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A yield stress is added to Taylor’s (1952, Proc. Royal Soc. A, 211, 225-239) model8

of a microscopic organism with a wavy cylindrical tail swimming through a viscous9

fluid. Viscoplastic slender-body theory is employed for the task, generalizing10

existing results for Bingham fluid to the Herschel-Bulkley constitutive model.11

Numerical solutions are provided over a range of the two key parameters of12

the problem: the wave amplitude relative to the wavelength, and a Bingham13

number which describes the strength of the yield stress. Numerical solutions14

are supplemented with discussions of various limits of the problem in which15

analytical progress is possible. If the wave amplitude is sufficiently small, the16

yield stress of the material inevitably dominates the flow; the resulting ‘plastic17

locomotion’ results in swimming speeds that depend strongly on the swimming18

gait, and can, in some cases, even be negative. Conversely, when the yield stress19

is large, swimming becomes possible at the wave speed, with the swimmer sliding20

or burrowing along its centreline with a relatively high efficiency.21

1. Introduction22

The fluid mechanics of locomotion through viscous fluids was pioneered by Taylor23

and Lighthill over half a century ago. Taylor’s (1952) model of locomotion driven24

by the waving of a cylindrical filament, in particular, lay the foundation for25

biofluid mechanics of flagellar motion. Taylor’s theory applied for low-amplitude26

motions, such that the swimming stroke constituted a small perturbation of27

the boundary corresponding to the swimmer’s surface. Later developments by28

Hancock (1953) and Lighthill (1975) exploited the machinery of Stokes flow theory29

to advance beyond this regime. Lauga & Powers (2009) provide a review of later30

developments.31

More recently it has become popular to consider locomotion through complex32

fluids, motivated mostly by the settings of many problems in physiology and the33

environment. Viscoelastic fluid models have been the most popular idealization34

used in theoretical and experimental explorations to date. However, locomotion35

through or above viscoplastic fluids (Denny 1980, 1981; Chan et al. 2005; Pegler36

& Balmforth 2013; Hewitt & Balmforth 2017, 2018; Supekar et al. 2020) and both37

wet and dry granular media (Hosoi & Goldman 2015; Maladen et al. 2009; Jung38
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2010; Juarez et al. 2010; Dorgan et al. 2013; Kudrolli & Ramirez 2019) have also39

been of interest.40

For waving cylindrical filaments in viscous fluid, an awkward drawback in41

theoretical explorations is that long-range effects characteristic of Stokes flow42

plague analytical advances even when the filament is relatively thin (Cox 1970;43

Keller & Rubinow 1976; Lighthill 1975; Lauga & Powers 2009). In particular,44

Lighthill’s resistive force theory, the simplest theory based on the slenderness45

of the filament, converges only logarithmically in terms of aspect ration. By46

contrast, the localization of flow around the filament by a yield stress ensures47

that the viscoplastic analogue of this theory is more accurate than its Newtonian48

cousin, as also noted in the context of granular media (Zhang & Goldman 2014;49

Hosoi & Goldman 2015). We exploited this feature in a previous article (Hewitt &50

Balmforth 2018) to develop viscoplastic slender-body theory. We further applied51

the theory to models of swimming driven by the motion of a helical filament (a52

model also popularized by Taylor and Hancock).53

In the present study, we use this viscoplastic slender-body theory to attack54

Taylor’s problem of locomotion generated by the (planar) waving of a cylindrical55

filament. The slender-body theory presented by Hewitt & Balmforth (2018) used56

a simple Bingham rheology, in which the plastic viscosity beyond the yield point57

is constant, to describe the viscoplastic material. Most real materials, however,58

possess a nonlinear (often shear-thinning) viscosity, leading us to generalise our59

previous slender-body results here to allow the ambient fluid to be described by60

the Herschel-Bulkley model (although in fact the behaviour of real viscoplasrtic61

materials is invariably richer than even this idealization; Balmforth et al. (2014)).62

Discussions of the effect of a non-linear rheology on locomotion have appeared63

previously (e.g. (Vélez-Cordero & Lauga 2013; Li & Ardekani 2015; Riley & Lauga64

2017)), although these studies have mostly focussed on generalised Newtonian65

fluids such as the power-law fluid, whereas our main thrust is to understand the66

impact of a yield stress. The impact on flow solutions of including a yield stress is67

typically dramatic, leading to a qualitative change in the dynamics and allowing68

one to access the “plastic limit” where the medium behaves like a perfectly plastic,69

cohesive solid (Prager & Hodge 1951).70

A notable detail of the current problem is that one might expect that the71

localization of flow by the yield stress should continue all the way to the plastic72

limit, thereby restricting motion to narrow boundary layers around the swimmer73

(Balmforth et al. 2017). However, it turns out that this only becomes true when74

the filament can translate nearly along its length. Otherwise, regions of plastic75

deformation persist over distances comparable to the cylinder’s radius, driven76

by transverse motion. The transverse and axial forces acting on the filament are77

then of similar size, unless the motion is very closely aligned with its axis. In78

this paper, we explore how this phenomenon can lead to a style of locomotion79

in which the swimmer is able to “burrow” through the fluid, moving purely in80

the direction of its centreline. Such a style of motion is, in fact, often observed81

for real organisms (Gidmark et al. 2011; Dorgan et al. 2013; Kudrolli & Ramirez82

2019), as we briefly discuss in §4.83

2. Formulation84

Consider a cylindrical filament of radius R moving without inertia through a85

viscoplastic fluid. The fluid has yield stress τ
Y

, below which any deformation is86
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Figure 1: Sketches of (a) the swimmer geometry, and (b) the local coordinates
(x, z) aligned with a segment of the cylindrical body that lies at an angle Φ(Z)
to the Z axis. The segment moves with speed U at a direction δ to its axis; the

associated force F is directed at an angle δf to its axis.

neglected and above which there is viscous flow. We adopt the Herschel–Bulkley87

constitutive relationship to relate the deviatoric stress τij of the fluid to the strain88

rates:89

τij =

(
Kγ̇n−1 +

τ
Y

γ̇

)
γ̇ij for τ > τ

Y
, (2.1)90

with γ̇ij = 0 otherwise, where91

{γ̇ij} =
∂ui
∂xj

+
∂uj
∂xi

, γ̇ =

√
1
2

∑
ij

γijγij and τ =

√
1
2

∑
ij

τijτij, (2.2)92

the fluid velocity is u, and the remaining parameters denote the consistency K93

and power-law index n. The motion of the fluid is governed by mass conservation94

and force balance,95

∇ · u = 0, ∇ · τ =∇p, (2.3)96

where p is the fluid pressure, which are given in Appendix A.1 in coordinates97

suitable for the slender-body analysis.98

The cylindrical filament is propelled by waves generated along its length, with99

wavepeed c and wavelength λ. A sketch of the geometry is shown in figure 1:100

the waves are assumed to deform the filament in the (X,Z)−plane, with the101

Z−axis pointing in the expected direction of motion (opposite to the direction102

of the waves). The instantaneous centreline of the filament is given by the curve103

X = λX (ζ), where X (ζ) denotes a dimensionless waveform that we assume is104

inextensible and ζ = (Z + ct)/λ is a phase variable moving with the wave. As a105

canonical example, we follow Taylor and consider the sinusoidal waveform,106

X = λX (ζ) = aλ sin

[
2π(Z + ct)

λ

]
, (2.4)107

with (dimensionless) peak amplitude a. In fact, we also open up the possibility108

of locomotion driven by more general waveforms, although we restrict attention109

to cases that are symmetric with X (ζ) = −X (−ζ) and X (ζ) = X ( 1
4
− ζ) for110

0 < ζ < 1
2
, such that the waveform has the extrema X (± 1

4
) = ±a and zeros111

X (0) = X (± 1
2
) = 0.112
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2.1. Viscoplastic slender-body theory113

When variations along the axis of the filament are much smaller than the radius114

(R � λ) the localization of motion by the yield stress implies that the flow115

becomes locally equivalent to that around a straight translating cylinder. As such,116

the locomotion problem at hand here breaks down into an exercise in suitably117

combining these local solutions along the body of the swimming filament. The118

key building block for this task comes from calculation of the flow around and119

the force on a cylinder moving at a given angle to its axis. This calculation was120

performed by Hewitt & Balmforth (2018) for a Bingham fluid (n = 1), and here121

we extend those results to motion through a Herschel–Bulkley fluid.122

To describe the flow around a translating cylinder, we use a local Cartesian123

coordinate system attached to the centreline: the z−direction is aligned with the124

cylindrical axis and the x direction lies normal to the cylinder in the plane of125

translation (see figure 1b). If the cylinder moves with speed U at an angle δ to126

the axis, a drag force F is experienced, acting at an angle δf (figure 1b). As127

summarized in Appendix A.1, this force can be computed to be128

F =
KUn
Rn−1 [x̂Fx(δ, n,Bi) + ẑFz(δ, n,Bi)] , (2.5)129

where x̂ and ẑ denote transverse and axial unit vectors, Fx and Fz denote130

corresponding dimensionless force components, and the relative importance of131

the yield stress is gauged by a local Bingham number,132

Bi =
τ
Y
Rn

KUn , (2.6)133

Note that, unlike for a Newtonian fluid, there is no simple separation of the134

dependence of the force components (Fx, Fz) on the parameters δ, n and Bi,135

owing to the nonlinearity of the constitutive law. This leads us to construct those136

components numerically for given parameter settings, although some analytical137

progress in possible in certain asymptotic limits, as discussed in the Appendices.138

Figure 2(a,b) shows how the force direction relative to the cylinder axis, δf =139

tan−1(Fz/Fx), and magnitude, F ≡
√
F 2
x + F 2

z , vary with δ and Bi for three140

values of n. The main variation of the force magnitude is with Bi; to extract141

this dominant dependence, the plots show F/〈F 〉, where 〈F 〉 denotes the average142

over 0 6 δ 6 1
2
π. The angular averages themselves are also plotted against Bi in143

figure 2(c). This data is provided in tabulated form in the online Supplementary144

Material.145

2.1.1. The low Bi limit146

For low Bingham number, Bi� 1, one might expect that the force components147

converge to those for a power-law fluid. However, for the Newtonian case, the148

Stokes paradox ensures that the low deformation rates in the far-field always149

impact the result. This leads to a persistent, logarithmic dependence on Bi that150

reflects how the yield stress must inevitably bring fluid to rest and resolve the151

paradox. Explicitly, we find that152

(Fx, Fz) ∼ −
2π

logBi−1
(2 sin δ, cos δ), (2.7)153

for Bi � 1 when n = 1 (Hewitt & Balmforth 2018). On the other hand, the154

Stoke’s paradox is avoided for a shear-thinning fluid (n < 1), as pointed out by155
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Figure 2: Slender-body-theory results for motion of a cylinder in a
Herschel–Bulkley fluid with index n. Colour maps of (a) force direction δf and

(b) F/〈F 〉, for n = 0.5 (left), n = 1 (centre) and n = 2 (right), where
F =

√
F 2
x + F 2

z and 〈F 〉 = (2π)−1
∮
F dδ is the angular average. The dashed

lines show the predicted width of the reorientation window discussed in §2.1.2,
δ = (β/αn)Bi−2/(1+n), where αn is defined in (2.10). The angular average 〈F 〉

is plotted against Bi in (c) for the same three values of n; the dashed line shows
(2.7). The scaled force components |Fx|/ sin δ and |Fz|/ cos δ are plotted in (d),
for n = 1

2
and Bi = 4−j with j = 2, 3, 4, 5 (as indicated by the blue dots in (c),

with colours from red at Bi = 4−2 to blue at Bi = 4−5); the star shows the
analytical result in (2.8), and the triangle indicates an approximate solution

from Tanner (1993) (Fx ≈ 12.1).

Tanner (1993), leading to a finite drag force for Bi → 0, as illustrated in figure156

2(c). While there is no general analytical solution for arbitrary δ in this limit, an157

exact solution can be computed for pure axial motion,158

Fz(
1
2
π, n, 0) = 2π(n−1 − 1)n, (2.8)159

if n < 1. The convergence of the drag components to their power-law limits160

for n = 1
2

and Bi � 1 is illustrated further in figure 2(d). This plot shows161

|Fx|/ sin δ and |Fz|/ cos δ; this scaling, motivated by the form of the Newtonian162
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limit (2.7), takes care of most of the δ-dependence of Fz, but works less well for163

Fx. Thus, an empirical collapse of the form suggested by Chhabra et al. (2001)164

for Carreau fluids (and which was exploited for locomotion problems by Riley165

& Lauga (2017)), which implies Fx(δ, n, 0)/Fz(δ, n, 0) = Fx(δ, 1, 0)/Fz(δ, 1, 0) =166

2 tan δ, does not apply accurately in this power-law limit.167

For n > 1, the Stokes paradox persists and the drag again vanishes in the limit168

Bi → 0. In this case, the far-field solution for the streamfunction in the cross-169

sectional plane is expected to contain terms of the form ψ ∼ Cr2−
1
n sin θ (see170

Tanner (1993)). Demanding that such terms balance the term stemming from171

sideways translation ψ ∝ r sin θ for r = O(Bi−1) suggests that C = O(Bi1−
1
n )172

which provides the scaling of the drag force for Bi� 1 (see Hewitt & Balmforth173

(2018); illustrated for n = 2 in figure 2c).174

2.1.2. The large Bi limit175

For higher yield stress Bi � 1 and except over a narrow window of angles of176

motion with δ � 1, the force components converge to n−independent values177

with (Fx, Fz) ∝ Bi (see figure 2c). These values correspond to the perfectly178

plastic limit of the problem wherein the yield stress dominates the stress tensor179

almost everywhere, with τij ≈ τY γ̇ij/γ̇.180

The viscous stresses operate only in thin viscoplastic boundary layers (Balm-181

forth et al. 2017) to adjust the solution and ensure that the no slip condition is182

satisfied, without consequence on the net drag. The perfectly plastic deformation183

outside these boundary layers span distances of the order of the radius of the184

cylinder. Importantly, in this plastic limit the two force components Fx and Fz185

remain comparable unless δ � 1. Further details of the corresponding plastic186

solutions can be found in Appendix A.3.187

However, as the cylinder approaches axial motion (δ → 0) there is a narrow188

window of angles δ � 1 across which the transverse force Fx drops to zero, as189

it must on symmetry grounds (Fx(δ = 0, n,Bi) = 0). The abrupt decrease in Fx190

arises without change in the axial force Fz, leading to the force angle δf falling191

from O(1) values to zero across this window of motion angles (see figure 2a).192

The width of this ‘reorientation’ window decreases with an increase in Bi or193

reduction of n, as illustrated in figure 2(a). In Appendix A.2, we show that the194

narrow window of force reorientation is given by δ = O(Bi−2/(n+1)), with195

Fx ∼ −αnπBi
n+3
n+1 δ & Fz ∼ −2πBi, (2.9)196

where197

αn =
(2n+ 1)2(3n+ 1)

[n2(n+ 1)3n+1]
1

n+1

. (2.10)198

The chief consequence of the narrow reorientation window for large Bi is that199

the force direction (δf ) is highly sensitive to the direction of motion (δ) when this200

is shifted only slightly off-axis. Equivalently, substantial sideways forces can only201

be avoided if the translation of the cylinder is very closely aligned to its axis. As202

we will find below, this narrow reorientation window has important consequences203

for slender locomotion through a viscoplastic material.204

2.2. Application to the swimming filament205

We now return to the swimming filament in the (X,Z)−coordinate system206

(figure 1a), and use the slender-body results to determine the net forces induced207
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by the swimming motion. We first move into the frame of the wave (in which the208

motion is independent of time) by using the dimensionless translating coordinate209

ζ ≡ (Z+ct)/λ. We remove all remaining dimensions from the problem by scaling210

speeds with the wavespeed c and stresses with K(c/R)n. The swimmer is then211

periodic over − 1
2
6 ζ 6 1

2
and the centreline lies along X/λ = X (ζ), which for212

the canonical sinusoidal waveform in (2.4) is X = a sin 2πζ.213

An awkward feature in the application of the slender-body theory to the214

locomotion problem is that that analysis is formulated in terms of the local215

Bingham number Bi and motion direction δ. Both quantities, however, vary along216

the swimmer and depend on the locomotion speed of the swimmer, which must217

be found as part of the solution of the problem. In other words, neither Bi nor218

δ are prescribed. Instead, the relative importance of the yield stress is provided219

by the swimmer Bingham number,220

Bs =
τ
Y

K(c/R)n
, (2.11)221

which, together with n and specification of the waveform X (ζ), governs the222

problem. The local Bingham number Bi(ζ) (2.6) is related to Bs by223

Bi(ζ) =
Bs
V n

, (2.12)224

where V (ζ) = U/c is the dimensionless speed of each segment.225

The constraint that the swimmer’s centerline is perfectly inextensible demands226

that, in the frame of the wave, the body must move in the direction of the227

centerline at the constant speed,228

Q =

∫ 1
2

− 1
2

√
1 +

(
∂X
∂ζ

)2

dζ =

∫ 1
2

− 1
2

dζ

cosΦ
, (2.13)229

(Taylor 1952), which is the arc-length of the waveform relative to its wavelength230

(such that a point on the body travels exactly one wavelength every dimensionless231

time unit). Here232

tanΦ =
dX
dζ

(2.14)233

denotes the local slope of the centerline (see figure 1). In a stationary (i.e.234

laboratory) frame, the swimmer’s body therefore has velocity235

(U,W ) = Q sinΦX̂ + (Q cosΦ− 1 +Ws)Ẑ (2.15)236

where Ws is the constant translation speed of the swimmer in the ζ direction; i.e.237

the dimensionless swimming speed (which is sometimes referred to as the “wave238

efficiency”). Hence,239

V cos δ = Q− (1−Ws) cosΦ,

V sin δ = (1−Ws) sinΦ,
(2.16)240

which allows determination of the speed241

V (ζ) =
√

(Ws − 1)2 + 2Q(Ws − 1) cosΦ+Q2, (2.17)242
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the local Bingham number Bi = Bs/V
n (2.12) and the inclination243

tan δ = − (Ws − 1) sinΦ

(Ws − 1) cosΦ+Q
, (2.18)244

of each segment of the swimmer’s body.245

We now compute the net axial force on the swimmer by integrating over the246

local contributions from each local cross section, as given by (2.5) with Un =247

[cV (ζ)]n. This net force must vanish for steady swimming, leading to248 ∫ 1
2

− 1
2

V n(Fz cosΦ− Fx sinΦ)
dζ

cosΦ
= 0. (2.19)249

This integral constraint implicitly determines the swimming speed Ws(n,Bs)250

given (2.17)-(2.18) and the dimensionless force components, Fx = Fx(δ, n, V
−nBs)251

and Fz = Fz(δ, n, V
−nBs). We use an iterative procedure to find numerical252

solutions to this implicit problem: for a given Bs, n and X (ζ), we vary Ws253

until (2.19) is satisfied, evaluating the integral by quadrature and exploiting254

interpolations within a tabulation of the slender-body force components. The255

tabulation resolves any sharp variations in Fx and Fz and, in particular, the256

narrow window described in §2.1.2 in which the force reorientates. Wherever257

the local Bingham number Bi = V −vBs falls outside the tabulated range, we258

extrapolate using the limiting behaviour for Bi� 1 or Bi� 1 outlined in §2.1.259

Along with the swimming speed, we also determine the extent of the yielded260

region around the swimming filament, the net dissipation rate, and a measure261

of the swimming efficiency. The first of these metrics follows from mapping the262

yield surface on the (x, y)−plane calculated by slender-body theory for each local263

cross-section to the swimmer coordinates (X,Y ). The second metric, the net264

dissipation rate, must equal the power expended by the swimmer,265

P = −
∫ 1

2

− 1
2

V n [V cos δFz + V sin δFx]
dζ

cosΦ
= −Q

∫ 1
2

− 1
2

V nFz
cosΦ

dζ. (2.20)266

For the third metric, we follow Lighthill (1975) and numerous others and define267

the efficiency,268

η =
Q|Ws|n+1 |Fz(δ = 0, n,W−n

s Bs)|
P , (2.21)269

which is the ratio of the power needed to drag the undeformed swimmer’s body270

(of length equal to the arc length Q) at the swimming speed to the power actually271

expended.272

Note that the specific waveform X of the swimmer only enters the problem273

through the definition of Φ in (2.14); i.e. the slope of the centreline. In other274

words, for a given waveform, the amplitude and wavelength of the swimming gait275

are only relevant in how they combine to set Φ, which must remain sufficiently276

shallow for the slender-body theory to be applicable. More specifically, the radius277

of curvature of the centreline (which is O(a−1λ)) must remain much greater278

than the swimmer’s radius R. For the sample waveforms that we adopt, this279

restriction demands that the wave amplitude parameter a should not be too280

large (specifically, a � λ/R); this is a condition that we informally ignore in281

presenting model solutions, but is important to keep in mind.282
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3. Results283

Figure 3 displays numerical results exploiting the construction of §2 for a swimmer284

propelled by the sinusoidal waveform X = a sin 2πζ. As indicated by the com-285

parison of panels (a–c), for n = 1
2
, 1 and 2, respectively, the results for different286

power-law exponents are qualitatively similar. More significant is the role of the287

yield stress, with an increase of Bs prompting a clear increase in locomotion speed288

towards the wave speed.289

The associated power expenditure, or dissipation rate, is shown in figure 4.290

Naturally, this measure increases with Bs as the swimmer has to break the yield291

stress to move; however, after compensating for this effect the figure shows a292

progressive decrease in the scaled power P/Bs for larger yield stress. The power293

steadily increases with wave amplitude, and approaches different high-Bi limits294

for small and large a, as discussed below.295

The swimming efficiency is plotted in figure 5. In the Newtonian limit (central296

panel, dotted line), the efficiency has a maximum of around 8% at a ≈ 0.19.297

Swimming through a viscoplastic medium is rather more efficient, achieving a far298

higher maximum efficiency of around 88% at a ≈ 0.12 and high values of Bs; we299

discuss this limit in more detail in §3.3. The viscoplastic solutions also deviate300

from the Newtonian limit substantially for low amplitudes, even when Bs is small;301

this deviation represents the fact that sufficiently low-amplitude swimming with302

finite Bs must inherently become plastic in nature, as discussed in §3.2.303

An impression of the yielded sheath around the swimmer is displayed in figure304

6, which shows the yield surfaces predicted in certain cross-sections through the305

swimmer for a range of values for a and Bs, and a particular choice of the306

scaled wavelength λ/R (which does not affect the wave speed or power in the307

slender limit). Not surprisingly, the yielded region becomes more localized as Bs308

is increased. On the other hand, as long as Bs is not small variations in the309

wave amplitude can result in yield surfaces that lie at similar distances from310

the swimmer even while the swimming speed increases by almost an order of311

magnitude (compare, for example, figure 6(c) and (f)). However, for smaller Bs312

and larger a, self-intersections of the yield surfaces can arise (e.g. figure 6g); the313

implied overlap of the yielded regions occurs when the span of the flow domain is314

no longer much smaller than the wavelength of the swimming stroke, and implies315

a break down of the slender-body theory approximation.316

The characteristics displayed by the numerical results in these figures motivate317

a discussion of a number of limits of the problem, which we discuss below.318

3.1. Newtonian limit319

When n = 1 and Bi� 1, the force components have the limits in (2.7), and the320

constraint (2.19) reduces to321

Ws = 1−Q
[∫ 1

2

− 1
2

(2 tan2 Φ+ 1) cosΦ dζ

]−1
. (3.1)322

For a sinsoidal wave profile, we then recover a result derived by Hancock (1953):323

Ws = 1−
∫ 1

2

− 1
2

√
1 + 4π2a2 cos2 2πζ dζ

[∫ 1
2

− 1
2

1 + 8π2a2 cos2 2πζ√
1 + 4π2a2 cos2 2πζ

dζ

]−1
, (3.2)324
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Figure 3: Locomotion speed Ws against wave amplitude a for a swimmer driven
by sinusoidal waves in Herschel-Bulkley fluid with (a) n = 1

2
, (b) n = 1 and (c)

n = 2. Examples with Bs = 10−3, 10−1, ... 103 are presented (colour coded by
Bs, from blue to red). The data are replotted logarithmically over a wider range

of a in (d), with n = 1
2
, 1 and 2 shown in red, blue and green (respectively).

The dashed line shows the result for Newtonian fluid (§3.1; eq. (3.2)), and the
low-amplitude, plastic solutions of §3.2 are shown by the stars. The inset in (d)

shows the data for a > 0.12, replotted as 1−Ws against the quantity
E(a, n,Bs) defined in (3.17); the solid (black) line shows the prediction

1−Ws = E from §3.3.

which gives Ws ∼ 2π2a2 for small a. For a more general waveform, if X = O(a)325

with a� 1, we set Φ = aΦ1 ∼ aX ′1 and Q = 1 + a2Q2 = 1 + 1
2
a2
∫ 1

0
Φ2

1dζ (in view326

of (2.13) and (2.14)), and then find Ws = a2W2 with327

W2 ∼
∫ 1

2

− 1
2

Φ2
1dζ. (3.3)328

3.2. Low-amplitude plastic swimming329

For low-amplitude swimming with a yield stress, we again set Φ = aΦ1 ∼ aX ′1,330

Q = 1 + a2Q2 and Ws = a2W2. Away from the extrema of the waveform, (2.17)-331

(2.18) then imply that V +O(a) and332

δ ∼ 1
2
π sgn(Φ1)−

a

Φ1

(Q2 + 1
2
Φ2

1 +W2), (3.4)333

Over small regions surrouding those extrema, however, the wave slope Φ becomes334

smaller, leading to different scalings of the translation speed and motion direction.335
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Figure 4: The scaled power P/Bs expended by a sinusoidal swimmer for
n = 0.5, n = 1 and n = 2, as labelled, and different Bs between 10−3 and 103,
coloured from blue to red. Two n-independent limiting values are also shown

(green): low-amplitude plastic swimming (dotted) with

P/Bs ∼ 4fx( 1
2
π)a ∼ 16(π + 2

√
2)a, and plastic sliding for moderate a and

Bs � 1 (dashed) with P/Bs ∼ 2πQ2 (which, for this sinusoidal gait, is ∼ 32πa2

when a� 1).
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Figure 5: The efficiency η (2.21) for the same data as in figure 4. In the
burrowing limit, η ∼ Q−1, shown by the green dashed line. The central panel

also shows the Newtonian limit (black dotted).

In particular, where Φ = O(a2), we find that V = O(a2) and336

δ ∼ tan−1
Φ1

a(Q2 +W2)
(3.5)337

(assuming Q2 +W2 > 0), so that δ runs through the entire range [− 1
2
π, 1

2
π].338

Because V is therefore always small, the low-amplitude limit corresponds to
Bi = O(a−n) � 1 or larger, as long as Bs is non-zero (see (2.12)). This implies
that the force components are given by the plastic limit Bi � 1. The angle of
motion δ, on the other hand, varies across its entire range (i.e. δ is not restricted
to the narrow reorientation window; that limit, relevant for larger amplitude
swimming, is considered below in §3.3). As discussed further in Appendix A.3,
the force components in this plastic limit take the form

Fx(δ, n,Bi) ∼ −Bifx(|δ|) sgn(δ) Fz(δ, n,Bi) ∼ −Bifz(|δ|) sgn(cos δ)
(3.6a, b)

for some functions fx and fz. These functions can be determined from extrapo-339

lations of numerical results for Bi � 1, as plotted in figure 9 in the Appendix.340
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Figure 6: Yield surfaces (gray) around sinusoidal swimmer (black) with n = 1,
wavelength λ/R = 40, Bingham number Bs = 0.1 (left column), Bs = 1 (central

column) and Bs = 100 (right column), and amplitude (scaled by the
wavelength) a = 0.05 (upper row), a = 0.1 (middle row) and a = 0.15 (bottom
row). The swimming speed is included in each panel (red). For the lowest Bs,

only the plane of the wave is shown; higher Bs solutions also include the
out-of-plane yield surfaces (upper plots in each panel).

We note further the limiting value fx(
1
2
π) ≡ 4(π + 2

√
2) and that341

fz(|δ| ≈ A( 1
2
π − |δ|), (3.7)342

provides a good fit to the numerical data with A ≈ 4.4.343

In view of (3.6), the constraint of vanishing drag (2.19) becomes344

A

∫ 1
2

− 1
2

( 1
2
π − |δ|)dζ ∼ a

∫ 1
2

− 1
2

fx(|δ|)|X ′1|dζ, (3.8)345

which is independent of n. The forms for δ identified in (3.4)-(3.5) now imply346

that the contributions to the integrals in (3.8) arise from a “global” region where347

(Φ1,X1) = O(a) and δ is close to ± 1
2
π, and from narrow “local” regions near the348

waveform’s extrema, where Φ = O(a2) and δ varies. For symmetrical waveforms,349

X (ζ) = −X (−ζ) and X (ζ) = X ( 1
4
− ζ), with extrema X (± 1

4
) = ±1, the leading-350

order global contributions to the left and right-hand sides of (3.8) are351

2aA+ 4aA(Q2 +W2)

∫ 1
4−ε

0

dζ

|X ′1|
and 4afx(

1
2
π) (3.9)352

respectively, where we have introduced a splitting point ε, satisfying a� ε� 1,353

to separate the global and local regions (Hinch 1991). The left-hand side of (3.8)354
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has two local contributions from the O(ε) regions around |ζ| = 1
4
, each of which355

is equal to356

2aA(Q2 +W2)

|X ′′1 ( 1
4
)|

∫ ∆

0

( 1
2
π − tan−1 τ)dτ, ∆ =

ε|X ′′1 ( 1
4
)|

a(Q2 +W2)
. (3.10)357

The integrals in (3.9) and (3.10) diverge logarithmically for ε → 0. In writing358

the full constraint, we therefore reorganize accordingly to arrive at the implicit359

equation,360

(Q2 +W2)

{
J + log

[
|X ′′1 ( 1

4
)|

a(Q2 +W2)

]}
∼ fx(

1
2
π)− 1

2
A

A
|X ′′1 ( 1

4
)|, (3.11)361

with362

J =

[
|X ′′1 ( 1

4
)|
∫ 1

4−ε

0

dζ

|X ′1|
− log ε−1

]
ε→0

+ 1. (3.12)363

For the sinusoidal waveform, J ≈ 1.24, and the predictions from (3.11) are364

included in figure 3(d). The results are surprisingly close to the corresponding365

Newtonian prediction (§3.1), at least over the range of amplitudes and rheological366

parameters used in the plot.367

Equation (3.11) implies the presence of a potentially non-asymptotic log a−1368

term, which demands that Ws → 1 − Q < 0 for sufficiently small a. That is,369

the swimmer must inevitably reverse direction at very low amplitudes. For the370

sinusoidal waveform, the other factors in (3.11) conspire to arrange the speed371

reversal to arise for a < 10−7, far less that the range of amplitudes used in figure372

3. Figure 7 shows results for different waveforms given either by the sawtooth-like373

profile,374

X =
16∑
j=1

(−1)j−1

8π2(2j − 1)2
sin[2π(2j − 1)ζ], (3.13)375

or the smoothed square wave376

X =
tanh(ς sin 2πζ)

tanh ς
, (3.14)377

where ς is a smoothing parameter. For the latter, the speed reversal is observed378

for higher amplitudes provided the wave is sufficiently sharp (i.e. ς large enough).379

The fact that such strokes lead to the body swimming backwards implies a far380

more significant rheological effect than has been noted for other complex fluids.381

It also implies the curious result that if the ambient fluid has a non-zero yield382

stress, there is a non-zero amplitude with which the swimmer can undulate whilst383

remaining stationary.384

The dissipation rate associated with this low-amplitude plastic swimming can385

be computed from (2.20), and reduces to the left-hand side of (3.8), up to a factor386

of Bs, in this limit. Thus the dissipation is P ∼ 4afx(
1
2
π)Bs ∼ 16(π + 2

√
2)aBs,387

which, unlike the swimming speed, is independent of the swimming gait (see388

figure 4) and scales linearly with the swimming amplitude a. The efficiency (2.21)389

is η ∼ 2πBs |Ws| /P in this limit, and thus depends sensitively on the swimming390

gait through the dependence on Ws. For the sinusoidal swimmer, figure 5 shows391

that the efficiency in a Newtonian fluid was far lower than in a viscoplastic fluid392
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Figure 7: Swimming speed Ws against amplitude a for n = 1 and waveforms
given by the sawtooth profile (3.13) (green) or smoothed square wave (3.14)

with ς = 0.01, 1, 1.5, 2, 2.75, 4 and 6 (from blue to red). In (a), the
low-amplitude range is shown, with the solid lines showing the solution of (3.11)
and the stars indicating numerical solutions, all with Bs = 103. In (b), higher
amplitudes are shown, together with more numerical solutions with Bs = 5

(dashed) and 50 (solid). The inset in (a) displays the waveforms.

for small a; this trend must become interrupted as a is decreased further, however,393

because Ws vanishes at some non-zero amplitude in the viscoplastic case.394

3.3. Plastic sliding or burrowing395

The numerical results in figure 3 indicate that Ws approaches the wave speed396

for sufficiently strong amplitudes and yield stresses. Our rationalization of this397

observation is that at such parameter settings, the swimmer is able to exploit398

the strong drag anisotropy for small δ that is created by the narrow reorientation399

window (discussed §2.1), in order to ‘slide’ through the medium without appre-400

ciable drift. That is, each segment of the swimmer travels in essentially its local401

axial direction, while the associated force on that segment can be directed at a402

wide range of angles δf . Suppose the swimmer is in this limit, with swimming403

speed Ws = 1− ε and ε� 1. Then,404

V ∼ Q− ε cosΦ & δ ∼ tan−1
ε sinΦ

Q
=

ε

Q
sinΦ+ .... (3.15)405

Consequently, given the limits of the force components in (2.9),406

V n(Fx sinΦ− Fz cosΦ) ∼ πBs
[
2 cosΦ− εαnB

2/(n+1)
s

Q(3n+1)/(n+1)
sin2 Φ

]
, (3.16)407
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and the force-balance condition (2.19) demands that408

ε ∼ E(a, n,Bs) ≡
2Q(3n+1)/(n+1)B−2/(n+1)

s

αnI
, I(a) =

∫ 1
2

− 1
2

sinΦ tanΦ dζ.

(3.17)409

The convergence of 1−Ws to E(a, n,Bs) is confirmed by the numerical solutions,410

as displayed in the inset of figure 3(c).411

We expect this theory to hold as long as δ lies within the narrow reorientation412

window, which requires αnBi
2/(n+1)δ . β, for some number β that we compute413

to be approximately 5 (see Appendix A.2 and figure 8). That is,414

|δ| . β

αn
Bi−2/(n+1) =⇒ |sinΦ| . 1

2
βI(a) ≈ 5

2
I(a), (3.18)415

independent of n, at every point along the swimmer’s body. Given the specific si-416

nusoidal waveform in (2.4), this requirement reduces to a & 0.12. Simultaneously,417

however, the swimming stroke should also fall within the plastic limit Bi � 1,418

which restricts the range of possible values of Bs; see the inset in figure 3(c),419

which demonstrates that E(a, n,Bs) must be small.420

As discussed in Appendix A.2, the flow around the cylindrical body in the421

narrow reorientation window becomes restricted to a viscoplastic boundary layer.422

Consequently, in this form of burrowing locomotion the deformations are strongly423

localized, and the swimmer slides along a conduit that is only slightly bigger than424

its body. This feature is illustrated by the yield surfaces in the final column of425

figure 6.426

Note that the condition in (3.18) is relatively insensitive to the waveform, being427

a . 0.11− 0.12 for a variety of different profiles, including the sinusoid, sawtooth428

(3.13) and smoothed square waves (3.14). This feature can be seen in figure 7(b),429

where the speed data for Bs = 50 and 103 approach the limit Ws ≈ 1 for such430

amplitudes, independently of the waveform.431

The dissipation rate or power output in this limit reduces to P ∼ 2πQ2Bs, as432

shown in figure 4. The factor of V nFz(0, n,Bi) ≡ 2πBs aries from the need to433

exceed the yield stress around the unit radius of the swimmer in this limit, while434

the dependence on Q2, and thus on the swimming gait and amplitude, follows435

because the swimmer’s body must travel along a distance of the arc length Q436

at a speed of Q each wavelength. The power required to drag the straightened437

swimmer axially at the (unit) swimming speed is lower by a factor of Q, leading438

to an efficiency of η ∼ 1/Q; cf. figure 5. The efficiency is thus maximised at439

the smallest amplitude for which the burrowing state can be attained, which is440

a ≈ 0.11 − 0.12. Dependence on the waveform enters through Q: the maximal441

efficiency is given by the sawtooth triangle wave (3.13), as in the Newtonian442

problem (see Lighthill 1975), although the maximum is here given by η ≈ 90%443

at a = 0.12. For comparison, the peak efficiencies are η(0.12) ≈ 88% for the444

sinusoidal waveform and η(0.12) ≈ 68% for the square wave in (3.14).445

4. Conclusion446

In this paper, we have generalized a previous viscoplastic slender-body theory447

(Hewitt & Balmforth 2018) and applied it to the problem of locomotion through448

a viscoplastic ambient fluid driven by a waving cylindrical filament. For low-449
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amplitude waves, the stresses become dominated by the yield stress and the450

problem reduces to that for swimming through a perfectly plastic medium (more451

specifically, a rigid-plastic material with the von Mises yield condition, given our452

use of the Herschel-Bulkley viscoplastic constitutive law). A curious feature of453

this limit is that the swimming speed must become negative (i.e. the swimmer454

moves in the same direction as the wave) if the wave amplitude is sufficiently455

small relative to its wavelength. This phenomenon requires very small amplitudes456

and results in extremely small speeds when the swimmer employs a sinusoidal457

waveform, but is more pronounced with a square-wave-like swimming gait.458

When wave amplitudes are not so small and for larger yield stresses, a key459

feature of viscoplastic slender-body flow comes into play: unless the motion is460

very closely directed along the axis of each cylindrical filament of the body,461

significant sideways forces arise. Only in almost axial motion does the drag force462

become closely aligned with the direction of motion. In the locomotion problem,463

the appreciable anisotropy in the drag that is set up across the narrow angular464

‘reorientation’ window allows the swimmer to burrow through the medium by465

sliding along its axis at nearly the wave speed.466

An analysis of this limit of plastic sliding or burrowing indicates that the wave467

amplitude need not be particularly large to achieve this burrowing motion (it468

needs to be about one eighth of the wavelength), a result that is insensitive to469

the specific waveform of the swimmer. There is no obvious advantage in employing470

a higher wave amplitude than this, because the swimming speed cannot increase471

past the wave speed whereas the power expended by the swimmer continues472

to increase with wave amplitude. Indeed, this result is clearly demonstrated by473

considering the swimming efficiency η, which compares the power consumption474

by swimming with that required to drag the straightened body at the same475

locomotion speed. The efficiency can become relatively large in the burrowing476

limit (an order of magnitude higher than the Newtonian equivalent) because477

dragging and burrowing differ only in the higher body speed of the undulating478

swimmer. Importantly, because this style of locomotion is characteristic of nearly479

plastic deformation in the surrounding medium, the ability to burrow in this480

manner is not limited to a viscoplastic fluid, but should characterize any plastic481

material such as a cohesive granular medium like wet sand.482

Burrowing of this kind has been observed experimentally for various worms483

that naturally inhabit wet sediments or soils. Dorgan et al. (2013), for example,484

measured the motion of the polychaete worm Armandia brevis through sediments485

and found that the worms burrowed along their axis at a swimming speed486

essentially equal to the wave speed (that is, a dimensionless wave speed or487

“wave efficiency” of 1). They observed that the worms burrowed with a scaled488

amplitude (relative to wavelength) of a ≈ 0.18, which is consistent with our489

theoretical prediction for being in the burrowing limit (a & 0.12). Although we490

cannot be certain whether these swimmers operate in the plastic limit, having no491

access to the detailed rheology of the ambient, support for this conclusion is also492

provided by the fact that these observations were insensitive to the swimmer’s493

wave frequency (and thus wave speed), consistent with our theory when Bs is494

sufficiently large. Further, the same worms swimming in water displayed an495

inability to burrow along their axis, presumably because of the absence of a plastic496

yield stress, and instead ‘drifted’ with a much slower, frequency-dependent,497

translation speed.498

Similarly, observations of burrowing sand lances (Gidmark et al. 2011) and499
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ocellated skinks (Sharpe et al. 2015) have also revealed locomotion speeds reach-500

ing those of propulsive undulations with a ≈ 0.25− 0.35. While the relevance of501

plasticity in the ambient material to enable this form of burrowing locomotion502

has already been recognised (Dorgan 2015), the present study provides the503

first theoretical framework in which to describe such slender motion through504

a viscoplastic ambient. Further comparison of theory and observation is cer-505

tainly warranted, but requires a detailed characterisation of ambient rheology.506

A consideration of the dynamics at the head of the swimmer, where the conduit507

followed by burrowing is opened, may also be worthwhile. Finally, the framework508

presented here could be extended in the future to describe other forms of observed509

locomotion such as peristalsis (Kudrolli & Ramirez 2019).510

Appendix A. Analysis511

A.1. Formulation512

In this appendix we quote the dimensionless governing equations used to generate513

the slender-body results discussed in §2.1: that is, for viscoplastic flow around514

an infinitely long, straight cylinder translating at an angle δ to its axis (see515

also Hewitt & Balmforth 2018). Lengths are scaled by the cylinder radius R,516

velocities by the translation speed U of the cylinder and stresses by K(U/R)n.517

In the cylindrical polar coordinates system (r, θ, z) aligned with the centreline,518

(2.3) becomes519

1

r

∂

∂r
(ru) +

1

r

∂v

∂θ
= 0, (A 1)520

∂p

∂r
=

1

r

∂

∂r
(rτrr) +

1

r

∂

∂θ
τrθ −

τθθ
r
,

1

r

∂p

∂θ
=

1

r2
∂

∂r
(r2τrθ) +

1

r

∂

∂θ
τθθ, (A 2a, b)

521

0 =
1

r

∂

∂r
(rτrz) +

1

r

∂

∂θ
τθz, (A 3)522

where subscripts indicate tensor components. The dimensionless version of the523

Herschel–Bulkley law (2.1) is524

τij =

(
γ̇n−1 +

Bi

γ̇

)
γ̇ij for τ > Bi, (A 4)525

and γ̇ij = 0 otherwise, where526

{γ̇ij} =

 2ur vr + (uθ − v)/r wr
vr + (uθ − v)/r 2(vθ + u)/r wθ/r

wr wθ/r 0

 , (A 5)527

and subscripts of r and θ on the velocity components denote partial derivatives.528

The translation of the cylinder demands the boundary conditions (u, v, w) =529

(cos θ sin δ,− sin θ sin δ, cos δ) at r = 1. In the far field, the stresses must eventually530

fall below the yield stress and the fluid must plug up, such that (u, v, w) →531

(0, 0, 0). The net drag per unit length exerted on the cyclinder is x̂Fx + ẑFz, with532 [
Fx
Fz

]
=

∮ [
(−p+ τrr) cos θ − τrθ sin θ

τrz

]
r=1

dθ =

∮ [
2τrr cos θ + (rτrθ)r sin θ

τrz

]
r=1

dθ.

(A 6)533
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We solve these equations numerically using an Augmented Lagrangian finite-534

difference scheme, employing a Fourier transform in the azimuthal direction. The535

scheme differs from that used in Hewitt & Balmforth (2018) only by the inclusion536

of a non-linear viscosity to capture shear thinning or thickening for n 6= 1.537

A.2. Axial and nearly axial motion: force reorientation538

For purely axial motion, we have539

rτrz = −rpBi & τrz = −Bi− (−wr)n, (A 7)540

where r = rp denotes the (axisymmetrical) yield surface for which τrz = −Bi541

(wr < 0), given that w = 1 on r = 1 and decreases to w = 0 with wr = 0 at542

r = rp. Hence,543

w = 1−
∫ r

1

[
(rp − r)

Bi

r

] 1
n

dr. (A 8)544

In the limit of a thin gap, for Bi� 1, we have r = 1 +Bi−1/(1+n)ξ and545

wξ ∼ −(ξp − ξ)1/n, w ∼ n

n+ 1
(ξp − ξ)(n+1)/n & ξp =

(
1 +

1

n

) n
n+1

.

(A 9)546

where ξ = ξp denotes the rescaled yield surface. Because the axial shear stress547

τrz ∼ −Bi in this limit, the axial force is given by Fz ∼ −2πBi, corresponding548

to the perfectly plastic limit for a cylinder translating along its axis.549

If, instead, the motion is nearly, but not exactly, aligned with the axis, and550

Bi � 1, the sideways translation is largely contained within 1 < r < rp or551

0 < ξ < ξp, and the leading-order shear rate is γ̇ ∼ (ξp − ξ)1/n. The lateral force552

balances demand that553

∂p

∂ξ
∼ 0,

∂p

∂θ
∼ Bi 1

n+1
∂τrθ
∂ξ
∼ Bin+2

n+1
∂

∂ξ

[
vξ

(ξp − ξ)1/n
]
, (A 10)554

since555

τrθ ∼
Bi vr
|wr|

∼ Bi vξ
(ξp − ξ)1/n

. (A 11)556

But v = O(δ) at ξ = 0 and v(ξp, θ) = 0, and so557

v ∼ −nξ(ξp − ξ)
1+1/n

2n+ 1
Bi−

n+2
n+1

∂p

∂θ
, (A 12)558

as long as δ � O(Bi−
n+2
n+1 p), which turns out to be the case.559

The continuity relation implies a radial velocity u given by560

uξ ∼ Bi−
1

n+1 vθ ∼
nξ(ξp − ξ)1+1/n

2n+ 1
Bi−

n+3
n+1

∂2p

∂θ2
, (A 13)561

or562

u ∼ −n
2(ξp − ξ)2+1/n[nξp + (2n+ 1)ξ]

(2n+ 1)2(3n+ 1)
Bi−

n+3
n+1

∂2p

∂θ2
, (A 14)563

if u = 0 at ξ = ξp. But we also have that u = δ cos θ at ξ = 0, and so564

p ∼ (2n+ 1)2(3n+ 1)

n3ξ
3+1/n
p

Bi
n+3
n+1 δ cos θ (A 15)565
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Figure 8: The force direction δf against αnBi
2

n+1 δ for n = 1
2

(blue), n = 1

(black) and n = 2 (red), with Bi = 2j+n and j = 3, 4, ..., 10. The thick (green)

dashed lines shows the prediction δf ∼ tan−1( 1
2
αnBi

2
n+1 δ). The vertical dotted

line at αnBi
2

n+1 δ = 5 roughly locates the window of strong force anisotropy.

Finally,566

Fx ∼ −
∮
p cos θ dθ ∼ −αnπBi

n+3
n+1 δ, (A 16)567

where αn is defined in (2.10). The transverse force therefore becomes dominated568

by the axial force Fz = O(Bi) only when δ � O(Bi−2/(n+1)). The collapse of the569

force direction δF when plotted against αnBi
2

n+1 δ for different n (and large Bi)570

is illustrated in figure 8; also included is the prediction δf ∼ tan−1( 1
2
αnBi

2
n+1 δ)571

based on the preceding results.572

A.3. Plastic solutions outside the narrow window of force reorientation573

The nearly plastic solutions outside the narrow window where the force becomes574

reorientated are ilustrated in figure 9. These solutions are characterized by a575

region of almost plastic deformation surrounding the cylinder over distances of576

order the radius. The perfectly plastic flow is buffered by viscoplastic shear layers577

where the viscous stress remains important, and the two shear stress components578

τnz and τsn dominate the stress tensor. Here, s denotes the arc length along the579

centerline of the boundary layer and n is the transverse coordinate in the plane580

of the cylinder’s cross-section. Of key importance is the shear layer against the581

cylinder, which transmits the fluid drag.582

In the plastic limit, Bi → ∞, the boundary layers become infinitely thin and583

feature jumps in tangential velocity. The corresponding plastic solution satisfies584

the slip conditions,585 (
τnz
τsn

)
= − Bi√

V 2 +W 2

(
W
V

)
, (A 17)586

where V and W denote the jumps in the tangential velocity components, which587

can be extracted from a boundary-layer analysis like that used above. It does588

not seem possible to analytically find the limiting plastic solution for general δ589

(the method of sliplines, which proves useful in the purely two-dimensional flow590

problem, is not available here). For δ → 1
2
π, the transverse motion of the cylinder591

dominates the axial translation, which enters as a regular perturbation of the592

two-dimensional problem solved by Randolph & Houlsby (1984). In particular,593

one may calculate the transverse drag fx(
1
2
π) as quoted in §3.2. We also observe594
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Figure 9: Numerical solutions showing the deformation rate invariant γ̇ (as a
density over the (x, y)−plane) and flow pattern (which has vertical symmetry;
here showing streamlines of the planar velocity field ux̂ + vŷ in the upper half

plane (blue); and contours of constant axial speed w in the lower half plane
(green)) around a moving cylinder for Bi = 1024 and n = 1. The angle of

inclination, shown pictorially in blue at the centre of each cylinder, is (a)–(d)
2π−1δ = [ 3

4
, 1
2
, 0.1, 0.05]. Panels (e) and (f) show the scaled drag components

(|Fx|, |Fz|)/Bi and direction δf against
√

2π−1δ for n = 1
2

(dashed), n = 1

(solid) and n = 2 (dotted), with Bi = 2j+n and j = 3, 4, ..., 10. The thick (red)
dashed lines show the approximations fx(|δ|) (extrapolated from the numerical
results) and fz(|δ|) = A( 1

2
π − |δ|) with A = 4.4, as quoted in §3.2, and the stars

indicate the analytical results for pure axial or transverse motion. The (red)
points in (f) indicate the motion angles used for (a)-(d).

that the linear approximation (3.7) for fz works well nearly all the way up to the595

reorientation window.596

The limit Bi � 1 and Bi−2/(n+1) � δ � 1 is somewhat curious, as it597

corresponds to the sliding of a cylinder in the direction of its length through598

a perfectly plastic medium with an arbitrarily small (as long as Bi can be599

taken sufficiently large) but non-zero sideways translation. Associated with this600

motion is a finite transverse drag (the force angle approaches a value close to601
1
3
π) and a flow pattern like that in figure 9(d) (save for the viscoplastic boundary602

layers, which shrink to slip surfaces as Bi→∞). Of course, the transverse drag603

eventually declines, and the flow pattern is consumed by the boundary layer of the604

axial velocity, as the motion aligns with the axis within the reorientation window.605

However, this requires a viscous effect (i.e. finite Bi). The origin of this curious606

feature is in the perfectly plastic solution itself: for pure axial motion, there is no607

deformation of the fluid, with the translation of the cylinder permitted by slip608

along its surface. But sideways translation cannot be accommodated by this style609
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of motion, no matter how small, which instead demands plastic deformation over610

a finite region.611
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