
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Improving Responsiveness of Android Activity Navigation
via Genetic Improvement

James Callan

University College London

London, UK

james.callan.19@ucl.ac.uk

Justyna Petke

University College London

London, UK

j.petke@ucl.ac.uk

ABSTRACT
Responsiveness issues are one of the key reasons why mobile phone

users abandon an app or leave bad reviews. In this work, we ex-

plore the use of Genetic Improvement to automatically refactor

applications to reduce the time taken to move between and within

Android activities, without affecting their functionality. This partic-

ular Android responsiveness issue has not previously been tackled

before. With its application directly to source code, our approach

can be used to complement previous work, which modifies the op-

erating system, or focuses on detection of specific coding patterns.

We present a fully automated technique for finding improvements

to this responsiveness, which does not require the use of an An-

droid device or emulator. We apply our approach to 7 real-world

open source applications and find improvements of up to 30% in

navigation response time.

CCS CONCEPTS
• Software and its engineering→ Search-based software en-
gineering.

KEYWORDS
Android, Responsiveness, Mobile, Genetic Improvement, SBSE

ACM Reference Format:
James Callan and Justyna Petke. 2018. Improving Responsiveness of Android

Activity Navigation via Genetic Improvement. In Proceedings of The 44th
International Conference on Software Engineering (ICSE 2022). ACM, New

York, NY, USA, 2 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Responsiveness is an important quality of software, especially in the

mobile application domain. Responsiveness relates to the ability of

software to respond to user interactions quickly and smoothly. User

experience is thus affected by even minor responsiveness issues.

Lim et al. [4] found that in 1/3 of cases of users abandoning an ap-

plication, poor application responsiveness was given as the reason.

Several approaches have been proposed to aid developers in

improving app responsiveness. These include pre-fetching [2] and

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00

https://doi.org/XXXXXXX.XXXXXXX

offloading [3], which require access to network or external hard-

ware. The only available tool [6] that refactors software to improve

responsiveness, targets loops containing SQL queries. Other ap-

proaches, e.g., [5], find a specific set of bad coding patterns, leaving

developers to decide and fix detected bottlenecks.

Here we propose an approach that automatically detects and

reduces a responsiveness-related delay in mobile software. In par-

ticular, we observe that one simple source of poor responsiveness

is slow navigation between activities. By simply measuring the

execution times of these transition methods (e.g., the OnCreate()
method), we can easily quantify the responsiveness of activity tran-

sitions for any application. In the cases where these transitions are

slow, reducing their execution time will improve responsiveness.

This simple measurement allows us to employ latest search-based

improvement strategies, namely Genetic Improvement [8], to auto-

matically identify and improve navigation response time.

We thus modified an existing Genetic Improvement (GI) frame-

work to work in the Android domain. Additionally, we implemented

a new fitness strategy, that measures navigation activity response

time. We evaluated our approach on 7 real-world apps.

Our results show that GI is able to find patches that improve the

navigation responsiveness of Android applications by up to 30%.

2 GI FOR ANDROID RESPONSIVENESS ISSUES
Genetic Improvement (GI) has been proposed as a general technique

for improvement of non-functional properties of software. It takes

existing software and mutates it, generating hundreds or even

thousands of software variants. Each evolved patch is assessed

and a fitness measurement is taken based on the attribute being

improved. This fitness is used to guide the search strategy. In the

case of non-functional improvement, patches which fail any tests

are discarded and the fitness measurement is then based on the

non-functional property being improved.

To test the ability of GI to improve the navigation responsiveness

of Android apps, we use the following setup: Each patch consists

of a sequence of edits to the nodes of the AST tree. Each edit can

be either a delete, copy, replace, or swap statement edit. We use

a simple local search hill climb to select which variant to evaluate

next.We beginwith an empty patch and at each step a newmutation

is added to the mutant for evaluation. If the new variant is more

responsive than the current best it becomes the current best. After a

set number of evaluations, the current best is deemed the best patch.

To evaluate each software variant, we split relevant tests into

two groups. Validation Tests which cover the lifecycle transitions

which we wish to optimise. These are used to determine validity

of the mutated software variant. Performance Tests which only

exercise the lifecycle transitions which we wish to optimise. The

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA James Callan and Justyna Petke

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Table 1: Percentage improvement to CPU time after GI

Application Median imp. Max imp.

CPU time CPU time

Amaze File Manager 6.7% 14.5%

AnkiDroid 24.1% 29.6%

Budget Watch 8.6% 9.5%

Catima 4.4% 13.2%

Gift card 5.2% 6.4%

Loyalty Card 8.7% 13.1%

Rental Calculator 3.9% 6.0%

execution time of these tests is used to determine the fitness of a

mutant. The performance test set is a subset of the validation set.

To avoid the high cost of installing and running tests on ac-

tual devices or emulators, we use the Robolectric testing library

(http://robolectric.org/). This library implements the Android spe-

cific APIs, whose use is normally restricted to on-device tests. It

allows the testing of UI elements of applications on desktop devices

using JUnit, removing the expensive steps usually needed for UI

testing. Crucially, Robolectric allows us to test the activity transi-

tions of applications locally and significantly more quickly than we

would otherwise be able to.

We implemented this set up by modifying Gin [1], a genetic im-

provement tool for Java programs, as it specifically targets methods

for improvement. We use the test results and fitness evaluation data

on the original software to automatically identify the most time-

consuming methods that implement navigation responsiveness

functionality. We target the activity in each app with the slowest

navigation callbacks for later improvement.

In order to evaluate our proposed approach, we tested it on 7 real

world applications. To select these applications, we checked every

application in the FDroid repository. All applications with Activities

written in Java (and thus compatible with Gin) and passing tests

which exercised said activities with the Robolectric library were

selected. Most other applications either didn’t use Robolectric or

had very limited test coverage of activities (below 40%).

We run our set up 20 times on each of our 7 benchmarks, to

account for the stochastic nature of local search. We run the search

for 200 evaluations in each run. All computation was performed on

a high performance cloud computer, with 16GB RAM.

3 RESULTS
In order to quantify the effectiveness of our set up, we first measure

the CPU time of the targeted activity transitions of both patched and

unpatched applications. The CPU times of each variant of source

code is measured 10 times and the median reading taken. We also

perform the Mann-Whitney U test [7] on the data collected here

with the null hypothesis: “Tests running on patched source code
have the same CPU time as those running on unpatched code.”
Those program variants which did not show statistical significance

at the 95% confidence level were set to 0% improvement.

The results of our experiment can be seen in Table 1. These re-

sults show that GI is capable of finding improvements to the CPU

time taken by the code which navigates between activities. We find

median improvements of between 4.4% and 24.1%, and maximum

improvements of between 6.4% and 29.4%. We find the greatest

improvement for the least responsive application.

@Override
protected void onCreate(Bundle savedInstanceState) {

if (showedActivityFailedScreen(savedInstanceState)) {
return;}

Timber.d("onCreate()");
super.onCreate(savedInstanceState);
setContentView(R.layout.card_template_editor_activity);

Figure 1: The most effective patch found. It removes a mostly
redundant, yet expensive check in AnkiDroid.

We analyse the patch which produced the best improvements.

This was a patch found in the AnkiDroid application, reducing

the CPU time from 1.55s to 1.09s. It simply removed the call to a

costly check in the case where an activity is created without an

application. This patch is shown in Figure 1. This will only every

appear when using certain command line tools and not in normal

use, therefore the high cost appears unjustified. However, the patch

offers a choice between a huge optimisation, or protection in an ob-

scure edge case. Clearly, the existing code is causing responsiveness

issues, as delays of even 150ms are noticeable to users [9].

4 CONCLUSION
In this work we propose to use a GI-based approach to improve re-

sponsiveness of mobile apps. We applied our approach to 7 diverse

mobile applications, showing improvements in time to navigate

between activities of up to 30%. Our results show that significant

improvements to app responsiveness can be found with negligible

changes to app functionality. Unfortunately, the main bottleneck for

application to other Android software is lack of test suites covering

UI Activities. We plan to extend this work to be able to cover a

larger plethora of software, and release our tool to help developers

automatically improve responsiveness of their mobile apps.

ACKNOWLEDGMENTS
This work was funded by EPSRC grant no. EP/P023991/1.

REFERENCES
[1] A. E. I. Brownlee, J. Petke, B. Alexander, E. T. Barr, M. Wagner, and D. R. White.

2019. Gin: Genetic Improvement Research Made Easy. In GECCO. ACM, New

York, NY, USA, 985–993.

[2] B. D. Higgins, J. Flinn, T. J. Giuli, B. Noble, C. Peplin, and D.Watson. 2012. Informed

Mobile Prefetching. In MobiSys. ACM, New York, NY, USA, 155–168.

[3] R. Kemp, N. Palmer, T. Kielmann, and H. Bal. 2012. Cuckoo: A Computation

Offloading Framework for Smartphones. In Mobile Computing, Applications, and
Services. Springer, Berlin, Heidelberg, 59–79.

[4] S. L. Lim, P. Bentley, N. Kanakam, F. Ishikawa, and S. Honiden. 2014. Investigating

Country Differences in Mobile App User Behavior and Challenges for Software

Engineering. IEEE TSE 41 (09 2014).

[5] Yepang Liu, Chang Xu, and Shing-Chi Cheung. 2014. Characterizing and Detecting

Performance Bugs for Smartphone Applications. In ICSE. ACM, New York, NY,

USA, 1013–1024.

[6] Y. Lyu, D. Li, andW. G. J. Halfond. 2018. Remove RATs from Your Code: Automated

Optimization of Resource Inefficient Database Writes for Mobile Applications. In

ISSTA. ACM, New York, NY, USA, 310–321.

[7] H. B. Mann and D. R. Whitney. 1947. On a Test of Whether one of Two Random

Variables is Stochastically Larger than the Other. The Annals of Mathematical
Statistics 18, 1 (1947), 50 – 60.

[8] J. Petke, S. O. Haraldsson, M. Harman, W. B. Langdon, D. R. White, and J. R.

Woodward. 2018. Genetic Improvement of Software: A Comprehensive Survey.

IEEE TEVC 22, 3 (2018), 415–432.

[9] N. Tolia, D. G Andersen, and M. Satyanarayanan. 2006. Quantifying interactive

user experience on thin clients. Computer 39, 3 (2006), 46–52.

2

http://robolectric.org/

	Abstract
	1 Introduction
	2 GI for Android Responsiveness Issues
	3 Results
	4 Conclusion
	Acknowledgments
	References

