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Abstract

Frontotemporal dementia (FTD) covers a spectrum of neurodegenerative disorders

with different phenotypes, genetic backgrounds, and pathological states. Its clinico-

pathological diversity challenges the diagnostic process and the execution of clinical

trials, calling for specific diagnostic biomarkers of pathologic FTD types. There is also

a need for biomarkers that facilitate disease staging, quantification of severity, mon-

itoring in clinics and observational studies, and for evaluation of target engagement

and treatment response in clinical trials. This review discusses current FTD biofluid-

based biomarker knowledge taking into account the differing applications. The limi-

tations, knowledge gaps, and challenges for the development and implementation of

such markers are also examined. Strategies to overcome these hurdles are proposed,

including the technologies available, patient cohorts, and collaborative research ini-

tiatives. Access to robust and reliable biomarkers that define the exact underlying
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pathophysiological FTD process will meet the needs for specific diagnosis, disease

quantitation, clinical monitoring, and treatment development.

1 BACKGROUND

Frontotemporal dementia (FTD) is the second most prevalent neu-

rodegenerative dementia in young-onset patients (< 65 years old) and

has a dramatic effect on life expectancy, with reported survival rates

after onset varying from 3 to 14 years.1,2 FTD causes a heavy finan-

cial burden with costs per patient estimated at two to three times

higher for FTD than those for patients suffering from Alzheimer’s dis-

ease (AD) dementia.3,4 FTD is a heterogeneous and complex disor-

der comprising a wide range of subtypes from a clinical, genetic, and

pathological perspective (Figure 1). Based on the clinical phenotype,

patients may suffer primarily from behavioral changes and deficits in

executive functions (behavioral FTD [bvFTD]) or languagedisturbances

(primary progressive aphasia [PPA]). PPA encompasses semantic vari-

ant PPA (svPPA) and non-fluent variant PPA (nfvPPA).5,6 A logopenic

variant of PPA (lvPPA) has also been described, but is usually asso-

ciated with AD pathology.5,6 The phenotypic spectrum also includes

cases with concomitant amyotrophic lateral sclerosis (FTD-ALS),7 cor-

ticobasal syndrome (CBS),8 and progressive supranuclear palsy (PSP;

the classic PSP syndrome called Richardson syndrome).9 Furthermore,

the overlap of clinical features in bvFTD or svPPAwith those observed

inADor psychiatric disorders represents additional challenges for clin-

ical diagnosis.10–13 These diverse clinical phenotypes can share differ-

ent pathological and genetic backgrounds (Figure 1), underpinning the

complexity of this disorder.

1.1 FTD neuropathology

FTD is typically associated with focal degeneration of the frontal and

temporal cortices, denoted by the term frontotemporal lobar degen-

eration (FTLD). Microscopically, ≈50% of FTLD patients are char-

acterized by aggregates of TAR DNA‑binding protein 43 (TDP‑43
[FTLD‑TDP]) and 45% of FTLD patients develop aggregates of the

microtubule‑associated protein tau (MAPT, i.e., FTLD-tau). Less com-

monly (< 5% of the cases), FTLD features aggregates of RNA‑binding
protein fused in sarcoma (FUS [FTLD‑FUS]) or ubiquitin‑positive inclu-
sions (FTLD‑UPS).14–16 Depending on the immunohistochemical pro-

file, that is, density and distribution of the protein aggregates, FTLD-

TDP, FTLD-tau, and FTLD-FUS can be subclassified into different sub-

types (Figure 1).16–19

1.1.1 FTLD-TDP

TDP-43 is a nuclear DNA/RNA binding protein that regulates tran-

scription and alternative splicing.20,21 Mislocalization and aggregation

of this protein in the cytoplasm leads to the pathological stress gran-

ules observed in FTLD.22 TDP-43 inclusions are also observed in>95%

of ALS,22 supporting the notion that FTLD-TDP and ALS are part of a

clinicopathological continuum.18,23 The heterogeneity within TDP-43

histopathological patterns has prompted the definition of five differ-

ent FTLD-TDP subclassifications (FTLD typeA, B, C, D, and E; Figure 1),

depending on their shape, distribution, and cellular localization.17,24

FTLD-TDP can present with different clinical phenotypes including

bvFTD, CBS, or PPA.25 The presence of svPPA and FTD-ALS show a

strong correlation with TDP-43 pathology.25,26 Recent research sug-

gests that psychiatric symptoms in FTD patients are associated with

underlying TDP pathology.27

1.1.2 FTLD-tau

Misfolded or aggregated tau leads to the formation of pathological

intraneuronal inclusion bodies and destabilization of microtubules.

Alternative splicing leads to different tau isoforms with three or

four microtubule-binding domains (3-repeat [3R] or 4-repeat [4R]

tauopathies).28 Based on the predominant tau isoform present in such

aggregates (tau 3R, 4R, or 3/4R) and the morphology of the inclusion

bodies, FTLD-tau can be classified and subdivided into several neu-

ropathological diagnoses. Thus, FTLD-tau includes Pick’s disease (PiD),

which features 3R tau pathology, and the 4R tauopathies PSP, corti-

cobasal degeneration, and globular glial tauopathy (GGT; Figure 1).18,19

FTLD-tau can also present across the different clinical phenotypes.18

Almost half of bvFTD have an underlying FTLD-tau pathology, includ-

ing PiD and to lesser extent CBD and PSP pathologies. FTLD-tau has
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also been reported in patients with PPA and CBS phenotypes. The clin-

ical syndrome of PSP highly correlates with PSP tau pathology. In addi-

tion, parkinsonism in association with bvFTD or PPA is a predictor of

tau pathology.26

1.1.3 FTLD-FUS/UPS

FUS is also a nuclear DNA/RNA binding protein with diverse functions

including transcription regulation, transport of RNA, and cell growth.16

FUS inclusions are not very common in FTD; still, four different clinico-

pathological subclassifications have been proposed.29,30 Patients with

underlying FTLD-FUS pathology often fulfill the diagnostic criteria of

bvFTD.30 Clinically, they are characterized by a disease onset before

40 years, a negative family history, and caudate atrophy on magnetic

resonance imaging.31

These data highlight that prediction of all these neuropathologi-

cal subtypes on the basis of clinical phenotype is imperfect and varies

across syndromes (Figure 1). Despite some syndromes being highly

predictive of a specific underlying pathology (e.g., svPPA or FTD-ALS

with TDP or clinical PSP with tau), the most common sporadic bvFTD

cases can have different neuropathologies that cannot be predicted by

the clinical syndrome.

1.2 FTD genetics

FTD is highly heritable with approximately 10% to 20% of FTD cases

caused by an autosomal dominant mutation.32,33 Most of these vari-

ants have very poor genotype–phenotype correlations, but they are

highly predictive of the underlying neuropathology (Figure 1).18,34 The

most common genes linked to familial FTD are MAPT, progranulin

(GRN), and chromosome 9 open reading frame 72 (C9orf72).35–38 We

will only focus on these highly penetrantmutations, as exhaustive revi-

sions outlining the heterogeneity of FTD genes have been previously

published.34,39,40

1.2.1 C9orf72

These carriers account for the largest amount of familial cases of FTD,

in which abnormal GGGGCC expansions in the non-coding region of

the C9orf72 gene produce toxic RNA foci41,42 and dipeptide repeat

proteins (DPRs).43,44 The number of expansions is directly corre-

lated with pathogenicity, with most confirmed cases bearing hundreds

of them.40 These carriers mostly present with FTLD-TDP A and B

pathology, although type C has also been reported.45,46 Clinically, FTD

C9orf72 carriers can present with bvFTD, and in some cases also with

PPA.34

1.2.2 GRN

More than 70 pathogenic mutations of GRN have been described,

mostly resulting in loss of function either due to aberrant transcrip-

RESEARCH INCONTEXT

1. Systematic Review: PubMed was used to search, iden-

tify, and evaluate the accumulated knowledge in relation

to biofluid-based biomarkers for frontotemporal demen-

tia (FTD), together with data gathered through meetings,

abstract, and presentations.

2. Interpretation: The findings indicate that FTD clinico-

pathological diversity challenges the diagnostic process

and the execution of clinical studies and trials, so there

is a pressing need for reliable biofluid-based biomarkers

for different context of use (e.g., prognosis and diagno-

sis,monitoring, target engagement, drug efficacy). Among

the main limitations and knowledge gaps encountered in

thedevelopment and implementationof suchmarkers are

(a) the clinicopathological heterogeneity of FTD, (b) the

lack of an established definition of the different disease

stages of FTD (e.g., preclinical, prodromal, dementia), (c)

a better understanding of the similarities and differences

between sporadic and familial cases or pathological sub-

classifications.

3. Future Directions: We propose different strategies to

overcome the identified challenges covering not only the

study design but also the use of new innovative technolo-

gies aswell as the importanceof patients’ cohorts and col-

laborative research initiatives.

tion or to prevention of translation, which leads to GRN haploinsuffi-

ciency in FTD patients.40 GRN mutations likely affect lysosomal func-

tion in a disease-promoting manner.47 GRN carriers often present

with FTLD-TDP A pathology and most patients have bvFTD clini-

cal phenotype, though PPA has been also reported in these familial

cases.34

1.2.3 MAPT

Mutations in the MAPT gene (with ≥ 40 pathogenic mutations)

lead to abnormal forms of the tau protein, promoting its aggre-

gation and interfering with the polymerization and stabilization of

microtubules.48 These mutations are often associated with PSP and

CBD pathology.18 Genotype-phenotype correlations showed that

MAPT carriers are associated largely with bvFTD, PPA, and FTD with

parkinsonism.34

The clinical, pathological, and genetic complexity of FTD requires

the development of biomarkers for the molecular subtypes of FTD.

Such biomarkers could be used to increase diagnostic accuracy;

quantitate disease staging; and predict, monitor, and measure disease

progression.49 Depending on the context of use, general biomarkers

of FTD or biomarkers for specific FTLD types and subtypes will be
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F IGURE 1 Clinicopathological and genetic classification of FTD spectrum. Diagram illustrates the clinicopathological correlations along the
FTD spectrum and the corresponding genetic associations. Tau (blue), TDP-43 (yellow), and FET (gray) pathologies, their corresponding
immunohistochemical profiles and associated pathological diagnosis are annotated. Genetic forms of FTD are related to specific pathological
aggregates (tau or TDP-43). Gray arrows indicate specific associations between genetic mutation and immunohistochemical profiles. The
biofluid-based abnormalities indicate biomarkers that are dysregulated either between a specific FTLD subtype (upper panel) or undefined
general FTD groups (bottom panel) and controls or between FTLD pathological subtypes (*) in either blood or CSF. Aβ, amyloid beta; bvFTD,
behavioral variant frontotemporal dementia; CBD, corticobasal degeneration; CBS, corticobasal syndrome; CSF, cerebrospinal fluid; FET, family of
RNA-binding proteins including FUS, Ewing sarcoma and TAF15; FTD, frontotemporal dementia; FTD-FUS, frontotemporal dementia fused in
sarcoma variant; FTD-ALS, frontotemporal dementia with concomitant amyotrophic lateral sclerosis; FTLD, frontotemporal lobar degeneration;
GFAP, glial fibrillary acidic protein; GGT, globular glial tauopathy; NfL, neurofilament light; nfv, nonfluent variant; PiD, Pick’s disease; PPA, primary
progressive aphasia; PSP-RS, progressive supranuclear palsy-Richardson’s syndrome; p-tau, phosphorylated tau; sv, semantic variant; TDP-43,
TARDNA‑binding protein 43

needed. Pathology-specific biomarkers are especially relevant to

define FTD biologically. Such biomarkers are urgently needed for

recruitment for clinical trials, where homogeneous populations of

patients with specific FTD pathological subtypes are crucial for testing

candidate drugs that target these specific proteinopathies (e.g., tau

or TDP).50 In clinical trials, biomarkers are also needed to assess

target engagement and evaluate drug response. Suchmarkers are very

important for FTD treatment development, as the heterogeneity of

the clinical presentation prevents the use of clinical or imaging indices

as outcomemeasures.51 Biofluid-based biomarkers (e.g., cerebrospinal

fluid [CSF] and blood) can be especially helpful in clinical practice and

clinical trials.49–51 CSF has been the most widely used source for the

development of fluid biomarkers for neurological disorders because it

is viewed as reflecting ante mortem biochemical milieu and its changes

during the neurodegenerative process, and concentrations of brain

pathology-specific proteins are expected to be higher than those

measured in blood.52 In AD, the implementation of CSF biomarkers in

clinical practice has shown enormous benefits for early diagnosis and

the testing of new compounds in AD clinical trials.27 Lately, highly sen-

sitive and specific immuno- and mass spectrometry-based approaches

have made blood-based biomarkers feasible—a revolutionary devel-

opment for AD research.53,54 Compared to developments in the AD

field, there has been significant progress in FTD biofluid biomarker

research in the last 10 years, but this has also encountered difficul-

ties that relate to the relative recency of the key neuropathology

discoveries and to the clinical and pathologic heterogeneity of the

syndromes. For instance, C9orf72 genetic expansions and the resulting

pathological hallmarks were only revealed a decade ago35,41–44

and pathological, genetic, and clinical associations have been

expanded.19,24,27,29,30,45–47 Leveraging these recent and upcoming

discoveries warrants further developments within the FTD biomarker

field.

Here, we review the key biofluid-based biomarker developments

in FTD (Figure 1 and Table 1) and identify the major opportuni-

ties and obstacles for the development and implementation in prac-

tice and research of biofluid-based biomarkers for FTD. We discuss

potential strategies to overcome the obstacles, taking into account

the contexts of use, the different methods and technologies available,

and the present-day clinical/epidemiological cohorts and collaborative

research initiatives.
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TABLE 1 Most widely studied biomarkers studies within the FTD field and its context-of-use

Samplematrix

Context-of-use

Specific FTD diagnosis

Biofluid based
biomarker

vs.

CON

vs.

AD

vs.

Psych.dis

Clinical/genetic/

pathological

subtypes

Staging and

monitoring Prognosis

Treatment

Response Remarks

Tau, pTau

(281/217/231),

Aβ42, Aβ40,
and their

ratios

– ++ ns +
a ns ns ns CSF/plasma AD biomarker;

co-pathology

dependent

pTau181/tTau – – + +
b ns ns ns CSF AD biomarkers;

limited

accuracy

NfL ++ + ++ + ++ ++ + CSF/plasma/

serum

General

biomarker of

neurodegener-

ation

sAPPβ + – ns ns ns ns ns CSF Specifically

decreased in

FTD

Progranulin ns ns ns ++
c ns ns + CSF/plasma/

serum

Specific genetic

subtype

Poly(GP) ns ns ns ++
d – – + CSF Specific genetic

subtype

Abbreviations; ++, validated biomarker (i.e., changes consistently observed across independent studies); +, promising biomarker; –, not useful; Aβ, amyloid

beta; AD, Alzheimer’s disease; CON, controls; CSF, cerebrospinal fluid; FTD, frontotemporal dementia; ns, not studied; Psych.dis., psychiatry disorders.

Note: Summary table of themost widely studied biomarkers within the FTD field and their corresponding context-of-use.
a Logopenic FTD variant.
b For TDP vs. tau.
c For GRNmutation carriers.
d For C9orf72mutation carriers.

2 STATE OF THE ART OF BIOFLUID-BASED
BIOMARKERS FOR FTD

2.1 Biomarkers to differentiate FTD from other
dementias and non-degenerative disorders

An important challenge for both routine diagnosis and clinical tri-

als is to identify cases within the FTD spectrum and differentiate

these from those of related diseases, such as sporadic AD55 or the

non-neurodegenerative primary psychiatric disorders.56 In many AD

studies of tau and amyloid beta (Aβ) fluid biomarkers, FTD has been

included as a contrast group. It has been shown that elevated CSF

concentrations of total tau (t-tau) and tau phosphorylated at amino

acids 181 and, more recently, 217 (p-tau181 and p-tau217, respec-

tively) are surprisingly AD-specific; tau-associated FTD subtypes do

not have elevated CSF t-tau and p-tau concentrations,57–60 at least

not to the levels present in AD.61 Accordingly, an increased ratio of t-

tau or p-tau to the 42 amino acid form of Aβ (Aβ42), i.e., the tau/Aβ42
ratio, is an AD-specific finding that separates AD from FTD with high

diagnostic accuracies (70% and 86% specificity when analyzing AD

vs. bvFTD or svPPA, respectively).62 Thus, these biomarkers can be

used to identify patients who have frontal lobe dysfunction on the

basis of AD pathology, rather than FTD, a condition sometimes called

frontal variant AD.63 Similarly, CSF biomarkers can be useful in the

evaluation of the logopenic variant of PPA, which is typically associ-

ated with AD pathology, rather than FTD.64 In this scenario, the asso-

ciation of elevated CSF tau levels and reduced Aβ42/40 ratio, sup-

ports AD pathology as the main etiology of the language syndrome.64

It has also been repeatedly shown that Aβ species including Aβ38,
Aβ40, Aβ42, and soluble amyloid precursor protein fragment (sAPPβ)
are lower in CSF fromFTDpatients than in the compared controls.65,66

The reason for this remains unclear, but in AD, cerebral Aβ pathology is
associated with a relatively selective reduction in Aβ42 in CSF, while

the reduction in FTD is seen for all measurable Aβ species and the

decrease correlates with brain atrophy;66 hence, the CSF Aβ42/Aβ40
ratioworkswell todifferentiate amyloidpathology inAD (with reduced

Aβ42/40 ratio) from the general reduction of APP-derived peptides

often seen in FTD (with Aβ42/40 ratio in the normal range, area

under the curve [AUC]: 0.85).65 Of note, many biomarker studies in

FTDmay be confounded by co-occurring secondaryADpathology.67,68

Therefore, when a patient with an FTD syndrome shows a positive

AD CSF biomarker profile it is important to consider all clinical and

radiological information to evaluate if the AD pathology is the pri-

mary pathology or a comorbid condition. Besides the classical AD CSF

biomarkers, several studieshave foundmuchhigherCSFneurofilament

light (NfL, a general biomarker for neurodegeneration) levels in FTD
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compared to AD;69–72 this finding, particularly in combination with

negative AD biomarkers, strongly speaks for a non-AD neurodegener-

ative disease. For instance, combination of AD CSF biomarkers (Aβ42
and p-tau181) with CSF NfL could discriminate FTLD from AD with

high performance (AUC > 0.90).73 However, FTD should only be con-

sidered in the presence of a compatible clinical syndrome, as CSF NfL

levels are increased in multiple related neurodegenerative disorders

(e.g., ALS, PSP,multiple system).74 For the differentiation between FTD

and non-neurodegenerative disorders, several CSF studies showed an

excellent performance of NfL for discriminating FTD from psychiatric

disorders (AUC > 0.90)56,71,75 and consequent perceived added clini-

cal use for the physician.76

It is to be noted that the studies described above analyze mainly

the performance of classical AD CSF biomarkers and thus are useful

to exclude AD pathology rather than to diagnose FTD; or analyze gen-

eralmarkers of neurodegeneration (e.g., NfL). These observations high-

light the lack of well-established FTD-specific biomarkers. Promising

biomarkers have been identified and are being investigated.77,78 For

example, a study combiningCSFNfL, YKL40, and sAPPβmeasurements

from159caseswith anFTLD-related syndromeyieldedhighdiagnostic

accuracies (AUC > 0.90) in discriminating FTD from controls.79 While

YKL40 is also elevated in other neurodegenerative disorders includ-

ing AD,80,81 sAPPβ concentrations were specifically lower in FTLD

syndromes.79 Similar results were observed in an autopsy-confirmed

FTLD cohort.82 Other pathways that are currently being examined

in the quest for FTD-specific biomarkers include neuroinflammation,

lysosomal health, and synaptic health (for a recent review on the topic,

please see Swift et al.77). Combinations of CSF biomarkers (e.g., NfL,

YKL40, p-/t-tau) do not seem to have added value over NfL alone,

at least not for the discrimination of FTD from primary psychiatric

disorders.56

Regarding blood-based biomarkers, recent AD studies showed that

plasma concentrations of p-tau181, p-tau217 and p-tau231 are ele-

vated in AD, relative to controls, but not in FTD;83–86 the two dis-

eases can thus be separated with close to 100% accuracy using a

simple blood test. These promising results were recently confirmed

for plasma p-tau181 and p-tau231 in neuropathologically confirmed

cohorts.84,86 Similar to what was observed in CSF, serum and plasma

NfL are elevated in FTD compared to AD, but with limited utility

in discriminating FTD from AD.87–89 At present, serum NfL has the

highest diagnostic accuracy with AUC of up to 0.94 for differenti-

ating FTD from primary psychiatric disorders.71,90,91 However, nor-

mal NfL levels still do not rule out FTD. Because NfL levels are also

associated with disease progression and survival,85,92 normal NfL

levels are probably associated with slowly progressive phenotypes

of FTD.

2.2 Biomarkers to define the underlying
proteinopathies

Biomarkers for specific FTD-related proteinopathies (TDP-43, tau, or

FUS14,15) are a pressing need for drug development strategies that

focus on specific pathological processes. Several independent studies

have shown that CSF p-tau/t-tau ratio demarcate FTD-TDP patients

from FTD-tau cases with sensitivity and specificity values around 82%

and 62%, respectively.93–97 Other studies have shown that the value

of CSF tau measurements is limited to pure cases of FTLD (e.g., with-

out copathologies).67,61 Lower CSF p-tau could discriminate FTD-TDP

from FTD-tau in sporadic pure FTD cases after excluding AD.67 As CSF

t-tau levels are not strongly associated with underlying FTLD-tau, it

would be worthwhile to study CSF pathological tau isoforms in more

detail.98

While it is possible to measure TDP-43 in biofluids, current assays

do not differentiate normal from pathological TDP-43.99 A recent

study using real time quaking-induced conversion assay, a test based

on the amplification of misfolded proteins and used for detection of

prion proteins, showed in vitro TDP-43 aggregate formation in CSF.100

In a recent proof-of-concept small clinical study this assay discrimi-

nated FTD and ALS patients from controls with 94% sensitivity and

85% specificity.100 These studies await independent replication. How-

ever, the seed-based testing paradigm may help to develop additional

assays for inclusion-specific forms of TDP-43. Biomarkers that reflect

metabolic changes downstream of TDP-43 pathology might also be

developed.

As far as we are aware, there is no biomarker of FUS pathol-

ogy available. Ideally, a combined panel measuring markers of tau,

TDP-43, and FUS would allow for accurate pathologic diagnosis of

FTD, but these have so far posed important challenges. Some stud-

ies have analyzed well-established biomarkers that are not directly

related to the specific proteinopathy. For example, higher levels of

both CSF and plasma NfL have been observed in FTD-TDP than in

FTD-tau cases, but with high within-group variability.87,101,102 Non-

hypothesis driven proteomics studies have identified multiple pro-

teins that are differentially expressed in FTLD neuropathological

or genetic subtypes.95,103,104 These unbiased approaches have the

potential to facilitate the identification of biomarkers specific for

the main pathophysiological processes associated with the FTD sub-

types (e.g., lysosomal degradation, autophagy). Replication and vali-

dation of these findings are of utmost importance to move the field

forward.

2.3 Biomarkers for target engagement
and treatment monitoring

Low CSF and blood progranulin levels have been found in GRN muta-

tion carriers with an almost 100% diagnostic accuracy.105–107 It is

expected that disease-modifying treatments aimed at restoring pro-

granulin deficits can be evaluated by these serumGRNmeasurements.

In C9orf72 expansion carriers, poly(GP), one of the DPR proteins pro-

duced by the C9orf72 expansions, is elevated as early as the presymp-

tomatic phase.108–110 Thus, DPR proteins may prove useful as phar-

macodynamic biomarkers in gene-silencing studies. While blood NfL

has promise for measuring treatment effects in different neurode-

generative disorders,51,92,111,112 its utility as an endpoint measure
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in GRN carriers appears to be limited by the observed longitudinal

fluctuations.92

2.4 Biomarkers for disease staging and prognosis

As observed in other dementias, accelerated rates of decline have been

quantified during the symptomatic phase of both familial and sporadic

FTD using clinical and imaging measures113 and thus, markers reflect-

ing the disease stage independent of the clinicopathological presen-

tation would be desirable. Several studies have already indicated that

baseline NfL concentrations in both CSF and blood could reflect the

aggressiveness of the disease as it can predict rate of disease progres-

sion in the different clinicopathological phenotypes in both sporadic

and familial FTD.87,96,114–117 Future studies will clarify whether base-

line CSF NfL levels can be used to stratify FTD severity (e.g., low, inter-

mediate, high). Longitudinal analysis of CSF NfL shows that the lev-

els of this marker change little during the symptomatic phase of FTD

in individual patients.114 However, a recent longitudinal multicenter

study of familial FTD has shown in symptomatic GRN mutations car-

riers a rise in serum NfL levels as illness duration time and severity

increased, notable from symptom onset on but with substantial fluctu-

ations in the individual NfL trajectories.92 Importantly, the study also

showed that serum NfL levels increase in presymptomatic carriers 1

to 2 years before symptom onset. The study was limited by the num-

ber of FTD mutation carriers undergoing conversion to symptomatic

phase (n = 9); nevertheless, it suggests that baseline serum NfL levels

may discriminate those in the transition from normal to symptomatic

status (i.e., converters) from those that are not in transition (i.e., non-

converters)with goodaccuracy,92 indicating apotential utility of serum

NfL as a prognostic marker and a selection criterion for clinical trials,

at least in familial cases. Recent findings observed that higher levels

of plasma glial fibrillary acidic protein (GFAP), an astrogliosis marker,

was associated with a greater decrease in Mini-Mental State Exami-

nation score and a poor cognitive outcome in both FTD and AD. Thus,

in combination with FTD-specific markers, plasma GFAP could also be

potentially used to track disease severity or predict greater cognitive

decline.118

3 GAPS AND LIMITATIONS ON THE
DEVELOPMENT OF BIOFLUID-BASED
BIOMARKERS FOR FTD

Taken together, except for NfL, the most robust FTD biofluid-

based biomarkers developed from the scientific efforts of the last

decade are related to AD pathology rather than that of FTD. The

high pathologic heterogeneity of FTD is a particular challenge; the

current biomarkers are not specific for any pathologic subtype,

and biomarkers may have different utilities depending on the FTD

subtype.

3.1 Challenges in the development of biomarkers
for specific diagnosis of FTD and its pathological
subtypes

Given the high heterogeneity of FTD, it is not to be expected that a sin-

gle FTD-specific biofluid marker will be used to differentiate FTD from

other neurodegenerative or non-neurodegenerative disorders. Inclu-

sion of non-FTD dementias (e.g., AD) in biomarker studies will facili-

tate the distinction of FTD-specific changes from those that are com-

mon to all neurodegenerative states. The fact that concomitant AD

is not uncommon in FTD adds further complexity.68 It will be impor-

tant, therefore, to evaluate the effects of concomitant AD pathology in

FTDbiomarker studies, using standardADCSF (andmore recently also

plasma) biomarkers.67,68,83

The identification of biofluid-based biomarkers that discriminate

FTD pathologies (TDP-43, tau, FUS), has often been hindered by the

availability of pathologically characterized samples with known under-

lying pathology—these are usually selected based on autopsy confir-

mation or genetic mutation status (e.g., C9orf72 and GRN for TDP-43

orMAPT for tau18,35,37,22). The scarcity of these samples has prompted

efforts to enrich cohorts with FTD syndromes that are highly cor-

related with a specific underlying neuropathology (e.g., FTD-ALS for

FTLD-TDP22 orPSPandCBS for FTLD-tau119,120) and/or to jointly ana-

lyze data from both combined cohorts of sporadic and familial cases

with the same neuropathology background. It must be noted, however,

that recent neuropathological studies have reportedTDP-43 copathol-

ogy in a considerable amount of FTLD-tau–related syndromes such as

CBD, and to lesser extent PSP.121 In addition, it is not clear to what

extent the biochemical changes in those cases with FTD mutations

resemble those of sporadic cases with the same proteinopathy, nor

across the different immunohistochemical profiles within each patho-

logical subtype (e.g., tau: 3R, 4R, 3R/4R; TDP: A, B, C, D, and E). Patho-

physiological differences between hereditary and sporadic FTD have

been reported.122,123 Recent studies have shown that the performance

of CSF p-tau181 to discriminate between FTD pathological subtypes

(i.e., FTLD-tau vs. FTLD-TDP) was considerably reduced when muta-

tion carriers were analyzed separately (AUCs of 0.87 in sporadic pure

cases vs. 0.58 in genetic cases).67,61 Similarly, the levels of plasma p-

tau181 were approximately 2-fold increased in MAPT mutation carri-

ers with mixed 3/4R but not in those with 4R tau pathology.83 Recent

findings have shown that the levels of plasma GFAP are increased in

symptomatic GRN carriers but not in those with C9orf72 expansions

or MAPT mutations, and could distinguish these genetic forms with

AUCs >0.70.124 Furthermore, findings from molecular studies indi-

cate that the mechanisms underlying TDP-43 aggregation by C9orf72

expansions differ from those driven by GRN loss of function.125,126

Taken together, these observations indicate a high heterogeneity also

within each pathological and genetic subtype, in which different bio-

logical processes underlying familial and sporadic casesmay ultimately

result in similar proteinopathy profiles—but not necessarily in simi-

lar biomarker profiles. In other words, within a proteinopathy class
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different mechanisms may generate different biochemical profiles in

body fluids, especially in the early stages of the disease. The biological

complexity of FTLD subtypes needs to be considered in the design and

interpretation of FTD biomarker studies.

3.2 Challenges in the development of biomarkers
for disease stage, prognosis, and drug efficacy

Biofluid-based biomarkers for the different stages of FTD, including

the preclinical and prodromal phases, are still needed. This is espe-

cially challenging in FTD as, unlike in AD, there is still not an estab-

lished definition of the preclinical/prodromal stages (e.g., mild cogni-

tive impairment due to FTD). Diagnosis is typically delayed for up to

6 years.100 Moreover, the first and core symptom of FTD is a deficit in

social cognition, which is not readily recognized as such until the illness

is well established. The construct of social cognition, including emotion

recognition, theory of mind, empathy, and moral reasoning, has been

proven difficult to measure in clinical practice.71 Use of newly devel-

oped psychometricmeasures for characterizing all stages of symptoms

(e.g., FTLD-Clinical Dementia Rating, Multidomain Impairment Rating)

in familial FTD research will facilitate the discovery and validation of

early FTD biomarkers.51,127 As highlighted above, the identification of

early diagnostic markers will likely be more effective when accounting

for the pathological heterogeneity of the disease.

A major challenge in the field of neurodegenerative dementias is to

predict whether and when an individual will develop the specific dis-

ease, an important question as early application is expected to increase

the value and efficacy of treatments aiming to prevent or delay disease

progression. Because disease progression in most neurodegenerative

diseases is non-linear, longitudinal studies characterizing the behavior

of a biomarker over time should include at least three time points.128

In this respect, blood-based biomarkers are more suitable than CSF

biomarkers. Considering the lack of preclinical/prodromal markers for

sporadic FTD, studies of familial FTD are crucial for such purposes. The

utility of serumNfL as prognostic marker should be replicated in larger

cohorts,92 analyzing also the potential influence of the different FTD

genetic backgrounds. It is also essential to understand whether find-

ings from familial FTD research can be generalized to sporadic FTD.

These data also indicate that biochemical changes can be detected in

blood before the appearance of clinical symptoms, and it thus boosts

the search for additional biomarker candidates. Despite the need for

more studies, it should be noted that the presymptomatic phase of

FTD, at least in familial cases, might be shorter than that observed

in familial forms of AD; as in the latter, NfL changes were observed

already 10 years before symptom onset.129 Considering that serum

NfL is also a general marker of neurodegeneration with similar NfL

changes in presymptomatic familial AD cases,129 the quest for predic-

tive biomarkers specific for FTD especially in sporadic cases is war-

ranted.

To date, there are no established biomarkers to measure target

engagement or drug efficacy in FTD clinical trials, especially for spo-

radic cases. The increasing number of trials in the industry pipeline

accentuates the need to develop markers for different contexts of use

that account for the clinical and pathologic diversity of FTD.51

4 FILLING THE GAPS ON THE DEVELOPMENT
OF BIOFLUID-BASED BIOMARKERS FOR FTD

4.1 Emerging technologies and approaches

The identification of novel biomarkers will be facilitated by leverag-

ing a variety of technologies. Mass spectrometry (MS) has the advan-

tage of an unbiased screening, which has facilitated the identification

of novel biomarkers for FTLD subtypes.103,104 Novel proteins identi-

fied through MS approaches can then be measured as single analytes

using immunoassays or incorporated into panels of protein arrays for

further validation studies.95,103,104,130,131 Conventional unbiased MS

methods are, unfortunately, still not optimal for blood proteomic anal-

ysis. This limitation is partially overcome by novel and highly sensi-

tive high-throughput protein arrays, such as aptamer-based technolo-

gies, immunobased proximity extension assays, or antibody suspension

beads arrays, which can readily measure large sets of protein libraries

in CSF and blood samples.132–138 An additional advantage of such pro-

tein arrays is that the reagents used for biomarker discovery with spe-

cific protein binders (e.g., antibodies) can in principle be also used for

validation, and for translation to the clinical setting inwhich immunoas-

says are a cornerstone of clinical chemistry analyses.52,139 The differ-

ent proteome profiling technologies currently available can be useful

to cross-validate findings, an essential step toward the development

of optimal biomarkers. It is, however, expected that these technologies

will also complement each other as protein libraries partially differ, and

the distinct platforms can detect the proteins in different conforma-

tion/states (denatured inMS vs. native in protein arrays).

It is also conceivable that the search should be continued in alterna-

tive matrices or alternative targets, such as RNA in platelets or extra-

cellular vesicles. Blood platelet mRNA analysis has shown potential

for multiple sclerosis.140 Panels (proteins, nRNA, metabolites) may be

needed to capture the full complexity of the pathological differences

among the FTD subtypes, and within them, and thus multiplex tech-

nologies and computer assisted algorithms need to be used. These

could be extended or incorporated into multimodal approaches that

include not only biofluid-based biomarkers (e.g., CSF and blood), but

also other types of measures (e.g., imaging results, genetic variation,

neuropsychological findings, etc.), which can be especially helpful for

both clinical practice and trials.49,51

4.2 Collaborative initiatives

The identification of biofluid-based biomarkers for FTD pathologies

will require the analysis of data and samples from large and well-

characterized cohorts with longitudinal and autopsy-confirmed cases.

Study design and analyses should account for the potential influence of

specific mutations or pathological subclassifications, especially within
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the earliest stages of the disease. This would also involve more sys-

tematic post mortem research in FTD, together with deep phenotyping.

Considering the limited availability of highly characterized samples,

such studieswill only be successful whenmultiple centers are involved.

The extension of existing cohorts and development of new ones will

be extremely valuable and, therefore, there is a need to reinforce the

interest and engagement of the advocacy community, patients and

families, and the public in FTD research.

Several initiatives have facilitated collaborative studies worldwide,

including the Genetic Frontotemporal Dementia Initiative (GENFI),

the ARTFL-LEFFTDS Longitudinal Frontotemporal Lobar Degenera-

tion (ALLFTD), and their coming together in the worldwide FTD Pre-

vention Initiative (FPI). These consortia are continuously gathering

invaluable information from multiple FTD cohorts worldwide and are

the reference for many of the FTD biomarker studies performed to

date, especially in familial FTD. The FTD professional interest area

(FTD-PIA) has been recently created within the Alzheimer’s Asso-

ciation International Society to Advance Alzheimer’s Research and

Treatment (ISTAART), which is collaborating with the biofluid-based

biomarkers PIA (BBB-PIA) to facilitate the development and optimiza-

tion of biomarkers for FTD.

For validation and implementation of the identified markers, the

field can leverage the developments from more advanced fields, such

as the AD field. This especially applies to preanalytical aspects and the

development of standard operating procedures for sample handling

and analysis, such as for AD biomarkers in CSF and blood,141—144 and

to quality control programs,145 which are a requirement for in vitro

diagnostic tests. These activities are promoted through different orga-

nizations such as the Society for CSFAnalysis andClinical Neurochem-

istry or the Global Biomarkers Standardization Consortium (GBSC).

Moreover, there is a potential for synergism from initiatives to obtain

regulatory approval and reimbursement for, for example, NfL for other

diseases.

4.3 Understanding the cautions and caveats in
the development of FTD biofluid-based biomarkers

It is valuable to specify some of the potential pitfalls and shortcom-

ings when biofluid-based biomarkers are translated from the level of

discovery and research to that of clinical dogma. Many of these points

will be well known to the experts but perhaps less so to others not

familiar with biomarker-based diagnosis and staging of neurodegener-

ative diseases. Reflection on the state-of-the-art reveals both “known

unknowns” and “unknown unknowns.” Examples of some of the known

unknowns are the potential contributions of vascular and immune

mechanisms as we contemplate the full picture from disease initiation

to disease progression. Vascular and immunological mechanisms have

been proposed for many neurodegenerative diseases and, for some,

have been demonstrated to play key roles in the development and pro-

gressionof clinical syndromes. Evenwhen, for example, vascular and/or

immune factors have been implicated, there is insufficient knowledge

about which biomarkers can be combined to give a more complete pic-

ture. For vascular and immunological abnormalities, reliable biomark-

ers are infrequent, imprecise, or lacking altogether. Besides the impre-

cision that this brings to nosology, the complexity of multiple concur-

rent pathologies will certainly hamper the ability to test interventions

that are aimed at only one component of the concurrent pathologies. In

otherwords, themore complex the concurrent pathologies, the greater

the challenge in designing trials that are sufficiently sensitive to gener-

ate interpretable clinical or biomarker endpoints. It is alsoworthnoting

that age-, sex-, race-, and ethnicity-based variations; the frequency of

comorbidities; and the effects of genetic diversity must always be kept

in mind, as observed already in AD and ALS,146–157 but also within the

FTD field.158–160 Indeed, it is far more prudent to assume that these

parameters aremore likely to be important than to dismiss them.

The unknown category is illustrated by the proliferation of

newly recognized clinicopathological entities. For example, primary

aging-related tauopathy (PART), limbic age-related TDP-43

encephalopathy (LATE), and hippocampal sclerosis may be associ-

ated with amnestic syndromes that are only slowly progressive and

may be associated clinicallywith a “chronicmild cognitive impairment.”

Slow progression syndromes have the potential to confound the inter-

pretation of biomarker characterizations and clinical trial outcomes

when they are misclassified in studies as examples of typical cases. It is

therefore important to acquire the genetic, biofluid, and neuroimaging

panels thatwill facilitate the characterizationandclassificationof atyp-

ical proteinopathies and the syndromeswithwhich theyare associated.

While biomarker-based diagnosis has made a quantum leap forward in

the past decade, there remain important caveats as they are translated

from the research setting into more general application in clinics

worldwide.

5 CONCLUSIONS AND FUTURE DIRECTIONS

In current clinical practice, the place of CSF analysis is to exclude AD

pathology and verify neurodegeneration—it does not have utility for

affirmative diagnosis of FTD.5 The blood-based biomarker NfL is now

being incorporated in clinical practice for FTD, especially to differ-

entiate bvFTD from primary psychiatric disorders.71,76 Several novel

biomarker candidates reflecting different pathological processes asso-

ciated with FTD beyond the classical proteinopathies have been iden-

tified (lysosomal markers, inflammatory markers, circulating nucleic

acids, synaptic markers),77 and are in need of thorough validation in

well characterized independent cohorts of familial and sporadic FTD.

There is a need to identify and validate biomarkers for different pur-

poses (differential diagnosis, pathology typing, staging, prognostica-

tion, treatment monitoring) using robust approaches that allow their

incorporation into clinical diagnostic criteria. It is expected that the

technical developments of the last years (e.g., ultrasensitive technolo-

gies, large high-throughput protein panels) will facilitate such develop-

ments. CSF biomarker research is still essential to support the associ-

ation of the different markers with pathophysiological processes, but

translation into blood-based biomarkers would be ideal for repeated

measurement in longitudinal studies and broad use, eventually, in
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practice. The high complexity and heterogeneity of FTD discourages

the use of small sample sizes in biomarker analyses and calls for collab-

orative large multicohort studies with thoroughly characterized sam-

ples (i.e., with carefully ascertained and measured clinical, genetic, and

pathological indices). A fuller understanding of the molecular factors

and biomarkers that underlie FTD pathophysiology at different stages

of the disease will optimize clinical and molecular diagnosis and pro-

vide an invaluable resource for the development and testing of novel

therapies.
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