
1

Quantitative Strongest Post
A Calculus for Reasoning about the Flow ofQuantitative Information

LINPENG ZHANG∗, University College London, United Kingdom

BENJAMIN LUCIEN KAMINSKI∗, Saarland University, Saarland Informatics Campus, Germany and Uni-

versity College London, United Kingdom

Wepresent a novel strongest-postcondition-style calculus for quantitative reasoning about non-deterministic

programs with loops. Whereas existing quantitative weakest pre allows reasoning about the value of a quantity

after a program terminates on a given initial state, quantitative strongest post allows reasoning about the

value that a quantity had before the program was executed and reached a given final state. We show how

strongest post enables reasoning about the flow of quantitative information through programs.
Similarly to weakest liberal preconditions, we also develop a quantitative strongest liberal post. As a

byproduct, we obtain the entirely unexplored notion of strongest liberal postconditions and show how

these foreshadow a potential new program logic — partial incorrectness logic — which would be a more

liberal version of O’Hearn’s recent incorrectness logic.

CCS Concepts: • Theory of computation→ Logic and verification; Programming logic; Axiomatic seman-
tics; Pre- and post-conditions; Program verification; Program analysis.

Additional Key Words and Phrases: Incorrectness Logic, Quantitative Verification, Strongest Postcondition,

Weakest Precondition

ACM Reference Format:
Linpeng Zhang and Benjamin Lucien Kaminski. 2022. Quantitative Strongest Post: A Calculus for Reasoning

about the Flow of Quantitative Information. Proc. ACM Program. Lang. 1, OOPSLA, Article 1 (November 2022),

58 pages.

1 INTRODUCTION
Partial Correctness. Already in one of the earliest works on program verification, Turing [1949]

separates reasoning about partial correctness and termination. Partial correctness means that the

program is correct, if it terminates. Nontermination is in that sense deemed “correct” behavior.

Hoare triples [Hoare 1969] capture partial correctness formally: Given program𝐶 and predicates𝐺, 𝐹 ,

we say that ⟨𝐺 ⟩ 𝐶 ⟨ 𝐹 ⟩ is valid for partial correctness, if from every state 𝜎 satisfying precondition

𝐺 , 𝐶 either terminates in some state satisfying postcondition 𝐹 , or 𝐶 does not terminate on 𝜎 .

A different approach to partial correctness are the weakest liberal preconditions of Dijkstra [1975]:
Given program 𝐶 and postcondition 𝐹 , the weakest liberal precondition is the weakest (largest)

predicate wlpJ𝐶K (𝐹), such that starting from any state 𝜎 satisfying the precondition wlpJ𝐶K (𝐹),
𝐶 either terminates in some state satisfying the postcondition 𝐹 , or 𝐶 does not terminate on 𝜎 .

wlpJ𝐶K () is a called a backward-moving predicate transformer semantics, because it transforms a

postcondition (a predicate) 𝐹 into a precondition (another predicate) wlpJ𝐶K (𝐹).
A different predicate transformer semantics are the forward-moving strongest postconditions

of Dijkstra and Scholten [1990]: they transform a precondition 𝐺 into the strongest (smallest)

predicate sp J𝐶K (𝐺), such that sp J𝐶K (𝐺) contains all states that can be reached by executing𝐶 on

∗
Both authors contributed equally to this research.

Authors’ addresses: Linpeng Zhang, linpeng.zhang.20@ucl.ac.uk, University College London, London, United Kingdom; Ben-

jamin Lucien Kaminski, b.kaminski@ucl.ac.uk, Saarland University, Saarland Informatics Campus, Saarbrücken, Germany,

University College London, London, United Kingdom.

2022. 2475-1421/2022/11-ART1 $15.00

https://doi.org/

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: November 2022.

ar
X

iv
:2

20
2.

06
76

5v
1

 [
cs

.L
O

]
 1

4
Fe

b
20

22

https://doi.org/

1:2 Linpeng Zhang and Benjamin Lucien Kaminski

some state satisfying the precondition𝐺 . Hoare triples, weakest liberal preconditions, and strongest

postconditions are strongly related by the following well-known fact:

⟨𝐺 ⟩ 𝐶 ⟨ 𝐹 ⟩ is valid for part. corr. iff 𝐺 =⇒ wlpJ𝐶K (𝐹) iff sp J𝐶K (𝐺) =⇒ 𝐹 .

Having a choice between wlp and sp is beneficial because sometimes the partial correctness proof

can be easier in the, say, forward direction than in the backward direction.

Quantitative Verification. Backward-moving predicate transformers have been generalized to real-
valued-function transformers, first by Kozen [1985], in order to reason about probabilistic programs,

e.g. about the probability that some postcondition will be satisfied after program termination. For

the forward direction, Jones [1990] presented a counterexample to the existence of probabilistic

strongest postconditions. While we also cannot handle probabilistic programs, we will in this paper

develop a quantitative strongest post transformer for reasoning about nondeterministic programs.
Intuitively, quantitative predicate-transformer-style calculi lift reasoning

from predicates 𝐹 : States → {true, false} to quantities 𝑓 : States → R±∞ ,

i.e. functions 𝑓 that associate a real number (or +∞ or −∞) to each state. Given a postquantity
𝑓 associating a number to final states, our backward-moving weakest liberal pre transformer

wlpJ𝐶K (𝑓) : States → R±∞ associates numbers to initial states, so that wlpJ𝐶K (𝑓) (𝜎) anticipates
what value 𝑓 will have after𝐶 terminates on 𝜎 (andwlp anticipates +∞ if𝐶 does not terminate on 𝜎).

((2𝒙 + 2

𝑥 B 𝑥 + 1

((2𝒙

For example, what is the anticipated value of 2𝑥 after executing the as-

signment 𝑥 B 𝑥 + 1? Our quantitative weakest liberal pre calculus will

push the “assertion” 2𝑥 backward through the program, obtaining the an-

notations on the right (read from bottom to top). Indeed, given an initial value
𝑥𝜎 = 5 for the program variable 𝑥 , the final value of the expression 2𝑥 will be

2𝑥𝜎 + 2 = 2 · 5 + 2 = 12.
While counterintuitive— sincewlpmoves backwards—,wlp acts like aweather forecast: Given the

current state 𝜎 of the global atmosphere, a function 𝑓 mapping atmosphere state to the temperature

in Auckland, and an (algorithmic) description 𝐶 of how the atmosphere evolves within 24 hours,

wlpJ𝐶K (𝑓) (𝜎) anticipates now what the temperature in Auckland will be tomorrow.
In this paper, we develop a quantitative strongest post transformer sp with as strong a connection

(more precisely: a Galois connection) to quantitative wlp as in the qualitative case, namely

𝑔 ⪯ wlpJ𝐶K (𝑓) iff sp J𝐶K (𝑔) ⪯ 𝑓 .

Dually to wlp, our forward-moving strongest post transformer acts like a weather backcast: Given
the current global atmosphere state 𝜏 , sp J𝐶K (𝑓) (𝜏) retrocipates now what the temperature in

Auckland was yesterday. Speaking in terms of programs and quantities, given a prequantity 𝑓

associating a number to initial states, sp J𝐶K (𝑓) : States → R±∞ associates numbers to final states,
such that sp J𝐶K (𝑓) (𝜏) retrocipates what value 𝑓 had in an initial state before 𝐶 terminated in 𝜏

(and sp retrocipates −∞ if 𝜏 is not reachable by executing 𝐶 on some initial state).

((2𝒙

𝑥 B 𝑥 + 1

((2𝒙 − 2

For example, what is the retrocipated value of 2𝑥 before the assignment

𝑥 B 𝑥 +1? Our quantitative strongest post calculus will push the “assertion” 2𝑥
forward through the program, obtaining the annotations on the right (read from

top to bottom). Indeed, given a final value 𝑥𝜏 = 5 for the program variable 𝑥 ,

the initial value of the expression 2𝑥 must have been 2𝑥𝜏 − 2 = 2 · 5 − 2 = 8.
Notably, our quantitative strongest post transformer provides some notion of flow of quantitative

information through the program: If we start the above program with initial value 𝑥𝜎 = 4 for 𝑥 , then
we have initially 2𝑥𝜎 = 2 · 4 = 8. After the execution of the program, the final value of 𝑥 is 𝑥𝜏 = 5.
The expression 2𝑥 −2 evaluated in 𝑥𝜏 is again 2 ·𝑥𝜏 = 2 · 5−2 = 8. In that sense, our quantitative sp

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: November 2022.

Quantitative Strongest Post 1:3

takes a quantity — for instance: a secret value — and propagates through the program an expression

which preserves the value of the initial quantity. Given some final state, we can hence read off what

the quantity was initially and so reason about quantitative flow and leakage of information.

Contributions and Organization
Not being ourmain contribution, we present in Sec. 3 quantitativewp andwlp. Differently from [Batz

et al. 2018; Kaminski 2019; McIver and Morgan 2005a], our quantitative transformers act on signed
unbounded quantities in R±∞, whereas traditional probabilistic wlp act on [0, 1] and wp on R∞≥0.
In Section 4, we present our main contribution: a novel quantitative strongest post transformer

sp as described above. Moreover, we provide a quantitative strongest liberal post transformer slp,
which gives a different value than sp to unreachable states (whereas wlp gives a different value than

wp to nonterminating states). We study essential properties of all our transformers in Section 5 and

show how they embed reasoning about predicates à la Dijkstra and Scholten [1990].

In Section 6, we show that slp has as tight a (Galois) connection to wp as sp to wlp, namely

wp J𝐶K (𝑓) ⪯ 𝑔 iff 𝑓 ⪯ slpJ𝐶K (𝑔) .

When restricting to predicates, our slp transformer yields the novel notion of strongest liberal
postconditions, which is entirely unexplored in the literature. While it is known that strongest

postconditions are tightly connected with the recent incorrectness logic of O’Hearn [2019], we show

how slp foreshadows a new program logic — partial incorrectness logic. We also hint at two further

new program logics: one of necessary liberal preconditions and one of necessary liberal postconditions.
In Section 7, we present proof rules for loops for all four quantitative transformers. In Section 8

we demonstrate efficacy of sp and slp for reasoning about the flow of quantitative information.

2 NONDETERMINISTIC PROGRAMS
The syntax of the nondeterministic guarded command language (nGCL) à la Dijkstra is given by

𝐶 F 𝑥 B 𝑒 | 𝐶 # 𝐶 | {𝐶 } □ {𝐶 } | if (𝜑) {𝐶 } else {𝐶 } | while (𝜑) {𝐶 } .

where 𝑥 ∈ Vars is a variable, 𝑒 is an arithmetic expression and 𝜑 is a predicate. A program state 𝜎

is a function that assigns an integer to each program variable. The set of program states is given

by Σ = { 𝜎 | 𝜎 : Vars → Z }. Given a program state 𝜎 , we denote by 𝜎 (𝜉) the evaluation of an

arithmetic or Boolean expression 𝜉 in 𝜎 , i.e. the value that is obtained by evaluating 𝜉 after replacing

any occurrence of any variable 𝑥 in 𝜉 by the value 𝜎 (𝑥). Moreover, we denote by 𝜎 [𝑥/𝑣] a new
state that is obtained from 𝜎 by setting the valuation of the variable 𝑥 ∈ Vars to 𝑣 ∈ Z. Formally:

𝜎 [𝑥/𝑣] (𝑦) = 𝑣 , if 𝑦 = 𝑥 ; and 𝜎 [𝑥/𝑣] (𝑦) = 𝜎 (𝑦), otherwise.
We assign meaning to our nondeterministic nGCL-statements in terms of a denotational collecting

semantics (as is standard in program analysis, see [Cousot and Cousot 1977; Hecht 1977; Rival and

Yi 2020]), i.e. we have as input a set of initial states and as output the set of reachable states.

Definition 2.1 (Collecting Semantics for nGCL Programs). Let Conf = P(Σ) be the set of program
configurations, i.e. a single configuration is a set of program states; and let J𝜑K𝑆 = {𝜎 | 𝜎 ∈ 𝑆∧𝜎 |= 𝜑}
be a filtering of a program configuration to only those states where the predicate 𝜑 holds.

The collecting semantics J𝐶K : Conf → Conf of an nGCL program 𝐶 is defined inductively by

J𝑥 B 𝑒K𝑆 = {𝜎 [𝑥/𝜎 (𝑒)] | 𝜎 ∈ 𝑆} (assignment)

J𝐶1 # 𝐶2K𝑆 = (J𝐶2K ◦ J𝐶1K)𝑆 (sequential composition)

Jif (𝜑) {𝐶1 } else {𝐶2 }K𝑆 = (J𝐶1K ◦ J𝜑K)𝑆 ∪ (J𝐶2K ◦ J¬𝜑K)𝑆 (conditional choice)

Jwhile (𝜑) {𝐶 }K𝑆 = J¬𝜑K
(
lfp 𝑋 . 𝑆 ∪

(
J𝐶K ◦ J𝜑K

)
𝑋

)
(loop)

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: November 2022.

1:4 Linpeng Zhang and Benjamin Lucien Kaminski

𝝈

□

□

•
• • . . .

𝜓 (𝜏1)
𝜓 (𝜏2) 𝜓 (𝜏3)

∨

[]

𝐶

wp J𝐶K (𝜓)

(a) Weakest preconditions: Given initial state 𝜎 ,
wp J𝐶K (𝜓) determines all final states 𝜏𝑖 reachable from
executing 𝐶 on 𝜎 , evaluates𝜓 in those states, and re-
turns the disjunction (∨) over all these truth values.

𝝈

□

□

•
• • . . .

𝑓 (𝜏1)
𝑓 (𝜏2) 𝑓 (𝜏3)

b
[]

𝐶

wp J𝐶K (𝑓)

(b) Quantitative weakest pre: Given initial state 𝜎 ,
wp J𝐶K (𝑓) determines all final states 𝜏𝑖 reachable from
executing 𝐶 on 𝜎 , evaluates 𝑓 in those states, and re-
turns the supremum (⋎) over all these quantities.

Fig. 1. (Angelic) weakest preconditions and quantitative weakest pres.

J{𝐶1 } □ {𝐶2 }K𝑆 = J𝐶1K𝑆 ∪ J𝐶2K𝑆 . (nondeterministic choice)

By slight abuse of notation, we write J𝐶K(𝜎) for J𝐶K{𝜎}. For more details, see Appendix A. △

3 WEAKEST PRE
We develop novel weakest (liberal) pre calculi á la Dijkstra [1975] for quantitative reasoning
about nondeterministic programs. While we repeat that the weakest pre calculi are not our main

contribution (that being the quantitative strongest post calculi), we believe that weakest pre calculi

are easier to understand and provide the necessary intuition for moving from the Boolean to the

quantitative realm. We first shortly recap Dijkstra’s classical weakest preconditions before we lift

them to a quantitative setting. Thereafter, we lift weakest liberal preconditions to quantities.

3.1 Classical Weakest Preconditions
Dijkstra’s weakest precondition calculus employs predicate transformers of type

wpJ𝐶K : B → B , where B = {0, 1}Σ ,

which associate to each nondeterministic program 𝐶 a mapping from predicates (sets of program

states) to predicates. Somewhat less common, we consider here an angelic setting, where the

nondeterminism is resolved to our advantage.
1
Specifically, the angelic weakest precondition

transformer wpJ𝐶K maps a postcondition 𝜓 over final states to a precondition wp J𝐶K (𝜓) over
initial states, such that executing the program𝐶 on an initial state satisfying wp J𝐶K (𝜓) guarantees
that 𝐶 can2 terminate in a final state satisfying𝜓 . More symbolically, recalling that J𝐶K(𝜎) is the
set of all final states reachable after termination of 𝐶 on 𝜎 ,

𝜎 |= wp J𝐶K (𝜓) iff ∃ 𝜏 ∈ J𝐶K(𝜎) : 𝜏 |= 𝜓 .

While the above is a set perspective on wp, an equivalent perspective on wp is amap perspective, see
Figure 1a: The postcondition𝜓 : Σ → {0, 1} maps program states to truth values. The predicate

wp J𝐶K (𝜓) is then a map that takes as input an initial state 𝜎 , determines for each reachable final

1
Considering an angelic setting allows us not only to show that our transformers enjoy several properties, but also to

provide tight connections between quantitative weakest preconditions and quantitative strongest postconditions.

2
Recall that𝐶 is a nondeterministic program. For the (standard) demonic setting as well as for deterministic programs, we

can replace “can” by “will”.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: November 2022.

Quantitative Strongest Post 1:5

state 𝜏 ∈ J𝐶K(𝜎) the (truth) value𝜓 (𝜏), takes a disjunction over all these truth values, and finally

returns the truth value of that disjunction. More symbolically,

wp J𝐶K (𝜓) (𝜎) =
∨

𝜏 ∈J𝐶K(𝜎)
𝜓 (𝜏) .

It is this map perspective which we will now gradually lift to a quantitative setting. For that, we

first need to leave the realm of Boolean valued predicates and move to real-valued functions.

3.2 Quantities
For our development here, we are interested in signed quantities. Such quantities form — just like

first-order logic for weakest preconditions — the assertion “language” of our quantitative calculi.

Definition 3.1 (Quantities). The set of all quantities is defined by

A =
{
𝑓

�� 𝑓 : Σ → R±∞
}

i.e. the set of all functions 𝑓 : Σ → R±∞ associating an extended real (i.e. either a proper real number,

or −∞, or +∞) to each program state. The point-wise order

𝑓 ⪯ 𝑔 iff ∀𝜎 ∈ Σ : 𝑓 (𝜎) ≤ 𝑔(𝜎)

renders ⟨A, ⪯⟩ a complete lattice with join ⋏ and meet ⋎, given point-wise by

𝑓 ⋏ 𝑔 = 𝜆𝜎. min
{
𝑓 (𝜎), 𝑔(𝜎)

}
and 𝑓 ⋎ 𝑔 = 𝜆𝜎. max

{
𝑓 (𝜎), 𝑔(𝜎)

}
.

Joins and meets over arbitrary subsets exist. When we write 𝑎 ⋎ 𝑏 ⋏ 𝑐 , we assume that ⋏ binds

stronger than ⋎, so we read that as 𝑎 ⋎ (𝑏 ⋏ 𝑐). △

Remark 3.2 (Signed Quantities). Kozen [1985] also considers signed functions for reasoning

about probabilistic programs. However, Kozen’s induction rule for while loops only applies to

non-negative functions, see [Kozen 1985, page 168]. Kaminski and Katoen [2017] have rules for

probabilistic loops and signed functions, but their machinery is quite involved and their rule for

loops is more involved than simple induction. Our development in this paper is — on the plus-side —

comparatively simple, but — as a trade-off — we cannot handle probabilistic programs. △

3.3 Quantitative Weakest Pre
We now define a calculus á la Dijkstra for formal reasoning about the value of a quantity 𝑓 ∈ A after

execution of a nondeterministic program. For that, we generalize the map perspective of weakest
preconditions to quantities. Instead of a postcondition, we now have a postquantity 𝑓 : Σ → R±∞
mapping (final) program states to extended reals. wp J𝐶K (𝑓) : Σ → R±∞ is then a function that

takes as input an initial state 𝜎 , determines all final states 𝜏 reachable from executing 𝐶 on 𝜎 ,

evaluates the postquantity 𝑓 (𝜏) in each final state 𝜏 , and finally returns the supremum over all

these so-determined quantities, see Figure 1b. If the program is completely deterministic and if 𝐶

terminates on input 𝜎 , then wp J𝐶K (𝑓) (𝜎) anticipates the single possible value that 𝑓 will have,

evaluated in the final state that is reached after executing 𝐶 on 𝜎 .

One of the main advantages of Dijkstra’s calculus is that the weakest preconditions can be

defined by induction on the program structure, thus allowing for compositional reasoning. Indeed,
the same applies to our quantitative setting.

Definition 3.3 (Quantitative Weakest Pre). The weakest pre transformer

wp : nGCL → (A→ A)

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: November 2022.

1:6 Linpeng Zhang and Benjamin Lucien Kaminski

𝑪 wp J𝑪K (𝒇) wlp J𝑪K (𝒇)

diverge −∞ +∞

𝑥 B 𝑒 𝑓 [𝑥/𝑒] 𝑓 [𝑥/𝑒]

𝐶1 # 𝐶2 wp J𝐶1K
(
wp J𝐶2K (𝑓)

)
wlpJ𝐶1K

(
wlpJ𝐶2K (𝑓)

)
{𝐶1 } □ {𝐶2 } wp J𝐶1K (𝑓) ⋎ wp J𝐶2K (𝑓) wlpJ𝐶1K (𝑓) ⋏ wlpJ𝐶2K (𝑓)

if (𝜑) {𝐶1 } else {𝐶2 } [𝜑] ⋏ wp J𝐶1K (𝑓) ⋎ [¬𝜑] ⋏ wp J𝐶2K (𝑓) [𝜑] ⋏ wlpJ𝐶1K (𝑓) ⋎ [¬𝜑] ⋏ wlpJ𝐶2K (𝑓)

while (𝜑) {𝐶 ′ } lfp 𝑋 . [¬𝜑] ⋏ 𝑓 ⋎ [𝜑] ⋏ wp J𝐶 ′K (𝑋) gfp 𝑋 . [¬𝜑] ⋏ 𝑓 ⋎ [𝜑] ⋏ wlpJ𝐶 ′K (𝑋)

Table 1. Rules for wp and wlp. lfp 𝑔. Φ(𝑔) and gfp 𝑔. Φ(𝑔) denote the least and greatest fixed point of Φ.

is defined inductively according to the rules in Table 1 (middle column). We call the function

Φ𝑓 (𝑋) = [¬𝜑] ⋏ 𝑓 ⋎ [𝜑] ⋏ wp J𝐶K (𝑋) ,

whose least fixed point defines the weakest pre wp Jwhile (𝜑) {𝐶 }K (𝑓), the wp–characteristic
function (of while (𝜑) {𝐶 } with respect to 𝑓). △

Let us show for some of the rules how the quantitative weakest pre semantics can be developed

and understood analogously to Dijkstra’s classical weakest preconditions.

Assignment. The weakest precondition of an assignment is given by

wp J𝑥 B 𝑒K (𝜓) = 𝜓 [𝑥/𝑒] ,

where𝜓 [𝑥/𝑒] is the replacement of every occurrence of variable 𝑥 in the postcondition𝜓 by the

expression 𝑒 . For quantitative weakest pre, we can do something completely analogous, except that

we do not have a syntax like first-order logic for the postquantities at hand.
3
Still, we can define

semantically what it means to “syntactically replace” every “occurrence” of 𝑥 in 𝑓 by 𝑒 — and with

it the quantitative weakest pre of an assignment — as follows:

wp J𝑥 B 𝑒K (𝑓) = 𝑓 [𝑥/𝑒] B 𝜆 𝜎. 𝑓
(
𝜎 [𝑥 ↦→ 𝜎 (𝑒)]

)
.

So what is the value of 𝑓 in the final state reached after executing the assignment 𝑥 B 𝑒 on initial

state 𝜎? It is precisely 𝑓 , but evaluated at the final state 𝜎 [𝑥 ↦→ 𝜎 (𝑒)] — the state obtained from 𝜎

by updating variable 𝑥 to value 𝜎 (𝑒).

Nondeterministic Choice. When “executing” the nondeterministic choice {𝐶1 } □ {𝐶2 } on
some initial state 𝜎 , either 𝐶1 or 𝐶2 will be executed, chosen nondeterministically. Hence, the

execution will reach either a final state in which executing 𝐶1 on 𝜎 terminates or a final state in

which executing 𝐶2 on 𝜎 terminates (or no final state if both computations diverge).

Denotationally, the angelic weakest precondition of {𝐶1 } □ {𝐶2 } is given by

wp J{𝐶1 } □ {𝐶2 }K (𝜓) = wp J𝐶1K (𝜓) ∨ wp J𝐶2K (𝜓) .

Indeed, whenever an initial state 𝜎 satisfies the precondition wp J𝐶1K (𝜓) ∨ wp J𝐶2K (𝜓), then
— either by executing 𝐶1 or by executing 𝐶2 — it is possible that the computation will terminate in

some final state satisfying the postcondition𝜓 .

Quantitatively, what is the anticipated value of 𝑓 after termination of either 𝐶1 or 𝐶2? Since 𝐶1

and 𝐶2 could both terminate but very well yield different values for 𝑓 , we need to accommodate

3
For probabilistic programs, an expressive and relatively complete (with respect to taking weakest preexpectations) syntax
for expressing functions (expectations) of type Σ → R∞≥0 has been presented in [Batz et al. 2021].

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: November 2022.

Quantitative Strongest Post 1:7

for two different numbers. In the maximizing spirit of angelic wp, we also maximize and select as

quantitative weakest pre of {𝐶1 } □ {𝐶2 } the largest possible final value of 𝑓 via the meet

wp J{𝐶1 } □ {𝐶2 }K (𝑓) = wp J𝐶1K (𝑓) ⋎ wp J𝐶2K (𝑓) .

Diverge. diverge is a shorthand for while (true) { skip } — the certainly diverging loop. Deno-

tationally, the weakest precondition of diverge is given by

wp JdivergeK (𝜓) = false .

As there is no initial state that satisfies false, this simply tells us that there is no initial on which

diverge could possibly terminate in any final state satisfying𝜓 .

Note that the predicate false is the least element in the Boolean lattice. When lifting this to a

quantitative setting, we also assign the least element. Hence,

wp JdivergeK (𝑓) = −∞ .

Another explanation goes by considering again the angelic, i.e. maximizing, aspect of quantitative

weakest pre: What is the maximal value that we can anticipate for 𝑓 after diverge has terminated?

Since diverge does not terminate at all (but we are still forced to assign some “number” to this

situation), the largest value that we can possibly anticipate is the absolute minimum: −∞.

Remark 3.4 (Quantitative Weakest Pre and Nontermination). In some sense, −∞ is the value of
nontermination in quantitativewp. Note that it is more tedious to detect nontermination by standard

weakest preconditions: Consider e.g. the program diverge and postcondition “𝑥 is odd”. Then

wp JdivergeK (𝑥 is odd) = false .

On the other hand, for the terminating program 𝑥 B 2 · 𝑥 , we also have

wp J𝑥 B 2 · 𝑥K (𝑥 is odd) = 2 · 𝑥 is odd = false .

Thus,wp J𝐶K (𝜓) (𝜎) = false is not a sufficient criterion for detecting nontermination of𝐶 on 𝜎 . false
merely tells us that the program either does not terminate or it fails to establish the postcondition.

To distinguish the two cases, one needs to check, additionally, whether 𝜎 terminates, i.e., whether

wp J𝐶K (true) (𝜎) holds.
In our quantitative wp calculus, given any non-infinite postquantity 𝑓 our wp transformer

distinguishes whether the program terminates or not in one go. Indeed, if −∞ ⪯ 𝑓 ⪯ +∞ and

wp J𝐶K (𝑓) (𝜎) = 0, then definitely 𝐶 terminates on 𝜎 and 𝑓 assumes value 0 after termination of 𝐶

on 𝜎 . For instance, for postquantity 𝑥 we have

wp JdivergeK (𝑥) = −∞ and wp J𝑥 B 2 · 𝑥K (𝑥) = 2 · 𝑥 ,

and can thus read off that the program diverge indeed does not terminate, whereas, since 𝑥 > −∞,

we can see that 𝑥 B 2 · 𝑥 does always terminate. △

Conditional Choice. When executing if (𝜑) {𝐶1 } else {𝐶2 } on some initial state 𝜎 , the

branch 𝐶1 is executed 𝜎 satisfies the predicate 𝜑 and otherwise 𝐶2 is executed.

Denotationally, the weakest precondition of if (𝜑) {𝐶1 } else {𝐶2 } is given by

wp Jif (𝜑) {𝐶1 } else {𝐶2 }K (𝜓) = 𝜑 ∧ wp J𝐶1K (𝜑) ∨ ¬𝜑 ∧ wp J𝐶2K (𝜑) ,

where — as usual — ∧ binds stronger than ∨. Indeed, whenever an initial state 𝜎 satisfies the

above precondition then either 𝜎 |= 𝜑 and then — since then 𝜎 must also satisfy wp J𝐶1K (𝜓) —
executing 𝐶1 can terminate in a final state satisfying 𝜑 , or 𝜎 ̸ |= 𝜑 and then — since then 𝜎 must

also satisfy wp J𝐶2K (𝜓) — executing 𝐶2 can terminate in a final state satisfying 𝜑 .

In order to mimic the above in a quantitative setting, we make use of so called Iverson brack-
ets [Knuth 1992]. Usually, these turn a predicate 𝜑 into an indicator function [𝜑]std : Σ → {0, 1},

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: November 2022.

1:8 Linpeng Zhang and Benjamin Lucien Kaminski

which map a state 𝜎 to 1 or 0, depending on whether 𝜎 |= 𝜑 or not. In our extended real setting,

however, we need to slightly adapt the Iverson brackets as follows:

Definition 3.5 (Extended Iverson Brackets). For a predicate 𝜑 , we define the extended Iverson

bracket [𝜑] : Σ → {−∞, +∞} by
[𝜑] (𝜎) =

{
+∞ if 𝜎 |= 𝜑

−∞ otherwise. △

Intuitively, this choice is motivated by the fact that −∞, +∞ are respectively the bottom and top

element of the lattice, and equipped with ⋎, ⋏, they behave exactly as the boolean values true, false
with ∨,∧. Using these Iverson brackets, we define the quantitative weakest pre of conditional

choice by

wp Jif (𝜑) {𝐶1 } else {𝐶2 }K (𝑓) = [𝜑] ⋏ wp J𝐶1K (𝑓) ⋎ [¬𝜑] ⋏ wp J𝐶2K (𝑓) .

(Recall that ⋏ binds stronger than ⋎.) If the current program state 𝜎 satisfies 𝜑 , then [𝜑] evaluates
to +∞ — the greatest element of A. Taking a minimum (⋏) with wp J𝐶1K (𝑓) will thus yield exactly

wp J𝐶1K (𝑓). [¬𝜑], on the other hand, then evaluates to −∞ — the smallest element of A. Taking a

minimum with any other lattice element will again yield −∞. Finally, we then take a maximum (⋎)
between wp J𝐶1K (𝑓) and −∞, yielding wp J𝐶1K (𝑓). This is precisely the quantity that we would

expect to anticipate for 𝑓 , if 𝜎 |= 𝜑 , because then 𝐶1 is executed and wp J𝐶1K (𝑓) anticipates the
value of 𝑓 after execution of 𝐶 . The situation for 𝜎 ̸ |= 𝜑 is completely dual, yielding wp J𝐶2K (𝑓).
Indeed, depending on whether an initial state satisfies 𝜑 or not, the quantitative weakest pre

anticipates either wp J𝐶1K (𝑓) or wp J𝐶2K (𝑓).

Remark 3.6. We note that ourwp rule for conditional choice is different from e.g. [Kaminski 2019;

Kozen 1985; McIver and Morgan 2005b], who use standard instead of extended Iverson brackets,

multiplication instead of minimum, and summation instead of maximum, i.e.

wp Jif (𝜑) {𝐶1 } else {𝐶2 }K (𝑓) = [𝜑]std · wp J𝐶1K (𝑓) + [¬𝜑]std · wp J𝐶2K (𝑓) ,

This rule, however, would fail in our context of signed quantities because of issues with +∞ · −∞. △
Sequential Composition. What is the anticipated value of 𝑓 after executing𝐶1 #𝐶2, i.e. the value

of 𝑓 after first executing 𝐶1 and then 𝐶2? To answer this, we first anticipate the value of 𝑓 after

execution of𝐶2 which giveswp J𝐶2K (𝑓). Then, we anticipate the value of the intermediate quantity

wp J𝐶2K (𝑓) after execution of 𝐶1, yielding wp J𝐶1 # 𝐶2K (𝑓) = wp J𝐶1K
(
wp J𝐶2K (𝑓)

)
.

Looping. The quantitative weakest pre of a loop while (𝜑) {𝐶 } is defined as a least fixed point

of the wp–characteristic function Φ𝑓 : A→ A. This function is chosen in a way so that iterating Φ𝑓

on the least element of the lattice −∞ essentially yields an ascending chain of loop unrollings

Φ𝑓 (−∞) = wp Jif(𝜑){diverge}K (𝑓)
Φ2
𝑓
(−∞) = wp Jif(𝜑){𝐶 # if(𝜑){diverge}}K (𝑓)

Φ3
𝑓
(−∞) = wp Jif(𝜑){𝐶 # if(𝜑){𝐶 # if(𝜑){diverge}}}K (𝑓)

and so on, whose supremum is the least fixed point of Φ𝑓 .

Theorem 3.7 (Soundness of wp). For all programs 𝐶 and initial states 𝜎 ,

wp J𝐶K (𝑓) (𝜎) =
j

𝜏 ∈J𝐶K(𝜎)
𝑓 (𝜏) .

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: November 2022.

Quantitative Strongest Post 1:9

Intuitively, for a given postquantity 𝑓 and initial state 𝜎 , wp J𝐶K (𝑓) (𝜎) is the supremum over all

the values that 𝑓 can assume measured in the final states reached after successful termination of

the program 𝐶 on initial state 𝜎 . In case of no terminating state, i.e. J𝐶K(𝜎) = ∅, that supremum be-

comes−∞— the absoluteminimal value. In particular, if∀𝜏 : 𝑓 (𝜏) > −∞, thenwp J𝐶K (𝑓) (𝜎) = −∞
unambiguously indicates nontermination of 𝐶 on input 𝜎 .

3.4 Weakest Liberal Pre
Besides weakest preconditions, Dijkstra also defines weakest liberal preconditions. The weakest
liberal precondition transformer is again of type

wlpJ𝐶K : B → B ,

associating to each nondeterministic program 𝐶 a mapping from predicates to predicates. For

reasons of duality, we now consider a demonic setting, where the nondeterminism is resolved to our

disadvantage. The difference from nonliberal weakest preconditions, however, is that nonterminating
behavior is deemed good behavior (i.e. as if the program terminated in a state satisfying the post-

condition). Specifically, the demonic weakest liberal precondition transformer wlpJ𝐶K maps a post-
condition𝜓 over final states to a precondition wlpJ𝐶K (𝜓) over initial states, such that executing 𝐶

on an initial state satisfying wlpJ𝐶K (𝜓) guarantees that 𝐶 will either not terminate, or terminate

in a final state satisfying 𝜓 . More symbolically, recalling that J𝐶K(𝜎) is the set of all final states
reachable after termination of 𝐶 on 𝜎 ,

𝜎 |= wlpJ𝐶K (𝜓) iff ∀𝜏 ∈ J𝐶K(𝜎) : 𝜏 |= 𝜓 ,

where the right-hand-side of the implication is vacuously true if J𝐶K(𝜎) = ∅, i.e. if 𝐶 does not

terminate on 𝜎 . From the map perspective, wlpJ𝐶K (𝜓) is a function that takes as input an initial

state 𝜎 , determines for each reachable final state 𝜏 ∈ J𝐶K(𝜎) the (truth) value𝜓 (𝜏), and returns a

conjunction over all these truth values. More symbolically,

wlpJ𝐶K (𝜓) (𝜎) =
∧

𝜏 ∈J𝐶K(𝜎)
𝜓 (𝜏) ,

where the conjunction over an empty set is — as is standard — given by true.
Just like a conjunction in some sense minimizes truth values, our quantitative weakest liberal

pre should also minimize, while at the same time assigning a maximal value to nontermination.

This is captured by the following transformer:

Definition 3.8 (Quantitative Weakest Liberal Pre). The quantitative weakest liberal pre transformer

wlp : nGCL → (A→ A)

is defined inductively according to the rules in Table 1 (right column). We call the function

Φ𝑓 (𝑋) = [¬𝜑] ⋏ 𝑓 ⋎ [𝜑] ⋏ wlpJ𝐶K (𝑋) ,

whose greatest fixed point defines the weakest liberal pre wlpJwhile (𝜑) {𝐶 }K (𝑓), the wlp–
characteristic function (of while (𝜑) {𝐶 } with respect to 𝑓). △

The rules for assignments, sequential composition, and conditional choice are the same as for wp.
This is unsurprisingly so, since those rules pertain neither to nontermination nor to nondeterminism.

Let us thus go over the rules for the language constructs, where the rules for wlp and wp differ.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: November 2022.

1:10 Linpeng Zhang and Benjamin Lucien Kaminski

Diverge. Since diverge is certainly nonterminating and liberal preconditions deem this good

behavior, the weakest liberal precondition of diverge is given by

wlpJdivergeK (𝜓) = true .

Note that true is the greatest element in the Boolean lattice. When moving to quantities, we also

assign to nonterminating behavior the greatest element, i.e.

wlpJdivergeK (𝑓) = +∞ .

Remark 3.9 (Quantitative Weakest Liberal Pre and Nontermination). Analogously to −∞ being the

the value of nontermination in wp (see Remark 3.4), +∞ is the value of nontermination in wlp. △

Nondeterministic Choice. Since weakest liberal pre is demonic, we ask in wlp for the minimal
anticipated value of 𝑓 after termination of 𝐶1 or 𝐶2. Hence the rule is dually given by the meet

wlpJ{𝐶1 } □ {𝐶2 }K (𝑓) = wlpJ𝐶1K (𝑓) ⋏ wlpJ𝐶2K (𝑓) .

Notice that if either 𝐶1 or 𝐶2 yield +∞ because of nontermination, the wlp above will select as

value the respective other branch if that one terminates.

Looping. The weakest liberal pre of a loop while (𝜑) {𝐶 } is defined as a greatest fixed point of

the wlp–characteristic function Φ𝑓 : A→ A. This function is chosen in a way so that iterating Φ𝑓

on the greatest element of the lattice +∞ essentially yields a descending chain of loop unrollings

Φ𝑓 (+∞) = wlpJif(𝜑){diverge}K (𝑓)
Φ2
𝑓
(+∞) = wlpJif(𝜑){𝐶 # if(𝜑){diverge}}K (𝑓)

Φ3
𝑓
(+∞) = wlpJif(𝜑){𝐶 # if(𝜑){𝐶 # if(𝜑){diverge}}}K (𝑓)

and so on, whose infimum is the greatest fixed point of Φ𝑓 .

Theorem 3.10 (Soundness of wlp). For all programs 𝐶 and states 𝜎 ∈ Σ,

wlpJ𝐶K (𝑓) (𝜎) =
k

𝜏 ∈J𝐶K(𝜎)
𝑓 (𝜏) .

Intuitively, for a given postquantity 𝑓 and initial state 𝜎 , the quantitative weakest liberal pre

wlpJ𝐶K (𝑓) (𝜎) is the infimum over all values that 𝑓 can assume measured in the final states after

termination of the program𝐶 on initial state 𝜎 . In case of no terminating state, i.e. J𝐶K(𝜎) = ∅, that
infimum automatically becomes +∞ — the absolute maximal value. In particular, if ∀𝜏 : 𝑓 (𝜏) < +∞,

then wlpJ𝐶K (𝑓) (𝜎) = +∞ unambiguously indicates nontermination of 𝐶 on input 𝜎 .

4 STRONGEST POST
We now present our main contribution: A lifting of the strongest postcondition calculus of Dijkstra

and Scholten [1990] to quantities and a completely novel (quantitative) strongest liberal post
calculus. To the best of our knowledge, a strongest liberal post(condition) has never been proposed

before, not even in the qualitative setting.4 We again start by recapping the classical calculus.

4
Although some authors do use the term “strongest liberal postcondition”, see Section 9 for a comparison.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: November 2022.

Quantitative Strongest Post 1:11

𝝉

□ •

•
• • . . .

. . .

𝜓 (𝜎1)
𝜓 (𝜎2) 𝜓 (𝜎3)

∨

[]

𝐶

sp J𝐶K (𝜓)

(a) Strongest postconditions: Given final state 𝜏 ,
sp J𝐶K (𝜓) determines all initial states 𝜎𝑖 that can
reach 𝜏 by executing 𝐶 , evaluates 𝜓 in those states,
and returns the disjunction over all these truth values.

𝝉

□ •

•
• • . . .

. . .

𝑓 (𝜎1)
𝑓 (𝜎2) 𝑓 (𝜎3)

b
[]

𝐶

sp J𝐶K (𝑓)

(b) Quantitative strongest post: Given final state 𝜏 ,
sp J𝐶K (𝑓) determines all initial states 𝜎𝑖 that can
reach 𝜏 by executing 𝐶 , evaluates 𝑓 in those states,
and returns the supremum (⋎) over all these quantities.

Fig. 2. Angelic strongest postconditions and quantitative strongest posts.

4.1 Classical Strongest Postconditions
Dijkstra and Scholten’s strongest postcondition calculus employs predicate transformers of type

spJ𝐶K : B → B , where B = Σ → {0, 1} ,
which associate to each nondeterministic program 𝐶 a mapping from predicates (sets of program

states) to predicates. Strongest post transformers, analogously to the collecting semantics, character-

ize the set states that can be reached, so that an angelic setting is chosen to resolve nondeterminism

to our advantage. Concretely, the angelic strongest postcondition transformer spJ𝐶K maps a pre-
condition𝜓 over initial states to a postcondition sp J𝐶K (𝜓) over final states, such that every state

in the postcondition is reachable from some initial state satisfying𝜓 . This corresponds exactly with

the definition of the collecting semantics J𝐶K(𝜎): In fact,

𝜏 |= sp J𝐶K (𝜓) iff ∃𝜎 with 𝜏 ∈ J𝐶K(𝜎) : 𝜎 |= 𝜓 .

As we did for weakest pre, let us provide amap perspective on strongest postconditions, see Figure 2a.
From this perspective, the precondition𝜓 : Σ → {0, 1} maps program states to truth values. The

predicate sp J𝐶K (𝜓) is then a map that takes as input a final state 𝜏 , determines for all initial states 𝜎

that can reach 𝜏 the (truth) value𝜓 (𝜎), and returns the disjunction (∨) over all these truth values:

sp J𝐶K (𝜓) (𝜏) =
∨

𝜎 with 𝜏 ∈J𝐶K(𝜎)
𝜓 (𝜎) .

In other words: Given a final state 𝜏 , sp J𝐶K (𝜓) (𝜏) retrodicts whether before executing 𝐶 the predi-
cate𝜓 could have been true. In the following, we define quantitative strongest post and strongest

liberal post calculi which retrocipate values of signed quantities before the execution of a nondeter-

ministic program (whereas wp and wlp anticipate values after the execution).

4.2 Quantitative Strongest Post
Let us generalize the map perspective of strongest postconditions to quantities. Instead of a

precondition, we now have a prequantity 𝑓 : Σ → R±∞. sp J𝐶K (𝑓) : Σ → R±∞ is then a func-

tion that takes as input a final state 𝜏 , determines all initial states 𝜎 that can reach 𝜏 by executing𝐶 ,

evaluates the prequantity 𝑓 (𝜎) in each of those initial states 𝜎 , and finally returns the supremum

over all these so-determined quantities, see Figure 2b. As a transformer, we obtain the following:

Definition 4.1 (Quantitative Strongest Post). The strongest post transformer

sp : nGCL → (A→ A)

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: November 2022.

1:12 Linpeng Zhang and Benjamin Lucien Kaminski

𝑪 sp J𝑪K (𝒇) slp J𝑪K (𝒇)

diverge −∞ +∞

𝑥 B 𝑒 S𝛼 : [𝑥 = 𝑒 [𝑥/𝛼]] ⋏ 𝑓 [𝑥/𝛼] J𝛼 : [𝑥 ≠ 𝑒 [𝑥/𝛼]] ⋎ 𝑓 [𝑥/𝛼]

𝐶1 # 𝐶2 sp J𝐶2K
(
sp J𝐶1K (𝑓)

)
slpJ𝐶2K

(
slpJ𝐶1K (𝑓)

)
{𝐶1 } □ {𝐶2 } sp J𝐶1K (𝑓) ⋎ sp J𝐶2K (𝑓) slpJ𝐶1K (𝑓) ⋏ slpJ𝐶2K (𝑓)

if (𝜑) {𝐶1 } else {𝐶2 } sp J𝐶1K ([𝜑] ⋏ 𝑓) ⋎ sp J𝐶2K ([¬𝜑] ⋏ 𝑓) slpJ𝐶1K ([¬𝜑] ⋎ 𝑓) ⋏ slpJ𝐶2K ([𝜑] ⋎ 𝑓)

while (𝜑) {𝐶 ′ } [¬𝜑] ⋏
(
lfp 𝑌 . 𝑓 ⋎ sp J𝐶 ′K ([𝜑] ⋏ 𝑌)

)
[𝜑] ⋎

(
gfp 𝑌 . 𝑓 ⋏ slpJ𝐶 ′K ([¬𝜑] ⋎ 𝑌)

)
Table 2. Rules for sp and slp. lfp 𝑔. Ψ(𝑔) and gfp 𝑔. Ψ(𝑔) denote the least and greatest fixed point of Φ.
J𝛼 : 𝑓 (𝛼) and S𝛼 : 𝑓 (𝛼) denote the infimum and supremum of 𝑓 (𝛼) ranging over all values of 𝛼 .

is defined inductively according to the rules in Table 2 (middle column). We call the function

Ψ𝑓 (𝑋) = 𝑓 ⋎ sp J𝐶K ([𝜑] ⋏ 𝑋) ,

whose least fixed point is used to define sp Jwhile (𝜑) {𝐶 }K (𝑓), the sp–characteristic function of

while (𝜑) {𝐶 } with respect to 𝑓 . △

Again, let us go over some of the rules for quantitative sp and show how they can be developed

and understood analogously to strongest postconditions.

Assignment. Dijkstra and Scholten’s strongest postcondition of an assignment is given by

sp J𝑥 B 𝑒K (𝜓) = ∃𝛼 : 𝑥 = 𝑒 [𝑥/𝛼]︸ ︷︷ ︸
(1)

∧ 𝜓 [𝑥/𝛼]︸ ︷︷ ︸
(2)

.

Intuitively, the quantified 𝛼 represents an initial value that 𝑥 could have had before executing the

assignment. (If at all possible), the 𝛼 is chosen in a way so that

(1) 𝑥 has in the final state the value of expression 𝑒 but evaluated using 𝑥 ’s initial value 𝛼 , and

(2) the precondition𝜓 was true in the initial state where 𝑥 had value 𝛼 .

For quantities, we note that, regarding (1), there could have been multiple valid initial values 𝛼

for 𝑥 ; for instance, before the execution of 𝑥 B 10, any initial value 𝛼 is valid. Our intuition is

that, in order to preserve backward compatibility, we substitute the existential quantifier with a

supremum (denoted by the S“quantifier”, cf. [Batz et al. 2021]), thus obtaining the supremum of

𝑓 [𝑥/𝛼] ranging over all valid initial values 𝛼 of 𝑥 :

sp J𝑥 B 𝑒K (𝑓) = S𝛼 : [𝑥 = 𝑒 [𝑥/𝛼]] ⋏ 𝑓 [𝑥/𝛼] .

Let us consider a few examples. First, consider

sp J𝑥 B 𝑥 + 1K (𝑥) = S𝛼 : [𝑥 = 𝛼 + 1] ⋏ 𝛼 = S𝛼 : [𝛼 = 𝑥 − 1] ⋏ 𝛼 = 𝑥 − 1 .

For a final state 𝜏 (𝑥) = 10, this gives us 𝜏 (𝑥) − 1 = 10 − 1 = 9 which is indeed the initial value that
the prequantity 𝑥 must have had if the final state after executing 𝑥 B 𝑥 + 1 is 𝜏 (𝑥) = 10.

As another example, consider

sp J𝑥 B 10K (𝑥) = S𝛼 : [𝑥 = 10] ⋏ 𝛼 = [𝑥 = 10] ⋏ ∞ = [𝑥 = 10] .

For the final state 𝜏 (𝑥) = 10, this gives us [10 = 10] = [true] = +∞ which is indeed the least upper
bound (angelic!) on the initial value of 𝑥 if the final state after executing 𝑥 B 10 is 𝜏 . In other

words: by evaluating [𝑥 = 10] in 𝜏 , we know that 𝜏 was reachable, but we have no information

on what maximal value 𝑥 could have had initially, which is sensible because 𝑥 B 10 forgets any
initial value of 𝑥 . For final state 𝜏 ′(𝑥) = 9, on the other hand, we get [9 = 10] = [false] = −∞

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: November 2022.

Quantitative Strongest Post 1:13

which is the value of unreachability in sp (cf. also the next paragraph on divergence). Indeed, the

final state after executing 𝑥 B 10 cannot ever be 𝜏 ′.

Diverge. The strongest postcondition of diverge is given by

sp JdivergeK (𝜓) = false ,

the least element in the Boolean lattice. Since there is no state that satifies false, this simply tells us

that there is no final state reachable by executing diverge.
For quantities, we also assign the least element and hence get

sp JdivergeK (𝑓) = −∞ .

Another explanation goes by considering again the angelic, i.e. maximizing, aspect of strongest

post: What is the maximal value that we can retrocipate for 𝑓 before diverge has terminated in

some final state 𝜏? Since diverge does not terminate at all and hence no such 𝜏 could have been

reached (but we are still forced to assign some “number” to this situation), the largest value that

we can possibly retrocipate is the absolute minimum: −∞.

Remark 4.2 (Quantitative Strongest Post and Unreachability). Dually to values of nontermination

in w(l)p (see Remarks 3.4 and 3.9), −∞ is in that sense the value of unreachability in sp. △

Nondeterministic Choice. The angelic strongest postcondition of {𝐶1 } □ {𝐶2 } is given by

sp J{𝐶1 } □ {𝐶2 }K (𝜓) = sp J𝐶1K (𝜓) ∨ sp J𝐶2K (𝜓) .

Indeed, the set of reachable states starting from initial states satisfying 𝜓 is the union of the

reachable set after executing 𝐶1 and the ones after executing 𝐶2.

In a quantitative setting, where we want to retrocipate the value of a quantity 𝑓 before executing

either 𝐶1 or 𝐶2, we angelically maximize between the two retrocipated quantities:

sp J{𝐶1 } □ {𝐶2 }K (𝑓) = sp J𝐶1K (𝑓) ⋎ sp J𝐶2K (𝑓) .

Conditional Choice. The strongest postcondition of if (𝜑) {𝐶1 } else {𝐶2 } is given by

sp Jif (𝜑) {𝐶1 } else {𝐶2 }K (𝜓) = sp J𝐶1K (𝜑 ∧𝜓) ∨ sp J𝐶2K (¬𝜑 ∧𝜓) ,

So to determine the set of reachable states starting from precondition𝜓 , we split the precondition

into two disjoint ones — 𝜑 ∧𝜓 assumes that the guard is true and we execute𝐶1, whereas ¬𝜑 ∧𝜓 as-

sumes the guard to be false and we execute𝐶2. Thereafter, we union the so-obtained reachable sets.

Similarly for our quantitative strongest post calculi, we make use of the extended Iverson brackets

and thus, the denotational strongest post of the conditional choice is:

sp Jif (𝜑) {𝐶1 } else {𝐶2 }K (𝑓) = sp J𝐶1K ([𝜑] ⋏ 𝑓) ⋎ sp J𝐶2K ([¬𝜑] ⋏ 𝑓) .

Intuitively, sp J𝐶1K ([𝜑] ⋏ 𝑓) is the supremum of 𝑓 measured in all initial states before the execution

of 𝐶1 satisfying 𝜑 ; and analogously for sp J𝐶2K ([¬𝜑] ⋏ 𝑓). By then taking ⋎, we finally obtain the

maximum initial quantity that 𝑓 could have had before the execution of the conditional choice.

Sequential Composition. What is the retrocipated value of 𝑓 before executing 𝐶1 # 𝐶2? For this,

we first retrocipate the value of 𝑓 before executing𝐶1 which gives sp J𝐶1K (𝑓). Then, we retrocipate
the value sp J𝐶1K (𝑓) before executing 𝐶2, yielding sp J𝐶1 # 𝐶2K (𝑓) = sp J𝐶2K

(
sp J𝐶1K (𝑓)

)
.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: November 2022.

1:14 Linpeng Zhang and Benjamin Lucien Kaminski

Looping. The strongest post of a loop while (𝜑) {𝐶 } is characterized using the least fixed point

of the so-called sp–characteristic function Ψ𝑓 : A→ A. As for weakest pre, the function is chosen

so that by Kleene’s fixpoint theorem, the least fixed point corresponds to iterating on the least

element of the lattice −∞, which yields an ascending chain of loop unrollings

[¬𝜑] ⋏ Ψ𝑓 (−∞) = sp Jif(𝜑){diverge}K (𝑓)
[¬𝜑] ⋏ Ψ2

𝑓
(−∞) = sp Jif(𝜑){𝐶 # if(𝜑){diverge}}K (𝑓)

[¬𝜑] ⋏ Ψ3
𝑓
(−∞) = sp Jif(𝜑){𝐶 # if(𝜑){𝐶 # if(𝜑){diverge}}}K (𝑓)

and so on, where the guard is needed to filter only those states that exit the loop; we finally obtain

as strongest post

sp Jwhile (𝜑) { 𝐶K (𝑓) = [¬𝜑] ⋏ lfp Ψ𝑓 .

Theorem 4.3 (Soundness of sp). For all programs 𝐶 and final states 𝜏 ,

sp J𝐶K (𝑓) (𝜏) =
j

𝜎 with 𝜏 ∈J𝐶K(𝜎)
𝑓 (𝜎) .

Intuitively, for a given prequantity 𝑓 and final state 𝜏 , spJ𝑓 K(𝜏) is the supremum over all the values

that 𝑓 can assume in those initial states 𝜎 from which executing 𝐶 terminates in 𝜏 . In case that the

final state 𝜏 is unreachable, i.e. ∀𝜎 : 𝜏 ∉ J𝐶K(𝜎), that supremum automatically becomes −∞ — the

absolute minimal value. In particular, if ∀𝜎 : 𝑓 (𝜎) > −∞, then sp J𝐶K (𝑓) (𝜏) = −∞ unambiguously

indicates unreachability of 𝜏 by executing 𝐶 on any input 𝜎 .

4.3 Quantitative Strongest Liberal Post
Although Dijkstra does not define strongest liberal postconditions, we believe that a reasonable
choice for a quantitative strongest liberal post transformer is to take the infimum over all pre-

quantities. Restricting to predicates, we thereby also obtain a novel strongest liberal postcondition
transformer of type slpJ𝐶K : B → B associating to each nondeterministic program 𝐶 a mapping

from predicates to predicates. Since slp is associated with the infimum, we will consider a demonic
setting, where the nondeterminism is resolved to our disadvantage. Whereas weakest liberal pre, in

contrast to the non-liberal transformers, deems non-termination good behavior, strongest liberal

post deems unreachability good behavior.

Specifically, the demonic strongest liberal postcondition transformer slpJ𝐶Kmaps a precondition𝜓
over initial states to a postcondition slpJ𝐶K (𝜓) over final states, such that for a given final state 𝜏

satisfying slpJ𝐶K (𝜓), all initial states that can reach 𝜏 satisfy the precondition𝜓 . More symbolically,

recalling that J𝐶K(𝜎) is the set of all final states reachable after termination of 𝐶 on 𝜎 ,

𝜏 |= slpJ𝐶K (𝜓) iff ∀𝜎 with 𝜏 ∈ J𝐶K(𝜎) : 𝜎 |= 𝜓 ,

where the right-hand-side of the implication is vacuously true if 𝜏 is unreachable. From a map
perspective on slp, the predicate slpJ𝐶K (𝜓) is a function that takes as input a final state 𝜏 , determines

for each initial state 𝜎 that can reach 𝜏 , i.e., 𝜏 ∈ J𝐶K(𝜎), the (truth) value𝜓 (𝜎), takes a conjunction
over all these truth values, and finally returns the truth value of that conjunction. More symbolically,

slpJ𝐶K (𝜓) (𝜏) =
∧

𝜎 with 𝜏 ∈J𝐶K(𝜎)
𝜓 (𝜎) ,

where the conjunction over an empty set is defined — as is standard — as true. For quantities, we
essentially replace ∧ by ⋏ and define the following quantitative strongest liberal post transformer:

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: November 2022.

Quantitative Strongest Post 1:15

Definition 4.4 (Quant. Strongest Liberal Post). The quantitative strongest liberal post transformer

slp : nGCL → (A→ A)

is defined inductively according to the rules in Table 2 (right column). We call the function

Ψ𝑓 (𝑋) = 𝑓 ⋏ sp J𝐶K ([¬𝜑] ⋎ 𝑋) ,

whose greatest fixed point is used to define slpJwhile (𝜑) {𝐶 }K (𝑓), the slp–characteristic function
of while (𝜑) {𝐶 } with respect to 𝑓 . △

Let us thus go over the language constructs where the rules for slp and sp differ and explain both

strongest liberal postconditions and quantitative strongest liberal post.

Assignment. The strongest liberal postcondition of an assignment is given by

slpJ𝑥 B 𝑒K (𝜓) = ∀𝛼 : 𝑥 ≠ 𝑒 [𝑥/𝛼]︸ ︷︷ ︸
(1)

∨ 𝜓 [𝑥/𝛼]︸ ︷︷ ︸
(2)

.

Intuitively, the quantified 𝛼 represents candidates for initial values of 𝑥 before executing the assign-

ment. For each such candidate 𝛼 , it must be true that

(1) 𝛼 is in fact not a valid initial value for 𝑥 , i.e. 𝑥 does not have in the final state the value of

expression 𝑒 evaluated using the candidate value 𝛼 for 𝑥 , or

(2) 𝛼 is valid and the precondition𝜓 was true in the initial state where 𝑥 had value 𝛼 .

Intuitively, (1) captures that strongest liberal postconditions deem unreachability good behavior,

because if some state is not reachable by executing 𝑥 B 𝑒 , then 𝑥 ≠ 𝑒 [𝑥/𝛼] is true for all 𝛼 and

hence the strongest liberal post evaluates to true.
For quantities, dually to the strongest non-liberal post, we now substitute the universal quantifier

with an infimum (denoted by the J“quantifier” [Batz et al. 2021]) and the ∨with a ⋎, thus obtaining

slpJ𝑥 B 𝑒K (𝑓) = J𝛼 : [𝑥 ≠ 𝑒 [𝑥/𝛼]] ⋎ 𝑓 [𝑥/𝛼]

Let us again consider a few examples. First, one can convince oneself that

slpJ𝑥 B 𝑥 + 1K (𝑥) = 𝑥 − 1 = sp J𝑥 B 𝑥 + 1K (𝑥) .

slp = sp is not surprising in this case, because every state 𝜏 (𝑥) = 𝛽 is reachable by executing

𝑥 B 𝑥 + 1, namely by starting from initial state 𝜎 (𝑥) = 𝛽 − 1. As another example, consider

slpJ𝑥 B 10K (𝑥) = J𝛼 : [𝑥 ≠ 10] ⋎ 𝛼 = [𝑥 ≠ 10] ⋎ ∞ = [𝑥 ≠ 10] .

For the final state 𝜏 (𝑥) = 10, this gives us [10 ≠ 10] = [false] = −∞ which is indeed the greatest
lower bound (demonic!) on the initial value of 𝑥 if the final state after executing 𝑥 B 10 is 𝜏 . In other

words: by evaluating [𝑥 ≠ 10] in 𝜏 , we know that 𝜏 was reachable, but we have no information

on what minimal value 𝑥 could have had initially, which is sensible because 𝑥 B 10 forgets any
initial value of 𝑥 . For final state 𝜏 ′(𝑥) = 9, on the other hand, we get [9 ≠ 10] = [true] = +∞which

is the value of unreachability in slp (cf. also the next paragraph on divergence). Indeed, the final

state after executing 𝑥 B 10 cannot ever be 𝜏 ′.

Diverge. Since diverge is certainly nonterminating, i.e. it reaches no final state, and since liberal

post deems nonreachability good behavior, the quantitative strongest liberal post assigns the

greatest element, i.e. slpJdivergeK (𝑓) = +∞.

Remark 4.5 (Quantitative Strongest Liberal Post and Unreachability). Analogously to −∞ being

the value of unreachability in sp (cf. Remark 4.2), +∞ is the value of unreachability in slp. △

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: November 2022.

1:16 Linpeng Zhang and Benjamin Lucien Kaminski

Nondeterministic Choice. The demonic strongest liberal postcondition of {𝐶1 } □ {𝐶2 } is
slpJ{𝐶1 } □ {𝐶2 }K (𝜓) = slpJ𝐶1K (𝜓) ∧ slpJ𝐶2K (𝜓) .

Indeed, slpJ𝐶𝑖K (𝜓) contains all final states 𝜏 such that all initial states 𝜎 that can reach 𝜏 by execut-

ing 𝐶𝑖 satisfy 𝜓 . By intersecting sp J𝐶1K (𝜓) and sp J𝐶2K (𝜓) we ensure the stronger requirement

that all initial states 𝜎 that can reach 𝜏 by executing 𝐶1 or 𝐶2 satisfy𝜓 .

In a quantitative setting, where we want to retrocipate the value of a quantity 𝑓 before executing

𝐶1 or 𝐶2, we demonically minimize the possible initial value and hence take as strongest post

slpJ{𝐶1 } □ {𝐶2 }K (𝑓) = slpJ𝐶1K (𝑓) ⋏ slpJ𝐶2K (𝑓) .

Conditional Choice. The demonic strongest liberal postcondition of {𝐶1 } □ {𝐶2 } is given by

slpJif (𝜑) {𝐶1 } else {𝐶2 }K (𝜓) = slpJ𝐶1K (¬𝜑 ∨𝜓) ∧ slpJ𝐶2K (𝜑 ∨𝜓) ,

Indeed, since the disjunction can be seen as an implication, slpJ𝐶1K (¬𝜑 ∨𝜓) contains all final
states 𝜏 such that, all initial states that satisfy 𝜑 (sic!) and that can reach 𝜏 by executing 𝐶1 do also

satisfy𝜓 . Similarly, slpJ𝐶2K (𝜑 ∨𝜓) contains all final states 𝜏 such that, all initial states that satisfy

¬𝜑 (sic!) and that can reach 𝜏 by executing 𝐶2 do also satisfy𝜓 . By intersecting the postconditions

slpJ𝐶1K (¬𝜑 ∨𝜓) and slpJ𝐶2K (𝜑 ∨𝜓), we obtain exactly all those final states 𝜏 such that, all initial

states that, either satisfy 𝜑 and can reach 𝜏 by executing 𝐶1, or satisfy ¬𝜑 and can reach 𝜏 by

executing 𝐶2 do also satisfy the precondition𝜓 .

Similarly for our quantitative strongest post calculi, we make use of the extended Iverson brackets
and thus, the quantitative strongest liberal post of the conditional choice is

slpJif (𝜑) {𝐶1 } else {𝐶2 }K (𝑓) = slpJ𝐶1K ([¬𝜑] ⋎ 𝑓) ⋏ slpJ𝐶2K ([𝜑] ⋎ 𝑓) .

Intuitively, slpJ𝐶1K ([¬𝜑] ⋎ 𝑓) characterizes the infimum of 𝑓 measured in all initial states before

the execution of 𝐶1 satisfying 𝜑 ; and analogously for slpJ𝐶2K ([𝜑] ⋎ 𝑓). By taking ⋏, we obtain
exactly the minimum initial quantity that 𝑓 could have had before executing the conditional choice.

Looping. For a loop while (𝜑) {𝐶 }, slp is characterized using the greatest fixed point of the

so-called slp–characteristic function Ψ𝑓 : A→ A. As for weakest liberal pre, the function is chosen

so that by Kleene’s fixpoint theorem, the greatest fixed point corresponds to iterating on the top

element of the lattice +∞, which yields a descending chain of loop unrollings

[𝜑] ⋎ Ψ𝑓 (+∞) = slpJif(𝜑){diverge}K (𝑓)
[𝜑] ⋎ Ψ2

𝑓
(+∞) = slpJif(𝜑){𝐶 # if(𝜑){diverge}}K (𝑓)

[𝜑] ⋎ Ψ3
𝑓
(+∞) = slpJif(𝜑){𝐶 # if(𝜑){𝐶 # if(𝜑){diverge}}}K (𝑓)

and so on. Since our strongest liberal postcondition considers unreachability as “good behavior”, we

join the Kleene’s iterates with all the final states where the guard still hold and obtain as strongest

liberal post:

slpJwhile (𝜑) {𝐶 }K (𝑓) = [𝜑] ⋎ gfp Ψ𝑓 .

Theorem 4.6 (Soundness of slp). For all programs 𝐶 and states 𝜏 ∈ Σ,

slpJ𝐶K (𝑓) (𝜏) =
k

𝜎 with 𝜏 ∈J𝐶K𝜎

𝑓 (𝜎)

Intuitively, for a given prequantity 𝑓 and final state 𝜏 , the slpJ𝐶K (𝑓) (𝜏) is the infimum over all

values that 𝑓 can assume measured in the initial states 𝜎 , so that executing 𝐶 on 𝜎 terminates

in 𝜏 . In case that the final state 𝜏 is unreachable, i.e. ∀𝜎 : 𝜏 ∉ J𝐶K(𝜎), that infimum becomes

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: November 2022.

Quantitative Strongest Post 1:17

+∞ — the absolute maximum value. In particular, if ∀𝜎 : 𝑓 (𝜎) < +∞, then sp J𝐶K (𝑓) (𝜏) = +∞
unambiguously indicates unreachability of 𝜏 by executing 𝐶 on any input 𝜎 .

5 HEALTHINESS PROPERTIES OF QUANTITATIVE TRANSFORMERS
Our quantitative transformers enjoy of several so-called healthiness properties, some of which are

analogous to Dijkstra’s, Kozen’s, or McIver & Morgan’s calculi. We furthermore present several

dualities between our transformers and how to embed classical into quantitative reasoning.

5.1 Healthiness Properties
Theorem 5.1 (Healthiness Properties of Quantitative Transformers). For all programs 𝐶 ,

the non-liberal transformers wpJ𝐶K and spJ𝐶K satisfy the following properties:

(1) Quantitative universal conjunctiveness: For any set of quantities 𝑆 ⊆ A,

wp J𝐶K (⋎𝑆) = ⋎ wp J𝐶K (𝑆) and sp J𝐶K (⋎𝑆) = ⋎ sp J𝐶K (𝑆) .

(2) Strictness: wp J𝐶K (−∞) = −∞ and sp J𝐶K (−∞) = −∞

The liberal transformers wlpJ𝐶K and slpJ𝐶K satisfy the following properties:

(3) Quantitative universal disjunctiveness: For any set of quantities 𝑆 ⊆ A,

wlpJ𝐶K (⋏𝑆) = ⋏ wlpJ𝐶K (𝑆) and slpJ𝐶K (⋏𝑆) = ⋏ slpJ𝐶K (𝑆) .

(4) Costrictness: wlpJ𝐶K (+∞) = +∞ and slpJ𝐶K (+∞) = +∞

All quantitive transformers are monotonic, i.e.

𝑓 ⪯ 𝑔 implies ttt J𝐶K (𝑓) ⪯ ttt J𝐶K (𝑔) , for ttt ∈ {wp, wlp, sp, slp} .

Quantitative universal conjunctiveness of wp/sp as well as disjunctiveness of wlp are quantitative

analogues to Dijkstra and Scholten’s original calculi, whereas disjunctiveness of slp is novel (since

slp is novel) and fits well into this picture of duality. Note that quantitative universal conjunctiveness
(disjunctiveness) implies 𝜔-(co)continuity, which in turn ensures that Kleene’s fixed point theorem

guarantees the existence of least (greatest) fixed points for defining weakest/strongest (liberal)

pre/post of loops. Monotonicity (implied by continuity) also ensures existence of fixed points but

fixed point iteration may stabilize only at ordinals higher than 𝜔 for non-(co)continuous functions.

Strictness of wp, i.e. wp J𝐶K (−∞) = −∞, says that the anticipated value of −∞ after executing𝐶

is −∞ if the program terminates, and otherwise yieldswp’s value of nontermination: −∞. Strictness

of sp, i.e. sp J𝐶K (−∞) = −∞, says that −∞ retrocipates the value of −∞ if the final state is reachable,

and otherwise yields sp’s value of unreachability: −∞. Explanations for costrictness are analogous.

The predicate interpretation of (co)strictness is also preserved: Since −∞ = [false] and +∞ =

[true] and hence wp J𝐶K ([false]) = [false] and wlpJ𝐶K ([true]) = [true], strictness of quantitative
wpJ𝐶K means that 𝐶 cannot terminate in some 𝜏 ∈ ∅; strictness of spJ𝐶K that no 𝜏 is reachable by
executing 𝐶 on any 𝜎 ∈ ∅; costrictness of wlpJ𝐶K that on all states 𝐶 either terminates or not; and

costrictness of slpJ𝐶K (novelly) that all states are either reachable by executing 𝐶 or unreachable.

Sub- and superlinearity have been studied by Kozen, McIver & Morgan, and Kaminski for

probabilistic w(l)p transformers. Our transformers similarly also obey linearity.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: November 2022.

1:18 Linpeng Zhang and Benjamin Lucien Kaminski

Theorem 5.2 (Linearity). For all programs 𝐶 , wpJ𝐶K and spJ𝐶K are sublinear, and wlpJ𝐶K and
slpJ𝐶K are superlinear, i.e. for all 𝑓 , 𝑔 ∈ A and non-negative constants 𝑟 ∈ R≥0,

wp J𝐶K (𝑟 · 𝑓 + 𝑔) ⪯ 𝑟 · wp J𝐶K (𝑓) + wp J𝐶K (𝑔) ,

sp J𝐶K (𝑟 · 𝑓 + 𝑔) ⪯ 𝑟 · sp J𝐶K (𝑓) + sp J𝐶K (𝑔) ,

𝑟 · wlpJ𝐶K (𝑓) + wlpJ𝐶K (𝑔) ⪯ wlpJ𝐶K (𝑟 · 𝑓 + 𝑔) , and

𝑟 · slpJ𝐶K (𝑓) + slpJ𝐶K (𝑔) ⪯ slpJ𝐶K (𝑟 · 𝑓 + 𝑔) .

5.2 Relationship betweenQualitative andQuantitative Transformers
Our calculi subsume both the classical ones of Dijkstra and Scholten [1990] and our definition of

strongest liberal postcondition for predicates by means of our extended Iverson brackets:

Theorem 5.3 (Embedding Classical into Quantitative Transformers). For all deterministic
programs 𝐶 and predicates𝜓 , we have

wp J𝐶K ([𝜓]) =
[
wp J𝐶K (𝜓)

]
and wlpJ𝐶K ([𝜓]) =

[
wlp J𝐶K (𝜓)

]
,

and for all programs 𝐶 and predicates𝜓 , we have

sp J𝐶K ([𝜓]) =
[
sp J𝐶K (𝜓)

]
and slpJ𝐶K ([𝜓]) =

[
slpJ𝐶K (𝜓)

]
.

From a predicate perspective, sp J𝐶K (𝜓) contains final states 𝜏 that are reachable from at least

one initial state satisfying𝜓 , whereas slpJ𝐶K (𝜓) requires that every initial state that may end in 𝜏

satisfies𝜓 . Hence, we have a fundamentally dual meaning of the word liberal:
• wlp, differently from wp, provides preconditions containing all diverging initial states, but

contains no state that can terminate outside the postcondition.

• slp, differently from sp, provides postconditions containing all unreachable final states, but
contains no state that can be reached from outside the precondition.

Let us also consider two other examples: sp J𝐶K ([true]) is the indicator function of the reachable

states. If sp J𝐶K ([true]) = [false] (i.e. sp J𝐶K (+∞) = −∞), no state is reachable and hence𝐶 diverges

on every input. Similarly, slpJ𝐶K ([false]) is the indicator function of all states that are either

reachable from an initial state satisfying false (of which there are none) or which are unreachable.

Thus, if slpJ𝐶K ([false]) = [true] (i.e. slpJ𝐶K (−∞) = +∞) then all states are unreachable, meaning

𝐶 diverges on every input. Put shortly,

sp J𝐶K (+∞) = −∞ iff slpJ𝐶K (−∞) = +∞ .

Finally, we note that the quantitative weakest pre calculi of Kaminski [2019, Section 2.3], restricted

to deterministic non-probabilistic programs are even simply subsumed by the fact that we consider a

larger lattice, namely quantities of type 𝑓 : Σ → R±∞ instead of 𝑓 : Σ → R∞≥0.

5.3 Relationship between Liberal and Non-liberal Transformers
Theorem 5.4 (Liberal–Non-liberal Duality). For any program 𝐶 and quantity 𝑓 , we have

wp J𝐶K (𝑓) = − wlpJ𝐶K (−𝑓) and sp J𝐶K (𝑓) = − slpJ𝐶K (−𝑓) .

The duality for weakest pre is very similar to wp J𝐶K (𝜓) = ¬wlpJ𝐶K (¬𝜓) in Dijkstra’s classical

calculus and wp J𝐶K (𝑓) = 1 − wlpJ𝐶K (1 − 𝑓) for 1-bounded functions 𝑓 in Kozen’s and McIver &

Morgans development for probabilistic programs.

When considering only deterministic programs 𝐶 (i.e. syntactically without nondeterministic

choices), then executing𝐶 on initial state 𝜎 will either terminate in a single final state (i.e. J𝐶K(𝜎) =

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: November 2022.

Quantitative Strongest Post 1:19

{𝜏}, for some 𝜏), or diverge (i.e. J𝐶K(𝜎) = ∅), meaning that J𝐶K() becomes a proper (partial)

function. Hence, in case of termination, supremum and infimum of the final values of 𝑓 coincide:

Corollary 5.5. If a deterministic program 𝐶 terminates on an input 𝜎 , then for all quantities 𝑓 ,

wp J𝐶K (𝑓) (𝜎) = wlpJ𝐶K (𝑓) (𝜎) ,

and otherwise wp J𝐶K (𝑓) (𝜎) = −∞ and wlpJ𝐶K (𝑓) (𝜎) = −∞ .

As a direct consequence of Corollary 5.5, for postquantities everywhere smaller than +∞ (which

is not restrictive since values of program variables are finite), we can precisely detect whether a

given initial state has terminated or not. Kaminski [2019, Remark 2.12], in contrast, cannot easily

distinguish whether a certain initial state does not terminate, or whether the anticipated value is 0.
Note that dual results for sp and slp do not hold since even for deterministic programs the fiber of

the concrete semantics is not a function: multiple initial states can terminate in a single final state 𝜏 .

6 CORRECTNESS AND INCORRECTNESS REASONING
6.1 Galois Connections between Weakest Pre and Strongest Post
The classical strongest postcondition is the left adjoint to the weakest liberal precondition [Dijkstra

and Scholten 1990, Section 12], i.e. the transformers wlp and sp form the Galois connection

𝐺 =⇒ wlpJ𝐶K (𝐹) iff sp J𝐶K (𝐺) =⇒ 𝐹 , (†)

which intuitively is true because 𝐺 =⇒ wlp J𝐶K (𝐹) means that starting from 𝐺 the program 𝐶

will either diverge or terminate in a state satisfying 𝐹 , and sp J𝐶K (𝐺) =⇒ 𝐹 means that starting

from 𝐺 any state reachable by executing 𝐶 satisfies 𝐹 .

The above Galois connection is preserved in our quantitative setting; in fact, by substituting the

partial order =⇒ on predicates with the partial order ⪯ on A we obtain:

Theorem 6.1 (Galois Connection between wlp and sp). For all 𝐶 ∈ nGCL and 𝑔, 𝑓 ∈ A:

𝑔 ⪯ wlpJ𝐶K (𝑓) iff sp J𝐶K (𝑔) ⪯ 𝑓 .

As wlp is for partial correctness, Theorem 6.1 shows that sp is also suitable for partial correctness.

One may now wonder whether there exists a strongest post transformer that is tightly related to

wp, and hence, to total correctness. Unfortunately, Dijkstra and Scholten [1990, Section 12] show

that there cannot exist a predicate transformer stp — a “strongest total postcondition” — such that

𝐺 =⇒ wp J𝐶K (𝐹) iff stp J𝐶K (𝐺) =⇒ 𝐹 .

Categorically, that negative result is a consequence of the fact that we are requiring wp to be a right
adjoint functor, and a necessary condition for that is to preserve all infima, but this is not true since

wp is not costrict. Despite this negative result, since wp preserves all suprema (cf. Theorem 5.1 (1)),

we argue that wp is instead a left adjoint functor and show that its right adjoint is exactly slp:

Theorem 6.2 (Galois Connection between wp and slp). For all 𝐶 ∈ nGCL and 𝑔, 𝑓 ∈ A:

wp J𝐶K (𝑓) ⪯ 𝑔 iff 𝑓 ⪯ slpJ𝐶K (𝑔)

Let us provide an intuition on this connection, for simplicity only with “predicates” [𝐹] and [𝐺]:
[𝐹] ⪯ slpJ𝐶K ([𝐺]) means that every final state satisfying 𝐹 is either reached only by states

satisfying𝐺 or unreachable. This is equivalent to saying that all initial states terminating in 𝐹 must

satisfy 𝐺 , which is precisely expressed by wp J𝐶K ([𝐹]) ⪯ [𝐺].

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: November 2022.

1:20 Linpeng Zhang and Benjamin Lucien Kaminski

6.2 Resolving Nondeterministic Choice: Angelic vs. Demonic
Our choices of how to resolve nondeterminism are motivated by establishing dualities between

weakest pre and strongest post presented in Section 6.1. The only thing we take for granted is that

the standard definition of sp is angelic, thus characterizing the “set of reachable states”. Indeed, if

sp is angelic, then we are (provably) also forced to make wp angelic, and both wlp and slp demonic

– otherwise, duality would break. We can also come up with an intuition for these choices: Both,

angelic wp and demonic wlp transformers try to avoid nontermination, if at all possible, whereas
angelic sp and demonic slp try to avoid unreachability.

By dualizing all resolutions of nondeterminism onewould obtain the following intuition: Demonic

wp and angelic wlp transformers try to drive the execution towards nontermination (more standard

for both wp and wlp), whereas demonic sp and angelic slp try to establish unreachability (less

standard for sp, whereas slp is novel anyway). We leave it as future work to study whether this

dual situation would also preserve the Galois connections of Section 6.1.

6.3 Strongest Post and Incorrectness Logic
A Hoare triple ⟨𝐺 ⟩ 𝐶 ⟨ 𝐹 ⟩ is valid for partial correctness iff 𝐺 =⇒ wlpJ𝐶K (𝐹) or (equivalently,
see (†) in Section 6.1) sp J𝐶K (𝐺) =⇒ 𝐹 holds. Somewhat recently, a different kind of triples

have been proposed, first by de Vries and Koutavas [2011] under the name reverse Hoare logic for
studying reachability specifications. A few years, O’Hearn [2019] rediscovered those triples under

the name incorrectness logic and used them for explicit error handling. Bruni et al. [2021] provide a

logic parametrized by an abstract interpretation that, through a notion of local completeness, can

prove both correctness and incorrectness.

In this section we show, first, the relationship between our strongest post transformer and

incorrectness triples [de Vries and Koutavas 2011; O’Hearn 2019]; then, more importantly, we argue

that such triples deal with total incorrectness and hint at novel partial incorrectness triples.

(Total) Incorrectness. In the sense of de Vries and Koutavas [2011], an incorrectness triple

[𝐺] 𝐶 [𝐹] is valid iff ∀𝜏 |= 𝐹 ∃𝜎 with 𝜏 ∈ J𝐶K(𝜎) : 𝜎 |= 𝐺 .

In other words, the set of states 𝐹 is an underapproximation of the set of states reachable by

executing 𝐶 on some state in 𝐺 , i.e., 𝐹 ⊆ sp J𝐶K (𝐺) [O’Hearn 2019, Definition 1]. The term

incorrectness logic originates from the fact that if [𝐺] 𝐶 [𝐹] is valid and 𝐹 contains an error state,

then this error state is guaranteed to be reachable from 𝐺 . Since our quantitative strongest post

transformer subsumes the classical one, we can (re)define incorrectness triples by substituting

predicates with extended Iverson brackets and obtain the following equivalent definition:

Definition 6.3 (Incorrectness Triples). For predicates 𝐺, 𝐹 and program 𝐶 , the incorrectness triple

[𝐺] 𝐶 [𝐹] is valid for (total) incorrectness iff [𝐹] ⪯ sp J𝐶K ([𝐺]) . △

Partial Incorrectness. We argue that the aforementioned triples deal with total incorrectness by
providing novel triples for partial incorrectness. Recall that a Hoare triple ⟨𝐺 ⟩ 𝐶 ⟨ 𝐹 ⟩ is valid for

total correctness if𝐺 =⇒ wp J𝐶K (𝐹). By replacing wp with wlp, we can define partial correctness

triples: ⟨𝐺 ⟩ 𝐶 ⟨ 𝐹 ⟩ is valid for partial correctness if 𝐺 =⇒ wlpJ𝐶K (𝐹). By mimicking the above,

we define partial incorrectness by replacing sp with slp in Definition 6.3:

Definition 6.4 (Partial Incorrectness). For predicates 𝐺, 𝐹 and program 𝐶 , the incorrectness triple

[𝐺] 𝐶 [𝐹] is valid for partial incorrectness iff [𝐹] ⪯ slpJ𝐶K ([𝐺]) . △

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: November 2022.

Quantitative Strongest Post 1:21

By definition of slp,

[𝐺] 𝐶 [𝐹] is val. for part. incorr. iff ∀𝜏 |= 𝐹 ∀𝜎 with 𝜏 ∈ J𝐶K(𝜎) : 𝜎 |= 𝐺 .

In other words, only if the state 𝜏 is reachable, then the triple guarantees that 𝜏 is reached only

from initial states 𝜎 that satisfy 𝐺 . Note that this is dual to the relationship between total and

partial correctness: with partial incorrectness, to have full information on initial states we require
an additional proof of reachability on final states (whereas with partial correctness, to obtain full

information on final states we require an additional proof of termination on initial states).
We also note that, due to the Galois between wp and slp (Theorem 6.2) we have

[𝐺] 𝐶 [𝐹] is valid for partial incorrectness iff wp J𝐶K ([𝐹]) ⪯ [𝐺] .

This implies that 𝐺 is an overapproximation of the set of states that end up in 𝐹 , and corresponds

to the notion of necessary preconditions studied by Cousot et al. [2013]. In particular, if an initial

state 𝜎 ̸ |= 𝐺 , then 𝜎 is guaranteed to not terminate in 𝐹 (𝜎 could also diverge).

implication defines

𝐺 =⇒ wp J𝐶K (𝐹) total correctness

𝐺 =⇒ wlpJ𝐶K (𝐹) partial correctness

wp J𝐶K (𝐹) =⇒ 𝐺 partial incorrectness

wlpJ𝐶K (𝐹) =⇒ 𝐺 ???

𝐹 =⇒ sp J𝐶K (𝐺) (total) incorrectness

𝐹 =⇒ slpJ𝐶K (𝐺) partial incorrectness

sp J𝐶K (𝐺) =⇒ 𝐹 partial correctness

slpJ𝐶K (𝐺) =⇒ 𝐹 ¿¿¿

Other Triples. We note that the naming

conventions correctness and incorrectness
may not necessarily always be appropri-

ate. First of all, we argue that incorrect-

ness triples [de Vries and Koutavas 2011;

O’Hearn 2019] can be used to prove good
behavior : for instance, a triple [𝐺] 𝐶 [𝐹]
where 𝐹 contains good states, ensures that

every (good) state in 𝐹 is reachable from

precondition 𝐺 . Rather than correctness
versus incorrectness, we believe that the fundamental difference between the triples is that correct-

ness triples provide information on the behavior of initial states satisfying preconditions, whereas
incorrectness triples guarantee reachability properties on final states satisfying postconditions.
Secondly, note that our transformers can define two additional triples other than total (partial)

correctness (incorrectness), for which the current naming conventions are insufficient. So far, we

have the picture depicted in the table above. The two blue and the two orange lines define the same

notion due to the Galois connections between wlp/sp and wp/slp. For ??? and ¿¿¿, however, there

are no appropriate names (let alone program logics) yet. We can say, however, that ??? gives rise to

a notion of necessary liberal preconditions, in the sense that (1) 𝐺 contains all initial states 𝜎 that

diverge, and (2) whenever 𝜎 ̸ |= 𝐺 , then 𝜎 is guaranteed to terminate in a state 𝜏 ̸ |= 𝐹 . ¿¿¿, on the

other hand, provides necessary liberal postconditions, meaning that (1) 𝐹 contains all unreachable
states, and every final state 𝜏 ̸ |= 𝐹 is guaranteed to be reachable from some initial state 𝜎 ̸ |= 𝐺 .

Following the terminology from above, which is inspired from the naming necessary preconditions
of Cousot et al. [2013], we can state that

• total correctness triples provide sufficient preconditions;
• total incorrectness triples provide sufficient postconditions;
• partial correctness triples provide sufficient liberal preconditions (or necessary postconditions);
• partial incorrectness triples provide sufficient liberal postconditions (or necessary preconditions).

We also note that even the terminology for the predicate transformers, strongest post- and weakest
precondition, might be imprecise. Indeed, as pointed by O’Hearn [2019], such terminology is

tied with the classical aim of Hoare logic to find either the smallest (strongest) set of necessary

(overapproximating) postconditions or the largest (weakest) set of sufficient (underapproximating)

preconditions. The strongest postcondition can be seen also as the weakest sufficient postcondition,

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: November 2022.

1:22 Linpeng Zhang and Benjamin Lucien Kaminski

whereas the weakest precondition is the strongest necessary precondition. Switching to our liberal

predicate transformers, our strongest liberal post computes the strongest necessary liberal postcon-
dition or, equivalently, the weakest sufficient liberal postcondition. Finally, our weakest liberal pre
computes the weakest sufficient liberal precondition or the strongest necessary liberal precondition.

Duality. As a consequence of the liberal–non-liberal duality of Theorem 5.4, we have

𝐺 =⇒ wp J𝐶K (𝐹) iff wlpJ𝐶K (¬𝐹) =⇒ ¬𝐺 .

In other words, the triples connected to ??? are the contrapositive of total correctness triples.

Similarly, ¿¿¿ is the contrapositive of total incorrectness, whereas partial incorrectness is the

contrapositive of partial correctness. This implies (interestingly) that only three kind of triples

fundamentally cannot be stated in terms of other triples. Nevertheless, we would argue that it is

still useful to work with, e.g. ??? triples, depending on the verification aim, especially in the context

of explainable verification: For example, if one is interested in inferring necessary preconditions, it

would certainly appear easier and more natural to work and think directly with partial incorrectness,

instead of complementing both the sufficient liberal preconditions obtained via partial correctness

and the original postcondition. The resulting proof and annotations, directly in terms of necessary
preconditions, will be much easier to understand for a working programmer.

7 LOOPS RULES
Theorem 7.1 (Induction Rules for Loops). The following proof rules for loops are valid:

𝑔 ⪯ 𝑖 ⪯ [¬𝜑] ⋏ 𝑓 ⋎ [𝜑] ⋏ wlpJ𝐶K (𝑖)
𝑔 ⪯ wlpJwhile (𝜑) {𝐶 }K (𝑓)

while−wlp

𝑔 ⋎ sp J𝐶K ([𝜑] ⋏ 𝑖) ⪯ 𝑖 and [¬𝜑] ⋏ 𝑖 ⪯ 𝑓

sp Jwhile (𝜑) {𝐶 }K (𝑔) ⪯ 𝑓
while−sp

[¬𝜑] ⋏ 𝑓 ⋎ [𝜑] ⋏ wp J𝐶K (𝑖) ⪯ 𝑖 ⪯ 𝑔

wp Jwhile (𝜑) {𝐶 }K (𝑓) ⪯ 𝑔
while−wp

𝑖 ⪯ 𝑔 ⋏ slpJ𝐶K ([¬𝜑] ⋎ 𝑖) and 𝑓 ⪯ [𝜑] ⋎ 𝑖
𝑓 ⪯ slpJwhile (𝜑) {𝐶 }K (𝑔)

while−slp

The rule while−sp is novel. The while−wlp rule has already been investigated in [Kaminski 2019,

Section 5] in a probabilistic setting, but in a more restricted lattice where quantities map to the

unit interval. Our definition of wlp is not probabilistic but for a more general lattice of unbounded

signed quantities. Notice thatwhile−wlp andwhile−sp are tightly connected by a Galois connection
(cf. Theorem 6.1), and by taking 𝑔 = [𝐺] and 𝑓 = [𝐹] for predicates 𝐺, 𝐹 , we conclude for both
rules the validity of the Hoare triple ⟨𝐺 ⟩ while (𝜑) {𝐶 } ⟨ 𝐹 ⟩ for partial correctness. Indeed, as
standard in literature, the rule while−wlp requires to find an invariant that satisfy two conditions:

(1) [𝐺] ⪯ [𝐼], meaning that whenever precondition 𝐺 holds, then the invariant 𝐼 also holds.

(2) [𝐼] ⪯ [¬𝜑] ⋏ [𝐹] ⋎ [𝜑] ⋏wlpJ𝐶K ([𝐼]), meaning that whenever 𝐼 holds, either the loop guard

𝜑 does not hold, but then postcondition 𝐹 holds; or 𝜑 does hold, but then 𝐼 still holds after

one iteration of the loop body (or the loop body itself diverges (think: nested loops)).

By induction, (2) ensures that, starting from 𝐼 and no matter how many loop iterations are executed,

𝐼 can only terminate in states that again satisfy 𝐼 . Assuming termination, eventually ¬𝜑 will hold

and thus 𝐼 implies the postcondition 𝐹 . (1) guarantees that the initial precondition 𝐺 implies 𝐼 .

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: November 2022.

Quantitative Strongest Post 1:23

Hence any state initially satisfying 𝐺 and on which the loop eventually terminates will do so in a

final state satisfying postcondition 𝐹 . The rule while−sp is analogous, but for forward reasoning.

The rule while−wp has also been investigated by Kaminski [2019] in a probabilistic setting but

again in a more restricted lattice where quantities map to unsigned positive extended reals. The

rulewhile−slp is completely novel (since slp is novel). Again, by Galois connection and by taking as

quantities the Iverson bracket of predicates𝐺, 𝐹 , we obtain for the last two rules as conclusion the

validity of the triple [𝐺] while (𝜑) {𝐶 } [𝐹] for partial incorrectness in the sense of Definition 6.4.

As for an intuition, recall that validity for partial incorrectness means here that 𝐺 is a necessary
precondition to end in a final state satisfying 𝐹 after termination of while (𝜑) {𝐶 }. For proving
this, the rule while−wp requires to find an invariant 𝐼 , such that:

(1) [𝐼] ⪯ [𝐺], meaning that whenever invariant 𝐼 holds, then the precondition 𝐺 also holds.

(2) [¬𝜑] ⋏ [𝐹] ⪯ [𝐼], meaning that if the loop has terminated in postcondition 𝐹 , then 𝐼 holds;

(3) [𝜑] ⋏ wp J𝐶K ([𝐼]) ⪯ [𝐼], meaning that if the loop is in some state 𝜎 in which the loop guard

holds (i.e. the loop is about to be executed once more) and one loop iteration will terminate

in some state where 𝐼 holds again, then 𝐼 holds for 𝜎 .

By induction, (2) and (3), which represent the first premise of while−wp, imply that 𝐼 is a necessary

precondition for the loop to terminate in 𝐹 . Indeed, starting from the base case (2), for the inductive

step we assume that 𝐼 overapproximates those states terminating in 𝐹 after 𝑛 loop iterations. By

(3), 𝐼 also contains [𝜑] ⋏ wp J𝐶K ([𝐼]), i.e., an overapproximation of those states terminating in 𝐹

after 𝑛 + 1 iterations. (1) guarantees that the precondition 𝐺 contains 𝐼 and hence 𝐺 is a necessary

precondition for the loop to terminate in 𝐹 . Again, the rule while−slp is analogous, but forward.

Example 7.2 (Inductive Reasoning). Consider the loop while (𝑥 < 10) { 𝑥 B 𝑥 + 4 }. In order to

show that 𝑥 | 4 (read: 𝑥 is divisible by 4) is a necessary precondition to terminate in postcondition

𝑥 = 12, it is sufficient to prove the partial incorrectness triple [𝑥 = 12] ⪯ slpJ𝐶K ([𝑥 | 4]). If we
apply the inductive rule we obtain:

𝑖 ⪯ [𝑥 | 4] ⋏ slpJ𝑥 B 𝑥 + 4K ([𝑥 ≥ 10] ⋎ 𝑖) and [𝑥 = 12] ⪯ [𝑥 < 10] ⋎ 𝑖
[𝑥 = 12] ⪯ slpJwhile (𝑥 < 10) { 𝑥 B 𝑥 + 4 }K ([𝑥 | 4])

while−slp

Now take as invariant 𝑖 = [𝑥 | 4]. As for the right premise, we can easily convince ourselves that

[𝑥 = 12] ⪯ [𝑥 < 10] ⋎ [𝑥 | 4] holds. As for the left premise, we have

[𝑥 | 4] ⋏ slpJ𝑥 B 𝑥 + 4K ([𝑥 ≥ 10] ⋎ [𝑥 | 4]) = [𝑥 | 4] ⋏
(
[𝑥 − 4 ≥ 10] ⋎ [𝑥 − 4 | 4]

)
= [𝑥 | 4] ⋏

(
[𝑥 ≥ 14] ⋎ [𝑥 | 4]

)
= [𝑥 | 4] ⪰ [𝑥 | 4] = 𝑖 .

Hence we can infer the conclusion of while–slp and we have proven that [𝑥 | 4] is a necessary
precondition for the loop to terminate in [𝑥 = 12]. △

The forward transformers sp and slp come with an additional induction rule: under certain premises,

it allows to immediately conclude that the fixpoint of the characteristic function for a quantity 𝑓 is

precisely 𝑓 itself, i.e. the second Kleene iterate.

Proposition 7.3. The following proof rules for loops are valid:

sp J𝐶K (𝑓) ⪯ 𝑓

sp Jwhile (𝜑) {𝐶 }K (𝑓) = [¬𝜑] ⋏ 𝑓

𝑓 ⪯ slpJ𝐶K (𝑓)
slpJwhile (𝜑) {𝐶 }K (𝑓) = [𝜑] ⋎ 𝑓

An intuition of Proposition 7.3 for sp is the following: for a loop while (𝜑) {𝐶 }, the premise

sp J𝐶K (𝑓) ⪯ 𝑓 means that the value of 𝑓 retrocipated for one iteration is lower than the original

value of 𝑓 . By induction, retrocipating 𝑓 for any number of iterations leads to a decreasing quantity.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: November 2022.

1:24 Linpeng Zhang and Benjamin Lucien Kaminski

So what is the maximum initial value that 𝑓 could have had? It is the initial quantity 𝑓 , i.e. sp
“gets away” with not even entering the loop. The guard [¬𝜑] in the conclusion is needed to ensure

reachability. For slp, retrocipating the execution of the loop increases the initial quantity 𝑓 - and

hence the minimum initial value of 𝑓 is again 𝑓 itself.

Example 7.4. Consider the loop 𝐶 = while (𝑥 < 10) { { 𝑥 B 𝑥 + 1 } □ { 𝑥 B 𝑥 + 2 } } and the

precondition 𝑥 ≥ 0. To determine the set of states reachable from precondition 𝑥 ≥ 0, i.e. to
determine sp J𝐶K ([𝑥 ≥ 0]), we first check the premise

sp J{ 𝑥 B 𝑥 + 1 } □ { 𝑥 B 𝑥 + 2 }K ([𝑥 ≥ 0])
= [𝑥 − 1 ≥ 0] ⋎ [𝑥 − 2 ≥ 0] = [𝑥 ≥ 1] ⋎ [𝑥 ≥ 2] = [𝑥 ≥ 1] ⪯ [𝑥 ≥ 0]

and thus conclude by Proposition 7.3 that

sp J𝐶K ([𝑥 ≥ 0]) ⪯ [𝑥 ≥ 10] ⋏ [𝑥 ≥ 0] = [𝑥 ≥ 10]

This allows to include immediately that 𝑥 ≥ 10 is the strongest necessary postcondition or, equiva-

lently, the weakest sufficient postcondition. In particular, this result verifies that precisely those final

states with 𝑥 ≥ 10 are reachable from initial states with 𝑥 ≥ 0. △

8 CASE STUDIES
((𝒇

𝐶

((𝒈
=((𝒈′

In this section, we demonstrate the efficacy of quantitative strongest (liberal) post

reasoning. We use the annotation style on the right to express that 𝑔 = sp J𝐶K (𝑓)
(or that 𝑔 = slpJ𝐶K (𝑓), depending on the context) and furthermore that 𝑔′ = 𝑔.

Full calculations of strongest posts are provided in Appendix G.

8.1 Quantitative Information Flow — Loop Free
Consider the program𝐶flow = if (hi > 7) { lo B 99 } else { lo B 80 }. As usual in quantitative

information flow, ℎ𝑖 is a secret and we want to ensure that, by observing the variable lo, one cannot
infer information about ℎ𝑖 . Below, we show sp (left) and slp (right) annotations for prequantity ℎ𝑖 ,

i.e. we indeed show how the initial value of ℎ𝑖 flows from the top to the bottom of the computation.

((hi

if (hi > 7) {
(([hi > 7] ⋏ hi

lo B 99

((S𝜶 : [lo = 99] ⋏ [hi > 7] ⋏ hi

=(([lo = 99] ⋏ [hi > 7] ⋏ hi

} else {
(([hi ≤ 7] ⋏ hi

lo B 80

((S𝜶 : [lo = 80] ⋏ [hi ≤ 7] ⋏ hi

=(([lo = 80] ⋏ [hi ≤ 7] ⋏ hi

}

((
(

[lo = 99] ⋏ [hi > 7] ⋏ hi
)

⋎
(

[lo = 80] ⋏ [hi ≤ 7] ⋏ hi
)

((hi

if (hi > 7) {
(([hi ≤ 7] ⋎ hi

lo B 99

((J𝜶 : [lo ≠ 99] ⋎ [hi ≤ 7] ⋎ hi

=(([lo ≠ 99] ⋎ [hi > 7] ⋎ hi

} else {
(([hi > 7] ⋎ hi

lo B 80

((J𝜶 : [lo ≠ 80] ⋎ [hi > 7] ⋎ hi

=(([lo ≠ 80] ⋎ [hi > 7] ⋎ hi

}

((
(

[lo ≠ 99] ⋎ [hi ≤ 7] ⋎ hi
)

⋏
(

[lo ≠ 80] ⋎ [hi > 7] ⋎ hi
)

Let us first note that we can precisely infer the set of states that are reachable after executing𝐶flow

by recalling that for a prequantity 𝑓 strictly larger than −∞, sp J𝐶K (𝑓) (𝜏) = −∞ if and only if 𝜏 is

unreachable.When does the (left) expression

(
[lo = 99]⋏ [ℎ𝑖 > 7]⋏ℎ𝑖

)
⋎

(
[lo = 80]⋏ [ℎ𝑖 ≤ 7]⋏ℎ𝑖

)
evaluate to something larger than −∞? This is precisely the case if either the final value of lo is 99

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: November 2022.

Quantitative Strongest Post 1:25

and ℎ𝑖 is larger than 7, or if lo is 80 and ℎ𝑖 smaller or equal 7. The reachable states are thus given by

{𝜏 | sp J𝐶K (hi) (𝜏) ≠ −∞} = {𝜏 | 𝜏 (lo) = 99 ∧ 𝜏 (hi) > 7 ∨ 𝜏 (lo) = 80 ∧ 𝜏 (hi) ≤ 7} .

The same insight could have been achieved with slp by computing {𝜏 : slpJ𝐶K (hi) (𝜏) ≠ +∞}.
Secondly, we can — in a principled way — construct from the sp and slp annotations a function 𝜉

that, given the final value of only the observable variable lo (which we denote lo ′
), returns the set

containing an overapproximation of all possible initial values of the quantity hi , namely:

𝜉 (lo ′) =
{
𝛼

�� 𝜏 ∈ Σ, 𝜏 (lo) = 𝑙𝑜 ′, slpJ𝐶flow K (hi) (𝜏) ≤ 𝛼 ≤ sp J𝐶flow K (hi) (𝜏)
}

=


{ 𝛼 | 7 < 𝛼 } , if 𝑙𝑜 ′ = 99

{ 𝛼 | 𝛼 ≤ 7 } , if 𝑙𝑜 ′ = 80

∅, otherwise.

Now, what can we infer about the secret initial value of hi by observing only the final value lo ′
? If

𝑙𝑜 ′ = 99, then hi must be larger than 7; if lo = 90, then hi must be smaller or equal 7, and otherwise
this state was actually unreachable (and hence such a situation could have not been observed in

the first place). Hence, observing the final value of lo leaks information about the secret hi . In fact,

by having used both sp and slp, the above gave us precisely the entire information that is leaked

about hi from observing the final value of lo.

8.2 Quantitative Information Flow for Loops
Consider the program 𝐶while = hi B hi + 5 # while (lo < hi) { lo B 𝑙𝑜 + 1 }. Again, we show

below the sp (left) and slp (right) annotations for prequantity hi .

((hi

hi B hi + 5

((hi − 5

while (lo < hi) {
lo B 𝑙𝑜 + 1 }

(([𝒍𝒐 ≥ hi] ⋏ (hi − 5)

((hi

hi B hi + 5

((hi − 5

while (lo < hi) {
lo B 𝑙𝑜 + 1 }

(([lo < hi] ⋎ (hi − 5)

For sp and slp of the loop, the Kleene iteration stabilizes after 2 iterations, see Appendix G for

detailed computations. There is no need for invariant, nor reasoning about limits, or anything alike.

Even more conveniently, we can alternatively apply Proposition 7.3: indeed, for instance for sp we

have sp Jlo B 𝑙𝑜 + 1K (hi − 5) = hi − 5 ⪯ hi − 5 and thus Proposition 7.3 yields that sp of the loop

is precisely [𝑙𝑜 ≥ hi] ⋏ (hi − 5).
We construct (again) the function 𝜉 that, given the final value lo ′

of the variable lo, returns
an overapproximation of all possible initial values of the quantity hi , and obtain 𝜉 (lo ′) =

{ 𝛼 | 𝛼 ≤ 𝑙𝑜 ′ − 5 }. Hence, by observing only the final value lo ′
we infer that hi must be at most

𝑙𝑜 ′ − 5. In fact, any of such value 𝛼 ≤ 𝑙𝑜 ′ − 5 after being incremented by 5 leads to a value that

𝛼 ′ ≤ 𝑙𝑜 ′, so without entering the loop, 𝐶while terminates with the correct final value lo ′
. Again,

using both sp and slp, we obtain precisely the entire information that is leaked about hi from
observing the final value of lo.

Quantitative Information Flow for Loops using wp. The set 𝜉 (lo ′) could have alternatively

been determined with classical weakest preconditions: In fact, wp J𝐶K ([lo = lo ′]) is the set of all
initial states that will end with a final state where 𝑙𝑜 = 𝑙𝑜 ′, and by projecting only to the values

of the variable hi we obtain all initial values of hi . However, aside from a (perhaps subjective)

elegance perspective, we point out that the computation of wp J𝐶K ([lo = lo ′]) is actually more

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: November 2022.

1:26 Linpeng Zhang and Benjamin Lucien Kaminski

involved: the Kleene’s iterates of the loop for wp stabilize only at 𝜔 – not 2:

Φ(false) = [𝑙𝑜 ≥ hi] ∧ [𝑙𝑜 = 𝑙𝑜 ′]
Φ2 (false) = [𝑙𝑜 ≥ hi] ∧ [𝑙𝑜 = 𝑙𝑜 ′] ∨ [𝑙𝑜 ′ − 1 < hi ≤ 𝑙𝑜 ′] ∧ [𝑙𝑜 = 𝑙𝑜 ′ − 1]
Φ3 (false) = [𝑙𝑜 ≥ hi] ∧ [𝑙𝑜 = 𝑙𝑜 ′] ∨ [𝑙𝑜 ′ − 1 < hi ≤ 𝑙𝑜 ′] ∧ [𝑙𝑜 = 𝑙𝑜 ′ − 1]

∨ [𝑙𝑜 ′ − 1 < hi ≤ 𝑙𝑜 ′] ∧ [𝑙𝑜 = 𝑙𝑜 ′ − 2]
...

Φ𝜔 (false) = [hi ≤ 𝑙𝑜] ∧ [𝑙𝑜 = 𝑙𝑜 ′] ∨
(

𝜔∨
𝑛=1

[𝑙𝑜 ′ − 1 < hi ≤ 𝑙𝑜 ′] ∧ [𝑙𝑜 = 𝑙𝑜 ′ − 𝑛]
)

Reasoning about this requires some form of creativity or advanced technique: either reasoning

about the limit, or finding an invariant plus a termination prove. Only after determining Φ𝜔 (false),
one can perform the wp for the assignment, which again results in a huge formula. For sp and slp,
the Kleene’s iterates stabilize after 2 iterations (Appendix G): no need for invariant nor reasoning

about limits nor projections of huge formulas.

8.3 Automation
Our calculi, in their full generality, cannot be fully automated, which is not surprising since our cal-

culi can express both termination and reachability properties for a Turing-complete computational

model – both of which are well known to be undecidable [Rice 1953; Turing 1936]. Nevertheless,

we believe that our calculi are at least syntactically mechanizable. For this aim, we plan to inves-

tigate an expressive “assertion” language for quantities, such as the one proposed by Batz et al.

[2021] for quantitative reasoning about probabilistic programs. This would allow showing relative
completeness in the sense of Cook [1978], i.e., decidability modulo checking whether 𝑔 ⪯ 𝑓 holds,

where 𝑔, 𝑓 may contain suprema and infima. Similar problems (decidability modulo checking a

logical implication) exist for classical predicate transformers and Hoare logic [Cook 1978].

We also point out that the main goal of our calculi is to provide a framework, on which future

tools for (partially) automating quantitative wlp/sp/slp proofs can ground. For example, it may well

be possible to fully automate the transformers for some syntactic (e.g. linear) fragments of nGCL.

8.4 Partial Incorrectness Reasoning
We now show an application of partial incorrectness triples and, hence, of our strongest liberal post-

conditions. Consider a program/system 𝐶login that takes as input a variable password. If password
contains the correct password, say "oopsla2022", then𝐶login terminates in a final state containing

a boolean variable “access” storing the value true; otherwise, the program terminates with value

access = false. Now, recall that

slpJ𝐶loginK ([password = "oopsla2022"])

is a predicate characterizing those final states which are reached only by initial states 𝜎 with the

correct password, i.e. initial states with 𝜎 (password) = "oopsla2022". If the partial incorrectness
triple [access = true] 𝐶login [password = "oopsla2022"], which translates to

[access = true] =⇒ slpJ𝐶K ([password = "oopsla2022"]) ,

holds, then knowing the correct password is a necessary precondition to access the system. In other

words, validity of the partial incorrectness triple guarantees that no user without knowledge of the

correct password can end up in a final state 𝜏 where 𝜏 (access) = true.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: November 2022.

Quantitative Strongest Post 1:27

We also note that, by the Galois Connection of Theorem 6.2, one can check whether the partial

incorrectness triple holds also by employing wp:

wp J𝐶K ([access = true]) =⇒ [password = "oopsla2022"]
However, reasoningwith slpmaywell (1) bemore feasible in practice (as demonstrated in Section 8.2)

as well as (2) more intuitive when reasoning about necessary preconditions to access a system.

9 RELATEDWORK
More General Predicate Transformers. Aguirre and Katsumata [2020] focus on an abstract theory of

wp for loop-free programs. In particular, ourw(l)p, restricted to the fragment of loop-free programs, can
be derived by instantiating their Corollary 4.6 (for details, see Appendix H). Aguirre and Katsumata

[2020, Section 4.1] also define an abstract strongest postcondition as a left adjoint of their weakest

precondition (without constructing it); we believe that, due to our Theorem 6.2, an abstract strongest

liberal post can be defined dually as a right adjoint of their weakest precondition. On the other

hand, our definition of strongest post is explicitly given by induction on the program structure and

not implicitly as an adjoint. The difficulties with finding strongest posts for probabilistic programs

demonstrate that an explicit definition of a strongest post is more than desirable.

Strongest Liberal Post. The term “strongest liberal postcondition” is sometimes used in the literature

for the original non-liberal strongest postcondition, see e.g. [Back 1988, Section 2.2], [Jacobs and

Gries 1985, Section 0], or [Wulandari and Plump 2020, Definition 8]. In fact, [Back 1988, Section

2.2] argues that the strongest postcondition is often denoted also as strongest liberal postcondition

due to the relationship between weakest liberal pre. However, since wlp “allows” nontermination

whereas wp does not, and analogously slp “allows” unreachability whereas sp does not, we believe

that our naming convention of slp and sp is more appropriate and natural.

Information Flow Analysis. Some previous work on information flow analysis use type systems

[Ørbæk and Palsberg 1997; Volpano and Smith 1997]. However, these are imprecise and may reject

safe programs such as lo B hi # lo B 0 due to a potential flow from hi to lo [Amtoft and Banerjee

2004]. A Hoare-like logic combined with abstract interpretation has been proposed by Amtoft

and Banerjee [2004], but fails for simple programs such as [Amtoft and Banerjee 2004, Section

9], which instead can be easily detected with our s(l)p analysis. Other abstract interpretation-

based techniques focus on the trace semantics [Cousot 2019; Urban and Müller 2018]. Urban et al.

[2019] verify dependency fairness of neural networks by applying a backward analysis to compute

the set of input values that lead to a certain ouput value; this approach is similar to a wp-based
calculus with ghost variables, as shown in Example 8.2, and we speculate that sp-based approaches

could also be applied and potentially lead to better performances (as shown in Example 8.2). In

Security Concurrent Separation logic [Ernst and Murray 2019] the authors provide an extension of

concurrent separation logic [O’Hearn 2004; Reynolds 2002] by adding sensitivity assertions which,

roughly, assigns to a certain variable a certain degree of security; however, their proof system deals

only with partial correctness and restricts to conditional statements and loops that cannot use

sensitive variables, so that our examples from Section 8 cannot be covered by their logic. Differently

from the aforementioned works, our framework provides quantitative details about the amount of

information flow, instead of a single boolean output, see [Smith 2009] for an overview.

10 CONCLUSION & FUTUREWORK
We have presented a novel quantitative strongest post calculus that subsumes classical strongest

postconditions. Moreover, we developed a novel quantitative strongest liberal post calculus. Re-
stricted to a Boolean setting, we obtain the – to the best of our knowledge – unexplored notion of

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: November 2022.

1:28 Linpeng Zhang and Benjamin Lucien Kaminski

strongest liberal postconditions which ultimately lead to our definition of partial incorrectness. The
latter connection is justified by the fundamental Galois connection between slp and wp, and the

strong duality between total and partial correctness, but where we replace nontermination with

unreachability. Finally, we notice that there are three additional Hoare-style triples that can be

naturally defined using our transformers, and we identify a precise connection between partial
incorrectness and the so-called necessary preconditions [Cousot et al. 2013].
As future work, we plan to investigate the newly observed Hoare triples and to provide novel

proof systems for them. We also plan to extend our quantitative strongest calculi with heap

manipulation, similarly to the work of [Batz et al. 2018] for weakest pre calculi; this could lead to

connections with incorrectness separation logic [Raad et al. 2020].

Finally, we plan to deepen the applications of quantitative strongest post calculi to quantitative

information flow, perhaps by establishing connections with abstract interpretation [Cousot and

Cousot 1977]. In fact, we believe that our s(l)p transformers can be viewed as sound approximations

of the fiber of the concrete semantics. Examples 8.1, 8.2 go into this direction after-all, since

the combination of our strongest and strongest liberal post calculi can be viewed as an interval
abstraction [Cousot and Cousot 1976] of the possible initial values of a certain pre-quantity.

REFERENCES
Alejandro Aguirre and Shin-ya Katsumata. 2020. Weakest Preconditions in Fibrations. In MFPS.
Torben Amtoft and Anindya Banerjee. 2004. Information Flow Analysis in Logical Form. In Static Analysis, Roberto

Giacobazzi (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 100–115.

R. J. R. Back. 1988. A Calculus of Refinements for Program Derivations. Acta Inf. 25, 6 (Aug. 1988), 593–624. https:

//doi.org/10.1007/BF00291051

Kevin Batz, Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Christoph Matheja. 2021. Relatively complete verification

of probabilistic programs: an expressive language for expectation-based reasoning. Proc. ACM Program. Lang. 5, POPL
(2021), 1–30.

Kevin Batz, Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph Matheja, and Thomas Noll. 2018. Quantitative

Separation Logic. CoRR abs/1802.10467 (2018). arXiv:1802.10467 http://arxiv.org/abs/1802.10467

Roberto Bruni, Roberto Giacobazzi, Roberta Gori, and Francesco Ranzato. 2021. A Logic for Locally Complete Abstract

Interpretations. In 2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). 1–13. https://doi.org/10.

1109/LICS52264.2021.9470608

Stephen A. Cook. 1978. Soundness and Completeness of an Axiom System for Program Verification. SIAM J. Comput. 7
(1978), 70–90.

Patrick Cousot. 2019. Abstract Semantic Dependency. In SAS (Lecture Notes in Computer Science, Vol. 11822). Springer,
389–410.

P. Cousot and R. Cousot. 1976. Static determination of dynamic properties of programs. In Proceedings of the Second
International Symposium on Programming. Dunod, Paris, France, 106–130.

Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs

by Construction or Approximation of Fixpoints. In Conference Record of the Fourth ACM Symposium on Principles of
Programming Languages, Los Angeles, California, USA, January 1977, Robert M. Graham, Michael A. Harrison, and Ravi

Sethi (Eds.). ACM, 238–252. https://doi.org/10.1145/512950.512973

Patrick Cousot, Radhia Cousot, Manuel Fähndrich, and Francesco Logozzo. 2013. Automatic Inference of Necessary

Preconditions. In Verification, Model Checking, and Abstract Interpretation, Roberto Giacobazzi, Josh Berdine, and Isabella

Mastroeni (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 128–148.

Edsko de Vries and Vasileios Koutavas. 2011. Reverse Hoare Logic. In Software Engineering and Formal Methods, Gilles
Barthe, Alberto Pardo, and Gerardo Schneider (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 155–171.

Edsger Wybe Dijkstra. 1975. Guarded Commands, Nondeterminacy and Formal Derivation of Programs. 18, 8 (1975),

453–457.

EdsgerW. Dijkstra and Carel S. Scholten. 1990. Predicate Calculus and Program Semantics. Springer-Verlag, Berlin, Heidelberg.
Gidon Ernst and Toby Murray. 2019. SecCSL: Security Concurrent Separation Logic. In Computer Aided Verification, Isil

Dillig and Serdar Tasiran (Eds.). Springer International Publishing, Cham, 208–230.

Matthew S. Hecht. 1977. Flow Analysis of Computer Programs. Elsevier.
C. A. R. Hoare. 1969. An Axiomatic Basis for Computer Programming. Commun. ACM 12, 10 (Oct. 1969), 576–580.

https://doi.org/10.1145/363235.363259

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: November 2022.

https://doi.org/10.1007/BF00291051
https://doi.org/10.1007/BF00291051
https://arxiv.org/abs/1802.10467
http://arxiv.org/abs/1802.10467
https://doi.org/10.1109/LICS52264.2021.9470608
https://doi.org/10.1109/LICS52264.2021.9470608
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/363235.363259

Quantitative Strongest Post 1:29

Dean Jacobs and David Gries. 1985. General Correctness: A Unification of Partial and Total Correctness. Acta Inf. 22, 1
(April 1985), 67–83. https://doi.org/10.1007/BF00290146

Claire Jones. 1990. Probabilistic Non-Determinism. Ph.D. Dissertation. University of Edinburgh, UK.

Benjamin Lucien Kaminski. 2019. Advanced weakest precondition calculi for probabilistic programs. Ph.D. Dissertation.
RWTH Aachen University, Germany.

Benjamin Lucien Kaminski and Joost-Pieter Katoen. 2017. A weakest pre-expectation semantics for mixed-sign expectations.

In LICS. IEEE Computer Society, 1–12.

Donald E. Knuth. 1992. Two Notes on Notation. Am. Math. Monthly 99, 5 (May 1992), 403–422. https://doi.org/10.2307/

2325085

Dexter Kozen. 1985. A Probabilistic PDL. J. Comput. System Sci. 30, 2 (1985), 162–178.
Annabelle McIver and Carroll Morgan. 2005a. Abstraction, Refinement and Proof for Probabilistic Systems. Springer.

https://doi.org/10.1007/b138392

Annabelle McIver and Carroll Morgan. 2005b. Abstraction, Refinement and Proof for Probabilistic Systems. Springer.
Peter W. O’Hearn. 2004. Resources, Concurrency and Local Reasoning. In CONCUR 2004 - Concurrency Theory, Philippa

Gardner and Nobuko Yoshida (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 49–67.

Peter W. O’Hearn. 2019. Incorrectness Logic. Proc. ACM Program. Lang. 4, POPL, Article 10 (Dec. 2019), 32 pages.

https://doi.org/10.1145/3371078

P. Ørbæk and J. Palsberg. 1997. Trust in the 𝜆-Calculus. J. Funct. Program. 7, 6 (Nov. 1997), 557–591. https://doi.org/10.

1017/S0956796897002906

David Michael Ritchie Park. 1969. Fixpoint Induction and Proofs of Program Properties, Vol. 5. Machine intelligence.

Azalea Raad, Josh Berdine, Hoang-Hai Dang, Derek Dreyer, Peter O’Hearn, and Jules Villard. 2020. Local Reasoning About

the Presence of Bugs: Incorrectness Separation Logic. In Computer Aided Verification, Shuvendu K. Lahiri and Chao Wang

(Eds.). Springer International Publishing, Cham, 225–252.

J.C. Reynolds. 2002. Separation logic: a logic for shared mutable data structures. In Proceedings 17th Annual IEEE Symposium
on Logic in Computer Science. 55–74. https://doi.org/10.1109/LICS.2002.1029817

H.G. Rice. 1953. Classes of recursively enumerable sets and their decision problems. Trans. Amer. Math. Soc. 74 (1953),
358–366. https://doi.org/10.2307/1990888

Xavier Rival and Kwangkeun Yi. 2020. Introduction to Static Analysis – An Abstract Interpretation Perspective. MIT Press.

Geoffrey Smith. 2009. On the foundations of quantitative information flow. In International Conference on Foundations of
Software Science and Computational Structures. Springer, 288–302.

Alan Turing. 1936. On Computable Numbers, with an Application to the Entscheidungsproblem. Proceedings of the London
Mathematical Society 42, 1 (1936), 230–265. https://doi.org/10.2307/2268810

Alan Mathison Turing. 1949. Checking a Large Routine. In Report of a Conference on High Speed Automatic Calculating
Machines. Univ. Math. Lab., Cambridge, 67–69.

Caterina Urban, Maria Christakis, Valentin Wüstholz, and Fuyuan Zhang. 2019. Perfectly Parallel Fairness Certification of

Neural Networks. CoRR abs/1912.02499 (2019). arXiv:1912.02499 http://arxiv.org/abs/1912.02499

Caterina Urban and Peter Müller. 2018. An Abstract Interpretation Framework for Input Data Usage. In ESOP. 683–710.
Dennis M. Volpano and Geoffrey Smith. 1997. A Type-Based Approach to Program Security. In Proceedings of the 7th

International Joint Conference CAAP/FASE on Theory and Practice of Software Development (TAPSOFT ’97). Springer-Verlag,
Berlin, Heidelberg, 607–621.

Gia S. Wulandari and Detlef Plump. 2020. Verifying Graph Programs with First-Order Logic. Electronic Proceedings in
Theoretical Computer Science 330 (Dec 2020), 181–200. https://doi.org/10.4204/eptcs.330.11

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: November 2022.

https://doi.org/10.1007/BF00290146
https://doi.org/10.2307/2325085
https://doi.org/10.2307/2325085
https://doi.org/10.1007/b138392
https://doi.org/10.1145/3371078
https://doi.org/10.1017/S0956796897002906
https://doi.org/10.1017/S0956796897002906
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.2307/1990888
https://doi.org/10.2307/2268810
https://arxiv.org/abs/1912.02499
http://arxiv.org/abs/1912.02499
https://doi.org/10.4204/eptcs.330.11

1:30 Linpeng Zhang and Benjamin Lucien Kaminski

APPENDIX
A COLLECTING SEMANTICS OF WHILE-LOOPS
Let us explain the semantics of while (𝜑) {𝐶 }. Let 𝑆 again be the set of input states. First, we

denote by 𝐹𝑆 the function

𝐹𝑆 (𝑋) = 𝑆 ∪
(
J𝐶K ◦ J𝜑K

)
𝑋 ,

i.e. 𝐹𝑆 first applies the filtering with respect to the loop guard 𝜑 to its input 𝑋 , then applies the

semantics of the loop body 𝐶 to the filtered set, and finally unions that result with the given set of

input states 𝑆 . Using 𝐹𝑆 , the standard collecting semantics for while loops can be expressed as

Jwhile (𝜑) {𝐶 }K𝑆 = J¬𝜑K
(
lfp 𝑋 . 𝐹𝑆 (𝑋)

)
,

where the least fixed point above is understood with respect to the partial order of set inclusion,

which renders the structure ⟨Conf, ⊆⟩ a complete lattice with least element ∅. The least fixed point
above filtered by ¬𝜑 expresses exactly the set Jwhile (𝜑) {𝐶 }K𝑆 of final states reachable after

termination of while (𝜑) {𝐶 } starting from any initial state in 𝑆 . We remark that to determine the

least fixed point of the continuous function 𝐹𝑆 , it is sufficient to apply Kleene’s fixpoint theorem

and, as a result, we have that the infinite ascending chain ∅ ⊆ 𝐹 1
𝑆
(∅) ⊆ 𝐹 2

𝑆
(∅) ⊆ . . . 𝐹𝜔

𝑆
(∅), where

𝐹 𝑖+1
𝑆

(𝑋) = 𝐹𝑆 (𝐹 𝑖𝑆 (𝑋)), converges in at most 𝜔 iterations.

Example A.1 (Standard Collecting Semantics of While Loops). Assume there is only a single

program variable 𝑥 and consider the configuration 𝑆 = {{𝑥 ↦→ 0}, {𝑥 ↦→ 8}}. We now want to

execute the loop while (𝑥 > 5) { 𝑥 B 𝑥 + 1 } on this configuration and collect the reachable states.

By our construction above, we have

Jwhile (𝑥 > 5) { 𝑥 B 𝑥 + 1 }K𝑆 = J𝑥 ≤ 5K
(
lfp 𝑋 . 𝐹𝑆 (𝑋)

)
, where

𝐹𝑆 (𝑋) = 𝑆 ∪
(
J𝐶K ◦ J𝜑K

)
𝑋 = {{𝑥 ↦→ 0}, {𝑥 ↦→ 8}} ∪ { 𝜎 [𝑥/𝑥 + 1] | 𝜎 ∈ 𝑋, 𝜎 (𝑥) > 5 } ,

and the Kleene iterates are:

𝐹 (∅) =
{
{𝑥 ↦→ 0}, {𝑥 ↦→ 8}

}
∪ ∅

𝐹 2 (∅) =
{
{𝑥 ↦→ 0}, {𝑥 ↦→ 8}

}
∪

{
{𝑥 ↦→ 9}

}
𝐹 2 (∅) =

{
{𝑥 ↦→ 0}, {𝑥 ↦→ 8}

}
∪

{
{𝑥 ↦→ 9}, {𝑥 ↦→ 10}

}
...

𝐹𝜔 (∅) =
{
{𝑥 ↦→ 0}

}
∪

{
{𝑥 ↦→ 𝑖}

�� 𝑖 ≥ 9
}

After filtering 𝐹𝜔 (∅) by the negation of the loop guard, we obtain the loop’s collecting semantics

Jwhile (𝑥 > 5) { 𝑥 B 𝑥 + 1 }K𝑆 = J𝑥 ≤ 5K
(
𝐹𝜔 (∅)

)
=

{
{𝑥 ↦→ 0}

}
. △

B PROOFS OF SECTION 3
B.1 Proof of Soundness for wp, Thereom 3.7

Theorem 3.7 (Soundness of wp). For all programs 𝐶 and initial states 𝜎 ,

wp J𝐶K (𝑓) (𝜎) =
j

𝜏 ∈J𝐶K(𝜎)
𝑓 (𝜏) .

Proof. We prove Theorem 3.7 by induction on the structure of 𝐶 . For the induction base, we

have the atomic statements:

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: November 2022.

Quantitative Strongest Post 1:31

The effectless program skip: We have

wp JskipK (𝑓) (𝜎) = 𝑓 (𝜎)
= sup

𝜏 ∈{𝜎 }
𝑓 (𝜏)

= sup
𝜏 ∈JskipK(𝜎)

𝑓 (𝜏) .

The assignment 𝑥 B 𝑒 : We have

wp J𝑥 B 𝑒K (𝑓) (𝜎) = 𝑓 [𝑥/𝑒] (𝜎)
= 𝑓 (𝜎 [𝑥/𝜎 (𝑒)])
= sup

𝜏 ∈{𝜎 [𝑥/𝜎 (𝑒)] }
𝑓 (𝜏)

= sup
𝜏 ∈J𝑥B𝑒K(𝜎)

𝑓 (𝜏) .

This concludes the proof for the atomic statements.

Induction Hypothesis: For arbitrary but fixed programs 𝐶 , 𝐶1, 𝐶2, we proceed with the inductive

step on the composite statements.

The sequential composition 𝐶1 # 𝐶2: We have

wp J𝐶1 # 𝐶2K (𝑓) (𝜎) = wp J𝐶1K
(
wp J𝐶2K (𝑓)

)
(𝜎)

= sup
𝜏′∈J𝐶1K(𝜎)

wp J𝐶2K (𝑓) (𝜏 ′) (by I.H. on 𝐶1)

= sup
𝜏′∈J𝐶1K(𝜎)∧𝜏 ∈J𝐶2K(𝜏 ′)

𝑓 (𝜏) (by I.H. on 𝐶2)

= sup
𝜏 ∈J𝐶2K(J𝐶1K(𝜎))

𝑓 (𝜏)

= sup
𝜏 ∈J𝐶1 # 𝐶2K(𝜎)

𝑓 (𝜏) .

The conditional branching if (𝜑) {𝐶1 } else {𝐶2 }: We have

wp Jif (𝜑) {𝐶1 } else {𝐶2 }K (𝑓) (𝜎)
=

(
[𝜑] ⋏ wp J𝐶1K (𝑓) ⋎ [¬𝜑] ⋏ wp J𝐶2K (𝑓)

)
(𝜎)

=

{
wp J𝐶1K (𝑓) (𝜎) if 𝜎 |= 𝜑

wp J𝐶2K (𝑓) (𝜎) otherwise

=

{
sup𝜏 ∈J𝐶1K(𝜎) 𝑓 (𝜏) if 𝜎 |= 𝜑

sup𝜏 ∈J𝐶2K(𝜎) 𝑓 (𝜏) otherwise

(by I.H. on 𝐶1,𝐶2)

= sup
𝜏 ∈(J𝐶1K◦J𝜑K) (𝜎)∪(J𝐶2K◦J¬𝜑K) (𝜎)

𝑓 (𝜏)

= sup
𝜏 ∈Jif (𝜑) {𝐶1 } else {𝐶2 }K(𝜎)

𝑓 (𝜏) .

The nondeterministic choice {𝐶1 } □ {𝐶2 }: We have

wp J{𝐶1 } □ {𝐶2 }K (𝑓) (𝜎) =
(
wp J𝐶1K (𝑓) ⋎ wp J𝐶2K (𝑓)

)
(𝜎)

= sup
𝜏 ∈J𝐶1K(𝜎)

𝑓 (𝜏) ⋎ sup
𝜏 ∈J𝐶2K(𝜎)

𝑓 (𝜏) (by I.H. on 𝐶1,𝐶2)

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: November 2022.

1:32 Linpeng Zhang and Benjamin Lucien Kaminski

= sup
𝜏 ∈J𝐶1K(𝜎)∪J𝐶2K(𝜎)

𝑓 (𝜏)

= sup
𝜏 ∈J{𝐶1 }□{𝐶2 }K(𝜎)

𝑓 (𝜏) .

The loop while (𝜑) {𝐶 }: Let

Φ𝑓 (𝑋) = [¬𝜑] ⋏ 𝑓 ⋎ [𝜑] ⋏ wp J𝐶K (𝑋) ,

be the wp-characteristic functions of the loop while (𝜑) {𝐶 } with respect to postanticipation 𝑓

and

𝐹𝑆 (𝑋) = 𝑆 ∪ (J𝐶K ◦ J𝜑K)𝑋 ,

be the collecting semantics characteristic functions of the loop while (𝜑) {𝐶 } with respect to any

input 𝑆 ∈ P(Conf). We now prove by induction on 𝑛 that, for all 𝜎 ∈ Σ

Φ𝑛
𝑓
(−∞)(𝜎) = sup

𝜏 ∈J¬𝜑K𝐹𝑛{𝜎 } (∅)
𝑓 (𝜏) . (1)

For the induction base 𝑛 = 0, consider the following:

Φ0
𝑓
(−∞)(𝜎) = −∞

= sup ∅
= sup

𝜏 ∈∅
𝑓 (𝜏)

= sup
𝜏 ∈J¬𝜑K𝐹0

{𝜎 } (∅)
𝑓 (𝜏) .

As induction hypothesis, we have for arbitrary but fixed 𝑛 and all 𝜎 ∈ Σ,

Φ𝑛
𝑓
(−∞)(𝜎) = sup

𝜏 ∈J¬𝜑K𝐹𝑛{𝜎 } (∅)
𝑓 (𝜏) .

For the induction step 𝑛 −→ 𝑛 + 1, consider the following:

Φ𝑛+1
𝑓

(−∞)(𝜎)

= ([¬𝜑] ⋏ 𝑓) (𝜎) ⋎
(
[𝜑] ⋏ wp J𝐶K

(
Φ𝑛
𝑓
(−∞)

))
(𝜎)

= ([¬𝜑] ⋏ 𝑓) (𝜎) ⋎ sup
𝜏 ∈J𝐶K(𝜎)∧𝜎 |= 𝜑

Φ𝑛
𝑓
(−∞)(𝜏) (by I.H. on 𝐶)

=

{
sup𝜏 ∈J𝐶K(𝜎) Φ

𝑛
𝑓
(−∞)(𝜏) if 𝜎 |= 𝜑

𝑓 (𝜎) otherwise

=

{
sup𝜏 ∈J𝐶K(𝜎) sup𝜏′∈J¬𝜑K 𝐹𝑛{𝜏 } (∅)

𝑓 (𝜏 ′) if 𝜎 |= 𝜑

𝑓 (𝜎) otherwise

(by I.H. on 𝑛)

=

{
sup𝜏′∈J¬𝜑K 𝐹𝑛J𝐶K(𝜎) (∅)

𝑓 (𝜏 ′) if 𝜎 |= 𝜑

𝑓 (𝜎) otherwise

=

{
sup𝜏′∈J¬𝜑K 𝐹𝑛(J𝐶K◦[𝜑]) (𝜎) (∅)

𝑓 (𝜏 ′) if 𝜎 |= 𝜑

𝑓 (𝜎) otherwise

= sup
𝜏 ′∈J¬𝜑K({𝜎 }∪𝐹𝑛(J𝐶K◦J𝜑K) (𝜎) (∅))

𝑓 (𝜏 ′)

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: November 2022.

Quantitative Strongest Post 1:33

= sup
𝜏 ∈J¬𝜑K𝐹𝑛+1{𝜎 } (∅)

𝑓 (𝜏) .

This concludes the induction on 𝑛. Now we have:

wp Jwhile (𝜑) {𝐶 }K (𝑓) (𝜎) =
(
lfp 𝑋 . [¬𝜑] ⋏ 𝑓 ⋎ [𝜑] ⋏ wp J𝐶K (𝑋)

)
(𝜎)

= sup
𝑛∈N

Φ𝑛
𝑓
(−∞)(𝜎) (By Kleene’s fixpoint theorem)

= sup
𝑛∈N

sup
𝜏 ∈J¬𝜑K𝐹𝑛{𝜎 } (∅)

𝑓 (𝜏) (by Equation 1)

= sup
𝜏 ∈∪𝑛∈N (J¬𝜑K𝐹𝑛{𝜎 } (∅))

𝑓 (𝜏)

= sup
𝜏 ∈J¬𝜑K(∪𝑛∈N𝐹𝑛{𝜎 } (∅))

𝑓 (𝜏) (by continuity of J¬𝜑K)

= sup
𝜏 ∈J¬𝜑K(lfp 𝑋 . {𝜎 }∪(J𝐶K◦J𝜑K)𝑋)

𝑓 (𝜏)

(by Kleene’s fixpoint theorem)

= sup
𝜏 ∈Jwhile(𝜑) {𝐶 }K(𝜎)

𝑓 (𝜏) ,

and this concludes the proof. □

B.2 Proof of Soundness for wlp, Thereom 3.10
Theorem 3.10 (Soundness of wlp). For all programs 𝐶 and states 𝜎 ∈ Σ,

wlpJ𝐶K (𝑓) (𝜎) =
k

𝜏 ∈J𝐶K(𝜎)
𝑓 (𝜏) .

Proof. We prove Theorem 3.10 by induction on the structure of 𝐶 . For the induction base, we

have the atomic statements:

The effectless program skip: We have

wlpJskipK (𝑓) (𝜎) = 𝑓 (𝜎)
= inf

𝜏 ∈{𝜎 }
𝑓 (𝜏)

= inf
𝜏 ∈JskipK(𝜎)

𝑓 (𝜏) .

The assignment 𝑥 B 𝑒 : We have

wlpJ𝑥 B 𝑒K (𝑓) (𝜎) = 𝑓 [𝑥/𝑒] (𝜎)
= 𝑓 (𝜎 [𝑥/𝜎 (𝑒)])
= inf

𝜏 ∈{𝜎 [𝑥/𝜎 (𝑒)] }
𝑓 (𝜏)

= inf
𝜏 ∈J𝑥B𝑒K(𝜎)

𝑓 (𝜏) .

This concludes the proof for the atomic statements.

Induction Hypothesis: For arbitrary but fixed programs 𝐶 , 𝐶1, 𝐶2, we proceed with the inductive

step on the composite statements.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: November 2022.

1:34 Linpeng Zhang and Benjamin Lucien Kaminski

The sequential composition 𝐶1 # 𝐶2: We have

wlpJ𝐶1 # 𝐶2K (𝑓) (𝜎) = wlpJ𝐶1K
(
wlpJ𝐶2K (𝑓)

)
(𝜎)

= inf
𝜏′∈J𝐶1K(𝜎)

wlpJ𝐶2K (𝑓) (𝜏 ′) (by I.H. on 𝐶1)

= inf
𝜏′∈J𝐶1K(𝜎)∧𝜏 ∈J𝐶2K(𝜏 ′)

𝑓 (𝜏) (by I.H. on 𝐶2)

= inf
𝜏 ∈J𝐶2K(J𝐶1K(𝜎))

𝑓 (𝜏)

= inf
𝜏 ∈J𝐶1 # 𝐶2K(𝜎)

𝑓 (𝜏) .

The conditional branching if (𝜑) {𝐶1 } else {𝐶2 }: We have

wlpJif (𝜑) {𝐶1 } else {𝐶2 }K (𝑓) (𝜎)
=

(
[𝜑] ⋏ wlpJ𝐶1K (𝑓) ⋎ [¬𝜑] ⋏ wlpJ𝐶2K (𝑓)

)
(𝜎)

=

{
wlpJ𝐶1K (𝑓) (𝜎) if 𝜎 |= 𝜑

wlpJ𝐶2K (𝑓) (𝜎) otherwise

=

{
inf𝜏 ∈J𝐶1K(𝜎) 𝑓 (𝜏) if 𝜎 |= 𝜑

inf𝜏 ∈J𝐶2K(𝜎) 𝑓 (𝜏) otherwise

(by I.H. on 𝐶1,𝐶2)

= inf
𝜏 ∈(J𝐶1K◦J𝜑K) (𝜎)∪(J𝐶2K◦J¬𝜑K) (𝜎)

𝑓 (𝜏)

= inf
𝜏 ∈Jif (𝜑) {𝐶1 } else {𝐶2 }K(𝜎)

𝑓 (𝜏) .

The nondeterministic choice {𝐶1 } □ {𝐶2 }: We have

wlpJ{𝐶1 } □ {𝐶2 }K (𝑓) (𝜎) =
(
wlpJ𝐶1K (𝑓) ⋏ wlpJ𝐶2K (𝑓)

)
(𝜎)

= inf
𝜏 ∈J𝐶1K(𝜎)

𝑓 (𝜏) ⋏ inf
𝜏 ∈J𝐶2K(𝜎)

𝑓 (𝜏) (by I.H. on 𝐶1,𝐶2)

= inf
𝜏 ∈J𝐶1K(𝜎)∪J𝐶2K(𝜎)

𝑓 (𝜏)

= inf
𝜏 ∈J{𝐶1 }□{𝐶2 }K(𝜎)

𝑓 (𝜏) .

The loop while (𝜑) {𝐶 }: Let
Φ𝑓 (𝑋) = [¬𝜑] ⋏ 𝑓 ⋎ [𝜑] ⋏ wlpJ𝐶K (𝑋) ,

be the wlp-characteristic functions of the loop while (𝜑) {𝐶 } with respect to postanticipation 𝑓

and

𝐹𝑆 (𝑋) = 𝑆 ∪ (J𝐶K ◦ J𝜑K)𝑋 ,

be the collecting semantics characteristic functions of the loop while (𝜑) {𝐶 } with respect to any

input 𝑆 ∈ P(Conf). We now prove by induction on 𝑛 that, for all 𝜎 ∈ Σ

Φ𝑛
𝑓
(+∞)(𝜎) = inf

𝜏 ∈J¬𝜑K𝐹𝑛{𝜎 } (∅)
𝑓 (𝜏) . (2)

For the induction base 𝑛 = 0, consider the following:

Φ0
𝑓
(+∞)(𝜎) = +∞

= inf ∅
= inf

𝜏 ∈∅
𝑓 (𝜏)

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: November 2022.

Quantitative Strongest Post 1:35

= inf
𝜏 ∈J¬𝜑K𝐹0

{𝜎 } (∅)
𝑓 (𝜏) .

As induction hypothesis, we have for arbitrary but fixed 𝑛 and all 𝜎 ∈ Σ,

Φ𝑛
𝑓
(+∞)(𝜎) = inf

𝜏 ∈J¬𝜑K𝐹𝑛{𝜎 } (∅)
𝑓 (𝜏) .

For the induction step 𝑛 −→ 𝑛 + 1, consider the following:

Φ𝑛+1
𝑓

(+∞)(𝜎)

= ([¬𝜑] ⋏ 𝑓) (𝜎) ⋎
(
[𝜑] ⋏ wlpJ𝐶K

(
Φ𝑛
𝑓
(+∞)

))
(𝜎)

= ([¬𝜑] ⋏ 𝑓) (𝜎) ⋎ [𝜑] (𝜎) ⋏ inf
𝜏 ∈J𝐶K(𝜎)

Φ𝑛
𝑓
(+∞)(𝜏) (by I.H. on 𝐶)

=

{
inf𝜏 ∈J𝐶K(𝜎) Φ

𝑛
𝑓
(+∞)(𝜏) if 𝜎 |= 𝜑

𝑓 (𝜎) otherwise

=

{
inf𝜏 ∈J𝐶K(𝜎) inf𝜏′∈J¬𝜑K 𝐹𝑛{𝜏 } (∅) 𝑓 (𝜏

′) if 𝜎 |= 𝜑

𝑓 (𝜎) otherwise

(by I.H. on 𝑛)

=

{
inf𝜏′∈J¬𝜑K 𝐹𝑛J𝐶K(𝜎) (∅) 𝑓 (𝜏

′) if 𝜎 |= 𝜑

𝑓 (𝜎) otherwise

=

{
inf𝜏′∈J¬𝜑K 𝐹𝑛(J𝐶K◦[𝜑]) (𝜎) (∅) 𝑓 (𝜏

′) if 𝜎 |= 𝜑

𝑓 (𝜎) otherwise

= inf
𝜏′∈J¬𝜑K({𝜎 }∪𝐹𝑛(J𝐶K◦J𝜑K) (𝜎) (∅))

𝑓 (𝜏 ′)

= inf
𝜏 ∈J¬𝜑K𝐹𝑛+1{𝜎 } (∅)

𝑓 (𝜏) .

This concludes the induction on 𝑛. Now we have:

wlpJwhile (𝜑) {𝐶 }K (𝑓) (𝜎) =
(
gfp 𝑋 . [¬𝜑] ⋏ 𝑓 ⋎ [𝜑] ⋏ wlpJ𝐶K (𝑋)

)
(𝜎)

= inf
𝑛∈N

Φ𝑛
𝑓
(+∞)(𝜎) (by Kleene’s fixpoint theorem)

= inf
𝑛∈N

inf
𝜏 ∈J¬𝜑K𝐹𝑛{𝜎 } (∅)

𝑓 (𝜏) (by Equation 2)

= inf
𝜏 ∈∪𝑛∈N (J¬𝜑K𝐹𝑛{𝜎 } (∅))

𝑓 (𝜏)

= inf
𝜏 ∈J¬𝜑K(∪𝑛∈N𝐹𝑛{𝜎 } (∅))

𝑓 (𝜏) (by continuity of J¬𝜑K)

= inf
𝜏 ∈J¬𝜑K(lfp 𝑋 . {𝜎 }∪(J𝐶K◦J𝜑K)𝑋)

𝑓 (𝜏)

(by Kleene’s fixpoint theorem)

= inf
𝜏 ∈Jwhile(𝜑) {𝐶 }K(𝜎)

𝑓 (𝜏) ,

and this concludes the proof. □

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: November 2022.

1:36 Linpeng Zhang and Benjamin Lucien Kaminski

C PROOFS OF SECTION 4
C.1 Proof of Soundness for sp, Thereom 4.3

Theorem 4.3 (Soundness of sp). For all programs 𝐶 and final states 𝜏 ,

sp J𝐶K (𝑓) (𝜏) =
j

𝜎 with 𝜏 ∈J𝐶K(𝜎)
𝑓 (𝜎) .

Proof. We prove Theorem 4.3 by induction on the structure of 𝐶 . For the induction base, we

have the atomic statements:

The effectless program skip: We have

sp JskipK (𝑓) (𝜏) = 𝑓 (𝜏)
= sup

𝜎 ∈Σ,𝜏 ∈{𝜎 }
𝑓 (𝜎)

= sup
𝜎 ∈Σ,𝜏 ∈JskipK(𝜎)

𝑓 (𝜎) .

The assignment 𝑥 B 𝑒 : We have

sp J𝑥 B 𝑒K (𝑓) (𝜏) = (S𝛼 : [𝑥 = 𝑒 [𝑥/𝛼]] ⋏ 𝑓 [𝑥/𝛼]) (𝜏)
= (sup

𝛼

[𝑥 = 𝑒 [𝑥/𝛼]] ⋏ 𝑓 [𝑥/𝛼]) (𝜏)

= sup
𝛼 : 𝜏 (𝑥)=𝜏 (𝑒 [𝑥/𝛼])

(𝑓 [𝑥/𝛼]) (𝜏)

= sup
𝛼 : 𝜏 (𝑥)=𝜏 (𝑒 [𝑥/𝛼])

𝑓 (𝜏 [𝑥/𝛼])

= sup
𝛼 : 𝜏 [𝑥/𝛼] [𝑥/𝜏 (𝑒 [𝑥/𝛼])]=𝜏

𝑓 (𝜏 [𝑥/𝛼])

= sup
𝛼 : 𝜏 [𝑥/𝛼] [𝑥/𝜏 [𝑥/𝛼] (𝑒)]=𝜏

𝑓 (𝜏 [𝑥/𝛼])

= sup
𝜎 ∈Σ,𝜎 [𝑥/𝜎 (𝑒)]=𝜏

𝑓 (𝜎) (By taking 𝜎 = 𝜏 [𝑥/𝛼])

= sup
𝜎 ∈Σ,𝜏 ∈{𝜎 [𝑥/𝜎 (𝑒)] }

𝑓 (𝜎)

= sup
𝜎 ∈Σ,𝜏 ∈J𝑥B𝑒K(𝜎)

𝑓 (𝜎) .

This concludes the proof for the atomic statements.

Induction Hypothesis: For arbitrary but fixed programs 𝐶 , 𝐶1, 𝐶2, we proceed with the inductive

step on the composite statements.

The sequential composition 𝐶1 # 𝐶2: We have

sp J𝐶2 # 𝐶1K (𝑓) (𝜏) = sp J𝐶2K
(
sp J𝐶1K (𝑓)

)
(𝜏)

= sup
𝜎′∈Σ,𝜏 ∈J𝐶2K(𝜎′)

sp J𝐶1K (𝑓) (𝜎 ′) (by I.H. on 𝐶2)

= sup
𝜎 ∈Σ,𝜏 ∈J𝐶2K(𝜎′)∧𝜎′∈J𝐶1K(𝜎)

𝑓 (𝜎) (by I.H. on 𝐶2)

= sup
𝜎 ∈Σ,𝜏 ∈J𝐶2K(J𝐶1K(𝜎))

𝑓 (𝜎)

= sup
𝜎 ∈Σ,𝜏 ∈J𝐶1 # 𝐶2K(𝜎)

𝑓 (𝜎) .

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: November 2022.

Quantitative Strongest Post 1:37

The conditional branching if (𝜑) {𝐶1 } else {𝐶2 }: We have

sp Jif (𝜑) {𝐶1 } else {𝐶2 }K (𝑓) (𝜏)
=

(
sp J𝐶1K ([𝜑] ⋏ 𝑓) ⋎ sp J𝐶2K ([¬𝜑] ⋏ 𝑓)

)
(𝜏)

= sup
𝜎 ∈Σ,𝜏 ∈J𝐶1K(𝜎)

([𝜑] ⋏ 𝑓) (𝜎) ⋎ sup
𝜎 ∈Σ,𝜏 ∈J𝐶2K(𝜎)

([¬𝜑] ⋏ 𝑓) (𝜎) (by I.H. on 𝐶1,𝐶2)

= sup
𝜎 ∈Σ,𝜏 ∈(J𝐶1K◦J𝜑K) (𝜎)

𝑓 (𝜎) ⋎ sup
𝜎 ∈Σ,𝜏 ∈(J𝐶2K◦J¬𝜑K) (𝜎)

𝑓 (𝜎)

= sup
𝜎 ∈Σ,𝜏 ∈(J𝐶1K◦J𝜑K) (𝜎)∪(J𝐶2K◦J¬𝜑K) (𝜎)

𝑓 (𝜎)

= sup
𝜎 ∈Σ,𝜏 ∈Jif (𝜑) {𝐶1 } else {𝐶2 }K(𝜎)

𝑓 (𝜎) .

The nondeterministic choice {𝐶1 } □ {𝐶2 }: We have

sp J{𝐶1 } □ {𝐶2 }K (𝑓) (𝜏) =
(
sp J𝐶1K (𝑓) ⋎ sp J𝐶2K (𝑓)

)
(𝜏)

= sup
𝜎 ∈Σ,𝜏 ∈J𝐶1K(𝜎)

𝑓 (𝜎) ⋎ sup
𝜎 ∈Σ,𝜏 ∈J𝐶2K(𝜎)

𝑓 (𝜎) (by I.H. on 𝐶1,𝐶2)

= sup
𝜎 ∈Σ,𝜏 ∈J𝐶1K(𝜎)∪J𝐶2K(𝜎)

𝑓 (𝜎)

= sup
𝜎 ∈Σ,𝜏 ∈J{𝐶1 }□{𝐶2 }K(𝜎)

𝑓 (𝜎) .

The loop while (𝜑) {𝐶 }: Let
Ψ𝑓 (𝑋) = 𝑓 ⋎ sp J𝐶K ([𝜑] ⋏ 𝑋) ,

be the sp-characteristic functions of the loop while (𝜑) {𝐶 } with respect to preanticipation 𝑓 and

𝐹𝑆 (𝑋) = 𝑆 ∪ (J𝐶K ◦ J𝜑K)𝑋 ,

be the collecting semantics characteristic functions of the loop while (𝜑) {𝐶 } with respect to any

input 𝑆 ∈ P(Conf). We now prove by induction on 𝑛 that, for all 𝜏 ∈ Σ

Ψ𝑛
𝑓
(−∞)(𝜏) = sup

𝜎 ∈Σ,𝜏 ∈𝐹𝑛{𝜎 } (∅)
𝑓 (𝜎) . (3)

For the induction base 𝑛 = 0, consider the following:

Ψ0
𝑓
(−∞)(𝜏) = −∞

= sup ∅
= sup

𝜎 ∈Σ,𝜏 ∈∅
𝑓 (𝜎)

= sup
𝜎 ∈Σ,𝜏 ∈𝐹0

{𝜎 } (∅)
𝑓 (𝜎) .

As induction hypothesis, we have for arbitrary but fixed 𝑛 and all 𝜏 ∈ Σ

Ψ𝑛
𝑓
(−∞)(𝜏) = sup

𝜎 ∈Σ,𝜏 ∈𝐹𝑛{𝜎 } (∅)
𝑓 (𝜎) .

For the induction step 𝑛 −→ 𝑛 + 1, consider the following:

Ψ𝑛+1
𝑓

(−∞)(𝜏)

=

(
𝑓 ⋎ sp J𝐶K

(
[𝜑] ⋏ Ψ𝑛

𝑓
(−∞)

))
(𝜏)

= 𝑓 (𝜏) ⋎ sup
𝜎 ∈Σ,𝜏 ∈J𝐶K(𝜎)

(
[𝜑] ⋏ Ψ𝑛

𝑓
(−∞)

)
(𝜎) (by I.H. on 𝐶)

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: November 2022.

1:38 Linpeng Zhang and Benjamin Lucien Kaminski

= 𝑓 (𝜏) ⋎ sup
𝜎 ∈Σ,𝜏 ∈J𝐶K(𝜎)

sup
𝜎′∈Σ,𝜎 ∈J𝜑K𝐹𝑛{𝜎′} (∅)

𝑓 (𝜎 ′) (by I.H. on 𝑛)

= 𝑓 (𝜏) ⋎ sup
𝜎′∈Σ,𝜏 ∈(J𝐶K◦J𝜑K)𝐹𝑛{𝜎′} (∅)

𝑓 (𝜎 ′)

= sup
𝜎′∈Σ,𝜏 ∈(J𝐶K◦J𝜑K)𝐹𝑛{𝜎′} (∅)∪{𝜎

′ }
𝑓 (𝜎 ′)

= sup
𝜎 ∈Σ,𝜏 ∈𝐹𝑛+1{𝜎 } (∅)

𝑓 (𝜎) .

This concludes the induction on 𝑛. Now we have:

sp Jwhile (𝜑) {𝐶 }K (𝑓) (𝜏) =
(
[¬𝜑] ⋏

(
lfp 𝑋 . 𝑓 ⋎ sp J𝐶K ([𝜑] ⋏ 𝑋)

))
(𝜏)

=
(
[¬𝜑] ⋏ sup

𝑛∈N
Ψ𝑛
𝑓
(−∞)

)
(𝜏) (by Kleene’s fixpoint theorem)

= sup
𝑛∈N

(
[¬𝜑] ⋏ Ψ𝑛

𝑓
(−∞)

)
(𝜏) (by continuity of 𝜆𝑋 . [¬𝜑] ⋏ 𝑋)

= sup
𝑛∈N

sup
𝜎 ∈Σ,𝜏 ∈J¬𝜑K𝐹𝑛{𝜎 } (∅)

𝑓 (𝜎) (by Equation 3)

= sup
𝜎 ∈Σ,𝜏 ∈∪𝑛∈N (J¬𝜑K𝐹𝑛{𝜎 } (∅))

𝑓 (𝜎)

= sup
𝜎 ∈Σ,𝜏 ∈J¬𝜑K(∪𝑛∈N𝐹𝑛{𝜎 } (∅))

𝑓 (𝜎) (by continuity of J¬𝜑K)

= sup
𝜎 ∈Σ,𝜏 ∈J¬𝜑K(lfp 𝑋 . {𝜎 }∪(J𝐶K◦J𝜑K)𝑋)

𝑓 (𝜎)

(by Kleene’s fixpoint theorem)

= sup
𝜎 ∈Σ,𝜏 ∈Jwhile(𝜑) {𝐶 }K(𝜎)

𝑓 (𝜎) ,

and this concludes the proof. □

C.2 Proof of Soundness for slp, Thereom 4.6
Theorem 4.6 (Soundness of slp). For all programs 𝐶 and states 𝜏 ∈ Σ,

slpJ𝐶K (𝑓) (𝜏) =
k

𝜎 with 𝜏 ∈J𝐶K𝜎

𝑓 (𝜎)

Proof. We prove Theorem 4.6 by induction on the structure of 𝐶 . For the induction base, we

have the atomic statements:

The effectless program skip: We have

slpJskipK (𝑓) (𝜏) = 𝑓 (𝜏)
= inf

𝜎 ∈Σ,𝜏 ∈{𝜎 }
𝑓 (𝜎)

= inf
𝜎 ∈Σ,𝜏 ∈JskipK(𝜎)

𝑓 (𝜎) .

The assignment 𝑥 B 𝑒 : We have

slpJ𝑥 B 𝑒K (𝑓) (𝜏) = (J𝛼 : [𝑥 ≠ 𝑒 [𝑥/𝛼]] ⋎ 𝑓 [𝑥/𝛼]) (𝜏)
= (inf

𝛼
[𝑥 ≠ 𝑒 [𝑥/𝛼]] ⋎ 𝑓 [𝑥/𝛼]) (𝜏)

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: November 2022.

Quantitative Strongest Post 1:39

= inf
𝛼 : 𝜏 (𝑥)=𝜏 (𝑒 [𝑥/𝛼])

(𝑓 [𝑥/𝛼]) (𝜏)

= inf
𝛼 : 𝜏 (𝑥)=𝜏 (𝑒 [𝑥/𝛼])

𝑓 (𝜏 [𝑥/𝛼])

= inf
𝛼 : 𝜏 [𝑥/𝛼] [𝑥/𝜏 (𝑒 [𝑥/𝛼])]=𝜏

𝑓 (𝜏 [𝑥/𝛼])

= inf
𝛼 : 𝜏 [𝑥/𝛼] [𝑥/𝜏 [𝑥/𝛼] (𝑒)]=𝜏

𝑓 (𝜏 [𝑥/𝛼])

= inf
𝜎 ∈Σ,𝜎 [𝑥/𝜎 (𝑒)]=𝜏

𝑓 (𝜎) (By taking 𝜎 = 𝜏 [𝑥/𝛼])

= inf
𝜎 ∈Σ,𝜏 ∈{𝜎 [𝑥/𝜎 (𝑒)] }

𝑓 (𝜎)

= inf
𝜎 ∈Σ,𝜏 ∈J𝑥B𝑒K(𝜎)

𝑓 (𝜎) .

This concludes the proof for the atomic statements.

Induction Hypothesis: For arbitrary but fixed programs 𝐶 , 𝐶1, 𝐶2, we proceed with the inductive

step on the composite statements.

The sequential composition 𝐶1 # 𝐶2: We have

slpJ𝐶2 # 𝐶1K (𝑓) (𝜏) = slpJ𝐶2K
(
slpJ𝐶1K (𝑓)

)
(𝜏)

= inf
𝜎′∈Σ,𝜏 ∈J𝐶2K(𝜎′)

slpJ𝐶1K (𝑓) (𝜎 ′) (by I.H. on 𝐶2)

= inf
𝜎 ∈Σ,𝜏 ∈J𝐶2K(𝜎′)∧𝜎′∈J𝐶1K(𝜎)

𝑓 (𝜎) (by I.H. on 𝐶2)

= inf
𝜎 ∈Σ,𝜏 ∈J𝐶2K(J𝐶1K(𝜎))

𝑓 (𝜎)

= inf
𝜎 ∈Σ,𝜏 ∈J𝐶1 # 𝐶2K(𝜎)

𝑓 (𝜎) .

The conditional branching if (𝜑) {𝐶1 } else {𝐶2 }: We have

slpJif (𝜑) {𝐶1 } else {𝐶2 }K (𝑓) (𝜏)
=

(
slpJ𝐶1K ([¬𝜑] ⋎ 𝑓) ⋏ slpJ𝐶2K ([𝜑] ⋎ 𝑓)

)
(𝜏)

= inf
𝜎 ∈Σ,𝜏 ∈J𝐶1K(𝜎)

([¬𝜑] ⋎ 𝑓) (𝜎) ⋏ inf
𝜎 ∈Σ,𝜏 ∈J𝐶2K(𝜎)

([𝜑] ⋎ 𝑓) (𝜎) (by I.H. on 𝐶1,𝐶2)

= inf
𝜎 ∈Σ,𝜏 ∈(J𝐶1K◦J𝜑K) (𝜎)

𝑓 (𝜎) ⋏ inf
𝜎 ∈Σ,𝜏 ∈(J𝐶2K◦J¬𝜑K) (𝜎)

𝑓 (𝜎)

= inf
𝜎 ∈Σ,𝜏 ∈(J𝐶1K◦J𝜑K) (𝜎)∪(J𝐶2K◦J¬𝜑K) (𝜎)

𝑓 (𝜎)

= inf
𝜎 ∈Σ,𝜏 ∈Jif (𝜑) {𝐶1 } else {𝐶2 }K(𝜎)

𝑓 (𝜎) .

The nondeterministic choice {𝐶1 } □ {𝐶2 }: We have

slpJ{𝐶1 } □ {𝐶2 }K (𝑓) (𝜏) =
(
slpJ𝐶1K (𝑓) ⋏ slpJ𝐶2K (𝑓)

)
(𝜏)

= inf
𝜎 ∈Σ,𝜏 ∈J𝐶1K(𝜎)

𝑓 (𝜎) ⋏ inf
𝜎 ∈Σ,𝜏 ∈J𝐶2K(𝜎)

𝑓 (𝜎) (by I.H. on 𝐶1,𝐶2)

= inf
𝜎 ∈Σ,𝜏 ∈J𝐶1K(𝜎)∪J𝐶2K(𝜎)

𝑓 (𝜎)

= inf
𝜎 ∈Σ,𝜏 ∈J{𝐶1 }□{𝐶2 }K(𝜎)

𝑓 (𝜎) .

The loop while (𝜑) {𝐶 }: Let
Ψ𝑓 (𝑋) = 𝑓 ⋏ slpJ𝐶K ([¬𝜑] ⋎ 𝑋) ,

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: November 2022.

1:40 Linpeng Zhang and Benjamin Lucien Kaminski

be the slp-characteristic functions of the loop while (𝜑) {𝐶 } with respect to preanticipation 𝑓

and

𝐹𝑆 (𝑋) = 𝑆 ∪ (J𝐶K ◦ J𝜑K)𝑋 ,

be the collecting semantics characteristic functions of the loop while (𝜑) {𝐶 } with respect to any

input 𝑆 ∈ P(Conf). We now prove by induction on 𝑛 that, for all 𝜏 ∈ Σ

Ψ𝑛
𝑓
(+∞)(𝜏) = inf

𝜎 ∈Σ,𝜏 ∈𝐹𝑛{𝜎 } (∅)
𝑓 (𝜎) . (4)

For the induction base 𝑛 = 0, consider the following:

Ψ0
𝑓
(+∞)(𝜏) = +∞

= inf ∅
= inf

𝜎 ∈Σ,𝜏 ∈∅
𝑓 (𝜎)

= inf
𝜎 ∈Σ,𝜏 ∈𝐹0

{𝜎 } (∅)
𝑓 (𝜎) .

As induction hypothesis, we have for arbitrary but fixed 𝑛 and all 𝜏 ∈ Σ

Ψ𝑛
𝑓
(+∞)(𝜏) = inf

𝜎 ∈Σ,𝜏 ∈𝐹𝑛{𝜎 } (∅)
𝑓 (𝜎) .

For the induction step 𝑛 −→ 𝑛 + 1, consider the following:

Ψ𝑛+1
𝑓

(+∞)(𝜏)

=

(
𝑓 ⋏ slpJ𝐶K

(
[¬𝜑] ⋎ Ψ𝑛

𝑓
(+∞)

))
(𝜏)

= 𝑓 (𝜏) ⋏ inf
𝜎 ∈Σ,𝜏 ∈J𝐶K(𝜎)

(
[¬𝜑] ⋎ Ψ𝑛

𝑓
(+∞)

)
(𝜎) (by I.H. on 𝐶)

= 𝑓 (𝜏) ⋏ inf
𝜎 ∈Σ,𝜏 ∈J𝐶K(𝜎)

inf
𝜎′∈Σ,𝜎 ∈J𝜑K𝐹𝑛{𝜎′} (∅)

𝑓 (𝜎 ′) (by I.H. on 𝑛)

= 𝑓 (𝜏) ⋏ inf
𝜎′∈Σ,𝜏 ∈(J𝐶K◦J𝜑K)𝐹𝑛{𝜎′} (∅)

𝑓 (𝜎 ′)

= inf
𝜎′∈Σ,𝜏 ∈(J𝐶K◦J𝜑K)𝐹𝑛{𝜎′} (∅)∪{𝜎

′ }
𝑓 (𝜎 ′)

= inf
𝜎 ∈Σ,𝜏 ∈𝐹𝑛+1{𝜎 } (∅)

𝑓 (𝜎) .

This concludes the induction on 𝑛. Now we have:

slpJwhile (𝜑) {𝐶 }K (𝑓) (𝜏) =
(
[𝜑] ⋎

(
gfp 𝑋 . 𝑓 ⋏ slpJ𝐶K ([¬𝜑] ⋎ 𝑋)

))
(𝜏)

=
(
[𝜑] ⋎ inf

𝑛∈N
Ψ𝑛
𝑓
(+∞)

)
(𝜏) (by Kleene’s fixpoint theorem)

= inf
𝑛∈N

(
[𝜑] ⋎ Ψ𝑛

𝑓
(+∞)

)
(𝜏) (by co-continuity of 𝜆𝑋 . [𝜑] ⋎ 𝑋)

= inf
𝑛∈N

inf
𝜎 ∈Σ,𝜏 ∈J¬𝜑K𝐹𝑛{𝜎 } (∅)

𝑓 (𝜎) (by Equation 4)

= inf
𝜎 ∈Σ,𝜏 ∈∪𝑛∈N (J¬𝜑K𝐹𝑛{𝜎 } (∅))

𝑓 (𝜎)

= inf
𝜎 ∈Σ,𝜏 ∈J¬𝜑K(∪𝑛∈N𝐹𝑛{𝜎 } (∅))

𝑓 (𝜎) (by continuity of J¬𝜑K)

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: November 2022.

Quantitative Strongest Post 1:41

= inf
𝜎 ∈Σ,𝜏 ∈J¬𝜑K(lfp 𝑋 . {𝜎 }∪(J𝐶K◦J𝜑K)𝑋)

𝑓 (𝜎)

(by Kleene’s fixpoint theorem)

= inf
𝜎 ∈Σ,𝜏 ∈Jwhile(𝜑) {𝐶 }K(𝜎)

𝑓 (𝜎) ,

and this concludes the proof. □

D PROOFS OF SECTION 5
D.1 Proof of Healthiness Properties ofQuantitative Transformers, Theorem 5.1
Each of the properties is proven individually below.

• Quantitative universal conjunctiveness: Theorem D.1, D.2;

• Quantitative universal disjunctiveness: Theorem D.3, D.4;

• Strictness: Corollary D.5, D.6;

• Costrictness: Corollary D.7, D.8;

• Monotonicity: Corollary D.9

Theorem D.1 (Quantitative universal conjunctiveness of wp). For any set of quantities
⊆ A,

wp J𝐶K (sup 𝑆) = sup wp J𝐶K (𝑆) .

Proof. We prove Theorem D.1 by induction on the structure of 𝐶 . For the induction base, we

have the atomic statements:

The effectless program skip: We have

wp JskipK (sup 𝑆) = sup 𝑆

= sup
𝑔∈𝑆

𝑔

= sup
𝑔∈𝑆

wp JskipK (𝑔)

= sup wp JskipK (𝑆) .

The assignment 𝑥 B 𝑒 : We have

wp J𝑥 B 𝑒K (sup 𝑆) = (sup 𝑆) [𝑥/𝑒]

=

(
𝜆𝜎. sup

𝑔∈𝑆
𝑔(𝜎)

)
[𝑥/𝑒]

=

(
𝜆𝜎. sup

𝑔∈𝑆
𝑔 [𝑥/𝑒] (𝜎)

)
= sup

𝑔∈𝑆
𝑔 [𝑥/𝑒]

= sup
𝑔∈𝑆

wp J𝑥 B 𝑒K (𝑔)

= sup wp J𝑥 B 𝑒K (𝑆) .

This concludes the proof for the atomic statements.

Induction Hypothesis: For arbitrary but fixed programs 𝐶 , 𝐶1, 𝐶2, Theorem D.1 holds.

We proceed with the inductive step on the composite statements.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: November 2022.

1:42 Linpeng Zhang and Benjamin Lucien Kaminski

The sequential composition 𝐶1 # 𝐶2: We have

wp J𝐶1 # 𝐶2K (sup 𝑆) = wp J𝐶1K
(
wp J𝐶2K (sup 𝑆)

)
= wp J𝐶1K

(
sup wp J𝐶2K (𝑆)

)
(by I.H. on 𝐶1)

= sup wp J𝐶1K
(
wp J𝐶2K (𝑆)

)
(by I.H. on 𝐶2)

= sup wp J𝐶1 # 𝐶2K (𝑆) .

The conditional branching if (𝜑) {𝐶1 } else {𝐶2 }: Here we reason in the reverse direction

from the cases before. We have

wp Jif (𝜑) {𝐶1 } else {𝐶2 }K (sup 𝑆)
= [𝜑] ⋏ wp J𝐶1K (sup 𝑆) ⋎ [¬𝜑] ⋏ wp J𝐶2K (sup 𝑆)
= [𝜑] ⋏ sup wp J𝐶1K (𝑆) ⋎ [¬𝜑] ⋏ sup wp J𝐶2K (𝑆) (by I.H. on 𝐶1 and 𝐶2)

= sup
(
[𝜑] ⋏ wp J𝐶1K (𝑆)

)
⋎ sup

(
[¬𝜑] ⋏ wp J𝐶2K (𝑆)

)
= sup

(
[𝜑] ⋏ wp J𝐶1K (𝑆) ⋎ [¬𝜑] ⋏ wp J𝐶2K (𝑆)

)
= sup wp Jif (𝜑) {𝐶1 } else {𝐶2 }K (𝑆) .

The loop while (𝜑) {𝐶 }: Let
Φ𝑓 (𝑋) = [¬𝜑] ⋏ 𝑓 ⋎ [𝜑] ⋏ wp J𝐶K (𝑋) ,

be the wp-characteristic function of the loop while (𝜑) {𝐶 } with respect to any postanticipation

𝑓 ∈ A and

𝐹𝑆 (𝑋) = 𝑆 ∪ (J𝐶K ◦ J𝜑K)𝑋 ,

be the collecting semantics characteristic functions of the loop while (𝜑) {𝐶 } with respect to

any input 𝑆 ∈ P(Conf). Observe that Φ𝑓 (𝑋) is continuous by inductive hypothesis on 𝐶 and by

composition of continuous functions. We now prove by induction on 𝑛 that

Φ𝑛
sup𝑆 (−∞) = sup

𝑔∈𝑆
Φ𝑛
𝑔 (−∞) . (5)

For the induction base 𝑛 = 0, consider the following:

Φ0
sup𝑆 (−∞) = = −∞

= sup
𝑔∈𝑆

−∞

= sup
𝑔∈𝑆

Φ0
𝑔 (−∞) .

As induction hypothesis, we have for arbitrary but fixed 𝑛

Φ𝑛
sup𝑆 (−∞) = sup

𝑔∈𝑆
Φ𝑛
𝑔 (−∞) .

For the induction step 𝑛 −→ 𝑛 + 1, consider the following:

Φ𝑛+1
sup𝑆 (−∞)

= [¬𝜑] ⋏ sup 𝑆 ⋎ [𝜑] ⋏ wp J𝐶K
(
Φ𝑛
sup𝑆 (−∞)

)
= [¬𝜑] ⋏ sup 𝑆 ⋎ [𝜑] ⋏ wp J𝐶K

(
sup
𝑔∈𝑆

Φ𝑛
𝑔 (−∞)

)
(by I.H. on 𝑛)

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: November 2022.

Quantitative Strongest Post 1:43

= [¬𝜑] ⋏ sup 𝑆 ⋎ [𝜑] ⋏ sup
𝑔∈𝑆

wp J𝐶K
(
Φ𝑛
𝑔 (−∞)

)
(by I.H. on 𝐶)

= sup
𝑔∈𝑆

([¬𝜑] ⋏ 𝑔) ⋎ sup
𝑔∈𝑆

(
[𝜑] ⋏ wp J𝐶K

(
Φ𝑛
𝑔 (−∞)

))
= sup

𝑔∈𝑆

(
[¬𝜑] ⋏ 𝑔 ⋎ [𝜑] ⋏ wp J𝐶K

(
Φ𝑛
𝑔 (−∞)

))
= sup

𝑔∈𝑆
Φ𝑛+1
𝑔 (−∞) .

This concludes the induction on 𝑛. Now we have:

wp Jwhile (𝜑) {𝐶 }K (sup 𝑆) = lfp 𝑋 . [¬𝜑] ⋏ sup 𝑆 ⋎ [𝜑] ⋏ wp J𝐶K (𝑋)
= sup

𝑛∈N
Φ𝑛
sup𝑆 (−∞) (by Kleene’s fixpoint theorem)

= sup
𝑛∈N

sup
𝑔∈𝑆

Φ𝑛
𝑔 (−∞) (by Equation 5)

= sup
𝑔∈𝑆

sup
𝑛∈N

Φ𝑛
𝑔 (−∞)

= sup
𝑔∈𝑆

wp Jwhile (𝜑) {𝐶 }K (𝑔) (by Kleene’s fixpoint theorem)

= supwp Jwhile (𝜑) {𝐶 }K (𝑆) ,
and this concludes the proof. □

Theorem D.2 (Quantitative universal conjunctiveness of sp). For any set of quantities ⊆ A,
sp J𝐶K (sup 𝑆) = sup sp J𝐶K (𝑆) .

Proof. We prove Theorem D.2 by induction on the structure of 𝐶 . For the induction base, we

have the atomic statements:

The effectless program skip: We have

sp JskipK (sup 𝑆) = sup 𝑆

= sup
𝑔∈𝑆

𝑔

= sup
𝑔∈𝑆

sp JskipK (𝑔)

= sup sp JskipK (𝑆) .

The assignment 𝑥 B 𝑒 : We have

sp J𝑥 B 𝑒K (sup 𝑆) = S𝛼 : [𝑥 = 𝑒 [𝑥/𝛼]] ⋏ (sup 𝑆) [𝑥/𝛼]

= S𝛼 : [𝑥 = 𝑒 [𝑥/𝛼]] ⋏
(
𝜆𝜎. sup

𝑔∈𝑆
𝑔(𝜎)

)
[𝑥/𝛼]

= S𝛼 : [𝑥 = 𝑒 [𝑥/𝛼]] ⋏
(
𝜆𝜎. sup

𝑔∈𝑆
𝑔 [𝑥/𝛼] (𝜎)

)
= S𝛼 : [𝑥 = 𝑒 [𝑥/𝛼]] ⋏ sup

𝑔∈𝑆
𝑔 [𝑥/𝛼]

= S𝛼 : sup
𝑔∈𝑆

[𝑥 = 𝑒 [𝑥/𝛼]] ⋏ 𝑔 [𝑥/𝛼]

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: November 2022.

1:44 Linpeng Zhang and Benjamin Lucien Kaminski

= sup
𝑔∈𝑆

S𝛼 : [𝑥 = 𝑒 [𝑥/𝛼]] ⋏ 𝑔 [𝑥/𝛼]

= sup
𝑔∈𝑆

sp J𝑥 B 𝑒K (𝑔)

= sup sp J𝑥 B 𝑒K (𝑆) .

This concludes the proof for the atomic statements.

Induction Hypothesis: For arbitrary but fixed programs 𝐶 , 𝐶1, 𝐶2, Theorem D.2 holds.

We proceed with the inductive step on the composite statements.

The sequential composition 𝐶1 # 𝐶2: We have

sp J𝐶1 # 𝐶2K (sup 𝑆) = sp J𝐶2K
(
sp J𝐶1K (sup 𝑆)

)
= sp J𝐶2K

(
sup sp J𝐶1K (𝑆)

)
(by I.H. on 𝐶1)

= sup sp J𝐶2K
(
sp J𝐶1K (𝑆)

)
(by I.H. on 𝐶2)

= sup sp J𝐶1 # 𝐶2K (𝑆) .

The conditional branching if (𝜑) {𝐶1 } else {𝐶2 }: We have

sp Jif (𝜑) {𝐶1 } else {𝐶2 }K (sup 𝑆)
= sp J𝐶1K ([𝜑] ⋏ sup 𝑆) ⋎ sp J𝐶2K ([¬𝜑] ⋏ sup 𝑆)
= sp J𝐶1K (sup [𝜑] ⋏ 𝑆) ⋎ sp J𝐶2K (sup [¬𝜑] ⋏ 𝑆)
= sup sp J𝐶1K ([𝜑] ⋏ 𝑆) ⋎ sup sp J𝐶2K ([¬𝜑] ⋏ 𝑆) (by I.H. on 𝐶1 and 𝐶2)

= sup
(
sp J𝐶1K ([𝜑] ⋏ 𝑆) ⋎ sp J𝐶2K ([¬𝜑] ⋏ 𝑆)

)
= sup sp Jif (𝜑) {𝐶1 } else {𝐶2 }K (𝑆) .

The loop while (𝜑) {𝐶 }: Let
Ψ𝑓 (𝑋) = 𝑓 ⋎ sp J𝐶K ([𝜑] ⋏ 𝑋) ,

be the sp-characteristic function of the loop while (𝜑) {𝐶 } with respect to any preanticipation

𝑓 ∈ A and

𝐹𝑆 (𝑋) = 𝑆 ∪ (J𝐶K ◦ J𝜑K)𝑋 ,

be the collecting semantics characteristic functions of the loop while (𝜑) {𝐶 } with respect to

any input 𝑆 ∈ P(Conf). Observe that Ψ𝑓 (𝑋) is continuous by inductive hypothesis on 𝐶 and by

composition of continuous functions. We now prove by induction on 𝑛 that

Ψ𝑛
sup𝑆 (−∞) = sup

𝑔∈𝑆
Ψ𝑛
𝑔 (−∞) . (6)

For the induction base 𝑛 = 0, consider the following:

Ψ0
sup𝑆 (−∞) = = −∞

= sup
𝑔∈𝑆

−∞

= sup
𝑔∈𝑆

Ψ0
𝑔 (−∞) .

As induction hypothesis, we have for arbitrary but fixed 𝑛

Ψ𝑛
sup𝑆 (−∞) = sup

𝑔∈𝑆
Ψ𝑛
𝑔 (−∞) .

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: November 2022.

Quantitative Strongest Post 1:45

For the induction step 𝑛 −→ 𝑛 + 1, consider the following:

Ψ𝑛+1
sup𝑆 (−∞)

= sup 𝑆 ⋎ sp J𝐶K
(
[𝜑] ⋏ Ψ𝑛

sup𝑆 (−∞)
)

= sup 𝑆 ⋎ sp J𝐶K

(
[𝜑] ⋏ sup

𝑔∈𝑆
Ψ𝑛
𝑔 (−∞)

)
(by I.H. on 𝑛)

= sup 𝑆 ⋎ sp J𝐶K

(
sup
𝑔∈𝑆

[𝜑] ⋏ Ψ𝑛
𝑔 (−∞)

)
= sup 𝑆 ⋎ sup

𝑔∈𝑆
sp J𝐶K

(
[𝜑] ⋏ Ψ𝑛

𝑔 (−∞)
)

(by I.H. on 𝐶)

= sup
𝑔∈𝑆

𝑔 ⋎ sup
𝑔∈𝑆

sp J𝐶K
(
[𝜑] ⋏ Ψ𝑛

𝑔 (−∞)
)

= sup
𝑔∈𝑆

(
𝑔 ⋎ sp J𝐶K

(
[𝜑] ⋏ Ψ𝑛

𝑔 (−∞)
))

= sup
𝑔∈𝑆

Ψ𝑛+1
𝑔 (−∞) .

This concludes the induction on 𝑛. Now we have:

sp Jwhile (𝜑) {𝐶 }K (sup 𝑆) = [¬𝜑] ⋏
(
lfp 𝑋 . sup 𝑆 ⋎ sp J𝐶K ([𝜑] ⋏ 𝑋)

)
= [¬𝜑] ⋏ sup

𝑛∈N
Ψ𝑛
sup𝑆 (−∞) (by Kleene’s fixpoint theorem)

= [¬𝜑] ⋏ sup
𝑛∈N

sup
𝑔∈𝑆

Ψ𝑛
𝑔 (−∞) (by Equation 6)

= [¬𝜑] ⋏ sup
𝑔∈𝑆

sup
𝑛∈N

Ψ𝑛
𝑔 (−∞)

= [¬𝜑] ⋏ sup
𝑔∈𝑆

sup
𝑛∈N

Ψ𝑛
𝑔 (−∞)

= sup
𝑔∈𝑆

([¬𝜑] ⋏ sup
𝑛∈N

Ψ𝑛
𝑔 (−∞))

= sup
𝑔∈𝑆

sp Jwhile (𝜑) {𝐶 }K (𝑔) (by Kleene’s fixpoint theorem)

= sup sp Jwhile (𝜑) {𝐶 }K (𝑆) ,
and this concludes the proof. □

Theorem D.3 (Quantitative universal disjunctiveness of wlp). For any set of quantities
⊆ A,

wlpJ𝐶K (inf 𝑆) = inf wlpJ𝐶K (𝑆) .

Proof. We prove Theorem D.3 by induction on the structure of 𝐶 . For the induction base, we

have the atomic statements:

The effectless program skip: We have

wlpJskipK (inf 𝑆) = inf 𝑆

= inf
𝑔∈𝑆

𝑔

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: November 2022.

1:46 Linpeng Zhang and Benjamin Lucien Kaminski

= inf
𝑔∈𝑆

wlpJskipK (𝑔)

= inf wlpJskipK (𝑆) .

The assignment 𝑥 B 𝑒 : We have

wlpJ𝑥 B 𝑒K (inf 𝑆) = (inf 𝑆) [𝑥/𝑒]

=

(
𝜆𝜎. inf

𝑔∈𝑆
𝑔(𝜎)

)
[𝑥/𝑒]

=

(
𝜆𝜎. inf

𝑔∈𝑆
𝑔 [𝑥/𝑒] (𝜎)

)
= inf

𝑔∈𝑆
𝑔 [𝑥/𝑒]

= inf
𝑔∈𝑆

wlpJ𝑥 B 𝑒K (𝑔)

= inf wlpJ𝑥 B 𝑒K (𝑆) .

This concludes the proof for the atomic statements.

Induction Hypothesis: For arbitrary but fixed programs 𝐶 , 𝐶1, 𝐶2, Theorem D.3 holds.

We proceed with the inductive step on the composite statements.

The sequential composition 𝐶1 # 𝐶2: We have

wlpJ𝐶1 # 𝐶2K (inf 𝑆) = wlpJ𝐶1K
(
wlpJ𝐶2K (inf 𝑆)

)
= wlpJ𝐶1K

(
inf wlpJ𝐶2K (𝑆)

)
(by I.H. on 𝐶1)

= inf wlpJ𝐶1K
(
wlpJ𝐶2K (𝑆)

)
(by I.H. on 𝐶2)

= inf wlpJ𝐶1 # 𝐶2K (𝑆) .

The conditional branching if (𝜑) {𝐶1 } else {𝐶2 }: We have

wlpJif (𝜑) {𝐶1 } else {𝐶2 }K (inf 𝑆)
= [𝜑] ⋏ wlpJ𝐶1K (inf 𝑆) ⋎ [¬𝜑] ⋏ wlpJ𝐶2K (inf 𝑆)
= [𝜑] ⋏ inf wlpJ𝐶1K (𝑆) ⋎ [¬𝜑] ⋏ inf wlpJ𝐶2K (𝑆) (by I.H. on 𝐶1 and 𝐶2)

= inf
(
[𝜑] ⋏ wlpJ𝐶1K (𝑆)

)
⋎ inf

(
[¬𝜑] ⋏ wlpJ𝐶2K (𝑆)

)
= 𝜆𝜎.

{
inf

(
wlpJ𝐶1K (𝑆)

)
if 𝜎 |= 𝜑

inf
(
wlpJ𝐶2K (𝑆)

)
otherwise

= inf
(
[𝜑] ⋏ wlpJ𝐶1K (𝑆) ⋎ [¬𝜑] ⋏ wlpJ𝐶2K (𝑆)

)
= inf wlpJif (𝜑) {𝐶1 } else {𝐶2 }K (𝑆) .

The loop while (𝜑) {𝐶 }: Let

Φ𝑓 (𝑋) = [¬𝜑] ⋏ 𝑓 ⋎ [𝜑] ⋏ wlpJ𝐶K (𝑋) ,

be the wlp-characteristic function of the loop while (𝜑) {𝐶 } with respect to any postanticipation

𝑓 ∈ A and

𝐹𝑆 (𝑋) = 𝑆 ∪ (J𝐶K ◦ J𝜑K)𝑋 ,

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: November 2022.

Quantitative Strongest Post 1:47

be the collecting semantics characteristic functions of the loop while (𝜑) {𝐶 } with respect to

any input 𝑆 ∈ P(Conf). Observe that Φ𝑓 (𝑋) is continuous by inductive hypothesis on 𝐶 and by

composition of continuous functions. We now prove by induction on 𝑛 that

Φ𝑛
inf 𝑆 (+∞) = inf

𝑔∈𝑆
Φ𝑛
𝑔 (+∞) . (7)

For the induction base 𝑛 = 0, consider the following:

Φ0
inf 𝑆 (+∞) = = +∞

= inf
𝑔∈𝑆

+∞

= inf
𝑔∈𝑆

Φ0
𝑔 (+∞) .

As induction hypothesis, we have for arbitrary but fixed 𝑛

Φ𝑛
inf 𝑆 (+∞) = inf

𝑔∈𝑆
Φ𝑛
𝑔 (+∞) .

For the induction step 𝑛 −→ 𝑛 + 1, consider the following:

Φ𝑛+1
inf 𝑆 (+∞)
= [¬𝜑] ⋏ inf 𝑆 ⋎ [𝜑] ⋏ wlpJ𝐶K

(
Φ𝑛
inf 𝑆 (+∞)

)
= [¬𝜑] ⋏ inf 𝑆 ⋎ [𝜑] ⋏ wlpJ𝐶K

(
inf
𝑔∈𝑆

Φ𝑛
𝑔 (+∞)

)
(by I.H. on 𝑛)

= [¬𝜑] ⋏ inf 𝑆 ⋎ [𝜑] ⋏ inf
𝑔∈𝑆

wlpJ𝐶K
(
Φ𝑛
𝑔 (+∞)

)
(by I.H. on 𝐶)

= inf
𝑔∈𝑆

([¬𝜑] ⋏ 𝑔) ⋎ inf
𝑔∈𝑆

(
[𝜑] ⋏ wlpJ𝐶K

(
Φ𝑛
𝑔 (+∞)

))
= 𝜆𝜎.

{
inf𝑔∈𝑆

(
wlpJ𝐶K

(
Φ𝑛
𝑔 (+∞)

))
if 𝜎 |= 𝜑

inf𝑔∈𝑆 (𝑔) otherwise

= inf
𝑔∈𝑆

(
[¬𝜑] ⋏ 𝑔 ⋎ [𝜑] ⋏ wlpJ𝐶K

(
Φ𝑛
𝑔 (+∞)

))
= inf

𝑔∈𝑆
Φ𝑛+1
𝑔 (+∞) .

This concludes the induction on 𝑛. Now we have:

wlpJwhile (𝜑) {𝐶 }K (inf 𝑆) = gfp 𝑋 . [¬𝜑] ⋏ inf 𝑆 ⋎ [𝜑] ⋏ wlpJ𝐶K (𝑋)
= inf

𝑛∈N
Φ𝑛
inf 𝑆 (+∞) (by Kleene’s fixpoint theorem)

= inf
𝑛∈N

inf
𝑔∈𝑆

Φ𝑛
𝑔 (+∞) (by Equation 7)

= inf
𝑔∈𝑆

inf
𝑛∈N

Φ𝑛
𝑔 (+∞)

= inf
𝑔∈𝑆

wlpJwhile (𝜑) {𝐶 }K (𝑔) (by Kleene’s fixpoint theorem)

= inf wlpJwhile (𝜑) {𝐶 }K (𝑆) ,

and this concludes the proof. □

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: November 2022.

1:48 Linpeng Zhang and Benjamin Lucien Kaminski

Theorem D.4 (Quantitative universal disjunctiveness of slp). For any set of quantities ⊆ A,
slpJ𝐶K (inf 𝑆) = inf slpJ𝐶K (𝑆) .

Proof. We prove Theorem D.4 by induction on the structure of 𝐶 . For the induction base, we

have the atomic statements:

The effectless program skip: We have

slpJskipK (inf 𝑆) = inf 𝑆

= inf
𝑔∈𝑆

𝑔

= inf
𝑔∈𝑆

slpJskipK (𝑔)

= inf slpJskipK (𝑆) .

The assignment 𝑥 B 𝑒 : We have

slpJ𝑥 B 𝑒K (inf 𝑆) = J𝛼 : [𝑥 ≠ 𝑒 [𝑥/𝛼]] ⋎ (inf 𝑆) [𝑥/𝛼]

= J𝛼 : [𝑥 ≠ 𝑒 [𝑥/𝛼]] ⋎
(
𝜆𝜎. inf

𝑔∈𝑆
𝑔(𝜎)

)
[𝑥/𝛼]

= J𝛼 : [𝑥 ≠ 𝑒 [𝑥/𝛼]] ⋎
(
𝜆𝜎. inf

𝑔∈𝑆
𝑔 [𝑥/𝛼] (𝜎)

)
= J𝛼 : [𝑥 ≠ 𝑒 [𝑥/𝛼]] ⋎ inf

𝑔∈𝑆
𝑔 [𝑥/𝛼]

= J𝛼 : inf
𝑔∈𝑆

[𝑥 ≠ 𝑒 [𝑥/𝛼]] ⋎ 𝑔 [𝑥/𝛼]

= inf
𝑔∈𝑆

J𝛼 : [𝑥 ≠ 𝑒 [𝑥/𝛼]] ⋎ 𝑔 [𝑥/𝛼]

= inf
𝑔∈𝑆

slpJ𝑥 B 𝑒K (𝑔)

= inf slpJ𝑥 B 𝑒K (𝑆) .

This concludes the proof for the atomic statements.

Induction Hypothesis: For arbitrary but fixed programs 𝐶 , 𝐶1, 𝐶2, Theorem D.4 holds.

We proceed with the inductive step on the composite statements.

The sequential composition 𝐶1 # 𝐶2: We have

slpJ𝐶1 # 𝐶2K (inf 𝑆) = slpJ𝐶2K
(
slpJ𝐶1K (inf 𝑆)

)
= slpJ𝐶2K

(
inf slpJ𝐶1K (𝑆)

)
(by I.H. on 𝐶1)

= inf slpJ𝐶2K
(
slpJ𝐶1K (𝑆)

)
(by I.H. on 𝐶2)

= inf slpJ𝐶1 # 𝐶2K (𝑆) .

The conditional branching if (𝜑) {𝐶1 } else {𝐶2 }: We have

slpJif (𝜑) {𝐶1 } else {𝐶2 }K (inf 𝑆)
= slpJ𝐶1K ([¬𝜑] ⋎ inf 𝑆) ⋏ slpJ𝐶2K ([𝜑] ⋎ inf 𝑆)
= slpJ𝐶1K (inf [¬𝜑] ⋎ 𝑆) ⋏ slpJ𝐶2K (inf [𝜑] ⋎ 𝑆)
= inf slpJ𝐶1K ([¬𝜑] ⋎ 𝑆) ⋏ inf slpJ𝐶2K ([𝜑] ⋎ 𝑆) (by I.H. on 𝐶1 and 𝐶2)

= inf
(
slpJ𝐶1K ([¬𝜑] ⋎ 𝑆) ⋏ slpJ𝐶2K ([𝜑] [¬𝜑] 𝑆)

)
Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: November 2022.

Quantitative Strongest Post 1:49

= inf slpJif (𝜑) {𝐶1 } else {𝐶2 }K (𝑆) .

The loop while (𝜑) {𝐶 }: Let
Ψ𝑓 (𝑋) = 𝑓 ⋏ slpJ𝐶K ([¬𝜑] ⋎ 𝑋) ,

be the slp-characteristic function of the loop while (𝜑) {𝐶 } with respect to any preanticipation

𝑓 ∈ A and

𝐹𝑆 (𝑋) = 𝑆 ∪ (J𝐶K ◦ J𝜑K)𝑋 ,

be the collecting semantics characteristic functions of the loop while (𝜑) {𝐶 } with respect to

any input 𝑆 ∈ P(Conf). Observe that Ψ𝑓 (𝑋) is continuous by inductive hypothesis on 𝐶 and by

composition of continuous functions. We now prove by induction on 𝑛 that

Ψ𝑛
inf 𝑆 (+∞) = inf

𝑔∈𝑆
Ψ𝑛
𝑔 (+∞) . (8)

For the induction base 𝑛 = 0, consider the following:

Ψ0
inf 𝑆 (+∞) = = +∞

= inf
𝑔∈𝑆

+∞

= inf
𝑔∈𝑆

Ψ0
𝑔 (+∞) .

As induction hypothesis, we have for arbitrary but fixed 𝑛

Ψ𝑛
inf 𝑆 (+∞) = inf

𝑔∈𝑆
Ψ𝑛
𝑔 (+∞) .

For the induction step 𝑛 −→ 𝑛 + 1, consider the following:

Ψ𝑛+1
inf 𝑆 (+∞)
= inf 𝑆 ⋏ slpJ𝐶K

(
[¬𝜑] ⋎ Ψ𝑛

inf 𝑆 (+∞)
)

= inf 𝑆 ⋏ slpJ𝐶K
(
[¬𝜑] ⋎ inf

𝑔∈𝑆
Ψ𝑛
𝑔 (+∞)

)
(by I.H. on 𝑛)

= inf 𝑆 ⋏ slpJ𝐶K
(
inf
𝑔∈𝑆

[¬𝜑] ⋎ Ψ𝑛
𝑔 (+∞)

)
= inf 𝑆 ⋏ inf

𝑔∈𝑆
slpJ𝐶K

(
[¬𝜑] ⋎ Ψ𝑛

𝑔 (+∞)
)

(by I.H. on 𝐶)

= inf
𝑔∈𝑆

𝑔 ⋏ inf
𝑔∈𝑆

slpJ𝐶K
(
[¬𝜑] ⋎ Ψ𝑛

𝑔 (+∞)
)

= inf
𝑔∈𝑆

(
𝑔 ⋏ slpJ𝐶K

(
[¬𝜑] ⋎ Ψ𝑛

𝑔 (+∞)
))

= inf
𝑔∈𝑆

Ψ𝑛+1
𝑔 (+∞) .

This concludes the induction on 𝑛. Now we have:

slpJwhile (𝜑) {𝐶 }K (inf 𝑆) = [𝜑] ⋎
(
gfp 𝑋 . inf 𝑆 ⋏ slpJ𝐶K ([¬𝜑] ⋎ 𝑋)

)
= [𝜑] ⋎ inf

𝑛∈N
Ψ𝑛
inf 𝑆 (+∞) (by Kleene’s fixpoint theorem)

= [𝜑] ⋎ inf
𝑛∈N

inf
𝑔∈𝑆

Ψ𝑛
𝑔 (+∞) (by Equation 8)

= [𝜑] ⋎ inf
𝑔∈𝑆

inf
𝑛∈N

Ψ𝑛
𝑔 (+∞)

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: November 2022.

1:50 Linpeng Zhang and Benjamin Lucien Kaminski

= [𝜑] ⋎ inf
𝑔∈𝑆

inf
𝑛∈N

Ψ𝑛
𝑔 (+∞)

= inf
𝑔∈𝑆

([𝜑] ⋎ inf
𝑛∈N

Ψ𝑛
𝑔 (+∞))

= inf
𝑔∈𝑆

slpJwhile (𝜑) {𝐶 }K (𝑔) (by Kleene’s fixpoint theorem)

= inf slpJwhile (𝜑) {𝐶 }K (𝑆) ,

and this concludes the proof. □

Corollary D.5 (Strictness of wp). For all programs 𝐶 , wpJ𝐶K is strict, i.e.

wp J𝐶K (−∞) = −∞ .

Proof.

wp J𝐶K (−∞) = 𝜆𝜎. sup
𝜏 ∈J𝐶K(𝜎)

−∞(𝜏) (by Theorem 3.7)

= −∞ .

□

Corollary D.6 (Strictness of sp). For all programs 𝐶 , spJ𝐶K is strict, i.e.

sp J𝐶K (−∞) = −∞ .

Proof.

sp J𝐶K (−∞) = 𝜆𝜏 . sup
𝜎 ∈Σ,𝜏 ∈J𝐶K𝜎

−∞(𝜎) (by Theorem 4.3)

= −∞ .

□

Corollary D.7 (Co-strictness of wlp). For all programs 𝐶 , wpJ𝐶K is co-strict, i.e.

wlpJ𝐶K (+∞) = +∞ .

Proof.

wlpJ𝐶K (+∞) = 𝜆𝜎. inf
𝜏 ∈J𝐶K(𝜎)

+∞(𝜏) (by Theorem 3.10)

= +∞ .

□

Corollary D.8 (Co-strictness of slp). For all programs 𝐶 , slpJ𝐶K is co-strict, i.e.

slpJ𝐶K (+∞) = +∞ .

Proof.

slpJ𝐶K (+∞) = 𝜆𝜏 . inf
𝜎 ∈Σ,𝜏 ∈J𝐶K𝜎

+∞(𝜎) (by Theorem 4.6)

= +∞ .

□

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: November 2022.

Quantitative Strongest Post 1:51

Corollary D.9 (Monotonicity ofQuantitative Transformers). For all programs𝐶 , 𝑓 , 𝑔 ∈ A,
we have

𝑓 ⪯ 𝑔 implies ttt J𝐶K (𝑓) ⪯ ttt J𝐶K (𝑔) , for ttt ∈ {wp, wlp, sp, slp}

Proof. Direct consequence of universal conjunctiveness and universal disjunctiveness. □

D.2 Proof of Linearity, Theorem 5.2
Theorem 5.2 (Linearity). For all programs 𝐶 , wpJ𝐶K and spJ𝐶K are sublinear, and wlpJ𝐶K and

slpJ𝐶K are superlinear, i.e. for all 𝑓 , 𝑔 ∈ A and non-negative constants 𝑟 ∈ R≥0,

wp J𝐶K (𝑟 · 𝑓 + 𝑔) ⪯ 𝑟 · wp J𝐶K (𝑓) + wp J𝐶K (𝑔) ,

sp J𝐶K (𝑟 · 𝑓 + 𝑔) ⪯ 𝑟 · sp J𝐶K (𝑓) + sp J𝐶K (𝑔) ,

𝑟 · wlpJ𝐶K (𝑓) + wlpJ𝐶K (𝑔) ⪯ wlpJ𝐶K (𝑟 · 𝑓 + 𝑔) , and

𝑟 · slpJ𝐶K (𝑓) + slpJ𝐶K (𝑔) ⪯ slpJ𝐶K (𝑟 · 𝑓 + 𝑔) .

Proof. For wp we have:

wp J𝐶K (𝑟 · 𝑓 + 𝑔)
= 𝜆𝜎. sup

𝜏 ∈J𝐶K𝜎
(𝑟 · 𝑓 + 𝑔) (𝜏) (by Theorem 3.7)

= 𝜆𝜎. sup
𝜏 ∈J𝐶K𝜎

(
(𝑟 · 𝑓) (𝜏) + 𝑔(𝜏)

)
⪯ 𝜆𝜎. sup

𝜏 ∈J𝐶K𝜎
(𝑟 · 𝑓) (𝜏) + sup

𝜏 ∈J𝐶K𝜎
𝑔(𝜏)

= 𝜆𝜎. 𝑟 · sup
𝜏 ∈J𝐶K𝜎

𝑓 (𝜏) + sup
𝜏 ∈J𝐶K𝜎

𝑔(𝜏) (sup(𝑟 · 𝐴) = 𝑟 · sup𝐴 for 𝐴 ⊆ R, 𝑟 ∈ R≥0)

= 𝑟 · 𝜆𝜎. sup
𝜏 ∈J𝐶K𝜎

𝑓 (𝜏) + 𝜆𝜎. sup
𝜏 ∈J𝐶K𝜎

𝑔(𝜏)

= 𝑟 · wp J𝐶K (𝑓) + wp J𝐶K (𝑔) . (by Theorem 3.7)

For wp we have:

sp J𝐶K (𝑟 · 𝑓 + 𝑔)
= 𝜆𝜏 . sup

𝜎 ∈Σ,𝜏 ∈J𝐶K𝜎
(𝑟 · 𝑓 + 𝑔) (𝜎) (by Theorem 4.3)

= 𝜆𝜏 . sup
𝜎 ∈Σ,𝜏 ∈J𝐶K𝜎

(
(𝑟 · 𝑓) (𝜎) + 𝑔(𝜎)

)
⪯ 𝜆𝜏 . sup

𝜎 ∈Σ,𝜏 ∈J𝐶K𝜎
(𝑟 · 𝑓) (𝜎) + sup

𝜎 ∈Σ,𝜏 ∈J𝐶K𝜎
𝑔(𝜎)

= 𝜆𝜏 . 𝑟 · sup
𝜎 ∈Σ,𝜏 ∈J𝐶K𝜎

𝑓 (𝜎) + sup
𝜎 ∈Σ,𝜏 ∈J𝐶K𝜎

𝑔(𝜎) (sup(𝑟 · 𝐴) = 𝑟 · sup𝐴 for 𝐴 ⊆ R, 𝑟 ∈ R≥0)

= 𝑟 · 𝜆𝜏 . sup
𝜎 ∈Σ,𝜏 ∈J𝐶K𝜎

𝑓 (𝜎) + 𝜆𝜏 . sup
𝜎 ∈Σ,𝜏 ∈J𝐶K𝜎

𝑔(𝜎)

= 𝑟 · sp J𝐶K (𝑓) + sp J𝐶K (𝑔) . (by Theorem 4.3)

For wlp we have:

𝑟 · wlpJ𝐶K (𝑓) + wlpJ𝐶K (𝑔)
= 𝑟 · 𝜆𝜎. inf

𝜏 ∈J𝐶K𝜎
𝑓 (𝜏) + 𝜆𝜎. inf

𝜏 ∈J𝐶K𝜎
𝑔(𝜏) (by Theorem 3.10)

= 𝜆𝜎. 𝑟 · inf
𝜏 ∈J𝐶K𝜎

𝑓 (𝜏) + inf
𝜏 ∈J𝐶K𝜎

𝑔(𝜏)

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: November 2022.

1:52 Linpeng Zhang and Benjamin Lucien Kaminski

= 𝜆𝜎. inf
𝜏 ∈J𝐶K𝜎

(𝑟 · 𝑓) (𝜏) + inf
𝜏 ∈J𝐶K𝜎

𝑔(𝜏) (inf (𝑟 · 𝐴) = 𝑟 · inf 𝐴 for 𝐴 ⊆ R, 𝑟 ∈ R≥0)

⪯ 𝜆𝜎. inf
𝜏 ∈J𝐶K𝜎

(
(𝑟 · 𝑓) (𝜏) + 𝑔(𝜏)

)
= 𝜆𝜎. inf

𝜏 ∈J𝐶K𝜎
(𝑟 · 𝑓 + 𝑔) (𝜏)

= wlpJ𝐶K (𝑟 · 𝑓 + 𝑔) ; (by Theorem 3.10)

For slp we have:

𝑟 · slpJ𝐶K (𝑓) + slpJ𝐶K (𝑔)
= 𝑟 · 𝜆𝜏 . inf

𝜎 ∈Σ,𝜏 ∈J𝐶K𝜎
𝑓 (𝜎) + 𝜆𝜏 . inf

𝜎 ∈Σ,𝜏 ∈J𝐶K𝜎
𝑔(𝜎) (by Theorem 4.6)

= 𝜆𝜏 . 𝑟 · inf
𝜎 ∈Σ,𝜏 ∈J𝐶K𝜎

𝑓 (𝜎) + inf
𝜎 ∈Σ,𝜏 ∈J𝐶K𝜎

𝑔(𝜎)

= 𝜆𝜏 . inf
𝜎 ∈Σ,𝜏 ∈J𝐶K𝜎

(𝑟 · 𝑓) (𝜎) + inf
𝜎 ∈Σ,𝜏 ∈J𝐶K𝜎

𝑔(𝜎) (inf (𝑟 · 𝐴) = 𝑟 · inf 𝐴 for 𝐴 ⊆ R, 𝑟 ∈ R≥0)

⪯ 𝜆𝜏 . inf
𝜎 ∈Σ,𝜏 ∈J𝐶K𝜎

(
(𝑟 · 𝑓) (𝜎) + 𝑔(𝜎)

)
= 𝜆𝜏 . inf

𝜎 ∈Σ,𝜏 ∈J𝐶K𝜎
(𝑟 · 𝑓 + 𝑔) (𝜎)

= slpJ𝐶K (𝑟 · 𝑓 + 𝑔) . (by Theorem 4.6)

□

D.3 Proof of Embedding Classical intoQuantitative Transformers, Theorem 5.3
Theorem 5.3 (Embedding Classical into Quantitative Transformers). For all deterministic

programs 𝐶 and predicates𝜓 , we have

wp J𝐶K ([𝜓]) =
[
wp J𝐶K (𝜓)

]
and wlpJ𝐶K ([𝜓]) =

[
wlp J𝐶K (𝜓)

]
,

and for all programs 𝐶 and predicates𝜓 , we have

sp J𝐶K ([𝜓]) =
[
sp J𝐶K (𝜓)

]
and slpJ𝐶K ([𝜓]) =

[
slpJ𝐶K (𝜓)

]
.

Proof. For wp we have:

wp J𝐶K ([𝐹]) = 𝜆𝜎.
{
[𝐹] (𝜏) if J𝐶K(𝜎) = {𝜏}
−∞ otherwise

(by Corollary 5.5)

= 𝜆𝜎.
{
+∞ if J𝐶K(𝜎) = {𝜏} ∧ 𝜏 |= 𝐹

−∞ otherwise

=
[
wp J𝐶K (𝐹)

]
.

For wlp we have:

wlpJ𝐶K ([𝐹]) = 𝜆𝜎.
{
[𝐹] (𝜏) if J𝐶K(𝜎) = {𝜏}
+∞ otherwise

(by Corollary 5.5)

= 𝜆𝜎.
{
−∞ if J𝐶K(𝜎) = {𝜏} ∧ 𝜏 ̸ |= 𝐹

+∞ otherwise

=
[
wlp J𝐶K (𝐹)

]
.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: November 2022.

Quantitative Strongest Post 1:53

For sp we have:

sp J𝐶K ([𝐺]) = 𝜆𝜏 . sup
𝜎 ∈Σ,𝜏 ∈J𝐶K𝜎

[𝐺] (𝜎) (by Theorem 4.3)

= 𝜆𝜏 .
{
+∞ if ∃𝜎 ∈ Σ, 𝜏 ∈ J𝐶K(𝜎) ∧ 𝜎 |= 𝐺

−∞ otherwise

=
[
sp J𝐶K (𝐺)

]
,

For slp we have:

slpJ𝐶K ([𝐺]) = 𝜆𝜏 . inf
𝜎 ∈Σ,𝜏 ∈J𝐶K𝜎

[𝐺] (𝜎) (by Theorem 4.6)

= 𝜆𝜏 .
{
−∞ if ∃𝜎 ∈ Σ, 𝜏 ∈ J𝐶K(𝜎) ∧ 𝜎 ̸ |= 𝐺

+∞ otherwise

= 𝜆𝜏 .
{
+∞ if ∀𝜎 ∈ Σ, 𝜏 ∉ J𝐶K(𝜎) ∨ 𝜎 |= 𝐺

−∞ otherwise

= 𝜆𝜏 .
{
+∞ if ∀𝜎 ∈ Σ, 𝜏 ∈ J𝐶K(𝜎) =⇒ 𝜎 |= 𝐺

−∞ otherwise

=
[
slpJ𝐶K (𝜓)

]
.

□

D.4 Proof of Liberal-Non-liberal Duality, Theorem 5.4
Theorem 5.4 (Liberal–Non-liberal Duality). For any program 𝐶 and quantity 𝑓 , we have

wp J𝐶K (𝑓) = − wlpJ𝐶K (−𝑓) and sp J𝐶K (𝑓) = − slpJ𝐶K (−𝑓) .

Proof. For wp and wlp we have:

wp J𝐶K (𝑓) = 𝜆𝜎. sup
𝜏 ∈J𝐶K𝜎

𝑓 (𝜏) (by Theorem 3.7)

= 𝜆𝜎. − inf
𝜏 ∈J𝐶K𝜎

−𝑓 (𝜏) (sup𝐴 = − inf (−𝐴))

= − wlpJ𝐶K (−𝑓) .

For sp and slp we have:

sp J𝐶K (𝑔) = 𝜆𝜏 . sup
𝜎 ∈Σ,𝜏 ∈J𝐶K𝜎

𝑔(𝜎) (by Theorem 4.3)

= 𝜆𝜏 . − inf
𝜎 ∈Σ,𝜏 ∈J𝐶K𝜎

−𝑔(𝜎) (sup𝐴 = − inf (−𝐴))

= − slpJ𝐶K (−𝑔) .

□

E PROOFS OF SECTION 6
E.1 Proof of Galois Connection between wlp and sp, Theorem 6.1

Theorem 6.1 (Galois Connection between wlp and sp). For all 𝐶 ∈ nGCL and 𝑔, 𝑓 ∈ A:

𝑔 ⪯ wlpJ𝐶K (𝑓) iff sp J𝐶K (𝑔) ⪯ 𝑓 .

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: November 2022.

1:54 Linpeng Zhang and Benjamin Lucien Kaminski

Proof.

𝑔 ⪯ wlpJ𝐶K (𝑓) ⇐⇒ ∀𝜎 ∈ Σ. 𝑔(𝜎) ≤ wlpJ𝐶K (𝑓) (𝜎)
⇐⇒ ∀𝜎 ∈ Σ. 𝑔(𝜎) ≤ inf

𝜏 ∈J𝐶K(𝜎)
𝑓 (𝜏) (by Theorem 3.10)

⇐⇒ ∀𝜎, 𝜏 ∈ Σ : 𝜏 ∈ J𝐶K(𝜎). 𝑔(𝜎) ≤ 𝑓 (𝜏)
⇐⇒ ∀𝜏 ∈ Σ. sup

𝜎 ∈Σ,𝜏 ∈J𝐶K(𝜎)
𝑔(𝜎) ≤ 𝑓 (𝜏)

⇐⇒ ∀𝜏 ∈ Σ. sp J𝐶K (𝑔) (𝜏) ≤ 𝑓 (𝜏) (by Theorem 4.3)

⇐⇒ sp J𝐶K (𝑔) ⪯ 𝑓 .

□

E.2 Proof of Galois Connection between wp and slp, Theorem 6.2
Theorem 6.2 (Galois Connection between wp and slp). For all 𝐶 ∈ nGCL and 𝑔, 𝑓 ∈ A:

wp J𝐶K (𝑓) ⪯ 𝑔 iff 𝑓 ⪯ slpJ𝐶K (𝑔)

Proof.

wp J𝐶K (𝑓) ⪯ 𝑔 ⇐⇒ ∀𝜎 ∈ Σ. wp J𝐶K (𝑓) (𝜎) ≤ 𝑔(𝜎)
⇐⇒ ∀𝜎 ∈ Σ. sup

𝜏 ∈J𝐶K(𝜎)
𝑓 (𝜏) ≤ 𝑔(𝜎) (by Theorem 3.7)

⇐⇒ ∀𝜎, 𝜏 ∈ Σ : 𝜏 ∈ J𝐶K(𝜎). 𝑓 (𝜏) ≤ 𝑔(𝜎)
⇐⇒ ∀𝜏 ∈ Σ. 𝑓 (𝜏) ≤ inf

𝜎 ∈Σ,𝜏 ∈J𝐶K(𝜎)
𝑔(𝜎)

⇐⇒ ∀𝜏 ∈ Σ. 𝑓 (𝜏) ≤ slpJ𝐶K (𝑔) (𝜏) (by Theorem 4.3)

⇐⇒ 𝑓 ⪯ slpJ𝐶K (𝑔) .

□

F PROOFS OF SECTION 7
F.1 Proof of Induction Rules for Loops, Theorem 7.1

Theorem 7.1 (Induction Rules for Loops). The following proof rules for loops are valid:

𝑔 ⪯ 𝑖 ⪯ [¬𝜑] ⋏ 𝑓 ⋎ [𝜑] ⋏ wlpJ𝐶K (𝑖)
𝑔 ⪯ wlpJwhile (𝜑) {𝐶 }K (𝑓)

while−wlp

𝑔 ⋎ sp J𝐶K ([𝜑] ⋏ 𝑖) ⪯ 𝑖 and [¬𝜑] ⋏ 𝑖 ⪯ 𝑓

sp Jwhile (𝜑) {𝐶 }K (𝑔) ⪯ 𝑓
while−sp

[¬𝜑] ⋏ 𝑓 ⋎ [𝜑] ⋏ wp J𝐶K (𝑖) ⪯ 𝑖 ⪯ 𝑔

wp Jwhile (𝜑) {𝐶 }K (𝑓) ⪯ 𝑔
while−wp

𝑖 ⪯ 𝑔 ⋏ slpJ𝐶K ([¬𝜑] ⋎ 𝑖) and 𝑓 ⪯ [𝜑] ⋎ 𝑖
𝑓 ⪯ slpJwhile (𝜑) {𝐶 }K (𝑔)

while−slp

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: November 2022.

Quantitative Strongest Post 1:55

Proof. We prove each rule individually.

For while−wlp we have:

𝑖 ⪯ [¬𝜑] ⋏ 𝑓 ⋎ [𝜑] ⋏ wlpJ𝐶K (𝑖) (Premise of the rule)

=⇒ 𝑖 ⪯ gfp 𝑋 . [¬𝜑] ⋏ 𝑓 ⋎ [𝜑] ⋏ wlpJ𝐶K (𝑋) (by Park’s Induction [Park 1969])

=⇒ 𝑖 ⪯ wlpJwhile (𝜑) {𝐶 }K (𝑓) (by Definition 3.8)

=⇒ 𝑔 ⪯ wlpJwhile (𝜑) {𝐶 }K (𝑓) (𝑔 ⪯ 𝑖 and transitivity of ⪯)

For while−sp we have:

𝑔 ⋎ sp J𝐶K ([𝜑] ⋏ 𝑖) ⪯ 𝑖 (Premise of the rule)

=⇒ lfp 𝑋 . 𝑔 ⋎ sp J𝐶K ([𝜑] ⋏ 𝑋) ⪯ 𝑖 (by Park’s Induction [Park 1969])

=⇒ [¬𝜑] ⋏ lfp 𝑋 . 𝑔 ⋎ sp J𝐶K ([𝜑] ⋏ 𝑋) ⪯ [¬𝜑] ⋏ 𝑖 (by monotonicity of 𝜆𝑋 . [¬𝜑] ⋏ 𝑋)

=⇒ sp Jwhile (𝜑) {𝐶 }K (𝑔) ⪯ [¬𝜑] ⋏ 𝑖 (by Definition 4.1)

=⇒ sp Jwhile (𝜑) {𝐶 }K (𝑔) ⪯ 𝑓 ([¬𝜑] ⋏ 𝑖 ⪯ 𝑓 and transitivity of ⪯)

For while−wp we have:

[¬𝜑] ⋏ 𝑓 ⋎ [𝜑] ⋏ wp J𝐶K (𝑖) ⪯ 𝑖 (Premise of the rule)

=⇒ lfp 𝑋 . [¬𝜑] ⋏ 𝑓 ⋎ [𝜑] ⋏ wp J𝐶K (𝑋) ⪯ 𝑖 (by Park’s Induction [Park 1969])

=⇒ wp Jwhile (𝜑) {𝐶 }K (𝑓) ⪯ 𝑖 (by Definition 3.3)

=⇒ wp Jwhile (𝜑) {𝐶 }K (𝑓) ⪯ 𝑔 (𝑖 ⪯ 𝑔 and transitivity of ⪯)

For while−slp we have:

𝑖 ⪯ 𝑔 ⋏ slpJ𝐶K ([¬𝜑] ⋎ 𝑖) (Premise of the rule)

=⇒ 𝑖 ⪯ gfp 𝑋 . 𝑔 ⋏ slpJ𝐶K ([¬𝜑] ⋎ 𝑋) (by Park’s Induction [Park 1969])

=⇒ [𝜑] ⋎ 𝑖 ⪯ [𝜑] ⋎ gfp 𝑋 . 𝑔 ⋏ slpJ𝐶K ([¬𝜑] ⋎ 𝑋) (by monotonicity of 𝜆𝑋 . [𝜑] ⋎ 𝑋)

=⇒ [𝜑] ⋎ 𝑖 ⪯ slpJwhile (𝜑) {𝐶 }K (𝑔) (by Definition 4.4)

=⇒ 𝑓 ⪯ slpJwhile (𝜑) {𝐶 }K (𝑔) (𝑓 ⪯ [𝜑] ⋎ 𝑖 and transitivity of ⪯)

□

F.2 Proof of Proposition 7.3
Proposition 7.3. The following proof rules for loops are valid:

sp J𝐶K (𝑓) ⪯ 𝑓

sp Jwhile (𝜑) {𝐶 }K (𝑓) = [¬𝜑] ⋏ 𝑓

𝑓 ⪯ slpJ𝐶K (𝑓)
slpJwhile (𝜑) {𝐶 }K (𝑓) = [𝜑] ⋎ 𝑓

Proof. We prove each statement individually. Let
spΨ𝑓 and

slpΨ𝑓 be, respectively, the sp–charac-
teristic and slp–characteristic functions of while (𝜑) {𝐶 }.
For sp we have:

[𝜑] ⋏ 𝑓 ⪯ 𝑓

sp J𝐶K ([𝜑] ⋏ 𝑓) ⪯ sp J𝐶K (𝑓) (by Monotonicity of sp)

sp J𝐶K ([𝜑] ⋏ 𝑓) ⪯ 𝑓 (by hypothesis and transitivity of ⪯)

𝑓 ⋎ sp J𝐶K ([𝜑] ⋏ 𝑓) ⪯ 𝑓 (by Monotonicity of 𝜆𝑋 . 𝑓 ⋎ 𝑋)

spΨ2
𝑓
(−∞) ⪯ spΨ𝑓 (−∞) (by Definition 4.1)

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: November 2022.

1:56 Linpeng Zhang and Benjamin Lucien Kaminski

Hence, the Kleene’s iterates have converged immediately and the least fixpoint is exactly:

lfp 𝑋 . spΨ𝑓 (𝑋) = spΨ𝑓 (−∞) = 𝑓 ,

and thus we conclude:

sp Jwhile (𝜑) {𝐶 }K (𝑓) = [¬𝜑] ⋏ lfp 𝑋 . spΨ𝑓 (𝑋) (by Definition 4.1)

= [¬𝜑] ⋏ 𝑓 . (lfp 𝑋 . spΨ𝑓 (𝑋) = 𝑓)

For slp we have:

𝑓 ⪯ [¬𝜑] ⋎ 𝑓 (†)
slpJ𝐶K (𝑓) ⪯ slpJ𝐶K ([¬𝜑] ⋎ 𝑓) (by Monotonicity of slp)

𝑓 ⪯ slpJ𝐶K ([¬𝜑] ⋎ 𝑓) (by hypothesis and transitivity of ⪯)

𝑓 ⪯ 𝑓 ⋏ slpJ𝐶K ([¬𝜑] ⋎ 𝑓) (by Monotonicity of 𝜆𝑋 . 𝑓 ⋏ 𝑋)

slpΨ𝑓 (+∞) ⪯ slpΨ2
𝑓
(+∞) (by Definition 4.4)

Hence, the Kleene’s iterates have converged immediately and the greatest fixpoint is exactly:

gfp 𝑋 . slpΨ𝑓 (𝑋) =slp Ψ𝑓 (+∞) = 𝑓 ,

and thus we conclude:

sp Jwhile (𝜑) {𝐶 }K (𝑓) = [𝜑] ⋎ gfp 𝑋 . slpΨ𝑓 (𝑋) (by Definition 4.4)

= [𝜑] ⋎ 𝑓 . (gfp 𝑋 . slpΨ𝑓 (𝑋) = 𝑓)

□

G FULL CALCULATIONS OF SECTION 8
G.1 Full calculations of Example 8.1
Example G.1. The strongest post of 𝐶 = if (ℎ𝑖 > 7) { 𝑙𝑜 B 99 } else { 𝑙𝑜 B 80 } for the pre-

anticipation ℎ𝑖 = 𝜆𝜎. 𝜎 (ℎ𝑖) are:
sp Jif (ℎ𝑖 > 7) { 𝑙𝑜 B 99 } else { 𝑙𝑜 B 80 }K (ℎ𝑖)
= sp J𝑙𝑜 B 99K ([ℎ𝑖 > 7] ⋏ ℎ𝑖) ⋎ sp J𝑙𝑜 B 80K ([ℎ𝑖 ≤ 7] ⋏ ℎ𝑖)
= S𝛼 : [𝑙𝑜 = 99] ⋏ ([ℎ𝑖 > 7] ⋏ ℎ𝑖) [𝑙𝑜/𝛼] ⋎ S𝛼 : [𝑙𝑜 = 80] ⋏ ([ℎ𝑖 ≤ 7] ⋏ ℎ𝑖) [𝑙𝑜/𝛼]
= [𝑙𝑜 = 99] ⋏ [ℎ𝑖 > 7] ⋏ ℎ𝑖 ⋎ [𝑙𝑜 = 80] ⋏ [ℎ𝑖 ≤ 7] ⋏ ℎ𝑖

and

slpJif (ℎ𝑖 > 7) { 𝑙𝑜 B 99 } else { 𝑙𝑜 B 80 }K (ℎ𝑖)
= slpJ𝑙𝑜 B 99K ([ℎ𝑖 ≤ 7] ⋎ ℎ𝑖) ⋏ slpJ𝑙𝑜 B 80K ([ℎ𝑖 > 7] ⋎ ℎ𝑖)
=

(
J𝛼 : [𝑙𝑜 ≠ 99] ⋎ ([ℎ𝑖 ≤ 7] ⋎ ℎ𝑖) [𝑙𝑜/𝛼]

)
⋏

(
J𝛼 : [𝑙𝑜 ≠ 80] ⋎ ([ℎ𝑖 > 7] ⋎ ℎ𝑖) [𝑙𝑜/𝛼]

)
=

(
[𝑙𝑜 ≠ 99] ⋎ [ℎ𝑖 ≤ 7] ⋎ ℎ𝑖

)
⋏

(
[𝑙𝑜 ≠ 80] ⋎ [ℎ𝑖 > 7] ⋎ ℎ𝑖

)
.

G.2 Full calculations of Example 8.2
Example G.2. The strongest post of 𝐶 = ℎ𝑖 B ℎ𝑖 + 5 # while (𝑙𝑜 < ℎ𝑖) { 𝑙𝑜 B 𝑙𝑜 + 1 } for the

preanticipation ℎ𝑖 = 𝜆𝜎. 𝜎 (ℎ𝑖) are:
sp J𝐶K (ℎ𝑖) = [𝑙𝑜 ≥ ℎ𝑖] ⋏ (ℎ𝑖 − 5)
slpJ𝐶K (ℎ𝑖) = [𝑙𝑜 < ℎ𝑖] ⋎ (ℎ𝑖 − 5)

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: November 2022.

Quantitative Strongest Post 1:57

In fact, we have:

sp Jℎ𝑖 B ℎ𝑖 + 5 # while (𝑙𝑜 < ℎ𝑖) { 𝑙𝑜 B 𝑙𝑜 + 1 }K (ℎ𝑖)
= sp Jwhile (𝑙𝑜 < ℎ𝑖) { 𝑙𝑜 B 𝑙𝑜 + 1 }K

(
sp Jℎ𝑖 B ℎ𝑖 + 5K (ℎ𝑖)

)
= sp Jwhile (𝑙𝑜 < ℎ𝑖) { 𝑙𝑜 B 𝑙𝑜 + 1 }K (S𝛼 : [ℎ𝑖 = 𝛼 + 5] ⋏ 𝛼)
= sp Jwhile (𝑙𝑜 < ℎ𝑖) { 𝑙𝑜 B 𝑙𝑜 + 1 }K (ℎ𝑖 − 5) (𝛼 = ℎ𝑖 − 5 is selected)

= [𝑙𝑜 ≥ ℎ𝑖] ⋏ lfp 𝑋 . Ψℎ𝑖−5 (𝑋)
= [𝑙𝑜 ≥ ℎ𝑖] ⋏ Ψ𝜔

ℎ𝑖−5 (−∞) (by Kleene’s fixpoint theorem)

Let us compute some Kleene’s iterates:

Ψℎ𝑖−5 (−∞) = (ℎ𝑖 − 5) ⋎ sp J𝑙𝑜 B 𝑙𝑜 + 1K ([𝑙𝑜 < ℎ𝑖] ⋏ −∞)
= (ℎ𝑖 − 5) ⋎ sp J𝑙𝑜 B 𝑙𝑜 + 1K (−∞)
= (ℎ𝑖 − 5) ⋎ (−∞) (by Theorem 5.1 (2))

= (ℎ𝑖 − 5)
Ψ2
ℎ𝑖−5 (−∞) = (ℎ𝑖 − 5) ⋎ sp J𝑙𝑜 B 𝑙𝑜 + 1K ([𝑙𝑜 < ℎ𝑖] ⋏ (ℎ𝑖 − 5))

= (ℎ𝑖 − 5) ⋎ (S𝛼 : [𝑙𝑜 = 𝛼 + 1] ⋏ [𝛼 < ℎ𝑖] ⋏ (ℎ𝑖 − 5))
= (ℎ𝑖 − 5) ⋎ ([𝑙𝑜 < ℎ𝑖 + 1] ⋏ (ℎ𝑖 − 5)) (𝛼 = 𝑙𝑜 − 1 is selected)

= (ℎ𝑖 − 5)
The iteration sequence has converged (in just 2 iterations), so we obtain:

sp Jℎ𝑖 B ℎ𝑖 + 5 # while (𝑙𝑜 < ℎ𝑖) { 𝑙𝑜 B 𝑙𝑜 + 1 }K (ℎ𝑖)
= [𝑙𝑜 ≥ ℎ𝑖] ⋏ Ψ𝜔

ℎ𝑖−5 (−∞)
= [𝑙𝑜 ≥ ℎ𝑖] ⋏ (ℎ𝑖 − 5)

Similarly, for slp we have:

slpJℎ𝑖 B ℎ𝑖 + 5 # while (𝑙𝑜 < ℎ𝑖) { 𝑙𝑜 B 𝑙𝑜 + 1 }K (ℎ𝑖)
= slpJwhile (𝑙𝑜 < ℎ𝑖) { 𝑙𝑜 B 𝑙𝑜 + 1 }K

(
slpJℎ𝑖 B ℎ𝑖 + 5K (ℎ𝑖)

)
= slpJwhile (𝑙𝑜 < ℎ𝑖) { 𝑙𝑜 B 𝑙𝑜 + 1 }K

(
J𝛼 : [ℎ𝑖 ≠ 𝛼 + 5] ⋎ 𝛼

)
= slpJwhile (𝑙𝑜 < ℎ𝑖) { 𝑙𝑜 B 𝑙𝑜 + 1 }K (ℎ𝑖 − 5) (𝛼 = ℎ𝑖 − 5 is selected)

= [𝑙𝑜 < ℎ𝑖] ⋎ gfp 𝑋 . Ψℎ𝑖−5 (𝑋)
= [𝑙𝑜 < ℎ𝑖] ⋎ Ψ𝜔

ℎ𝑖−5 (+∞) (by Kleene’s fixpoint theorem)

Let us compute some Kleene’s iterates:

Ψℎ𝑖−5 (+∞) = (ℎ𝑖 − 5) ⋏ slpJ𝑙𝑜 B 𝑙𝑜 + 1K ([𝑙𝑜 ≥ ℎ𝑖] ⋎ +∞)
= (ℎ𝑖 − 5) ⋏ slpJ𝑙𝑜 B 𝑙𝑜 + 1K (+∞)
= (ℎ𝑖 − 5) ⋏ +∞ (by Theorem 5.1 (4))

= (ℎ𝑖 − 5)
Ψ2
ℎ𝑖−5 (+∞) = (ℎ𝑖 − 5) ⋏ slpJ𝑙𝑜 B 𝑙𝑜 + 1K ([𝑙𝑜 ≥ ℎ𝑖] ⋎ (ℎ𝑖 − 5))

= (ℎ𝑖 − 5) ⋏ (J𝛼 : [𝑙𝑜 ≠ 𝛼 + 1] ⋎ [𝛼 ≥ ℎ𝑖] ⋎ (ℎ𝑖 − 5))
= (ℎ𝑖 − 5) ⋏ ([𝑙𝑜 ≥ ℎ𝑖 + 1] ⋎ (ℎ𝑖 − 5)) (𝛼 = 𝑙𝑜 − 1 is selected)

= (ℎ𝑖 − 5)

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: November 2022.

1:58 Linpeng Zhang and Benjamin Lucien Kaminski

Again, the iteration sequence has converged in 2 iterations, so we conclude:

slpJℎ𝑖 B ℎ𝑖 + 5 # while (𝑙𝑜 < ℎ𝑖) { 𝑙𝑜 B 𝑙𝑜 + 1 }K (ℎ𝑖)
= [𝑙𝑜 < ℎ𝑖] ⋎ Ψ𝜔

ℎ𝑖−5 (+∞)
= [𝑙𝑜 < ℎ𝑖] ⋎ (ℎ𝑖 − 5)

H EXTENDED COMPARISONWITH [Aguirre and Katsumata 2020]
In this section, we show how our w(l)p, restricted to the fragment of loop-free programs, can be

derived by instantiating [Aguirre and Katsumata 2020, Corollary 4.6]. Consider:

• the powerset monad P;

• the lattice of extended reals R±∞;
• the Eilenberg-Moore algebra sup: P(R±∞) → R±∞.

As a consequence of [Aguirre and Katsumata 2020, Corollary 4.6], we obtain an abstract operation

awp : (𝐴 → P(𝐵)) → (𝐵 → R±∞) → (𝐴 → R±∞) such that:

awp(𝐶) (𝑓) (𝑎) = sup
𝑏∈𝐶 (𝑎)

𝑓 (𝑏)

Note that awp preserves all joins in the position of 𝑓 . By taking as monad the collecting semantics

starting from a single state J𝐶K : Σ → P(Σ) which maps states into set of states, for all loop-free

programs 𝐶 , 𝑓 ∈ A, 𝜎 ∈ Σ we have:

awp(J𝐶K) (𝑓) (𝜎) = sup
𝜏 ∈J𝐶K(𝜎)

𝑓 (𝜏) = wp J𝐶K (𝑓) .

Similarly, if we consider the Eilenberg-Moore algebra inf , we obtain an abstract operator awlp such

that:

awlp(J𝐶K) (𝑓) (𝜎) = inf
𝜏 ∈J𝐶K(𝜎)

𝑓 (𝜏) = wlpJ𝐶K (𝑓) .

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 1. Publication date: November 2022.

	Abstract
	1 Introduction
	2 Nondeterministic Programs
	3 Weakest Pre
	3.1 Classical Weakest Preconditions
	3.2 Quantities
	3.3 Quantitative Weakest Pre
	3.4 Weakest Liberal Pre

	4 Strongest Post
	4.1 Classical Strongest Postconditions
	4.2 Quantitative Strongest Post
	4.3 Quantitative Strongest Liberal Post

	5 Healthiness Properties of Quantitative Transformers
	5.1 Healthiness Properties
	5.2 Relationship between Qualitative and Quantitative Transformers
	5.3 Relationship between Liberal and Non-liberal Transformers

	6 Correctness and Incorrectness Reasoning
	6.1 Galois Connections between Weakest Pre and Strongest Post
	6.2 Resolving Nondeterministic Choice: Angelic vs. Demonic
	6.3 Strongest Post and Incorrectness Logic

	7 Loops rules
	8 Case Studies
	8.1 Quantitative Information Flow — Loop Free
	8.2 Quantitative Information Flow for Loops
	8.3 Automation
	8.4 Partial Incorrectness Reasoning

	9 Related Work
	10 Conclusion & Future Work
	References
	A Collecting Semantics of While-loops
	B Proofs of Section 3
	B.1 Proof of Soundness for wp, Thereom 3.7
	B.2 Proof of Soundness for wlp, Thereom 3.10

	C Proofs of Section 4
	C.1 Proof of Soundness for sp, Thereom 4.3
	C.2 Proof of Soundness for slp, Thereom 4.6

	D Proofs of Section 5
	D.1 Proof of Healthiness Properties of Quantitative Transformers, Theorem 5.1
	D.2 Proof of Linearity, Theorem 5.2
	D.3 Proof of Embedding Classical into Quantitative Transformers, Theorem 5.3
	D.4 Proof of Liberal-Non-liberal Duality, Theorem 5.4

	E Proofs of Section 6
	E.1 Proof of Galois Connection between wlp and sp, Theorem 6.1
	E.2 Proof of Galois Connection between wp and slp, Theorem 6.2

	F Proofs of Section 7
	F.1 Proof of Induction Rules for Loops, Theorem 7.1
	F.2 Proof of prop:spslpconvergence

	G Full calculations of Section 8
	G.1 Full calculations of Example 8.1
	G.2 Full calculations of Example 8.2

	H Extended comparison with Aguirre2020WeakestPI

