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Advances in social neuroscience have made neural signatures of social exchange measurable simultaneously 

across people. This has identified brain regions differentially active during social interaction between human 

dyads, but the underlying systems-level mechanisms are incompletely understood. This paper introduces dynamic 

causal modeling and Bayesian model comparison to assess the causal and directed connectivity between two 

brains in the context of hyperscanning (h-DCM). In this setting, correlated neuronal responses become the data 

features that have to be explained by models with and without between-brain (effective) connections. Connections 

between brains can be understood in the context of generalized synchrony, which explains how dynamical systems 

become synchronized when they are coupled to each another. Under generalized synchrony, each brain state 

can be predicted by the other brain or a mixture of both. Our results show that effective connectivity between 

brains is not a feature within dyads per se but emerges selectively during social exchange. We demonstrate a 

causal impact of the sender’s brain activity on the receiver of information, which explains previous reports of 

two-brain synchrony. We discuss the implications of this work; in particular, how characterizing generalized 

synchrony enables the discovery of between-brain connections in any social contact, and the advantage of h- 

DCM in studying brain function on the subject level, dyadic level, and group level within a directed model of 

(between) brain function. 
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. Introduction 

.1. Hyperscanning 

Recent work in social neuroscience has identified neural signa-

ures that relate to human coordination and social exchange ( Jirsa and

elso, 2005 ; Kelso, 1995 ; Nordham et al., 2018 ). In neuroimaging, these

nsights rest on simultaneous functional brain recordings of multiple

ubjects while they interact socially, representing a move towards real

ife contact, termed hyperscanning . 

At a neural level, correlations between brain regions from individu-

ls engaged during social inference can be observed, which are signifi-

antly stronger during immediate social contact ( Bilek et al., 2015 ). In

rior work, we demonstrated that these correlations can be found in the

ight temporo-parietal junction (rTPJ), a core region of the social brain

etwork, implicated in the central coordination and control of social
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nformation and behavior ( Krall et al., 2014 ; Schurz et al., 2014 ). Dur-

ng cooperative interaction, rTPJ networks - engaged in both subjects’

rains - show a degree of coherence in their activity ( Bilek et al., 2015 ;

oelman et al., 2019 ). For other forms of social interaction, other brain

egions such as the medial prefrontal cortex (mPFC) may contribute to

eural synchrony (for review, see Redcay and Schilbach, 2019 ). A grow-

ng body of evidence speaks to the relevance of neural coupling (i.e.,

ynchronous brain activity between brains, independent of the modal-

ty or computed measure) between individuals in diverse forms of social

ontact, with half of the existing peer-reviewed literature being pub-

ished within the past three years (Pubmed search for hyperscanning ,

ast query 04.05.20). For example, neural synchrony underlies verbal

ommunication, is associated with successful information transfer (i.e.,

nderstanding) between individuals ( Silbert et al., 2014 ; Stephens et al.,

010 ) and predicts the learning success in interpersonal teaching set-

ings ( Pan et al., 2018 ; Stolk et al., 2014 ; Zheng et al., 2018 ). Moreover,
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(  
he bonding level between subjects is reflected in peak synchronization

 Kinreich et al., 2017 ; Pan et al., 2017 ), and mother-infant empathy and

earning are associated with neural synchrony during their interactions

 Levy et al., 2017 ; Reindl et al., 2018 ). This kind of synchronization

s thought to be a key aspect of therapeutic alliances (e.g., Koole and

schacher, 2016 ; Kupper et al., 2016 ), and interestingly, within-group

tructure as well as between-group conflict relate to synchronization be-

ween members ( Jiang et al., 2015 ; Yang et al., 2020 ). A few studies have

emonstrated clinical value of brain synchronization in the form of a

eural synchronization deficit in social interaction disorders, i.e. Border-

ine Personality Disorder ( Bilek et al., 2017 ) and Autism ( Tanabe et al.,

012 ). In line with this, interaction-based phenotyping of psychiatric pa-

ients might be particularly useful for understanding the (social) brain

nd its disorders, as well as in the development of personalized treat-

ents ( Leong and Schilbach, 2019 ; Schilbach, 2016 ). 

In summary, these studies suggest that neural synchronization be-

ween brains is a fundamental function of the human brain that is re-

ated to key characteristics of social interaction and its success. This

akes neural coupling a promising new target for both the mechanistic

nderstanding of interpersonal exchange, and the development of novel

nterventions to support social functioning. 

.2. Correlation and causality 

Inter-brain associations are often measured in terms of statistical de-

endencies among two or more fMRI timeseries. Common examples in

he time domain include (cross-) covariance and (cross-) correlation;

heir counterparts in the frequency domain are the cross-spectral density

nd coherence, respectively (see Fig. 1 of Friston et al., 2014b ). Moving

eyond instantaneous associations among timeseries, (non-parametric)

ranger causality describes temporal precedence among pairs of time-

eries, an approach that has been successfully applied in the study of

nter-brain associations ( Schippers et al., 2010 ). These multi-variate data

eatures or descriptive statistics are static transforms of the data, and the

nalysis of which is typically referred to as functional connectivity in the

euroimaging literature (or directed functional connectivity in the case of

ranger causality). However, such measures do not explain how puta-

ive generalized synchrony between brains is caused. Correlations are a

escriptive feature of the data, not the mechanism generating the data.

n the contrary, in the study of social interaction and related disor-

ers, we are concerned with the causal effect one brain may have on

nother. It is important to understand whether brain states are shared

etween interacting individuals, the direction of how these effects are

hared (e.g., which direction of effects is relevant at a particular point

n time, or during a specific joint action; thus inferring causality within

 network), when they are shared (e.g., when we cooperate vs. when

e do something separately but at the same time/place), and how they

re affected by individual and interaction-related factors (e.g., similar-

ty between partners, individual personality traits, interaction styles).

his aids a mechanistic understanding of social interaction on the brain

evel, and the development of interventions to facilitate neural coupling;

or example, between patients and clinicians in psychotherapy, where

ptimal neural synchrony may relate to mutual understanding and ther-

peutic alliance building. 

Furthermore, correlations between simultaneously acquired data are

nterpreted as information flow or the emergence of shared brain states

 Redcay and Schilbach, 2019 ). However, this interpretation is challeng-

ng: all correlative measures of synchronization between brains can be

artly induced by a shared sensorium. In other words, when subjects ex-

erience similar sensory inputs, the evoked and induced responses will

e correlated to a greater or lesser degree. This is the same problem that

aces characterizations of functional connectivity between regions within

he same brain. Researchers have tried to remove the correlations be-

ween sensory bound brain responses that confound tests for (and inter-

retations of) synchronization of a nontrivial kind, for example through

ermutation approaches or task control conditions ( Bilek et al., 2015 ;
 t  

2 
oike et al., 2019 ) (for a review on fMRI hyperscanning analysis meth-

ds see Czeszumski et al., 2020 ). However, this procedure does not in-

orm whether a connection between brain systems may be assumed. We

ave to test empirically whether neural coupling between brains pro-

ides a ‘better’ explanation for the neuroimaging data than single-brain

etworks (i.e., whether between-brain models yield a more accurate pre-

iction of the data and we find higher evidence for such models than

or single-brain models). In this context, the best explanation or model

s the one that maximizes the probability of observing the data given

he model – i.e., the model evidence. This can always be decomposed

nto the accuracy of the model minus its complexity. For example, we

an expect the activity of individuals watching the same movie to corre-

ate, because the identical data is processed in two brains. Single brain

etworks will be most efficient in explaining the correlated neuroimag-

ng time-series, because they are the least complex networks that pro-

ide the most accurate prediction of data. For social interaction, we

nd correlations between time-series that may not be fully accounted

or through shared perceptual input ( Redcay and Schilbach, 2019 ). We

ish to quantify this specific effect, and we wish to infer the effective

onnectivity of our network. 

In this paper, we address these issues using measures of effective

onnectivity and Bayesian model comparison in the setting of dynamic

ausal modeling (DCM). DCM can be used to distinguish potential causes

f correlations, while and quantifying the evidence for competing hy-

otheses about the network architectures generating these correlations.

oth, shared sensory input and effective connectivity between brains

ould result in correlated time-series. To disambiguate between synchro-

ization and shared input as potential causes of correlation, the models

onsidered here include both so that they directly compete in explain-

ng variance. Specifically, a large number of different parameter combi-

ations are examined and compared in their accuracy of predicting the

ata. This allows one to compare the evidence for models with and with-

ut effective coupling between brains, in the context of the shared in-

ut. We thus use model evidence to determine which network structure

s optimal in predicting the data. Correlated neuronal responses become

he data features that have to be explained by models with and with-

ut between-brain (effective) connections. However, our main interest

ies in the examination of the winning model. After model estimation,

CM provides parameters that quantify the causal and directed effect

ne brain region exerts over another. This kind of modeling thus offers

 causal explanation of how the observed data were generated, and how

he brain systems exchange states during social contact. 

From previous hyperscanning work we hypothezise that a model that

ncludes connections between the brains of interacting individuals will

erform better in explaining the data than models that do not include

etween-brain connections. 

.3. Generalized synchrony 

Conceptually, the approach introduced in this paper is grounded

n the notion of generalized synchrony or synchronization of

haos ( Breakspear, 2002 ; Jafri et al., 2016 ; Schiff et al., 1996 ;

chumacher et al., 2012 ). Generalized synchrony refers to the char-

cteristic behavior of loosely coupled dynamical systems, where one

ystem trains the dynamics of the other and vice versa ( Hunt et al.,

997 ). Perhaps the earliest (and most intuitive) example of general-

zed synchrony is the observation by Huygens that pendulum clocks

uspended from the same beam will ultimately come to oscillate in

ynchrony ( Huygens, 1673 ). This is a universal phenomenon that is well

stablished experimentally and well-understood theoretically, in the

ontext of coupled dynamical systems. Formally, it is best understood

n terms of loosely coupled chaotic dissipative dynamical systems,

here the coupling causes the states of both systems to synchronize

n what is described mathematically as a synchronization manifold

 Breakspear, 2002 ). Technically, this synchronization manifold lies in

he joint (state) space of both systems and attracts the dynamics of both



E. Bilek, P. Zeidman, P. Kirsch et al. NeuroImage 252 (2022) 119038 

t  

W  

(  

i  

b  

t  

s  

s  

a  

t  

o  

d  

o  

a  

c  

C  

o  

a  

h  

(  

t  

b

 

f  

p  

m  

s  

m  

(  

i  

b  

o  

a  

e  

w  

m  

i

 

p  

o  

o  

q  

i  

f  

a  

a  

t

 

r  

a  

t  

b  

w  

i  

s  

t  

d  

f  

l  

p  

a  

e  

e  

s  

t

 

e  

i  

t  

e  

t  

c  

w

 

t  

i  

d  

r  

t  

t  

a  

s  

e  

a  

a  

w  

a  

t  

i  

a  

i  

s  

(  

o

 

b  

w  

i

 

f  

a  

b  

p

2

2

 

w  

j  

(  

1  

t  

c  

b  

j  

p

2

 

T  

w  

i  

s  

t  

i  

b  
o a low dimensional attracting set (the synchronization manifold),.

hen the systems that are coupled have sufficiently similar dynamics

i.e., the functional form of their equations of motion are similar),

dentical synchronization emerges, and the dynamics of one system can

e predicted by the state of another. This is the only long-term solution

o the joint equations of motion. Indeed, this is how generalized

ynchronization is usually inferred; i.e., by asking whether knowing the

tate of one system enables us to predict the dynamics of another (e.g.,

s overviewed in Jiruska et al., 2013 ). Under identical synchronization,

here is a simple mapping between the states of one system and the

ther, which renders this predictability symmetric. The form of this

ynamic coupling is exactly the same used in DCM; namely, the flow

f neuronal states in one brain region is affected by the states of

nother ( Friston et al., 2014c ). The move we make in this work is to

onsider regions from two brains (using hyperscanning data, h-DCM).

rucially, generalized synchrony rests on the notion of loosely coupled

scillators (e.g., two clocks suspended from the same beam). When

pplied in the context of neuronal dynamics, the oscillators become

ighly nonlinear and hierarchically structured neuronal oscillators

 Buzsaki and Draguhn, 2004 ; Fries, 2005 ; Lisman and Buzsaki, 2008 )

hat constitute the neuronal dynamics of two brains that are coupled

y and during social interaction. 

Crucially, generalized synchronization can only occur if there is some

ormal or structural similarity between the coupled systems. Our basic

remise here is that the brains of two participants can only become

eaningfully coupled via generalized synchrony when they share the

ame sort of dynamical structure. Indeed, this is exactly the assumption

ade in formal simulations of communication using active inference

 Friston and Frith, 2015a ). In other words, if two brains are trying to

nfer and predict each other, then this inference is facilitated when they

ecome synchronized, i.e., show a generalized synchrony. In the context

f active inference, this generalized synchronization underwrites nearly

ll forms of communication that rest upon a shared narrative and infer-

nce process ( Friston and Frith, 2015b ; Frith and Wentzer, 2013 ). In this

ork, we try to reproduce this generalized synchronization in an experi-

ental (hyperscanning) paradigm and evaluate the degree of synchrony

n terms of effective connectivity between two brains using h-DCM. 

The mathematical notion of generalized synchrony clarifies the bio-

hysical implementation of between-brain coupling. The very existence

f a synchronization manifold implies that we can replace the states of

ne brain with the states of another brain, when predicting the (subse-

uent neuronal) dynamics. This means that generalized synchronization

s an emergent property that makes it look ‘as if’ there is some latent ef-

ective connectivity between the two systems in question. Consequently,

 simple explanation for the dynamics of two systems that show gener-

lized synchronization can be articulated in terms of effective connec-

ivity. 

There is a subtle aspect to this use of effective connectivity, which

ests upon the modeling of (neuronal) time series. In brief, inference

bout connectivity - both within and between brains - means finding

he architecture with the greatest evidence. Evidence is the difference

etween accuracy and complexity; where complexity is the degree to

hich estimates of coupling diverge from prior expectations, before see-

ng any data ( Penny, 2012 ). When two brain systems are (identically)

ynchronized, we obtain the same prediction of brain dynamics using

he states of a single brain or a mixture of both. Hence, our single and

yadic brain models attain similar accuracy. Model selection can there-

ore be based on finding the least complex architecture. Notably, the

east complex case is when both brain systems contribute equally to the

rediction (i.e., two parameters attain half the value of a model with

 single parameter). This means that the simplest explanation for gen-

ralized synchrony (under suitable prior beliefs about coupling), is an

ffective connectivity between brains. Interestingly, this is exactly the

ame mathematical truism that licenses the assertion that ‘there are no

rue models’ ( Litvak et al., 2019 ). 

t  

3 
In summary, this paper illustrates a characterization of - and

vidence-based test for - generalized synchrony in hyperscanning us-

ng h-DCM and Bayesian model comparison. It is motivated by the fact

hat the most likely explanation for generalized synchrony is the pres-

nce of latent effective connections between two coupled dynamical sys-

ems —that exist due to a synchronization manifold. This means that we

an test for the presence of generalized synchrony by comparing models

ith and without effective connections between two brains. 

In what follows, we demonstrate the application of these procedures

o a hyperscanning experiment using functional magnetic resonance

maging (h-fMRI), in which we deliberately introduced asymmetry in

yadic interactions, in terms of switching the roles of a sender versus

eceiver. The task incorporates asymmetry, as it provides information

o one participant (sender), but not the other (receiver), and then forces

he exchange to complete a trial. We may therefore hypothesize that

t least one of the between-brain connections should reach from the

ender to the receiver. By switching task roles we can test this hypoth-

sis in both directions from the individuals point of view. This kind of

symmetry, in the context of generalized synchronization, is known as

 skew-product system. Our hypothesis was that in one role or another,

e could provide substantial (Bayesian) model evidence for a dynamical

rchitecture that involved directed between-brain connectivity. As such,

his provides a procedure to determine if observed functional connectiv-

ty between brains is, or is not, mediated by the kind of synchronization,

ttunement or alignment that underwrites a shared narrative or process-

ng of sensory exchanges. Notably, such directed connectivity would be

pecific to epochs where one individual exerts influence on the other

e.g., by sharing information). It would not be present at every moment

r in any form of interactive task. 

Following previous work on two-person data, we aimed to replicate

etween-brain connections between interacting individuals. In addition,

e hypothesized directed connectivity from the sender to the receiver of

nformation, which cannot be differentiated by correlative approaches. 

Our focus in this paper is on procedures and techniques. We there-

ore restrict ourselves to an analysis of normal subjects, paying special

ttention to the analytic details. In subsequent papers, the approach will

e adopted to make inferences about differences in between brain cou-

ling associated with psychopathology and inter-subject variability. 

. Materials and methods 

.1. Sample 

We examined a sample of 120 healthy subjects aged 27.5 ± 5.2 years

ith a mean education of 12.4 ± 0.9 years (76 females, 44 males). Sub-

ects participated in the study as 60 randomly assigned same-sex pairs

mean within-pair age difference 5.4 ± 4.5 years, education difference

.1 ± 1.5 years). Prior to participation, subjects were screened to ensure

hey had no history of neurological or mental illness, pregnancy, and

onformed to MRI exclusion criteria. The study protocol was approved

y the Ethics Committee of the University of Heidelberg, for which sub-

ects provided written informed consent. Data from 18 dyads had been

art of a previously published sample ( Bilek et al., 2017 ). 

.2. Hyperscanning protocol 

Data from dyads were acquired simultaneously at two 3T Siemens

rio MRI scanners. As described in detail in Bilek et al. (2015) , scanners

ere directly connected by optical fibers to ensure data transmission

n real time (temporal delay < 1.5 𝜇s). Prior to the MRI measurement,

ubjects were instructed separately in the task and completed sample

rials until the task was fully understood. In addition, they were trained

n performing eye movements while keeping the head still. Dyads met

riefly in person before scans, but were not given the chance to speak

o each other (the task introduction was repeated by staff, and subjects
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Fig. 1. Task structure and specification of the two-brain dynamic causal model (h-DCM). A. Illustration of task trials. B. Illustration of the task design. Subjects 

switched task roles (sender/receiver) after 20 trials. C. Summarized individual seed regions from N = 120 subjects (60 dyads), rTPJ (left), and mPFC (right), 

respectively. D. h-DCM architecture for two subjects. Time series from both subjects of the dyad were entered into one DCM. Between-brain connections were 

allowed between the same regions from each subject (horizontal lines). All within-brain connections were included in the model (vertical and curved solid lines). 

Driving input was received by all four regions (dashed lines), and all connections were modulated by joint attention (solid lines). 
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s  
ere chewing on a cotton ball for oxytocin sampling). Scanners were

ssigned randomly to subjects, and a live video stream of the partner’s

ace was provided throughout the measurement. 

.3. Task 

In a joint attention task, subjects were required to press a button cor-

esponding to a target stimulus location indicated on the stimulus pre-

entation screen (i.e., left, right, bottom, or top; Fig. 1 A) by a particular

hape (e.g., square). This information was revealed to one subject only

the sender of information), who had to indicate the correct response to

he partner (the receiver ) via eye saccades towards the target location.

eceivers were instructed to identify the target location by following the

artner’s eye gaze. Trials were rated as successful if both subjects pressed

he target button on a 4-button diamond shaped response device. Hence,

or successful trial completion, subjects had to engage in joint attention.

o examine non-JA task-effects, we included a trial phase of individ-

al performance (NoJA), where both subjects received the information

bout the target location, and therefore completed the trial individually

ithout calling upon communication through eye gaze. Phases of inter-

ction (JA) between the subjects and phases of individual performance

NoJA) alternated for a total of 40 trials. 

Target locations were pseudo-randomized between trials, while the

emaining three stimulus locations were filled with distractor shapes

e.g., parallelogram, rectangle, square with rounded or cut corners). Re-

eivers viewed four distractor shapes (plus sign) during JA trials. Live

ideo transmission was provided continuously over the entire task, cen-

ered on screen, and task stimuli were arranged at the respective posi-

ions around the video image. The full task included 40 trials in two scan

locks (alternating phases 40 × JA and 40 × NoJA; 5 s each), followed

y a performance feedback (3 s). Task roles (sender/receiver) switched

fter the first half of trials, so that each subject performed both task

oles across the measurement ( Fig. 1 B). The total task time summed to

51/656 s (triggered/triggering scanner). 

Seed regions were visualized with the BrainNet Viewer ( Xia et al.,

013 ). JA, interaction phase; NoJA, individual performance phase; rTPJ,
4 
ight temporo-parietal junction. mPFC, medial prefrontal cortex. h-

CM, dynamic causal modeling for hyperscanning. 

.4. fMRI data acquisition and pre-processing 

All data analysis was conducted using Statistical Parametric Map-

ing software (SPM12, www.fil.ion.ucl.ac.uk/spm/software/spm12/ ).

cripts for the extension of standard DCM functions to h-DCM mod-

ls are available from the corresponding author. FMRI data were ac-

uired with the following parameters: TR = 1550 ms, TE = 30 ms,

OV = 192 mm 

2 , 28 slices, 4 mm thickness, 1 mm gap, flip angle 73°,

23/420 volumes (triggering/triggered scanner). For preprocessing, im-

ges were realigned to mean image, slice time corrected, normalized to

tandard stereotactic space (as defined by the Montreal Neurological In-

titute), and smoothed using a Gaussian kernel filter with 8-mm FWHM.

.5. Subject level: analysis of brain activity and seed region selection 

We examined brain responses to task conditions in a classical general

inear convolution model (GLM) analysis for the purpose of selecting

egions of interest and extracting time series for subsequent connectivity

nalysis. Brain areas that were included in the dynamic causal modeling

ere examined for task-related activity. 

For each subject, a random effects model was specified, comprising

ve task-related regressors. To differentiate sender and receiver-specific

esponses, we included one regressor modeling all JA phases for the

ending role (JA-send), and a separate regressor for the receiving role

JA-receive). In addition, one regressor included all NoJA. Two regres-

ors modeled cue onset and button responses as events (duration = 0 s).

n addition, six movement regressors (of no interest) were entered into

he model, corresponding to three rotation and three movement planes.

o remove slow frequency drifts, data were high-pass filtered with a

ut-off of 128 s. For each subject, contrast images comparing interac-

ion with individual performance [JA-send + JA-receive > NoJA] were

alculated. 

Based on previous work ( Bilek et al., 2015 , 2017 ), we hypothe-

ized effective connectivity between rTPJ of dyads to emerge during

http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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𝐹  
ocial interaction, and selected this region as our first Volume of inter-

st (VOI). A functional segregation of rTPJ has been proposed, compris-

ng a posterior part involved in social cognition and mentalizing, and

n anterior part involved in attention ( Bzdok et al., 2013b ; Mars et al.,

012 ). Our studies have found posterior rTPJ to host between-brain ef-

ects, and defined the region through an empirical mask provided by

zdok et al. (2013b) . In addition, we included mPFC due to its involve-

ent in many social processes, such as mental state inference, social de-

ision making, and importantly, triadic attention ( Bzdok et al., 2013a ;

or a recent review, see Redcay and Schilbach, 2019 ; Saxe and Baron-

ohen, 2006 ). MPFC was defined based on definitions within the au-

omatic anatomic labelling atlas ( Tzourio-Mazoyer et al., 2002 ). Sum-

arized masks of the seed regions are shown in Fig. 1 C. Notably, we

elected these VOIs following our a priori hypotheses and interest in

etween-brain function. However, based on task-related brain activation

nd other research questions, other brain regions could be considered

or analysis in future studies. 

To test whether VOIs exhibited relevant activation during interac-

ion, we examined brain responses at the group level with a one-sample

-test, using the contrast [JA-send + JA-receive > NoJA] and a whole-

rain FWE-corrected threshold of 0.05. However, we find task-related

ctivity is not imperative in the identification of between-brain connec-

ivity, as we are testing for coupling between brains that might not rest

pon stimulus bound responses. Furthermore, prior work has shown that

onnectivity can be observed in brain regions that do not show signifi-

ant task related effects ( Gerchen and Kirsch, 2017 ). Future work may

herefore select VOIs based on a priori hypotheses and meta-analyzes

ather than task related responses. 

For h-DCM, subject time series were extracted with the VOI tool im-

lemented in SPM, from voxels that conforms to the following criteria:

1) exceeded a liberal statistical threshold of p < 0.01 uncorrected (to

xclude uninformative voxels) and (2) were within a 6 mm sphere cen-

ered on the subject-specific peak (within 16mm of the group peak).

ime series were summarized within each region by their first principal

omponent and corrected for uninteresting covariates such as motion. 

.6. Dyad level: dynamic causal modeling 

H-DCM entails important advances for the inference of neural cou-

ling: we examine effects on the level of neural populations instead of

OLD responses (which serve as a proxy to neural activity), we infer

ffective connectivity instead of correlation between ensuing time se-

ies, and we examine the direction of connectivity between those brain

egions. 

The task incorporates asymmetry, as it provides information to one

articipant (sender), but not the other (receiver), and then forces the

xchange to complete a trial. We therefore hypothesized directed con-

ectivity from the sender to the receiver of information, which required

 separate modulation of the first and second task block to account for

he role switch within the task (subject 1 may, for example, perform as

ender in the first task block and as receiver in the second; subject 2 of

he same dyad will take the complementary role in each block). 

For each dyad, a (deterministic) DCM was specified based on the

ecommendations in Zeidman et al. (2019a) , comprising nodes of rTPJ

nd mPFC of both subjects (4 seed time series; Fig. 1 D). In this model,

he rate of change of neural activity of each brain region at a specific

oint in time ( ̇𝑧 ) can be expressed as a function of the experimental input

 and the effective connectivity between and within the brain regions
𝑛 . This is approximated by a neuronal state equation - or equation of

otion: 

̇  = 

( 

𝐴 + 

𝑚 ∑
𝑗=1 

𝑢 𝑗 𝐵 

( 𝑗 ) 

) 

𝑧 + 𝐶𝑢 (1)

Parameters in matrix 𝐴 (size 𝑛 × 𝑛 ) characterize the average con-

ectivity over the experimental conditions. As shown in Fig. 1 D, we hy-

othesized bi-directional connections between regions within the same
5 
rain and inhibitory self-connections for each region, which controlled

heir sensitivity to inputs (i.e., neural gain or excitatory/inhibitory bal-

nce). In addition, we allowed homologous brain regions to be con-

ected across the dyad. This was not a prerequisite for the method, but

as motivated by theoretical, empirical, and methodological accounts

hat speak to the connection of the same region in two brains for our

ata. First, we followed the notion of generalized synchrony that two

ystems become coupled via generalized synchrony when they share

he same sort of dynamical structure. The dynamical structure will dif-

er more between different brain regions in different brains, while we

ay assume closer relations between the same brain regions. Similar

otions have been brought forward by Bolis and Schilbach ( Bolis and

chilbach, 2020 ) in the form of a match or sufficient similarity between

nteraction partners as the basis of neural coupling. Secondly, studies

n cell recordings in rodents revealed specific subpopulations to encode

elf and other’s behavior, but those subpopulations were part of the same

rain area ( Kingsbury et al., 2019 ; please see Section 4.5 for more de-

ails on animal studies). In addition, prior work on neural coupling dur-

ng JA and gaze cueing tasks usually reported correlation between the

ame brain regions (e.g., aside from our own work, Koike et al., 2015 ;

aito et al., 2010 ) (reviewed in Redcay and Schilbach, 2019 ). Lastly,

he introduction of additional parameters increases the model complex-

ty by parameter_count ∗ condition_count ∗ dyad_count. It is therefore rec-

mmended to formulate parsimonious models, as long the network is a

lausible representation of prior knowledge. This was the case for our

tudy, but can be tested formally using Bayesian model comparison as

escribed in Section 2.8 below. 

A connection can be removed or switched off by setting the prior

ariance to zero during model specification. Otherwise, to include a con-

ection in the model, the prior variance is defined as non-zero (1/64 Hz).

The matrix 𝑢 comprises all experimental or exogenous input to the

etwork. Input can be specified as driving input to the brain regions and

liciting neural responses (e.g. the main effect of task), or as modulator,

epresenting context or condition specific changes in effective connec-

ivity. We defined three vectors as driving input based on the subject-

evel GLM regressors. First, we specified one input, representing all trials

rom all conditions (main effect of task; JA-send, JA-receive, NoJA). In

ddition, we included an input capturing all button responses from the

ubjects, and one capturing cue onsets. We chose to mean-center the

nputs, so that estimated parameters in 𝐴 represent the average connec-

ivity across conditions and parameters in 𝐵 represent changes from that

verage. 

Elements in 𝐵 

( 𝑗) (size 𝑛 × 𝑛 ) represent context sensitive changes in

ffective connectivity due to modulation by condition 𝑗. In the DCM,

e specified the three task conditions as modulators, JA-send (for sub-

ect 1), JA-receive (for subject 1), and NoJA, respectively. By defining

he sender in the first block as subject 1, we were also able to examine

hanges of effective connectivity over time. We allowed all connections

o be modulated by all experimental conditions. Finally, the matrix 𝐶

size 𝑛 × 𝐽 , for 𝐽 experimental inputs) parameterizes the effect of driv-

ng input on each region. We allowed driving input in all four regions. 

As described in detail by Zeidman et al. (2019a) , connectivity pa-

ameters in DCM are expressed in units of hertz, as these units represent

ates of change. Between-region connections describe how much faster

r slower the rate of decay in a brain region is as a result of an incoming

onnection. Self-connections control how long it takes for neural activity

o return to baseline, e.g., due to endogenous self-inhibition. 

After specification, dyad-level models were inverted (i.e., estimated),

o identify the posterior density over parameters that achieved the best

t to the data (accuracy), while penalizing complexity. This is scored

y the model evidence, which is used to compare competing models.

n approximation to the log model evidence is the free energy 𝐹 , which

an be written as: 

 ≅ ln 𝑝 ( 𝑦 |𝑚 ) = 𝑎𝑐 𝑐 𝑢𝑟𝑎𝑐 𝑦 ( 𝑦 |𝑚 ) − 𝑐 𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 ( 𝑚 ) (2)
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Where 𝑦 is the data and 𝑚 is the model, defined in terms of which

arameters are included in the model (i.e., free parameters with non-

ero prior variance). On the dyad level, the complexity is the Kullback-

eibler-divergence between the estimated parameters and their priors.

or the following group level ( Section 2.7 ), the complexity combines

he dyad level complexities and those of the group model, i.e., the dif-

erence between group-level GLM parameter priors and the estimated

arameters ( Friston et al., 2016 ). The process of choosing the model that

rovides the greatest evidence or highest free energy is termed Bayesian

odel selection. 

.7. Group level: parametric empirical bayes 

In order to estimate connectivity effects at the group-level, we

sed a hierarchical regression model over h-DCM connectivity param-

ters, namely, Parametric Empirical Bayes (PEB; Friston et al., 2016 ;

eidman et al., 2019b ). At the first level of the hierarchical model, the

bserved fMRI data 𝑌 𝑖 for subject 𝑖 are modeled under a dynamic causal

odel (hey denoted by Γ) with connectivity parameters 𝜃
(1) 
𝑖 

and obser-

ation noise 𝜀 
(1) 
𝑖 

( Eq. (3 ), bottom row). Parameters that are not modeled

t the group level (hemodynamics and noise) are treated as fixed effects.

t the group level, all dyad-model connectivity parameters are collated

nto a parameter vector 𝜃(1) and subsequently modeled with a GLM, with

roup-level parameters 𝜃(2) , design matrix 𝑋 and random effects 𝜀 (2) ( Eq.

3 ), top row). 

( 1 ) = 𝑋 𝜃( 2 ) + 𝜀 ( 2 ) (3)

 𝑖 = Γ
(
𝜃
( 1 ) 
𝑖 

)
+ 𝜀 

( 1 ) 
𝑖 

Our hypotheses concern the condition-specific effects of social inter-

ction. Hence, our main interest lies in the first level (within-dyad) pa-

ameters of the 𝐵 matrix, encoding condition-specific changes in connec-

ivity ( Eq. (1 )). However, these parameters mediate condition-specific

hanges, relative to the average connectivity ( 𝐴 matrix). We therefore

stimated two PEB models: one for the average connectivity across all

ask conditions, and the other testing for condition specific changes in

onnectivity. 

.8. Model specification, comparison, and reduction 

The group-level design matrix 𝑋 was defined by first specifying the

econd level (between-dyad) design matrix 𝑋 𝐵 , which had one row per

yad and one column per covariate. The first column was a vector of

nes (i.e., the sample mean or conserved effects across dyads). Subse-

uent columns represented covariates or group membership (i.e., differ-

nces between dyads). This was duplicated over connectivity parameters

y taking the (Kronecker) product with the identity matrix 𝐼 𝑒 (where 𝑒

enotes the number of effective connectivity parameters): 

 = 𝑋 𝐵 ⊗ 𝐼 𝑒 (4)

After specification of the design matrix, we inverted (i.e., estimated)

he model and estimated the free energy of each second level model.

e considered multiple plausible (between-dyad) design matrices with

ifferent combinations of common covariates in classical GLM analyzes

f fMRI data, and selected the model which best explained the data.

his process is termed Bayesian model comparison. We used standard

rocedures for Bayesian model inversion (fitting) and model compari-

on implemented in the DCM framework within the SPM12 software. In

articular, model inversion was performed using the variational Laplace

cheme ( Friston et al., 2007 ), which employs variational Bayesian pro-

edures that eschew the need for sampling. For each subject’s model,

his returns an approximation of the log model evidence, referred to

s the variational free energy or evidence lower bound, which serves

s the basis for Bayesian model comparison ( Kass and Raftery, 1995 ).
6 
o rapidly compare models at the group level, we used an analytic ap-

roach known as Bayesian model reduction ( Friston et al., 2018 ), which

s a generalization of the Savage-Dickey density ratio. For more detail

n the implementation of the DCM framework and the relevant Matlab

unctions, please see Zeidman et al., (2019a ; 2019b ). 

Specifically, three models were compared to a model without

etween-dyad covariates: one model controlling for pair age and within-

air age difference; a second model controlling for age, age difference,

nd sex; a third model controlling for age, age difference, sex, as well

s pair education (sum of years) and within-pair education difference.

t is noteworthy that the addition of a covariate generally increases the

odel’s complexity (because the number of estimated model parameters

ncreases), which lowers the model evidence (i.e., accuracy - complex-

ty). However, if the covariate is meaningful in explaining the data, this

ncreases the accuracy. If the increased accuracy outweighs the penalty

f higher complexity, we observe an increase in model evidence. 

For the selected model, we used a particular form of Bayesian model

omparison termed Bayesian model reduction as implememented in the

PM software package ( Friston et al., 2018 ). Effectively, this procedure

runes away redundant parameters that do not contribute to model ev-

dence. Note that we only included plausible connections in the full

odel; therefore, we treated all reduced model as being equally prob-

ble a priori . Bayesian model reduction enables an automated search

ver many possible reduced models for comparison of each models ev-

dence as described above. The procedure iteratively discards parame-

ers but stops whenever the exclusion of a parameter reduces the model

vidence. The result is a Bayesian model average over the 256 most

robable models, weighted by their evidence. 

Finally, we tested whether the resulting between-brain connectivity

hanged over time. This was in line with observations in prior work

 Bilek et al., 2015 ), which speak to an increase in synchronization over

ime. This was implemented using a Bayesian contrast, which compares

ondition-specific parameters (as in a classical GLM contrast), and fur-

ishes a probability density over the difference between condition spe-

ific effects on various connectivity parameters. We compared the first

nd the second block of JA, specifically the connection from sender to

eceiver. 

. Results 

.1. Social interaction related brain activity 

To examine task-related brain activity on the group level, we per-

ormed a one-sample t-test on subject level images contrasting joint

ttention with individual performance [JA-send + JA-receive > NoJA].

pecifically, we examined rTPJ and furthermore mPFC responses to JA

erformance ( Fig. 1 C). Both brain areas showed significantly higher ac-

ivity during social interaction, compared to task phases where no inter-

ction occurred. This was examined in a one-sample t-test ( T rTPJ = 10.9,

 < .001; T mPFC = 14.2, P < .001; FWE-corrected for the whole brain). 

.2. Dynamic causal model selection and average connectivity 

For each dyad, a (deterministic) DCM was specified, comprising

odes of rTPJ and mPFC of both subjects ( Fig. 1 D). On the group-level,

e entered the h-DCM connectivity parameters into a hierarchical PEB

odel and estimated one model for the average connectivity across

ll task conditions, and a second model testing for condition specific

hanges in connectivity. 

Fig. 2 A illustrates the group mean of each connection strength across

ll examined conditions (matrix 𝐴 ). This showed positive effective con-

ectivity within-brain from rTPJ to mPFC during the task (effect size

cross conditions subject 1 = .17 Hz, subject 2 = .25 Hz) in both task

oles. All four seed regions exhibited task sensitivity, i.e., showed a main

ffect of task in form of an increase of activity (-.46, self-connections

re defined as inhibitory, negative parameter values therefore reflect
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Fig. 2. Analysis of effective connectivity dur- 

ing social exchange. A. Average effective con- 

nectivity across all task phases (parameter ma- 

trix 𝐴 of the h-DCM neural model). B . Bayesian 

model comparison. PEB models comprising dif- 

ferent combinations of between-subject covari- 

ates were examined in terms of their contri- 

bution to model evidence (i.e., model accu- 

racy minus complexity) compared to the model 

without covariates. The left model (controlling 

for pair age and age difference) showed the 

highest increase in model evidence (i.e., high- 

est log Bayes factor relative to the model with- 

out covariates) and was selected for further 

analysis. C . Effective connectivity during coop- 

eration in the first task block (parameter matrix 

𝐵). D . Effective connectivity during coopera- 

tion in the second block after task role switch. 
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isinhibition). No between-brain connectivity contributed to the model

vidence in this model average across conditions and effects. 

Panels A, C and-D show Bayesian model averages after Bayesian

odel reduction of parameters. Circle colors indicate different subjects.

umbers indicate estimated effect size of the respective connection.

EB, parametric empirical Bayes; age/-diff, mean pair age in years and

ithin-pair age difference; edu/-diff, mean pair education in years and

ithin-pair education difference; rTPJ, right temporo-parietal junction;

PFC, medial prefrontal cortex. 

.3. Social interaction related connectivity 

We used Bayesian model comparison to consider multiple plausible

etween-dyad design matrices with different combinations of common

ovariates for fMRI data. All models that included covariates showed

reater model evidence compared to the model without covariates

 Fig. 2 B). We selected the model correcting for pair age and within-

air age difference, which had the highest increase. The inclusion of

ducation and sex, did not provide sufficient additional model accuracy

o compensate for the increased model complexity, leading to reduced

odel evidence (i.e. accuracy – complexity). 

After Bayesian model reduction, we found a between-brain effective

onnectivity that was specific to social contact, in both task blocks, and

rom the sender’s to the receiver’s rTPJ (effect size first block = .24,

econd block = .32; Fig. 2 panels C and D, red solid arrows). This cor-

esponds to our previously reported measure of neural coupling that

as based on correlated ICA timeseries ( Bilek et al., 2015 , 2017 ). In

ddition, we found decreased connectivity from mPFC to rTPJ in the

eceiver in both blocks of JA (effect size first block = − .17, second

lock = − .46). Self-connections in rTPJ of both subjects and mPFC of

he sender showed negative values (effect sizes rTPJ between − .95 and

 .48; mPFC = − .79 and − .30), which translates to relative disinhibition

uring joint attention. No condition specific modulation was observed
7 
n mPFC of the receiver, indicating that activation in this region was not

electively changed during joint attention. The covariates pair age and

ithin-pair age difference had no relevant effect on parameters. 

The between-brain rTPJ parameter values were descriptively higher

n the second task block, compared to the first block . To quantify the

robability of this difference, we used a Bayesian contrast comparing

arameter estimates from the first and second block. For our connec-

ion of interest, the probability of a difference was 73.2%. There was

herefore only weak evidence for an increase in effective connectivity

ver time. 

. Discussion 

In this study, we examined effective between-brain effective (di-

ected) connectivity during social exchange. We aimed to disambiguate

etween possible explanations of previously reported correlations be-

ween neuronal responses during interpersonal interactions. Our aim

as to test for latent causal connections mediating generalized syn-

hrony in a brain dyad. 

.1. Between-brain connectivity 

Using h-DCM, we specified a formal hypothesis about the directed

eural connectivity between the brains of interacting subjects. During

odel estimation, the effect size of these effective connections (i.e., the

ausal effect one region has on another), was estimated. The (Bayesian)

election of models was based on scoring evidence for competing models

e.g., models that do or do not include a connection between brains), and

n a last step we used Bayesian model reduction to remove all connec-

ions that did not contribute to model evidence. Our results disclosed

ne connectivity parameter in the resulting Bayesian model average;

amely, a connection between the brains. This represents effective con-

ectivity between brain systems and explains the generalized synchro-
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ization of dynamics observed during social interaction. Crucially, this

ffective connection was necessary to explain the data, when modeling

he shared perceptual experience of the dyad. 

The causal connection was present between rTPJ of both subjects.

his region has been highlighted by a large number of studies in terms

f its involvement in higher social functioning. It is thought to host the

bility to infer the social intentions and goals of others, i.e., mentalizing

nd theory of mind, enabling empathy and the selection of appropri-

te social behavior ( Molenberghs et al., 2016 ). Our work extends this

ange of functions to a central role in the synchronization of partners

uring social exchange. Notably, no other between-brain connectivity

arameter contributed to the model evidence, although this might dif-

er depending on the task, the form of interaction, and the model. 

Our approach tested connections between brain regions bi-

irectionally, from subject 1 to subject 2 and vice versa . However, follow-

ng the task design, we expected relevant information to flow from the

ender to the receiver, since the sender is initially in possession of the in-

ormation and is tasked with transferring it to the receiver. Indeed, this

as confirmed by the direction of effective connectivity we found, rep-

esented by a parameter quantifying the effective connectivity from the

ender’s rTPJ to the receiver’s rTPJ. This proof of principle extends pre-

iously reported measures of neural coupling ( Bilek et al., 2015 , 2017 )

y the differential effects from sender and receiver brain systems, which

s important for the application of h-DCM models in the study of natu-

alistic social exchange. In the presented JA task, the direction of con-

ectivity is somewhat intuitive, which may not be the case other forms

f interaction. However, directionality of effects is particularly impor-

ant for the understanding of complex, dynamic and non-symmetrical

orms of social contact, for which h-DCM models infer directed neural

rocesses that underwrite social exchange. Notably, our task included

 switch of task roles by participants after the first task block, so that

ach individual played both roles with the same partner. We applied the

ame h-DCM model to both task blocks to examine within- and between

rain function. Role-specific effects from the two blocks can therefore

e viewed as a repetition of results within the same sample. 

Clinical relevance of misattunement on the brain level has been high-

ighted in both conceptual work ( Schilbach, 2016 ) and empirical stud-

es ( Bilek et al., 2017 ; Tanabe et al., 2012 ). While a match or sufficient

imilarity between interaction partners across multiple time scales and

odalities has been proposed as the basis of neural coupling ( Bolis and

chilbach, 2020 ), mental disorders of social interaction may in fact be

haracterized by a misalignment of two brains in dyadic interaction

 Bolis et al., 2017 ). It is therefore important that future work on interac-

ion difficulties examines the causal and temporal course of successful

nteraction in order to disentangle contributions of joint movement, ac-

ions, shared goals, task representation, and biological signals such as

ynchronized heart rate and eye blinks. On the level of neural activity,

-DCM contributes to this by allowing us to quantify between-brain as-

ociations over and above shared input, and relate other joint character-

stics to the underlying effects between brains, including the potentially

ffected directionality of connectivity. This is crucial for novel interven-

ions aiming to facilitate social skills, which commonly focus on a single

ndividual (i.e., through work on one individuals’ thoughts, goals, or by

racticing social behavior such as small talk). Dyadic interventions may

mpact the interactive process itself, for example through the achieve-

ent of optimal between-brain effective connectivity, to enable mutual

nderstanding, shared goals, and ultimately successful contact. 

Alignment can only occur in reciprocal dyadic settings, at least by al-

owing mutual viewing of the partner’s mimic responses ( Gallotti et al.,

017 ). This directly relates to another advancement of social neuro-

cience, namely the implementation of ecologically valid experiments

n hyperscanning settings, which is a departure from previous labo-

atory approaches (for an extensive discussion, see Schilbach et al.,

013 ) and provides important novel leads for mental health re-

earch ( Schilbach, 2016 ). Especially when combined with neuroimaging

odalities that allow for more bodily movement such as fNIRS and EEG,
8 
e may examine increasingly complex social events, such as intergroup

onflict ( Yang et al., 2020 ), or classroom learning ( Bevilacqua et al.,

019 ). H-DCM examines brain networks on the level of neural activ-

ty, not on the level of the data and the modality used. Its application

s therefore not limited to fMRI hyperscanning and our neural models

ay be applied to EEG and fNIRS data as well. 

The application of h-DCM is beneficial, as our results rest on directed

ausality (in a control theoretic sense). By using dynamic causal mod-

ling and Bayesian model comparison, we empirically test for directed

oupling and quantify evidence for between-brain connections that rep-

esent meaningful synchronization during interactions. Moreover, these

ethods enable one to directly compare and test different underlying

etwork architectures, their relations to social interaction processes, and

in future work – deviations from normal functioning in individuals

ho are challenged, for example, by social interaction disorders (e.g.,

ersonality disorders, autism, schizophrenia). Hence, we have the means

o examine social processes within subjects, within dyads, and between

yads in a framework that has been well established for single subject

nalyzes. This further speaks to the usefulness of h-DCM in the analysis

f between-brain associations using social interaction timeseries. 

.2. Directed connectivity in the absence of physical neural connections 

The notion of alignment in social interaction predates its study in

ocial neuroscience. Moreover, it has been described for multiple lev-

ls of observation, ranging from motor and behavioral alignment to

hared intentions and mental states ( Gallotti et al., 2017 ). Through

igher forms of alignment (with or without shared goals), a joint ac-

ion task will be represented differently ( Sebanz et al., 2006 ), because

artners align their representations through joint actions and reciprocal

xchange. Models of social exchange have proposed a reciprocal cir-

uitry between interaction partners as the scaffold, and alignment may

merge on different levels of observation ( Redcay and Schilbach, 2019 ).

owever, on the brain level, directed effects between brains cannot

est upon structural connectivity between separate individuals, which

ay be implicitly assumed for single brain networks. In dynamic and

ngaged social exchange, reciprocal interactions allow for multi-level

lignment of interaction partners ( Gallotti et al., 2017 ; Schilbach et al.,

013 ), for which we propose the brain synchronization processes in-

olved in cooperation as follows: neural signals in individual A may rep-

esent his or her current mental or motivational state, decision making

nd more, which ultimately result in behavior. Behavior can be viewed

ere as the output of an otherwise closed (brain) system of A. In the

eciprocal model however, this output also serves as the observations or

erceptual input for individual B’s otherwise closed system. The infor-

ation is processed and affects individual B’s thoughts and decisions,

eading to relevant brain activity. Consequently, this also results behav-

oral output of B, which is observed by A, and so on. In the course of

he interaction, we may witness an alignment of higher representations

uch as shared goals or mutual understanding, quantified on the neural

evel by specific between-brain connectivity. Prior work supports this

ssumption by demonstrating the presence of between-brain coupling

n a variety of settings such as conversation (e.g., Spiegelhalder et al.,

014 ; Stolk et al., 2014 ), cooperative goal achievement ( Bilek et al.,

015 ; Bilek et al., 2017 ), and learning in school settings ( Pan et al.,

018 ; Zheng et al., 2018 ). This view aligns with predictive coding mod-

ls of social exchange and resulting generalized synchrony ( Friston and

rith, 2015a ), which may be used to extend social neuroscience exper-

ments by means of simulations ( Friston and Frith, 2015b ) to study the

ehavior-guiding beliefs that generated observed data or other unob-

ervable phenomena. 

Work on invasive brain recording in rodents aid us in understand-

ng the biophysical mechanism that allows for between-brain coupling

ingsbury et al. (2019) . recorded prefrontal activity during a competi-

ive encounter of rats, as well as in freely roaming animals. They found

hat neural coupling depends on processing of social information within



E. Bilek, P. Zeidman, P. Kirsch et al. NeuroImage 252 (2022) 119038 

s  

n  

h  

o  

c  

t  

a  

i  

i  

o  

n  

t  

t  

k  

r  

a  

2  

a  

e  

(

 

b  

p  

p  

a  

n  

w  

e  

t  

r  

i  

i  

t  

B  

w  

p  

p  

s  

c  

p  

m  

t  

i  

i  

r  

t  

b  

b  

o  

t  

i  

o  

(  

m  

u

4

 

g  

b  

s  

i  

d

 

t  

D  

t  

W  

i  

t  

t  

c  

o  

j  

o  

w  

F  

l  

o  

i  

o

 

b  

i  

s  

a  

O  

c  

p  

c  

h  

t  

p  

r  

b  

i  

o  

i  

c  

s  

t  

c

4

 

a  

f  

a  

r  

m  

i  

t  

o  

t  

p  

o  

w  

V  

m

 

m  

t  

a  

f  

o  

l  

l  

t  

p

ubsets of neural populations that are selectively modulated by the part-

er’s behavior (in this study, populations encoding push or retreat be-

avior, among others). Each individual therefore holds a representation

f its own, as well as the partner’s behavior, and subsets of neurons en-

ode specific behavior patterns for each agent (e.g., push, approach, re-

reat, neutral). During interaction, those representations become aligned

nd neural activity becomes synchronized. Moreover, specific behavior

nteractions contribute to the coupling (i.e., push behavior cells in dom-

nant animals with retreat cells in subordinate animals), which relates to

ur modeling of asymmetry in joint attention. Strikingly, the resulting

eural coupling also predicts future interactions. The authors conclude

hat neural coupling is therefore not only an emerging trait during in-

eraction, but relevant for ongoing interactive behavior. Studies in mon-

eys found similar specific encoding of a partner’s movements by neu-

onal subpopulations, and demonstrated dependency on the distance to

n interaction partner during a passive observation task ( Tseng et al.,

018 ). Local field potentials in bats during natural interactions revealed

 dependency of between-brain correlation to being in the same social

nvironment, and engagement in social interaction for high correlation

 Zhang and Yartsev, 2019 ). 

Notably, these models highlight the importance of disentangling the

rain signals due to shared perceptual input from between-brain cou-

ling resulting from social exchange. During social interaction, subjects

artly share sensory input. In the study of between-brain function, we

re concerned with neural signals that result from the social contact,

ot the sensory input. A few studies have addressed this issue: in prior

ork, we permuted pair assignments to quantify baseline neural coher-

nce between individuals that is due to the same, time-locked percep-

ual processing. This distribution of coherence between non-interacting

andom dyads thus represents the null hypothesis (i.e., all correlation

s due to shared input). Any between-brain correlation shown within

nteracting dyads, that is significantly higher than baseline can be at-

ributed to the social exchange (termed neural coupling, for details see

ilek et al., 2015 ). Other studies make use of task control conditions

ith slight variations of the respective interactive paradigm. For exam-

le, Koike et al. (2019) included a 20s shift of the live video from the

artner, therefore prohibiting recurrent interaction and introducing a

ocial ‘offline’ context, which resulted in a breakdown of between-brain

oherence measures. The presentation of prerecorded videos from a task

artner is a variation of this solution. In h-DCM, contributions to com-

on neural activity are modeled by separate modulating parameters,

herefore specificity to social contact (i.e., the respective task phase) is

mplicit to the between-brain parameters. Similarly, we have to explic-

tly test whether a connection between the individual brains is a better

epresentation of the observed data (i.e., provides a better prediction)

han models without this connection. Only if models that include the

etween-brain connections outperform models without them, a between

rain connection should be assumed. The Bayesian model reduction step

f our analysis examines all connections and combinations of connec-

ion in this manner, and removes parameters whose inclusion do not

ncrease the model evidence as compared to models without them. In

ur analysis, most between-brain connections were removed by this step

in addition to within-brain connections). We may therefore state that a

odel that assumes a connection between rTPJs of interacting individ-

als is the best explanation of our data (given our initial model). 

.3. Generalized synchrony 

Dynamic causal modeling conceptualizes neural states in a brain re-

ion as a result of induced changes in activity and causal effects of other

rain regions. In other words, it parameterizes the flow of neuronal

tates in the state space as a function of neuronal states in the region

n question, and elsewhere. In this work, we demonstrated the ensuing

ynamics are effectively caused by regions in different brains. 

From the perspective of theoretical neurobiology: in active inference,

he brain is assumed to constantly predict states of affairs in the world.
9 
uring social cognition, we use information gathered about the other,

heir goals, and possible action sequences to select our own responses.

e therefore predict each other’s behavior and install such predictions

n our own choice behavior. During prosocial interactions, this predic-

ion is mutual, i.e., both partners try to predict each other, which forms

he basis of a shared dynamical structure through shared inference pro-

esses. Generalized synchrony signals this shared inference, since it can

nly occur when the predictive processes align, i.e., the interacting sub-

ects achieve generalized synchrony, under the same generative model

f their shared sensorium. This notion has been formulated in prior

ork using simulations of social exchange ( Friston and Frith, 2015a ;

riston and Frith, 2015b ). Our experimental results support this formu-

ation of belief updating and underlying brain dynamics. Future work

n the application of active inference models and simulations to (behav-

oral and neural) hyperscanning data may advance our understanding

f social exchange along these lines. 

The vast majority of publications reporting neural synchrony are

ased on data from cooperative, hence positive, interactions, e.g., learn-

ng, mutual gaze, or motor coordination. In these types of contacts,

ubjects often engage with each other at the same time (e.g., joint

ttention as either sender or receiver vs. individual task completion).

ther forms of interaction impose a strong reciprocal asymmetry, non-

omplementary behavior, and phases of social exchange vs. individual

erformance may not necessarily predefined (e.g., during sequential de-

ision making, feedback, and waiting in a trust game task). However, we

ave no reason to believe that neural coupling is limited to (experimen-

ally predefined) positive or complementary contacts. Speculatively, this

ublication bias may have resulted from a methodological aspect. Cor-

elation quantifies identical synchronization, in the sense that the two

rain systems evolve identically over time. This symmetry is increas-

ngly violated with progressing complexity of the interaction, separation

f action policies, and in non-cooperative exchanges, leading to non-

dentical behavioral and neuronal dynamics. Consequently, measures of

oherence will eventually fail as signatures of synchrony. Generalized

ynchrony however, denotes the predictability of one dynamic system

hrough another, when both are loosely coupled. Hence, it is a useful

onstruct for understanding any form of real-world social contact. 

.4. Within-brain connectivity 

The h-DCM included connections that quantify changes of activity

nd connectivity within each subject’s brain system over time. Here, we

ound a relative disinhibition in brain activity in rTPJ of both subjects,

nd in the mPFC of the sender. Both regions therefore increased their

esponses during interaction. No specific modulation was observed in

PFC of the receiver during joint attention, suggesting that this region

s not engaged specifically during cooperation. These results correspond

o prior findings on task role effects, where dorsal parts of mPFC (where

ur seed was located) were not engaged when responding to joint atten-

ion, but only during initiation ( Redcay et al., 2012 ). However, ventral

arts of mPFC have been found to respond during joint attention in

ne-person studies ( Redcay et al., 2012 ; Schilbach et al., 2010 ), which

e did not examine separately in our connectivity analysis due to our

OI selection approach (using a search mask around the group peak in

PFC). 

The Bayesian model average included an inhibitory connection from

PFC on rTPJ in the receiver. MPFC signaling is therefore involved in

he downregulation of rTPJ activity during joint attention. Interestingly,

 similar inhibitory modulation of rTPJ through mPFC was also found

or the sender, but only in the second block of the experiment. This is the

nly parameter showing differences when comparing the first and the

ast block. Speculatively, the modulation in the second block indicates

earning within dyads, in the sense that after gathering experience with

he task partner, a downregulation of rTPJ activity represents a more

arsimonious network engagement. 
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.5. Limitations and further notes 

Notably, we focused on rTPJ function based on prior work, and in-

luded mPFC due to its central involvement in many social processes, in-

luding those engaged by our task. Any (h-) DCM result is conditioned on

he model space considered. Hence, our result was the “best ” fit for the

odel considered. Depending on the motivation of a particular study,

ther brain regions could be of interest. For example, one might be in-

erested in modeling the processing of visual stimuli in more detail, and

herefore include visual stream areas in their model; others might be

nterested in the role of reward in successful social interaction, which

peaks to modeling of striatal responses; if affect is focused, the amyg-

ala can be included in the network; and so on. Similarly, it remains

nclear what role between-brain connectivity plays in settings that are

ot fully cooperative or even competitive, and future work probing more

omplex social functioning may result in different network architectures

nd “best ” models. Related to this, DCM is a method for testing hypothe-

es. Analysis therefore begins by setting out a series of candidate net-

ork structures, which are then formalized as models. The method is

herefore not suited for exploratory work, for which we would recom-

end other analyzes, such as a data-driven ICA and permutation for

yperscanning data ( Bilek et al., 2015 ). Concluding, any choice on net-

ork structure (including seeds and their connections) must be justified

y means of informed hypotheses about brain function and tested for

elevance for the current data by means of model evidence or similar

easures. 

Our joint attention task probed a simple form of interpersonal ex-

hange. Consequently, subjects performed the task very successfully and

he behavioral data showed a clear ceiling effect. Future task designs

ay allow a meaningful relation of task performance and neural signa-

ures. Additional, non-neuroimaging data may also prove useful in ex-

laining interpersonal dynamics within the model, for example eye gaze

ehavior. Similarly, novel approaches to assess interactional behavior

ave proven useful sources to quantify social behavior and interactions

e.g., proxemic behavior patterns; Lahnakoski et al., 2020 ). However,

uch extensions of the data space result in an overwhelming complexity

f the data, effects, and interactions, which suggests the employment of

omputational modeling to account for the rich multi-level data social

nteraction studies potentially provide. Such modeling has been pro-

osed, among others, by Bolis and Schilbach (2017) for multi-subject

ata in the form of an active inference model, which could describe

etween-brain effects during social interaction, but also interpersonal

oupling of behavior and other data. This would include a generative

odel of all levels of social exchange, for example, individual beliefs

nd expectations would be explicitly modeled, as well as learning, sen-

ory experiences and observations, a representation of the interaction

artner, but also a “model of the model ” of the partner, and so on. Trial-

ise predictions from their model, or any other computational model,

ould be gracefully integrated into h-DCM as regressors that drive or

odulate two-person neural networks. 

A number of methods have been used for the analysis of hyper-

canning data, including functional connectivity ( Koike et al., 2015 ),

avelet coherence ( Goelman et al., 2019 ), independent component

nalysis ( Bilek et al., 2015 ), and Granger causality ( Schippers et al.,

010 ). These have been reviewed elsewhere (e.g., Czeszumski et al.,

020 ; Friston et al., 2013 ; Friston et al., 2014a ; Misaki et al., 2021 ).

otable differences of h-DCM to other approaches can be summarized

s follows: DCM is based on a generative model of fMRI data that ex-

mines brain networks on the level of neural activity, distinguishing

eural effects from hemodynamics and the generation of the BOLD sig-

al. While correlation provides a description of BOLD timeseries, DCM

xplains how these correlations were generated. Importantly, by scor-

ng evidence for competing models, we explicitly test whether a con-

ection between brains is necessary to explain the data or not, while

ontrolling for shared perceptual input to both participants. Models are

hosen based on model evidence, which is the trade-off between accu-
10 
acy and complexity, rather than accuracy alone. This ensures that the

implest explanation for the data is selected that explains the most vari-

nce. H-DCM is applicable to all neuroimaging modalities, and may be

omplemented by further computational work, such as predictive cod-

ng models. 

. Conclusion 

Using h-DCM we examined the effective connectivity between brain

ystems that are dynamically coupled during interaction. Our winning

odel included a causal impact of the sender’s brain activity on the

eceiver’s, which underlies previous reports of two-brain synchrony. In

hort, h-DCM may aid a mechanistic explanation of between-brain func-

ion based on generalized synchrony, which enables the discovery of

etween-brain connections in many forms of social contact. 
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