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� Gaussian process surrogate models
optimise bake-out treatments of steel
with hydrogen traps.

� Incorporating one dimension at a
time results in better fits during
training of the models.

� Single output models with
experimental design accurately
predict optimal bake-out times.

� Permutations of the training sets with
respect to trapping features shorten
the training times.

� Multi-output models via principal
component analysis predict the
hydrogen content evolution.
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a b s t r a c t

The presence of hydrogen in structural alloys reduces their ductility, a phenomenon called hydrogen
embrittlement. Bake-out heat treatments are employed during processing to allow hydrogen trapped
in microstructural features to effuse from the samples, but the optimal times and temperatures depend
on the kinetics of hydrogen diffusion in the material. In this work, Gaussian process surrogate models are
employed to emulate the outputs of microstructure-sensitive diffusion differential equations in steel.
Training the models by sequentially increasing the number of dimensions results in better performances
and shorter training times. Two main approaches are developed: single output models with experimental
design for the prediction of optimal bake-out times, and multi-output principal component analysis mod-
els for the prediction of hydrogen concentration evolution. A novel approach is implemented to shorten
the training times of multi-trap models by exploiting the symmetry of the equations with respect to dif-
ferent kinds of traps. The resulting models pave the way for the implementation of Gaussian processes on
more computationally expensive diffusion simulations for the optimisation of heat treatments and other
applications.
� 2022 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

Hydrogen causes degradation of mechanical properties in
steels, which is known as hydrogen embrittlement (HE). This leads
to components failing in a brittle manner and without evident
warning signs. To avoid this, it is important to consider the kinetics
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of hydrogen diffusion, which is affected by the microstructure due
to preferential segregation to defects such as dislocations, grain
boundaries, precipitates, etc. [1], also known as trapping. To tackle
this, safety critical components, such as welded steels used in
nuclear reactor pressure vessels, undergo ‘bake-out’ treatments,
which allow hydrogen to effuse out of the component and sup-
presses trapping at defects. Therefore, research on the modelling
and optimisation of the bake-out process must incorporate
microstructural trapping of hydrogen [1–3].

Gaussian processes (GPs) have been used extensively in
machine learning applications, but have only recently had wide-
spread adoption in materials science. Computationally expensive
simulations have been modelled using surrogate GPs to predict
materials properties and behaviour [4–6]. Advantages of GP mod-
els are the quantification of the uncertainty and the fast emulation
time compared to that of larger and more complex physical simu-
lations. In the context of hydrogen diffusion and trapping, these
often require numerical integration to solve nonlinear diffusion
equations [7]. To the knowledge of the authors, GPs have never
been applied to the modelling of hydrogen diffusion in metals.

The current work presents a ‘proof-of-concept’ application of GP
modelling to hydrogen diffusion and trapping in metallic systems.
The goal is to develop numerically efficient data-based methods
that can be implemented in the design of hydrogen bake-out treat-
ments for structural components.Using data from computationally
inexpensive simulations, multiple GP surrogate models are trained
to predict the time taken for successful heat treatments and the
evolution of hydrogen content in samples during degassing. We
introduce novel approaches to model these phenomena, and com-
pare their performance and speed in a systematic way. A case
study on two steels is included to showcase how the methods
developed can be applied to optimise bake-out treatments.
2. Methods

2.1. Hydrogen diffusion modelling

Modelling of hydrogen diffusion requires the modification of
Fick’s laws to explicitly implement the effects of trapping. This is
to make the distinction between the solute dissolved in normal lat-
tice sites, also known as diffusible hydrogen, and that trapped at
microstructural features or crystal defects. HE is widely recognised
to besensitive to the former[8], but the overall kinetics are slowed
down by the trapping and detrapping processes[9,10]. Note that
hydrogen accumulation at grain boundaries can also affect the
embrittlement behaviour, a phenomenon known as hydrogen-
enhanced decohesion [11].

The model derived by Turk et al. [3] is adopted to perform the
simulations of hydrogen kinetics. This is based on two main
assumptions. Firstly, traps are considered to be point defects. Sec-
ondly, Oriani’s equilibrium approximation [1] ensures that a local
thermodynamic equilibrium is maintained between lattice and
trap sites. Such equilibrium reads

hl
1� hl

¼ ht
1� ht

K; ð1Þ

where the subscripts l and t denote the lattice and trapping sites,
respectively, h is the fractional occupancy of the corresponding
sites, K the equilibrium constant

K ¼ exp �DEt

RT

� �
; ð2Þ

R the molar gas constant, T the absolute temperature and DEt

the trapping energy. The occupancy hi ¼ ci=Ni can also be
expressed in terms of the concentration ci and site density Ni of
2

each site type i. Eq. (2) was derived more rigorously by Svoboda
and Fischer [12], who formulated the Gibbs free energy for arbi-
trarily many trapping sites and minimised it using the method of
Lagrange multipliers to arrive at Eq. (2) [13]. The local equilibrium
assumption is a valid approximation for a variety of defects,
because the detrapping kinetics are often faster than the lattice
hydrogen diffusion, except for very strong traps[14], defined by a
large value of DEt . Therefore, models of hydrogen diffusion in steel
will often use this assumption [15,16].

For a material with m traps, Fischer et al. [13] showed that Eq.
(1) can be rewritten as

htk ¼ hl
Kk þ hlð1� KkÞ ; ð3Þ

where the index k (between 1 and m) denotes the individual trap.
The overall hydrogen concentration c is the sum of the lattice and
trapped hydrogen concentrations

c ¼ cl þ
Xm
k¼1

ctk: ð4Þ

With the above considerations, Turk et al. [3] derived the diffusion
equation used in this work. The one-dimensional isothermal form of
the differential equation is

@cl
@t

¼ A�1 @

@x
D
@cl
@x

� �
; ð5Þ

where the lattice concentration clðx; tÞ is a function of distance x and
time t;D ¼ D0 expð�Q=ðRTÞÞ is the coefficient of diffusion of hydro-
gen in the lattice sites, D0 its prefactor and Q the activation energy
for diffusion. The parameter

A ¼ 1þ
Xm
k¼1

Ntk

Nl

Kk

Kk þ cl
Nl

1� Kkð Þ
� �2

0
B@

1
CA ð6Þ

is a tortuosity factor that characterises the convoluted pathways
followed by the solute due to the presence of point traps, effectively
slowing down the hydrogen diffusion rate across this heteroge-
neous medium. The reader is referred to the original work [3] for
a complete derivation of equation (5). This was previously used to
model hydrogen diffusion in ferritic VC-containing steels [3], Ni-
Fe-Cr alloys [17], martensite [2] and ferritic-austenitic steels [7].

Eq. (5) is implemented in this work using an explicit finite dif-
ference method (FDM) [18] for a thin plate geometry of thickness
2L where hydrogen effuses from both surfaces. The simulation
takes an initial uniform lattice hydrogen concentration,
clðx;0Þ ¼ cl0, and simulates the evolution of the hydrogen concen-
tration profile over the interval ½0; L� along x, as the sample is sym-
metric about L. The boundary conditions are zero solute at the free
surface and zero flux at the symmetry plane, i.e.

clð0; tÞ ¼ 0 ð7aÞ

@cl
@x

����
x¼L

¼ 0: ð7bÞ

Fig. 1 shows a schematic diagram with the geometry of the
problem and the expected evolution of the lattice concentration
profiles. The spatial domain is discretised using a second-order
central difference, with a mesh size of Dx ¼ L=20. The time step
size Dt is chosen by considering the von Neumann criterion for
numerical stability of this FDM. For differential Eq. (5), this
becomes

A�1D
Dt
Dx2

6 1
2
; ð8Þ



Fig. 1. Geometry of the diffusion problem showing the evolution of the lattice
concentration profiles (t0 < t1 < t2). The dashed line represents the symmetry plane
of the sample.
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where the value of A in Eq. (6) was calculated with cl ¼ cl0 to ensure
convergence at all times.

A criterion is required for the optimisation of the bake-out
treatment. HE is sensitive to the lattice hydrogen, and studies have
shown that there is a threshold concentration above which embrit-
tlement becomes significant [19–22]. Nonetheless, the bake-out
treatment also targets the effusion of trapped hydrogen, as other-
wise this can diffuse back into the matrix and cause HE during in-
service life. Thus, the total hydrogen concentration ctotal, defined as
the integral of c from Eq. (4) over the sample thickness, is numer-
ically computed after every time step of the simulation. The bake-
out time tbake�out is then the time taken for ctotal to fall below a
threshold value cthresh, at which point the simulation is stopped.
A value of cthresh ¼ 1 wppm is chosen for validation purposes. The
specific threshold is in reality sensitive to chemistry, microstruc-
ture and service conditions. Values reported for the onset of HE
vary from less than 1 wppm [19,21] to 5–10 wppm [20,22]. In this
work, this variable is considered a ‘design’ parameter, as the anal-
ysis focusses on the overall behaviour of tbake�out for given input
parameters.
Table 1
Overview of the surrogate models developed.

Model Inputs Output

Single output
� Single trap T;Q ; Et;Nt; L; cl0 tbake�out

- All-in-one
- Dimension-by-dimension
� Multi-trap T;Q ;Et;Nt; L; cl0 tbake�out

Multi-output T;Q ; Et;Nt; L; cl0 ctotðtÞ
2.2. Gaussian process modelling

The GP methods covered in this work are regression and surro-
gate modelling, with experimental design, a methodology to sys-
tematically choose the training points more efficiently (see
Section 2.2.1 for a more detailed description). These are employed
to evaluate the output of underlying physical simulations in a com-
putationally cheaper way. A prior distribution over continuous
functions is assumed to be a Gaussian Process, i.e.

fjX � N l;kð Þ; ð9Þ

where f ¼ f x1ð Þ; f x2ð Þ; . . . ; f xnð Þð Þ is a vector of outputs from n train-
ing points, X ¼ x1;x2; . . . ; xnð ÞT a matrix of inputs,
l ¼ l x1ð Þ;l x2ð Þ; . . . ;l xnð Þð Þ a mean vector for some function lðxÞ,
and k the covariance matrix, defined by the covariance function
k xi; xj
� �

. We can make the standard assumption of a mean function
of zero without loss of generality. For a prediction of f x�ð Þ at a new
unseen data point x�, the posterior mean and variance conditioned
3

on the observations y ¼ y1; y2; . . . ; ynð Þ at training inputs X can be
found as

y� ¼ k x�ð ÞTK�1y; ð10aÞ

r2
� ¼ k x�; x�ð Þ � k x�ð ÞTK�1k x�ð Þ; ð10bÞ

respectively, where k x�ð Þ ¼ k x�;x1ð Þ; . . . ; k x�; xnð Þð ÞT ,
K ¼ kþ r2

noiseI;rnoise is the noise, and I the n� n identity matrix.
In this work, a squared exponential covariance function is used

k xp; xq
� � ¼ r2

f exp �1
2

Xd
i¼1

xðiÞp � xðiÞq
‘ðiÞ

 !2
0
@

1
A; ð11Þ

where rf is a scaling term for the variance and ‘ ¼ ‘ð1Þ; . . . ; ‘ðdÞ
� �

a

vector with the ‘length scale’ parameters for the d dimensions of
the x input vectors. To choose the hyperparameters of our model
we consider the log likelihood

logp yjX; ‘;rf
� � ¼ �1

2
yTK�1y � 1

2
log Kj j � n

2
log 2p ð12Þ

and optimise it over the hyperparameters [23].
Different models were implemented and compared. These are

presented in Table 1 and detailed in the subsections below. All
GP models were performed using GPy [24], a Python package that
provides a framework to implement GPs. The values of rf and the
length scales of ‘ were all initialised to unity, and the noise was
fixed at a small value rnoise ¼ 10�5 to prevent fitting issues when
performing GP regression[25]. Fitting of all models was quantified
from the true (directly from simulations) and predicted outputs,

denoted ytruei and ypredi , respectively, using the coefficients of
determination

R2 ¼ 1�

Xn
i¼1

ytruei � ypredi

� �2
Xn
i¼1

ytruei � �y
� �2 ; ð13Þ

where

�y ¼ 1
n

Xn
i¼1

ytruei ; ð14Þ

and the root-mean-square errors (RMSE)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

ytruei � ypredi

� �2vuut ð15Þ
2.2.1. Single output models
GP regression surrogate models were developed with the bake-

out time tbake�out as a univariate output. Experimental design was
used to efficiently sample the input space. This works by building
GP surrogate models for the output of a simulation, denoted Y.
Therefore, the objective is to find a function f such that
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f : x ! YðxÞ, where YðxÞ 2 R is a univariate output of the simula-
tion for the given input x 2 X#RD;X is a D-dimensional domain
of interest and x are locations in this D-dimensional space [26].
GP surrogate models can then be trained on the input–output pair
from the simulations outlined in Section 2.1. Sequential design, as
outlined by Gramacy [27], selects the inputs x for the simulations
in order to sample X efficiently, i.e. sampling as few points as pos-
sible while attaining the greatest reduction in the uncertainty of
the surrogate model.

The experimental design by Seo et al. [28] is employed in the
current work. This translates the ‘active learning MacKay’ (ALM)
method, originally devised for neural networks [29], into GPs by
means of the acquisition function

JðxÞ ¼ r2
nðxÞ; ð16Þ

where the variance r2
nðxÞ is calculated from Eq. (10b) using the sur-

rogate model training data fXn;Yng. The subscript n in this context
denotes the variance calculated from n data points. The point with
the highest predictive variance is chosen as the subsequent training
point,

xnþ1 ¼ argmaxx2Xr2
nðxÞ: ð17Þ

This is then evaluated using the simulation as ynþ1 ¼ Yðxnþ1Þ to form
the new dataset fXnþ1;Ynþ1g. The process is then repeated with Eqs.
(16) and (17) for a total of ntrain steps. A flow chart of the training
algorithm for the single output model is shown in Fig. 2(a).

Simulations were initially performed considering a single trap.
This applies when a microstructural feature is responsible for most
of the trapping in an alloy, or when multiple traps have overlap-
ping (or similar) trapping energies. An extension is introduced later
to deal with the multi-trap case.

Single output single trap models have input vectors
xi ¼ Ti;Qi; Et;i;Nt;i; Li; cl0;i

� �
. Two approaches were followed to train

such 6-parameter models: ‘all-in-one’ (a-in-o) and ‘dimension-by-
Fig. 2. Flow charts of theGP model training processes

4

dimension’ (d-by-d). In the former scenario, all dimensions were
varied simultaneously from the beginning as is typically done in
other applications [5,6,30]. The latter approach initially varies only
one of the parameters to estimate its hyperparameter, whilst keep-
ing all others constant with values equal to the mean of their cor-
responding ranges. Then, it incorporates an additional variable but
uses the hyperparameter learned from the lower dimension model.
This sequence is repeated until all the variables are incorporated
into the analysis and their hyperparameters are estimated. Two
different orders for the implementation of the parameters were
tested. Both approaches were performed with the same number
of training points. The d-by-d resulted in a considerably better fit-
ting (as shown in Section 3), so this method was chosen for all fol-
lowing models.

The experimental design loop was initialised using 1000 points
(except for 1- and 2-parameter models, which used 100 points)
with Latin hypercube sampling (LHS) to ensure uniformity [5,31].
Training was performed with the Python package Emukit [32] run-
ning on GPy. The training and test sets were obtained from sepa-
rate LHS instances.

For materials with non-overlapping trap energies, GPs with
additional dimensions are needed. For example, a model with three
traps requires four extra dimensions compared to the single trap
case (two new trap energies and densities), which would drasti-
cally increase the computational time following the same d-by-d
method. A clever approach is sought to address this, stemming
from the fact that all traps are incorporated into the diffusion Eq.
(5) in the same way.

A single output multi-trap (with three different traps) model is
built, as an extension from the single trap case, exploiting the
underlying symmetry of the diffusion equation with regards to
all trap energies and site number densities. The input vectors are
xi ¼ Ti;Qi;Et;i;Nt;i; Li; cl0;i

� �
, with trap vectors Et;i ¼ Et;1;i; Et;2;i; Et;3;i

� �
and Nt;i ¼ Nt;1;i;Nt;2;i;Nt;3;i

� �
. The model varies the 10 dimensions

simultaneously setting the initial characteristic lengths of all trap
for (a) single output and (b) multi-output models.



Table 2
Parameters and ranges of the values used for the single output and multi-output
models. The first column indicates the order in which parameters are added for
training

# Parameter Range

1 T/�C 150–600
2 Q/kJ mol�1 3.85–5
3 Et/kJ mol�1 20–35
4 Nt/mol m�3 0–500
5 L/mm 1–200
6 cl0/ mol m�3 0–10
7a Et;1/kJ mol�1 20–35
7a Et;2/kJ mol�1 20–23
7a Et;3/kJ mol�1 50–60
7a Nt;1/mol m�3 0–100
7a Nt;2/mol m�3 0–9000
7a Nt;3/�10�3 mol m�3 0–5

a Only for the single output multi-trap case
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energies and densities, and the remaining parameters, equal to
those previously obtained for the single trap case, i.e.
lEt;1 ¼ lEt;2 ¼ lEt;3 ¼ lEt and lNt;1 ¼ lNt;2 ¼ lNt;3 ¼ lNt . For the initialisation
stage, a set of ninit training points are obtained via LHS and these
are simulated. The number of points at this stage can be multiplied
(sixfold for three traps) without additional simulations by permut-
ing the traps, given that any combination of a set of input trap
parameters in Eq. (5) should output the same result. This makes
the training stage considerably faster and ensures that the charac-
teristic lengths of all traps remain equal to each other. The subse-
quent training stage with experimental design is then performed in
the same way as for previous dimensions in the d-by-d approach,
setting different ranges for the individual traps.

2.2.2. Multi-output model
This GP regression surrogate model attempts to capture the

evolution of the total hydrogen concentration ctotalðtÞ, simulated
for M ¼ 105 time steps Dt, via principal component analysis
(PCA). This is achieved by applying a singular value decomposition
(SVD) to a concentration matrix c 2 RðM�NÞ [5,33] used as training
data, where N is the total number of training instances. For each
row in the concentration matrix, the outputs are centred by sub-
tracting the row’s mean and dividing by its standard deviation.
This gives a centred and scaled output

�c ¼ ð�cð1Þ; . . . ; �cðNÞÞ 2 RM�N : ð18Þ
PCA is performed by defining the matrix W 2 RM�M as the linear
transformation

W�c ¼ Y; ð19Þ
where Y is the principal component (PC) score matrix. To compute
the matrix W,

�c ¼ URVT ; ð20Þ
which consists of orthogonal matrices U 2 RM�M and V 2 RN�N , as
well as the matrix R 2 RM�N . Multiplying Eq. (20) by U�1 and using
the fact that U is orthogonal, such that U�1 ¼ UT , one obtains

UT�c ¼ RVT : ð21Þ
Thus, W ¼ UT and Y ¼ RVT .

The PCAs were truncated to the first M0 ¼ 5 PCs, capturing
99.99% of the cumulative explained variance and reducing the
basis to W0 2 RM0�N . Dimension reduction of the output matrix
makes the problem tractable, although the PCs do not necessarily
imply any physical meaning [34]. The GP regression can then be
performed on the corresponding PC scores Y0 2 RM0�N .

Experimental design was not employed in this model due to
computational efficiency. This would require performing PCA after
every training point is computed, with a complexity that scales
with the size of the training data as OðMN2Þ [35]. Instead, all the
training and test points were sampled via LHS, followed by a single
optimisation stage. The d-by-d approach was used with 500 train-
ing points for the first dimension and 2000 for the rest, as it is
easier to train for lower dimensions. This model only used a single
trap type. A flow chart of the multi-output model is shown in Fig. 2
(b).

2.2.3. Parameter definition
The parameters and their ranges for the GP models are shown in

Table 2. The lattice diffusion activation energy selected corre-
sponds to the range of values reported for ferrite [36]. The temper-
ature range is characteristic of bake-out treatments, seeking to
avoid phase transformations in steel, and the thicknesses chosen
cover a wide range of components for different applications. The
5

range of the initial hydrogen concentration includes various values
used in the literature [2,3,7,17]. For the multi-trap case, the ranges
of the trapping parameters correspond to grain boundaries, dislo-
cations and regions of retained austenite, respectively [2]. For the
single trap case, the trapping energy values chosen correspond to
grain boundaries and dislocations.
3. Results

3.1. Single output models

Single output models focus merely on process optimisation,
predicting only the recommended time for a succesful bake-out
treatment. A detailed summary of the training steps used, perfor-
mance and broken down computation times are shown in Table 3.
Sample, optimise and acquisition times refer to those running the
hydrogen diffusion simulations, optimising and updating the
hyperparameters of the GP model, and optimising over the acqui-
sition function, respectively, for the corresponding ninit þ ntrain

points. For the d-by-d models, the times shown refer to those spent
upon adding each individual dimension.

The a-in-o approach fitted very poorly, with an R2 close to zero.
This is due to the large size of the multidimensional domain over
which it operates. Note that the poor fitting is independent of
the way in which the data was obtained, as the acquisition function
employed avoids this. Thus, a better fit could only be obtained by
drastically increasing the number of training points. The d-by-d
method showed higher R2, indicating a better fit, for the same
number of training points as in the a-in-o approach. All subsequent
GP models were therefore trained using the d-by-d approach.

The effect of the order in which the parameters are added in the
d-by-d approach was also investigated. The results of two different
runs are shown in Fig. 3, where combination 1 follows the order
given in Table 3 and combination 2 has those reverted. The order
of the parameters only mildly affects the R2 values (Fig. 3)) and
has a negligible effect on the final length scales learned (Fig. 3
(b)). Thus, finely tuning the parameter order is deemed
unnecessary.

The correlations between the true and predicted bake-out times
of the single output d-by-d models are shown in Fig. 4. The plots
show the results at the end of the individual training stages, each
varying an additional dimension. A clustering of points is observed
for shorter bake-out times. Moreover, increasingly poorer fits are
observed as more parameters are added into the training of the
model.



Table 3
Numbers of training steps used, performance and computation times of the single output models (s.t. = single trap, m.t. = multi-trap).

Model Param. ninit ntrain R2 RMSE Training time/ s

Sample Optimise Acquisition

s.t., a-in-o 6a 1000 2000 �0.017 3:63� 106 81.0 4333.9 1060.6

s.t., d-by-d 1 100 100 1.0000 1:23� 102 4.9 1.3 8.3

s.t., d-by-d 2 100 100 0.9998 2:06� 103 5.0 0.9 6.3

s.t., d-by-d 3 1000 1000 0.9993 2:29� 104 61.4 1081.8 403.4

s.t., d-by-d 4 1000 1000 0.9893 1:27� 105 66.3 1026.7 373.8

s.t., d-by-d 5 1000 1000 0.9769 3:02� 105 76.4 1224.0 528.6

s.t., d-by-d 6 1000 2000 0.9072 6:78� 105 146.1 4328.3 1406.3

m.t., d-by-d 10 1200 4200 0.8845 1:54� 106 441.5 25620.1 6343.3

a All parameters are added simultaneously in the a-in-o model

Fig. 3. Comparison of different combination of parameter orders. Figure (a) shows the variation of R2 with the number of parameters used to train single trap type model and
Figure (b) shows the learned length scales.
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3.2. Multi-output model

The multi-output GPs offer additional information compared to
the single output models. The PC scores are projected back to
hydrogen evolution profiles, which could find potential applica-
tions in tracking the kinetics of the process rather than only the
bake-out times. The numbers of training points, performance and
training times of these models are shown in Table 4. Sample, PCA
and optimise times refer to those running the hydrogen diffusion
simulations, performing the PCA transformation on the training
dataset, and optimising the GP model, respectively. Unlike in the
single output case, the latter time here refers to the single optimi-
sation step performed for all the training data.

While the aim of this work is to predict the hydrogen evolution
profiles, it is useful to first investigate the performance of the GP
models in the PC space. Both the training and validation data sets
were projected onto the PC basis and residuals were computed for
the predicted PC scores. The correlations between the true and pre-
dicted PC scores (in the 5 directions) of the multi-output model are
shown in Fig. 5. The behaviours are similar to those observed for
the single-output case, with increasingly larger errors for addi-
tional dimensions. The model with 6 parameters has a particularly
poor R2 score, likely due to the extra dimension compared to the
previous case, so more training points would be required for a good
fit.

The PC score prediction is not necessarily an indication of the
model performance upon projecting back onto the concentration
space via the inverse PCA transformation. Fig. 6 shows a represen-
tative set of predicted hydrogen evolution profiles reconstructed
from the PC scores of the 5-parameter model, together with the
results from the physical simulations. The plots correspond to
6

the test points with the minimum, median and maximum RMSE,
based on a test set of 1000 points. The regressions from the PC
scores resemble the simulated hydrogen concentration curves,
and larger uncertainties are localised around points with different
locations in each simulation. The minimum error profile, in Fig. 6
(a), shows accurate fitting within the model uncertainty. The med-
ian case, Fig. 6(b), shows relatively accurate fitting, although it
does deviate from 1r. Nevertheless, the overall behaviour of the
true profile is reasonably reproduced in the predicted profile. In
Fig. 6(c), the case with the maximum error exhibits high model
uncertainty at low times, with noticeable localisation of high
uncertainty regions.
4. Discussion

4.1. Assessment of GP models

The a-in-o approach to GP modelling is by far the most widely
used in the literature. The idea of running a single cycle that incor-
porates all dimensions at once is simpler to implement and
requires less input from the user. However, this approach proves
too computationally expensive for this application, as it works
with a higher number of dimensions than many other GP models
used in materials science (e.g. [5,30]). A considerably larger train-
ing dataset would be needed to improve the predictive capabilities
of this model to reasonable levels of confidence.

The d-by-d approach devised and implemented in this study
shows a better performance. This is likely due to the more reason-
able length scales initialised for each new parameter, obtained
from the simulations of lower dimension models. Effectively, only



Fig. 4. Comparison between the predicted and true bake-out times for the single output (a-f) single trap models with 1–6 parameters, respectively, and the (g) multi-trap
model with 10 parameters. The corresponding values of R2 and RMSE are shown in Table 3.

Table 4
Numbers of training steps used, performance and computation times of the d-by-d multi-output model.

Param. ntrain R2 RMSE Training time/ s

Sample PCA Optimise

1 500 0.9851 2:29� 101 4.9 1.3 8.3

2 2000 0.9822 1:89� 101 4349.1 29.8 249.3

3 2000 0.9273 4:92� 101 4473.0 28.7 236.5

4 2000 0.9663 3:35� 101 5080.6 33.6 553.0

5 2000 0.9381 3:52� 101 5042.9 33.2 664.1

6 2000 0.7838 8:48� 101 4647.7 36.0 492.1
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one length scale is fully optimised from scratch for each dimension
added, whilst the other ones are only fine tuned. However, it is not
straightforward rationalising why this approach is successful.
Whilst a formal proof is beyond the scope of the current work, it
is worth scrutinising the diffusion equation used (Eq. (5)). This
shows a nonlinear behaviour due to Oriani’s equilibrium approxi-
7

mation in Eq. (1). Nonlinearities arise in particular as the concen-
trations in the traps tend towards their maximum values.
Regardless, the effects of all parameters in the model are mono-
tonic, so the output function (tbake�out or ctotalðtÞ for the single or
multi-output models, respectively) has no local extrema. Thus,
varying an additional parameter in the equations changes the



(a) (c)(b)

(d) (f )(e)

Fig. 5. Comparison between the predicted and true PC scores for the multi-output model with (a-f) 1–6 parameters, respectively. The corresponding values of R2 and RMSE
are shown in Table 4.

Fig. 6. True vs. predicted hydrogen evolution profiles for multi-output model trained on 5 parameters, showing the samples with (a) minimum (b) median and (c) maximum
RMSE. Shaded regions show an estimate of the model variance as 	1r and insets show regions with high error.
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kinetics of hydrogen diffusion but not the overall behaviour, and
length scales learned remain similar as the dimensionality of the
problem increases.

Clearly, the R2 values decrease and the RMSE values increase
with the number of parameters, indicating a poorer fit for large
numbers of parameters, as shown in Table 3 and Fig. 4. This is
expected, as for each additional parameter, the sampled data
8

becomes sparser and the model less accurate in predicting from
un-sampled regions. The clustering of points at low values of
tbake�out for all cases can be attributed to the fact that only a small
number of samples will have many parameter values at the
extremes of their ranges. Only some combinations of the parame-
ters result in very long times (e.g. low temperatures, small thick-
nesses, scarce and weak traps, etc.). Nonetheless, the use of the
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acquisition function to obtain the training points makes sure that
these regions of the input parameter domain are also sampled.

The multi-trap step is the most computationally expensive of
the single output models, as shown in Table 3. This is mainly
because of the optimising times, which scales with OðN3Þ. Yet,
the trap permutation technique enables the implementation of
four new dimensions at once, shortening the number of initialisa-
tion and training steps needed fourfold (assuming each new
dimension uses the same number of training points). More training
steps had to be used for the multi-trap model than for the lower
dimension ones to obtain an R2 � 90 %, but this difference would
need to be considerably larger without the permutations imple-
mented. This approach could find applications in other emulation
GP models whenever there is a symmetry between two or more
of the input parameters involved.

The multi-output model demonstrated its capability to predict
the evolution of hydrogen concentrations during bake-out regimes.
However, the overall performance for similar training times was
worse than that for single output models. This is in large part
due to having to simulate the differential equations for a set num-
ber of time steps, rather than by interrupting the function. Not hav-
ing an experimental design stage makes this model considerably
faster, but at the expense of not quantifying the variance during
the training stage. Relying solely on LHS for sampling of the train-
ing points, regions of high variance may not be sampled, explaining
the higher RMSE. Moreover, this approach is inherently more com-
plex than the single output one due to having five PCs to train the
model on. Upon performing the inverse PCA transformation, the
overall shapes of the concentration evolutions are reproduced,
but with some deviations between true and predicted values.
Sources of error may be the inherent loss of information in the
PCA transformation (as the PC score matrix is truncated) and insuf-
ficient sampling.

Overall, both single and multi-output models present advan-
tages and disadvantages for their use in the optimisation of the
bake-out treatment. The single output model can estimate the
optimal bake-out times for a series of input parameters. Alterna-
tively, the multi-output model gives additional information about
the effusion kinetics at the expense of either a slower training
stage or a lower regression score.

A more detailed analysis of the computing times of the individ-
ual routines is required to assess the scalability of the GP models
developed. As mentioned before, the current work represents a
‘proof-of-concept’ of what can be achieved with these methods,
and it currently presents little benefit from the direct numerical
simulations of hydrogen kinetics with the differential equations.
However, from Tables 3 and 4, one can see that the routine that
takes the least time is the actual running of the simulations. Run-
ning computationally heavier models would increase this time,
whilst other routines would see no or only small variations. Such
models could be multiphase diffusion simulations in 2D or 3D,
which can become considerably slower. The multi-output model
has the potential to be extended into other simulation techniques,
such as finite element methods. This could be attempted by apply-
ing dimension reduction to the concentration values associated
with each mesh node, analogous to the work of Stowers et al. [5]
in the context of stress–strain relationships.
4.2. Optimisation of the bake-out treatment

Designing and optimising the bake-out treatment involves
selecting an adequate time and temperature to allow enough
hydrogen to effuse from the sample and avoid HE, accounting for
the material and processing parameters involved. In practice, the
9

accuracy that can be achieved in the control or characterisation
of such parameters varies to different degrees. For instance, ade-
quate machining can ensure negligible calculation errors due to
variations in the sample thickness, but trap parameters are difficult
to characterise and may even vary within a single sample due to
material heterogeneities. The accuracy of the diffusion equations
and the computational efficiency of the GP models can be lever-
aged to assess the effects of such variations on the predicted
bake-out times, especially in thick sections where the microstruc-
ture can vary significantly.

A single output d-by-d GP model was trained over three dimen-
sions (T; Et and Nt , in that order) to investigate the effects of
heterogeneities in the trap properties. The training followed the
same schedule as that in Section 3.2, with 100 initialisation and
training points for the first two dimensions and 1000 training
points for the third one. The ranges used for the variable dimen-
sions were those in Table 2, and the constant parameters were
set to Q ¼ 3:85 kJ mol�1 and L ¼ 100 mm. Rather than fixing the
initial lattice concentration, all simulations started with a total
concentration of ctotal;0 ¼ 10 mol m�3, from which the lattice con-
centration was obtained numerically via Eqs. (1)–(4) to account
for the variations in the hydrogen redistribution due to tempera-
ture. The concentration threshold of 1 wppm was also used here
for consistency. The training process took 724.9 s and it resulted
in a coefficient of determination of R2 ¼ 0:9992.

Useful information for the design and optimisation of the
hydrogen bake-out treatment can be obtained by evaluating the
trained GP model. Fig. 7 shows the optimal bake-out times pre-
dicted as a function of temperature and trap parameters. Note that
the training points are not homogeneously distributed due to the
nature of the acquisition function used to select them. As expected,
longer treatments are required for lower temperatures, and higher
trapping energies and trap site densities. The range of energies
plotted in Fig. 7(a) covers many possible traps present in steels,
such as dislocations, grain boundaries and some carbides. Alterna-
tively, the trapping energy of Et ¼ 20 kJ mol�1 used as an example
in Fig. 7(b) corresponds to that reported for dislocations in ferritic
steels [2]. The trap density is in this scenario a function of the dis-
location density, which varies widely for different forging routes.
This contour plot shows that, for instance, if the bake-out time is
set to one hour, the annealing temperature must increase in a non-
linear form as Nt increases, e.g. as consequence of residual disloca-
tions after forging. Plots like these ones can readily inform the
manufacturing process of steel components in an easy and effec-
tive way.

The methods developed can also be directly applied to specific
alloys, showing the robustness of the approach. Optimal bake-out
treatments were calculated for two steels with trapping parame-
ters reported in the literature. Firstly, ferritic-martensitic dual
phase DP800 steel, ice-water quenched and tempered at 300 �C,
where trapping with Et ¼ 30 kJ mol�1 and Nt ¼ 309 mol m�3

occurs at the martensite interfaces [2]. Secondly, a model
vanadium-rich ferritic steel annealed at 740 �C, where most hydro-
gen trapping occurs at the interface of vanadium carbides with
Et ¼ 26 kJ mol�1 and Nt ¼ 73 mol m�3 [3]. All other parameters
are those used for the GP model above. The solid lines in Fig. 8
show the predicted bake-out times for these steels calculated
directly with the diffusion equations. The effects of temperature
and trapping parameters are evident, with heat treatment times
that differ by orders of magnitude.

Additional data is needed to make sure that the hydrogen bake-
out treatment is effective. As mentioned before, there is often
uncertainty in the values selected for the material parameters
involved in the simulation. The trapping energy is difficult to char-
acterise accurately from experimental setups, and actual variations



Fig. 7. Predicted bake-out times for the single output single-trap model as a function of temperature, and (a) trapping energy (with Nt ¼ 170 mol m�3) and (b) dislocation
trap site density (with Et ¼ 20 kJ mol�1). The training points are plotted for reference.

Fig. 8. Predicted bake-out times for two steels with different trapping parameters [2,3] as a function of temperature. The solid lines show the times calculated with the
diffusion equations, and the dots are obtained by uniformly sampling from the GP model within a range with 	5% variations of the trap.ping parameters.
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in the trap site densities may arise across engineering components
due to heterogeneities in the distribution of defects. The above-
mentioned GP model was used to examine the optimal bake-out
treatments accounting for variations of 	5% of the trapping param-
eters reported. For each alloy, 10000 points were uniformly sam-
pled within this range of values and across the temperature
domain simulated, which resulted in the envelopes observed in
Fig. 8. The fast computational times needed to evaluate the GP
model, of about 1:3� 10�4 s per data point (compared to 0.58 s
per data point for the FDM) allow these results to be obtained
10
quickly for this whole range, highlighting another advantage of
using our data-based approach in heterogeneous materials over
standard diffusion modelling methods. This plot shows an uneven
spread in the bake-out times required, with the envelopes becom-
ing wider at lower temperatures likely due to the exponential
dependence of the trapping term in Eq. (2). Similarly, the spread
is larger for the sample with larger trapping parameters (due to
the logarithmic scale) for the same reason.

A plot like that in Fig. 8 can guide the design of heat treatments
for engineering components to optimise energy consumption and
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cost. An adequate characterisation of the hydrogen diffusion
behaviour could offer a more accurate control over the confidence
intervals for the selection of the heat treatment time and temper-
ature. Note that the uniform sampling over the variations assumed
for the trapping parameters was performed due to a lack of statis-
tical data on the actual values. A more detailed characterisation of
the mechanical behaviour of the alloy is also desired to determine
a viable hydrogen concentration threshold. The framework intro-
duced can also be further expanded to include more complex dif-
fusion simulations. In all cases, the current work will serve as a
reference for the computational times and predictive accuracies
that can be achieved by applying GPs to the optimisation of the
bake-out heat treatment.

5. Conclusions

Simulations of hydrogen diffusion can be used to create compu-
tationally inexpensive GP surrogate models that optimise the
bake-out heat treatments of steel components. The methods
implemented can have a direct impact in the design of more effi-
cient processing routes, accounting for the effects of microstruc-
tural heterogeneities, this not being currently considered using
standard diffusion/trapping models for hydrogen. Multiple
approaches were developed and compared to each other. The main
findings are the following:

� The models developed can be employed for a variety of alloys
containing different types of hydrogen traps.

� Implementing one dimension at a time (d-by-d) results in bet-
ter fits than incorporating all at once (a-in-o), likely due to
the nature of the nonlinear diffusion equations used.

� A single output model with experimental design can be used to
optimise the bake-out times. The incorporation of multiple
traps can be sped up by exploiting the symmetries of the diffu-
sion equations with respect to the trapping features using per-
mutations of the training sets.

� A multi-output model that predicts the evolution of hydrogen
content in a sample can be performed via principal component
analysis, increasing the amount of information supplied by the
models at the expense of additional computational time.
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