

images under different number of measurements is also offered in Fig. 5.4a.

It is clear that the images recovered with model aware regularizers are

perceptually far more refined in comparison with the ones reconstructed

using the model agnostic techniques.

In Fig. 5.5b, we plot the test set SSIM, PSNR and GE of the reconstructed

MNIST images versus number of training examples. Here again, the reg-

ularizers that incorporate the knowledge of the forward map outperform

the regularization techniques that do not. This result also reinforces the

hypothesis that even in situations where we may only have small number

of training examples, model-aware regularization can result in a better gen-

eralization performance. The gain in performance metrics also translates to

the superior reconstruction as depicted in Fig. 5.4b

Finally, in Fig. 5.5c, we study the effect of different regularizers in the

presence of different levels of noise. For measurements with high noise

levels, the model agnostic and model aware regularizers show similar per-

formance. This is because in low SNR conditions the effect of noise may dom-

inate the effect of the forward operator. In contrast, for measurements with

low levels of noise, model aware regularizers show superior performance to

the existing model agnostic ones. The GE plot for these experiments again

shows that the proposed regularizers results in superior generalization be-

haviour when the noise levels are low. This effect can be visually observed

in Fig. 5.4c which shows sample reconstructions using the competing regu-

larizers.

It should be noted that SJA&SJ consistently outperforms FJA&FJ. This is

because Frobenious norm regularization minimizes the sum of squres of all

the elements in the matrix – not taking into account the correlation between

the rows of the Jacobian – and thus is more restrictive than the Spectral norm



5.3. Experiments 87

regularization.

These results support our analysis that model induced regularizers im-

prove the performance of neural networks over model agnostic regulariza-

tion translating into better reconstructions.

5.3.2 Image Super-resolution

5.3.2.1 Experimental procedure

We now study the performance of our regularizers on the classical super

resolution (SR) problem involving the recovery of high resolution images

from their low resolution versions. The SR problem can be mathematically

formulated via the linear model in (4.1) where n represents the measurement

noise and the forward operator A can be defined as the product of a blur

matrix H ∈ Rp×p and a subsampling matrix L ∈ Rp×q. The point spread

function (PSF) of the matrix H can be uniform, Gaussian or bicubic and is

assumed to be known in advance [127]. In our experiments we sample the

noise uniformly from a sphere of radius η and assume the PSF to be a 5×5

Gaussian kernel. For our training procedure, we sample images from the

BSD300 database [128]. The dataset S = {xi,yi}
m
i=1 is generated by obtaining

128×128×3 cutouts from these images; vectorizing them; and then obtaining

the q-dimensional measurement yi via the linear model in (4.1). The exact

value of q depends on the subsampling ratio p/q. We test our regularizers

for subsampling ratios of 2 and 4. The training set size, m, is fixed to 500

samples, while the regularization parameters are tuned on a validation set

of size 3500. We also apply an adaptive policy taking into account feedback

from training in order to tune the regularization parameters – as opposed to

keeping them fixed – using the approach summarized in Algorithm 4 2.

To reconstruct the high resolution (HR) images from the low resolution

2Our empirical results show that using such an adaptive technique results in better
validation performance and lesser training time. Since this technique takes into account the
training performance to compute the regularization coefficients at each step and does not
rely on a hit and trial method to find the ‘best’ hyperparamter, it results in lesser overall
training time for the model.
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Table 5.4: Reconstruction performance of EDSR and WDSR on various test
datasets.

p/q = 2 p/q = 4
Set5 Set14 Urban100 Set5 Set14 Urban100

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

ED
SR

η
=

0

Vanilla 32.63 0.902 29.57 0.849 27.44 0.873 25.87 0.701 24.05 0.655 21.43 0.629
FJ 32.98 0.913 29.96 0.868 27.92 0.888 26.61 0.731 24.81 0.680 22.28 0.663
SJ 33.32 0.916 30.33 0.861 28.18 0.885 26.33 0.723 24.54 0.671 22.00 0.650
FJA 33.05 0.913 30.01 0.862 27.91 0.884 26.65 0.729 24.84 0.675 22.29 0.659
SJA 33.60 0.922 30.66 0.876 28.68 0.910 26.90 0.745 24.97 0.685 22.37 0.665

η
=

3

Vanilla 28.60 0.833 26.01 0.744 23.04 0.716 24.75 0.654 23.09 0.575 20.42 0.522
FJ 28.68 0.822 26.23 0.738 23.35 0.720 24.78 0.656 23.12 0.574 20.47 0.522
SJ 28.72 0.823 26.14 0.737 23.18 0.709 24.98 0.677 23.26 0.592 20.68 0.542
FJA+FJ 29.34 0.848 26.73 0.759 23.98 0.751 25.38 0.680 23.59 0.599 20.80 0.547
SJA+SJ 29.50 0.849 26.95 0.768 24.00 0.753 25.50 0.692 23.61 0.603 20.83 0.551

W
D

SR

η
=

0

Vanilla 33.76 0.921 30.17 0.869 28.49 0.893 26.19 0.739 24.08 0.670 21.52 0.648
FJ 34.20 0.925 30.57 0.877 28.76 0.900 26.80 0.757 24.75 0.685 22.11 0.663
SJ 34.05 0.928 30.69 0.880 28.88 0.902 26.77 0.752 24.71 0.686 22.10 0.662
FJA 34.25 0.929 30.66 0.881 28.94 0.906 27.00 0.765 24.85 0.689 22.22 0.669
SJA 34.55 0.927 30.79 0.881 29.01 0.905 27.06 0.762 24.89 0.690 22.20 0.665

η
=

3

Vanilla 28.63 0.827 26.20 0.751 23.27 0.730 24.95 0.666 23.23 0.588 20.53 0.532
FJ 29.15 0.841 26.56 0.759 23.85 0.749 25.34 0.699 23.35 0.598 20.74 0.549
SJ 29.31 0.842 26.64 0.760 23.88 0.752 25.36 0.704 23.39 0.604 20.80 0.558
FJA+FJ 29.73 0.853 26.87 0.762 24.15 0.757 25.52 0.708 23.60 0.607 20.91 0.563
SJA+SJ 29.91 0.858 27.19 0.858 24.37 0.769 25.54 0.711 23.65 0.612 20.93 0.565

(LR) measurements, we train two state-of-the-art ResNet architectures – the

Enhanced Deep Residual Networks (EDSR) [2] and the Wide Activation

Residual Networks (WDSR) [3]. These architectures have specially been

designed for solving the SR problem leading up to exceptional performance

on various datasets and SR challenges. We train these networks using the

ADAM optimizer for 600 epochs. In these set of experiments, we compare

the performance of the proposed model aware regularizers in eqs. (5.2) and

(5.4) against their model agnostic counterparts; we also demonstrate with

the help of generalization error curves how incorporating the knowledge of

the forward operator also induces generalization gains.

In order to evaluate the impact of incorporating the knowledge of the

forward operator in the proposed regularizers, we test the performance of

our trained networks on various publicly available datasets such as Set5,

Set14 and Urban 100 dataset. The reconstruction performance of the various
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Figure 5.6: Generalization error Vs number of epoch plots for the SR problem
using different regularization strategies. (5.6a) GE plots for EDSR (left) and
WDSR (right) when η = 0. (Top) p/q = 4 (Bottom) p/q = 2 SR task. (5.6b) GE
plots for EDSR (left) and WDSR (right) when η = 3. (Top) p/q = 4 (Bottom)
p/q = 2.

schemes is compared in terms of visualizations and quality metrics such

as GE, Structural Similarity Index (SSIM) and Peak Signal to Noise Ratio

(PSNR).
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5.3.2.2 Results

In order to investigate the improvement in the generalization behaviour in-

duced by the proposed model aware regularizers, we have plotted the GE

between the training and validation set – computed via eq. (4.4) for solving

the SR tasks in Fig. 5.6. It can be seen in Figs 5.6a and 5.6b that for the

subsampling ratio of p/q = 4, the regularization methods which incorporate

the knowledge of the forward operator outperform the regularization tech-

niques that do not. Our results for the noise free SR problems when p/q = 2,

– presented in Fig 5.6a do not exhibit significant gaps in the generalization

performance. This is expected since for p/q = 2, SR is a comparatively eas-

ier recovery problem and therefore exploiting the knowledge of the forward

model may not provide much benefit. However, in the presence of noise, reg-

ularizing the networks shows improved generalization performance even

for p/q= 2, as shown in Fig. 5.6b. These results validate our theory that model

aware regularization techniques induce performance gains by reducing the

effect of overfitting – resulting in a better generalization behaviour.

Fig. 5.7 and 5.8 present a visual comparison of the outputs achieved

using model aware Jacobian regularizers and the baseline techniques on

various datasets. It can be seen that for both EDSR and WDSR, our propsed

regularized leads to perceptual gains in contrast to the standard (unregular-

ized) training. Although the model agnostic regularization techniques also

result in improved visualizations, a close inspection of the recovered images

reveals that the model aware regularizers are able to recover finer image

details. It should be noted that the reconstruction results are achieved with

only 500 training samples.

Finally, in Table 5.4, we demonstrate the effectiveness of the proposed

regularizers on various out of sample datasets. On the p/q = 2 SR task – in

comparison to vanilla training for both the EDSR and WDSR – the model

aware regularization techniques result in a gain of up to 1.24 dB and 0.04

in terms of the PSNR and SSIM respectively. The proposed model aware
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regularizers also show improvement over their model agnostic counterparts.

A similar trend can be observed in the p/q = 4 SR task where model aware

regularizers achieve a performance gain of upto 0.97dB and 0.036 in terms

of PSNR and SSIM respectively . The performance improvement over the

vanilla training in the WDSR network are slightly less pronounced than

EDSR but still noticeable. This is because WDSR is a more competetive

network than EDSR.

These results support our analysis that model induced regularizers im-

prove the performance of neural networks over model agnostic regulariza-

tion translating into better reconstructions.

5.4 Summary
In this chapter – motivated by our analysis in Chapters 3 and 4 – we have

proposed new regularization strategies that penalize the spectral norm of

the Jacobian matrices of the relevant mappings. Our experiments on both

classification and regression problems show that the proposed regularization

strategies outperform the current state of the art ones.



Chapter 6

Case Studies

A number of biomedical problems require the investigation of human or-

gans via images obtained using non-invasive techniques such as Magnetic

Resonance Imaging (MRI) or different types of tomographic approaches. A

common feature in these diagnostic techniques is that the obtained measure-

ments – in their raw form – are noisy and usually belong to modalities other

than imaging. Although the acquisition models for these inverse problems

are usually well postulated – the under-determined nature of data renders

them ill-posed in the sense of Hadamard [8] i.e., the solution either does

not exist, is not unique or is not stable with respect to measurements. This

lends the retrieval of meaningful information a non-trivial task. Therefore,

appropriate regularization or constraints reflecting the domain knowledge

are necessary to obtain reliable solutions.

A variety of iterative, funtional analytic and data-driven methods have

been shown to perform well on these biomedical imaging problems. In

this chapter, we evaluate the effectiveness of the proposed model Jacobian

regularization proposed in Chapter 5 on a few clinically significant inverse

problems and compare them with state of art methods in literature.

6.1 Magnetic Resonance Imaging

Our first set of experiments involve the reconstruction of MRI images from

sub-sampled Fourier measurements. The frequency domain sub-sampling
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Figure 6.1: UNet Architecture.

operator can be mathematically represented as

A = F−1MF

where F and F−1 are the Fourier and inverse Fourier transform matrices.

The mask M is diagonal matrix containing binary entries on its diagonal

where the number of non-zero entries signify the sampling density s. These

types of forward mappings are particularly important for applications such

as accelerated MRI reconstruction where the field of view is scanned by

obtaining sparse measurements in k-space domain leading to reduced MRI

acquisition periods.

Our linear model is also such that the noise for each sample in (4.1) is

sampled uniformly from an ℓ2 sphere of radius η. We construct our dataset

by retrospectively under-sampling the Fourier transform of the ground truth
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Figure 6.2: k-space acquisition masks (Left): Random 2D 5-fold subsampling
mask with the centre fully sampled.(Right) Random 1D 4-fold subsampling
mask.

images, obtained from the NYU fastMRI’s knee database [6]. The subsam-

pling is achieved by the Cartesian 1D and 2D random sampling masks in

k-space, shown in Fig. 6.2 – retaining only 25% and 20% of the total Fourier

samples, respectively. We also normalize the images to the range [0,1] be-

fore applying the forward transform and adding noise with level η = 5. The

training was achieved using a set of 500 samples and a minibatch of size 5.

We consider the state-of-the-art UNet architecture [129] under different

regularization strategies (including SJA&SJ and FJA&FJ) to reconstruct the

original images from the noisy under-sampled Fourier measurements. A

schematic of the network architecture is shown in Fig. 6.1. This network

is trained using the ADAM optimizer for 300 epochs using the different

regularization strategies. However, we only apply the regularization in 10%

of the steps per epoch in order to speed up the optimization. We also apply

an adaptive policy taking into account feedback from training in order to

tune the hyperparameters λ1 and λ2 – as opposed to keeping them fixed –

using the approach summarized Algorithm 4. 1

We also consider, for comparison purposes, competing techniques such

as (a) wavelet sparsity regularized reconstruction [92]; (b) adversarial regu-

larizers [4]; and (c) postprocessing via UNet method [5]. For a fair compar-

ison, the UNet architecture and training routines are kept the same for our

1Our empirical results show that using such an adaptive technique results in better
validation performance and lesser training time. Since this technique takes into account the
training performance to compute the regularization coefficients at each step and does not
rely on a hit and trial method to find the ‘best’ hyperparamter, it results in lesser overall
training time for the model.
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Algorithm 4: Estimation of the regularization coefficient λ for
Jacobian regularizer.

Input: magnitude r of the regularization term and l of the loss over
Mini-batch B, scaling factor s

Output: Value of the regularization coefficient
α← floor(log(l/r)) ; // l is the unregularized empirical loss

1/|B|
∑

i l( fS , (xi,yi)
λ← 10α/s ; // The values of 10,20 and 30 were tested for s. 20
usually gave the best results.

Table 6.1: Comparison of different SOTA approaches used to reconstruct the MRI
measurements obtained from the NYU fastMRI knee dataset [6] under PSNR (dB)
and SSIM.

2D mask (s = 0.2) 1D mask (s = 0.25)

PSNR SSIM PSNR SSIM

Wavelet sparsity reg 28.49 0.72 24.56 0.50
Adversarial Regularizer [4] 29.89 0.77 25.44 0.54
UNet as post-processor [5] 30.01 0.79 28.36 0.74

UNet w FJA&FJ 30.80 0.80 28.96 0.75
UNet w SJA&SJ 30.89 0.81 29.30 0.78

work and the postprocessing method. Note also that unlike [5], we train the

post processing UNet on ℓ2 loss function. For the Adversarial regularization

method, we modify the official implementation of the adversarial regular-

izer, present on Github [4], provided by the authors of the publication to suit

the forward model used in this work. The batch size and other hyperpa-

rameters such as the step size and the choice of the adversarial regularizer

network were kept the same as in the original implementation. Both the

postprocessing and the adversarial regularization method involve a ‘pre-

processing’ step. That is, both techniques obtain an initial course estimate

of the signal of interest by applying a classical regularized reconstruction

method, A†(·) to the measurement y. For our experiments, we use the out-

put of the wavelet sparsity regularized reconstruction method as this initial

estimate.

We compare once again the reconstruction performance of the various

approaches in terms of visualizations and quality metrics such as Structural

Similarity Index (SSIM) and Peak Signal to Noise Ratio (PSNR).
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6.1.1 Results

Table 6.1 compares the performance of the different reconstruction ap-

proaches. The proposed regularizers consistently outbeat all the other

methods in terms of PSNR and SSIM. The performance gains are more

pronounced for 1D sampling mask in view of the fact that these introduce

aliasing artifacts that appear to be better dealt with our approaches in rela-

tion to competing ones.

Figs. 6.3 and 6.4 in turn offer a visual comparison of the quality of the

reconstructed images for the different approaches. It can be seen that our

proposed regularization approaches appear to lead to better reconstruction

quality in relation to the competing methods. Since the Jacobian regulariza-

tion method can be directly used with any deep learning based reconstruc-

tion method, we also include reconstruction results when a post-processing

UNet is regularized via SJA&SJ regularizer. It can be seen that perceptually

the reconstruction achieved through this method outperforms all the other

techniques. However there is no improvement in terms of PSNR and SSIM

over the UNet with SJA&SJ (without the preprocessing). A close inspection

of the reconstructed images reveals that the proposed method introduces

less artifacts than the other reconstructions. This is specially important for

data available in medical applications, since any artificial noise artificant

introduced as a result of the reconstruction process can severely hinder the

diagnostic process.

6.2 Computed Tomography

In this section, we demonstrate performance of our model aware regularizer

(5.2) on the recovery of the desired image from tomographic 2D parallel

beam measurements. An important application of these problems is the

Computed Tomography (CT) from X-ray beams which involves recovering

the signal of interest by observing the attenuation patterns of X-rays passing

through a body. The underlying physics of a CT problem can compactly be
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represented via the standard formulation of the inverse problem (4.1) :

y =Ax+n

where the forward operator A is the ray transform [130] and n represents

the degradation associated with the acquisition setup such as metal and ring

artifacts.

For our experiments, we fix A to be an under-sampled ray transform

with 30 parallel beam projections. The latent vector x is sampled from the

publicly available LIDC/IDRI database containing lung scans [131]. The

dataset is created by resizing the images to the dimensions of 128×128 prior

to the application of the forward operator. The transformed data is then

corrupted with white Gaussian noise2. We utilize 500 samples for training,

200 for validation and the trained network is tested on 500 test data points.

We test the performance of our regularizer on the UNet architecture

and tune the regularization coefficients using the adaptive approach given

in Algorithm 4. For these experiments, the neural network takes A†(y) as

input. Here A† encapsulates the psuedo inverse of the ray transform and

can easily be computed using the Filterd Back Projection (FBP) algorithm.

We benchmark our model aware regularizers FJA+FJ (eq. 5.4) against the

knowledge based Total Variation (TV) [93] denoising and data-driven post-

processing UNet [5]. We also compare the model aware regularizer with

model agnostic regularization, FJ, to observe the benefit of incorporating the

knowledge of forward model in the regularization process.

The simulations are performed with the help of the Tensorflow and

Operator Discretization Library.

6.2.1 Results

We have summarized the qualitative results for our tests on the LIDC dataset

in Table 6.2 while the visual comparisons are given in Figs. 6.5 and 6.6.

2Although our theoretical analysis applies to bounded noise – experiments on Gaussian
noise show that the proposed regularizer performs well in other settings as wel.
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Table 6.2: Performance comparison of the proposed model aware regularizers (5.4)
and (5.2) on the tomographic reconstruction problems in terms of PSNR(dB) and
SSIM.

noise variance = 0.01 noise variance = 0.05

PSNR SSIM PSNR SSIM

FBP 15.07 0.3425 8.01 0.0477
TV 29.18 0.8310 27.43 0.8010

UNet post-processing [5] 33.31 0.9020 29.06 0.8316
UNet post-processing w FJ 34.53 0.9177 30.05 0.8612

UNet as post-processing w FJA&FJ 35.66 0.9338 31.11 0.8701

It can be seen from Table 6.2 that the proposed mapping induced regu-

larizers consistently out perform the baselines. The PSNR and SSIM values

also indicate that regularizing the state of the art data-driven methods [5]

augments the quality of the original reconstructions. In high SNR regimes,

importing the knowledge of the forward mapping via our regularizers re-

sults in an advantage of up to 2dB in PSNR and 0.03 in terms of the SSIM.

Even, in settings, where the SNR is low, the quality of the reconstruction for

model aware regularizers is superior to the networks that are unregularized

or regularized with a model-agnostic penalty (FJ). It can be noted from the

sample reconstruction results in Fig 6.5 that under high levels of noise, the

model based FBP algorithm performs very poorly which is expected since

the filtering process in the FBP algorithm usually results in the amplification

of the measurement noise. In contrast, the TV regularization gives results

that are comparable to the learnt methods. This is also not surprising since

TV has been shown to perform well in such scenarios [132]. The neural net-

work based reconstructions are however still superior to the model based

reconstructions and are perceptually more appealing. Finally, although the

learned reconstructions are of similar quality in general, the model aware

regularizers recover images with lesser artifacts – a quality which is highly

desirable when these methods are used during the diagnostic processes.
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6.3 Summary
In this chapter we have demonstrated the efficacy of our model aware reg-

ularizers on a few notable biomedical imaging problems such as MRI and

CT.



Chapter 7

Conclusions and Future Directions

7.1 Conclusion

In spite of the tremendous empirical achievements of DNNs, the gener-

alization behaviour of these networks on a given task is still not clearly

understood. In this work, by drawing on the robustness framework in-

troduced by Xu and Mannor, we put forth generalization bounds for deep

neural network based reconstruction that can be specialized for a wide range

of regression and classification settings. Our analysis, in particular, tries to

show how the hypothesis complexity – captured via network Jacobian and

the generalization error are related.

We further extend our analysis to a special set of model based learning

tasks, the linear inverse problem, occurring in various signal and image

processing tasks. We bound the generalization error of deep neural network

based learning algorithms on these tasks in terms of norm of the network

Jacobian, norm of the product of the network Jacobian and the forward op-

erator of the problem, the number of examples and the covering number of

the space spanning the ground truth. These bounds motivate a new neural

network learning procedure involving the use of cost functions in captur-

ing knowledge of the underlying inverse problem model via appropriate

regularization.

Motivated by our analysis, we propose a plug-and-play regularizer that
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penalized the Jacobian matrix of the relevant mappings and can be integrated

into any deep learning based solver of inverse problems without additional

complications. Empirical results on a variety of problems demonstrate that

our proposed regularization approach can outperform considerably stan-

dard model agnostic regularizers and reconstruction schemes specialized for

inverse problems. In particular, incorporating the knowledge of the forward

map in the data-driven reconstruction methods is a problem of longstanding

interest in literature [133]. This work adds to recent ones by showing there is

much value incorporating model knowledge onto data-driven approaches.

Possible directions for future work include investigating how to marry

data-driven approaches with model-based ones in the presence of model or

distribution uncertainty.

7.2 Emerging Themes & Extensions
In the present work, we have shown that the robustness framework [22] can

be leveraged to gain insights and develop efficient reconstruction methods

for high dimensional input-output model based deep learning methods. We

strongly believe that this is just a first step towards understanding and ex-

ploiting the structure underlying the data and the processes responsible for

data generation as many crucial concerns that may arise in actual applica-

tions still need to be addressed.

7.2.1 Operator Mismatch in Inverse Problems

The reconstruction accuracy of the latent variable in inverse problems is

highly dependent on the amount of noise or uncertainty present in the re-

ceived measurements. Since inverse problems are typically ill-posed and

therefore sensitive to errors, whether originating from data collection sys-

tems or from modelling, the discrepancy between the forward and inverse

models may have a dramatic effect on the quality of the solution. A look at

the convergence guarantees present in literature will reveal immediately that

in a non-blind setting (when the decoder has the knowledge of the forward
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model), the reconstruction performance is upper bounded by the corruption

in the measurement [134, 95]. Therefore, having an accurate knowledge

of the forward operator and underlying physics is imperative for reliable

recovery of the signal of interest. However, such desired accuracy is not

always possible due to problems caused by stochasticity and high dimen-

sions involved in these problems. Such issues of model mismatch may also

arise due to discretization and model reduction. Therefore, in many of these

applications, we have to resort to the use of approximations to these oper-

ators in order to restrict time and money consumption. This may lead to

degradation in the quality of reconstructed variable [135].

Mathematically, such problems can be represented using the following

model:

y =A′x = (A+dA)x+n (7.1)

where y ∈Y ⊆Rq is the measured data, x ∈X ⊆Rp is the unknown vector of

interest, A is a presumably known noisy version of the true forward operator

A′, dA is a perturbation matrix representing the uncertainty in the model

and finally n is the measurement noise. We assume ∥dA∥F ≤ α and ∥n∥2 ≤ η.

Various works in literature have proposed approaches that make ap-

propriate corrections to account for the full physical phenomena [136, 137].

More recently, deep learning techniques have also been put forth as a means

to ‘learn’ the corrections in the forward operators [138, 139]. A promising

future research direction that can be of interest to the research community

is to characterize the generalization performance of such deep learning al-

gorithms applicable to inverse problems where we have mismatch in the

knowledge of the forward model. Next we present some preliminary re-

sults that leverage the proof technique presented in Chapters 3 and 4 to

derive upper bounds on the generalization error of such systems.
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7.2.1.1 Preliminary Analysis

We consider an approach, where a regressor fS(·) : Y→X has been trained

for the inversion from the noisy observation y in (7.1), on a set of m exam-

ples S = {(yi,xi)}i≤m, drawn independently and identically distributed (IID)

from the sample space D =Y×X according to an unknown distribution µ

underlying the data.

We start by proving the following upper bound on the distance between

the outputs of the network fS .

Theorem 7.1. Consider the linear map A′ : X→Y in (7.1). Now, consider a

learning algorithm fS(·) :Y→X. Then, for any (y1,x1), (y2,x2) ∈D, it follows

that

∥∥∥ fS(y1)− fS(y2)
∥∥∥

2 ≤ sup
y∈conv(Y)

∥∥∥J
(
y
)
A
∥∥∥

2,2 ∥x2−x1∥2

+ sup
y∈conv(Y)

∥∥∥J
(
y
)∥∥∥

2,2

(
2η+α∥x2−x1∥2

)
where ∥.∥2,2 represents the spectral norm of a matrix.

Proof. See Appendix A. □

The algorithmic robustness framework (Definition 2.6 [22]) can then be

used to show that the regressor is robust under the ℓ2 loss.

Theorem 7.2. Consider that X and Y are compact spaces with respect

to the ℓ2. Consider also the sample space D = Y ×X compact with

the metric ρ. Then, the DNN based regressor fS(·) : Y → X trained

on the training set S is (K, ϵ)-robust such that K ≤ N (ψ/2;X,∥.∥) and ϵ ≤(
1+ supy∈conv(Y)

∥∥∥J
(
y
)
A
∥∥∥

2,2+ηsupy∈conv(Y)

∥∥∥J
(
y
)∥∥∥

2,2

)
ψ+2ηsupy∈conv(Y)

∥∥∥J
(
y
)∥∥∥

2,2.

Proof. See Appendix A. □

The generalization error can then be bounded as following the tech-
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niques used in Chapters 3 and 4:

GE( fS) ≤

1+ sup
y∈conv(Y)

∥∥∥J
(
y
)
A
∥∥∥

2,2+α sup
y∈conv(Y)

∥∥∥J
(
y
)∥∥∥

2,2

ψ (7.2)

+2η sup
y∈conv(Y)

∥∥∥J
(
y
)∥∥∥

2,2+M

√
2N (ψ/2;X,∥.∥) log(2)+2log(1/ζ)

m

for any M <∞.

The bound in 7.3 is quite similar to the results derived in Theorem 4.3

in that the generalization error depends on the norms of Jacobian of the

network fS , norms of the product of the incorrect forward model A and

the network Jacobian, the corruption levels η and α and the sample space

complexity.

7.2.2 Mismatch in the Distribution

One of the main factors responsible for the tremendous success of DL tech-

niques on a myriad of tasks [140, 141, 15] is the abundance of and the ubiq-

uitous access to training datasets. The availability of such huge datasets,

however comes with its own set of caveats. For instance, it has been shown

that different image datasets have strong inherent biases that make it im-

possible for models trained on one dataset to generalize to another dataset

[142]. This cognizance also raises important questions on the effectiveness

of state of the art deep learning methods on real data that may come from

a different population. This is because in such a situation, the independent

and identically distributed (IID) assumption no more holds true.

The speed with which deep learning techniques are being integrated in

sensitive applications – such as healthcare and privacy – and the realization

that the distribution mismatch across source data (that is used to train the

learning algorithm), and target data (on which the model is applied) may

results in a dramatically sub-optimal performance has attracted significant

attention from machine learning researchers. These investigations – mostly

empirical – have subsequently given rise to domains such as transfer learning
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(TL) and domain adaptation (DA) [143]. A few works – mainly addressing

classification tasks – have also leveraged popular techniques from classical

generalization theory to provide theoretical guarantees for TL and DA [144,

145, 146, 147].

In such problems, it is assumed that the training samples, S are gener-

ated according to a distribution µS which is slightly different from µ – the

one form which the testing samples are generated. Typically µ represents

the “true” distribution of data, observations, or a precisely calculated the-

oretical distribution. The measure µS typically represents a theory, model,

description, or approximation of µ. The two distributions are assumed to

have a small distance D ≤ δ. This notion of discrepancy can be measured

in terms of suitably defined Wasserstein, optimal transport distances or a

divergence that depends on the likelihood of the distributions – such as

the Kullback-Leibler divergence [148]. The generalization error framework

discussed in previous chapters can be extended to include such scenarios

leading to the following bound on the GE.

Theorem 7.3. Let two probability measure µS and µ be defined on a com-

pact measurable space D. Consider now a DNN fS trained on a set

S = {(yi,xi)}i≤m ⊂ D such that (yi,xi) ∼ µS for all (yi,xi) ∈ S. Consider also

that fS is now tested on samples (y,x) ∈D such that (y,x) ∼ µ. Then, with a

probability 1−ζ, the GE of fS is bounded by:

GE( fS)≤ϵ(S)ψ+M
√

2DKL(µ∥µS)+M

√
2N(ψ/2;D,ρ) log(2)+2log(1/ζ)

m

for any M <∞.

Proof. See Appendix A. □

The bound in Theorem 7.3 is similar to the bound derived in Theorem

3.4 with an additional term accounting for the shift in the joint distribution

of the train and test set. The formulation of our problem and the resulting
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bound obtained is subject to many factors and therefore we would like to

make some observations.

Observation 7.1. The bound in Theorem 7.3 considers KL-divergence as

the measure of discrepancy between µ and µS . A possible shortcoming of

such likelihood based distance measure is that these ultimately require µ

and µS to have same support and therefore may result in an undesirable

behaviour on out-of-sample sets where this criteria is unmet. Therefore,

a potential extension to this work could be to utilize other more generic

distance measures such as optimal transport.

Observation 7.2. There is a vast body of literature dedicated to theory and

algorithms proposed in order to understand and obviate issues caused by

distribution mismatch – giving rise to domain such as TL, DA and multitask

learning. An approach that has recently emerged to tackle problems of

similar essence is Distributionally Robust Optimization (DRO) [149]. Unlike

TL – which involves knowledge transfer via fine tuning the model on the

new/out-of-sample data – DRO refers to a generalization of empirical risk

minimization. It follows a training approach which minimizes the worst case

loss by solving a minmax problem. In recent times, some of the techniques

in these areas have been extended and applied to study distribution shift

in medical imaging problems such as tumor detection [150]. However, the

advances in these applications are quite limited and therefore suggests the

need for additional research.

Observation 7.3. In many inverse problems such as the one appearing in

astronomical imaging, we may not have any ‘real’ ground truth and have to

rely on training data generated through simulations leading to distributional

differences with the test data. In other settings such as encountered in

medicines – where training data is limited – we may combine data from

multiple sources or acquisition hardware resulting in variability in image

resolution, contrast, signal-to-noise ratio or mapping function restricting the
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applicability of learning algorithms in both research and clinical settings.

Therefore, it’ll be interesting to see research techniques such as TL and DRO

applied to such scenarios.



Appendix A

Proofs of Chapter 7

proof of Theorem 7.1. Let G = fS
(
y1+θ

(
y2−y1

))
. Then the generalized fun-

damental theorem of calculus shows that fS(y2)− fS(y1) =
∫ 1

0
∂G
dθ dθ, where

∂G

dθ
= J

(
y1+θ

(
y2−y1

))
(y2−y1)

= J
(
y1+θ

(
y2−y1

))
[A (x2−x1)+dA (x2−x1)+ (n2−n1)]

Then, from the sub-multiplicative property of matrix norms

∥∥∥ fS
(
y2

)
− fS

(
y2

)∥∥∥
2 ≤

∥∥∥∥∥∥
∫ 1

0
J
(
y1+θ

(
y2−y1

))
Adθ

∥∥∥∥∥∥
2,2
∥x2−x1∥2

+

∥∥∥∥∥∥
∫ 1

0
J
(
y1+θ

(
y2−y1

))
dθ

∥∥∥∥∥∥
2,2
∥dA∥F ∥x2−x1∥2

+

∥∥∥∥∥∥
∫ 1

0
J
(
y1+θ

(
y2−y1

))
dθ

∥∥∥∥∥∥
2,2
∥n2−n1∥2

where ∥.∥2,2 is the ℓ2 induced matrix norm. Next, it is easy to show that∥∥∥∥∥∥
∫ 1

0
J
(
y1+θ

(
y2−y1

))
Adθ

∥∥∥∥∥∥
2,2

(a)
≤

∫ 1

0

∥∥∥J(y1+θ
(
y2−y1

)
)A

∥∥∥
2,2 dθ

≤ sup
y1,y2∈Y,θ∈[0,1]

∥∥∥J(y1+θ
(
y2−y1

)
)A

∥∥∥
2,2

where (a) is because of the triangular inequality.



115

For θ ∈ [0,1], y1+θ(y2−y1) lies is in convex-hull of Y. Hence

∥∥∥ fS
(
y2

)
− fS

(
y1

)∥∥∥
2

≤ sup
y∈conv(Y)

∥∥∥J
(
y
)
A
∥∥∥

2,2 ∥x2−x1∥2+ sup
y∈conv(Y)

∥∥∥J
(
y
)∥∥∥

2,2

(
2η+ ∥dA∥∥x2−x1∥2

)
≤ sup

y∈conv(Y)

∥∥∥J
(
y
)
A
∥∥∥

2,2 ∥x2−x1∥2+ sup
y∈conv(Y)

∥∥∥J
(
y
)∥∥∥

2,2

(
2η+α∥x2−x1∥2

)
□

proof of Theorem 7.2. Let (y1,x1), (y2,x2) ∈D. Then

|l( fS(y2),x2)− l( fS(y1),x1)|

=
∣∣∣∥x2− fS(y2)∥2−∥x1− fS(y1)∥2

∣∣∣
(a)
≤ ∥x2− fS(y2)−x1+ fS(y1)∥2
(b)
≤ ∥x2−x1∥2+ ∥ fS(y2)− fS(y1)∥2
(c)
≤

1+ sup
y∈conv(Y)

∥∥∥J
(
y
)
A
∥∥∥

2,2

∥x2−x1∥2+ sup
y∈conv(Y)

∥∥∥J
(
y
)∥∥∥

2,2

(
2η+α∥x2−x1∥2

)
≤ 2η sup

y∈conv(Y)

∥∥∥J
(
y
)∥∥∥

2,2

+

1+ sup
y∈conv(Y)

∥∥∥J
(
y
)
A
∥∥∥

2,2+α sup
y∈conv(Y)

∥∥∥J
(
y
)∥∥∥

2,2

∥x2−x1∥2

where we leverage the reverse triangle inequality and Minkowski-inequality

in (a) and (b) respectively. The inequality (c) holds because of the result

proved in Theorem 7.1.

Then, for a ψ/2-cover the sample space X and for all (y1,x1) ∈S, (y2,x2) ∈

D falling in the same partition, we have

|l( fS(y1),x1)− l( fS(y2),x2)| ≤

1+ sup
y∈conv(Y)

∥∥∥J
(
y
)
A
∥∥∥

2,2+α sup
y∈conv(Y)

∥∥∥J
(
y
)∥∥∥

2,2

ψ
+2η sup

y∈conv(Y)

∥∥∥J
(
y
)∥∥∥

2,2

leading directly to the result. □
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Proof of Theorem 7.3. For i ∈ {1,2 . . . ,K}, let Ki be a partition of D. Define,

Ni = { j|(y j,x j) ∈S∧Ki}. Note that (|N1|, |N2| . . . , |NK|) is a multinomial random

variable with parameteres m and (µS(K1),µS(K2) . . . ,µS(KK)). Breteganolle-

Huber-Carol inequality [151] is a a very useful result which quantifies the

total variation distance
∑K

i=1

∣∣∣Ni−mµS(Ki)
∣∣∣ giving rise to the following in-

equality:

P

 K∑
i=1

∣∣∣∣∣ |Ni|

m
−µS(Ki)

∣∣∣∣∣ ≤
√

2K log(2)+2log(1/ζ)
m

 ≥ 1−ζ (A.1)

The generalization error is now given by:

|lexp( fS)− lemp( fS)|

=

∣∣∣∣∣∣∣
K∑

i=1

E(y,x)∼µ[l( fS(y),x)|(y,x) ∈Ki]µ(Ki)−
1
m

m∑
i=1

l( fS(yi),xi)

∣∣∣∣∣∣∣
(a)
≤

∣∣∣∣∣∣∣
K∑

i=1

E(y,x)∼µ[l( fS(y),x)|(y,x) ∈Ki]
|Ni|

m
−

1
m

m∑
i=1

l( fS(yi),xi)

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
K∑

i=1

E(y,x)∼µ[l( fS(y),x)|(y,x) ∈Ki]µ(Ki)−
K∑

i=1

E(y,x)∼µ[l( fS(y),x)|(y,x) ∈Ki]
|Ni|

m

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣ 1
m

K∑
i=1

∑
j∈Ni

max
(x′,y′)∈Ki

|l( fS , (x j,y j))− l( fS , (x′,y′))|

∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣ max
(y,x)∈D

l( fS(y),x)
K∑

i=1

∣∣∣∣∣µ(Ki)−
|Ni|

m

∣∣∣∣∣
∣∣∣∣∣∣∣

(b)
≤ ϵ(S)+M

K∑
i=1

∣∣∣∣∣µ(Ki)−
|Ni|

m

∣∣∣∣∣
(c)
≤ ϵ(S)+M

K∑
i=1

∣∣∣µ(Ki)−µS(Ki)
∣∣∣+M

K∑
i=1

∣∣∣∣∣µS(Ki)−
|Ni|

m

∣∣∣∣∣
(d)
≤ ϵ(S)+M

√
2DKL(µ∥µS)+M

K∑
i=1

∣∣∣∣∣µS(Ki)−
|Ni|

m

∣∣∣∣∣
Here (a) and (c) are due to the triangle inequality. (b) holds because of

Definition 2.6 and (d) is because of Lemma A.1

Substituting (A.1) in (d) and replacing K with its upper bound – the

covering number on D, N(ψ2 ;D,ρ) – directly leads to the result:
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GE( fS)≤ϵ(S)ψ+M
√

2DKL(µ∥µS)+M

√
2N(ψ/2;D,ρ) log(2)+2log(1/ζ)

m

□

Lemma A.1. Let the compact metric space D be partitioned into K disjoint

partions K1,K2, . . . ,KK such that

∪
K
i=1Ki =D, and Ki∩Kj = ∅, for i , j (A.2)

Then

K∑
i=1

|µ(Ki)−µS(Ki)| ≤
√

2DKL(µ∥µS) (A.3)

Proof. Let us first prove a lower bound to the total variation distance:

K∑
i=1

|µ(Ki)−µS(Ki)| =
K∑

i=1

∣∣∣∣∣∣∣∣
∑

(y,x)∈Ki

(
µ((y,x))−µS((y,x))

)∣∣∣∣∣∣∣∣
(a)
≤

K∑
i=1

∑
(y,x)∈Ki

∣∣∣µ((y,x))−µS((y,x))
∣∣∣

(b)
=

∑
(y,x)∈D

∣∣∣µ((y,x))−µS((y,x))
∣∣∣

where (a) is because of the triangle inequality. Note that the Total Variation

(TV) distance, V(µ,µS) between µ and µS is given by:

V(µ,µS) =
1
2

∑
(y,x)∈D

∣∣∣µ((y,x))−µS((y,x))
∣∣∣ (A.4)

Substituting (A.4) in (b) gives:

K∑
i=1

|µ(Ki)−µS(Ki)| ≤ 2V(µ,µS) (A.5)
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We can now leverage the Kullback–Csizs̀ar–Kemperman inequality that

links the TV distance V(µ,µS) and the KL divergence DKL(µ∥µS) and is

given by [152, 153, 154, 155]:

V(µ,µS) ≤

√
DKL(µ∥µS)

2
(A.6)

Substituting the (A.5) in (A.6) concludes the proof. □
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