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IMPLICIT-EXPLICIT MULTISTEP FORMULATIONS FOR FINITE ELEMENT
DISCRETISATIONS USING CONTINUOUS INTERIOR PENALTY

Erik Burman1 and Johnny Guzmán2,*

Abstract. We consider a finite element method with symmetric stabilisation for the discretisation of
the transient convection–diffusion equation. For the time-discretisation we consider either the second
order backwards differentiation formula or the Crank–Nicolson method. Both the convection term and
the associated stabilisation are treated explicitly using an extrapolated approximate solution. We prove

stability of the method and the 𝜏2 + ℎ𝑝+ 1
2 error estimates for the 𝐿2-norm under either the standard

hyperbolic CFL condition, when piecewise affine (𝑝 = 1) approximation is used, or in the case of finite
element approximation of order 𝑝 ≥ 1, a stronger, so-called 4/3-CFL, i.e. 𝜏 ≤ 𝐶ℎ4/3. The theory is
illustrated with some numerical examples.
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1. Introduction

In the computational solution of convection–diffusion problems it is highly advantageous to treat the con-
vection term explicitly and the diffusion term implicitly. Although there is an important literature on the topic
there seems to be very few works that show that implicit-explicit (IMEX) methods are robust under finite
element discretisation both in the convection and the diffusion dominated regimes. Indeed most works on IMEX
methods with finite element discretisations assume that the diffusion dominates, or at least that the mesh Peclet
number, defined by

Pe :=
|𝑢|ℎ
𝜇

where 𝑢 denotes the fluid velocity, 𝜇 the viscosity coefficient and ℎ the local mesh size, is small. A standard
assumption is that the product of the Courant number and the Peclet number is small [1–3,13,24]. Most other
works on IMEX methods typically consider a stability region type analysis that is unsuitable for a quantitative
finite element analysis [4,5,17,18], or time-splitting approaches, where the convective terms typically is handled
using a robust low order method [14,20,22]. The derivation of a (at least) second order finite element method,
which is robust for all Peclet number, without imposing to strict conditions on the discretisation parameters
remains a challenging problem. To pass from the analysis of the semi-discrete case to a fully discrete case
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typically requires the use of energy methods as advocated in [19]. This was the route taken in [8] where a second
order implicit explicit Runge–Kutta method was considered for 𝐻1-conforming finite element approximations of
convection–diffusion equations using interior penalty to guarantee stability in the high Peclet regime and more
recently [26] where a local discontinuous Galerkin methods with 2nd and 3rd order Runge–Kutta IMEX schemes
are considered. Explicit Runge–Kutta methods have been very successful for the approximation of hyperbolic
equations often in combination with discontinuous Galerkin methods and for this case there is a very large
literature [10,12,27,28], to name a few. In particular the mass matrix is block diagonal allowing for high order
explicit time stepping, this however is no longer the case for IMEX methods where the system matrix associated
to diffusion couples globally. Moreover if the target application is the incompressible Navier–Stokes’ equations,
the explicit methods are unsuitable and methods with many implicit stages may become costly. It is not clear
that the analysis of [8] generalises to this case, since it is assumed there that the operator treated implicitly is
symmetric and elliptic. For a second order scheme the RK IMEX method has three stages and is known to impose
compatibility conditions on the exact solution for consistency to hold (see [8], Sect. 3, for a discussion in the case
of convection–diffusion equations). Finite element-IMEX methods with extrapolation were considered as early
as 1970 by Douglas and Dupont [15], however, they considered diffusion dominated problems. Implicit-explicit
methods with extrapolation for the incompressible Navier–Stokes equations and backward differentiation used
for time discretisation were analysed in [6], and some other multi-step IMEX methods together with the local
Galerkin method was considered in [25], but, also here the mesh Peclet number was assumed to be small. In
many applications, such as large eddy simulation or under resolved DNS, it may not be practical to make the
Peclet number small, nevertheless for such problems, in which convective effects are strong, the use of IMEX
schemes is very attractive, since the nonlinearity and stabilization terms are handled explicitly, whereas the
velocity-pressure coupling, which is linear can be solved implicitly using optimized methods for saddle point
problems, or pressure projection methods. We refer to [11] for work on fractional step methods in the high
Peclet regime and to [21] for a computational study of underresolved turbulence using the type of methods that
we analyse below.

As a first step towards IMEX schemes for the equations of incompressible flow we will in this paper con-
sider the convection-diffusion equation and analyse some known IMEX schemes with respect to their stability
properties for varying mesh Peclet number. For an IMEX scheme to be stable for high mesh Peclet number it
has to degenerate to a stable explicit scheme in the limit of vanishing diffusion. Such time integrator are typi-
cally characterized by nontrivial imaginary stability boundary. Examples are given by Adams–Bashforth (AB)
integrators of higher order such as AB3, AB4, AB7 and AB8 (see [16]). Unfortunately IMEX schemes, where
the convection is treated explicitly using extrapolation in methods popular for the solution of incompressible
flow problems such as the Crank–Nicolson scheme or the second order backward differentiation scheme, do not
enjoy this property. Indeed in this case the limit schemes are the second order Adams–Bashforth scheme for
pure transport and the extrapolated Gear scheme [24] (BDF2 with extrapolated convection). Both have trivial
imaginary stability boundary and would therefore seem unsuitable candidates for Peclet robust IMEX methods.
Nevertheless in this contribution we will consider these two schemes with a finite element space discretization
stabilized using continuous interior penalty. Observe that the explicit treatment of the stabilization is appealing
since it avoids having to handle the extended stencil on the level of the linear solver [9]. We use energy methods
to prove that they are stable, irrespective of the Peclet number, under suitable CFL conditions. The stability
however depends on the space discretization. Both the polynomial order of the approximation space and the
stabilization of the convection operator come into play. Using the additional stability of the gradient penalty
operator we show optimal error estimates for the material derivative and 𝐿2-error error estimates with the
classical order 𝑂(ℎ𝑝+ 1

2 ) (where 𝑝 is the polynomial degree), which is known to be the best that can be obtained
for continuous FEM in the general case. Observe also that since our results are robust with respect to the
Peclet number they remain valid for the case of vanishing diffusion, i.e. the pure transport equation. Therefore,
the present work also gives the first analysis of these explicit methods together with stabilized FEM for the
transport equation.
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We only consider the case of continuous approximation spaces herein, but the analysis carries over to the
case of discontinuous Galerkin symmetric interior penalty methods, with upwind fluxes in a straightforward
fashion (we refer to [10] for a uniform treatment of continuous and discontinuous Galerkin methods in the case
of explicit Runge–Kutta methods).

The outline of the paper is as follows. In the next section we introduce our model problem, define the finite
element spaces and prove some technical results. In Section 3.1 we introduce the BDF2-IMEX method and
derive stability results in all regimes and for all polynomial orders. This allows us to prove a priori error
estimates in Section 4. Here we consider the high Peclet regime only and derive error estimates for the 𝐿2-error
at final time and the error in the material derivative over the space-time domain. In Section 5 we introduce
the Crank–Nicolson IMEX scheme and prove stability estimates in all regime and for all polynomial orders.
Note that it is then straightforward to derive similar error estimates as for the BDF2-IMEX scheme in the high
Peclet regime for the Crank–Nicolson scheme and also optimal estimates in 𝑙2(0, 𝑇 ;𝐻1(Ω)), or 𝑙∞(0, 𝑇 ;𝐿2(Ω))
for both methods, but to keep the length of the paper reasonable these results have not been included here. The
paper finishes with some numerical experiments (Sect. 6), validating the theory and showing the robustness of
the methods in the presence of non-smooth data.

2. Preliminaries

2.1. Convection–diffusion problem

Let Ω ⊂ R𝑑, 𝑑 = 1, 2, 3 be an open polygonal domain with boundary 𝜕Ω and outward pointing normal 𝑛. Let
𝐼 := (0, 𝑇 ) and denote the space time domain by 𝑄 = Ω× 𝐼. We consider the convection diffusion equation,

𝜕𝑡𝑢+ 𝛽 · ∇𝑢− 𝜇∆𝑢 = 𝑓 in 𝑄 (2.1a)
𝑢(·, 0) = 𝑢0 in Ω (2.1b)

𝑢 = 0 on 𝜕Ω. (2.1c)

Here 𝑓 ∈ 𝐿2(Ω), 𝑢0 ∈ 𝐻1
0 (Ω), 𝛽 ∈

[︀
𝐻1

0 (Ω) ∩𝑊 1,∞(Ω)
]︀𝑑, with ∇ · 𝛽 = 0, 𝛽 · 𝑛|𝜕Ω = 0. This is a parabolic

problem and it is known to admit a unique solution in 𝐿2(0, 𝑇 ;𝐻1
0 (Ω)) ∩𝐿∞(0, 𝑇 ;𝐿2(Ω)). We define the forms

(𝑢, 𝑣)Ω :=
∫︁

Ω

𝑢𝑣 d𝑥, 𝑐(𝑤, 𝑣) :=
∫︁

Ω

𝛽 · ∇𝑤𝑣 d𝑥, 𝑎(𝑤, 𝑣) :=
∫︁

Ω

𝜇∇𝑤 · ∇𝑣 d𝑥.

Assuming sufficient smoothness of the solution the equation may then be cast on the weak formulation,

(𝜕𝑡𝑢, 𝑣)Ω + 𝑐(𝑢, 𝑣) + 𝑎(𝑢, 𝑣) = (𝑓, 𝑣)Ω, ∀𝑣 ∈ 𝐻1
0 (Ω), 𝑡 > 0, (2.2a)

(𝑢(·, 0), 𝑣)Ω = (𝑢0, 𝑣)Ω, ∀𝑣 ∈ 𝐻1
0 (Ω). (2.2b)

We will use the following two norms ‖ · ‖2 = (·, ·)Ω and ‖𝑣‖∞ = sup𝑥∈Ω |𝑣(𝑥)|.

2.2. Finite element spaces and bilinear forms

Let {𝒯ℎ}ℎ denote a family of shape regular, quasi uniform, triangulation of Ω into simplices. The set of interior
faces of 𝒯ℎ will be denoted ℱ . Let 𝑉ℎ denote the space of continuous finite element functions of polynomial
degree less than or equal to 𝑝:

𝑉ℎ :=
{︀
𝑣 ∈ 𝐻1(Ω) : 𝑣 ∈ 𝒫𝑝(𝑇 ),∀𝑇 ∈ 𝒯ℎ

}︀
.

We also consider the space with homogenuous boundary conditions 𝑉ℎ = 𝐻1
0 (Ω) ∩ 𝑉ℎ. We let 𝜋ℎ be the 𝐿2

projection onto 𝑉ℎ given by
(𝜋ℎ𝑤, 𝑣ℎ)Ω = (𝑤, 𝑣ℎ)Ω ∀𝑣ℎ ∈ 𝑉ℎ. (2.3)
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We recall the following approximation estimate that holds on quasi-uniform meshes

‖𝑢− 𝜋ℎ𝑢‖+ ℎ‖∇(𝑢− 𝜋ℎ𝑢)‖ ≤ 𝐶ℎ𝑝+1|𝑢|𝐻𝑝+1(Ω). (2.4)

We will also make use of the piece-wise constant space

𝑊ℎ :=
{︀
𝑣 ∈ 𝐿2(Ω) : 𝑣 ∈ 𝒫0(𝑇 ),∀𝑇 ∈ 𝒯ℎ

}︀
.

We let 𝑃0 : 𝐿2(Ω) →𝑊ℎ be the 𝐿2 orthogonal projection:

(𝑃0𝑤, 𝑣ℎ)Ω = (𝑤, 𝑣ℎ)Ω ∀𝑣ℎ ∈𝑊ℎ.

In order to stabilize a FEM we need the following bilinear form (see e.g. [7])

𝑠(𝑤ℎ, 𝑣ℎ) :=
∑︁
𝐹∈ℱ

∫︁
𝐹

ℎ2
𝐹 (|𝛽 · 𝑛|+ 𝜀𝛽⊥)[[∇𝑤]] · [[∇𝑣]] d𝑠, (2.5)

where we introduce the jump of the gradient

[[∇𝑤]]|𝐹 := lim
𝜖→0+

∇𝑤(𝑥− 𝜖𝑛𝑇 ) · 𝑛𝑇 +∇𝑤(𝑥− 𝜖𝑛𝑇 ′) · 𝑛𝑇 ′ , with 𝑥 ∈ 𝐹 and 𝐹 = 𝑇 ∩ 𝑇 ′

and 𝜀𝛽⊥ ≥ 0 is a coefficient that introduces some weakly consistent cross wind diffusion when non-zero. We will
also apply the jump to scalar quantities below in which case it is defined by

[[𝑤]]|𝐹 = lim
𝜖→0+

𝑤(𝑥− 𝜖𝑛𝐹 )− 𝑤(𝑥+ 𝜖𝑛𝐹 ) with 𝑥 ∈ 𝐹

where 𝑛𝐹 is a fixed but arbitrary normal to the face 𝐹 . We may then define the semi-norm

|𝑣|𝑠 := 𝑠(𝑣, 𝑣)
1
2 .

We let 𝛽0 be the Raviart–Thomas projection of 𝛽 to the lowest order Raviart–Thomas space. Since ∇·𝛽 = 0
we have that 𝛽0 is piecewise constant. Thus, we have

‖𝛽 − 𝛽0‖∞ ≤ 𝐶ℎ‖∇𝛽‖∞. (2.6)

Then recall a critical approximation result that exhibits the importance of the stabilization term, this follows
from the local estimate of Lemma 5.3 from [7]:

inf
𝑣ℎ∈𝑉ℎ

‖𝛽0 · ∇𝑤ℎ − 𝑣ℎ‖2 ≤ 𝐶
∑︁
𝐹∈ℱ

ℎ𝐹 ‖[[𝛽0 · ∇𝑤ℎ]]‖2𝐹 , ∀𝑤ℎ ∈ 𝑉ℎ. (2.7)

Note that since 𝛽0 ·𝑛|𝜕Ω = 𝛽 ·𝑛|𝜕Ω = 0 we have 𝛽0 ·∇𝑤ℎ|𝜕Ω = 0 when 𝑤ℎ ∈ 𝑉ℎ and therefore (2.7) holds taking
the infimum over the space 𝑉ℎ, i.e.

inf
𝑣ℎ∈𝑉ℎ

‖𝛽0 · ∇𝑤ℎ − 𝑣ℎ‖2 ≤ 𝐶
∑︁
𝐹∈ℱ

ℎ𝐹 ‖[[𝛽0 · ∇𝑤ℎ]]‖2𝐹 , ∀𝑤ℎ ∈ 𝑉ℎ. (2.8)

Using (2.7) together with (2.6), we have the following lemma:

Lemma 2.1. It holds,

inf
𝑣ℎ∈𝑉ℎ

‖𝛽 · ∇𝑤ℎ − 𝑣ℎ‖ ≤ 𝐶

(︃
‖∇𝛽‖∞‖𝑤ℎ‖+

(︂
‖𝛽‖∞
ℎ

)︂ 1
2

|𝑤ℎ|𝑠

)︃
, ∀𝑤ℎ ∈ 𝑉ℎ. (2.9)
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Proof. We first add and subtract 𝛽0 and apply the triangle inequality

‖𝛽 · ∇𝑤ℎ − 𝑣ℎ‖ ≤ ‖(𝛽 − 𝛽0) · ∇𝑤ℎ‖+ ‖𝛽0 · ∇𝑤ℎ − 𝑣ℎ‖.

Then using (2.6), an inverse inequality and (2.7)

inf
𝑣ℎ∈𝑉ℎ

‖𝛽 · ∇𝑤ℎ − 𝑣ℎ‖ ≤ 𝐶

⎛⎝‖∇𝛽‖∞‖𝑤ℎ‖+

(︃∑︁
𝐹∈ℱ

ℎ𝐹 ‖[[𝛽0 · ∇𝑤ℎ]]‖2𝐹

)︃ 1
2
⎞⎠.

Adding and subtracting 𝛽 in the second term and using a trace inequality followed by (2.6),

∑︁
𝐹∈ℱ

ℎ𝐹 ‖[[𝛽0 · ∇𝑤ℎ]]‖2𝐹 ≤ 𝐶

(︃
‖(𝛽 − 𝛽0) · ∇𝑤ℎ‖2 + ‖∇𝛽‖2∞‖𝑤ℎ‖2 +

∑︁
𝐹∈ℱ

ℎ𝐹 ‖[[𝛽 · ∇𝑤ℎ]]‖2𝐹

)︃

≤ 𝐶

(︃
‖∇𝛽‖2∞‖𝑤ℎ‖2 +

∑︁
𝐹∈ℱ

ℎ𝐹 ‖[[𝛽 · ∇𝑤ℎ]]‖2𝐹

)︃
.

Using the continuity of 𝑤ℎ in the last term of the right hand side we see that

‖[[𝛽 · ∇𝑤ℎ]]‖𝐹 = ‖𝛽 · 𝑛[[∇𝑤ℎ]]‖𝐹 ≤ ‖𝛽‖
1
2∞‖|𝛽 · 𝑛|

1
2 [[∇𝑤ℎ]]‖𝐹 .

Hence, we have shown (2.9). �

We can then define the stabilised convection form

𝑐ℎ(𝑤ℎ, 𝑣ℎ) := 𝑐(𝑤ℎ, 𝑣ℎ) + 𝛾𝑠(𝑤ℎ, 𝑣ℎ).

Introducing 𝜏 as the time step size, we also define Courant number Co that will either be the standard
hyperbolic CFL, Co := (‖𝛽‖∞ + 1) 𝜏

ℎ , or a slightly stronger 4/3-Courant number (see [10,27] where it was used
in the context of second order Runge–Kutta methods), Co4/3 := 𝜏(‖𝛽‖∞/ℎ)

4
3 , that will apply for finite element

spaces or polynomial degrees higher than 1. Observe that Co is a free parameter that can be made as small
as we like by making 𝜏 small relative to ℎ and 𝛽. The crucial point is that certain time residual terms from
the convection term can be made as small as necessary by fixing Co to be small enough. This is expressed in
boundedness properties of the convection and the associated stabilization that we now summarize. First note
that by the skew symmetry of the convection we have the positivity

𝛾|𝑣|2𝑠 = 𝑐ℎ(𝑣, 𝑣), ∀𝑣 ∈ 𝐻1
0 (Ω) ∩𝐻 3

2+𝜖(Ω) + 𝑉ℎ, (2.10)

and by skew-symmetry followed by the Cauchy–Schwarz inequality, an inverse inequality and the definition of
Co we have the positivity

𝜏𝑐(𝑣, 𝑤ℎ) ≤ 𝐶𝑖Co‖𝑣‖‖𝑤ℎ‖ ∀𝑣 ∈ 𝐻1
0 (Ω), 𝑤ℎ ∈ 𝑉ℎ, (2.11)

where 𝐶𝑖 the constant of an inverse inequality. Similarly for the stabilisation norm we have the bound

𝜏
1
2 |𝑤ℎ|𝑠 ≤ 𝐶𝑖Co

1
2 ‖𝑤ℎ‖ ∀𝑤ℎ ∈ 𝑉ℎ. (2.12)

For the analysis we introduce a projection operator 𝐶ℎ : 𝐻1(Ω) ↦→ 𝑉ℎ defined by

(𝐶ℎ𝑣, 𝑣ℎ)Ω = 𝑐(𝑣, 𝑣ℎ), ∀𝑣ℎ ∈ 𝑉ℎ.

Note that by the definition of 𝑐, (𝐶ℎ𝑤ℎ, 𝑣ℎ)Ω = −(𝑤,𝐶ℎ𝑣ℎ)Ω for 𝑤ℎ, 𝑣ℎ ∈ 𝑉ℎ. Using (2.11) it is straightforward
to show the following bound for the operator 𝐶ℎ.
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Lemma 2.2. It holds,

𝜏‖𝐶ℎ𝑣‖ ≤ 𝐶𝑖𝜏
1
4 Co

3
4
4/3‖𝑣‖, ∀𝑣 ∈ 𝐻1(Ω). (2.13)

Proof.
𝜏2(𝐶ℎ𝑣, 𝐶ℎ𝑣) = 𝜏2𝑐(𝑣, 𝐶ℎ𝑣) = −𝜏2𝑐(𝐶ℎ𝑣, 𝑣) ≤ 𝜏2ℎ−1‖𝛽‖∞𝐶𝑖‖𝐶ℎ𝑣‖‖𝑣‖.

Therefore,
𝜏‖𝐶ℎ𝑣‖ ≤ 𝜏ℎ−1‖𝛽‖∞𝐶𝑖‖𝑣‖,

but 𝜏 = 𝜏
1
4 Co

3
4
4/3ℎ/‖𝛽‖∞ by which the claim follows. �

We also notice that
𝜏‖𝐶ℎ𝑣‖ ≤ 𝐶𝑖Co‖𝑣‖. (2.14)

2.3. Operators for time discretization

We define the second order backward differentiation operator

𝐷𝜏𝑣
𝑛+1 :=

3𝑣𝑛+1 − 4𝑣𝑛 + 𝑣𝑛−1

2𝜏
· (2.15)

We recall the second order extrapolation 𝑣𝑛+1 = 2𝑣𝑛 − 𝑣𝑛−1, and the increment operator 𝛿 such that 𝛿𝑣𝑛+1 :=
𝑣𝑛+1 − 𝑣𝑛. Observe that there holds

𝑣𝑛+1 − 𝑣𝑛+1 = 𝛿𝑣𝑛 − 𝛿𝑣𝑛+1 = −𝛿𝛿𝑣𝑛+1. (2.16)

We also recall that
𝜏𝐷𝜏𝑣

𝑛+1 = 𝛿𝑣𝑛+1 +
1
2
𝛿𝛿𝑣𝑛+1. (2.17)

Finally, we also observe that

‖𝛿𝑚𝑣𝑛‖ ≤ 2
𝑚∑︁

𝑖=0

‖𝑣𝑛−𝑖‖, 𝑚 = 1, 2, and 2 ≤ 𝑛 ≤ 𝑁. (2.18)

As we will describe in a later section, for the Crank–Nicolson method the approximation of the time derivative
is given by the scaled increment operator 𝜏−1𝛿𝑣𝑛+1. The extrapolation is taken to the time level 𝑡𝑛+1/2, in
order to approximate the central difference in time that is the key feature of the Crank–Nicolson scheme,
𝑣𝑛+1 = 3

2𝑣
𝑛 − 1

2𝑣
𝑛−1.

For the time discretization part of the error analysis we need some well known results on truncation error
analysis of finite difference operators that we collect in the following proposition for future reference. These
results are standard and can be found for instance in the monograph [23], but for completeness we sketch the
proofs.

Proposition 2.3. Let 𝑢𝑛 := 𝑢(𝑡𝑛) and 𝑦 := 𝛽 · ∇𝑢 then there holds⃦⃦
𝐷𝜏𝑢

𝑛+1 − 𝜕𝑡𝑢
𝑛+1
⃦⃦2 ≤ 𝐶𝜏3‖𝑢𝑡𝑡𝑡‖2𝐿2(𝑡𝑛−1,𝑡𝑛+1;𝐿2(Ω)); (2.19)⃦⃦

𝛽
(︀
𝑡𝑛+1

)︀
· ∇𝑢𝑛+1 − 𝑦𝑛+1

⃦⃦2 ≤ 𝐶𝜏3‖(𝛽 · ∇𝑢)𝑡𝑡‖
2
𝐿2(𝑡𝑛−1,𝑡𝑛+1;𝐿2(Ω))

. (2.20)

Proof. We first consider the bound (2.19). We wish to bound⃦⃦
𝐷𝜏𝑢

𝑛+1 − 𝜕𝑡𝑢
𝑛+1
⃦⃦
.
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Using Taylor development we may write

𝑢(𝑡) = 𝑢𝑛−1 +
(︀
𝑡− 𝑡𝑛−1

)︀
𝜕𝑡𝑢

𝑛−1 +
1
2
(︀
𝑡− 𝑡𝑛−1

)︀2
𝜕2

𝑡 𝑢
𝑛−1 +

1
2

∫︁ 𝑡

𝑡𝑛−1

(𝑡− 𝑠)2𝑢(3)(𝑠) d𝑠⏟  ⏞  
𝑅(𝑡)

= 𝑄(𝑡) +𝑅(𝑡).

Deriving and evaluating at 𝑡𝑛+1 we see that

𝑄′(𝑡) = 𝜕𝑡𝑢
𝑛−1 +

(︀
𝑡− 𝑡𝑛−1

)︀
𝜕2

𝑡 𝑢
𝑛−1, 𝑄′

(︀
𝑡𝑛+1

)︀
= 𝜕𝑡𝑢

𝑛−1 + 2𝜏𝜕2
𝑡 𝑢

𝑛−1.

We also have

𝜏−1𝛿𝑄𝑛+1 = 𝜕𝑡𝑢
𝑛−1 +

1
2𝜏

(︁
(𝑡𝑛+1 − 𝑡𝑛−1)2 −

(︀
𝑡𝑛 − 𝑡𝑛−1

)︀2)︁
𝜕2

𝑡 𝑢
𝑛−1 = 𝜕𝑡𝑢

𝑛−1 +
3𝜏
2
𝜕2

𝑡 𝑢
𝑛−1

and

𝜏−1𝛿2𝑄𝑛+1 =
(︀(︀
𝑡𝑛+1 − 𝑡𝑛−1

)︀
− 2
(︀
𝑡𝑛 − 𝑡𝑛−1

)︀)︀
𝜕𝑡𝑢

𝑛−1⏟  ⏞  
=0

+
1
2𝜏

(︁(︀
𝑡𝑛+1 − 𝑡𝑛−1

)︀2 − 2
(︀
𝑡𝑛 − 𝑡𝑛−1

)︀2)︁
𝜕2

𝑡 𝑢
𝑛−1 = 𝜏2𝜕2

𝑡 𝑢
𝑛−1.

Using (2.17) we see that

𝐷𝜏𝑄
𝑛+1 = 𝜕𝑡𝑢

𝑛−1 +
3𝜏
2
𝜕2

𝑡 𝑢
𝑛−1 +

𝜏

2
𝜕2

𝑡 𝑢
𝑛−1 = 𝜕𝑡𝑢

𝑛−1 + 2𝜏𝜕2
𝑡 𝑢

𝑛−1 = 𝑄′
(︀
𝑡𝑛+1

)︀
.

Therefore

⃦⃦
𝐷𝜏𝑢

𝑛+1 − 𝜕𝑡𝑢
𝑛+1
⃦⃦2

=

⃦⃦⃦⃦
⃦⃦𝐷𝜏𝑄−𝑄′⏟  ⏞  

=0

+𝐷𝜏𝑅
𝑛+1 − 𝜕𝑡𝑅

𝑛+1

⃦⃦⃦⃦
⃦⃦

2

≤ 𝐶

𝜏2

𝑛+1∑︁
𝑘=𝑛−1

⃦⃦
𝑅𝑘
⃦⃦2

+ 2
⃦⃦
𝜕𝑡𝑅

𝑛+1
⃦⃦2
.

By the definition of 𝑅 and the Cauchy–Schwarz inequality:

1
𝜏2

𝑛+1∑︁
𝑘=𝑛−1

⃦⃦
𝑅𝑘
⃦⃦2 ≤ 𝐶𝜏3

∫︁ 𝑡𝑛+1

𝑡𝑛−1

⃦⃦⃦
𝑢(3)

⃦⃦⃦2

d𝑠.

Finally

𝜕𝑡𝑅
𝑛+1 =

∫︁ 𝑡𝑛+1

𝑡𝑛−1
(𝑡𝑛 − 𝑠)𝑢(3)(𝑠) d𝑠

and therefore in a similar fashion ⃦⃦
𝜕𝑡𝑅

𝑛+1
⃦⃦2 ≤ 𝜏3

∫︁ 𝑡𝑛+1

𝑡𝑛−1

⃦⃦⃦
𝑢(3)

⃦⃦⃦2

d𝑠,

which gives (2.19). The result (2.20) easily follows after we apply the Cauchy–Shwarz inequality

⃦⃦
𝑦𝑛+1 − 𝑦𝑛+1

⃦⃦2
= ‖

∫︁ 𝑡𝑛

𝑡𝑛−1

∫︁ 𝑡+𝜏

𝑡

𝑦𝑡𝑡(𝑠)d𝑠d𝑡‖2 ≤ 𝜏3

∫︁ 𝑡𝑛+1

𝑡𝑛−1

‖𝑦𝑡𝑡(𝑠)‖2d𝑠. (2.21)

�

We will also make use of the following summation by parts formulas.
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Lemma 2.4. Let 𝑟(·, ·) denote a bilinear form on 𝑉ℎ × 𝑉ℎ. Then the following summation by parts formulas
holds

𝑁−1∑︁
𝑛=1

𝑟
(︀
𝛿𝑣𝑛+1, 𝑤𝑛+1

)︀
= 𝑟(𝑣𝑁 , 𝑤𝑁 )− 𝑟

(︀
𝑣1, 𝑤2

)︀
−

𝑁−1∑︁
𝑛=2

𝑟
(︀
𝑣𝑛, 𝛿𝑤𝑛+1

)︀
. (2.22)

Proof. We write

𝑁−1∑︁
𝑛=1

𝑟
(︀
𝛿𝑣𝑛+1, 𝑤𝑛+1

)︀
=

𝑁−1∑︁
𝑛=1

𝑟
(︀
𝑣𝑛+1, 𝑤𝑛+1

)︀
−

𝑁−1∑︁
𝑛=1

𝑟
(︀
𝑣𝑛, 𝑤𝑛+1

)︀
= 𝑟
(︀
𝑣𝑁 , 𝑤𝑁

)︀
+

𝑁−1∑︁
𝑛=2

𝑟(𝑣𝑛, 𝑤𝑛)−
𝑁−1∑︁
𝑛=1

𝑟
(︀
𝑣𝑛, 𝑤𝑛+1

)︀
= 𝑟
(︀
𝑣𝑁 , 𝑤𝑁

)︀
− 𝑟
(︀
𝑣1, 𝑤2

)︀
−

𝑁−1∑︁
𝑛=2

𝑟
(︀
𝑣𝑛, 𝛿𝑤𝑛+1

)︀
.

�

Finally, we will need the following discrete simple form of the discrete Gronwall’s inequality.

Proposition 2.5. Let {𝜑𝑛} be a sequence of non-negative numbers and let 𝜓 and 𝜂 be non-negative numbers
such that

𝜑𝑛 ≤ 𝜓 + 𝜂

𝑛∑︁
𝑖=1

𝜑𝑖.

Then, the following estimate holds
𝜑𝑁 ≤

(︀
1 +𝑁𝜂𝑒𝜂𝑁

)︀
𝜓. (2.23)

3. The BDF2-IMEX method

We may write the BDF2-IMEX finite element method as follows.
Find 𝑢𝑛+1

ℎ ∈ 𝑉ℎ such that for 𝑛 ≥ 1,(︀
𝐷𝜏𝑢

𝑛+1
ℎ , 𝑣ℎ

)︀
Ω

+ 𝑐ℎ
(︀
�̃�𝑛+1

ℎ , 𝑣ℎ

)︀
+ 𝑎
(︀
𝑢𝑛+1

ℎ , 𝑣ℎ

)︀
= 𝐿𝑛+1(𝑣ℎ), ∀𝑣ℎ ∈ 𝑉ℎ, (3.1)

where 𝑢0
ℎ, 𝑢

1
ℎ are given. Here {𝐿𝑛} are a bounded linear operator on 𝑉ℎ.

3.1. Stability of BDF2-IMEX

In the diffusion dominated (Pe < 1) regime the BDF2-IMEX method is stable under the standard hyperbolic
CFL condition. In this section we prove in addition to this, that BDF2-IMEX the method is stable indepdendent
of the Peclet number with a standard hyperbolic CFL condition when 𝑝 = 1 and under the 4/3-CFL when 𝑝 > 1.

Let us define some norms. We start by defining the natural dissipation of the spatial variables.

𝐸(𝑣)2 := 𝛾|𝑣|2𝑠 +
⃦⃦⃦
𝜇

1
2∇𝑣

⃦⃦⃦2

.

We see that 𝐸(𝑣)2 = 𝑐ℎ(𝑣, 𝑣) + 𝑎(𝑣, 𝑣) when 𝑣 ∈ 𝑉ℎ. An immediate consequence of (2.12) and an inverse
inequality is that for all 𝑣 ∈ 𝑉ℎ,

𝛾|𝑣|2𝑠 ≤
𝐶𝛾(‖𝛽‖∞ + 1)

ℎ
‖𝑣‖2, (3.2a)
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𝜇

1
2∇𝑣

⃦⃦⃦2

≤ 𝐶𝜇

ℎ2
‖𝑣‖2. (3.2b)

Hence,

𝜏𝐸(𝑣)2 ≤ 𝐶

(︂
𝛾Co +

Co
Pe

)︂
‖𝑣‖2, (3.3)

where we recall that the definition of the Peclet number Pe:

Pe :=
‖𝛽‖∞ℎ
𝜇

·

For a linear operator 𝐿 defined for 𝑉ℎ we define

‖𝐿‖ℎ = sup
𝑣∈𝑉ℎ

𝐿(𝑣)√︀
𝐸(𝑣)2 + ‖𝑣‖2

· (3.4)

We introduce the triple norm, measuring the dissipation in the system,

|||𝑣|||2 :=
𝑁−1∑︁
𝑛=1

(︂
𝜏𝐸
(︀
𝑣𝑛+1

)︀2
+

1
4

⃦⃦
𝑣𝑛+1 − 𝑣𝑛+1

⃦⃦2
)︂
.

The following elementary relationship will be useful.

𝜏
(︀
𝐷𝜏𝑣

𝑛+1, 𝑣𝑛+1
)︀
Ω

=
1
4

(︁⃦⃦
𝑣𝑛+1

⃦⃦2
+
⃦⃦
𝑣𝑛+2

⃦⃦2 −
(︁
‖𝑣𝑛‖2 +

⃦⃦
𝑣𝑛+1

⃦⃦2
)︁

+
⃦⃦
𝑣𝑛+1 − 𝑣𝑛+1

⃦⃦2
)︁
. (3.5)

3.2. The case Pe ≤ 1 for 𝑝 ≥ 1 and the case Pe > 1 for 𝑝 = 1

Before proving stability we prove an auxiliary result which will be helpful for the case 𝑝 = 1 and Pe > 1.
This result says that the discrete time derivative minus its projection on the element wise constants can be
controlled using the dissipative terms in space, primarily the stabilization. This can then be applied in the
stability analysis, reducing the need to apply inverse inequalities to control the convective term, by using the
control of the stabilizing term and hence achieving stability under the standard hyperbolic CFL condition.

Lemma 3.1. Let 𝑝 = 1 and let 𝑢ℎ solve (3.1) then the following estimate holds⃦⃦
𝜏𝐷𝜏𝑢

𝑛+1
ℎ − 𝑃0

(︀
𝜏𝐷𝜏𝑢

𝑛+1
ℎ

)︀⃦⃦
≤ 𝐶

√
𝜏
√

Co𝐾𝐸
(︀
𝑢𝑛+1

ℎ

)︀
+ 𝐶𝜏‖∇𝛽‖∞

⃦⃦
�̃�𝑛+1

ℎ

⃦⃦
+ 𝐶Co

⃦⃦
�̃�𝑛+1

ℎ − 𝑢𝑛+1
ℎ

⃦⃦
+ 𝐶

√
𝜏

(︃√
Co√
Pe

+
√

Co
√
𝛾 + 1

)︃⃦⃦
𝐿𝑛+1

⃦⃦
ℎ
, (3.6)

where

𝐾(𝛾,Pe) :=
(︂

1
Pe

+
√
𝛾 +

1
√
𝛾

)︂
·

Proof. Let 𝑦ℎ = 𝜏𝐷𝜏𝑢
𝑛+1
ℎ and then we have by (3.1)

‖𝑦ℎ − 𝑃0𝑦ℎ‖2 = (𝑦ℎ, 𝑦ℎ − 𝑃0(𝑦ℎ))Ω
= (𝑦ℎ, 𝜋ℎ(𝑦ℎ − 𝑃0(𝑦ℎ)))Ω
= − 𝜏𝑐ℎ

(︀
�̃�𝑛+1

ℎ , 𝜋ℎ(𝑦ℎ − 𝑃0(𝑦ℎ))
)︀
− 𝜏𝑎

(︀
𝑢𝑛+1

ℎ , 𝜋ℎ(𝑦ℎ − 𝑃0(𝑦ℎ))
)︀

+ 𝜏𝐿𝑛+1(𝜋ℎ(𝑦ℎ − 𝑃0(𝑦ℎ))).
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We use the Cauchy–Schwarz inequality followed inverse estimates to bound the symmetric terms

−𝜏𝑎
(︀
𝑢𝑛+1

ℎ , 𝜋ℎ(𝑦ℎ − 𝑃0(𝑦ℎ))
)︀
≤ 𝐶

√
𝜇𝜏

ℎ

⃦⃦√
𝜇∇𝑢𝑛+1

ℎ

⃦⃦
‖𝑦ℎ − 𝑃0(𝑦ℎ)‖

≤ 𝐶

√
𝜏Co√
Pe

⃦⃦√
𝜇∇𝑢𝑛+1

ℎ

⃦⃦
‖𝑦ℎ − 𝑃0(𝑦ℎ)‖.

For the stabilization we apply (2.12)

−𝜏𝛾𝑠
(︀
�̃�𝑛+1

ℎ , 𝜋ℎ(𝑦ℎ − 𝑃0(𝑦ℎ))
)︀
≤ 𝐶

√
𝜏
√︀
𝛾Co

√
𝛾
⃒⃒
�̃�𝑛+1

ℎ

⃒⃒
𝑠
‖𝑦ℎ − 𝑃0(𝑦ℎ)‖. (3.7)

Next we bound 𝜏𝐿𝑛+1(𝜋ℎ(𝑦ℎ − 𝑃0(𝑦ℎ))) using (3.4) and (3.3).

𝜏𝐿𝑛+1(𝜋ℎ(𝑦ℎ − 𝑃0(𝑦ℎ))) ≤ 𝜏
⃦⃦
𝐿𝑛+1

⃦⃦
ℎ

√︁
𝐸(𝜋ℎ(𝑦ℎ − 𝑃0(𝑦ℎ)))2 + ‖𝜋ℎ(𝑦ℎ − 𝑃0(𝑦ℎ))‖2

≤ 𝐶
√
𝜏

(︃√
Co√
Pe

+
√︀
𝛾Co +

√
𝜏

)︃⃦⃦
𝐿𝑛+1

⃦⃦
ℎ
‖𝑦ℎ − 𝑃0(𝑦ℎ)‖.

To bound the first term we observe that by (3.7) it only remains to bound the contribution from the form 𝑐.

−𝜏𝑐
(︀
�̃�𝑛+1

ℎ , 𝜋ℎ(𝑦ℎ − 𝑃0(𝑦ℎ))
)︀

= − 𝜏
(︀
(𝛽 − 𝛽0) · ∇�̃�𝑛+1

ℎ , 𝜋ℎ(𝑦ℎ − 𝑃0(𝑦ℎ))
)︀
Ω

− 𝜏
(︀
𝛽0 · ∇�̃�𝑛+1

ℎ − 𝑤𝑛+1
ℎ , (𝐼 − 𝜋ℎ)(𝑦ℎ − 𝑃0(𝑦ℎ))

)︀
Ω
.

Here 𝑤ℎ ∈ 𝑉ℎ is arbitrary. Note that we crucially used that 𝑝 = 1 which implies that 𝛽0 · ∇�̃�𝑛+1
ℎ ∈𝑊ℎ.

Hence, using (2.6) and (2.7) we obtain

−𝜏𝑐
(︀
�̃�𝑛+1

ℎ , 𝜋ℎ(𝑦ℎ − 𝑃0(𝑦ℎ))
)︀
≤ 𝐶𝜏

(︁
‖∇𝛽‖∞

⃦⃦
�̃�𝑛+1

ℎ

⃦⃦
+ ‖𝛽‖1/2

∞ ℎ−1/2
⃒⃒
�̃�𝑛+1

ℎ

⃒⃒
𝑠

)︁
‖𝑦ℎ − 𝑃0(𝑦ℎ)‖

≤ 𝐶
√
𝜏

(︂√
𝜏‖∇𝛽‖∞

⃦⃦
�̃�𝑛+1

ℎ

⃦⃦
+
√

Co
1
√
𝛾

√
𝛾
⃒⃒
�̃�𝑛+1

ℎ

⃒⃒
𝑠

)︂
‖𝑦ℎ − 𝑃0(𝑦ℎ)‖.

Finally, by the triangle inequality and (2.12) we have the bound
⃒⃒
�̃�𝑛+1

ℎ

⃒⃒
𝑠
≤
⃒⃒
𝑢𝑛+1

ℎ

⃒⃒
𝑠

+ 𝐶
√

Co√
𝜏

⃦⃦
𝑢𝑛+1

ℎ − �̃�𝑛+1
ℎ

⃦⃦
.

Combining the above inequalities gives the result. �

We will use the following notation: We let 𝑐𝐿 = 0 if 𝐿𝑛 ≡ 0 for every 𝑛 and 𝑐𝐿 = 1 otherwise. The following
results prove stability under the standard hyperbolic CFL, in the low Peclet regime or, for piecewise affine
approximation, in the high Peclet regime.

Theorem 3.2. Suppose that 𝑇 = 𝑁𝜏 . Suppose that Co is chosen sufficiently small only depending on geometric
constants of the mesh and 𝛾. For {𝑢𝑛

ℎ} solving (3.1) we have the following bounds:
If Pe ≤ 1 then for all 𝑝 ≥ 1,

⃦⃦
𝑢𝑁

ℎ

⃦⃦2 ≤
(︂

1 +
𝑇𝑐𝐿

8
𝑒

𝑇 𝑐𝐿
8

)︂(︃⃦⃦
𝑢0

ℎ

⃦⃦2
+
⃦⃦
𝑢1

ℎ

⃦⃦2
+ 32𝜏

𝑁−1∑︁
𝑛=1

⃦⃦
𝐿𝑛+1

⃦⃦2

ℎ

)︃
. (3.8)

If Pe > 1 and 𝑝 = 1, 𝛾 > 0 then

⃦⃦
𝑢𝑁

ℎ

⃦⃦2 ≤

(︃⃦⃦
𝑢0

ℎ

⃦⃦2
+
⃦⃦
𝑢1

ℎ

⃦⃦2
+
⃦⃦
𝑢2

ℎ

⃦⃦2
+ 9𝜏

𝑁−1∑︁
𝑛=1

⃦⃦
𝐿𝑛+1

⃦⃦2

ℎ

)︃
𝑀, (3.9)

where
𝑀 = 8

(︁
1 + 𝑐𝑇

(︀
𝜏‖∇𝛽‖2∞ + 𝑐𝐿

)︀
𝑒𝑐𝑇(𝜏‖∇𝛽‖2∞+𝑐𝐿)

)︁
.
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Proof. We test equation (3.1) with 𝑢𝑛+1
ℎ and get(︀

𝐷𝜏𝑢
𝑛+1
ℎ , 𝑢𝑛+1

ℎ

)︀
Ω

+ 𝑐ℎ
(︀
�̃�𝑛+1

ℎ , 𝑢𝑛+1
ℎ

)︀
+ 𝑎
(︀
𝑢𝑛+1

ℎ , 𝑢𝑛+1
ℎ

)︀
= 𝐿𝑛+1

(︀
𝑢𝑛+1

ℎ

)︀
.

Thus, we see that(︀
𝐷𝜏𝑢

𝑛+1
ℎ , 𝑢𝑛+1

ℎ

)︀
Ω

+ 𝑐ℎ
(︀
𝑢𝑛+1

ℎ , 𝑢𝑛+1
ℎ

)︀
+ 𝑎
(︀
𝑢𝑛+1

ℎ , 𝑢𝑛+1
ℎ

)︀
= 𝑐ℎ

(︀
𝑢𝑛+1

ℎ − �̃�𝑛+1
ℎ , 𝑢𝑛+1

ℎ

)︀
+ 𝐿𝑛+1

(︀
𝑢𝑛+1

ℎ

)︀
.

Then by summing over 𝑛 = 1, . . . , 𝑁 − 1, multiplying with 𝜏 , and using (3.5), (2.10)

1
4

(︁⃦⃦
𝑢𝑁

ℎ

⃦⃦2
+
⃦⃦
�̃�𝑁+1

ℎ

⃦⃦2
)︁
− 1

4

(︁⃦⃦
𝑢1

ℎ

⃦⃦2
+
⃦⃦
�̃�2

ℎ

⃦⃦2
)︁

+ |||𝑢ℎ|||2 = 𝑆1 + 𝑆2 + 𝑆3 (3.10)

where

𝑆1 := 𝜏
𝑁−1∑︁
𝑛=1

𝑐
(︀
𝑢𝑛+1

ℎ − �̃�𝑛+1
ℎ , 𝑢𝑛+1

ℎ

)︀
,

𝑆2 := 𝜏

𝑁−1∑︁
𝑛=1

𝛾𝑠
(︀
𝑢𝑛+1

ℎ − �̃�𝑛+1
ℎ , 𝑢𝑛+1

ℎ

)︀
,

𝑆3 := 𝜏

𝑁−1∑︁
𝑛=1

𝐿𝑛+1
(︀
𝑢𝑛+1

ℎ

)︀
.

Let us estimate 𝑆3. We have

𝑆3 ≤ 𝜏

𝑁−1∑︁
𝑛=1

⃦⃦
𝐿𝑛+1

⃦⃦
ℎ

√︁
𝐸
(︀
𝑢𝑛+1

ℎ

)︀2
+
⃦⃦
𝑢𝑛+1

ℎ

⃦⃦2

≤ 8𝜏
𝑁−1∑︁
𝑛=1

⃦⃦
𝐿𝑛+1

⃦⃦2

ℎ
+

1
32
𝜏

𝑁−1∑︁
𝑛=1

𝐸
(︀
𝑢𝑛+1

ℎ

)︀2
+
𝑐𝐿
32
𝜏

𝑁−1∑︁
𝑛=1

⃦⃦
𝑢𝑛+1

ℎ

⃦⃦2
.

Now we estimate 𝑆2. Using the arithmetic-geometric mean inequality and inverse estimates we obtain

𝑆2 ≤
√

Co𝛾
𝑁−1∑︁
𝑛=1

⃦⃦
𝑢𝑛+1

ℎ − �̃�𝑛+1
ℎ

⃦⃦2
+ 𝐶

√
Co𝜏

𝑁−1∑︁
𝑛=1

𝛾
⃒⃒
𝑢𝑛+1

ℎ

⃒⃒2
𝑠
.

Next we bound 𝑆1. We consider two cases: Pe > 1 and Pe ≤ 1.

Case 1. Pe ≤ 1, 𝑝 ≥ 1: Using that 𝑐
(︀
𝑢𝑛+1

ℎ − �̃�𝑛+1
ℎ , 𝑢𝑛+1

ℎ

)︀
= −𝑐

(︀
𝑢𝑛+1

ℎ , 𝑢𝑛+1
ℎ − �̃�𝑛+1

ℎ

)︀
we obtain

𝑆1 ≤ 𝐶
√

Co
√

Pe
√
𝜏

𝑁−1∑︁
𝑛=1

⃦⃦
𝑢𝑛+1

ℎ − �̃�𝑛+1
ℎ

⃦⃦ ⃦⃦√
𝜇∇𝑢𝑛+1

ℎ

⃦⃦
≤
√

Co
𝑁−1∑︁
𝑛=1

⃦⃦
𝑢𝑛+1

ℎ − �̃�𝑛+1
ℎ

⃦⃦2
+ 𝐶

√
Co𝜏

𝑁−1∑︁
𝑛=1

⃦⃦√
𝜇∇𝑢𝑛+1

ℎ

⃦⃦2
.

Thus, using (3.10) and the fact that Co is sufficiently small we obtain

1
4

(︁⃦⃦
𝑢𝑁

ℎ

⃦⃦2
+
⃦⃦
�̃�𝑁+1

ℎ

⃦⃦2
)︁

+
1
2
|||𝑢ℎ|||2 ≤

1
4

(︁⃦⃦
𝑢1

ℎ

⃦⃦2
+
⃦⃦
�̃�2

ℎ

⃦⃦2
)︁

+ 8𝜏
𝑁−1∑︁
𝑛=1

⃦⃦
𝐿𝑛+1

⃦⃦2

ℎ
+
𝑐𝐿
32
𝜏

𝑁−1∑︁
𝑛=1

⃦⃦
𝑢𝑛+1

ℎ

⃦⃦2
.

Using Gronwall’s inequality (2.23) we have (3.8).
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Case 2. Pe > 1 and 𝑝 = 1: We use (2.16) and (2.22) to obtain

𝑆1 = 𝜏

𝑁−1∑︁
𝑛=1

𝑐
(︀
𝛿𝛿𝑢𝑛+1

ℎ , 𝑢𝑛+1
ℎ

)︀
= −𝜏

𝑁−1∑︁
𝑛=2

𝑐
(︀
𝛿𝑢𝑛

ℎ, 𝛿𝑢
𝑛+1
ℎ

)︀
+ 𝜏
(︀
𝑐
(︀
𝛿𝑢𝑁

ℎ , 𝑢
𝑁
ℎ

)︀
− 𝑐
(︀
𝛿𝑢1

ℎ, 𝑢
2
ℎ

)︀)︀
.

Using that 𝑐
(︀
𝛿𝛿𝑢𝑛+1

ℎ , 𝛿𝛿𝑢𝑛+1
ℎ

)︀
= 0 = 𝑐

(︀
𝛿𝑢𝑛+1

ℎ , 𝛿𝑢𝑛+1
ℎ

)︀
and (2.17) we have

−𝑐
(︀
𝛿𝑢𝑛

ℎ, 𝛿𝑢
𝑛+1
ℎ

)︀
= 𝑐
(︀
𝛿𝛿𝑢𝑛+1

ℎ , 𝛿𝑢𝑛+1
ℎ

)︀
= 𝑐
(︀
𝛿𝛿𝑢𝑛+1

ℎ , 𝜏𝐷𝜏𝑢
𝑛+1
ℎ

)︀
.

Thus,

𝑆1 = 𝜏

𝑁−1∑︁
𝑛=2

𝑐
(︀
𝛿𝛿𝑢𝑛+1

ℎ , 𝜏𝐷𝜏𝑢
𝑛+1
ℎ

)︀
+ 𝜏
(︀
𝑐
(︀
𝛿𝑢𝑁

ℎ , 𝑢
𝑁
ℎ

)︀
− 𝑐
(︀
𝛿𝑢1

ℎ, 𝑢
2
ℎ

)︀)︀
. (3.11)

We let 𝑦𝑛+1
ℎ = 𝜏𝐷𝜏𝑢

𝑛+1
ℎ and use the fact that 𝑃0

(︀
𝑦𝑛+1

ℎ

)︀
is in the kernel of the gradient operator followed

by an inequality similar to (2.11), but applied elementwise, to see that

𝜏𝑐
(︀
𝛿𝛿𝑢𝑛+1

ℎ , 𝑦𝑛+1
ℎ

)︀
= −𝜏𝑐

(︀
𝑦𝑛+1

ℎ , 𝛿𝛿𝑢𝑛+1
ℎ

)︀
≤ 𝐶Co

⃦⃦
𝛿𝛿𝑢𝑛+1

ℎ

⃦⃦⃦⃦
𝑦𝑛+1

ℎ − 𝑃0

(︀
𝑦𝑛+1

ℎ

)︀⃦⃦
.

Thus, applying (3.6) we obtain

𝜏

𝑁−1∑︁
𝑛=2

𝑐
(︀
𝛿𝛿𝑢𝑛+1

ℎ , 𝜏𝐷𝜏𝑢
𝑛+1
ℎ

)︀
≤ 𝐶(Co)3/2𝐾

√
𝜏

𝑁−1∑︁
𝑛=2

𝐸
(︀
𝑢𝑛+1

ℎ

)︀⃦⃦
𝛿𝛿𝑢𝑛+1

ℎ

⃦⃦
+ 𝐶Co‖∇𝛽‖∞𝜏

𝑁−1∑︁
𝑛=2

⃦⃦
�̃�𝑛+1

ℎ

⃦⃦ ⃦⃦
𝛿𝛿𝑢𝑛+1

ℎ

⃦⃦
+ 𝐶(Co)2

𝑁−1∑︁
𝑛=2

⃦⃦
𝛿𝛿𝑢𝑛+1

ℎ

⃦⃦2
+ 𝐶

√
𝜏Co

(︃√
Co√
Pe

+
√︀

Co𝛾 +
√
𝜏

)︃
𝑁−1∑︁
𝑛=2

⃦⃦
𝐿𝑛+1

⃦⃦
ℎ

⃦⃦
𝛿𝛿𝑢𝑛+1

ℎ

⃦⃦
.

To bound the remaining two terms we use (2.11) followed by Young’s inequality:

𝜏
(︀
𝑐
(︀
𝛿𝑢𝑁

ℎ , 𝑢
𝑁
ℎ

)︀
− 𝑐
(︀
𝛿𝑢1

ℎ, 𝑢
2
ℎ

)︀)︀
≤ 𝐶Co

(︁⃦⃦
𝑢𝑁

ℎ

⃦⃦2
+
⃦⃦
�̃�𝑁+1

ℎ

⃦⃦2
)︁

+ 𝐶Co
(︁⃦⃦
𝑢0

ℎ

⃦⃦2
+
⃦⃦
𝑢1

ℎ

⃦⃦2
+
⃦⃦
𝑢2

ℎ

⃦⃦2
)︁
. (3.12)

Here we also used that 𝛿𝑢𝑁
ℎ = �̃�𝑁+1

ℎ − 𝑢𝑁
ℎ . Hence, we arrive at

𝑆1 ≤ 𝐶Co
(︁⃦⃦
𝑢𝑁

ℎ

⃦⃦2
+
⃦⃦
�̃�𝑁+1

ℎ

⃦⃦2
)︁

+ 𝐶Co
(︁⃦⃦
𝑢0

ℎ

⃦⃦2
+
⃦⃦
𝑢1

ℎ

⃦⃦2
+
⃦⃦
𝑢2

ℎ

⃦⃦2
)︁

+ 𝐶Co𝐾2
𝑁−1∑︁
𝑛=2

𝜏𝐸
(︀
𝑢𝑛+1

ℎ

)︀2
+ 𝐶(Co)2

𝑁−1∑︁
𝑛=2

⃦⃦
𝛿𝛿𝑢𝑛+1

ℎ

⃦⃦2

+ 𝐶‖∇𝛽‖2∞𝜏2
𝑁−1∑︁
𝑛=2

⃦⃦
�̃�𝑛+1

ℎ

⃦⃦2
+ 𝜏

𝑁−1∑︁
𝑛=2

⃦⃦
𝐿𝑛+1

⃦⃦2

ℎ
. (3.13)

Here we used that
(︁√

Co√
Pe

+
√

Co𝛾 +
√
𝜏
)︁

is bounded in this case. Finally, using (3.10) and the fact that Co
is sufficiently small we obtain

1
8

(︁⃦⃦
𝑢𝑁

ℎ

⃦⃦2
+
⃦⃦
�̃�𝑁+1

ℎ

⃦⃦2
)︁

+
1
2
|||𝑢ℎ|||2

≤
(︁⃦⃦
𝑢0

ℎ

⃦⃦2
+
⃦⃦
𝑢1

ℎ

⃦⃦2
+
⃦⃦
𝑢2

ℎ

⃦⃦2
)︁

+ 𝐶𝜏
(︀
𝜏‖∇𝛽‖2∞ + 𝑐𝐿

)︀𝑁−1∑︁
𝑛=1

⃦⃦
𝑢𝑛+1

ℎ

⃦⃦2
+ 9𝜏

𝑁−1∑︁
𝑛=1

⃦⃦
𝐿𝑛+1

⃦⃦2

ℎ
. (3.14)

We can now use the discrete Gronwall inequality (2.23) to get (3.9).
�
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3.3. The case Pe > 1 for 𝑝 ≥ 1 with 4/3-CFL condition

We will now prove a stability result in the high Peclet regime Pe > 1 that holds for any polynomial order
under more stringent 4/3-CFL condition. In fact, we will not need the stabilization term 𝑠(·, ·) to guarantee
this. Instead we test with the convection operator applied to the second order increment of 𝑢𝑛+1

ℎ . This results in
a term with a factor 𝜏2/ℎ2 that must scale as

√
𝜏 in order for it to be controlled through Gronwall’s inequality.

Clearly under the 4/3-CFL condition, setting 𝜏 = Co4/3ℎ
4/3 we have 𝜏2/ℎ2 =

√
𝜏𝜏3/2/ℎ2 =

√
𝜏Co3/2

4/3 and the
desired control is achieved. The result holds for the standard Galerkin method as well.

Theorem 3.3. Suppose that 𝑇 = 𝑁𝜏 , Pe > 1 and that max{Co,Co4/3} is sufficiently small only depending on
geometric constants of the mesh and 𝛾. Let 𝑝 ≥ 1. For {𝑢𝑛

ℎ} solving (3.1) we have the following bound:

⃦⃦
𝑢𝑁

ℎ

⃦⃦2 ≤

(︃⃦⃦
𝑢0

ℎ

⃦⃦2
+
⃦⃦
𝑢1

ℎ

⃦⃦2
+
⃦⃦
𝑢2

ℎ

⃦⃦2
+ 9𝜏

𝑁−1∑︁
𝑛=1

⃦⃦
𝐿𝑛+1

⃦⃦2

ℎ

)︃
𝑀, (3.15)

where
𝑀 = 8

(︁
1 +

(︁𝑐𝐿
4

+ 8
)︁
𝑇𝑒(

𝑐𝐿
4 +8)𝑇

)︁
.

Proof. Using the previous proof we only have to bound 𝑆1 in the case, Pe ≥ 1 and 𝑝 > 1. We will use (3.11)
and in particular use the same estimate (3.12). We are left to bound 𝜏

∑︀𝑁−1
𝑛=2 𝑐

(︀
𝛿𝛿𝑢𝑛+1

ℎ , 𝜏𝐷𝜏𝑢
𝑛+1
ℎ

)︀
. To this end,

we set 𝜓ℎ = 𝐶ℎ𝛿𝛿𝑢
𝑛+1
ℎ and see that

𝑐
(︀
𝛿𝛿𝑢𝑛+1

ℎ , 𝜏𝐷𝜏𝑢
𝑛+1
ℎ

)︀
= 𝜏

(︀
𝐷𝜏𝑢

𝑛+1
ℎ , 𝜓ℎ

)︀
Ω
.

Using the definition of the method (3.1) it follows that

𝜏2
(︀
𝐷𝜏𝑢

𝑛+1
ℎ , 𝜓ℎ

)︀
Ω

= 𝑀1 +𝑀2 +𝑀3 +𝑀4.

where

𝑀1 : = −𝜏2𝑐
(︀
�̃�𝑛+1

ℎ , 𝜓ℎ

)︀
, 𝑀2 := −𝜏2𝛾𝑠

(︀
�̃�𝑛+1

ℎ , 𝜓ℎ

)︀
,

𝑀3 : = −𝜏2𝑎
(︀
𝑢𝑛+1

ℎ , 𝜓ℎ

)︀
, 𝑀4 := 𝜏2𝐿𝑛+1(𝜓ℎ).

We use again the definition of 𝐶ℎ and the estimate (2.13) to obtain

𝑀1 = −𝜏2
(︀
𝐶ℎ�̃�

𝑛+1
ℎ , 𝜓ℎ

)︀
Ω
≤ 𝜏2

⃦⃦
𝐶ℎ�̃�

𝑛+1
ℎ

⃦⃦
‖𝜓ℎ‖ ≤ 𝐶

√
𝜏
(︀
Co4/3

)︀3/2⃦⃦
�̃�𝑛+1

ℎ

⃦⃦⃦⃦
𝛿𝛿𝑢𝑛+1

ℎ

⃦⃦
.

Using (3.2a) and (2.14) we have

𝑀2 ≤ 𝜏2𝛾
⃒⃒
�̃�𝑛+1

ℎ

⃒⃒
𝑠
|𝜓ℎ|𝑠 ≤ 𝜏3/2√𝛾

⃒⃒
�̃�𝑛+1

ℎ

⃒⃒
𝑠

√︀
𝛾Co‖𝜓ℎ‖ ≤

√
𝜏
√
𝛾
⃒⃒
�̃�𝑛+1

ℎ

⃒⃒
𝑠

√
𝛾Co3/2

⃦⃦
𝛿𝛿𝑢𝑛+1

ℎ

⃦⃦
.

Similarly, we bound 𝑀3 if we use (3.2b)

𝑀3 ≤ 𝜏2
⃦⃦√

𝜇∇𝑢𝑛+1
ℎ

⃦⃦
‖√𝜇∇𝜓ℎ‖ ≤ 𝐶𝜏2

⃦⃦√
𝜇∇𝑢𝑛+1

ℎ

⃦⃦√𝜇
ℎ
‖𝜓ℎ‖ ≤ 𝐶

√
𝜏
⃦⃦√

𝜇∇𝑢𝑛+1
ℎ

⃦⃦ Co3/2

√
Pe

⃦⃦
𝛿𝛿𝑢𝑛+1

ℎ

⃦⃦
.

Finally, using (3.3)

𝑀4 ≤ 𝜏2
⃦⃦
𝐿𝑛+1

ℎ

⃦⃦
ℎ

√︀
𝐸(𝜓ℎ)2 + ‖𝜓ℎ‖2

≤ 𝐶
√
𝜏
⃦⃦
𝐿𝑛+1

ℎ

⃦⃦
ℎ

(︃√︀
𝛾Co +

√
Co√
Pe

+
√
𝜏

)︃
𝜏‖𝜓ℎ‖.
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Hence, applying (2.14) we get

𝑀4 ≤ 𝜏2
⃦⃦
𝐿𝑛+1

ℎ

⃦⃦
ℎ

√︀
𝐸(𝜓ℎ)2 + ‖𝜓ℎ‖2 ≤ 𝐶

√
𝜏
⃦⃦
𝐿𝑛+1

ℎ

⃦⃦
ℎ
Co
⃦⃦
𝛿𝛿𝑢𝑛+1

ℎ

⃦⃦
,

where we use that
(︀
𝛾Co + Co

Pe +
√
𝜏
)︀

is bounded.
Hence, after using Young’s inequality, (3.12) and the fac that Pe > 1 we arrive at

𝑆1 ≤ 𝐶Co
(︁⃦⃦
𝑢𝑁

ℎ

⃦⃦2
+
⃦⃦
�̃�𝑁+1

ℎ

⃦⃦2
)︁

+ 𝐶Co
(︁⃦⃦
𝑢0

ℎ

⃦⃦2
+
⃦⃦
𝑢1

ℎ

⃦⃦2
+
⃦⃦
𝑢2

ℎ

⃦⃦2
)︁

+ Co
𝑁−1∑︁
𝑛=2

𝜏𝐸
(︀
𝑢𝑛+1

ℎ

)︀2
+ 𝐶

(︁
Co2 +

(︀
Co4/3

)︀3)︁𝑁−1∑︁
𝑛=2

⃦⃦
𝛿𝛿𝑢𝑛+1

ℎ

⃦⃦2

+ 𝜏

𝑁−1∑︁
𝑛=2

⃦⃦
𝑢𝑛+1

ℎ

⃦⃦2
+ 𝜏

𝑁−1∑︁
𝑛=2

⃦⃦
𝐿𝑛+1

⃦⃦2

ℎ
.

We now use (3.10) and the estimates 𝑆2 and 𝑆3 from the previous theorem. In addition, we use that Co and
Co4/3 is sufficiently small to obtain

1
8

(︁⃦⃦
𝑢𝑁

ℎ

⃦⃦2
+
⃦⃦
�̃�𝑁+1

ℎ

⃦⃦2
)︁

+
1
2
|||𝑢ℎ|||2 ≤

(︁⃦⃦
𝑢0

ℎ

⃦⃦2
+
⃦⃦
𝑢1

ℎ

⃦⃦2
+
⃦⃦
𝑢2

ℎ

⃦⃦2
)︁

+ 9𝜏
𝑁−1∑︁
𝑛=1

⃦⃦
𝐿𝑛+1

⃦⃦2

ℎ
+
(︁𝑐𝐿

32
+ 1
)︁
𝜏

𝑁−1∑︁
𝑛=1

⃦⃦
𝑢𝑛+1

ℎ

⃦⃦2
.

The estimate (3.15) now follows from Gronwalls inequality (2.23). �

We notice that
⃦⃦
𝑢2

ℎ

⃦⃦
appear in the right-hand side of some of the estimates; see for example (3.15). However,

we we can easily show (we omit the details) that if Co sufficiently small⃦⃦
𝑢2

ℎ

⃦⃦
≤ 2
(︁⃦⃦
𝑢0

ℎ

⃦⃦2
+
⃦⃦
𝑢1

ℎ

⃦⃦2
)︁

+ 𝐶𝜏
⃦⃦
𝐿2
⃦⃦2

ℎ
.

If we combine Theorems 3.2 and 3.3 with this last inequality we get.

Corollary 3.4. Let 𝑇 = 𝑁𝜏 . Let {𝑢𝑛
ℎ} solving (3.1) we have the following bounds:

If Pe ≤ 1 and for all 𝑝 ≥ 1, if Co is sufficiently small we have:

⃦⃦
𝑢𝑁

ℎ

⃦⃦2 ≤
(︂

1 +
𝑇𝑐𝐿

8
𝑒

𝑇 𝑐𝐿
8

)︂(︃⃦⃦
𝑢0

ℎ

⃦⃦2
+
⃦⃦
𝑢1

ℎ

⃦⃦2
+ 32𝜏

𝑁−1∑︁
𝑛=1

⃦⃦
𝐿𝑛+1

⃦⃦2

ℎ

)︃
. (3.16)

If Pe > 1, 𝑝 = 1, 𝛾 > 0 and Co sufficiently small we obtain:

⃦⃦
𝑢𝑁

ℎ

⃦⃦2 ≤ 𝐶

(︃⃦⃦
𝑢0

ℎ

⃦⃦2
+
⃦⃦
𝑢1

ℎ

⃦⃦2
+ 𝜏

𝑁−1∑︁
𝑛=1

⃦⃦
𝐿𝑛+1

⃦⃦2

ℎ

)︃
𝑀, (3.17)

where
𝑀 = 8

(︁
1 + 𝑐𝑇

(︀
𝜏‖∇𝛽‖2∞ + 𝑐𝐿

)︀
𝑒𝑐𝑇(𝜏‖∇𝛽‖2∞+𝑐𝐿)

)︁
. (3.18)

If Pe > 1, 𝑝 ≥ 1, and max
{︀

Co,Co4/3

}︀
is sufficiently small we get:

⃦⃦
𝑢𝑁

ℎ

⃦⃦2 ≤ 𝐶

(︃⃦⃦
𝑢0

ℎ

⃦⃦2
+
⃦⃦
𝑢1

ℎ

⃦⃦2
+ 𝜏

𝑁−1∑︁
𝑛=1

⃦⃦
𝐿𝑛+1

⃦⃦2

ℎ

)︃
𝑀, (3.19)

where 𝑀 is given in (3.18).
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Corollary 3.5. Let 𝑇 = 𝑁𝜏 . Let {𝑢𝑛
ℎ} solving (3.1). If Pe > 1, 𝑝 = 1, 𝛾 > 0 and Co sufficiently small we

obtain:

|||𝑢ℎ|||2 ≤ 𝐶
(︀
1 + 𝑇

(︀
𝜏‖∇𝛽‖2∞ + 𝑐𝐿

)︀)︀(︃⃦⃦
𝑢0

ℎ

⃦⃦2
+
⃦⃦
𝑢1

ℎ

⃦⃦2
+ 𝜏

𝑁−1∑︁
𝑛=1

⃦⃦
𝐿𝑛+1

⃦⃦2

ℎ

)︃
𝑀, (3.20)

and 𝑀 is given in (3.18).

4. A priori error estimate for BDF2-IMEX in the case Pe > 1

In this section we will study the error in the BDF2-IMEX method. We focus on the case Pe > 1 for simplicity.
If 𝑢 solves (2.2), its approximation is given by:

Find 𝑢𝑛+1
ℎ ∈ 𝑉ℎ such that for 𝑛 ≥ 1,(︀

𝐷𝜏𝑢
𝑛+1
ℎ , 𝑣ℎ

)︀
Ω

+ 𝑐ℎ
(︀
�̃�𝑛+1

ℎ , 𝑣ℎ

)︀
+ 𝑎
(︀
𝑢𝑛+1

ℎ , 𝑣ℎ

)︀
= (𝑓, 𝑣ℎ)Ω, ∀𝑣ℎ ∈ 𝑉ℎ, (4.1)

with 𝑢𝑖
ℎ = 𝜋ℎ𝑢(·, 𝑡𝑖), 𝑖 = 0, 1.

We can prove an error estimate in the case of Pe > 1 (i.e. convection dominated regime). This uses the
stability of the time discretisation from the previous section applied to the perturbation equations, followed by
consistency of the method and Lemma 2.1 to achieve the improved continuity of the convective term, that leads
to the gain of ℎ

1
2 in the error estimate compared to the standard Galerkin method.

Theorem 4.1. Let 𝑢 be the solution of (2.2) and {𝑢𝑛
ℎ}𝑁

𝑛=0 be the solution of (4.1). Let 𝑇 = 𝜏𝑁 and assume
that 𝛾 > 0. Furthermore, suppose that Co is sufficiently small when 𝑝 = 1 and max{Co,Co4/3} is sufficiently
small when 𝑝 ≥ 2. Then,⃦⃦

𝜋ℎ𝑢(𝑇 )− 𝑢𝑁
ℎ

⃦⃦2 ≤ 𝐶
(︁
ℎ2(𝑝+1)

(︁
‖𝑢(𝑡0)‖2𝐻𝑝+1(Ω) + ‖𝑢(𝑡1)‖2𝐻𝑝+1(Ω)

)︁
+ G

)︁
M (4.2)

where

G :=
(︁
𝜏4
⃦⃦
𝜕3

𝑡 𝑢
⃦⃦2

𝐿2([0,𝑇 ],𝐿2(Ω))
+ ‖𝛽‖2∞𝜏4

⃦⃦
𝜕2

𝑡 𝑢
⃦⃦2

𝐿2([0,𝑇 ],𝐻1(Ω))

)︁
+
(︁
𝜇ℎ2𝑝 + 𝛾‖𝛽‖∞ℎ2(𝑝+1/2) + ‖∇𝛽‖2∞ℎ2(𝑝+1)

)︁
𝜏

𝑁−1∑︁
𝑗=1

⃦⃦
𝑢𝑛+1

⃦⃦2

𝐻𝑝+1(Ω)
.

and
M =

(︁
1 + 𝑐𝑇

(︀
𝜏‖∇𝛽‖2∞ + 1

)︀
𝑒𝑐𝑇(𝜏‖∇𝛽‖2∞+1)

)︁
.

Proof. Let 𝑤𝑛
ℎ = 𝜋ℎ𝑢

𝑛 and let 𝑒𝑛
ℎ = 𝑤𝑛

ℎ −𝑢𝑛
ℎ where 𝜋ℎ is defined by (2.3). Moreover, we let 𝜂𝑛

ℎ = 𝑤𝑛
ℎ −𝑢𝑛. Then,

we have that (︀
𝐷𝜏𝑒

𝑛+1
ℎ , 𝑣ℎ

)︀
Ω

+ 𝑐ℎ
(︀
𝑒𝑛+1
ℎ , 𝑣ℎ

)︀
+ 𝑎
(︀
𝑒𝑛+1
ℎ , 𝑣ℎ

)︀
= 𝐿𝑛+1(𝑣ℎ), ∀𝑣ℎ ∈ 𝑉ℎ, (4.3)

where

𝐿𝑛+1(𝑣ℎ) :=
(︀
𝐷𝜏𝑤

𝑛+1
ℎ , 𝑣ℎ

)︀
Ω

+ 𝑐ℎ
(︀
�̃�𝑛+1

ℎ , 𝑣ℎ

)︀
+ 𝑎
(︀
𝑤𝑛+1

ℎ , 𝑣ℎ

)︀
−
(︀(︀
𝜕𝑡𝑢

𝑛+1, 𝑣ℎ

)︀
Ω

+ 𝑐
(︀
𝑢𝑛+1, 𝑣ℎ

)︀
+ 𝑎
(︀
𝑢𝑛+1, 𝑣ℎ

)︀)︀
.

We can write

𝐿𝑛+1(𝑣ℎ) :=
5∑︁

𝑗=1

Ψ𝑗(𝑣ℎ),
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where

Ψ1(𝑣ℎ) :=
(︀
𝐷𝜏𝑢

𝑛+1 − 𝜕𝑡𝑢
𝑛+1, 𝑣ℎ

)︀
Ω
, Ψ2(𝑣ℎ) := 𝑐

(︀
𝜂𝑛+1

ℎ , 𝑣ℎ

)︀
,

Ψ3(𝑣ℎ) := 𝛾𝑠
(︀
𝜂𝑛+1

ℎ , 𝑣ℎ

)︀
, Ψ4(𝑣ℎ) := 𝑎

(︀
𝜂𝑛+1

ℎ , 𝑣ℎ

)︀
,

Ψ5(𝑣ℎ) := 𝑐
(︀
�̃�𝑛+1 − 𝑢𝑛+1, 𝑣ℎ

)︀
.

All the terms above can easily be bounded. However, we have to pay special care to Ψ2(𝑣ℎ). Using the skew-
symmetry of 𝑐, and the 𝐿2-orthogonality of 𝜂𝑛+1

ℎ we can subtract an arbitrary 𝑧ℎ ∈ 𝑉ℎ from the convective
derivative. Then by the Cauchy–Schwarz inequality we see that

Ψ2(𝑣ℎ) = − 𝑐
(︀
𝑣ℎ, 𝜂

𝑛+1
ℎ

)︀
= −

(︀
𝛽 · ∇𝑣ℎ − 𝑧ℎ, 𝜂

𝑛+1
ℎ

)︀
Ω
≤ inf

𝑧ℎ∈𝑉ℎ

‖𝛽 · ∇𝑣ℎ − 𝑧ℎ‖
⃦⃦
𝜂𝑛+1

ℎ

⃦⃦
.

Hence, using (2.9) we obtain

|Ψ2(𝑣ℎ)| ≤ 𝐶

(︃
‖∇𝛽‖∞‖𝑣ℎ‖+

√︀
‖𝛽‖∞√
ℎ
√
𝛾

√
𝛾|𝑣ℎ|𝑠

)︃⃦⃦
𝜂𝑛+1

ℎ

⃦⃦
.

As a consequence of this bound for Ψ2 and by bounding all the other terms Ψ𝑖 using the Cauchy–Schwarz
inequality we have⃦⃦

𝐿𝑛+1
⃦⃦

ℎ
≤
⃦⃦
𝐷𝜏𝑢

𝑛+1 − 𝜕𝑡𝑢
𝑛+1
⃦⃦

+
⃦⃦
𝛽 · ∇

(︀
�̃�𝑛+1 − 𝑢𝑛+1

)︀⃦⃦
+ 𝐶

(︃
‖∇𝛽‖∞ +

√︀
‖𝛽‖∞√
ℎ
√
𝛾

)︃⃦⃦
𝜂𝑛+1

ℎ

⃦⃦
+ 𝐶

√
𝛾
⃒⃒
𝜂𝑛+1

ℎ

⃒⃒
𝑠

+ 𝐶
⃦⃦√

𝜇∇𝜂𝑛+1
ℎ

⃦⃦
𝐿2(Ω)

.

Using (2.19), and (2.20), the square of the first four terms of the right hand side can be bounded as follows.⃦⃦
𝐷𝜏𝑢

𝑛+1 − 𝜕𝑡𝑢
𝑛+1
⃦⃦2 ≤ 𝐶𝜏3

∫︁ 𝑡𝑛+1

𝑡𝑛

⃦⃦
𝜕3

𝑡 𝑢(·, 𝑠)
⃦⃦2

d𝑠,⃦⃦
𝛽 · ∇

(︀
�̃�𝑛+1 − 𝑢𝑛+1

)︀⃦⃦2 ≤ 𝐶‖𝛽‖2∞𝜏3
⃦⃦
𝜕2

𝑡∇𝑢
⃦⃦2

𝐿2(𝑡𝑛−1,𝑡𝑛+1;𝐿2(Ω))
,⃦⃦

𝜂𝑛+1
ℎ

⃦⃦2 ≤ 𝐶ℎ2(𝑝+1)
⃦⃦
�̃�𝑛+1

⃦⃦2

𝐻𝑝+1(Ω)
,

𝛾
⃒⃒
𝜂𝑛+1

ℎ

⃒⃒2
𝑠
≤ 𝐶𝛾‖𝛽‖∞ℎ2(𝑝+1/2)

⃦⃦
�̃�𝑛+1

⃦⃦2

𝐻𝑝+1(Ω)⃦⃦√
𝜇∇𝜂𝑛+1

ℎ

⃦⃦
𝐿2(Ω)

≤ 𝜇ℎ2𝑝
⃦⃦
𝑢𝑛+1

⃦⃦2

𝐻𝑝+1(Ω)
.

Therefore, combining the above inequalities we get

𝜏

𝑁−1∑︁
𝑛=1

⃦⃦
𝐿𝑛+1

⃦⃦2

ℎ
≤ 𝐶

(︁
𝜏4
⃦⃦
𝜕3

𝑡 𝑢
⃦⃦2

𝐿2([0,𝑇 ],𝐿2(Ω))
+ ‖𝛽‖2∞𝜏4

⃦⃦
𝜕2

𝑡 𝑢
⃦⃦2

𝐿2([0,𝑇 ],𝐻1(Ω))

)︁
+ 𝐶

(︁
𝜇ℎ2𝑝 + 𝛾‖𝛽‖∞ℎ2(𝑝+1/2) + ‖∇𝛽‖2∞ℎ2(𝑝+1)

)︁
𝜏

𝑁−1∑︁
𝑗=1

⃦⃦
𝑢𝑛+1

⃦⃦2

𝐻𝑝+1(Ω)
. (4.4)

The result now follows if we apply (3.16) and (3.17). �

4.1. Error estimate for the material derivative

In this section we prove error estimates for the material derivative. We start with a lemma that shows that
the projection of the material derivative of the error superconverges. The idea here is to test the perturbation
equation with the projection of the material derivative and then control the residual terms using the error
estimate of the previous section.
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Lemma 4.2. Let 𝑢 be the solution of (2.2) and {𝑢𝑛
ℎ}𝑁

𝑛=0 be the solution of (4.1). Let 𝑇 = 𝜏𝑁 , 𝑝 = 1, 𝛾 > 0
and Pe > 1. Furthermore, suppose that Co is sufficiently small. If 𝑚𝑛+1

ℎ = 𝐷𝜏𝑒
𝑛+1
ℎ + 𝛽 · ∇𝑒𝑛+1

ℎ then

𝜏

𝑁−1∑︁
𝑛=1

ℎ
⃦⃦
𝜋ℎ𝑚

𝑛+1
ℎ

⃦⃦2 ≤ 𝐶ℎ((𝛾 + 1)‖𝛽‖∞ + 1)
(︀
1 + 𝑇

(︀
𝜏‖∇𝛽‖2∞ + 1

)︀)︀
×
(︁
ℎ2(𝑝+1)

(︁
‖𝑢(𝑡0)‖2𝐻𝑝+1(Ω) + ‖𝑢(𝑡0)‖2𝐻𝑝+1(Ω)

)︁
+ G

)︁
𝑀. (4.5)

Proof. Using (4.3) we get

ℎ
⃦⃦
𝜋ℎ𝑚

𝑛+1
ℎ

⃦⃦2
= ℎ

(︀
𝑚𝑛+1

ℎ , 𝜋ℎ𝑚
𝑛+1
ℎ

)︀
Ω

= 𝑆1 + 𝑆2 + 𝑆3,

where

𝑆1 = − ℎ 𝑎
(︀
𝑒𝑛+1
ℎ , 𝜋ℎ𝑚

𝑛+1
ℎ

)︀
,

𝑆2 = − ℎ 𝛾𝑠
(︀
𝑒𝑛+1
ℎ , 𝜋ℎ𝑚

𝑛+1
ℎ

)︀
,

𝑆3 = ℎ𝐿𝑛+1
(︀
𝜋ℎ𝑚

𝑛+1
ℎ

)︀
.

We can easily show the following estimates

𝑆1 ≤
√
𝜇
⃦⃦√

𝜇∇𝑒𝑛+1
ℎ

⃦⃦⃦⃦
𝜋ℎ𝑚

𝑛+1
ℎ

⃦⃦
,

𝑆2 ≤ 𝐶
√
ℎ
√
𝛾
√︀
‖𝛽‖∞

√
𝛾
⃒⃒
𝑒𝑛+1
ℎ

⃒⃒
𝑠

⃦⃦
𝜋ℎ𝑚

𝑛+1
ℎ

⃦⃦
,

𝑆3 ≤
⃦⃦
𝐿𝑛+1

⃦⃦
ℎ

(︁√
𝜇+

√
ℎ
√
𝛾
√︀
‖𝛽‖∞ + ℎ

)︁⃦⃦
𝜋ℎ𝑚

𝑛+1
ℎ

⃦⃦
.

Thus, we get

ℎ
⃦⃦
𝜋ℎ𝑚

𝑛+1
ℎ

⃦⃦2 ≤ 𝐶(𝜇+ ℎ𝛾‖𝛽‖∞)
(︁
𝐸
(︀
𝑒𝑛+1
ℎ

)︀2
+
⃦⃦
𝐿𝑛+1

⃦⃦2

ℎ

)︁
≤ 𝐶ℎ((𝛾 + 1)‖𝛽‖∞ + 1)

(︁
𝐸
(︀
𝑒𝑛+1
ℎ

)︀2
+
⃦⃦
𝐿𝑛+1

⃦⃦2

ℎ

)︁
where we used that Pe > 1. This proves the following:

𝜏

𝑁−1∑︁
𝑛=1

ℎ
⃦⃦
𝜋ℎ𝑚

𝑛+1
ℎ

⃦⃦2 ≤ 𝐶ℎ((𝛾 + 1)‖𝛽‖∞ + 1)

(︃
|||𝑒ℎ|||2 + 𝜏

𝑁−1∑︁
𝑛=1

⃦⃦
𝐿𝑛+1

⃦⃦2

ℎ

)︃
. (4.6)

We have shown (see (4.4)):

𝜏

𝑁−1∑︁
𝑛=1

⃦⃦
𝐿𝑛+1

⃦⃦2

ℎ
≤ 𝐶G.

By using (3.20) we have

|||𝑒ℎ|||2 ≤ 𝐶
(︀
1 + 𝑇

(︀
𝜏‖∇𝛽‖2∞ + 1

)︀)︀(︃⃦⃦
𝑒0ℎ
⃦⃦2

+
⃦⃦
𝑒1ℎ
⃦⃦2

+ 𝜏

𝑁−1∑︁
𝑛=1

⃦⃦
𝐿𝑛+1

⃦⃦2

ℎ

)︃
𝑀.

Thus,

|||𝑒ℎ|||2 ≤ 𝐶
(︀
1 + 𝑇

(︀
𝜏‖∇𝛽‖2∞ + 1

)︀)︀(︁
ℎ2(𝑝+1)

(︁
‖𝑢(𝑡0)‖2𝐻𝑝+1(Ω) + ‖𝑢(𝑡0)‖2𝐻𝑝+1(Ω)

)︁
+ G

)︁
𝑀. (4.7)

�
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We can now prove an optimal estimate for the material derivative. This is achieved by observing that the
stabilization controls the difference of the material derivative applied to the error and its projection on the finite
element space, while the projection itself was shown to superconverge in the previous result.

Theorem 4.3. With the same hypothesis as in Lemma 4.2 the following estimate holds

𝜏

𝑁−1∑︁
𝑛=1

ℎ
⃦⃦
𝑚𝑛+1

ℎ

⃦⃦2 ≤ 𝐶
(︀
𝑇ℎ‖∇𝛽‖2∞ + (‖𝛽‖∞ + ℎ((𝛾 + 1)‖𝛽‖∞ + 1))

(︀
1 + 𝑇

(︀
𝜏‖∇𝛽‖2∞ + 1

)︀)︀)︀
×
(︁
ℎ𝑝+1

(︁
‖𝑢(𝑡0)‖2𝐻𝑝+1(Ω) + ‖𝑢(𝑡1)‖2𝐻𝑝+1(Ω)

)︁
+ G

)︁
M,

where G and M are given in Theorem 4.1.

Proof. The triangle inequality gives

𝜏

𝑁−1∑︁
𝑛=1

ℎ
⃦⃦
𝑚𝑛+1

ℎ

⃦⃦2 ≤ 2𝜏
𝑁−1∑︁
𝑛=1

ℎ
⃦⃦
𝜋ℎ𝑚

𝑛+1
ℎ −𝑚𝑛+1

ℎ

⃦⃦2
+ 2𝜏

𝑁−1∑︁
𝑛=1

ℎ
⃦⃦
𝜋ℎ𝑚

𝑛+1
ℎ

⃦⃦2
.

Using (2.9) we have

𝜏

𝑁−1∑︁
𝑛=1

ℎ
⃦⃦
𝜋ℎ𝑚

𝑛+1
ℎ −𝑚𝑛+1

ℎ

⃦⃦2 ≤ 𝐶

(︃
‖∇𝛽‖2∞ℎ𝜏

𝑁−1∑︁
𝑛=1

⃦⃦
𝑒𝑛+1
ℎ

⃦⃦2
+ 𝜏‖𝛽‖∞

𝑁−1∑︁
𝑛=1

⃒⃒
𝑒𝑛+1
ℎ

⃒⃒2
𝑠

)︃

≤ 𝐶‖∇𝛽‖2∞ℎ𝜏
𝑁−1∑︁
𝑛=1

⃦⃦
𝑒𝑛+1
ℎ

⃦⃦2
+ 𝐶‖𝛽‖∞|||𝑒ℎ|||2.

Applying (4.2) we get

𝜏

𝑁−1∑︁
𝑛=1

⃦⃦
𝑒𝑛+1
ℎ

⃦⃦2 ≤ 𝐶𝑇
(︁
ℎ2(𝑝+1)

(︁
‖𝑢(𝑡0)‖2𝐻2(Ω) + ‖𝑢(𝑡1)‖2𝐻2(Ω)

)︁
+ G

)︁
M

Therefore, also using (4.7) we obtain

𝜏

𝑁−1∑︁
𝑛=1

ℎ
⃦⃦
𝜋ℎ𝑚

𝑛+1
ℎ −𝑚𝑛+1

ℎ

⃦⃦2

≤ 𝐶
(︀
𝑇ℎ‖∇𝛽‖2∞ + ‖𝛽‖∞

(︀
1 + 𝑇

(︀
𝜏‖∇𝛽‖2∞ + 1

)︀)︀)︀(︁
ℎ2(𝑝+1)

(︁
‖𝑢(𝑡0)‖2𝐻2(Ω) + ‖𝑢(𝑡1)‖2𝐻2(Ω)

)︁
+ G

)︁
M.

Thus, combining these inequalities with (4.5) gives the result. �

5. Crank Nicolson IMEX scheme

In this section we will define the Crank Nicolson-IMEX method and prove that it is stable. The Crank
Nicolson-IMEX method will read: Find 𝑢𝑛+1

ℎ ∈ 𝑉ℎ such that for 𝑛 ≥ 1,(︀
𝛿𝑢𝑛+1

ℎ , 𝑣ℎ

)︀
Ω

+ 𝜏𝑐ℎ
(︀
�̂�𝑛+1

ℎ , 𝑣ℎ

)︀
+ 𝜏𝑎

(︀
𝑢𝑛+1

ℎ , 𝑣ℎ

)︀
= 𝜏𝐿𝑛+1(𝑣ℎ), ∀𝑣ℎ ∈ 𝑉ℎ, (5.1)

where 𝑢0
ℎ and 𝑢1

ℎ are given. Here we use the notation

�̂�𝑛+1
ℎ :=

3
2
𝑢𝑛

ℎ −
1
2
𝑢𝑛−1

ℎ =
�̃�𝑛+1

ℎ + 𝑢𝑛
ℎ

2
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𝑢𝑛+1
ℎ :=

𝑢𝑛+1
ℎ + 𝑢𝑛

ℎ

2
·

We see that
�̂�𝑛+1

ℎ = 𝑢𝑛+1
ℎ − 1

2
𝛿𝛿𝑢𝑛+1

ℎ . (5.2)

Here we define the triple norm as:

|||𝑣|||2 :=
𝑁−1∑︁
𝑛=1

𝜏𝐸
(︀
𝑣𝑛+1

)︀2
.

In order to prove a stability result for the Crank–Nicoloson IMEX method, we need two different bounds for∑︀𝑁−1
𝑛=1

⃦⃦
𝛿𝛿𝑢𝑛+1

ℎ

⃦⃦2
. One for the Pe > 1 and one for Pe ≤ 1. The first is as follows.

Lemma 5.1. Let 𝑢ℎ solve (5.1). If Pe > 1 and Co is sufficiently small, then the following estimate holds

𝑁−1∑︁
𝑛=1

⃦⃦
𝛿𝛿𝑢𝑛+1

ℎ

⃦⃦2 ≤ 𝐶Co
𝑁−1∑︁
𝑛=1

⃦⃦
𝛿𝑢𝑛+1

ℎ − 𝑃0

(︀
𝛿𝑢𝑛+1

ℎ

)︀⃦⃦2
+ 𝐶𝜏

𝑁−1∑︁
𝑛=1

⃦⃦
𝐿𝑛+1

⃦⃦2

ℎ
+ 𝐶Co|||𝑢𝑛+1

ℎ |||2. (5.3)

Moreover, if Pe > 1 and max{Co4/3,Co} is sufficiently small then we have the following estimate

𝑁−1∑︁
𝑛=1

⃦⃦
𝛿𝛿𝑢𝑛+1

ℎ

⃦⃦2 ≤ 𝐶𝜏

𝑁−1∑︁
𝑛=1

⃦⃦
𝐿𝑛+1

⃦⃦2

ℎ
+ 𝐶Co|||𝑢𝑛+1

ℎ |||2 + 𝜏

𝑁−1∑︁
𝑛=1

⃦⃦
𝑢𝑛+1

ℎ

⃦⃦2
. (5.4)

Proof. We see from (5.1) that(︀
𝛿𝛿𝑢𝑛+1

ℎ , 𝑣ℎ

)︀
Ω

+ 𝜏𝑐ℎ
(︀
𝛿�̂�𝑛+1

ℎ , 𝑣ℎ

)︀
+ 𝜏𝑎

(︀
𝛿𝑢𝑛+1

ℎ , 𝑣ℎ

)︀
= 𝜏𝛿𝐿𝑛+1(𝑣ℎ), ∀𝑣ℎ ∈ 𝑉ℎ.

Therefore, we easily have

𝑁−1∑︁
𝑛=1

⃦⃦
𝛿𝛿𝑢𝑛+1

ℎ

⃦⃦2
= 𝑆1 + 𝑆2 + 𝑆3 + 𝑆4,

where

𝑆1 = − 𝜏

𝑁−1∑︁
𝑛=1

𝑐
(︀
𝛿�̂�𝑛+1

ℎ , 𝛿𝛿𝑢𝑛+1
ℎ

)︀
(5.5a)

𝑆2 = − 𝜏

𝑁−1∑︁
𝑛=1

𝛾𝑠
(︀
𝛿�̂�𝑛+1

ℎ , 𝛿𝛿𝑢𝑛+1
ℎ

)︀
(5.5b)

𝑆3 = − 𝜏

𝑁−1∑︁
𝑛=1

𝑎
(︀
𝛿𝑢𝑛+1

ℎ , 𝛿𝛿𝑢𝑛+1
ℎ

)︀
(5.5c)

𝑆4 = 𝜏

𝑁−1∑︁
𝑛=1

𝛿𝐿𝑛+1
(︀
𝛿𝛿𝑢𝑛+1

ℎ

)︀
. (5.5d)

We start with an estimate of 𝑆2. Using (5.2) and inverse estimates followed by Young’s inequality we get:

𝑆2 = − 𝜏

𝑁−1∑︁
𝑛=1

𝛾𝑠
(︀
𝛿𝑢𝑛+1

ℎ , 𝛿𝛿𝑢𝑛+1
ℎ

)︀
+
𝜏

2

𝑁−1∑︁
𝑛=1

𝛾𝑠
(︀
𝛿𝛿𝛿𝑢𝑛+1

ℎ , 𝛿𝛿𝑢𝑛+1
ℎ

)︀
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≤
(︂
𝛾𝐶Co +

1
32

)︂𝑁−1∑︁
𝑛=1

⃦⃦
𝛿𝛿𝑢𝑛+1

ℎ

⃦⃦2
+ Co𝜏

𝑁−1∑︁
𝑛=1

𝛾
⃒⃒
𝑢𝑛+1

ℎ

⃒⃒2
𝑠
.

Similarly, we can show that

𝑆3 ≤
1
32

𝑁−1∑︁
𝑛=1

⃦⃦
𝛿𝛿𝑢𝑛+1

ℎ

⃦⃦2
+ 𝐶

Co
Pe
𝜏

𝑁−1∑︁
𝑛=1

⃦⃦√
𝜇∇
(︀
𝑢𝑛+1

ℎ

)︀⃦⃦2
.

Hence, by our assumption that Pe > 1 we get that

𝑆2 + 𝑆3 ≤
(︂
𝐶
√

Co +
1
16

)︂𝑁−1∑︁
𝑛=1

⃦⃦
𝛿𝛿𝑢𝑛+1

ℎ

⃦⃦2
+ 𝐶Co|||𝑢𝑛+1

ℎ |||2.

We can easily obtain using (3.2a) and (3.2b)

𝑆4 ≤
1
8

𝑁−1∑︁
𝑛=1

⃦⃦
𝛿𝛿𝑢𝑛+1

ℎ

⃦⃦2
+ 𝐶𝜏

(︃√
Co√
Pe

+
√︀
𝛾Co +

√
𝜏

)︃2 𝑁−1∑︁
𝑛=1

⃦⃦
𝐿𝑛+1

⃦⃦2

ℎ
.

We now prove the estimate (5.3). We easily can show that using an inverse estimate that

𝑆1 ≤
1
8

𝑁−1∑︁
𝑛=1

⃦⃦
𝛿𝛿𝑢𝑛+1

ℎ

⃦⃦2
+ 𝐶Co

𝑁−1∑︁
𝑛=1

⃦⃦
𝛿𝑢𝑛+1

ℎ − 𝑃0

(︀
𝛿𝑢𝑛+1

ℎ

)︀⃦⃦2
.

Thus, using that Pe > 1 and the fact that Co is sufficiently small we obtain:

𝑁−1∑︁
𝑛=1

⃦⃦
𝛿𝛿𝑢𝑛+1

ℎ

⃦⃦2 ≤ 𝐶Co
𝑁−1∑︁
𝑛=1

⃦⃦
𝛿𝑢𝑛+1

ℎ − 𝑃0

(︀
𝛿𝑢𝑛+1

ℎ

)︀⃦⃦2
+ 𝐶𝜏

𝑁−1∑︁
𝑛=1

⃦⃦
𝐿𝑛+1

⃦⃦2

ℎ
+ 𝐶

√
Co|||𝑢𝑛+1

ℎ |||2.

This proves (5.3).
To prove (5.4) we write 𝑆1.

𝑆1 = 𝜏

𝑁−1∑︁
𝑛=1

𝑐
(︀
𝛿𝛿𝑢𝑛+1

ℎ , 𝛿�̂�𝑛+1
ℎ

)︀
= 𝜏

𝑁−1∑︁
𝑛=1

(︀
𝜓𝑛+1

ℎ , 𝛿�̂�𝑛+1
ℎ

)︀
Ω

=
3𝜏
2

𝑁−1∑︁
𝑛=1

(︀
𝜓𝑛+1

ℎ , 𝛿𝑢𝑛
ℎ

)︀
Ω
− 𝜏

2

𝑁−1∑︁
𝑛=1

(︀
𝜓𝑛+1

ℎ , 𝛿𝑢𝑛−1
ℎ

)︀
Ω
,

where 𝜓𝑛
ℎ = 𝐶ℎ(𝛿𝛿𝑢𝑛

ℎ).
We estimate

(︀
𝜓𝑛+1

ℎ , 𝛿𝑢𝑛
ℎ

)︀
Ω

. Using (5.1) we write

𝜏
(︀
𝜓𝑛+1

ℎ , 𝛿𝑢𝑛
ℎ

)︀
Ω

= 𝑀1 +𝑀2 +𝑀3 +𝑀4,

where

𝑀1 := − 𝜏2𝑐
(︀
�̂�𝑛

ℎ, 𝜓
𝑛+1
ℎ

)︀
,

𝑀2 := − 𝜏2𝛾𝑠
(︀
�̂�𝑛

ℎ, 𝜓
𝑛+1
ℎ

)︀
,

𝑀3 := − 𝜏2𝑎
(︀
𝑢𝑛

ℎ, 𝜓
𝑛+1
ℎ

)︀
,

𝑀4 := 𝜏2𝐿𝑛
(︀
𝜓𝑛+1

ℎ

)︀
.

Using inverse estimates and (2.13) we obtain

𝑀1 ≤ 𝐶
√
𝜏
(︀
Co4/3

)︀3/2‖�̂�𝑛
ℎ‖
⃦⃦
𝛿𝛿𝑢𝑛+1

ℎ

⃦⃦
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≤ 𝐶
(︀
Co4/3

)︀3/2
𝜏‖�̂�𝑛

ℎ‖
2 + 𝐶

(︀
Co4/3

)︀3/2⃦⃦
𝛿𝛿𝑢𝑛+1

ℎ

⃦⃦2
.

To estimate 𝑀2, we use inverse estimates and (2.14) to obtain

𝑀2 = − 𝜏2𝛾𝑠
(︀
𝑢𝑛

ℎ, 𝜓
𝑛+1
ℎ

)︀
+
𝜏2

2
𝛾𝑠
(︀
𝛿𝛿𝑢𝑛

ℎ, 𝜓
𝑛+1
ℎ

)︀
≤ 𝐶𝛾Co2

(︁
‖𝛿𝛿𝑢𝑛

ℎ‖
2 +

⃦⃦
𝛿𝛿𝑢𝑛+1

ℎ

⃦⃦2
)︁

+ 𝜏Co2𝛾|𝑢𝑛
ℎ|

2
𝑠.

Similarly, we get

𝑀3 ≤ 𝐶
Co√
Pe

⃦⃦
𝛿𝛿𝑢𝑛+1

ℎ

⃦⃦2
+ 𝜏

Co√
Pe
‖√𝜇∇(𝑢𝑛

ℎ)‖2.

Finally, again using inverse estimates and (2.14) to obtain

𝑀4 ≤ 𝐶

(︂
Co3

Pe
+ 𝛾2Co3 + Co2

)︂⃦⃦
𝛿𝛿𝑢𝑛+1

ℎ

⃦⃦2
+
𝜏

2
‖𝐿𝑛‖2ℎ.

Hence, using that Pe > 1 and that we can take Co ≤ 1 gives

3𝜏
2

𝑁−1∑︁
𝑛=1

(︀
𝜓𝑛+1

ℎ , 𝛿𝑢𝑛
ℎ

)︀
Ω
≤ 𝐶

(︁(︀
Co4/3

)︀3/2 + Co + Co3𝛾2
)︁𝑁−1∑︁

𝑛=1

⃦⃦
𝛿𝛿𝑢𝑛+1

ℎ

⃦⃦2
+ Co2|||𝑢ℎ|||2

+
𝜏

2

𝑁−1∑︁
𝑛=1

⃦⃦
𝐿𝑛+1

⃦⃦2

ℎ
+ 𝐶

(︀
Co4/3

)︀3/2
𝜏

𝑁−1∑︁
𝑛=1

⃦⃦
𝑢𝑛+1

⃦⃦2
.

Similarly, we can prove the same estimate for − 𝜏
2

∑︀𝑁−1
𝑛=1

(︀
𝜓𝑛+1

ℎ , 𝛿𝑢𝑛−1
ℎ

)︀
Ω

and so we get

𝑆1 ≤ 𝐶
(︁(︀

Co4/3

)︀3/2 + Co + Co3𝛾2
)︁𝑁−1∑︁

𝑛=1

⃦⃦
𝛿𝛿𝑢𝑛+1

ℎ

⃦⃦2
+ Co2|||𝑢ℎ|||2

+ 𝜏

𝑁−1∑︁
𝑛=1

⃦⃦
𝐿𝑛+1

⃦⃦2

ℎ
+ 𝐶

(︀
Co4/3

)︀3/2
𝜏

𝑁−1∑︁
𝑛=1

⃦⃦
𝑢𝑛+1

⃦⃦2
.

If we combine the estimates of 𝑆′𝑖𝑠 and take max{Co4/3,Co} we obtain (5.4). �

The following alternative estimate will be useful when Pe ≤ 1.

Lemma 5.2. Assume that 𝜏 ≤ 1 and Co is sufficiently small. Let 𝑢ℎ solve (5.1) then the following estimate
holds

𝑁−1∑︁
𝑛=1

⃦⃦
𝛿𝛿𝑢𝑛+1

ℎ

⃦⃦2 ≤ − 𝜏
(︁⃦⃦√

𝜇∇
(︀
𝛿𝑢𝑁

ℎ

)︀⃦⃦2 −
⃦⃦√

𝜇∇
(︀
𝛿𝑢1

ℎ

)︀⃦⃦2
)︁

+ 2
𝑁−1∑︁
𝑛=0

⃦⃦
𝛿𝐿𝑛+1

⃦⃦2

ℎ

+ 𝐶𝜏Co(Pe + 1)
𝑁−1∑︁
𝑛=1

𝐸
(︀
𝑢𝑛+1

ℎ

)︀2
+ 𝜏2

𝑁−1∑︁
𝑛=1

⃦⃦√
𝜇∇
(︀
𝛿𝑢𝑛+1

ℎ

)︀⃦⃦2
.

Proof.

𝑁−1∑︁
𝑛=1

⃦⃦
𝛿𝛿𝑢𝑛+1

ℎ

⃦⃦2
= 𝑆1 + 𝑆2 + 𝑆3 + 𝑆4,
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where 𝑆′𝑖𝑠 are given in (5.5).
We first notice that 𝑎

(︀
𝛿𝑢𝑛+1

ℎ , 𝛿𝛿𝑢𝑛+1
ℎ

)︀
= 1

2

(︀
𝑎
(︀
𝛿𝑢𝑛+1

ℎ , 𝛿𝑢𝑛+1
ℎ

)︀
− 𝑎(𝛿𝑢𝑛

ℎ, 𝛿𝑢
𝑛
ℎ)
)︀
. Hence,

𝑆3 = −𝜏
2

(︁⃦⃦√
𝜇∇
(︀
𝛿𝑢𝑁

ℎ

)︀⃦⃦2 −
⃦⃦√

𝜇∇
(︀
𝛿𝑢1

ℎ

)︀⃦⃦2
)︁
.

Using (5.2) we obtain

𝑆1 = −𝜏
𝑁−1∑︁
𝑛=1

𝑐
(︀
𝛿𝑢𝑛+1

ℎ , 𝛿𝛿𝑢𝑛+1
ℎ

)︀
+
𝜏

2

𝑁−1∑︁
𝑛=1

𝑐
(︀
𝛿
(︀
𝛿𝛿𝑢𝑛+1

ℎ

)︀
, 𝛿𝛿𝑢𝑛+1

ℎ

)︀
.

We then see that

−𝜏
𝑁−1∑︁
𝑛=1

𝑐
(︀
𝛿𝑢𝑛+1

ℎ , 𝛿𝛿𝑢𝑛+1
ℎ

)︀
≤ 𝐶𝜏‖𝛽‖∞√

𝜇

𝑁−1∑︁
𝑛=1

⃦⃦√
𝜇∇
(︀
𝛿𝑢𝑛+1

ℎ

)︀⃦⃦⃦⃦
𝛿𝛿𝑢𝑛+1

ℎ

⃦⃦
≤ 𝐶𝜏CoPe

𝑁−1∑︁
𝑛=1

⃦⃦√
𝜇∇
(︀
𝛿𝑢𝑛+1

ℎ

)︀⃦⃦2
+

1
16

𝑁−1∑︁
𝑛=1

⃦⃦
𝛿𝛿𝑢𝑛+1

ℎ

⃦⃦2
.

Similarly, now using inverse estimates, we get

𝜏

2

𝑁−1∑︁
𝑛=1

𝑐
(︀
𝛿
(︀
𝛿𝛿𝑢𝑛+1

ℎ

)︀
, 𝛿𝛿𝑢𝑛+1

ℎ

)︀
≤ 𝐶Co

𝑁−1∑︁
𝑛=1

⃦⃦
𝛿
(︀
𝛿𝛿𝑢𝑛+1

ℎ

)︀⃦⃦⃦⃦
𝛿𝛿𝑢𝑛+1

ℎ

⃦⃦
≤ 𝐶Co

𝑁−1∑︁
𝑛=1

⃦⃦
𝛿𝛿𝑢𝑛+1

ℎ

⃦⃦2
.

Hence, we have shown that

𝑆1 ≤ 𝐶𝜏CoPe
𝑁−1∑︁
𝑛=1

⃦⃦√
𝜇∇
(︀
𝛿𝑢𝑛+1

ℎ

)︀⃦⃦2
+
(︂

1
16

+ 𝐶Co
)︂𝑁−1∑︁

𝑛=1

⃦⃦
𝛿𝛿𝑢𝑛+1

ℎ

⃦⃦2
.

In a very similar fashion we can prove that

𝑆2 ≤ 𝐶𝜏Co
𝑁−1∑︁
𝑛=1

𝛾
⃒⃒
𝛿𝑢𝑛+1

ℎ

⃒⃒2
𝑠

+
(︂

1
16

+ 𝐶𝛾Co
)︂𝑁−1∑︁

𝑛=1

⃦⃦
𝛿𝛿𝑢𝑛+1

ℎ

⃦⃦2
.

Therefore,

𝑆1 + 𝑆2 ≤
(︂

1
8

+ 𝐶(𝛾 + 1)Co
)︂𝑁−1∑︁

𝑛=1

⃦⃦
𝛿𝛿𝑢𝑛+1

ℎ

⃦⃦2
+ 𝐶𝜏Co(Pe + 1)

𝑁−1∑︁
𝑛=1

𝐸
(︀
𝑢𝑛+1

ℎ

)︀2
.

Here we used that
∑︀𝑁−1

𝑛=1 𝐸
(︀
𝛿𝑢𝑛+1

ℎ

)︀2 ≤ 𝐶
∑︀𝑁−1

𝑛=1 𝐸
(︀
𝑢𝑛+1

ℎ

)︀2
.

To bound 𝑆4 we use the definition of the operator norm.

𝑆4 ≤𝜏
𝑁−1∑︁
𝑛=1

√︁
𝐸
(︀
𝛿𝛿𝑢𝑛+1

ℎ

)︀2
+
⃦⃦
𝛿𝛿𝑢𝑛+1

ℎ

⃦⃦2 ⃦⃦
𝛿𝐿𝑛+1

⃦⃦
ℎ

≤
𝑁−1∑︁
𝑛=1

⃦⃦
𝛿𝐿𝑛+1

⃦⃦2

ℎ
+
𝜏2

4

𝑁−1∑︁
𝑛=1

𝐸
(︀
𝛿𝛿𝑢𝑛+1

ℎ

)︀2
+
𝜏2

4

𝑁−1∑︁
𝑛=1

⃦⃦
𝛿𝛿𝑢𝑛+1

ℎ

⃦⃦2
.



IMPLICIT-EXPLICIT MULTISTEP FORMULATIONS FOR FINITE ELEMENT DISCRETISATIONS 371

We can bound the energy as follows.

𝜏2

4

𝑁−1∑︁
𝑛=1

𝐸
(︀
𝛿𝛿𝑢𝑛+1

ℎ

)︀2
=
𝜏2

4

𝑁−1∑︁
𝑛=1

⃦⃦√
𝜇∇
(︀
𝛿𝛿𝑢𝑛+1

ℎ

)︀⃦⃦2
+
𝜏2

4

𝑁−1∑︁
𝑛=1

𝛾
⃒⃒
𝛿𝛿𝑢𝑛+1

ℎ

⃒⃒2
𝑠

≤ 𝜏2
𝑁−1∑︁
𝑛=1

⃦⃦√
𝜇∇
(︀
𝛿𝑢𝑛+1

ℎ

)︀⃦⃦2
+ 𝐶Co𝜏

𝑁−1∑︁
𝑛=1

⃦⃦
𝛿𝛿𝑢𝑛+1

ℎ

⃦⃦2
.

Hence,

𝑆4 ≤
𝑁−1∑︁
𝑛=1

⃦⃦
𝛿𝐿𝑛+1

⃦⃦2

ℎ
+ 𝜏2

𝑁−1∑︁
𝑛=1

⃦⃦√
𝜇∇
(︀
𝛿𝑢𝑛+1

ℎ

)︀⃦⃦2
+
(︂
𝜏2

4
+ 𝐶Co𝜏

)︂𝑁−1∑︁
𝑛=1

⃦⃦
𝛿𝛿𝑢𝑛+1

ℎ

⃦⃦2
.

We arrive at

𝑁−1∑︁
𝑛=1

⃦⃦
𝛿𝛿𝑢𝑛+1

ℎ

⃦⃦2 ≤ − 𝜏

2

(︁⃦⃦√
𝜇∇
(︀
𝛿𝑢𝑁

ℎ

)︀⃦⃦2 −
⃦⃦√

𝜇∇
(︀
𝛿𝑢2

ℎ

)︀⃦⃦2
)︁

+
𝑁−1∑︁
𝑛=1

⃦⃦
𝛿𝐿𝑛+1

⃦⃦2

ℎ

+ 𝐶𝜏Co(Pe + 1)
𝑁−1∑︁
𝑛=1

𝐸
(︀
𝑢𝑛+1

ℎ

)︀2
+ 𝜏2

𝑁−1∑︁
𝑛=1

⃦⃦√
𝜇∇
(︀
𝛿𝑢𝑛+1

ℎ

)︀⃦⃦2

+
(︂
𝜏2

4
+

1
8

+ 𝐶Co(1 + 𝜏)
)︂𝑁−1∑︁

𝑛=1

⃦⃦
𝛿𝛿𝑢𝑛+1

ℎ

⃦⃦2
.

The result follows by taking Co sufficiently small so that
(︁

𝜏2

4 + 1
8 + 𝐶Co(1 + 𝜏)

)︁
≤ 1

2 . �

In the case 𝑝 = 1 (and Pe > 1) we will need an auxiliarly result. This is the Crank–Nicolson equivalent to
Lemma 3.1.

Lemma 5.3. Let 𝑢ℎ solve (5.1).
If 𝑝 = 1 and 𝛾 > 0 then the following estimate holds⃦⃦

𝛿𝑢𝑛+1
ℎ − 𝑃0

(︀
𝛿𝑢𝑛+1

ℎ

)︀⃦⃦
≤ 𝐶

√
𝜏Co

(︂
1√
Pe

+
√
𝛾 +

1
√
𝛾

)︂
𝐸
(︀
𝑢𝑛+1

ℎ

)︀
+ 𝐶𝛾Co

⃦⃦
𝛿𝛿𝑢𝑛+1

ℎ

⃦⃦
+ 𝐶𝜏‖∇𝛽‖∞

⃦⃦
�̂�𝑛+1

ℎ

⃦⃦
+ 𝐶

√
𝜏

(︃√
Co√
Pe

+
√︀
𝛾Co +

√
𝜏

)︃⃦⃦
𝐿𝑛+1

⃦⃦
ℎ
. (5.6)

If 𝑝 ≥ 1 ⃦⃦
𝛿𝑢𝑛+1

ℎ

⃦⃦
≤ 𝐶

√
𝜏Co

(︂
1√
Pe

+
√
𝛾 +

1
√
𝛾

)︂
𝐸
(︀
𝑢𝑛+1

ℎ

)︀
+ 𝐶𝛾Co

⃦⃦
𝛿𝛿𝑢𝑛+1

ℎ

⃦⃦
+ 𝐶

√
𝜏

(︃√
Co√
Pe

+
√︀
𝛾Co +

√
𝜏

)︃⃦⃦
𝐿𝑛+1

⃦⃦
ℎ

+ 𝐶‖𝛽‖∞
𝜏

ℎ

⃦⃦
�̂�𝑛+1

ℎ

⃦⃦
. (5.7)

Proof. We first prove (5.6). Let 𝑦ℎ = 𝛿𝑢𝑛+1
ℎ and then we have by (5.1)

‖𝑦ℎ − 𝑃0𝑦ℎ‖2 = (𝑦ℎ, 𝑦ℎ − 𝑃0(𝑦ℎ))Ω
= (𝑦ℎ, 𝜋ℎ(𝑦ℎ − 𝑃0(𝑦ℎ)))Ω
= − 𝜏𝑐ℎ

(︀
�̂�𝑛+1

ℎ , 𝜋ℎ(𝑦ℎ − 𝑃0(𝑦ℎ))
)︀
− 𝜏𝑎

(︀
𝑢𝑛+1

ℎ , 𝜋ℎ(𝑦ℎ − 𝑃0(𝑦ℎ))
)︀
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+ 𝜏𝐿𝑛+1(𝜋ℎ(𝑦ℎ − 𝑃0(𝑦ℎ))).

We use the Cauchy–Schwarz inequality followed inverse estimates to bound the symmetric terms

−𝜏𝑎
(︀
𝑢𝑛+1

ℎ , 𝜋ℎ(𝑦ℎ − 𝑃0(𝑦ℎ))
)︀
≤ 𝐶

√
𝜇𝜏

ℎ

⃦⃦√
𝜇∇𝑢𝑛+1

ℎ

⃦⃦
‖𝑦ℎ − 𝑃0(𝑦ℎ)‖

≤ 𝐶

√
𝜏Co√
Pe

⃦⃦√
𝜇∇𝑢𝑛+1

ℎ

⃦⃦
‖𝑦ℎ − 𝑃0(𝑦ℎ)‖,

and for the stabilization we apply (2.12)

−𝜏𝛾𝑠
(︀
�̂�𝑛+1

ℎ , 𝜋ℎ(𝑦ℎ − 𝑃0(𝑦ℎ))
)︀
≤ 𝐶

√
𝜏
√︀
𝛾Co

√
𝛾
⃒⃒
�̂�𝑛+1

ℎ

⃒⃒
𝑠
‖𝑦ℎ − 𝑃0(𝑦ℎ)‖

≤ 𝐶
(︁√

𝜏
√︀
𝛾Co

√
𝛾
⃒⃒
𝑢𝑛+1

ℎ

⃒⃒
𝑠

+ 𝛾Co
⃦⃦
𝛿𝛿𝑢𝑛+1

ℎ

⃦⃦)︁
‖𝑦ℎ − 𝑃0(𝑦ℎ)‖. (5.8)

Next we bound 𝜏𝐿𝑛+1(𝜋ℎ(𝑦ℎ − 𝑃0(𝑦ℎ))) using (3.4) and (3.3).

𝜏𝐿𝑛+1(𝜋ℎ(𝑦ℎ − 𝑃0(𝑦ℎ))) ≤ 𝜏
⃦⃦
𝐿𝑛+1

⃦⃦
ℎ

√︁
𝐸(𝜋ℎ(𝑦ℎ − 𝑃0(𝑦ℎ)))2 + ‖𝜋ℎ(𝑦ℎ − 𝑃0(𝑦ℎ))‖2

≤ 𝐶
√
𝜏

(︃√
Co√
Pe

+
√︀
𝛾Co +

√
𝜏

)︃⃦⃦
𝐿𝑛+1

⃦⃦
ℎ
‖𝑦ℎ − 𝑃0(𝑦ℎ)‖.

It only remains to bound the contribution from the form 𝑐.

−𝜏𝑐
(︀
�̂�𝑛+1

ℎ , 𝜋ℎ(𝑦ℎ − 𝑃0(𝑦ℎ))
)︀

= − 𝜏
(︀
(𝛽 − 𝛽0) · ∇�̂�𝑛+1

ℎ , 𝜋ℎ(𝑦ℎ − 𝑃0(𝑦ℎ))
)︀
Ω

− 𝜏
(︀
𝛽0 · ∇�̂�𝑛+1

ℎ − 𝑤𝑛+1
ℎ , (𝐼 − 𝜋ℎ)(𝑦ℎ − 𝑃0(𝑦ℎ))

)︀
Ω
.

Here 𝑤ℎ ∈ 𝑉ℎ is arbitrary. Note that we crucially used that 𝑝 = 1 which implies that 𝛽0 · ∇�̂�𝑛+1
ℎ ∈𝑊ℎ.

Hence, using (2.6) and (2.7) we obtain

−𝜏𝑐
(︀
�̂�𝑛+1

ℎ , 𝜋ℎ(𝑦ℎ − 𝑃0(𝑦ℎ))
)︀
≤ 𝐶𝜏

(︁
‖∇𝛽‖∞

⃦⃦
�̂�𝑛+1

ℎ

⃦⃦
+ ‖𝛽‖1/2

∞ ℎ−1/2
⃒⃒
�̂�𝑛+1

ℎ

⃒⃒
𝑠

)︁
‖𝑦ℎ − 𝑃0(𝑦ℎ)‖

≤ 𝐶
√
𝜏

(︂√
𝜏‖∇𝛽‖∞

⃦⃦
�̂�𝑛+1

ℎ

⃦⃦
+
√

Co
1
√
𝛾

√
𝛾|�̂�𝑛+1

ℎ |𝑠
)︂
‖𝑦ℎ − 𝑃0(𝑦ℎ)‖.

Finally, by the triangle inequality and (2.12) we have the bound
⃒⃒
�̂�𝑛+1

ℎ

⃒⃒
𝑠
≤
⃒⃒
𝑢𝑛+1

ℎ

⃒⃒
𝑠
+ 𝐶

√
Co√
𝜏

⃦⃦
𝛿𝛿𝑢𝑛+1

ℎ

⃦⃦
. Combining

the above inequalities gives (5.6).
Now we prove (5.7). Using (5.1) we have

‖𝑦ℎ‖2 = −𝜏𝑐
(︀
�̂�𝑛+1

ℎ , 𝑦ℎ

)︀
− 𝜏𝛾𝑠

(︀
�̂�𝑛+1

ℎ , 𝑦ℎ

)︀
− 𝜏𝑎

(︀
𝑢𝑛+1

ℎ , 𝑦ℎ

)︀
+ 𝜏𝐿𝑛+1(𝑦ℎ).

Similar to what we did above we can show that

−𝜏𝛾𝑠
(︀
�̂�𝑛+1

ℎ , 𝑦ℎ

)︀
− 𝜏𝑎

(︀
𝑢𝑛+1

ℎ , 𝑦ℎ

)︀
+ 𝜏𝐿𝑛+1(𝑦ℎ) ≤ 𝐶

√
𝜏Co√
Pe

⃦⃦√
𝜇∇𝑢𝑛+1

ℎ

⃦⃦
‖𝑦ℎ‖

+ 𝐶
(︁√

𝜏
√︀
𝛾Co

√
𝛾
⃒⃒
𝑢𝑛+1

ℎ

⃒⃒
𝑠

+ 𝛾Co
⃦⃦
𝛿𝛿𝑢𝑛+1

ℎ

⃦⃦)︁
‖𝑦ℎ‖

+ 𝐶
√
𝜏

(︃√
Co√
Pe

+
√︀
𝛾Co +

√
𝜏

)︃⃦⃦
𝐿𝑛+1

⃦⃦
ℎ
‖𝑦ℎ‖.

We then bound the remaining term using inverse estimates

−𝜏𝑐
(︀
�̂�𝑛+1

ℎ , 𝑦ℎ

)︀
≤ 𝐶𝜏

ℎ
‖𝛽‖∞

⃦⃦
�̂�𝑛+1

ℎ

⃦⃦
‖𝑦ℎ‖.

Combining the above estimates proves (5.7). �
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Corollary 5.4. Let 𝑢ℎ solve (5.1).
Let 𝑝 = 1, Pe > 1 and 𝛾 > 0. If Co is sufficiently small the following estimate holds

𝑁−1∑︁
𝑛=1

⃦⃦
𝛿𝛿𝑢𝑛+1

ℎ

⃦⃦2
+

𝑁−1∑︁
𝑛=1

⃦⃦
𝛿𝑢𝑛+1

ℎ − 𝑃0

(︀
𝛿𝑢𝑛+1

ℎ

)︀⃦⃦2 ≤ 𝐶Co||
⃒⃒
𝑢𝑛+1

ℎ

⃒⃒
||2 + 𝐶𝜏2‖∇𝛽‖2∞

𝑁−1∑︁
𝑛=0

⃦⃦
𝑢𝑛+1

ℎ

⃦⃦2
+ 𝐶𝜏

𝑁−1∑︁
𝑛=0

⃦⃦
𝐿𝑛+1

⃦⃦2

ℎ
.

(5.9)

Let 𝑝 ≥ 1 and Pe > 1. If max{Co,Co4/3} is sufficiently small the following estimate holds

𝑁−1∑︁
𝑛=1

⃦⃦
𝛿𝑢𝑛+1

ℎ

⃦⃦2 ≤ 𝐶Co|||𝑢ℎ|||2 + 𝐶𝜏

𝑁−1∑︁
𝑛=1

⃦⃦
𝐿𝑛+1

⃦⃦2

ℎ
+ 𝐶

(︁√
𝜏
(︀
Co4/3

)︀2 + 𝜏
)︁𝑁−1∑︁

𝑛=1

⃦⃦
𝑢𝑛+1

ℎ

⃦⃦2
. (5.10)

Proof. We first prove (5.9). From (5.6) we get

𝑁−1∑︁
𝑛=1

⃦⃦
𝛿𝑢𝑛+1

ℎ − 𝑃0

(︀
𝛿𝑢𝑛+1

ℎ

)︀⃦⃦2 ≤ 𝐶Co|||𝑢ℎ|||2 + 𝐶𝜏2‖∇𝛽‖2∞
𝑁−1∑︁
𝑛=1

⃦⃦
𝑢𝑛+1

ℎ

⃦⃦2
+ 𝐶𝜏

𝑁−1∑︁
𝑛=1

⃦⃦
𝐿𝑛+1

⃦⃦2

ℎ
+ 𝐶

𝑁−1∑︁
𝑛=0

⃦⃦
𝛿𝛿𝑢𝑛+1

ℎ

⃦⃦2
.

Using (5.3) we thus obtain

𝑁−1∑︁
𝑛=1

⃦⃦
𝛿𝑢𝑛+1

ℎ − 𝑃0

(︀
𝛿𝑢𝑛+1

ℎ

)︀⃦⃦2 ≤ 𝐶Co||
⃒⃒
𝑢𝑛+1

ℎ

⃒⃒
||2 + 𝐶𝜏2‖∇𝛽‖2∞

𝑁−1∑︁
𝑛=1

⃦⃦
𝑢𝑛+1

ℎ

⃦⃦2

+ 𝐶𝜏

𝑁−1∑︁
𝑛=1

⃦⃦
𝐿𝑛+1

⃦⃦2

ℎ
+ 𝐶Co

𝑁−1∑︁
𝑛=0

⃦⃦
𝛿𝑢𝑛+1

ℎ − 𝑃0

(︀
𝛿𝑢𝑛+1

ℎ

)︀⃦⃦2
.

If Co is sufficiently small we get

𝑁−1∑︁
𝑛=1

⃦⃦
𝛿𝑢𝑛+1

ℎ − 𝑃0

(︀
𝛿𝑢𝑛+1

ℎ

)︀⃦⃦2 ≤ 𝐶Co||
⃒⃒
𝑢𝑛+1

ℎ

⃒⃒
||2 + 𝐶𝜏2‖∇𝛽‖2∞

𝑁−1∑︁
𝑛=1

⃦⃦
𝑢𝑛+1

ℎ

⃦⃦2
+ 𝐶𝜏

𝑁−1∑︁
𝑛=1

⃦⃦
𝐿𝑛+1

⃦⃦2

ℎ
.

The bound for
∑︀𝑁−1

𝑛=1

⃦⃦
𝛿𝛿𝑢𝑛+1

ℎ

⃦⃦2
follows from this and using (5.3) again.

Now we prove (5.10). From (5.7) we get

𝑁−1∑︁
𝑛=1

⃦⃦
𝛿𝑢𝑛+1

ℎ

⃦⃦2 ≤ 𝐶Co|||𝑢ℎ|||2 + 𝐶𝜏

𝑁−1∑︁
𝑛=1

⃦⃦
𝐿𝑛+1

⃦⃦2

ℎ
+ 𝐶

𝑁−1∑︁
𝑛=0

⃦⃦
𝛿𝛿𝑢𝑛+1

ℎ

⃦⃦2
+
𝐶𝜏2‖𝛽‖2∞

ℎ2

𝑁−1∑︁
𝑛=1

⃦⃦
𝑢𝑛+1

ℎ

⃦⃦2
.

The estimate (5.10) now follows from (5.4) and using the definiton of Co4/3. �

We can now proceed and prove stability results for the extrapolated Crank–Nicolson scheme. The main ideas
used are similar to the BDF2 case, but requires careful adaption to the Crank–Nicolson scheme, since this
scheme does not have the same favorable dissipation properties as the BDF2 scheme.

Theorem 5.5. Let 𝑇 = 𝑁𝜏 . Suppose that Co is chosen sufficiently small only depending on geometric constants
of the mesh and 𝛾. For {𝑢𝑛

ℎ} solving (5.1) we have the following bounds:
If Pe ≤ 1 then for all 𝑝 ≥ 1, ⃦⃦

𝑢𝑁
ℎ

⃦⃦2
+ 𝜏
⃦⃦√

𝜇∇
(︀
𝛿𝑢𝑁

ℎ

)︀⃦⃦2 ≤
(︀
1 + 𝑇𝑒𝑇

)︀
𝑀, (5.11)
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where

𝑀 = 𝜏
⃦⃦√

𝜇∇
(︀
𝛿𝑢1

ℎ

)︀⃦⃦2
+
⃦⃦
𝑢1

ℎ

⃦⃦2
+ 16𝜏

𝑁−1∑︁
𝑛=1

⃦⃦
𝐿𝑛+1

⃦⃦2

ℎ
+ 4

𝑁−1∑︁
𝑛=1

⃦⃦
𝛿𝐿𝑛+1

⃦⃦2

ℎ
.

If Pe > 1 and 𝑝 = 1, 𝛾 > 0 then

⃦⃦
𝑢𝑁

ℎ

⃦⃦2 ≤

(︃
2
⃦⃦
𝑢1

ℎ

⃦⃦2
+
⃦⃦
𝑢2

ℎ

⃦⃦2
+ 36𝜏

𝑁−1∑︁
𝑛=1

⃦⃦
𝐿𝑛+1

⃦⃦2

ℎ

)︃
𝑀, (5.12)

where
𝑀 =

(︁
1 + 𝑇

(︁
𝜏‖∇𝛽‖2∞ +

𝑐𝐿
8

)︁
𝑒𝑇(𝜏‖∇𝛽‖2∞+

𝑐𝐿
8 )
)︁
· (5.13)

If Pe > 1 and 𝑝 ≥ 1, and max{Co,Co4/3} is sufficiently small we have

⃦⃦
𝑢𝑁

ℎ

⃦⃦2 ≤

(︃
2
⃦⃦
𝑢1

ℎ

⃦⃦2
+
⃦⃦
𝑢2

ℎ

⃦⃦2
+ 36𝜏

𝑁−1∑︁
𝑛=1

⃦⃦
𝐿𝑛+1

⃦⃦2

ℎ

)︃
𝑀, (5.14)

with 𝑀 as in (5.13).

Proof. Choose 𝑣ℎ = 𝑢𝑛+1
ℎ in (5.1) and use (5.2), (2.10) to get �

1
2

⃦⃦
𝑢𝑛+1

ℎ

⃦⃦2 − 1
2
‖𝑢𝑛

ℎ‖
2 + 𝜏𝐸

(︀
𝑢𝑛+1

ℎ

)︀2
=
𝜏

2
𝑐ℎ
(︀
𝛿𝛿𝑢𝑛+1

ℎ , 𝑢𝑛+1
ℎ

)︀
+ 𝜏𝐿𝑛+1

(︀
𝑢𝑛+1

ℎ

)︀
. (5.15)

Taking the sum from 1 ≤ 𝑛 ≤ 𝑁 − 1 in (5.15) we arrive at

1
2

⃦⃦
𝑢𝑁

ℎ

⃦⃦2 − 1
2

⃦⃦
𝑢1

ℎ

⃦⃦2
+ |||𝑢ℎ|||2 = 𝑆1 + 𝑆2 + 𝑆3, (5.16)

where

𝑆1 :=
𝜏

2

𝑁−1∑︁
𝑛=1

𝑐
(︀
𝛿𝛿𝑢𝑛+1

ℎ , 𝑢𝑛+1
ℎ

)︀
𝑆2 :=

𝜏

2

𝑁−1∑︁
𝑛=1

𝛾𝑠
(︀
𝛿𝛿𝑢𝑛+1

ℎ , 𝑢𝑛+1
ℎ

)︀
𝑆3 := 𝜏

𝑁−1∑︁
𝑛=1

𝐿𝑛+1
(︀
𝑢𝑛+1

ℎ

)︀
.

Let us estimate 𝑆3. We have

𝑆3 ≤ 𝜏

𝑁−1∑︁
𝑛=1

⃦⃦
𝐿𝑛+1

⃦⃦
ℎ

√︁
𝐸
(︀
𝑢𝑛+1

ℎ

)︀2
+ ‖𝑢𝑛+1

ℎ ‖2

≤ 8𝜏
𝑁−1∑︁
𝑛=1

⃦⃦
𝐿𝑛+1

⃦⃦2

ℎ
+

1
32
|||𝑢ℎ|||2 +

𝑐𝐿
32
𝜏

𝑁−1∑︁
𝑛=1

⃦⃦
𝑢𝑛+1

ℎ

⃦⃦2
.

We now consider three cases.
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Case 1. Pe < 1, 𝑝 ≥ 1.
In this case, we can easily show that

𝑆2 = − 𝜏

2

𝑁−1∑︁
𝑛=1

𝑐
(︀
𝑢𝑛+1

ℎ , 𝛿𝛿𝑢𝑛+1
ℎ

)︀
≤ ‖𝛽‖∞𝜏√

𝜇

𝑁−1∑︁
𝑛=1

⃦⃦√
𝜇∇
(︀
𝑢𝑛+1

ℎ

)︀⃦⃦ ⃦⃦
𝛿𝛿𝑢𝑛+1

ℎ

⃦⃦
≤
√

CoPe
√
𝜏

𝑁−1∑︁
𝑛=1

⃦⃦√
𝜇∇
(︀
𝑢𝑛+1

ℎ

)︀⃦⃦ ⃦⃦
𝛿𝛿𝑢𝑛+1

ℎ

⃦⃦
≤ 𝜏𝐶Co

𝑁−1∑︁
𝑛=1

⃦⃦√
𝜇∇
(︀
𝑢𝑛+1

ℎ

)︀⃦⃦2
+

1
4

𝑁−1∑︁
𝑛=1

⃦⃦
𝛿𝛿𝑢𝑛+1

ℎ

⃦⃦2
.

Similarly,

𝑆1 = 𝐶
√

Co
√
𝜏

𝑁−1∑︁
𝑛=1

𝛾
⃒⃒
𝑢𝑛+1

ℎ

⃒⃒
𝑠

⃦⃦
𝛿𝛿𝑢𝑛+1

ℎ

⃦⃦
≤ 𝐶Co𝛾𝜏

𝑁−1∑︁
𝑛=1

𝛾
⃒⃒
𝑢𝑛+1

ℎ

⃒⃒2
𝑠

+
1
4

𝑁−1∑︁
𝑛=1

⃦⃦
𝛿𝛿𝑢𝑛+1

ℎ

⃦⃦2
.

Using (5.16) and combining the above inequalities we get

1
2

⃦⃦
𝑢𝑁

ℎ

⃦⃦2 − 1
2

⃦⃦
𝑢1

ℎ

⃦⃦2
+ |||𝑢ℎ|||2 ≤

(︂
1
32

+ Co(1 + 𝛾)
)︂
|||𝑢ℎ|||2 + 8𝜏

𝑁−1∑︁
𝑛=1

⃦⃦
𝐿𝑛+1

⃦⃦2

ℎ

+
𝑐𝐿
32
𝜏

𝑁−1∑︁
𝑛=1

⃦⃦
𝑢𝑛+1

ℎ

⃦⃦2
+

1
2

𝑁−1∑︁
𝑛=1

⃦⃦
𝛿𝛿𝑢𝑛+1

ℎ

⃦⃦2
.

If we use Lemma 5.2 and the fact that Pe ≤ 1 we get

1
2

⃦⃦
𝑢𝑁

ℎ

⃦⃦2
+
𝜏

2

⃦⃦√
𝜇∇
(︀
𝛿𝑢𝑁

ℎ

)︀⃦⃦2
+ |||𝑢ℎ|||2 ≤

𝜏

2

⃦⃦√
𝜇∇
(︀
𝛿𝑢1

ℎ

)︀⃦⃦2
+

1
2

⃦⃦
𝑢1

ℎ

⃦⃦2
+ 8𝜏

𝑁−1∑︁
𝑛=0

⃦⃦
𝐿𝑛+1

⃦⃦2

ℎ

+ 2
𝑁−1∑︁
𝑛=1

⃦⃦
𝛿𝐿𝑛+1

⃦⃦2

ℎ
+ 𝜏2

𝑁−1∑︁
𝑛=0

⃦⃦√
𝜇∇
(︀
𝛿𝑢𝑛+1

ℎ

)︀⃦⃦2

+
𝑐𝐿
32
𝜏

𝑁−1∑︁
𝑛=1

⃦⃦
𝑢𝑛+1

ℎ

⃦⃦2
+
(︂

1
32

+ 𝐶Co(1 + 𝛾)
)︂
|||𝑢ℎ|||2.

Choosing Co sufficiently small gives

1
2

⃦⃦
𝑢𝑁

ℎ

⃦⃦2
+
𝜏

2

⃦⃦√
𝜇∇
(︀
𝛿𝑢𝑁

ℎ

)︀⃦⃦2
+

1
2
|||𝑢ℎ|||2 ≤

𝜏

2

⃦⃦√
𝜇∇
(︀
𝛿𝑢2

ℎ

)︀⃦⃦2
+

1
2

⃦⃦
𝑢1

ℎ

⃦⃦2
+ 8𝜏

𝑁−1∑︁
𝑛=0

⃦⃦
𝐿𝑛+1

⃦⃦2

ℎ

+ 2
𝑁−1∑︁
𝑛=1

⃦⃦
𝛿𝐿𝑛+1

⃦⃦2

ℎ
+ 𝜏2

𝑁−1∑︁
𝑛=1

⃦⃦√
𝜇∇
(︀
𝛿𝑢𝑛+1

ℎ

)︀⃦⃦2
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+
𝑐𝐿
32
𝜏

𝑁−1∑︁
𝑛=1

⃦⃦
𝑢𝑛+1

ℎ

⃦⃦2
.

Applying Gronwall’s inequality gives (5.11).
Case 2. Pe > 1, 𝑝 = 1, 𝛾 > 0.

Now we estimate 𝑆2. Using the arithmetic-geometric mean inequality and inverse estimates we obtain

𝑆2 ≤ 𝐶𝜏

𝑁−1∑︁
𝑛=1

𝛾

√︀
‖𝛽‖∞√
ℎ

⃒⃒
𝑢𝑛+1

ℎ

⃒⃒
𝑠

⃦⃦
𝛿𝛿𝑢𝑛+1

ℎ

⃦⃦
≤ 1

32
|||𝑢ℎ|||2 + 𝐶𝛾Co

𝑁−1∑︁
𝑛=1

⃦⃦
𝛿𝛿𝑢𝑛+1

ℎ

⃦⃦2
.

To estimate 𝑆1 we re-write it as follows

𝑆1 = 𝐷1 +𝐷2,

where

𝐷1 :=
𝜏

2

𝑁−1∑︁
𝑛=1

𝑐
(︀
𝛿𝛿𝑢𝑛+1

ℎ , 𝑢𝑛+1
ℎ

)︀
,

𝐷2 := − 𝜏

2

𝑁−1∑︁
𝑛=1

𝑐
(︀
𝛿𝛿𝑢𝑛+1

ℎ , 𝛿𝑢𝑛+1
ℎ

)︀
.

We use integration by parts and inverse estimates to obtain

𝐷2 =
𝜏

2

𝑁−1∑︁
𝑛=1

𝑐
(︀
𝛿𝑢𝑛+1

ℎ , 𝛿𝛿𝑢𝑛+1
ℎ

)︀
≤ 𝐶Co

𝑁−1∑︁
𝑛=1

⃦⃦
𝛿𝑢𝑛+1

ℎ − 𝑃0

(︀
𝛿𝑢𝑛+1

ℎ

)︀⃦⃦ ⃦⃦
𝛿𝛿𝑢𝑛+1

ℎ

⃦⃦
≤ 𝐶Co

𝑁−1∑︁
𝑛=1

⃦⃦
𝛿𝑢𝑛+1

ℎ − 𝑃0

(︀
𝛿𝑢𝑛+1

ℎ

)︀⃦⃦2
+ 𝐶Co

𝑁−1∑︁
𝑛=1

⃦⃦
𝛿𝛿𝑢𝑛+1

ℎ

⃦⃦2
.

To estimate 𝐷1 we use summation by parts (2.22) to write

𝐷1 = − 𝜏

2

𝑁−1∑︁
𝑛=2

𝑐
(︀
𝛿𝑢𝑛

ℎ, 𝛿𝑢
𝑛+1
ℎ

)︀
+
𝜏

2
(︀
𝑐
(︀
𝛿𝑢𝑁

ℎ , 𝑢
𝑁
ℎ

)︀
− 𝑐
(︀
𝛿𝑢1

ℎ, 𝑢
2
ℎ

)︀)︀
= − 𝜏

2

𝑁−1∑︁
𝑛=2

𝑐
(︀
𝛿𝑢𝑛

ℎ, 𝛿
(︀
𝑢𝑛+1

ℎ − 𝑢𝑛
ℎ

)︀)︀
+
𝜏

2
(︀
𝑐
(︀
𝛿𝑢𝑁

ℎ , 𝑢
𝑁
ℎ

)︀
− 𝑐
(︀
𝛿𝑢1

ℎ, 𝑢
2
ℎ

)︀)︀
= − 𝜏

2

𝑁−1∑︁
𝑛=2

𝑐
(︀
𝛿𝑢𝑛

ℎ, 𝛿𝛿𝑢
𝑛+1
ℎ

)︀
+
𝜏

2
(︀
𝑐
(︀
𝛿𝑢𝑁

ℎ , 𝑢
𝑁
ℎ

)︀
− 𝑐
(︀
𝛿𝑢1

ℎ, 𝑢
2
ℎ

)︀)︀
.

We easily have

−𝜏
2

𝑁−1∑︁
𝑛=2

𝑐
(︀
𝛿𝑢𝑛

ℎ, 𝛿𝛿𝑢
𝑛+1
ℎ

)︀
≤ 𝐶Co

𝑁−1∑︁
𝑛=1

⃦⃦
𝛿𝑢𝑛+1

ℎ − 𝑃0

(︀
𝛿𝑢𝑛+1

ℎ

)︀⃦⃦2
+ 𝐶Co

𝑁−1∑︁
𝑛=1

⃦⃦
𝛿𝛿𝑢𝑛+1

ℎ

⃦⃦2
.
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The next term can similarly be bounded:
𝜏

2
(︀
𝑐
(︀
𝛿𝑢𝑁

ℎ , 𝑢
𝑁
ℎ

)︀
− 𝑐
(︀
𝛿𝑢1

ℎ, 𝑢
2
ℎ

)︀)︀
≤ 𝐶Co

⃦⃦
𝛿𝑢𝑁

ℎ − 𝑃0

(︀
𝛿𝑢𝑁

ℎ

)︀⃦⃦2
+ 𝐶Co

⃦⃦
𝑢𝑁

ℎ

⃦⃦2

+ 𝐶Co
⃦⃦
𝛿𝑢1

ℎ − 𝑃0

(︀
𝛿𝑢1

ℎ

)︀⃦⃦2
+ 𝐶Co

⃦⃦
𝑢2

ℎ

⃦⃦2
.

Hence, we arrive at

𝐷1 ≤ 𝐶Co
𝑁−1∑︁
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Which combined with the estimate for 𝐷2 gives
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Using (5.16) and combining the above inequalities we get
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Applying (5.9) we get
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Taking Co sufficiently small we arrive at
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The inequality (5.12) follows from the above inequality and the discrete Gronwall’s inequality (2.23).
Case 3. Pe ≥ 1, 𝑝 ≥ 1. We use the same estimates for 𝑆2 and 𝑆3 as in Case 2 above. Then inspecting the proof

of the estimate for 𝑆1 in Case 2 we see that we could instead have shown,
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where 𝜖 is a sufficiently small number. Now using (5.10) and (5.4) with max{Co,Co4/3} sufficiently small
we get.

𝑆1 ≤ 𝐶Co
⃦⃦
𝑢𝑁

ℎ

⃦⃦2
+ 𝐶Co

⃦⃦
𝑢2

ℎ

⃦⃦2
+ 𝐶Co|||𝑢ℎ|||2 + 9𝜏

𝑁−1∑︁
𝑛=1

⃦⃦
𝐿𝑛+1

⃦⃦2

ℎ
+ 𝜏

𝑁−1∑︁
𝑛=1

⃦⃦
𝑢𝑛+1

ℎ

⃦⃦2
.

Then we can proceed as we did in the proof of Case 2 to prove (5.12).
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Table 1. Table showing the Courant numbers and stabilization parameters used for the dif-
ferent methods.

Method Co 𝛾

BDF2/P1 0.15 0.01
BDF2/P2 0.05 0.005
AB2/P1 0.3 0.01
AB2/P2 0.1 0.005
AB3/P2 0.025 0.001
AB3/P3 0.025 0.0003

6. Numerical examples

We consider the methods applied to the pure transport problem. More specifically, we consider two methods
obtained in the limit of vanishing diffusion: the second order backward differentiation with extrapolation (BDF2)
and the second order Adams–Bashforth (AB2) scheme, both of which are covered by the above analysis. For
piecewise affine approximation (𝑃1) we use the hyperbolic CFL, 𝜏 = Coℎ (‖𝛽‖∞ = 1) and for piecewise quadratic
approximation we use the 4/3-CFL, 𝜏 = Coℎ4/3. Numerical experiments show that with 𝑃1 approximation the
methods are stable under hyperbolic CFL, only when 𝛾 > 0 (i.e. when stabilization is present). We also observed
that for 𝑃2 the 4/3-CFL is necessary for all 𝛾 ≥ 0. The values of Courant numbers and stabilization parameters
used for the different methods are given in Table 1. We stress that these values are not limit values for stability
for each case, but rather values that produced good results in all the experiments performed.

We also consider a numerical example using the third order Adams–Bashforth (AB3) scheme, a scheme with
non-trivial imaginary stability boundary [16] that is expected to be stable under hyperbolic CFL, independent
of the value of 𝛾. This also turns out to be the case. For this method we show the results both for the stabilized
and the unstabilized method to show that even though the time integrator is stable and boundary conditions
are imposed weakly, strong gradients destroy the solution globally irrespective of polynomial approximation
order unless stabilization is added.

For the first example we consider transport in the disc Ω := {(𝑥, 𝑦) ∈ R2 : 𝑥2 + 𝑦2 < 1} under the velocity
field 𝛽 = (𝑦,−𝑥). Approximations are computed on a series of unstructured mehes with 𝑛𝑒𝑙𝑒 = 40, 80, 160, 320
elements along the disc perimeter. We let 𝑓 = 0 and consider two different functions 𝑢0 as initial data. One is
smooth,

𝑢0 = 𝑒−30((𝑥−0.5)2+𝑦2) (6.1)

and one is rough

�̃�0 =
{︂

1
√︀

(𝑥+ 0.5)2 + 𝑦2 < 0.2
0 otherwise.

(6.2)

The velocity field simply turns the disc with the initial data and we compute one turn so that the final solution
should be equal to the inital data. Two numerical experiments are considered, compute 𝑢 for the initial data
𝑢0 and 𝑢0 + �̃�0. We compute the global error in the material derivative over the space time domain, for BDF2(︃

𝜏

𝑁∑︁
𝑛=2

⃦⃦
𝐷𝜏𝑢
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ℎ

⃦⃦2

)︃ 1
2

, and for AB2,
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𝜏−1𝛿𝑢𝑛+1

ℎ + 𝛽 · ∇�̂�𝑛+ 1
2

ℎ

⃦⃦⃦2
)︃ 1

2

.

In all graphics the material derivative is indicated by circle markers. We also report the global 𝐿2-norm of the
error at the final time, indicated by square markers. In the case where both the rough and the smooth initial
data are combined we compute the error obtained in the smooth part, i.e. the 𝐿2-norm over {(𝑥, 𝑦) ∈ Ω : 𝑥 > 0}.
This local error is indicated by triangle markers.
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Figure 1. From left to right: rough initial data on fine mesh (𝑢0+�̃�0), unstabilized solution final
time solution (computed using Crank–Nicolson), stabilized final time solution (both 𝑛𝑒𝑙𝑒 = 80,
one turn).

In Figure 1 we show in the left panel the smooth and rough initial data (𝑢0 + �̃�0). In the middle panel the
solution after one turn without stabilization (computed using implicit Crank–Nicolson) and in the right panel
the solution after one turn with stabilization, in both cases 𝑛𝑒𝑙𝑒 = 80. We see that the sharp layers are strongly
smeared on this coarse mesh when the stabilized method is used, but contrary to the unstabilized case the
smooth part of the solution is accurately captured.

In Figure 2 we compare the convergence of the BDF2 and AB2 methods with 𝑃1 and 𝑃2 elements for the
smooth initial data. The convergence rates predicted by theory for both stabilized methods and approximation
spaces are verified both for the 𝐿2-error and in the material derivative. Both methods have very similar errors.
In Figure 3 we see that in the presence of rough portions in the solution the stabilized methods still have
optimal convergence in the 𝐿2-norm in the part where the solution is smooth. We also observe that thanks
to the stabilization the material derivative has only moderate growth under refinement, less than the 𝑂(ℎ−

1
2 )

predicted by theory. This is known not to be true for cG methods without stabilization.

6.1. An example with inflow and outflow and weakly imposed boundary conditions

Here we consider transport in the unit square with 𝛽 = (1, 0)𝑇 . Structured meshes with 𝑛𝑒𝑙𝑒 = 40, 80, 160, 320
elements on each side are used. The initial data consists of a cylinder of radius 𝑟 = 0.2 centered in the middle of
the square and a Gaussian centered on the left boundary (see Fig. 4, left plot). The exact shapes are the same
as those of the previous example, (6.1) and (6.2). We compute the solution over the interval (0, 1] so that the
cylinder leaves the domain at 𝑡 = 0.7 and at 𝑡 = 1 the Gaussian is centered at on the right boundary (see Fig. 4,
right plot). Observe that from 𝑡 = 0.7 the solution is smooth. The time dependent inflow boundary condition
is imposed weakly. The convergence of the 𝐿2-error at final times for the BDF2 and AB2 approaches is shown
in Figure 5 (ℎ = 1/𝑛𝑒𝑙𝑒, 𝑛𝑒𝑙𝑒 = 40, 80, 160, 320). We see that for both methods the 𝑃1 and 𝑃2 approximations
have optimal convergence to the smooth final time solution, which is known not to hold for the cG method
without stabilization. This will be verified in the next section.

6.2. Higher order time integrator: Adams–Bashforth 3

Here we consider the same test case as in the previous section, but using the third order Adam–Bashforth
scheme. In this case the scheme is similar to AB2, but the extrapolation takes the form

𝑣𝑛+1 :=
23
12
𝑣𝑛 − 16

12
𝑣𝑛−1 +

5
12
𝑣𝑛−2.

For this test case we compare the results with or without stabilization. We note that since the scheme has non-
trivial imaginary stability boundary, both the stabilized and unstabilized methods are expected to be 𝐿2-stable.
This is also verified by the graphics in Figure 6. The Galerkin FEM without stabilization is distinguished by
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Figure 2. Comparison BDF2 (full line) and AB2 (dashed line) method with 𝑃1 (left) and
𝑃2 (right) approximation, with globally smooth initial data (Eq. (6.1)). The error in material
derivative has circle markers. The global 𝐿2-error has square markers. The dotted reference
lines have slope 1, 2 from top to bottom in the left plot and 2, 3 in the right plot.

Figure 3. Comparison BDF2 (full line) and AB2 (dashed line) method with 𝑃1 (left) and 𝑃2

(right). Initial data from Figure 1 (left plot). The error in material derivative has circle markers.
The global 𝐿2-error has square markers and the local 𝐿2-error has triangle markers. The dotted
reference lines have slope 1, 2 from top to bottom in the left plot and 2, 3 in the right.
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Figure 4. From left to right: initial data on fine mesh, unstabilized solution final time solution
(𝑃1, computed using Crank–Nicolson), stabilized final time solution (both 𝑛𝑒𝑙𝑒 = 80, final time
𝑡 = 1).

Figure 5. Comparison BDF2 (full line) and AB2 (dashed line) method with 𝑃1 (left) and 𝑃2

(right). Initial data from Figure 4 (left plot). The error in material derivative over the space
time domain has circle markers. The final time global 𝐿2-error has square markers. The dotted
reference lines have slope 1, 2 from top to bottom in the left plot and 2.5 in the right.

filled markers in the graphics. In Figure 6, left plot, we present the result for 𝑃2 finite elements. It is clear that
the solution of the stabilized method satifies the 𝑂(ℎ2.5) bound predicted by theory (illustrated by the lower
dotted line). Without stabilization the method has approximately 𝑂(ℎ

1
2 ) (upper dotted line) convergence for

the smooth final time solution.
In the right plot we present the result for 𝑃3 finite elements. Also here the stabilized method has the expected

𝑂(ℎ3.5) convergence (illustrated by the lower dotted line) and the unstabilized method fails to capitalize on the
increased order of the method. Its order remains at 𝑂(ℎ

1
2 ) (upper dotted line). As a consequence the stabilized

method is more accurate by more than six orders of magnitude on the finest mesh.
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Figure 6. Comparison AB3 method with 𝑃2 (left plot) and 𝑃3 (right plot) polynomial approx-
imation. Initial data from Figure 4 (left plot). The error in material derivative over the space
time domain has circle markers. The global final time 𝐿2-error has square markers. Filled mark-
ers indicate that no stabilization has been used. The upper dotted reference lines have slope
0.5 in both graphics and the lower ones have slopes 2.5 (left) and 3.5 (right).

7. Concluding remarks

In this paper we have considered the use of implicit-explicit time integrators together with symmetric sta-
bilization methods. An important advantage is that the often nonlinear convection term is handled explicitly
as well as the stabilization, which otherwise is known to extend the system matrix. Two second order meth-
ods were considered that are appealing in applications for their simplicity, but that have trivial imaginary
stability boundary in the limit of vanishing diffusion. We prove that nevertheless these methods can be used
together with stabilized FEM (or upwind discontinuous Galerkin method) under CFL conditions that allow
for an optimal matching of errors in space and time. The present work opens for several interesting research
venues such as the use of predictor-corrector methods [16] in combination with stabilized FEM for first order
pde, or higher order IMEX-schemes based on Adams–Bashforth/Adams–Moulton combinations for singularly
perturbed second order systems such as convection–diffusion or the Navier–Stokes’ equations.
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