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A B S T R A C T   

The development of novel candidate molecules for tuberculosis remains challenging, as drug distribution into the 
target tissue is not fully characterised in preclinical models of infection. Often antitubercular human dose se
lection is derived from pharmacokinetic data in plasma. Here, we explore whether whole-body physiologically- 
based pharmacokinetic (PBPK) modelling enables the prediction of lung exposure to anti-tubercular drugs in 
humans. Whole-body PBPK models were developed for rifampicin, isoniazid, pyrazinamide, and ethambutol 
using plasma data in mice as basis for the prediction of lung exposure. Model parameters were subsequently used 
to extrapolate disposition properties from mouse and determine lung:plasma ratio in humans. Model predictions 
were compared to biopsy data from patients. Predictions were deemed adequate if they fell within two-fold range 
of the observations. The concentration vs time profiles in lung were adequately predicted in mice. Isoniazid and 
pyrazinamide lung exposures were predicted to be comparable to plasma levels, whereas ethambutol lung 
exposure was predicted to be higher than in plasma. Lung:plasma ratio in humans could be reasonably predicted 
from preclinical data, but was highly dependent on the distribution model. This analysis showed that plasma 
pharmacokinetics may be used in conjunction with PBPK modelling to derive lung tissue exposure in mice and 
humans during early lead optimisation phase. However, the impact of uncertainty in predicted tissue exposure 
due to distribution should be always investigated through a sensitivity analysis when only plasma data is 
available. Despite these limitations, insight into lung tissue distribution represents a critical step for the dose 
rationale in tuberculosis patients.   

1. Introduction 

The dose rationale for standard of care drugs currently used as 
combination therapy for the treatment of tuberculosis (TB) has been 
established on an empirical basis, without further understanding of drug 
exposure in target tissues (i.e., pharmacokinetics (PK)) or the underlying 
pharmacokinetic-pharmacodynamic (PKPD) relationships of the active 
moieties. By contrast, recent efforts for the identification of novel anti
tubercular drug candidates have implemented experimental protocols, 
which rely primarily on PK data in plasma (Muliaditan and Della Pas
qua, 2021). This approach is used to guide the dose selection of potential 

candidate compounds, regardless of whether drug concentrations in the 
systemic circulation reflect drug levels in the site of infection (lung) 
(Danesi et al., 2003; Kiem and Schentag, 2008; Prideaux et al., 2015a). 
Consequently, rapid equilibration has to be assumed between plasma 
and target tissue in the lung when exploring PKPD relationships. Given 
the heterogeneity and progression of the disease, further assumptions 
are also required regarding drug distribution into lesions, caseum and 
granuloma. Yet, to our knowledge, no systematic review of such as
sumptions has been performed. Understanding of target tissue exposure 
may be even more relevant as the prevalence of patients with 
co-morbidities such as HIV and SARS-CoV-2 infection appears to 
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increase (Romano et al., 2021; Nardotto et al., 2022). 
Serial lung biopsies cannot be collected in TB clinical trials to 

determine the drug exposure in human lung due to the invasive nature of 
the procedure. Even when such a procedure is performed, only one lung 
biopsy is taken per patient, yielding drug concentrations at a single time 
point (Prideaux et al., 2015a; Conte et al., 2000, 2001, 2002, 2004). 
Therefore, any attempt to describe equilibration kinetics and tissue 
exposure based on such sparse data needs to be interpreted with caution, 
especially when the sampling times are selected without taking into 
account the PK properties of the compound. It should be clear that 
following repeated dosing, drug concentrations in plasma and lung tis
sue will vary over time even after a system has reached steady-state 
(Muliaditan and Della Pasqua, 2019). Assessment of tissue to plasma 
ratio at a given time point cannot be considered constant. 

Based on these limitations, it seems evident that serial sampling of 
drug concentrations from the peripheral blood will remain the standard 
method to study the PK properties of novel anti-tubercular drugs. As a 
consequence, when concentrations in plasma are higher than in lung 
tissue, there is a real risk that such data may lead to dose selection that 
results in suboptimal exposure at the site of infection (despite efficacious 
drug levels in plasma). By contrast, when tissue levels are higher than in 
plasma, there is a risk of selecting higher doses than necessary, which 
may result in overdosing, adverse events, and organ toxicity. Whereas 
information on equilibration kinetics may not be obtained during the 
clinical stages of development, it is clear that dose selection of anti- 
tubercular drugs should always take into account drug exposure at the 
target site, i.e., lung tissue, rather than plasma levels only. 

Whole-body physiologically-based pharmacokinetic (PBPK) model
ling is a tool that is often applied in drug development to predict tissue 
concentrations from plasma data (Sadiq et al., 2017). In this approach, 
the physicochemical properties of the compound of interest can be 
combined with available anatomical and physiological knowledge (e.g. 
haemodynamics) to characterise drug distribution and tissue exposure. 
To that purpose, various distribution models have been identified that 
reflect drug disposition properties, allowing prediction of the drug 
concentration across different tissues and organs (Kuepfer et al., 2016). 
Consequently, the accuracy of such predictions depends on the selection 
of the correct distribution model as well as knowledge of the mecha
nisms of distribution and elimination (Carrara et al., 2020). 

The development of a suitable whole-body PBPK model requires 
experimental data along with parameters that describe organ blood 
blow and haemodynamics. Ideally, it can be implemented in preclinical 
species and used to scale up and predict tissue exposure in humans. 
Among other things, serial sampling of tissue concentrations at various 
dose levels should be performed in preclinical protocols for the evalu
ation of PK to support the selection of the best distribution model during 
the PBPK model building (Kuepfer et al., 2016). The in vivo PBPK model 
can be subsequently harnessed to better inform dose selection for 
first-time-in-human studies, prior to the start of the actual clinical trial. 
Unfortunately, the use of destructive sampling may still pose a major 
limitation for serial collection of tissue concentrations during PK studies 
in animals, especially when more than one drug candidate and multiple 
dose levels need to be evaluated. 

The objective of the current investigation is therefore to explore 
whether the use of whole-body PBPK modelling in conjunction with PK 
data in plasma is predictive of lung tissue exposures of anti-tubercular 
drugs in mice and humans. The approach proposed here specifically 
aims to mimic data availability at the early lead optimisation phase, 
during which usually only plasma PK after single doses is collected in 
mice. First-line anti-tubercular drugs rifampicin (RIF), isoniazid (INH), 
pyrazinamide (PZA) and ethambutol (EMB) were selected as paradigm 
compounds. We anticipate that our findings may support further opti
misation of experimental protocols for novel candidate molecules for the 
treatment of TB. 

2. Materials and methods 

2.1. In vivo pharmacokinetics 

PK studies were performed using C57BL/6J female mice (weight: 
18–21 g). An overview of dose groups and sampling scheme used for the 
characterisation of plasma and lung tissue concentrations is shown in 
Table 1. All mice received treatment in the fed state. All drugs were 
administered as a single dose intravenously (IV) or by oral gavage (PO). 
RIF was administered in 20% Encapsin aqueous solution; INH was 
administered in Milli Q water; EMB and PZA were administered in saline 
(IV) and in 1% methyl-cellulose (PO). Blood samples (n = 3 mice per 
sampling time per compound) were collected by cardiac puncture 
(following euthanasia by CO2) at 0.08, 0.25, 0.5, 0.75 1, 1.5, 2, 3, 4, 8 
and 24 (EMB only) hours post dose for RIF, INH and EMB. Lungs (n = 3 
mice per sampling time per compound) were additionally removed 
based on the same sampling scheme. For PZA, blood samples (n = 3 mice 
per sampling time per compound) were collected by cardiac puncture 
(following euthanasia by CO2) at 0.08, 0.25, 0.5, 0.75 1, 1.5, 2, 3, 4 and 
8 h post IV dose and from individual mice (n = 3 per dose) via the lateral 
tail vein at 0.25, 0.5, 0.75 1, 2, 4, 6, 8 and 24 h post PO dose. Drug 
concentrations in blood, plasma and lungs were determined by LC-MS/ 
MS. The lower limit of quantification is from 5 to 20 ng/ml for RIF, INH 
and EMB to 500 ng/ml for PZA. Given that only whole blood concen
trations were available for PZA, plasma concentrations were converted 
from blood concentrations using a blood/plasma (B/P) ratio of 0.79 
(internal unpublished data). All experimental protocols were ethically 
reviewed and carried out in accordance with European Directive 2010/ 
63/EU and the GSK Policy on the Care, Welfare and Treatment of 
Animals. 

2.2. Conversion of tissue levels to plasma concentration unit 

In order to compare drug concentrations in lung to plasma using the 
same unit (µg ml− 1), reported tissue levels (µg g− 1) were converted to µg 
ml− 1 using the following Eq. (1): 

DVlung (μg/mL)=
DVlung (μg/g)⋅ WTlung

Vlung
(1)  

where DV is the drug concentration, WTlung the weight of lung in mice 
(0.14 g; internal data) or human (830 g) (Molina and DiMaio, 2012) and 
Vlung the volume of lung in mice (0.1 ml) or human (930 ml) (Lippert 
et al., 2019). 

2.3. PBPK model building in mice 

2.3.1. General model building strategy and initial preparations prior to 
estimation step 

A whole-body PBPK model as implemented in PK-Sim (Lippert et al., 
2019) (Fig. 1) was developed for each drug using the available mouse 
PK data. In vivo data was integrated with relevant in vitro and physio
logical data. For the development of whole-body PBPK models, it was 

Table 1 
Overview of the doses of rifampicin, isoniazid, pyrazinamide and ethambutol for 
which plasma and tissue samples were collected. Drugs were administered 
orally, unless stated otherwise.   

Doses for which drug concentrations were available (mg kg− 1) 

Compound Plasma Lung tissue 

Rifampicin 1, 3, 10, 12 (IV), 30, 100 10, 100 
Isoniazid 0.1, 0.5, 1, 5, 10 (IV), 25 0.5, 5, 25 
Ethambutol 10, 16 (IV), 30, 100, 300, 1000 10, 100, 1000 
Pyrazinamide1 15, 25, 25 (IV), 50, 150, 400, 1000 1502 

IV = intravenous; (1) whole blood concentrations; (2) extracted from (Irwin et al., 
2016).  
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assumed that plasma concentrations corresponded to levels in venous 
blood. An outline of the general model building strategy is presented in 
Fig. 2 as previously outlined (Kuepfer et al., 2016). 

Due to limitations in the experimental protocols, complementary PK 
information (i.e., plasma and lung concentrations) were digitized from 
the published literature and used in conjunction with the available data 
sets. Serum concentrations following single IV administration of 10 mg/ 
kg RIF in male CD1 mice (20–27 g) were included to support estimation 
of the disposition parameters in the RIF PBPK model. Details of the 
experimental protocol can be found elsewhere (Bruzzese et al., 2000). In 
addition, as in vivo lung tissue concentrations of PZA were not collected 
in the initial experiments, predicted lung tissue/plasma ratio was vali
dated against published whole lung tissue/plasma ratio measured in 
female BALB/c mice following single administration of 150 mg/kg PZA 
via oral gavage. We have assumed that PZA disposition was not signif
icantly different between BALB/c and C57BL/6J mice. Full details of the 
experiment can be found elsewhere (Irwin et al., 2016). Plasma and lung 
concentrations were digitized from the publication and were added to 
the data set for the PBPK model building. 

As the aim of this analysis was to mimic early preclinical develop
ment and no data were collected regarding the fraction of drug excreted 
in the bile and urine, it was not possible to implement a more sophis
ticated PBPK model, in which the contribution of different routes of 
elimination can be described separately. Instead, we have decided to 
apply a simplified model building strategy, in which PBPK modelling is 

envisaged to support drug candidate selection by predicting which 
compounds will most likely yield favourable lung tissue distribution. 

To accelerate the model building process without compromising the 
quality of the analysis, a more practical PBPK modelling approach was 
proposed, which can be implemented using current experimental pro
tocols. Consequently, a general liver clearance and renal excretion route 
were used instead. More details are provided in the next section. System- 
specific (physiological) parameters were fixed to the default value in the 
PK-Sim software, while for each drug a prespecified set of drug-specific 
parameters were either estimated from the mouse plasma PK data or 
fixed to published literature values (Fig. 2). 

Table 2 provides an overview of the drug-specific parameters (i.e. 
physicochemical properties, protein binding) and the values to which 
these parameters were fixed. Mouse protein binding was assumed to be 
similar between mouse strains (C57BL/6J, BALB/c, CD1) and fixed to 
experimental values obtained in our labs. Finally, as in vivo doses were 
originally reported in mg/kg, the actual dose in mg was calculated 
assuming that each mouse weighed either 20 g (C57BL/6J and BALB/c) 
or 25 g (CD1). 

2.3.2. Estimation of the remaining drug-specific parameters in the PBPK 
model 

The Monte-Carlo algorithm in the PK-Sim software was used to es
timate the relevant PBPK parameters. As described previously, the 
proposed approach for model building consisted in the use of IV PK data 
to estimate the lipophilicity and characterise the distribution properties 
of the drugs. Estimation was performed using all five distribution 
models, as implemented in the PK-Sim software. Given that lung tissue 
concentrations were considered for validation purposes only (rather 
than informing selection of the best distribution model), the goodness- 
of-fit for the predicted plasma concentration vs. time profile was eval
uated for each distribution model. The best fit was used as criteria for 
selection of the distribution model. Details on the difference between 
each distribution model (Berezhkovskiy, PK-Sim, Poulin and Theil, 
Rodgers and Rowland, Schmitt) have been published elsewhere (Kuep
fer et al., 2016). The lipophilicity estimates for each compound were 
then fixed and the model re-run with inclusion of the oral PK data. 
During this step, the transcellular intestinal permeability was estimated 
to describe the absorption processes of the drugs. Drug metabolism was 
described with first-order total hepatic clearance, with the exception of 
PZA. For PZA, an initial evaluation of the oral data suggested nonlinear 
PK. However, as the data collected after IV administration was based on 
a single dose level, lipophilicity estimates were obtained assuming 
first-order elimination. Saturation kinetics was tested subsequently with 
a Michaelis-Menten process after inclusion of the data from oral 
administration. For the purposes of our analysis, it was assumed that 
metabolic activity was limited to the liver. Renal excretion was 
accounted for in the model by including glomerular filtration rate (GFR), 
with a GFR fraction fixed to 1. This implies the assumption that no active 
processes (i.e. tubular secretion or re-absorption) were involved in the 
excretion of the drugs of interest. 

2.4. Assessment of the PBPK model performance in mice 

Initially, goodness-of-fit plots were used to assess model perfor
mance. Once fitting of plasma concentration vs. time profiles was 
deemed adequate for each distribution model, an attempt was made to 
evaluate the predictive performance of the model to describe drug 
concentrations in lung tissue. The ratio between predicted and observed 
lung exposure was used as a diagnostic criterion for model performance. 
Lung:plasma ratio and lung tissue exposure (measured by the area under 
the time versus concentration profile, AUC0-τ) were selected as param
eters of interest. The trapezoidal rule was used to calculate AUC0-τ in the 
entire analysis. Model performance was deemed adequate if the con
centration vs. time profiles in lung tissue were adequately described and 
differences between predicted and observed lung AUC0-τ and lung: 

Fig. 1. Schematic diagram of the whole-body PBPK model as embedded in PK- 
Sim software. Arrows depict the organ blood flows (Q). Orange arrows indicate 
possible elimination pathways that can be included in the model (For inter
pretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.). 
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plasma ratio were not larger than 2 fold. Such a criterion is commonly 
used to assess the predictive performance of PBPK models (De Buck 
et al., 2007; Poulin et al., 2011). 

2.5. Translation and prediction of drug exposure in tuberculosis patients 

2.5.1. Initial preparations prior to prediction of drug exposure in humans 
Interspecies differences in physiology were accounted for in PK-Sim 

by switching the physiological parameters of the model from “mice” to 
“humans”. This step automatically replaces the anatomy (e.g. organ 

volumes) and physiology (e.g. blood flow rates) of the subjects included 
in the PK simulations. A comparison of the relevant physiological pa
rameters in humans and mice is shown in Supplementary Materials 
(Table S1). The remaining PBPK model components and corresponding 
drug-specific parameters were kept to the values that were previously 
estimated using mouse data, with the exception of protein binding 
(Table 2) and drug formulation, which changed from oral solution to 
tablets. 

Since drugs were administered in humans as solid dosage forms, a 
dissolution function had to be included in the human PBPK model to 
describe the dissolution process of the tablets. An overview of the model 
fitting and estimated Weibull parameters that were used to describe the 
dissolution profiles of RIF, INH, PZA and EMB in humans is provided in 
the Supplementary Materials (Fig. S1). 

2.5.2. Lung biopsy data in tuberculosis patients 
The predictive performance of the PBPK models for RIF, INH and 

PZA in humans was assessed using lung biopsy data from the published 
literature. Blood samples and tissue biopsy were collected from 15 Asian 
multidrug resistant (MDR)-TB patients who underwent lung resection 
surgery (Fig. S2) (Prideaux et al., 2015a). In this study, all patients 
concomitantly received a single dose of INH (300 mg), RIF (600 mg; 450 
mg when patient weighed <50 kg), 1500 mg PZA and 400 mg moxi
floxacin (MXF). No drug-drug interaction between these drugs was 
anticipated. All drugs were administered at 2, 4, 8, 12 or 24 h prior to 
surgery. Some patients were already at state levels for INH (N = 3; 20%) 
and/or PZA (N = 4; 27%) as they had received these drugs as part of 
their background drug regimen for several weeks or months before 
surgery. Further details regarding the original study design, as well as 
the processing and analysis of the blood samples and lung biopsies to 
derive the plasma and tissue concentrations can be found in the original 
publication (Prideaux et al., 2015a). Unfortunately, no information 
could be found in the literature regarding the lung tissue exposure of 
EMB in humans; therefore, only predicted EMB concentrations in lung 

Fig. 2. Schematic overview of the PBPK model building strategy applied to the current analysis. Parameter estimates describing the physicochemical properties and 
plasma protein binding of each drug were fixed to the published literature values. Mouse plasma concentrations were used for the initial PBPK model, in which 
parameters related to absorption, distribution and metabolism were estimated in a stepwise manner, as indicated by the diagram arrows. For the extrapolation from 
mice to humans, most model parameters remained the same, except for formulation and protein binding. All system parameters (e.g. organ blood flow) were also 
scaled to human values. IV = intravenous; PO = oral. GFR = glomerular filtration rate. 

Table 2 
Drug-specific parameters which were fixed during whole-body PBPK model 
building.  

Parameters Rifampicin Isoniazid Ethambutol Pyrazinamide 

Molecular weight (g 
mol¡1) ( 
Lakshminarayana 
et al., 2015) 

822.96 137.14 204.31 123.12 

Fraction unbound 
(%)1     

Mouse 2.9 40 83 59 
Human 7.8 52 85 72 

pKa 7.9 (base), 
1.7 (acid) ( 
TB Alliance 
2008a) 

1.82 
(base)2 

6.25 (base), 
9.35 (base) ( 
TB Alliance, 
2008b) 

0 (base)3 

Solubility  
(mg ml¡1, pH 7.4)  
(Lakshminarayana 

et al., 2015)  

1.79 4.93 7.582 1502 

1 Data generated by GlaxoSmithKline; 
2 DrugBank (DrugBank, 2020a–2020c) (experimental); 
3 PK-Sim did not allow negative value as input for pKa (-0.5 as reported in Drugbank). 

Parameter was hence fixed to zero as it is closest to literature value.  
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were derived. 

2.5.3. Virtual population and study design for the assessment of the 
predictive performance of the PBPK model in tuberculosis patients 

To mimic the population in the reference lung biopsy study, a virtual 
Asian population consisting of 1500 subjects (60% male) was first 
simulated using the baseline demographic characteristics (e.g. median 
and range values) from the study by Prideaux et al. (2015a) and the 
PK-Sim Asian population database (Tanaka and Kawamura, 1996). 
Given that most observed INH and PZA concentrations in the study by 
Prideaux et al. were derived following single dose administration, con
centration vs. time profiles in plasma and lung tissue were simulated 
following a single dose administration of 600 mg RIF, 300 mg INH, 1100 
mg EMB and 1500 mg PZA to mimic the original study design. We 
assumed that EMB tablets were administered in its hydrochloride 
formulation (EMB-HCL). The actual dose of EMB was calculated as the 
fraction relative to EMB-HCL, which was 74% or equivalent to 814 mg 
EMB. 

2.6. Evaluation of the predicted lung tissue exposure in tuberculosis 
patients 

Given the sparse sampling schedule used in the Asian patient popu
lation (Fig. S2), AUC0-τ in plasma and lung tissue could not be calcu
lated. Instead, simulated concentration profiles (in plasma and lung 
tissue) were superimposed to the observed data using the selected dis
tribution model. These profiles take into account the contribution of 
demographic covariates, with baseline characteristics matching those of 
the original population in Prideaux et al. (2015a) (Fig. S3). Median age, 
weight and body mass index (BMI) of the virtual population were 
respectively 41 years (range, 23–59), 58.6 kg (range, 49.8–83.6) and 22 
kg m− 2 (range, 17.4–29.3). Albeit limited, the predictive performance 
was subsequently assessed by comparing predicted and observed pro
files. The median observed ratio of lung:plasma concentrations for each 
patient (calculated around the time point in which the lung biopsy was 
taken) was also compared to the predicted ratio between AUC0–24 in 

lung tissue and plasma as a secondary validation step. 

2.7. Software 

PBPK models were built using PK-Sim 6.2, which is currently part of 
the Open Systems Pharmacology software package (Lippert et al., 2019). 
WebPlotDigitizer was used to extract data from figures in the publica
tions (Rohatgi, 2020). All other steps relative to data preparation, 
formatting and graphical analysis were performed in R v3.2.5 (R Core 
Team, 2020). No formal statistical hypothesis testing other than the 
pre-defined diagnostic criteria was used for the evaluation of the pre
dictive performance of the models. 

3. Results 

3.1. In vivo whole-body PBPK model building 

The final PBPK parameter estimates are presented in Supplemen
tary Materials (Table S2). As shown in Fig. 3, plasma concentrations of 
RIF, INH, PZA and EMB in mice were adequately described by the PBPK 
model. No major differences were found between the five distribution 
models with regard to the predicted plasma concentration profiles. 
These results showed that the decision on selecting the best distribution 
model for predicting tissue concentrations cannot be made based on 
plasma concentrations alone. As such, predicted tissue concentrations of 
each distribution model will be shown in subsequent sections. 

Estimated logP values were close to the experimental values for RIF 
and INH, but larger differences were observed for PZA and EMB. The 
implications of these differences were assessed during the external 
validation of the calibrated distribution parameters (e.g. lipophilicity) 
based on IV plasma data, which are shown in the next section using lung 
tissue data. 

3.2. Model-predicted lung tissue concentration vs. time profiles in mice 

Concentration vs time profiles of RIF, PZA and INH in lung tissue 

Fig. 3. PBPK model predicted plasma concentration vs. time profiles of rifampicin, isoniazid, pyrazinamide, and ethambutol in mice (N = 3 per time point). Open 
circles denote the observed data while the different solid lines represent the predicted profile for each distribution model as implemented in PK-Sim. 
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were in general adequately predicted. Consequent to the similar pre
dictions obtained by the different distribution models for plasma con
centrations (Fig. 4), no decision could be made on which distribution 
model should be selected for the prediction of lung tissue exposure in 
humans. In contrast, major discrepancies were observed between the 
distribution models for the predicted EMB lung concentrations, with the 
Berezhkovskiy and Poulin and Theil distribution models performing best 
(Fig. 4). Model-predicted AUC0-τ was derived from the predicted con
centration versus time profiles to describe total exposure in lung and 
plasma of mice (Table S3). The predicted median AUC0-τ in the mice 
lung tissue fell in general within the two-fold error margin of the ob
servations, with Berezhkovskiy and Poulin and Theil distribution models 
demonstrating the best overall in vivo predictive performance (Fig. 5). 
An overview of model-predicted and observed lung:plasma ratio in mice 
is summarised in Table 3. 

The lung:plasma AUC0-τ ratio of RIF in mice was dose dependent. 
This resulted in observed RIF lung exposure at 10 mg kg− 1 to be lower 
than the values observed in plasma (0.48-fold). By contrast, lung 
exposure at 100 mg kg− 1 was 1.26 fold higher than plasma. Despite 
evidence that these values fall within the predicted range (0.45–1.3), the 
PBPK model could not predict dose-dependent tissue equilibration. 
Similarly, our data showed that EMB exposure in lung tissue was 
consistently higher as compared to values in plasma, with lung:plasma 
AUC0-τ ratio decreasing (from 11.8 to 6.34) with doses increasing from 
10 to 1000 mg kg− 1. Model-predicted ratio was much wider as compared 
to RIF, ranging from 1.54 (PK-Sim distribution model) to 17.5 (Schmitt 
distribution model). Observed INH lung:plasma AUC0-τ ratio was com
parable across all doses evaluated (i.e., approximately 1). These results 
were similar to model-predicted values (0.49–0.66). A similar pattern 
was observed for PZA, for which a lung : plasma AUC0-τ ratio of 1.21 was 
observed, while model-predictions ranged between 0.56 and 0.71. 

3.3. Model-predicted lung tissue concentrations vs. time profiles in 
tuberculosis patients 

Predicted concentration vs. time profiles in human plasma and lung 
tissue are shown in Fig. 6. Predicted lung tissue profiles in humans 
varied more significantly between the distribution models as compared 
to the predicted profiles in mice. None of the distribution models was 
able to predict both plasma and lung tissue concentrations in patients 
adequately (Fig. 6). 

RIF lung tissue concentrations (but not plasma profiles) were best 
predicted with PK-Sim and Poulin and Theil distribution models. By 
contrast, the Rodgers and Rowland distribution model yielded better 
predictions for RIF plasma concentrations but under-predicted RIF 
elimination from lung tissues. Reasonable predictions of INH plasma 
concentrations were obtained with the Berezhkovskiy and Poulin and 
Theil distribution models, but all of them appeared to overpredict INH 
concentrations in lung tissue. PZA lung profiles were best described by 
the Rodgers and Rowland distribution model, but PZA elimination from 
plasma was over-predicted by all distribution models (Fig. 6). 

Predicted AUC0-τ estimates were derived from the predicted con
centration vs. time profiles to describe total exposure in the lung and 
plasma of TB patients (Table S4). An overview of predicted and 
observed lung:plasma ratio in the TB patients is summarised in Table 4. 

The predicted lung:plasma AUC0-τ ratio of INH and PZA were com
parable across distribution models (i.e. 0.57–0.75 and 0.53–0.76, 
respectively). On the other hand, our findings show that the predicted 
lung:plasma AUC0- τ ratio of RIF was more sensitive to the choice of 
distribution model, with the Berezhkovskiy and Rodgers and Rowland 
distribution models yielding respectively the lowest (0.66) and highest 
lung:plasma AUC0-τ ratio (2.09). The widest prediction range was 
observed for EMB (1.08–19.9). 

Fig. 4. PBPK model predicted concentration vs. 
time profiles of rifampicin, isoniazid, pyr
azinamide, and ethambutol in mice lung tissue 
(N = 3 per time point). Predictions are based on 
a model built on plasma concentrations alone. 
Solid lines represent the predicted profile for 
each distribution model as implemented in PK- 
Sim, whilst open circles depict the observed 
concentrations. In contrast to ethambutol, no 
differences in the predictive performance of the 
distribution models were observed for rifam
picin, isoniazid, and pyrazinamide.   
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4. Discussion 

While PBPK models have been previously developed for the evalu
ation of anti-tubercular drugs (Cordes et al., 2016; Gaohua et al., 2015; 
Lyons et al., 2013; Reisfeld et al., 2012; Zurlinden et al., 2016), these 
publications have primarily focused on model building and data fitting, 
without emphasis on the quantitative and translational pharmacology 

aspects, which underpin the selection and ranking of compounds in 
early drug development (Della Pasqua, 2013; Muliaditan et al., 2017). In 
fact, none of the publications has explored whether PBPK models can be 
used a priori to predict lung concentrations in mouse and humans based 
on in vivo plasma concentrations alone. As such, to our knowledge, this is 
the first investigation to date which assesses the performance of PBPK 
modelling for the prediction of lung tissue concentrations in animals and 

Fig. 5. Predicted versus observed AUC0-τ of rifampicin, isoniazid, pyrazinamide, and ethambutol in mice lung tissue for each distribution model in PK-Sim. Solid line 
depicts the identity line, whilst dashed lines represent the two-fold range relative to the observed data. AUC = area under the concentration vs. time curve. Pre
dictions were derived by the PBPK model built on plasma concentration data alone. 

Table 3 
Overview of the PBPK model predicted median lung:plasma AUC0-τ ratio in mice as compared to the observed values (N = 3 per time point).  

Drug Dose (mg/kg) Observed lung:plasma AUC0-τ ratio Predicted lung:plasma AUC0–τ ratio 

Range Berezhkovskiy PK-Sim Poulin and Theil Rodgers and Rowland Schmitt 

Mice         
Rifampicin 10 0.48 0.45–1.3 1.11 0.45 0.94 1.3 1.03  

100 1.26       
Isoniazid 0.5 0.97 0.49–0.66 0.66 0.49 0.66 0.64 0.51  

5 0.98        
25 1.09       

Pyrazinamide 150 1.21 0.56–0.71 0.71 0.61 0.71 0.56 0.58 
Ethambutol 10 11.8 1.54–17.5 4.8 1.54 4.56 9.43 17.5  

100 8.31        
1000 6.34       

AUC = area under the concentration vs. time curve. 
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humans. 
In line with evolving trends regarding the use of PBPK modelling for 

the characterisation of drug-drug interactions and scaling of PK from 
adults to special populations (Abouir et al., 2021, Jones et al., 2013, 
Bellanti and Della Pasqua, 2011), our analysis shows that PBPK models 
based on plasma data across a relevant dose range are predictive of lung 
tissue exposure in mice. Interestingly, these same models were found to 
be predictive for lung:plasma ratios in humans. Whilst lung:plasma ra
tios for anti-tubercular drugs were similar to observed values, these 
predictions were associated with considerable uncertainty in parameter 
estimates, which is mostly due to the identification of the correct dis
tribution model. These results suggest that PBPK models based on mouse 
plasma data may only be useful to predict the tissue distribution prop
erties of the drug in mice, but more data (e.g. PK data from different 
animal species) is required for the prediction of lung tissue exposure 
profile in humans. 

It should also be clear that the current implementation of PBPK 
models does not account for active processes in drug distribution, given 
that such data are often unavailable or unknown in early drug devel
opment. In addition, knowledge of the ADME properties of a compound 
may be limited at the time of candidate selection, in particular, the role 
of renal processes in the overall elimination of a compound from the 
body. The implications of such uncertainty is exemplified by the findings 
for EMB, which is excreted renally by passive and active mechanisms 
(Lee et al., 1977; Lee et al., 1980), but for which no urine data was 
available in mice or humans. In fact, previous research has shown that 
model misspecification and poor predictions are more frequent when 

multiple elimination processes or active processes are involved (Jones 
et al., 2006). 

4.1. Data requirement for the use of PBPK modelling as a tool for the 
prediction of drug concentrations in human lung tissue 

Overall, these findings indicate that the development of PBPK 
models based on mouse plasma data alone is insufficient to predict a 
priori human PK (whether in plasma or lung tissue). On the other hand, 
implementation of a typical PBPK modelling approach based on the use 
of PK data from multiple species in conjunction with more in vitro data is 
not feasible due to the lack of suitable data, as would have been the case 
during early lead optimisation in a real-life setting. Furthermore, pre
clinical protocols for the evaluation of pharmacokinetic data often 
overlook the contribution of the underlying disease to changes in tissue 
perfusion and composition, which may differ significantly across 
species. 

Nevertheless, this investigation has demonstrated that it is difficult 
to identify the correct distribution characteristics of the compound using 
only plasma data, which consequently leads to uncertainty and bias in 
drug concentrations at the target tissue. As can be seen from the 
comparative analysis of data from four different drugs, model- 
predictions depend on the selection of the appropriate distribution 
model as well as on the quality of the blood sampling scheme (Huang 
and Isoherranen, 2020). These requirements cannot be overlooked when 
PBPK models are used to support the prediction of efficacious human 
exposure and therapeutic dose range. 

Fig. 6. PBPK model predicted concentration vs. time profiles (n = 1500) of rifampicin, isoniazid and pyrazinamide in plasma and healthy lung tissue in tuberculosis 
patients. Solid lines and shaded area represent model predictions and 90% confidence intervals. Open circles and vertical lines depict the median observed con
centrations and the corresponding 90% confidence interval at each time point. Observed concentrations in lung tissue (each open circle = 1 patient) were obtained 
from Prideaux et al. (2015a). These results show that a PBPK model based on in vivo plasma concentrations alone does not accurately predict lung tissue concen
trations in tuberculosis patients. 

Table 4 
Overview of PBPK predicted lung:plasma AUC0-τ ratio in tuberculosis patients (n = 1500) as compared to observed values (N = 15) (Prideaux et al., 2015a). AUC = area 
under the time versus concentration curve.  

Drug Dose (mg) Observed lung:plasma concentrations ratio  
(median, range)1 

PBPK model predicted lung:plasma AUC0–24 ratio 

Range Berezhkovskiy PK-Sim Poulin and Theil Rodgers and Rowland Schmitt 

Rifampicin 600 0.46 
(0.04–1.15) 

0.53–2.09 0.66 0.91 0.53 2.09 1.93 

Isoniazid 300 0.42 
(0.26–2.69) 

0.57–0.75 0.67 0.57 0.67 0.75 0.6 

Pyrazinamide 1500 0.47 
(0.21–1.06) 

0.53–0.76 0.76 0.69 0.76 0.53 0.65 

Ethambutol 1100 N/A 1.08–19.9 1.12 1.67 1.08 9.35 19.9 
1 Lung:plasma AUC0–24 could not be calculated due to sparse data. As such, the individual median ratio of the lung and plasma concentrations was initially calculated. We subsequently presented 

the median and range values of the calculated individual lung:plasma ratio; N/A = not available.  
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If only plasma concentrations are available, it should be noted that it 
may not be possible to identify the distribution model that best describes 
tissue exposure profiles. Consequently, biased predictions of tissue 
concentrations can be anticipated if the wrong distribution model is 
used. Using RIF as example, the distribution model with the best pre
dictive performance for human plasma exposure (Rodgers and Rowland) 
in fact did not yield the best performance for lung exposure (PK-Sim/ 
Poulin and Theil distribution models). Since predicted tissue exposure is 
greatly determined by the distribution model, the impact of uncertainty 
due to distribution should be characterised through a sensitivity anal
ysis. This can be achieved, at least partially, by exploring the variability 
of the predicted lung concentrations using the different distribution 
models, as was done in current analysis. 

Moreover, lung tissue distribution of EMB, which is charged at 
physiological pH, did not appear to be better described by distribution 
models that take into account drugs dissociation, such as the Rodgers & 
Rowland or Schmitt models. This supports the best-practice that distri
bution models should be selected based on fitting of the available data 
without a priori assumptions (Kuepfer et al., 2016). It should be 
acknowledged, however, that the distribution model was selected based 
on tissue data from a single species, which reflects the experimental 
package available during the lead optimisation phase. The use of data 
from different animal species would provide a valid basis for the selec
tion of the appropriate distribution model. However, an important 
limitation remains to be addressed, namely that preclinical protocols for 
the evaluation of pharmacokinetic data often overlook the contribution 
of the underlying disease to changes in tissue perfusion and composition, 
which may differ significantly across species. 

4.2. Limitations 

We acknowledge that we have not exhausted all options that in 
traditional settings would have been explored to optimise the PBPK 
models (i.e. inclusion of in vitro data and PK data from other species such 
as rat, monkey, or dog to inform IVIVC) prior to human PK predictions. 
Such traditional data-driven PBPK modelling approach was beyond the 
scope of our investigation, as this exercise attempted to provide insight 
into the predictive performance of a simplified PBPK model building 
strategy based only on plasma PK data from mouse to be implemented 
during lead optimisation. At this stage of drug development, in vitro data 
(e.g., Caco-2 permeability, microsomal clearance) and PK in multiple 
(non-rodent) species have yet to be generated. On the other hand, whilst 
the use of in vitro human data (such as hepatocyte or microsomal 
clearance or Caco-2 permeability) and PK data from multiple species 
could have improved the predictions, such an evaluation would only be 
feasible at a much later stage of development. 

Despite such limited input data, we have shown that there may be 
value in implementing PBPK modelling as a tool for a more robust 
ranking of novel compounds based on the predicted lung:plasma ratio in 
humans, than simply relying on observed drug levels in tissue homog
enate. However, it should be noted that prediction of the drug perme
ability and distribution into lung granulomas from animal models may 
be quite challenging, as most experimental models of infection show 
pathophysiological characteristics that differ from the clinical presen
tation of the disease in humans. We also acknowledge that a major 
limitation of the approach proposed here is the fact that lung tissue 
concentrations are derived from organ homogenates, which may not be 
a suitable surrogate for concentrations at the site of infection (Kjellsson 
et al., 2012). It should be emphasised that only a few animal infection 
models share the complex pathological hallmarks (e.g. lesion formation) 
observed in TB patients (Lenaerts et al., 2015). Even then, disease fea
tures in these animal models may still remain much less differentiated 
than human lesions (Kjellsson et al., 2012). In addition, one should not 
underestimate the technical difficulties for the bioanalysis of drug con
centrations at the various lesion compartments. There may be only a 
small number of specialised labs worldwide where such measurements 

can be performed using alternative methods, such as matrix-assisted 
laser desorption ionisation mass spectrometry imaging (Prideaux 
et al., 2015b). Finally, one needs to take into account inter-individual 
variability in lung:plasma exposure ratio in humans, which cannot be 
predicted a priori from any preclinical data (Muliaditan and Della Pas
qua, 2019). Indeed, adequate matching of individual human lung biopsy 
concentrations in this analysis has been hindered by the considerable 
between-subject variability in the data. 

5. Conclusions 

Regardless of these limitations, our analysis suggests that the use of 
PBPK models in conjunction with single dose PK data across a relevant 
dose range in mice could be informative for TB drug developers as an 
exploratory tool during early lead optimisation. Integration of knowl
edge regarding tissue distribution properties of novel drug candidates 
can be pivotal for the characterisation of the antibacterial activity in 
vivo. Moreover, such information may facilitate the ranking of com
pounds for progression into clinical development. PBPK model refine
ment should therefore be considered as a continuous iterative process, 
during which additional in vitro and in vivo data is incorporated into the 
model to support human dose predictions prior to first-time-in-human 
studies. 

In summary, our investigation shows that the accuracy and precision 
of model predictions for lung tissue exposure in humans depends on the 
choice of the distribution model, which ideally is informed by PK data 
from multiple animal species. However, further understanding of drug 
disposition processes, including the effect of disease-related changes in 
tissue perfusion and composition is required to ensure accurate extrap
olation of parameters describing drug exposure at the site of infection in 
TB patients. 
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