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ABSTRACT Point clouds produced by either 3D scanners or multi-view images are often imperfect
and contain noise or outliers. This paper presents an end-to-end robust spherical harmonics approach to
classifying 3D objects. The proposed framework first uses the voxel grid of concentric spheres to learn
features over the unit ball. We then limit the spherical harmonics order level to suppress the effect of
noise and outliers. In addition, the entire classification operation is performed in the Fourier domain. As a
result, our proposed model learned features that are less sensitive to data perturbations and corruptions.
We tested our proposed model against several types of data perturbations and corruptions, such as noise and
outliers. Our results show that the proposed model has fewer parameters, competes with state-of-art networks
in terms of robustness to data inaccuracies, and is faster than other robust methods. Our implementation code
is also publicly available at https://github.com/AymanMukh/R-SCNN

INDEX TERMS Object recognition, point cloud classification, spherical harmonics, robust classification.

I. INTRODUCTION

Objects detection and classification is a crucial part of
many robotic manipulation applications [1]. For example,
autonomous cars or robots can better interact with the sur-
rounding environment if they accurately recognize objects.
Due to the existence of compact, low-cost 3D scanners such
as Microsoft Kinect and Intel RealSense, 3D object measure-
ments are readily available. These scanners generate point
clouds either using Light Detection and Ranging (LIDAR)
or using stereo matching. The generated point clouds of
these scanners are often noisy and contain outliers, which
significantly deteriorates the accuracy of existing object clas-
sification methods.

The recent success and popularity of Convolutions Neu-
ral Networks (CNN) for many computer vision applications
have inspired researchers to use them for 3D model clas-
sification as well [2]-[4]. To exploit the potential of deep
networks for this application, different representations of 3D
data have been proposed, including kd-tree [5], dynamic
graphs [6], Random Sample Consensus (RANSAC) [7], [8],
and most recently, spherical harmonics [9]-[12]. Spherical
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harmonics is a representation that have attracted significant
interest in a wide range of applications including matching
and retrieval [13], [14], lighting [15], and surface comple-
tion [16]. They attain several favourable characteristics for
working with 3D space, such as their basis are defined on the
surface of the sphere (volumetric) and are rotation equivari-
ant. In addition, they have shown to provide compact shape
descriptors compared to other types of descriptors [13], [17].

The use of CNNs with spherical harmonics has had major
success in several recent papers for shape classification [9],
[10], [12], retrieval [10] and alignment [10]. Unlike con-
ventional approaches that use CNNs in regular Euclidean
domains, spherical harmonics CNNs (SCNNs) apply con-
volutions in SO(3) Fourier space, learning features that are
SO(3)—equivariant. Frameworks that use spherical harmonics
CNNs can be divided into two groups: Point-based SCNN
that extract features based on point maps or pairwise rela-
tions [11], [12] and the other group that uses spherical har-
monics convolution on images casted on the sphere [9], [10].
Interestingly, spherical CNNs have shown to have fewer
parameters [9] and faster training due to the reduction in the
dimensionality of the spherical harmonics shape descriptors,
which make them a suitable candidate for low-cost robots
with limited computational power.
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FIGURE 1. a: A 3D model of a scarecrow, b: the point cloud of the scarecrow generated using a
multiview image pipline, data were taken from [18]. c: Point cloud of a scene captured by Intel
RealSense scanner, and d: side of view of the chair captured in c.

Point clouds produced by either 3D scanners or multi-view
images are often imperfect and contain noise and/or outliers.
Several factors lead to those measurements inaccuracies in
the point clouds such as adverse weather conditions, e.g.
fog [19]-[21] and rain [22], [23], objects reflective sur-
face, the scanner itself [24]-[26], or by some pipelines that
construct 3D objects from multi-view images [18], [27],
[28]. Examples of those data inaccuracies can be seen in
Figure 1. The first image shows a scarecrow that was used
for image-based 3D reconstruction. The second image shows
the generated point cloud of the scarecrow using a 3D recon-
struction algorithm [18], [29]. As seen in Figure 1-b, the
generated point cloud has a high number of outliers surround-
ing the object. The third image shows a scene containing a
chair that was captured by Intel RealSense laser 3D scanner.
The surface of the chair is noisy and surround by outliers,
as seen in the last image. These data inaccuracies make point
cloud classification challenging. As such, the development
of robust classification frameworks that can deal with such
inaccuracies is needed for autonomous systems and robot
object interactions.

This paper presents a spherical harmonics approach that
is robust to the uncertainty in point clouds data. The pro-
posed approach is computationally efficient as it requires no
pre-processing or filtering of outliers and noise. Instead, our
entire robust classification operation is performed in an end-
to-end manner. To present our approach, we first discuss the
spherical harmonics descriptors and the common sampling
strategies used in the literature. We then show that using
concentric spheres with density occupancy grids provides the
highest robustness against data inaccuracies. We also propose
using the magnitude of each specific spherical component
for shape classification, and we show that it produces better
robustness than using the combined magnitudes of different
components at each order. In particular, we show that a sim-
ple classifier (i.e. fully connected neural network) with the
previously mentioned spherical harmonics descriptors and
sampling strategy is robust to high levels of data inaccura-
cies. Using the above knowledge and the inspiration from
the recent success of spherical CNNs approaches [9], [10],
we propose a light spherical convolutional neural network
framework (called RSCNN) that is able to deal with differ-
ent types of uncertainty inherent in three-dimensional data
measurement.
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FIGURE 2. a: Sampling of a line using concentric spheres. The same line
is corrupted with outliers in the second row. b: The third concentric
sphere corresponding spherical function f (¢, 9). c: The same spherical
function f(p, 9) that is shown in b is plotted in the spherical coordinates.

Unlike previous approaches, our proposed framework per-
forms the classification in the Fourier domain, where it’s
easier to determine similarities between noisy 3D objects.
Moreover, unlike previous approaches [2], [4], [30], the
applied spherical convolution operation is simply multiply-
ing the filter kernels by the spherical harmonic coefficients,
hence, the convolution operation does not disrupt the input
signal through the use of a pooling operation or grid altering.
We show that the output features produced by the convolution
operation are highly robust.

Our experiments show that the use of concentric spheres
with density occupancy grids provides high robustness to
outliers and other types of data inaccuracies. To demonstrate
the robustness of the proposed sampling along with the use
of spherical harmonic transform, we present a simple case
in Figure 2 of a line plotted in 3D. The line was corrupted
with outliers as shown in the second row of the figure in a.
Figure 2-b shows the spherical function f (¢, 8) of the third
concentric sphere, where the distance from the origin (f)
represents the number of points corresponding to each theta
and phi (plots are in Cartesian for visualization). We plot the
same figure in spherical coordinates in Figure 2-c. The max-
imum value of f is one as we are using a density occupancy
grid (we divide by max). With the use of density occupancy
grid, outliers appear as small peaks, while inliers have higher
peaks, as can be seen in Figure 2-c. This representation
makes outliers appear as small noise, where noise in Fourier
transform (spherical harmonic transform) appears at high
frequencies, and our experiments show that by using low
frequencies, we avoid storing noise in our shape descriptors.
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Our key contributions in this paper are as follows:

o We propose a CNN framework that is significantly more
robust than existing approaches to point cloud inaccura-
cies generated by commercial scanners.

o The proposed approach requires no pre-processing steps
to filter outliers or noise, but instead, the entire robust
classification operation is performed in an end-to-end
manner.

« The proposed approach uses compact shape descriptors
(spherical harmonics) that reduce the size of our model,
making it is suitable for low-cost robots with limited
computational power. We demonstrate the efficiency and
accuracy of our method on shape classification with
the presence of several types of data inaccuracies, and
we show that our framework outperforms all previous
approaches.

Il. METHODOLOGY

A. PRELIMINARIES

In this section, we review the theory of spherical harmon-
ics along with their associated descriptors that are used for
classification tasks. In addition, we review the theory of
convolution operations applied to spherical harmonics.

1) SPHERICAL HARMONICS

Spherical harmonics are a complete set of orthonormal basis
functions, similar to the sines and cosines in the Fourier
series, that are defined on the surface of unit sphere S2 as:

[l + 1)1 = m)! .
YO, ¢) = %Pr(cose)e’mw (1)

where Py, (x) is the associated Legendre polynomial, [ is the
degree of the frequency and m is the order of every frequency
(@ = 0,lm < D.06 € [0,7], ¢ € [0,27] denote the
latitude and longitude, respectively. Any spherical function
f(0, ) defined on unit sphere S2 can be estimated by the
linear combination of these basis functions:
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where flm denotes the Fourier coefficient found from:

T 2
Pt m) = /0 160,07 6. singdpds @)

where Y denotes the complex conjugate. The following
descriptors implies that any spherical function can be
described in terms of the amount of energy [f| it contains at
every frequency:

D1 = (lfo.ol, fiol, i1, - - - UimD, )

or the amount of energy it contains at every degree:

D2 = (Ifol, lil, L2, - . [fil), where |fil =
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Both of these descriptor vectors have been used for clas-
sification of shapes [13], [14]. However, only the second
descriptor is rotation equavareint while the first one carries
more shape information. We have investigated the use of both
descriptors for shape classification and the result is provided
in section III.

2) SPHERICAL CONVOLUTION

If we have a function f with its Fourier coefficients f found
from Equation (3), and another function or kernel 4 with
its Fourier coefficients A, then the convolution operation in
spherical harmonic domain is equal to the multiplication of
both functions Fourier coefficients as shown below [31]:

4
20 +1

Here, the convolution at degree / and order m is obtained
by multiplying of the coefficient flm with the zonal filter
kernel fl?. The inverse transform is also achieved by summing
overall / values:

(f * b = Fmi. (6)

(=)0, )= > (f x W'Y, ). )

1=0 |m|<I

B. RELATED WORK

Spherical harmonics have been wused for 3D shape
classification for many years [13], [14]. Early classification
frameworks used spherical harmonic coefficients as shape
descriptors [13]. Later, with the use of spherical convolutions,
classifier networks were empowered to learn descriptive
features of objects. We study both approaches in terms of
their performance under data inaccuracies.

The spherical CNNs proposed in [9], [10], for spherical
signals defined on the surface of a sphere, addresses the rota-
tion equavarience using convolutions on the set of the 3D
rotation group (SO3) and S2 rotation group. In [9], the
spherical input signal is convolved with S2 convolution to
produce feature maps on SO3, followed by an SO3 con-
volution. While zonal filters are used in the spherical con-
volutions in [10]. Steerable filters [32]-[34] were used to
achieve rotation equivariance. The filters use translational
weight sharing over filter orientations. The sharing led to a
better generalization of image translations and rotations. The
network filters were restricted to the form of complex circular
harmonics [32], or complex valued steerable kernels [33].
Sphnet [12] is designed to apply spherical convolution on
volumetric functions [35] generated using extension opera-
tors applied on point cloud data. Unlike previous approaches,
spherical convolution is applied on point clouds instead of a
spherical voxel grid, resulting in a better rotation equivari-
ant. In Deepsphere [11], spherical CNNs are used on graph
represented shapes. The shapes are projected onto the sphere
using HEALPix sampling, in which the relations between
the pixels of the sphere build the graph. The graph is then
represented by the Laplacian equation, which is solved using
spherical CNNs. Ramasinghe et al. [36] investigated the use
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of radial component in spherical convolutions instead of
using spherical convolutions on the sphere surface. They
proposed a volumetric convolution operation that was derived
from Zernike polynomials. Their results show that the use
of volumetric convolution provides better performance by
capturing depth features inside the unit ball. Spherical signals
have also been used in conjunction with conventional CNN's
by [37]-[39] to achieve better rotational equivariance than
signals on euclidean space. You ef al. [40] used concentric-
ity to sample 3D models with a sampling strategy that has
better robustness to rotations. While previous approaches
used spherical harmonics to build rotation equivariant neural
networks, our focus is on building a robust spherical har-
monics structure. As such, our choice of representation is not
restricted to spherical harmonics descriptors that are rotation
equivariant.

In terms of recent deep learning approaches for 3D shape
classification, 3D CNNs have been used with voxel-based
3D models [3], [41]-[43] using several occupancy grids [41].
Such a representation has shown to be robust to data inac-
curacies [43] while some implementations (e.g. [44]) have
achieved very high classification accuracy for clean objects
(using ModelNet40). Another approach is to use 2D CNN on
images of the 3D mesh/CAD objects rendered from different
orientations [4], [45], [46]. The rendered images are usually
fed into separate 2D CNN layers; a pooling layer follows
these layers to aggregate their information. These methods
take advantage of existing pertained models to achieve high
classification accuracy. When testing MVCNN [4], the clas-
sification accuracy was heavily affected by data inaccura-
cies, especially outliers. Another approach uses unsorted
and unprocessed point clouds directly as an input to the
network layers [2], [6], [30], [47]. These approaches use
a max-pooling layer that was tested to be robust to point
dropout and noise [48]. However, when tested with out-
liers, their performance was significantly affected. Another
approach is to build upon relations between points [5]; for
such methods, the existence of outliers completely changes
the distance graph and causes such an approach to fail.

In terms of robust classification frameworks that exist in
the literature, Pl-net3D [7] decompose shapes into planar
segments and classify objects based on the segments informa-
tion. DDN [49] proposes an end-to-end learnable layer that
enables optimization techniques to be implemented in con-
ventional deep learning frameworks. An m-estimators based
robust pooling was proposed instead of max pooling used in
conventional CNNs. Our approach shows better robustness to
data argumentation while it involves less computation.

Although we focus in this paper on single object clas-
sification approaches, some applications require instance
segmentation methods such as [2], [30], [50], [51].
Nevertheless, it is possible to achieve scene segmen-
tation with single object classification methods using
sliding box-based techniques [52], segmentation meth-
ods such as [53], [54], or utilizing a region proposal
network [3].
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lIl. OUR PROPOSED APPROACH

Unlike previous spherical harmonics approaches, our pro-
posed framework, shown in Figure 3, combines the following
three key contributions: the use of concentric spheres, the
direct use of the magnitudes of spherical harmonics coef-
ficients to classify objects, and limiting the spherical har-
monics order level to mitigate the effect of noise/outliers
to achieve robust classification. To describe our approach,
we first introduce the problem, then we go through each step
of the proposed solution and explain the overall framework.

A. PROBLEM STATEMENT

Point clouds of 3D models produced by either 3D scanners or
3D reconstruction algorithms are often imperfect and contain
outliers. To test the robustness of previous methods on such
scenarios, we recorded 56 scenes, by the Intel RealSense
scanner, containing the following common objects: chairs,
tables, cabinets, sofas, and desks. The recorded objects cat-
egories were chosen from the ScanObjectNN [55] dataset so
that we can train methods on the ScanObjectNN training data,
while we test them on our captured data. The ScanObjectNN
contains real-scene 2.5D objects similar to our scans. How-
ever, our recorded objects have higher levels of noise due
to the used scanner type and scanning range. Our recorded
objects have noise and outliers with different levels. Exam-
ples of those objects can be seen in Figure 4. Moreover,
to study the effect of each type of inaccuracies on machine
learning models, we build comprehensive datasets by arti-
ficially adding noise, outliers, missing points, or a mixture
of two types. We simulated those data inaccuracies, similar
to previous studies [2], [6], [7], [30], [56], by adding uni-
formly distributed points in the object area (outliers), adding
Gaussian noise to the point clouds, or randomly eliminating
points from objects point clouds (missing points). We used
Gaussian noise as we found out that distributions of measured
noise of 3D scanners are somewhat Gaussian-like as shown in
Figure 4-e. The standard deviation of the recorded noise was
more than 0.1 in some cases. We measured noise by scanning
a flat surface, fitting a plane to the point cloud of the surface,
and finally recording the points to plane distance distribution.
Besides using uniformly distributed outliers, we also test the
robustness of recent methods on clustered outliers. Random
point dropout simulates a case where the scanning density
varies, i.e., objects are further from the scanner or using a
scanner with lower scanning density. Examples of those data
perturbations and corruptions can be seen in Figure 5.

B. SAMPLING ON CONCENTRIC SPHERES

The first step in using the spherical harmonics for modeling
an object is to sample the input signal, which is referred to
as f (¢, 6) in Equation (3). Two types of sampling are used
in literature [13]: Sampling over the concentric spheres, and
sampling over the sphere surface (image casting). For the
first case, we generate a spherical voxel grid that consists
of ¢ concentric spheres with n x n grid resolution for each
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FIGURE 3. The proposed spherical CNN framework: I: We sample the shape with ¢ concentric spheres and n x n grid resolution (section 111-B). II: We
apply Fourier transform (FT) on the spherical signal (section 11-A1 and section 111-C). We get the basis coefficients up to degree / for every concentric
sphere (the first graph in section 11l of the figure). 111: We apply the spherical convolution operation (the second graph in section Il of the figure) on the
basis coefficients, where k is the number of filters (section 111-D). We then feed the spherical convolution output to a fully connected layer (FC) and a

classification layer (Cl) (section IlI-E).

concentric sphere. The generated spherical voxel grid allows
sampling over the unit ball (S3), with each voxel being rep-
resented by (r, 0, ¢) where (r = {i — 1,i},i — 0 : c.
0,0 = {j — 1,j},j *x2n/n,n — 1 : n). We distribute
the given 3D shape over the grid, and we keep a record
of the number of points inside each voxel and produce a
density occupancy grid. The use of such occupancy grid
is expected to provide reliable estimates in the presence of
outliers. We compare occupancy grids in the next section.
To show the effect of noise and outliers on both sampling
strategies, we considered a case study shown in Figures 6
and 7. Figure 6 shows sampling over sphere surface for a
chair shown in column (a), with its corresponding spherical
function f (¢, 6) shown in (b), while the generated shape after
applying inverse transform (Equation 2) is shown in (c), and
the reconstruction error between b and c is shown in (d).
The first row shows the original shape, while the second
row shows the shape corrupted with outliers, and finally, the
third row shows the shape perturbed with noise. We used a
degree number of / = 10 in those figures. As can be seen
from the second row, outliers heavily affected the generated
function f (¢, 6) shown in b, which affected the reconstructed
shape in c. In contrast, the noise didn’t substantially affect
the constructed object when comparing images in ¢ for the
first and third rows. Noise in Fourier transform appears at
high frequencies [57], while using low frequencies, such as
here, only captures low details about the object surfaces.
Similarly, Figure 7 shows the sampling on concentric spheres
for the same object, we only show the cases of clean and
outliers corrupted object in the first and the second row,
respectively. Figure 7-b shows the function f (¢, 6) sampled
from sphere number 3. As can be seen, outliers appear as
small noise, which is also canceled out, as can be seen in ¢ due
to the use of low frequencies. Thus, based on those results,
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using concentric spheres should provide better robustness to
outliers.

C. CLASSIFICATION IN FREQUENCY DOMAIN

Initial spherical harmonics [13], [14] or Fourier [57], [58]
based classifiers used the magnitudes of the coefficients
to identify similarities between images. Those magnitudes
were used because they are rotation invariant [13], have
low dimensions and importantly they are useful for building
robust classification techniques [57], [58]. The noise miti-
gation property was achieved by discarding the coefficients
that are greatly affected by noise. For instance, in [58], only
frequencies with high magnitudes were used, while in [57],
only low-frequency components were used.

Several papers investigated the effect of noise on the
Fourier coefficients [58]—-[60]. In [58], the authors showed
that for a given image that is perturbed with zero-mean nor-
mally distributed noise, its corresponding Fourier coefficients
have the form:

E[1gm)I*] = fFm)* + IM|o? ®)

where f (n) is the n-th Fourier coefficient of the original
image, E[x] is the expected value of x, g(n) is the n-th Fourier
coefficient for the noisy image, |M| is the total number of pix-
els in the image, and o is the standard deviation of the additive
noise component. According to Equation 8, a particular coef-
ficient is a useful feature for a classifier only if [f(n)|2 is much
greater than |M |02, or if the difference between |g(n)|> and
[)?(n)|2 is very small. Although Equation 8 is derived for
Fourier coefficients, its application for the spherical harmon-
ics coefficients is straightforward as the spherical harmonics
are an extension to the Fourier transform. As such, we would
expect £ (I, m) to be useful if |f (I, m)|? > |M|o2.
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Chair

a

Noise distribution

e

FIGURE 4. a-d: Samples of the recorded objects using Intel RealSense 3D scanner. e: Noise distributing of the

captured signal.

(b)

(©) (d

FIGURE 5. (a) The point cloud of a chair taken from the ModelNet40 dataset, (b) the same chair is corrupted with
scattered outliers, (c) the same chair is corrupted with random point dropout, and (d) the same chair is perturbed

with Gaussian noise.

a b c d

FIGURE 6. Sampling of an object (chair) using image casting, where the
original object is shown in a, with its corresponding spherical function
f(¢, 6) shown in b. The generated shape after applying Fourier transform
(Equation 3) followed by inverse transform (Equation 2) is shown in (c),
and the reconstruction error between b and c is shown in (d). The second
row shows the same object corrupted with outliers, and the third row
shows the same object perturbed with noise. All figures are in Cartesian
coordinates.

Based on [57], [58] results, we also limit the order of
the spherical harmonics to suppress the effect of noise. Our
experiments show that for a typical object (e.g., the chair in
Figure 8) that is perturbed with Gaussian noise, the difference
between the Fourier coefficients of the clean and noisy image
increases by increasing the order of the spherical harmonic.
As such, limiting spherical harmonics order helps reducing
the effect of noise. In our classifier, only coefficients up to
order 9 were used as further reducing the order will reduce
the classification accuracy, as shown in our ablation study
(see section IV-]J). This behaviour is also seen for outliers
as shown in Figure 8. The figure shows that as the degree
level goes higher, outliers start to manifest themselves in the
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b c

FIGURE 7. a: Sampling of an object (chair) using concentric spheres.
b: The third concentric sphere corresponding spherical function f(p, 6).
c: The generated shape after applying Fourier transform (Equation 3)
followed by inverse transform (Equation 2). The second row shows the
same object corrupted with outliers. All figures are in Cartesian
coordinates.

reconstructed shapes. Since we limit the use of coefficients
to the orders below 10 (I = 9), outliers are hardly visible in
Figure 8-c.

D. IMPLEMENTATION OF SPHERICAL CONVOLUTION

We propose to apply the spherical convolution on 3D models
that are decomposed into concentric spheres. The use of
concentric spheres generates a uniform spherical voxel grid
that enables the spherical convolution neural network to learn
features over the unit ball (as opposed to only learning over
the unit sphere). We use separate convolution operations at
each concentric sphere to allow our network to learn features
relevant to that sphere. To achieve the spherical convolution,
we use Equation (6) in which the learned kernel is a zonal
(m = 0) filter A with dimension of [ x ¢, where [ is the
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a b c

L=50

d e

FIGURE 8. a: Sampling of an object (chair) using concentric spheres. b: The third concentric sphere corresponding spherical function f(p, ). c: The
generated shape after applying inverse transform for up to degree 10. d: The generated shape after applying inverse transform for up to degree 50. and

e: The generated shape after applying inverse transform for up to degree 70.

frequency degree, and c is the number of concentric spheres.
Similar to [10], we parameterize the kernel filters in the
spectral domain. No inverse Fourier transform is applied
after the spherical convolution. Therefore, our convolution
operation is entirely in the spectral domain, which reduces
the convolution computation time.

Our results show that applying inverse Fourier trans-
form (IFT) diminishes the robustness to outliers and noise
as the overall accuracy reduces by more than 20 percent.
Applying IFT takes us back to the input domain where it’s dif-
ficult to distinguish similarity between two signals compared
to the Fourier domain. This can be related to Equation (7),
where for each 6 and ¢, the output signal is calculated by
summing the entire coefficients. Thus, if the coefficients are
already altered by outliers, the output signal error will be
magnified/accumulated due to this summation. A detailed
discussion on this topic is provided in Appendix 1. Another
reason could be due to the reconstruction error shown in
Figure 6-c where IFT contribute to its increase.

Our experiments show that applying the convolution oper-
ation works well with perturbed data and the network has
been able to learn better features and be more discerning in
terms of object classification compared to the experiments
shown in Table 7. This is demonstrated by applying t-sne [61]
to clean and perturbed data, and the results are provided in
Appendix 1. As the application of convolutions on 3D voxel
grids has shown to be robust to the influence of outliers [48],
we would expect our method to exhibit a high degree of
robustness to outliers as well.

Compared to previous approaches, unlike other networks
such as PointNet [2] where their max-pooling chooses out-
liers as max, our proposed method does not use pooling or
grid altering operations. The used convolution operation can
be described as follows: Let x € X be our input spherical
coefficient at a given degree [; (fij,j — 0:mm < I,
the spherical convolution operation in Equation (6) is simply
fx) =kx(xx fz,-), where fzi is the kernel value at that degree /;
and k is a constant calculated from the square root term of the
same equation (Equation (6)) followed by the non-linearity
operation. This mathematical operation does not alter the
input signal and only assists with extracting better features in
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both clean and perturbed data, as seen from the t-sne results
(provided in Appendix 1).

Compared to 3D CNNs such as the octnet [43], spherical
CNNs are rotation equivariant, which could help in increasing
our performance. In addition, the use of spherical convolution
has shown to have less trainable parameters, where one layer
is enough to achieve good performance [36].

E. CLASSIFICATION LAYER

The returned feature map by the convolution operations rep-
resents the feature vector defined in Equation (4). The map
is then fed to fully connected and classification layers. The
feature vector in Equation (5) could be used as well; how-
ever, it is less robust to data inaccuracies, as will be shown
in the ablation section. Although the feature vector defined
in Equation (4) is not rotation invariant, given that we are
training with rotations, we would expect our network to learn
rotations.

IV. EXPERIMENTS

We compare our framework with state-of-the-art published
spherical convolution architectures, point cloud classification
methods, and robust methods. We considered outliers, noise,
and missing points as our types of data inaccuracies in this
paper since the corruption of point clouds with such inaccu-
racies is common.

A. DATASETS

To test the robustness of our approach and other meth-
ods, we use the benchmarks ModelNet40 [30], [42],
ScanObjectNN [55], and shapenet [62] datasets. We also
build a small dataset that contains 56 scenes of some
ScanObjectNN objects captured by Inter RealSense scanner.
In addition, we used MNIST in the supplementary materials.
We generate three instances from each of the test sets of
ModelNet40, ScanObjectNN, and shapenet. Each of these
instances is either corrupted with outliers, corrupted with
missing points, or perturbed with noise. We report the classi-
fication accuracy on each copy individually along with the
classification accuracy on the original test set. i.e., for the
ModelNet40 dataset, which has a test set of 2468 objects,
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we report the classification accuracy on the original test set,
the original test that was perturbed with noise, the original
test that was corrupted with outliers, and the original test that
was corrupted with missing points (each test set has the 2,468
objects). Figure 5 shows a sample of those perturbations and
corruptions. For MNIST dataset, we perturb the test set with
random noise/outliers at different ratios. The details of these
perturbations and corruptions are explained in the following
sections.

B. ARCHITECTURE

The proposed architecture, shown in Figure 3, works with
voxel-based objects. As such, a given 3D shape needs to be
converted to a 3D voxel by dividing the space into a 64%64*7
grid as shown in Figure 3-A. The number of concentric
spheres is chosen to be c=7 (see Figure 13) with a grid
resolution of 64 by 64 for each sphere. The Fourier trans-
form (Equation 3) is applied on each of the seven concentric
spheres to get the spherical harmonics coefficients flm with
[ = 9 as the degree of the spherical harmonics. Next, the
spherical convolution (Equation 6) is applied to the spherical
harmonics coefficients. We used one convolution layer (with
a size [ = 9) having 16 output channels, and used relu after
the convolution operation as our non-linearity. The output of
the convolution layer is then fed into a fully connected layer
with a size of 1024, followed by a classification layer. The
spherical convolution kernel ftlo applied on each sphere is a
zonal filter with a size of 1 by 9. The spherical convolution
operation is equivalent to the inner product between a matrix
with a size of 9 by 9 that contains the spherical harmonics
coefficients and a vector of length 9 that represents the con-
volution kernel. We compared different architectures in the
ablation study.

C. TRAINING

We perform data augmentation for training by including ran-
dom rotations around the vertical axis (between 0 — 277) and
small jittering (0.01 Gaussian noise). We take into account
points normal’s in some scenarios (we mention those scenar-
ios when we report the classification accuracy). The patch
size is set to 16, the learning rate varies from 0.001 to 0.00004,
and the number of epochs is set to 48. We used a TITAN
Xp GPU, where only 450Mb of memory was used during
training.

D. CLASSIFICATION PERFORMANCE ON OUR CAPTURED
SCENES

The classification accuracy of the proposed method and state-
of-art methods on our datasets are shown in Table 1. The
dataset contains 56 objects that belong to five categories from
the ScanObjectNN dataset (chairs, tables, cabinets, sofas, and
desks). We train all methods on the ScanObjectNN train-
ing data while we test them on our recorded objects. Our
proposed model scores 75% classification accuracy on the
captured scenes, while PointNet [2] and pointCNN [63] score
66% classification accuracy. DGCNN [6] and KPConv [64]
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score around 53%, while PL-Net3D [7] scores 57%. Each
category in our dataset contains scenes with different noise
levels. As such, methods can identify objects up to a certain
noise level. Comparing the results presented in Table 1 show
that our method can identify objects at higher noise levels
compared to other methods.

TABLE 1. The classification accuracy of some state-of-art methods on our
captured scenes.

Method | Accuracy
PL-Net3D [7] 57
PointNet [2] 66
DGCNN [6] 51.7
PointCNN [63] 66
KPConv [64] 53.6
RSCNN (ours) 75

E. ROBUSTNESS TO OUTLIERS

In this section, we take the ModelNet4( test dataset and
corrupt it with outliers. Similar to [7], we present two outlier
scenarios generated with different mechanisms. In the first
scenario, we test our model in the presence of scattered out-
liers: points uniformly distributed in the unit cube. A sample
case is shown in Figure 5. In the second scenario, added out-
liers are grouped into clusters of ten or twenty points, which
are uniformly distributed in the unit cube (similar to [65]).
The overall number of scattered points for this scenario are
fixed to ten or twenty percent as shown in Table 2. Points
in each cluster are normally distributed with zero mean and
standard deviations of 4% and 6%.

In Figure 9, we show the inference time and GPU memory
usage for SPHnet, octnet, PL-Net3D and our method. The
shown inference time include the preprocessing time required
for SPHnet, octnet, and our method to convert the point cloud
to voxels, and the preprocessing time for PL-Net3D to detect
all the planes in the point cloud using RANSAC. As can be
seen from the figure, our method is faster than any other
compared method, while the iterative RANSAC in PL-Net3D
takes 100 times longer to detect all the planes in the point
cloud. The figure also show that our method uses less GPU
memory than other compared methods.

Figure 10 and Table 2 show that our model is highly
robust to the influences of outlier in both scenarios. The
classification accuracy only drops by 8% percent when half
the data are outliers. We get similar robustness to PL-net3D
with the benefit of being much faster (100 times faster), while
other models robustness drop by significantly higher mar-
gins. For Spherical-cnn [10], even when we used the median
aggregation for generating the unit sphere grid (instead of
max aggregation), the network remains sensitive to the influ-
ences of the outliers. Similarly, SpH-net [12] performs poorly
when there were outliers as these outliers distort the distance
graph.
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FIGURE 9. GPU memory usage (blue/wide columns) along with the
inference time in seconds (red/thin columns, in log scale) for SPHnet,
octnet, PL-Net3D and our method (RSCNN). The shown times include the
preprocessing time required for SPHnet, octnet, and our method to
convert the point cloud to voxels, and the preprocessing time for
PL-Net3D to detect all the planes in the point cloud.
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FIGURE 10. Classification accuracy versus outliers.

F. ROBUSTNESS TO NOISE

In this section, we use the ModelNet40 dataset and add noise
to object points. We simulated the effect of noise in point
cloud data by perturbing points with zero mean, normally dis-
tributed values with standard deviations ranging from 0.02 to
0.10. A sample case is shown in Figure 5. We used Gaussian
noise as we found out that noise in real-scene objects is rela-
tively Gaussian as shown in Figure 4. Figure 11 show that our
proposed model performance deteriorated the least compared
to other models (by around 18%) for relatively large amount
of noise (at 0.10 noise level). This can be related to the use of
low frequencies, as we mentioned earlier in Figure 6, which
cancels the effect of noise. SPHnet was significantly affected
by noise, while spherical-CNN performance was relatively
much better than SPHnet.

G. ROBUSTNESS TO MISSING POINTS
In this section, we use the ModelNet40 dataset and randomly
remove points from each object. Figure 12 shows that our
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TABLE 2. Object classification results on clustered outliers.

10% 10% 20%
Method 10p 10p 20p
N(0.04) | N(0.06) | N(0.04)

PointNet [2] 7 6 7
SPHnet [12] 22 24 8
KPConv [64] 13 11 7
Octnet [43] 47 48 37
PL-Net3D [7] 79 80 67
RSCNN (ours) 79 79 73

10%: outliers percentage, 10p: 10 Points in
each cluster

model classification accuracy drops by only 2% when half
the points are eliminated, and by 22% when 90% of points
are removed. spherical-cnn classification accuracy drops by
10% when half the points are eliminated and it degrades after
that. SPHnet classification accuracy drops by 8% when 60%
of points are eliminated and it degrades after that. Ocntnet
classification accuracy degrades after 50%.

The above results are summarized in Table 3 below. Our
proposed model scores 82.2% classification accuracy on
ModelNet40 (MN40) dataset when using points normals,
while we achieve 80.5% with points only. Point-based meth-
ods such as DGCNN [6] and KPConv [64] score around
92% classification accuracy. However, when testing those
methods on MN40 corrupted with outliers, noise, and missing
points, our proposed model scores the highest classification
performance.

H. CLASSIFICATION ON SHAPENET DATASET

Shapenet dataset contains 51,127 pre-aligned shapes from
55 categories, which are split into 35,708 for training,
5,158 shapes for validation and 10,261 shapes for testing.
Each object contains 2048 points normalized in the unit
cube.! We tested several methods on this dataset and the
results are shown in Table 4. PointCNN achieves the highest

1 https://github.com/AnTao97/PointCloudDatasets
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TABLE 3. The classification accuracy on ModelNet40 (MN40) dataset. Noise, Dropout, and OUT are the same dataset when its corrupted with

0.1 Gaussian noise, 90% missing points, and 50% outliers respectively.

Method | Input | MN40 | OUT | Noise | Dropout

Spherical-cnn [10] | image 87 5 53 27
PL-Net3D [7] 86.6 70 60 50
PointNet [2] 89 4 27 57
DGCNN [6] 92.2 5 5 18
PointNet++ [30] Points 91.8 2 2 30
PointCNN [63] 91 20 4 7
KPConv [64] 90 4 4 12
SPHnet [12] 91 5 5 5
OctNet [43] 86.5 63 55 25
VoxNet [41] Voxels 86 7 17 28
RSCNN (ours) 82.2 (80.5) 72 63 58

—s— PL-Net3D respectively, while we score the highest classification per-

:gc;ne; N formance when data are corrupted with noise or outliers.

0.9 pherical-cnn

—v— Pointnet++ KPConv scores the best classification accuracy with a value

0.8 o ReCN (ours) of 89%, followed by PointCNN with a value of 87%.

07 Comparing the performance of all methods on
2 ScanObjectNN and ModelNet40 datasets shows that all meth-
£ 064 ods classification accuracies (including ours) drop by 4-6%.
Eo.s- This could be due to the lower number of training data of

ScanObjectNN compared to ModelNet40.

047 PL-Net3D scores 70% classification accuracy with lower

0.3 robustness to noise, outliers, and missing points. Although

02 . . . \ . KPConv [64] scores the highest classification accuracy on

0 20 40 60 80 100 the ScanObjectNN dataset. However it shows low robustness

Missing Points Ratio

FIGURE 12. Classification accuracy versus missing points.

classification accuracy with a score of 83%, whereas Point-
Net and DGCNN score around 82%, while KPConv and
VoxNet score around 81%. Our proposed model scores 77.4%
using points and their normals (75.6% with points only),
which is around 3% less than VoxNet and 5% less than the
best model.

While the performance of the proposed model on clean
data is slightly lower, it shows significant robustness on the
corrupted datasets as seen in the table. PI-Net3D outperforms
our method by 7% on objects corrupted with 50% outliers,
however, our model outperforms P1-Net3D on data corrupted
with noise and missing points by 12% and 1% respectively.

I. CLASSIFICATION PERFORMANCE ON ScanObjectNN
DATASET

We corrupt the ScanObjectNN (SC) dataset with 50% outlier,
0.1 Gaussian noise, and 80% missing points. We then report
the classification accuracy of our proposed model along
with some state-of-art models on the corrupted ScanOb-
jectNN (SC) in Table 5. Our proposed model scores 76%
and 76% classification accuracies on the original ScanOb-
jectNN (SC) datasets with and without points normal’s
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to outliers, noise, and random point dropout along with all
other compared methods, except that PointNet shows better
robustness to missing points.

J. ABLATION STUDY

We conducted several experiments on the ModelNet40
dataset to explore all possible solutions of our method
and their performance under different data inaccuracies; the
results are shown in Table 6. The first row shows the results
of our proposed model (RSCNN) with 3D Models having
2000 points and their normals. The second row shows the
results of our proposed model with points only and normal-
izing inputs to get a density grid (same results shown in the
previous section). The third row shows the results when train-
ing without normalizing inputs. As can be seen from those
results, using density grid provides the best performance. The
forth row shows the result of our proposed model trained
without points jittering (using points only with normalizing
inputs).

We implemented the inverse transform operation after
applying the convolution in our model. As a result, our model
performed worse and became less robust to data inaccuracies.
The outputs are presented in the fifth row of Table 6. The
effect of performing Inverse Fourier Transform on the clas-
sification accuracy is discussed in Supplement 1. In the next
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TABLE 4. The classification accuracy on Shapenet dataset.

Method \ Input \ clean \ ouT \ Noise \ Dropout
PointNet 82.2 4 46 52
PointCNN 83 2 2 19
DGCNN Points 82.3 4 13 17
KPConv 81.2 2 2 8
PL-Net3D 78 66 47 58
VoxNet Voxels 80.9 19 31 14
RSCNN (ours) 77.4 (75.6) 59 58 59
TABLE 5. The classification accuracy on ScanObjectNN dataset.
Method \ Input \ SC \ ouT \ Noise \ Dropout
PL-Net3D [7] 70 20 40 55
PointNet [2] 82 8 26 80
DGCNN [6] Points 85 18 20 17
PointCNN [63] 87 44 22 25
KPConv [64] 89 8 14 68
VoxNet [41] Voxels 80 17 20 20
RSCNN (ours) 76 (74) 58 55 70
TABLE 6. Classification accuracy versus different network architectures and different data inaccuracies.
method sampled classification accuracy
points
90% 0.1 50%
clean . .
dropout | noise | outliers
RSCNN 2k+N 82.2 39 48.2 56
RSCNN 2k 80.5 58 63 72
RSCNN no NL 2k 80.7 30 55 70
RSCNN* 2k 80.8 61 58 70
RSCNN + IFT 2k 65 58 29 21
RSCNN no FC 2k 66 43 51 44

TABLE 7. Classification accuracy results for objects perturbed with noise,
missing points, and outliers.

occupancy random . )
. clean noise | outliers
grid dropout
binary+ D1 0.79 0.34 0.24 0.14
density+ D1 | 0.78 0.75 0.37 0.50
density+ D2 | 0.68 0.68 0.3 0.24

step, we evaluated our model with no fully connected layer
to reduce the number of trainable parameters. However, the
results, shown in the sixth row, suggest that such an action is
detrimental for the overall performance.

We evaluated the robustness of the two descriptors
represented by Equation (4) and Equation (5) for object
classification by feeding each of them to a fully connected
neural network. The results are shown in Table 7. We tested
their robustness against: Gaussian noise with 0.10 standard
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TABLE 8. _Effect of order level on the relative difference
(1g(I, m)|2 — |f(I, m)|2)/|f(I, m)|® between coefficients of noisy and clean
image.

Order | Mean | Median Std
9 9 0.04 60
15 260 0.065 5859
20 2202 0.07 59160
60 71660 0.05 6663551

deviations, uniformly scattered outliers with 50% percentage,
and 80% Random point dropout. The results show that the
used sampling and the density occupancy grid provide a high
degree of robustness to outliers. In addition, these results also
show that the descriptor in Equation (4) D1 provides higher
classification accuracy than using the descriptor in Equa-
tion (5) D2 as the first one carries more shape information.
We tested our method with 5, 7, and 10 concentric spheres.
Each sphere had a 64 by 64 grid. We also tested our method
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FIGURE 13. (a) The Classification accuracy versus number of concentric
spheres. (b) The Classification accuracy versus the spherical harmonics
order /.

with spherical harmonics orders ranging from 9 to 60. The
results are shown in Figure 13. Our network performance
gradually increases up to using 7 concentric spheres and
plateaus afterwards. Moreover, increasing the spherical har-
monics order did not improve the accuracy.

Table 8 shows that for a typical object (e.g., the chair
in figure 8) that is perturbed with 2% Gaussian noise, the
difference between the Fourier coefficients of the clean and
noisy image increases by increasing the order of the spherical
harmonic. As such, limiting spherical harmonics order helps
reducing the effect of noise. In our classifier, only coefficients
up to order 9 were used as further reducing the order will
reduce the classification accuracy, as shown in Figure 13-b.

V. CONCLUSION

Classifying 3D objects is an important task in several robotic
applications. In this paper, we present a robust spherical
harmonics model for single object classification. Our model
uses the voxel grid of concentric spheres to learn features over
the unit ball. In addition, we keep the convolution operations
in the Fourier domain without applying the inverse transform
used in previous approaches. As a result, our model is able
to learn features that are less sensitive to data inaccuracies.
We tested our proposed model against several types of data
inaccuracies, such as noise and outliers. Our results show that
the proposed model competes with the state-of-art networks
in terms of robustness to effects of data inaccuracies with
lower computational requirements.
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