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A B S T R A C T 

Cosmological information from weak lensing surv e ys is maximized by sorting source galaxies into tomographic redshift sub- 
samples. Any uncertainties on these redshift distributions must be correctly propagated into the cosmological results. We present 
HYPERRANK , a new method for marginalizing o v er redshift distribution uncertainties, using discrete samples from the space of all 
possible redshift distributions, improving over simple parametrized models. In HYPERRANK , the set of proposed redshift distribu- 
tions is ranked according to a small (between one and four) number of summary values, which are then sampled, along with other 
nuisance parameters and cosmological parameters in the Monte Carlo chain used for inference. This approach can be regarded as 
a general method for marginalizing o v er discrete realizations of data vector variation with nuisance parameters, which can conse- 
quently be sampled separately from the main parameters of interest, allowing for increased computational efficiency. We focus on 

the case of weak lensing cosmic shear analyses and demonstrate our method using simulations made for the Dark Energy Surv e y 

(DES). We show that the method can correctly and efficiently marginalize o v er a wide range of models for the redshift distribution 

uncertainty . Finally , we compare HYPERRANK to the common mean-shifting method of marginalizing o v er redshift uncertainty, 
validating that this simpler model is sufficient for use in the DES Year 3 cosmology results presented in companion papers. 

Key words: gravitational lensing: weak – methods: numerical – galaxies: distances and redshifts – large-scale structure of 
Universe. 
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 I N T RO D U C T I O N  

s photometric galaxy surv e ys be gin to map large fractions of the
ky at deeper magnitudes, stringent control of systematic errors
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Pub
nd uncertainties is required to take full advantage of the statistical
ower of such surv e ys. Combining measurements of weak lensing
nd spatial clustering of distant galaxies (and cross-correlations of
hese two signals as g alaxy–g alaxy lensing) has steadily become
 v ery competitiv e probe of the expansion history of the Universe
nd its constituents (e.g. Dark Energy Surv e y Collaboration 2018 ;
ikage et al. 2019 ; Hamana et al. 2020 ; Heymans et al. 2021 ).
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he Dark Energy Surv e y Year 3 (DES-Y3 DES Collaboration 2021 )
esults, of which this work forms a part, contain information from
 v er 100 million galaxies. One of the key required measurements in
uch analyses is the line-of-sight distribution of both the galaxies for
hich the shapes are measured (the source sample) and the generally 

ower redshift galaxies used to trace the massive structures acting as
enses for the source sample (the lens sample). In an approach known
s ‘tomography’ (Hu 1999 ), the source sample is subdivided into 
ifferent bins of distance, allowing us to further study the evolution 
f massive structure across cosmic time by observing how the lensing 
ignal changes as a function of distance. Knowledge of the distance 
istribution to the source sample is a crucial ingredient in this. Of
articular interest for modern cosmology, the statistical properties of 
ark matter structures as a function of cosmic time are a promising
robe of dark energy. 
Cosmological redshift z is the observable most commonly used 

s a proxy for the distances to both galaxy samples but the methods
o estimate distance via redshifts often suffer from limitations that 
ake this one of the most difficult uncertainties to adequately model 

or the cosmological analysis. Estimating the redshift with high 
ccuracy using spectroscopy is prohibitively expensive in telescope 
ime for the large numbers of galaxies required for cosmology 
sing weak lensing and suffers from selection effects caused by 
he incompleteness at fainter magnitudes (e.g. Hartley et al. 2020 ). 
hotometric redshift (photo- z) methods instead estimate the redshift 
ased on measurements of fluxes in a number of photometric 
ands, and present a viable alternative in terms of sky and redshift
o v erage and completeness, but suffer from relatively much larger 
ncertainties given the highly degenerate problem of estimating z 
ased on wide band photometry. A wide range of photo- z methods
re used to estimate redshifts from band magnitudes; see Schmidt 
t al. ( 2020 ) and references therein for a recent re vie w. 

Current galaxy surv e ys rely on a combination of spectroscopic and
hotometric redshifts, plus clustering patterns, to train, calibrate, and 
 alidate dif ferent methods. These methods can be broadly classified 
nto three types, based on the information and ancillary data used 
o estimate redshift. (i) Template fitting methods (see section 3.1 of
chmidt et al. 2020 , for a re vie w), which rely on finding the best-
tting template redshift from a library of spectral energy distributions 
SED) characterizing a range of galaxy types. (ii) Machine learning- 
ased techniques (see section 3.2 of Schmidt et al. 2020 , for a
e vie w), which map the colour space into redshifts. While the range
f approaches used is fairly wide, the general idea consists of using
 training set of secure redshifts obtained using either spectroscopy 
r large sets of narrow-band filter photometric observations to train 
he algorithm. (iii) Using spatial correlation between galaxies and a 
et of tracers with secure redshift information to obtain additional 
onstraints on redshift (often known as ‘clustering redshifts’). See 
he introductory sections of Gatti et al. ( 2022 ); Cawthon et al. ( 2020 )
or recent re vie ws. 

Irrespective of the chosen method, there will be an irreducible 
ncertainty in the galaxy distances arising from the finite number 
f photons received in each band, the widths of the bands, and our
imited knowledge of true galaxy SEDs. Where galaxies are observed 
nly in a few ( ∼1–10) photometric bands, there are also fundamental
egeneracies where two galaxies at very different redshifts can 
roduce identical observed data. This uncertainty must be propagated 
hrough to cosmological constraints. Galaxies are conventionally 
rouped into a small number ( ∼5 for current experiments) of to-
ographic redshift bins. Cosmological observables of weak lensing, 

alaxy clustering, and galaxy–galaxy lensing formed from each of 
hese tomographic bin subsamples are dependent on the number 
ensity distribution of the sources as a function of redshift within
ach bin, n ( z). If each individual galaxy’s redshift were known with
erfect precision and accuracy, these n ( z) would be non-overlapping,
nd their shapes would follow the true distribution in redshift 
f galaxies that are really in these bins. Ho we ver, in real cases,
here the one-point summary statistic used for binning is noisy, 
iased, or both, the n ( z) within different tomographic bins acquire
tretched tails that often o v erlap across the full redshift range of the
urv e y. 

In order to constrain cosmological parameters, expected weak 
ensing observables for a galaxy sample with the estimated n ( z)
nd in a given cosmology are computed and compared with the
ata. Monte Carlo methods are then used to map the posterior for
osmological model parameters and hence constrain our physical 
odel for the Universe. In this inference process, uncertainties 

n the measured n ( z) for each tomographic bin are marginalized
 v er, typically widening the uncertainties on the cosmological 
arameters of interest. Incorrectly quantifying the uncertainty on 
he n ( z) or incorrectly marginalizing o v er it can significantly affect
osmological parameter estimation and model selection. Indeed, 
oudaki et al. ( 2020 ) have argued that the adoption of different models
or the calibration of redshift distributions and their uncertainties 
or weak lensing experiments can explain the observed apparently 
ignificant difference in cosmological parameters between different 
eak lensing experiments and Cosmic Microwave Background 

xperiments. 
In this paper we introduce HYPERRANK , a new method which

llows uncertainties in galaxy redshift distributions n ( z) to be
ropagated into Monte Carlo chains generating cosmological results. 
YPERRANK takes as input a finite set of samples of n ( z) drawn
rom the distribution implied by the redshift calibration process. It 
aps these on to a low-dimensional space of continuous variables, 
hich the cosmology sampler can treat as free parameters. We 

est that HYPERRANK does this both correctly , in that the allowed
ncertainty is fully explored, and efficiently , in that fewer likelihood
 v aluations are computed than in the case where an arbitrary choice
f n ( z) realization is made at each step. This approach allows for the
nclusion of a much wider range of types of uncertainty on n ( z) to
e used in cosmological inference than have been included in the
ajority of previous analyses. 
In Section 2, we re vie w methods of quantifying uncertainties on

he redshift distributions of galaxy samples used for cosmology, 
oti v ating the introduction of the new HYPERRANK method, which

s then described in Section 3, in both the simplest 1D case and an
xtended multidimensional case. In Section 4, we then perform tests 
f the performance of HYPERRANK on a simulated version of the
ES-Y3 experiment. In Section 4.2, we verify that in cases where

edshift distribution uncertainty is known, HYPERRANK correctly 
arginalizes o v er this uncertainty, for four representative models 

f the uncertainty. In Section 4.3, we also show that the use of
YPERRANK to explore the uncertainties results in better performance 
in terms of fewer numbers of Monte Carlo steps required) than
andom, un-ranked exploration of realizations of possible redshift 
istributions. We also explore the performance of a number of 
ifferent choices of variables on which to perform the ranking 
nd find, for our fiducial case, the number of discrete samples
rom the possible redshift distributions that are required for the 
osmological results to converge to those of a known case where
ontinuous sampling is possible. Section 5 describes the application 
f HYPERRANK to the real DES-Y3 data, with the results presented
n Amon et al. ( 2022 ). Finally, in Section 6, we discuss our results
nd conclude. 
MNRAS 511, 2170–2185 (2022) 
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Figure 1. Upper : the �z marginalization scheme, where a fiducial redshift 
distribution (black dashed) is shifted horizontally at each Monte Carlo step by 
a value drawn from a Gaussian distribution (inset, with draw from the 2 σ tail 
highlighted in red). Lower : discrete realizations of possible n ( z) are shown 
with colours corresponding to the mean redshift of each realization 〈 z〉 , which 
can be mapped to a ranking hyper-parameter H, which is then marginalized 
o v er on the Monte Carlo chain. Inset shows the uniform distribution for H 

which is sampled from, and the centres of the regions corresponding to each 
coloured n ( z) realization. 
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 MAR GINALIZATION  O F  REDSHIFT  

N C E RTA I N T Y  

n general, for an inference problem in which we have a model
ontaining parameters of interest θ (such as the cosmological param-
ters) and a set of nuisance parameters α (such as parameters relating
o redshift distribution uncertainty), we form posterior probability
istributions: 

 ( θ, α| x ) ∝ L ( x | θ, α) P ( θ, α) , (1) 

here L ( x | θ, α) is the likelihood function for the data x and P ( θ ,
) is a prior probability distribution. When generating samples from

he posterior with a Monte Carlo process, the nuisance parameters
re typically sampled jointly with the parameters of interest and
hen marginalized o v er, pro viding a marginal posterior on the model
arameters θ in which the uncertainty on α is accounted for. In
he particular case of redshift distributions in cosmology analyses,
 common approach is to provide a fiducial tomographic redshift
istribution and characterize its uncertainty using the nuisance
arameter of a shift �z, along the z −axis. A different parameter
z i is used for each tomographic bin, with each drawn from a
aussian prior informed by observations and/or simulations. This

pproach is depicted in the upper panel of Fig. 1 and has been
sed in DES SV (Bonnett et al. 2016 ), DES Y1 (Hoyle et al.
018 ), HSC (Hikage et al. 2019 ), and KiDS-1000 (Joachimi et al.
021 ). Ho we ver , while con venient and capturing the uncertainty
n the mean of redshift distributions, which is strongly correlated
ith cosmology, it is not physically well moti v ated and severely

estricts the possible functional forms, which a proposed n ( z) may
ake. 

In contrast to the �z approach, we may wish to consider al-
ernatives that allow for a much wider range of uncertainty in the
unctional forms of the n ( z). It is possible to take a simulation-
ased approach, in which realizations for the possible n ( z) of a
urv e y are generated by multiple realizations of mock versions
f the surv e y created from independent patches of cosmological
imulations. Alternativ ely, we may e xplicitly parametrize the n ( z)
s a set of histogram bin heights n ( z i ), which give the counts of
ources within a small redshift interval and try to infer these quantities
rom the data. This approach creates principled models of the joint
robability distribution function for all of these bin heights, given
he photometric data available on the observed galaxies. This is

ost readily done as a Bayesian Hierarchical Model and has been
ecently advocated in Leistedt, Mortlock & Peiris ( 2016 ), S ́anchez &
ernstein ( 2019 ), and Rau, Wilson & Mandelbaum ( 2020 ). Outputs

rom this procedure are samples from the joint posterior for all of
he histogram bin heights which together make up the full shape
f the n ( z). Each sample consists of a possible realization of what
he full n ( z) could look like, discretized as n ( z i ). An ideal approach
ould be to treat each of these n ( z i ) as a model parameter and

ointly infer them with the cosmological model parameters before
arginalization. In reality, this is impractical; the redshift resolution

equired to capture important features of the model, which impact
osmological inference but are not convolved with broad redshift
ernels, such as intrinsic alignments would demand hundreds of
dditional nuisance parameters. Current implementations of galaxy
urv e y analysis pipelines (such as that in COSMOSIS used for DES
untz et al. 2015 ) typically take ∼1–10 s per likelihood e v aluation,
eaning the addition of hundreds of parameters would mean the

amplers used (MCMC such as EMCEE F oreman-Macke y et al. 2013
r nested sampling such as MULTINEST Feroz, Hobson & Bridges
009 or POLYCHORD Handley, Hobson & Lasenby 2015 ) could not
NRAS 511, 2170–2185 (2022) 
ap the full posterior in a timely manner. It should be noted that
ildebrandt et al. ( 2017 ) were able to run 750 MCMC chains in
rder to use a different bootstrap resampling realization of their n ( z)
ach time, before combining these chains; we do not expect this to
e feasible for the DES-Y3 pipeline. Other methods have also been
roposed to address the uncertainty associated to large number of
uisance parameters. Gaussian mixture models are flexible and may
e analytically marginalized o v er (Hadzhiyska et al. 2020 ; St ̈olzner
t al. 2021 ), and the use of flat or Gaussian priors to characterize
ariations to sets of arbitrary functions can be used to e v aluate
he posterior using a Gaussian likelihood (Taylor & Kitching 2010 ;
itching & Taylor 2011 ). 
Here, we consider an alternative approach in which the set of

amples from the n ( z) posterior, each consisting of a collection of

art/stac147_f1.eps
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Figure 2. The log posterior for the HYPERRANK parameter of a single 
tomographic bin when holding all other parameters fixed, contrasting the 
cases of random ranking (which gives no smooth posterior for the sampler 
to explore) with mean redshift ranking (which does give a smooth posterior 
surface). 
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istogram values for each tomographic bin, are generated outside 
before) the cosmological parameter inference Markov chain. This 
et of realizations can then be used by choosing a new n ( z) in every
ikelihood e v aluation within the cosmological parameter inference 
hain, allowing higher-order modes of uncertainty in n ( z) to be
ropagated into cosmological parameter constraints. It is important 
o note that the n ( z) realizations are drawn simultaneously for all
omographic bins, which also allows the propagation of uncertainty 
riginating from correlations between tomographic bins. 
A way of performing this analysis would be to randomly sample 

 different redshift distribution on each likelihood e v aluation within 
he Monte Carlo chain. This has potential ne gativ e effects on the
ehaviour of Monte Carlo samplers, which rely on the posterior 
unction being a smooth function of the sampled parameters. A 

andom approach can break the smoothness of the likelihood (as 
hown in Fig. 2 ) in the other parameter dimensions leading to
nnecessarily high sample rejection rates, requiring large number 
f likelihood e v aluations for convergence and potentially disrupting 
onvergence criteria for different samplers. 

Here, we present HYPERRANK , a way to o v ercome these compu-
ational limitations, while still exploring the space of uncertainty 
vailable from the discrete n ( z) realizations. In HYPERRANK , we
onstruct a mapping between the index of an ordered set of n ( z)
ealizations and a continuous parameter H, such that the likelihood 
unction L ( θ, H) is smooth on this new space and the prior P ( H)
reserves an equal weighting of the n ( z) samples through assigning
hem to an evenly spaced grid. 

 T H E  H Y P E R - R A N K I N G  M E T H O D  

fter a discrete set of realizations of tomographic bin redshift 
istributions n i ( z) have been generated, we wish to correctly and
fficiently marginalize o v er the uncertainty embodied by them, 
ithin a cosmological parameter inference Monte Carlo chain. 
e introduce the idea of HYPERRANK -ing in which the full set

f realizations is mapped on to a small (in this work between
ne and four) number of parameters H. The n ( z) realizations are
rdered according to a set of descriptive values d , which are a
riori expected to correlate strongly with values of the cosmological 
arameters of interest. This ordering preserves the tomographic 
ature of each realization, meaning the sampling stage selects the set
f all tomographic bins’ distributions simultaneously, without mixing 
ifferent realizations. The rank parameters H become the nuisance 
arameters that are sampled (and subsequently marginalized o v er) 
n the cosmological analysis. Choosing descriptive values d , which 
orrelate with the cosmological parameters of interest, ensures that 
he likelihood varies as smoothly as possible along each dimension 
f the rank parameters. The ranking parameters H j = H( αj ) must
lso be such that realizations with similar descripti ve v alues are
apped close to each other. Furthermore, the H j must be such that
 uniform prior on H preserves equal probability on all input n ( z)
amples. We consider the cases below first in which we have one
anking parameter and then multiple ranking parameters. We choose 
o mainly use the mean redshift 〈 z〉 and mean inverse comoving
istance 〈 1/ χ〉 of each tomographic bin as descriptive values d here,
ut emphasize that the HYPERRANK method is not limited to these
wo options only. We expect the choice of ranking method to only
ffect sampling efficiency and not the inferred parameter contours. 

.1 1D case 

e initially consider the case in which a single HYPERRANK param-
ter is used to rank all realizations. Since the mean redshift of the
istribution n ( z) varies the o v erall amplitude of lensing expected
or a given source galaxy sample, it is expected to correlate with
he cosmological parameters of interest (here, the matter amplitude 
arameter S 8 ). We therefore consider a basic HYPERRANK approach 
n which there is only one descriptive parameter per realization of
he full n ( z) and it is based on the weighted mean redshift of a
ombination of tomographic bins, 

 = 

∑ 

w i 〈 z〉 i ∑ 

w i 

, (2) 

here i is the index of each tomographic bin and w i is the
orresponding weight, which can embody (for instance) the number 
f assigned galaxies to each tomographic bin. The n ( z) realizations
re then ranked according to their descriptive value d and mapped to
 continuous hyper-parameter H ∈ [0 , 1), which is then sampled in
he Monte Carlo chain. Each sampled value of H corresponds to a
tored n ( z) realization which is then used in the likelihood e v aluation.
his approach is demonstrated in the lower panel of Fig. 1 , which
hows a small sample of n ( z) realizations coloured according to their
ean redshift and assigned a range of H values depending on their

anked position. 
An alternative set of descriptive values are the mean inverse 

omoving distance of sources, 〈 1/ χ〉 . The correlation of this quantity
ith cosmological posterior value can be moti v ated by its relation to

he lensing efficiency functions used in the calculation of the shear
ower spectrum, which can be written as, 

 κ ( 	 ) = 

9 H 

4 
0 


2 
m 

4 c 4 

∫ χH 

0 
g 2 ( χ ) 

P δ( 	/χ ; χ ) 

a 2 ( χ ) 
d χ, (3) 

here χH , a ( χ ), and P δ are the comoving horizon, scale factor, and
atter power spectrum, respectively, and the lensing efficiency g ( χ )

t comoving distance χ is defined as: 

( χ ) = 

∫ χH 

χ

n ( χ ′ ) 
χ ′ − χ

χ ′ d χ ′ , (4) 

nd depends on the comoving distance distribution n ( χ ) of sources,
r equi v alently their redshift distribution n ( z). By e v aluating at
MNRAS 511, 2170–2185 (2022) 
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= 0 and differentiating the abo v e definition for the lensing
fficiency, we obtain 

g( χ ) | χ= 0 = 1 (5) 

g ′ ( χ ) 
∣∣
χ= 0 

= −〈 1 /χ〉 n , (6) 

here g 
′ 
( χ ) = d g /d χ , which are boundary conditions for the lensing

fficiency functions, hence control their overall shape. See Tessore &
arrison ( 2020 ) for discussions of the importance of constraining
 

′ 
( χ ) in weak lensing studies. 
The mapping of distributions is not invariant to the choice of

rdering being the mean redshift or the mean inverse comoving
istance. In one dimension, both are examples of ranking parameters
apable of providing the smooth likelihood necessary for efficient
apping of the posterior (as can be seen in Fig. 2 ), as well as correctly

ncluding the space of uncertainty spanned by the provided set of n ( z)
ealizations. In Section 4, below we consider only the mean redshift
anking for the 1D case, but observed a comparable performance for
he inverse comoving distance ranking in our tests. 

.2 Multidimensional case 

hile the 1D approach presents a clean and simple strategy to arrange
nd select realizations for each likelihood e v aluation, it does not
revent cases where two realizations with very different descriptive
alues are assigned a similar rank – e.g. two realizations have very
istinct 〈 z〉 i in individual redshift bins, but similar when averaged
 v er bins as per equation (2). Indeed, in our initial tests with DES-
3 simulations, it was found that this was often the case, leading

o realizations ranked closely by a single mean redshift parameter
aving significantly different posterior values, hence leading to poor
fficiency in the cosmology chains. To address this, we describe
 generalization to rank distributions using multiple dimensions,
hich allows to use more than one descriptive parameter d to assign

he proposal n ( z) realizations to a space of hyper-parameters H.
atching of the number of descriptive values and the dimensionality

f the redshift distributions (e.g. number of tomographic bins) is not
 requirement, and we find here that the best performance is achieved
hen this is not the case. 
Each of the N p proposals for n ( z) is assigned a position in a uniform
ultidimensional grid, u , according to a set of N d descripti ve v alues
 = d 1 , ..., d N d . This grid is contained inside a N d − dimensional
nit hypercube, and the continuous parameters H j ∈ [0 , 1) N d are
ampled in the Monte Carlo chain. For each H value chosen by the
ampler, the method returns the closest H i in the grid, which has
een assigned to one of the N p n ( z) realizations. 

We now need to consider how to preserve the notion of ordering
he set of n ( z) by descriptive values in this multidimensional space,
reserving the notion of a ‘neighbourhood’, where realizations
ith similar descriptive properties are grouped close together. One

pproach to find the optimal relative positions is to use the solution to
he Linear Sum Assignment Problem (e.g. Burkard & Derigs 1980 ).
iven a set of N p w ork ers (points in the descriptive value space), we
ant to find an assignment to N p fixed jobs (i.e. fixed grid positions

n the unit hypercube), such that the sum of the cost to assign each
 ork er to one and only one job (the distance from descriptive value

pace to hypercube position) is minimized: 

min 
∑ 

C ij X ij , 

here C ij is the cost matrix of assigning each sample d i to each
oint u j of the grid, and X ij is a binary matrix indicating which
NRAS 511, 2170–2185 (2022) 
osition is assigned to each set of descriptive values. If we use an
uclidean distance metric such that C ij = | d i − u j | 2 , the resultant
ssignment minimizes the total distance mo v ed by the points to the
ositions on the grid, ensuring that any notion of neighbourhood
etween points in the original space of descriptive parameters is
reserved in their new unit hypercube grid positions. We implement
his technique by first linearly rescaling the d i so that they span a unit
ypercube. Fig. 3 shows the resultant 2D assignment for a set of 500
ealizations, each comprised of a set of four tomographic bins, using
s descriptive parameters the mean redshifts of tomographic bins 1
nd 4, arranged in a 25 × 20 map. Because of the finite number of
vailable realizations, the use of additional dimensions can quickly
ave the undesired effect of reducing the amount of realizations
vailable with which to fill each direction of the multidimensional
rid. This can result in the exacerbation of the convergence problem,
ith few available samples creating large jumps in posterior as a

unction of the H parameters. For example with 4096 realizations,
ouble the grid size is available with N d = 3 dimensions compared
o N d = 4. 

In the case of N d = 1, where a single characteristic value describes
ach realization and the arrangement of points is done o v er a grid in
he interval [0,1), the optimal distribution is the one which ranks the
oints in order, corresponding to the case described in Section 3.1.
nalogous to the 1D case, we propose the use of mean redshift 〈 z〉 or
ean inv erse como ving distance 〈 1/ χ〉 of the individual tomographic

ins as sources of descriptive values to map the realizations to the
ypercube. 

Ideally, the dimensionality N d of the hyper-ranked space is low
nough to maintain an efficient cosmological sampler, but high
nough that the variation in the log posterior probability from
quation (1) in small regions of H is �1. This would allow any
ampling process to smoothly traverse the full space of all n ( z)
ariations that influence the parameters of interest. 

We can optimize the reduction of the nuisance-variable vector α
e.g. all of the freedom of n ( z)) into a lower dimensional hyperspace
y using the Karhunen–Lo ̀eve (KL) transformation. When the ob-
ervational data vector D has a Gaussian likelihood with covariance
atrix C D and mean value ˆ D ( θ, α), we find the eigenvectors e k of

he matrix (
∂D 

∂α

)T 

C 

−1 
D 

(
∂D 

∂α

)
. (7) 

here the deri v ati ves are taken about some reference values of θ
nd α. The best choice of HYPERRANK descriptive values ( d 1 , d 2 ,
 . . , d K ) will be to order the eigenvectors by decreasing eigenvalues,
nd assign d k = αe k for each input sample. Successi ve d k v alues
ave decreasing influence on the cosmological model. The sum
f the eigenvalues at k > K then describes the ‘roughness’ of
he log-posterior in the H space. Using this principal component
nalysis (PCA)-style approach, we can choose the first K components
f the decomposition as descriptive values to inform the ranking
ap and assign each component to one HYPERRANK parameter

ach. 
The main caveat is that this approach defines a set of descriptive

alues, which are optimal only near the reference cosmology chosen
o compute the KL components. While ideally one w ould w ant to
se a large number of dimensions to help construct a space where
he posterior is as smooth as possible, this comes at the expense
f having to construct a grid with a low number of points per
imension, if the number of input samples of n ( z) is held fixed. This
an result in a noisy posterior as a function of the hyper-parameter
 if a given dimension of H is sparsely sampled and has large
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Figure 3. 25 × 20 ranking map generated using the mean redshift for tomographic bins 1, 2, and 4 from a set of 500 redshift distributions. Panels show 

distributions located in the same positions, but the colour scale shows the mean redshift for the corresponding tomographic bin. It can be seen that the mapping 
scheme permits realizations to remain close to other realizations with similar descripti ve v alues used for the mapping, and has a smooth variation in the directions 
of the hyper-parameters mapped to each dimension of the grid. The arrangement does not necessarily result in a smooth ordering of all tomographic bins, as can 
be seen from the middle panel where the mean redshift from a bin not used of the mapping is displayed. 
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teps between samples. While a large number of realizations can 
elp construct a grid with a reasonably large number of realizations 
er side of the grid, the method to solve the linear sum assignment
roblem scales as O( N 

3 
p ), which quickly becomes unmanageable. In

ection 4.3, we explore the effects of dimension of the ranking and
hoice of descriptive value have on sampling efficiency, testing the 
ean redshift, inverse comoving distance, and KL approaches with 

hree components each. 

 TESTS  O N  SIMULATIONS  

e now test the HYPERRANK method for marginalizing o v er redshift
istribution uncertainty and explore its configuration, with the target 
f using it for the weak lensing source redshift distributions in the
ES Year 3 cosmological analysis. We investigate the HYPERRANK 

ethod’s ability to marginalize o v er the n ( z) uncertainty: 

(i) correctly , in that it proportionately explores the space of 
ossible n ( z) represented by the discrete realizations, which are 
rovided as an input. 
(ii) efficiently , in that as fe w likelihood e v aluations as practically

ossible are required before the Monte Carlo process converges to 
he posterior. 

We test the correctness by comparing the reco v ered posteriors
n the S 8 = σ8 

√ 


m 

/ 0 . 3 cosmological parameter obtained from a 
osmological inference pipeline. We generate sets of n ( z) samples 
sing a number of well defined procedures in which the method for
enerating realizations involves drawing a �z shift from a known 
nalytic distribution. We then run analyses using HYPERRANK to 
arginalize o v er these uncertainties and compare the results to 
 set of chains in which the known analytic distributions from
hich the �z were drawn are used again to marginalize o v er

he nuisance parameter. Hence, we verify that, in the case where 
iscrete samples represent a model for uncertainty on n ( z), the use
f HYPERRANK correctly explores this uncertainty. The tests show 

hat HYPERRANK is capable of correctly marginalizing o v er redshift
istribution uncertainties in cases where a correct and simple model 
or them is known, without making assumptions on the form of the
ncertainty model. This model-agnosticism represents an advantage 
n the case of real experiments, where it may not be known a priori
f one or any of the simple models is adequate for obtaining small,
nbiased posteriors. 
We also compare the results from analyses using HYPERRANK 

o ones in which discrete n ( z) realizations but no ranking (or
qui v alently random ranking) are used, showing that the imposition
f the HYPERRANK ranking does not bias or unduly constrain the
osmological parameter space explored. 

We test the impro v ement in computational efficiency gained 
rom using HYPERRANK by comparing 1D and multidimensional 
mplementations of HYPERRANK to a mode in which no ranking is
erformed and at each likelihood e v aluation an n ( z) is chosen from
he available realizations at random. 

Finally, we also test the convergence of HYPERRANK for the 
onfiguration required for DES-Y3 cosmology, finding the number 
f n ( z) realizations that are required before systematic errors on
he cosmology parameters from the discreteness introduced by 
YPERRANK become negligible. 
Throughout these tests, we use the DES-Y3 modelling choices, 

ikelihood and pipeline software, and configuration, which are 
escribed in detail in Amon et al. ( 2022 ) and Secco et al. ( 2022 ).
e only consider cosmic shear in our data vector, which reduces

he dimensionality of the space of parameters to be sampled in the
C inference and enhances the effect of redshift systematics in the

ource sample. Nevertheless, this method can be applied when using 
osmic shear in a full 3x2pt analysis, including galaxy clustering 
nd g alaxy–g alaxy lensing and can also be used to marginalize o v er
ystematic uncertainties of the lens in addition to the source samples
escribed here. 

.1 Generation of fiducial redshift distribution 

ere, we briefly describe the method by which the cosmic shear
ata vector and fiducial n ( z) used in our tests were generated. The
ethodologies and simulations are described in detail in Myles et al.

 2021 ), Gatti et al. ( 2022 ), and DeRose et al. ( 2021 ). 

.1.1 Buzzard simulation 

he BUZZARD simulations (DeRose et al. 2021 ) are a set of
ock DES-Y3 surv e ys created from a suite of dark-matter N-body
MNRAS 511, 2170–2185 (2022) 
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Figure 4. The BUZZARD redshift distributions. Left: the black lines show the redshift distribution n Fid ( z) for each of the four redshift bins, averaged over 
all realizations. The light blue, red, green, and brown lines show the full set of realizations for redshift bins 1 through 4, respectively, depicting the potential 
differences between independent samples of n ( z) posterior, and their peculiarities at the histogram level. Right: histogram of mean redshift for each of the four 
tomographic bins, computed from the ensemble of distributions on the left-hand panel. Solid orange line traces the Gaussian fit to the histogram, described by 
the width σ ( �z) abo v e each panel. 
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imulations using a memory-optimized version of L-GADGET2
Springel 2005 ). Galaxies and their main morphological properties
re added using ADDGALS (DeRose et al. 2019 ), matching pro-
ected clustering statistics and colour-magnitude relations observed
n the Sloan Digital Sky Survey Main Galaxy Samples (SDSS MGS
s described in Blanton et al. 2005 ; Abazajian et al. 2009 ). DES ugriz
nd VISTA JHK photometry is obtained from the simulated SEDs
enerated by ADDGALS . 

.1.2 SOMPZ redshift distributions 

he simulated photometry catalogues from BUZZARD constitute the
rimary data set to construct the fiducial n ( z) for our tests, using
he SOMPZ method (fully described in Myles et al. 2021 ). This

ethod makes use of three sets of observations: the full DES-Y3
ide field sample, the DES-Y3 Deep Fields (Hartley et al. 2022 )

ample, and compilation of spectroscopic redshift surv e ys. Galaxies
rom the wide sample are grouped into phenotypes using the Self-
rganized Maps (SOM) method of dimensional reduction (see e.g.
asters et al. 2015 ; Myles et al. 2021 ; Wright et al. 2020 ). The
alrog machinery (which injects synthetic sources into DES data
nd reco v ers their properties, see Ev erett et al. 2022 ) is then used to
uantify the probability of a given Deep Fields galaxy appearing to
av e a giv en phenotype when observ ed in the wide field. A second
OM dimensional reduction is then applied to the Deep Fields galaxy
bservations, with the spectroscopic sample used to characterize
he true redshift distribution for each deep phenotype. In this way,
nformation can ef fecti vely pass from the small, limited spectroscopic
ample to the much larger wide sample through the intermediary of
he deep sample. 

In addition to this method of creating a best-estimate fiducial
edshift distribution, we further consider realizations of possible
 ( z) inferred from the simulated data using the method of Myles
t al. ( 2021 ), S ́anchez et al. ( 2020 ), and S ́anchez & Bernstein ( 2019 ).
his applies a three-step Dirichlet (3sDir) sampling to model the
ncertainties on n ( z) histogram bin heights from sources, including
hot noise, sample variance, photometric calibration uncertainty,
nd method errors. We use a set of 500 realizations generated this
ay, noting that samples are drawn jointly for all four tomographic

edshift bins. The resulting estimated redshift distributions for
NRAS 511, 2170–2185 (2022) 
UZZARD are shown as the coloured lines in the left-hand panel
f Fig. 4 . The fiducial realization n Fid ( z) is obtained from averaging
he 500 realizations at the histogram level and re-normalizing,
nd are shown as the black solid lines in the left-hand panel
f Fig. 4 . 

.2 Exploration of uncertainties 

s a supplement to these full SOMPZ + 3sDir realizations of the
UZZARD n ( z) for testing, we also now take the fiducial n ( z) and
onstruct sets of realizations of potential n ( z) using simple parametric
odels for the uncertainty. We use analytic distributions to generate

ets of mean redshift shifts �z for each uncertainty model. We then
ompare the posteriors on cosmological parameters (and the ef fecti ve
z nuisance parameters) reco v ered by two chains: 

(i) a chain in which HYPERRANK takes these realizations as an
nput set of proposed n ( z) 

(ii) a chain with �z nuisance parameter marginalization, using
s a likelihood the same analytic distribution, which was used to
enerate the realizations 

To perform our sampling we use the MULTINEST sampler, with
00 live points, tolerance = 0.3, and efficiency = 0.01.
e follow the set-up for the DES-Y3 cosmic shear analysis de-

cribed by Amon et al. ( 2022 ) and Secco et al. ( 2022 ) in terms
f angular scale cuts, tomographic redshift binning, and modelling
hoices and marginalization o v er other nuisance parameters, such as
hear calibration biases or Intrinsic Alignment model parameters.
n most of the tests, and unless explicitly noted, we use the
efault 3D HYPERRANK configuration described in the starting of
ection 5. 
We will describe each test in the following section, as well as the

esults for each one presented in Figs 5 –8 . In each of these figures,
he top panels show the 1D posterior constraints reco v ered on S 8 and
he means of the redshift distributions in each tomographic bin 〈 z〉 i .
he lower panels in each figure show the 2D posterior constraints on

hese parameters. Dashed grey lines correspond to mean values of the
ducial redshift distribution in each tomographic bin, and in the S 8 
anel to the values inferred from a chain run without marginalization
 v er redshift nuisance parameters. 
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Figur e 5. Upper : mar ginalized 1 σ confidence regions for the S 8 , and 〈 z 〉 i parameters for the uncorrelated Gaussian model of n ( z ) uncertainty described in 
Section 4.2.1. Different f m values refer to different o v erall amplitudes of uncertainty, and for each value of f m we show both the posterior from chains using 
HYPERRANK and the �z marginalization schemes. Lower : 2D posteriors on the same parameters. Dashed grey lines correspond to mean values of the fiducial 
redshift distribution in each tomographic bin, and in the S 8 panel the 1 σ region inferred from a chain run without marginalization o v er redshift nuisance 
parameters is also shown. 

Figur e 6. Upper : mar ginalized 1 σ confidence regions for the S 8 , and 〈 z 〉 i parameters for the uncorrelated Gamma distribution model of n ( z ) uncertainty 
described in Section 4.2.2. Different k values refer to different amounts of skewness in the uncertainty distributions and for each value of k we show both the 
posterior from chains using HYPERRANK and the �z marginalization schemes. Lower : 2D posteriors on the same parameters. Dashed grey lines correspond to 
mean values of the fiducial redshift distribution in each tomographic bin, and in the S 8 panel the 1 σ region inferred from a chain run without marginalization 
o v er redshift nuisance parameters is also shown. 
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Figur e 7. Upper : mar ginalized 1 σ confidence regions for the S 8 , and 〈 z〉 i parameters for the correlated Gaussian distribution model of n ( z) uncertainty described 
in Section 4.2.3. Dif ferent ρ v alues refer to different amounts of correlation between tomographic bins in the uncertainty distributions and for each value of ρ, 
we show both the posterior from chains using HYPERRANK and the �z marginalization schemes. Lower : 2D posteriors on the same parameters. Dashed grey 
lines correspond to mean values of the fiducial redshift distribution in each tomographic bin, and in the S 8 panel the 1 σ region inferred from a chain run without 
marginalization o v er redshift nuisance parameters is also shown. 

Figur e 8. Upper : mar ginalized 1 σ confidence regions for the S 8 , and 〈 z〉 i parameters for the amplified deviations model of n ( z) uncertainty described in 
Section 4.2.4. Different λ values refer to different amplifications uncertainty in the n ( z) distributions and for each value of λ, we show both the posterior from 

chains using HYPERRANK and the �z marginalization schemes. Lower : 2D posteriors on the same parameters. Dashed grey lines correspond to mean values 
of the fiducial redshift distribution in each tomographic bin, and in the S 8 panel the 1 σ region inferred from a chain run without marginalization o v er redshift 
nuisance parameters is also shown. 
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.2.1 Gaussian distributions for �z 

e begin with the simple error model in which the �z approach used
n other analyses and described abo v e is the correct one. Within each
omographic bin, we draw values of �z from a Gaussian distribution
ith width σ ( �z). Realizations for n ( z) are then generated by

hifting the fiducial n Fid ( z), along the redshift axis by the drawn
z. In order to assess performance and convergence, we test this

or several different levels of uncertainty, with the σ ( �z) being 
odified by a multiplicative factor f m . For our fiducial σ ( �z), we

se the values appropriate for DES-Y3 provided by BUZZARD (see 
ight-hand panel of Fig. 4 ). We then use values of f m = { 1, 5, 10 } .

e then run the full cosmological parameter estimation pipeline 
n the simulated data vector using these redshift distributions, 
nce marginalizing o v er the uncertainties using the Gaussian �z 

ethod and once using the HYPERRANK method on the set of
ealizations. 

The results of this test are shown in Fig. 5 . In the upper panel,
e show the 1D error bars reco v ered on S 8 ≡ σ 8 ( 
m /0.3) 0.5 and

he means of the redshift distributions in the four tomographic bins
 z〉 i . Dashed grey lines correspond to mean values of the fiducial
edshift distribution in each tomographic bin, and in the S 8 panel the
 σ region inferred from a chain run without marginalization over 
edshift nuisance parameters is also shown. In the lower panel, we 
lso show the 2D posteriors for combinations of these parameters. We 
ee that HYPERRANK gives posteriors consistent with those obtained 
sing the standard �z marginalization approach. While at first glance 
his is a trivial example, it shows that the method is, at the very least,
ble to reco v er the same effects of redshift uncertainty when samples
escribe the same type of uncertainty we typically describe by means 
f a �z nuisance parameter. 

.2.2 Non-Gaussian distributions for �z 

odelling the distribution of �z for each tomographic redshift bin 
s a Gaussian is a simple model choice that may not be an adequate
epresentation of the true range and correlation structure of the �z 

uisance parameters, potentially resulting in a biased posterior and 
nder/o v er-estimated uncertainties. In the right-hand panel of Fig. 4 ,
e show histograms of the �z between the fiducial n ( z) and the 500

ealizations generated using the full uncertainty model. These show 

ppreciable non-Gaussianity, with skews and heavy tails that can 
e accentuated by the hard boundary at z = 0 for all distributions,
specially tomographic bins at low redshift. We investigate the impact 
f the non-Gaussianity in the distribution of �z by sampling �z 

alues from a highly skewed Gamma distribution: 

 ( �z; k, θ ) = 

�z k−1 e −�z/θ

θk � ( k ) 
(8) 

where �( k ) is the integral Gamma function e v aluated at k ) to shift
ur fiducial distribution n Fid ( z). We use scale parameters θ such 
hat the σ ( �z) for each tomographic bin is equal to that of the
rior with the largest uncertainty in Section 4.2.1 ( f m = 10, σ ( �z)

0.05). We fix the shape parameter k of the Gamma distribution
o a set of values k = 1, 2, 3 to ensure the distribution of mean
hifts of all tomographic bins have a positive skewness with a long
ail to high values, and to explore the effect of different degrees
f non-Gaussianity. The distribution of values is then centred so 
hat the mean shift value is equal to zero, which generates a set
f Gamma distributed �z with the same variance and mean to that
f the f m = 10 prior, but with a skewness that cannot be captured
y the use of a standard Gaussian prior. We then again run two
hains, one marginalizing o v er redshift uncertainty using the Gamma
unction �z model, and one using HYPERRANK on the generated 
ealizations. 

The result of these chains is shown in Fig. 6 . The differences on the
 8 parameter remain comparable to the typical dispersion seen for 
his number of distributions. As in Figs 5 and 7 , in the case of the 〈 z〉
ampled values, small differences appear between HYPERRANK and 
z chains, but they are distributed very similarly as seen in the lower

anels of Fig. 6 , deviating in the same way from the reference values
f the n Fid ( z) distribution and no marginalization run. One aspect
f the way �z values are reported by COSMOSIS can be responsible
or the differences, as the 〈 z〉 values shown here are the sampled �z

lus the means of the fiducial distribution n Fid ( z). Because of the
ut imposed at z = 0, this can result in a slightly inaccurate mean
edshift value being computed here. 

.2.3 Correlations between tomographic bins 

nother aspect of uncertainty the simplest �z scheme does not di-
ectly account for is the potential correlation between the uncertainty 
rom different tomographic bins (though see appendix A of Hoyle 
t al. 2018 , in which the diagonal elements of the covariance matrix
re inflated to account for potential off-diagonal elements). Since 
ach tomographic bin is shifted independently, combinations of �z 

alues which would not be expected to appear in multiple realizations
f the surv e y or photo- z analysis are equally sampled. In addition to
his, the use of a single fiducial shifted n ( z) blurs the potential effect of
orrelation at the histogram bin level. Correlation can come from the
inning of galaxies and from how the shapes of the distributions and
heir moments can change when galaxies are re-assigned to another 
istogram or tomographic bin in a different realization of a photo-z
nalysis. Depending on the nature of the colour-redshift de generac y, 
orrelation can also appear between non contiguous tomographic 
ins. 
In this case, the standard �z scheme can not be expected to pre-

erve the effects of such correlations, as the set of N tomo �z nuisance
arameters are sampled independently from their corresponding 
riors in the Monte Carlo chain. By contrast, drawing a value of
he HYPERRANK parameter(s) in a chain jointly specifies the n ( z) to
e used in all tomographic bins and preserves these correlations, 
hich can potentially lead to tighter contours on the cosmological 
arameters since the space of �z values is restricted to those allowed
y the samples. Depending on the sign of the correlation, this can also
esult on a shift of the contours if the �z values fa v our a combination
f high or low mean redshift only (positive correlation), instead of a
ombination of low and high mean redshift (ne gativ e correlation). To
xplore the potential effects of these correlations at the tomographic 
in level on inferred cosmological parameters, we generate three 
ets of mean-shifted realizations of the fiducial BUZZARD n Fid ( z) by
alues of �z sampled from a covariance matrix with increasing 
orrelation between tomographic bin pairs (1,2) and (3,4). This 
s intended to be a simple model of leakage of galaxies between
djacent tomographic bins, with more complicated models for bin 
orrelation also possible. We generate the samples so their Pearson 
orrelation coefficients take the values ρ = { 0.25, 0.5, 0.75 } , and
mploy the same coefficient for both bin pairs while leaving all other
in pairs uncorrelated ( ρ = 0). To better visualize the effects of these
orrelations once again, we use an amplified σ ( �z) prior to describe
he diagonal of the covariance matrix, equal to the f m = 10 prior
escribed in Section 4.2.1. We again run two chains, one in which
 correlated Gaussian �z marginalization is used by drawing values 
MNRAS 511, 2170–2185 (2022) 
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Figure 9. The sampling efficiency η for the different mapping schemes 
described in Section 3, for three prior amplifications values f m ( f m = 1 is the 
original BUZZARD redshift distributions). The spread of points at each location 
shows the differences due to different initial random seeds. The rankings are 
ordered from left to right as a function of perceived complexity, with a random 

ranking being the most naive approach and a 3D KL corresponding to the 
most complex to implement. Horizontal dashed lines show the efficiencies 
obtained by marginalizing the same equi v alent uncertainty σ ( �z) using the 
�z method, obtained after averaging five runs with each equi v alent prior. 
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rom a correlated prior with the same correlation matrix to that used
o generate the proposal samples, and one in which a HYPERRANK

arginalization is used. 
The result of this test is shown in Fig. 7 . We can again see

hat HYPERRANK correctly reco v ers the uncertainty in �z and S 8 
epresented by the 2D posteriors. 

.2.4 Higher-order modes of uncertainty 

he abo v e tests show that HYPERRANK is capable of correctly
arginalizing o v er redshift distribution uncertainties in cases where
 correct and simple model for them is known. Finally, in this section,
e use a set of realizations of n ( z), which represent a fully flexible
odel of the uncertainty in n ( z), following the approach of Myles

t al. ( 2021 ) and summarized in Section 4.1.2, as applied to the
UZZARD simulation. 
As abo v e for the cases of dif ferent v alues of f m , we apply a

rocedure to these realizations to artificially increase the level of
ncertainty they represent. Starting from the set of 500 realizations,
e amplify the difference between each of the n ( z i ) values and the
alue of the fiducial distribution, n f ( z i ), such that n 

′ 
( z i ) = n ( z i ) +

[ n ( z i ) − n f ( z i )]. Hence, we decide to use the typical dispersion
alues found for 500 realizations for that amplification as the
eference to e v aluate the contours obtained with HYPERRANK . For this
est, we generate three sets of distributions: one with no amplification,

= 0; and two with amplified peculiarities, λ = { 1 . 5 , 3 } . While
he average n ( z) obtained from the amplified realizations remains
naltered, this procedure can result in a slightly wider equi v alent
aussian prior σ ( �z) to those of the un-amplified realizations. Thus,
e also obtain the σ ( �z) values for each set of distributions and use

hem to compare HYPERRANK to the standard �z marginalization. 
The results from this test are shown in Fig. 8 . As can be seen, the

YPERRANK and �z chains again reco v er highly consistent contours
n the S 8 and 〈 z〉 parameters. For the λ = 0 case, the �z posterior on
 8 is 2.6 per cent narrower than the HYPERRANK one, for λ = 1.5 the
z posteriors are 16 per cent wider, and for λ = 3.0 the �z posterior

s 18 per cent wider. This follows the idea that HYPERRANK is capable
f better modelling of these more complex uncertainties, but that in
he λ = 0 (DES-Y3-like) regime, �z is an acceptable approximation.

.3 Sampling efficiency and ranking mode 

s well as the correct exploration of the uncertainties, we also wish
o see the effect of the HYPERRANK procedure on the efficiency of
apping the posterior of cosmological and nuisance parameters. For
 randomly sampled set of distributions, the likelihood is not a smooth
unction of the parameters being sampled (see Fig. 2 ). Therefore, the
arameter space volume cannot be sampled consistently in higher
ikelihood regions since there is no correlation between the sampled
uisance parameter and cosmology posterior. Any proposal step in
he Monte Carlo algorithm typically does not have the intended effect,
ince proposed jumps in the redshift nuisance parameters are now
cross a random, discontinuous likelihood. This leads to the sampler
equiring many more likelihood e v aluations to find new samples
f the posterior. We define sampling efficiency η as the number of
eplacements (samples of the posterior) made by MULTINEST o v er
he total number of likelihood e v aluations required for convergence,
ith higher η representing better performance. 
We test the different mapping schemes described in Section 3

omparing 1D and 3D 〈 z〉 , 3D 〈 1/ χ〉 and a KL approach where the
rst K = 3 components are used. We compare the sampling efficiency
NRAS 511, 2170–2185 (2022) 
etween them and against a naive sampling where realizations are
hosen at random on each likelihood e v aluation. To reduce the effect
f sampling noise due to the stochastic nature of the sampler, we
epeat each run five times with different initial random seeds for the
ampler. 

Fig. 9 shows the sampling ef ficiencies η at dif ferent f m v alues as a
unction of different choices for descripti ve v alues d , all compared to
he average efficiency from five runs obtained using the �z approach
dashed horizontal lines). The different colours used represent this
est for dif ferent v alues of the f m parameter. In all cases it is clear
hat the more complex choices of d using multiple dimensions are

ore efficient at exploring the space of uncertainties, with 3D 〈 z〉
nd 3D 〈 1/ χ〉 showing better performance at all f m values. This is
xpected since the addition of more dimensions helps breaking the
e generac y of the posterior values present when a single parameter
s used and all the information of the n ( z) realizations is compressed
nto a single value. 

The KL approach, also tested in three dimensions, provides an
mpro v ement o v er random and 1D sampling, but does not reach the
ame levels of efficiency for methods of equal dimensionality. with
espect to a reference data vector obtained at a fixed cosmology,
nd the relative importance of each n ( z) element can change as the
ampler mo v es in a cosmology space. 

Perhaps one surprising result occurs when comparing the random
pproach against 1D 〈 z〉 in the un-amplified case ( f m = 1), in which
he former appears ∼ 10 per cent more efficient. We believe this is
aused by the relatively small contribution of n ( z) uncertainty to the
osterior in the f m = 1 regime, as all realizations have very similar
ean values across all tomographic bins. This can lead to a very

mall change of smoothness of the posterior at a fixed cosmology
hen moving from a random ordering to a 1D ordering, resulting in

imilar efficiencies. While we do not show the effect of additional
imensions for a similar type of descriptive value d (i.e. 4D 〈 z〉 ),
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Figure 10. Reco v ered cosmological parameters for four different ranking 
approaches described in the text: 3D rankings by mean redshift and inverse 
comoving distance of tomographic bins, 3D ranking by principal components 
of the data vector, and random sampling of realizations. The contours shown 
correspond to the case where realizations sampled with HYPERRANK describe 
an uncorrelated Gaussian distribution with an amplification factor of the 
uncertainty f m = 5. For f m = 1, 10, the contours are also very similar between 
the different ranking schemes. 
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ome test runs suggest that their efficiency is not noticeably better 
han a 3D approach, at the expense of noisier posteriors on the H
arameters. This is likely caused by the larger discontinuities in the 
osterior surface as a function of H, which is a consequence of
he lower resolution of the multidimensional grid in higher N d (as
iscussed in Section 3.2). 
Based on these results, we consider a 3D approach an appropriate 

efault configuration, with a preference for 〈 z〉 since its computation 
oes not involve the use of a fiducial cosmology, unlike 〈 1/ χ〉
which requires calculation of χ ( z) for equation (4), done here and
ypically elsewhere at a fixed cosmology). When considering which 
hree of the four tomographic bins to choose to use as HYPERRANK

imensions, we recommend that tomographic bins should be ordered 
n terms of the variance in the descripti ve v alue (e.g. the spread
f different mean redshifts across different realizations), with the 
omographic bin with lo west v ariance in the descripti ve v alue not
sed as a HYPERRANK dimension. 
In Fig. 10 , we show posterior contours reco v ered for each of the

ifferent ranking schemes, including the ‘Random’ scheme in which 
o ranking is performed. The consistency of these contours confirms 
hat the HYPERRANK procedure does not affect the cosmology 
eco v ered while impro ving the efficienc y of a chain with respect
o un-ranked, random sampling of n ( z) realizations. 

.3.1 Convergence 

n HYPERRANK , discrete samples from the posterior o v er the subset
f redshift nuisance parameters are generated outside of the main 
hain used to sample o v er the cosmological and other nuisance
arameters. This means a limited and discrete set of values of
he nuisance parameters are available to the main sampling, as 
pposed to the continuous range of parameters within a specified 
rior which would be available otherwise. While it could be possible
o form an interpolation between closely ranked samples to boost 
heir number, such interpolated samples would no longer carry the 
ntended property of being true samples from the posterior for n ( z),
ith the interpolation scheme ef fecti vely becoming part of the model

nd correlation structure for histogram bin heights, with a set of
idden hyper-parameters. It is also unclear how such an interpolation 
ould include the correlations across tomographic bins, which we 
ave found to be an important describing factor of the samples. 
Without interpolation, there will be a transition from the regime in

hich there are too few realizations of n ( z) available to effectively
xplore the redshift distribution uncertainty, and the limit where 
nfinitely many realizations would be available, corresponding to the 
ontinuous case. Here, we investigate the convergence of HYPER- 
ANK marginalization with respect to the number of n ( z) samples
enerated, for the case of our DES-Y3 simulated data set. 
We first generate several sets of distributions where each real- 

zation is a shifted version of a fiducial n Fid ( z), and the shifts are
rawn from a Gaussian prior, following a similar approach to the �z 

ethod described in Section 2. We generate eight sets of redshift
istributions, each containing 3 3 , 4 3 , 5 3 , 6 3 , 7 3 , 8 3 , 9 3 , and 10 3 

ealizations, which are then ranked using the 3D default configuration 
escribed at the end of Section 3.2. 
Since we expect the approximate minimum number of realizations 

equired for this convergence to depend on the level of uncertainty
n the n ( z), we generate two additional sets of proposal distributions
y multiplying the σ ( �z) obtained abo v e, by a factor f m = 5, 10.
e then repeat the generation of proposal realizations with five 

ifferent random seeds for each of the three f m values, and for
ach of the eight sets of realizations containing different number 
f proposals. By comparing the standard deviation on the central, 
ower, and upper confidence values for S 8 as a function of the number
f realizations, we can find an approximate minimum number of 
ealizations required for the standard deviation of error bars from 

YPERRANK to converge to that obtained using the �z approach 
which is formally correct for this set of realizations). In Fig. 11 ,
e observe that for all three levels of uncertainty, described by the

mplification factor f m , 1000 realizations yield standard deviation of 
he error bars obtained using HYPERRANK comparable to the ones 
sing the �z approach. 

 APPLI CATI ON  TO  D E S  Y E A R  3  

ased on the abo v e tests, we derive an appropriate configuration for
sing HYPERRANK on DES-Y3 (or similar) data: 

(i) 〈 z〉 ranking 
(ii) Three HYPERRANK parameter dimensions 
(iii) Ranking according to tomographic bins 1, 2, and 4 
(iv) At least 10 3 n ( z) samples available to HYPERRANK 

We then run a full shear-only cosmology chain on the BUZZARD

imulation of the DES-Y3 data set, with model parametrizations 
nd priors as discussed in the main cosmology papers (Amon et al.
022 ; Secco et al. 2022 ), and with 1000 realizations of possible n ( z)
enerated using the full procedure of Myles et al. ( 2021 ). This, as
losely as possible, mimics the experimental data and set-up of the
ES-Y3 analysis. We also run a chain with this set-up, but with the
YPERRANK marginalization of redshift uncertainties replaced by the 
z approach. This results of these two chains are shown in Fig. 12 .
he left-hand panel shows the posteriors on mean redshift within 

he four tomographic bins, produced directly by the �z analysis 
nd by taking the posterior weighted means within the HYPERRANK 
MNRAS 511, 2170–2185 (2022) 
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Figure 11. Standard deviation of the lower (purple), central (red), and 
upper (cyan) values for the S 8 parameter obtained using HYPERRANK for five 
realizations of the ensemble of n ( z) samples, as a function of the total number 
of distributions to form the ensemble. From top to bottom, the equi v alent 
σ ( �z) width is amplified by a progressively larger number, f m , with respect 
to the original distributions of BUZZARD samples. Horizontal dashed lines 
indicate the typical standard deviation for runs using the traditional �z 

marginalization approach. 
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nalysis. Good consistency can be seen in the space of mean redshifts
xplored. The right-hand panel of Fig. 12 shows posteriors on
he cosmological parameters, and the HYPERRANK parameters for
ach tomographic bin. For the cosmological parameters, we also
how the reco v ered posterior from the �z analysis, finding highly
onsistent results between the two approaches. This suggests that
or the uncertainties which are modelled as a part of the DES-
3 analysis, the �z approach is adequate to fully explore their

ffect on cosmic shear cosmological parameters. The �z approach
s hence adopted as fiducial in Amon et al. ( 2022 ) and Secco
t al. ( 2022 ) and subsequent DES-Y3 analyses, with the validation
est between HYPERRANK and �z shown here on the BUZZARD

imulation repeated for the real data vector in section E.1. of Amon
t al. ( 2022 ). 

We also show the reco v ered posteriors on HYPERRANK ranking
arameters, sho wing that dif ferent subspaces of the ranked n ( z)
ealizations are indeed fa v oured in a systematic way, indicating the
osmological data are in turn helping constrain the space of plausible
edshift distributions. 

 C O N C L U S I O N S  

e have presented HYPERRANK , a new approach to marginalize
 v er redshift distribution uncertainties in weak lensing and galaxy
lustering experiments by ranking and mapping a set of proposal
edshift distributions to a set of continuous hyper-parameter, which
re then sampled in the Monte Carlo chain. 

To test the accuracy of the method, we generated a series of n ( z)
nsembles to describe different types of uncertainty, and compared
he obtained S 8 error estimates and sampled uncertainty to those
btained by only marginalizing o v er a shift �z along the redshift
irection for each tomographic bin. 
NRAS 511, 2170–2185 (2022) 
We showed that this approach provides equi v alent results to the
nes obtained marginalizing o v er �z, when the realizations of the
nsemble are obtained by shifting the tomographic bins of a fiducial
istribution by a set of values drawn from the same prior used to
escribe the �z uncertainty. 
We generated additional ensembles to represent types of uncer-

ainty which cannot be fully characterized by a set of uncorre-
ated Gaussian shifts �z, and if unaccounted for, can lead to an
ncorrect estimation of the marginalized cosmological parameters
osteriors. These included samples with �z shifts drawn from non-
aussian distributions, drawn from highly correlated multi v ariate
aussian distributions and from a set of realistic distributions
ith amplified peculiarities, based on the estimates obtained from

he SOMPZ scheme on the BUZZARD simulations. In all cases,
YPERRANK correctly explores the uncertainty described by the

nput distribution ensemble, providing posteriors on the cosmo-
ogical S 8 and redshift tomographic bin means 〈 z〉 , which are
ighly consistent with those from the estimates obtained using
arginalization with �z nuisance parameters, which are distributed

ccording to the input model (and hence are the correct model for the
ncertainty). 
A set of tests were conducted to obtain an approximately optimal

onfiguration for the choice of descriptive values which are used
o rank the distributions and the subsequent effect on sampling
fficiency, resulting in the use of mean redshift of a subset of
omographic bins, 〈 z〉 n being the choice of ranking parameter that
ives the best efficiency (lowest number of likelihood evaluations
er posterior sample required for convergence of the chain). As
stimation of the minimum number of samples required for posterior
stimates to become less noisy that the typical sampling noise
n standard �z marginalization is also provided for the expected
hotometric redshift uncertainties of source distributions of the DES-
3 analysis. 
Tests were conducted simulating a cosmic shear analysis where

nly a subset of cosmological and systematic parameters are inferred,
ompared to a full cosmic shear plus galaxy clustering case. Despite
his, HYPERRANK is not limited to cosmic shear analysis and can
e used without significant modifications on cosmic shear plus
alaxy clustering (3x2pt) analysis. We do not expect our conclu-
ions to vary significantly for 3x2pt analysis. Similarly, while tests
ere focus on the propagation of uncertainty from source galaxy
edshift distributions, HYPERRANK can be used to simultaneously
nd independently propagate uncertainties from the lens sample
f galaxies for galaxy clustering plus tangential shear (2x2pt)
nd 3x2pt. 

For the particular levels of uncertainty expected for the DES-
3 analysis, we showed that the difference in obtained confidence

ontours between the standard approach using �z shifts and HYPER-
ANK are small, and hence concluded that �z was sufficient for the
equirements of DES-Y3. For the level of uncertainties present in
ES-Y3, we have demonstrated that it is satisfactory to use the �z

pproach which, while not as accurate as the HYPERRANK approach,
ypically allows for faster convergence of the Monte Carlo inference
hains, as can be seen as the dashed horizontal lines in Fig. 9 , which
how the efficiencies for �z. 

HYPERRANK provides a well-moti v ated approach for marginalizing
 v er the redshift distribution uncertainty affecting cosmological
alaxy clustering and weak lensing surv e ys. It is nominally capable
f marginalizing o v er an y potential form of such an uncertainty,
ubject to the ability to generate realizations samples of possible
 ( z) using a model for the uncertainty. It thus also provides a much
ore complete and flexible approach to the commonly used and
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Figure 12. Correlation between redshift distribution uncertainty nuisance parameters in the BUZZARD simulated DES-Y3 analysis, comparing the standard �z 

approach (red) with the HYPERRANK approach presented in this work (blue). Left shows the reco v ered posteriors on mean redshifts of redshift distributions within 
the tomographic bins considered. Right shows the reco v ered cosmological parameters for both approaches, and the HYPERRANK ranking parameters. Both show 

good agreement between the two approaches for the modelled uncertainty expected in DES-Y3. 
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d-hoc �z approach, while still being able to contain that particular 
odel and replicate findings made using it. 

C K N OW L E D G E M E N T S  

his research manuscript made use of ASTROPY (Astropy Collabora- 
ion 2013 ; Astropy Collaboration & Astropy Contributors 2018 ), 
hainConsumer 1 (Hinton 2016 ), and Matplotlib (Hunter 2007 ), 
nd has been prepared using NASA’s Astrophysics Data System 

ibliographic Services. 
IH, RR, and SB acknowledge support from the European Research 

ouncil in the form of a Consolidator Grant with number 681431. 
IH also acknowledges support from the Beecroft Trust. 
JPC acknowledges support granted by Agencia Nacional de Inves- 

igaci ́on y Desarrollo (ANID) DOCTORADO BECAS CHILE/2016 
 72170279. 

Funding for the DES Projects has been provided by the U.S. 
epartment of Energy, the U.S. National Science Foundation, the 
inistry of Science and Education of Spain, the Science and 

echnology Facilities Council of the United Kingdom, the Higher 
ducation Funding Council for England, the National Center for 
upercomputing Applications at the University of Illinois at Urbana- 
hampaign, the Kavli Institute of Cosmological Physics at the 
niversity of Chicago, the Center for Cosmology and Astro-Particle 
hysics at the Ohio State University, the Mitchell Institute for 
undamental Physics and Astronomy at Texas A&M University, Fi- 
anciadora de Estudos e Projetos, Funda c ¸ ˜ ao Carlos Chagas Filho de 
mparo ̀a Pesquisa do Estado do Rio de Janeiro, Conselho Nacional 
e Desenvolvimento Cient ́ıfico e Tecnol ́ogico and the Minist ́erio
a Ci ̂ encia, Tecnologia e Inova c ¸ ˜ ao, the Deutsche Forschungsge- 
einschaft and the Collaborating Institutions in the Dark Energy 
urv e y. 
 samreay.github.io/ChainConsumer 

a
N
g

The Collaborating Institutions are Argonne National Laboratory, 
he University of California at Santa Cruz, the University of Cam-
ridge, Centro de Investigaciones Energ ́eticas, Medioambientales y 
ecnol ́ogicas-Madrid, the University of Chicago, University College 
ondon, the DES-Brazil Consortium, the University of Edinburgh, 

he Eidgen ̈ossische Technische Hochschule (ETH) Z ̈urich, Fermi 
ational Accelerator Laboratory, the University of Illinois at Urbana- 
hampaign, the Institut de Ci ̀encies de l’Espai (IEEC/CSIC), the In-

titut de F ́ısica d’Altes Energies, Lawrence Berkeley National Labo- 
atory, the Ludwig-Maximilians Universit ̈at M ̈unchen and the associ- 
ted Excellence Cluster Universe, the University of Michigan, NSF’s 
OIRLab, the University of Nottingham, The Ohio State University, 

he University of Pennsylvania, the University of Portsmouth, SLAC 

ational Accelerator Laboratory, Stanford University, the University 
f Susse x, Te xas A&M Univ ersity, and the OzDES Membership
onsortium. 
Based in part on observations at Cerro Tololo Inter-American 

bservatory at NSF’s NOIRLab (NOIRLab Prop. ID 2012B-0001; 
I: J. Frieman), which is managed by the Association of Universities
or Research in Astronomy (AURA) under a cooperative agreement 
ith the National Science Foundation. 
The DES data management system is supported by the Na- 

ional Science Foundation under grant numbers AST-1138766 and 
ST-1536171. The DES participants from Spanish institutions 

re partially supported by MICINN under grants ESP2017-89838, 
GC2018-094773, PGC2018-102021, SEV-2016-0588, SEV-2016- 
597, and MDM-2015-0509, some of which include ERDF funds 
rom the European Union. IFAE is partially funded by the CERCA
rogram of the Generalitat de Catalunya. Research leading to 
hese results has received funding from the European Research 
ouncil under the European Union’s Se venth Frame work Program 

FP7/2007-2013), including ERC grant agreements 240672, 291329, 
nd 306478. We acknowledge support from the Brazilian Instituto 
acional de Ci ̂ encia e Tecnologia (INCT) do e-Universo (CNPq 
rant 465376/2014-2). 
MNRAS 511, 2170–2185 (2022) 

art/stac147_f12.eps


2184 J. P. Cordero et al. 

 

L  

D  

P

D

T  

Y  

t  

p
 

r  

/

R

A
A
A
A
B
B
B  

C  

D
D
D
D  

E
F
F  

G
H  

H
H
H
H
H
H
H
H
H
H
H
J
J
K
L
M
M
R
S
S  

S
S
S
S  

T
T

W  

Z

1
 

T
2

 

K
3

4
 

p
5

 

U
6

 

M
7

 

8
 

9
 

0
1

 

C
1

 

S
1

1
 

C
1

 

U
1

 

s
1

1
 

H
1

 

G
1

 

N
2

 

C
2

2
 

1
2

 

A
2

 

U  

l
2

 

U
2

 

o
2

 

I
2

 

F  

2
 

(
3

3

3
 

S
3

 

3
 

d
3

 

S
3

M

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/511/2/2170/6516434 by U
niversity C

ollege London user on 14 M
arch 2022
This manuscript has been authored by Fermi Research Alliance,
LC under Contract No. DE-AC02-07CH11359 with the U.S.
epartment of Energy, Office of Science, Office of High Energy
hysics. 

ATA  AVA ILA BILITY  

he DES Y3 data products used in this work, full ensemble of DES
3 source galaxy redshift distributions, chains, and data products of

he tests conducted here will be made publicly available following
ublication, at https:// des.ncsa.illinois.edu/ releases . 
The HYPERRANK code is available in the COSMOSIS standard library

epository https:// bitbucket.org/ joezuntz/cosmosis- standard- library
src/des-y3/. 

E FEREN C ES  

bazajian K. N. et al., 2009, ApJS , 182, 543 
mon A. et al., 2022, Phys. Rev. D, 105, 023514 
stropy Collaboration, 2013, A&A , 558, A33 
stropy Collaboration, 2018, AJ , 156, 123 
lanton M. R. et al., 2005, AJ , 129, 2562 
onnett C. et al., 2016, Phys. Rev. D, 94, 042005 
urkard R. E., Derigs U., 1980, The Linear Sum Assignment Problem.

Springer, Berlin, Heidelberg, p. 1 
awthon R. et al., 2020, submitted to MNRAS, preprint ( arXiv:2012.12826 )
ark Energy Surv e y Collaboration, 2018, Phys. Rev. D, 98, 043526 
eRose J. et al., 2019, preprint ( arXiv:1901.02401 ) 
eRose J. et al., 2021, preprint, submitted to MNRAS ( arXiv:2105.13547 ) 
ES Collaboration et al., 2021, submitted to PRD, preprint

( arXiv:2105.13549 ) 
verett S. et al., 2022, ApJS, 258, 15 
eroz F., Hobson M. P., Bridges M., 2009, MNRAS , 398, 1601 
 oreman-Macke y D., Hogg D. W., Lang D., Goodman J., 2013, PASP , 125,

306 
atti M., Gianini G. et al., 2022, MNRAS, 510, 1223 
adzhiyska B., Alonso D., Nicola A., Slosar A., 2020, J. Cosmol. Astropart.

Phys., 2020, 056 
amana T. et al., 2020, PASJ , 72, 16 
andley W. J., Hobson M. P., Lasenby A. N., 2015, MNRAS , 450, L61 
artley W. G., Choi A. et al., 2022, MNRAS, 509, 3547 
artley W. G. et al., 2020, MNRAS , 496, 4769 
eymans C. et al., 2021, A&A , 646, A140 
ikage C. et al., 2019, PASJ , 71, 43 
ildebrandt H. et al., 2017, MNRAS , 465, 1454 
inton S. R., 2016, J. Open Source Softw. , 1, 00045 
oyle B. et al., 2018, MNRAS , 478, 592 
u W., 1999, ApJ , 522, L21 
unter J. D., 2007, Comput. Sci. Eng., 9, 90 

oachimi B. et al., 2021, A&A , 646, A129 
oudaki S. et al., 2020, A&A , 638, L1 
itching T. D., Taylor A. N., 2011, MNRAS , 410, 1677 
eistedt B., Mortlock D. J., Peiris H. V., 2016, MNRAS , 460, 4258 
asters D. et al., 2015, ApJ , 813, 53 
yles J. et al., 2021, MNRAS, 505, 4249 
au M. M., Wilson S., Mandelbaum R., 2020, MNRAS , 491, 4768 
 ́anchez C., Bernstein G. M., 2019, MNRAS , 483, 2801 
 ́anchez C., Raveri M., Alarcon A., Bernstein G. M., 2020, MNRAS , 498,

2984 
chmidt S. J. et al., 2020, MNRAS , 499, 1587 
ecco L. et al., 2022, Phys. Rev. D, 105, 023515 
pringel V., 2005, MNRAS , 364, 1105 
t ̈olzner B., Joachimi B., Korn A., Hildebrandt H., Wright A. H., 2021, A&A ,

650, A148 
aylor A. N., Kitching T. D., 2010, MNRAS , 408, 865 
essore N., Harrison I., 2020, Open J. Astrophys. , 3, 6 
NRAS 511, 2170–2185 (2022) 
right A. H., Hildebrandt H., van den Busch J. L., Heymans C., Joachimi
B., Kannawadi A., Kuijken K., 2020, A&A , 640, L14 

untz J. et al., 2015, Astron. Comput. , 12, 45 

 Jodrell Bank Centre for Astrophysics, Department of Physics and Astronomy,
he University of Manchester, Manchester M13 9PL, UK 

 Department of Physics, University of Oxford, Denys Wilkinson Building,
eble Road, Oxford OX1 3RH, UK 

 Institute for Astronomy, University of Edinburgh, Edinburgh EH9 3HJ, UK 

 Department of Physics and Astronomy, University of Pennsylvania, Philadel-
hia, PA 19104, USA 

 Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439,
SA 

 Institute of Space Sciences (ICE, CSIC), Campus UAB, Carrer de Can
agrans, s/n, E-08193 Barcelona, Spain 

 Institut d’Estudis Espacials de Catalunya (IEEC), E-08034 Barcelona, Spain
 Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA
 Instituto de F ́ısica Te ́orica, Universidade Estadual Paulista, S ̃ ao Paulo,
1140-070, Brazil 
0 Department of Physics, Stanford University, 382 Via Pueblo Mall, Stanford,
A 94305, USA 

1 Kavli Institute for Particle Astrophysics & Cosmology, PO Box 2450,
tanford University, Stanford, CA 94305, USA 

2 SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA 

3 Laborat ́orio Interinstitucional de e-Astronomia - LIneA, Rua Gal. Jos ́e
ristino 77, Rio de Janeiro RJ-20921-400, Brazil 

4 Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15312,
SA 

5 Center for Cosmology and Astro-Particle Physics, The Ohio State Univer-
ity, Columbus, OH 43210, USA 

6 Santa Cruz Institute for Particle Physics, Santa Cruz, CA 95064, USA 

7 Department of Astronomy, University of California, Berkeley, 501 Campbell
all, Berkeley, CA 94720, USA 

8 Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak
rove Dr., Pasadena, CA 91109, USA 

9 Department of Astronomy/Steward Observatory, University of Arizona, 933
orth Cherry Avenue, Tucson, AZ 85721-0065, USA 

0 Kavli Institute for Cosmolo gy, Univer sity of Cambridge, Madingley Road,
ambridge CB3 0HA, UK 

1 Churchill Colleg e , Univer sity of Cambridg e, CB3 0DS Cambridg e , UK 

2 Department of Astronomy, University of Illinois at Urbana-Champaign,
002 W. Green Street, Urbana, IL 61801, USA 

3 Center for Astrophysical Surveys, National Center for Supercomputing
pplications, 1205 West Clark St., Urbana, IL 61801, USA 

4 D ́epartement de Physique Th ́eorique and Center for Astroparticle Physics,
niversit ́e de Gen ̀eve, 24 quai Ernest Ansermet, CH-1211 Geneva, Switzer-

and 
5 Fermi National Accelerator Laboratory, PO Box 500, Batavia, IL 60510,
SA 

6 Department of Applied Mathematics and Theoretical Physics, University
f Cambridge, Cambridge CB3 0WA, UK 

7 Kavli Institute for Cosmolo gical Physics, Univer sity of Chica go, Chica go,
L 60637, USA 

8 ICTP South American Institute for Fundamental Research Instituto de
 ́ısica Te ́orica, Universidade Estadual Paulista, S ̃ ao Paulo, 01140-070, Brazil

9 Centro de Investigaciones Energ ́eticas, Medioambientales y Tecnol ́ogicas
CIEMAT), Madrid, 28040, Spain 
0 Brookhaven National Laboratory, Bldg 510, Upton, NY 11973, USA 

1 Department of Physics, Duke University, Durham, NC 27708, USA 

2 Departamento de F ́ısica Matem ́atica, Instituto de F ́ısica, Universidade de
 ̃

 ao Paulo, CP 66318, S ̃ ao Paulo, SP 05314-970, Brazil 
3 CNRS, UMR 7095, Institut d’Astrophysique de Paris, F-75014 Paris, France
4 Sorbonne Universit ́es, UPMC Univ Paris 06, UMR 7095, Institut
’Astrophysique de Paris, F-75014 Paris, France 
5 Department of Physics & Astronomy, University College London, Gower
treet, London WC1E 6BT, UK 

6 Instituto de Astrofisica de Canarias, E-38205 La Laguna, Tenerife, Spain 

https://des.ncsa.illinois.edu/releases
https://bitbucket.org/joezuntz/cosmosis-standard-library/src/des-y3/
http://dx.doi.org/10.1088/0067-0049/182/2/543
http://dx.doi.org/10.1051/0004-6361/201322068
http://dx.doi.org/10.3847/1538-3881/aabc4f
http://dx.doi.org/10.1086/429803
http://arxiv.org/abs/2012.12826
http://arxiv.org/abs/1901.02401
http://arxiv.org/abs/2105.13547
http://arxiv.org/abs/2105.13549
http://dx.doi.org/10.1111/j.1365-2966.2009.14548.x
http://dx.doi.org/10.1086/670067
http://dx.doi.org/10.1093/pasj/psz138
http://dx.doi.org/10.1093/mnrasl/slv047
http://dx.doi.org/10.1093/mnras/staa1812
http://dx.doi.org/10.1051/0004-6361/202039063
http://dx.doi.org/10.1093/pasj/psz010
http://dx.doi.org/10.1093/mnras/stw2805
http://dx.doi.org/10.21105/joss.00045
http://dx.doi.org/10.1093/mnras/sty957
http://dx.doi.org/10.1086/312210
http://dx.doi.org/10.1051/0004-6361/202038831
http://dx.doi.org/10.1051/0004-6361/201936154
http://dx.doi.org/10.1111/j.1365-2966.2010.17548.x
http://dx.doi.org/10.1093/mnras/stw1304
http://dx.doi.org/10.1088/0004-637X/813/1/53
http://dx.doi.org/10.1093/mnras/stz3295
http://dx.doi.org/10.1093/mnras/sty3222
http://dx.doi.org/10.1093/mnras/staa2542
http://dx.doi.org/10.1093/mnras/staa2799
http://dx.doi.org/10.1111/j.1365-2966.2005.09655.x
http://dx.doi.org/10.1051/0004-6361/202040130
http://dx.doi.org/10.1111/j.1365-2966.2010.17201.x
http://dx.doi.org/10.21105/astro.2003.11558
http://dx.doi.org/10.1051/0004-6361/202038389
http://dx.doi.org/10.1016/j.ascom.2015.05.005


DES-Y3: redshift uncertainty marginalization 2185 

37 Universidad de La Laguna, Dpto. Astrof ́ısica, E-38206 La Laguna, Tenerife, 
Spain 
38 Institut de F ́ısica d’Altes Energies (IFAE), The Barcelona Institute 
of Science and Technology, Campus UAB, 08193 Bellaterra, Barcelona, 
Spain 
39 Physics Department, 2320 Chamberlin Hall, University of Wisconsin- 
Madison, 1150 University Avenue Madison, WI 53706-1390, USA 

40 INAF-Osservatorio Astronomico di Trieste, via G. B. Tiepolo 11, I-34143 
Trieste, Italy 
41 Institute for Fundamental Physics of the Universe, Via Beirut 2, I-34014 
Trieste, Italy 
42 Faculty of Physics, Ludwig-Maximilians-Universit ̈at, Scheinerstr. 1, D- 
81679 Munich, Germany 
43 Department of Physics, The Ohio State University, Columbus, OH 43210, 
USA 

44 Institute of Theoretical Astrophysics, University of Oslo. PO Box 1029 
Blindern, NO-0315 Oslo, Norway 
45 Instituto de Fisica Teorica UAM/CSIC, Universidad Autonoma de Madrid, 
E-28049 Madrid, Spain 
46 Department of Astronomy, University of Michigan, Ann Arbor, MI 48109, 
USA 

47 School of Mathematics and Physics, University of Queensland, Brisbane 
QLD 4072, Australia 
48 Max Planck Institute for Extraterrestrial Physics, Giessenbachstrasse, D- 
85748 Garching, Germany 

49 Universit ̈ats-Sternwarte, Fakult ̈at f ̈ur Physik, Ludwig-Maximilians Univer- 
sit ̈at M ̈unchen, Scheinerstr. 1, D-81679 M ̈unchen, Germany 
50 Center for Astrophysics | Harvard & Smithsonian, 60 Garden Street, 
Cambridg e , MA 02138, USA 

51 Australian Astronomical Optics, Macquarie University, North Ryde NSW 

2113, Australia 
52 Lowell Observatory, 1400 Mars Hill Rd, Flagstaff, AZ 86001, USA 

53 Instituci ́o Catalana de Recerca i Estudis Avan c ¸ats, E-08010 Barcelona, 
Spain 
54 Perimeter Institute for Theoretical Physics, 31 Caroline St. North, Waterloo, 
ON N2L 2Y5, Canada 
55 Institute of Astronomy, University of Cambridg e , Madingley Road, Cam- 
bridge CB3 0HA, UK 

56 Observat ́orio Nacional, Rua Gal. Jos ́e Cristino 77, Rio de Janeiro, RJ- 
20921-400, Brazil 
57 Department of Astrophysical Sciences, Princeton University, Peyton Hall, 
Princeton, NJ 08544, USA 

58 School of Physics and Astronomy, University of Southampton, Southampton 
SO17 1BJ, UK 

59 Computer Science and Mathematics Division, Oak Ridge National Labo- 
ratory, Oak Ridg e , TN 37831, USA 

60 Institute of Cosmology and Gravitation, University of Portsmouth, 
Portsmouth PO1 3FX, UK 

This paper has been typeset from a T E 

X/L 

A T E 

X file prepared by the author. 

MNRAS 511, 2170–2185 (2022) 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/511/2/2170/6516434 by U
niversity C

ollege London user on 14 M
arch 2022


	1 INTRODUCTION
	2 MARGINALIZATION OF REDSHIFT UNCERTAINTY
	3 THE HYPER-RANKING METHOD
	4 TESTS ON SIMULATIONS
	5 APPLICATION TO DES YEAR 3
	6 CONCLUSIONS
	ACKNOWLEDGEMENTS
	DATA AVAILABILITY
	REFERENCES

