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Prior retrieval practice potentiates new learning. A recent meta-analysis of this 
test-potentiated new learning (TPNL) effect by Chan, Meissner, and Davis (2018) 
concluded that it is a robust and reliable finding (Hedges’ g = 0.44). Although Chan et al. 
discussed three different experimental designs that have been employed to study TPNL, 
we argue that their meta-analysis failed to adequately distinguish the findings from these 
different designs, acknowledge the significance of the substantial between-study 
heterogeneity across all pooled effects, and assess the degree of publication bias in the 
sample. We conducted a new meta-analysis that assessed the designs separately and 
applied appropriate corrections for publication bias. We found that studies using a 
standard design yield weak evidence of a TPNL effect, studies using pre-testing yield a 
small but reliable effect, and studies using interleaving designs yield weak evidence of a 
negative effect. Compared to Chan et al.’s conclusions, these reanalyses cast TPNL in a 
very different light and point to a pressing need for preregistered experiments to assess 
its reproducibility in the absence of publication bias. 

Test-potentiated new learning (TPNL) is the finding that 
prior retrieval practice potentiates new learning. For exam-
ple, Szpunar, Khan, and Schacter (2013) had participants 
study an introductory statistics video divided into four seg-
ments. After each of segments 1-3, participants in a re-
trieval group took a test (without corrective feedback) about 
the preceding segment while those in a control group were 
not tested. After studying segment 4, both groups were 
tested. Szpunar et al. found that participants who had un-
dertaken prior retrieval practice recalled far more of the 
content of segment 4 than those who had not. Thus, re-
trieval practice can enhance subsequent learning of new 
material. Like the classic testing effect, in which tests con-
solidate the information retrieved in the test (McDermott, 
2021; Roediger & Karpicke, 2006; Yang et al., 2021), TPNL 
has important implications and suggests that testing can 
play a useful role in educational settings. 

A recent meta-analysis by Chan, Meissner, and Davis 
(2018) concludes, and seemingly confirms, that TPNL is a 
robust and reliable finding (Hedges’ g = 0.44). However, 
Chan et al. did not adequately assess the extent of publi-
cation bias nor address the substantial between-study het-
erogeneity in their sample. As we demonstrate, these lim-
itations make this conclusion unwarranted and raise a 
question mark about the robustness of TPNL. We show that 
the aggregated effect needs to be divided into meaningful 
sub-components, and that doing so changes the conclu-

sions that can be drawn. 
In their meta-analysis Chan et al. pooled data from a 

heterogenous and diverse sample of studies using different 
materials, testing formats, and populations. This is an ap-
propriate practice for an exploratory analysis focused on 
the broad impact of retrieval practice, and a random-effects 
model was used, which does not assume homogeneity in 
effect sizes (Borenstein, 2009). Nevertheless, the pooling 
resulted in substantial between-study heterogeneity (I2 = 
86%) which was not explained by the subgroup analyses 
they conducted. In this comment we show that Chan et al.'s 
pooling was unjustified and that their total (pooled) sample 
comprised three distinct subsets. By disaggregating these 
effects, we substantially reduce heterogeneity and show 
that they are probably underpinned by different cognitive 
mechanisms. Furthermore, Chan et al. also failed to test, or 
correct for, publication bias in their meta-analysis. We pre-
sent evidence that these three subsets have very different 
aggregate effects sizes when corrected for publication bias. 
Indeed, we show that the magnitude of two of these effects 
may not be different from zero. 

Publication bias in Chan et al.'s (2018) meta-
analysis 

In the Chan et al. (2018) meta-analysis, the only assess-
ment of publication bias came from comparing the effect 
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Figure 1. Funnel plots of effect sizes (Hedges’ g) in reanalyses of Chan et al.’s (2018) dataset 
The red points are study estimates and the red line depicts Egger’s regression test. The gray triangle is centered on an effect size of zero and represents the space in which in-
dividual study effects would not be statistically significant at p < .05. The open triangle is centered on the meta-analytic effect size estimate. A: Overall sample. B: Standard 
sample. C: Pre-testing sample. D: Interleaved test sample. 

sizes of published and unpublished data. This assessment 
yielded a significant difference (g = 0.50 for published stud-
ies versus g = 0.19 for unpublished ones). However, instead 
of interpreting this as suggestive of publication bias (which 
would need correcting), Chan et al. proposed that it arose 
because publication status and experimental design tended 
to be confounded. But rather than respond to this con-
founding by conducting alternative or more targeted publi-
cation bias tests, Chan et al. simply assumed that publica-
tion bias was not a concern in their meta-analysis. We argue 
that this was inadequate and additional tests are needed. 

There are many other ways of testing for publication 
bias. A classic method is to examine a funnel plot (Figure 
1, panel A) of the data and apply Egger’s test (Egger et al., 
1997) to determine whether the experiments’ effect sizes 
are correlated with their standard errors. Evidence that 
studies with larger standard errors yield larger effect sizes 
is taken as evidence of publication bias. As standard error 
is dependent on sample size, it is taken as a metric of study 
precision, which is the reliability of the effect size estimate. 
A significant positive correlation implies that more precise 
studies, those with smaller standard errors and larger sam-
ple sizes, are associated with smaller effects. This means 
that the aggregated effect size likely has small study bias. 
Many methods have been proposed to adjust for bias, as dis-
cussed further below. 

To apply Egger’s test, we first replicated Chan et al.'s 
(2018) meta-analysis, reanalyzing their sample available 
though OSF (https://osf.io/7wufc/). We applied a random-
effects (RE) model (see Hedges & Vevea, 1998), using R with 
the meta, metafor, and dmetar packages. We made two mi-
nor modifications by specifying the Paule-Mandel estima-

tor of τ2 (Paule & Mandel, 1982) and the Hartung-Knapp-
Sidik-Jonkman (HKSJ) (Hartung & Knapp, 2001; Sidik & 
Jonkman, 2002) adjustment method. This analysis gener-
ated an aggregate effect point estimate identical to that 
observed by Chan et al., with near identical 95% CIs and 
Q value, g = 0.44, CI [0.34, 0.54], t(158) = 8.46, p < .001. 
This confirms that their results are reproducible. As in Chan 
et al., the analysis also detected significant heterogeneity, 
Q(158) = 1133.94, p < 0.001, with a substantial amount due 
to between-study variation in effect sizes, I2 = 86%. That 
is, the variation was not only due to sampling error, but 
likely due to significant variations in true effects. Further 
analyses found that this substantial heterogeneity was also 
confirmed by tau (  = 0.60). Tau is the estimated standard 
deviation of the true effects in the sample and quantifies 
dispersion (Borenstein, 2009). In our sample, the tau score 
indicates that the effects span a very wide range of effect 
sizes from -0.76 to 1.64, the range incorporating 95% of ef-
fects. So, although the aggregated effect was positive and 
significant, there is very wide variation that needs to be ex-
plained as well as a substantial number of studies finding 
that testing impairs new learning. As discussed below, we 
believe this is likely due to improper aggregation of 
methodologies. 

Applying Egger’s method to this dataset reveals substan-
tial asymmetry, B = 1.85, t(158) = 3.16, p = .002, which is 
usually interpreted as a potential signal of publication bias. 
To select an appropriate test, we followed the principled ap-
proach developed by Carter et al. (2019) and its application 
(http://www.shinyapps.org/apps/metaExplorer/). We speci-
fied severity of publication bias and the extent of question-
able research practices as ‘medium’, heterogeneity ( ) = 0.2 
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(note that this parameter reflects the assumed true level of 
heterogeneity, not the amount observed in the RE analy-
sis), the true effect size as 0.5, and the number of studies in 
the meta-analysis = 100 (the largest number possible). Good 
performance was defined as a maximum false positive rate 
= 20%. Under these conditions, 3PSM and PET provide suit-
able estimates. Other well-known correction methods such 
as Trim-and-Fill and p-curve generate unacceptable max-
imum false positive rates. For example, under these plau-
sible conditions, Trim-and-Fill has a false positive rate of 
100% when there is no true effect. The 3PSM and PET meth-
ods were also acceptable when the number of studies was 
set at 20, 40, and 60. This makes them suitable for assessing 
bias in the interleaving, pre-testing, and standard designs, 
respectively (see below). 

When the bias was adjusted for using the three-parame-
ter selection model (3PSM; Iyengar & Greenhouse, 1988; 
Vevea & Hedges, 1995; Vevea & Woods, 2005), the overall 
TPNL effect estimate was entirely eliminated and the aggre-
gate effect size was no longer reliable, g = 0.02, CI [-0.14, 
0.18]), Z(158) = 0.22, p = .82. A likelihood ratio test con-
firmed that the 3PSM adjusted model fit the data signifi-
cantly better than an unadjusted model, χ2(1) = 42.90, p 
< 0.0001. This null effect was also found when bias was 
adjusted for using the Precision-Effect Test (PET; Stanley, 
2008), g = -0.02, CI [-0.26, 0.22]), t(158) = 0.88, p = .88. This 
test takes the intercept of the Egger regression when the 
standard error is zero as the best estimate of the true effect 
(illustrated by the red line in Figure 1A). These are striking 
results which question the existence of a robust benefit of 
testing on new learning. 

One important factor in this assessment of publication 
bias, however, is the large amount of between-study het-
erogeneity observed in Chan et al.'s (2018) meta-analysis, 
which could impact the accuracy of publication bias assess-
ment (Peters et al., 2010; Terrin et al., 2003). As we show 
next, when the TPNL effect is separated based on testing 
procedure, the bias-adjusted effect size estimates are very 
different. 

Heterogeneity in Chan et al.'s (2018) meta-
analysis 

As discussed, the Chan et al. (2018) meta-analysis found 
substantial between-study heterogeneity. Although this is 
expected when data are pooled from studies using different 
experimental designs, materials, and participant samples, 
such large heterogeneity questions the validity of pooling 
these effects. Rather than quantifying a single true effect, 
the Chan et al. (2018) meta-analysis may have combined 
several distinct true effects. 

The most obvious pooling that could have resulted in 
the observed heterogeneity was across the experimental de-
signs noted by Chan et al. (2018): the standard, pre-testing, 
and interleaved designs. Full details are given in Chan et 
al., but in brief the differences are as follows. In standard 
designs, which include the Szpunar et al. (2013) study de-
scribed above, participants study an initial set of materials 
and then complete an interval task, usually either a test or 
restudy. After this, they study a new set of materials and 
then complete a test. New learning is classified as learning 

of the new set of materials, and the second test is the crite-
rial assessment. In a pre-testing design, participants do not 
study a set of materials first, but rather complete an initial 
test and are then presented with the materials, after which 
they complete a second test for memory of those materi-
als. In that respect, pre-testing does not require episodic re-
trieval and does not feature multiple lists of materials. In 
an interleaved design, rather than new materials being pre-
sented separately to original materials, the new and original 
materials are interleaved. For example, in Davis and Chan’s 
(2015) experiments, participants first studied a face-name 
pair, and then either restudied the pair, or were tested. In 
the testing condition, participants were presented with the 
face and retrieved the name. Crucially, directly after the in-
terval task, participants were provided an additional piece 
of information, a profession which was presented alongside 
the original face-name pair (i.e., participants studied a face-
name-profession triad). After this, participants completed a 
criterial test where they were presented the face, but now 
had to retrieve the profession. As we will discuss below, it is 
likely that the effects produced by these designs are under-
pinned by different cognitive mechanisms. 

One important distinction between the current analyses 
and those performed by Chan et al. (2018) is our treatment 
of the interleaved study design. In the Chan et al. meta-
analytic sample, some pre-testing and interleaved studies 
were confounded. In their coding scheme pre-testing stud-
ies in which new learning was provided as feedback were 
coded as also having used an interleaved design (for exam-
ple, Knight et al., 2012; Kornell et al., 2009; Vaughn et al., 
2016). Although this is defensible as the initial test and new 
learning are intermixed, this coding obscures a meaningful 
distinction as these pre-testing studies do not include orig-
inal learning. That is, the pre-test in such cases does not re-
quire episodic retrieval of previous content. 

To illustrate, a pre-testing paradigm with new learning 
provided as feedback involves participants guessing the an-
swer to a question and then being provided the correct an-
swer directly after the guess. Here, feedback is new learn-
ing. This can be compared to pre-testing paradigms without 
feedback where participants guess the answer to all ques-
tions, do not receive feedback, and are then provided the 
new materials. This subsequent block is new learning. Al-
though these are distinctions between the two paradigms, 
neither contains an original learning phase. In contrast, 
other studies, such as those of Davis and Chan (2015) and 
Davis et al. (2017), interleaved original learning and new 
learning. Participants studied materials, such as a face-
name pair, attempted to retrieve part of the material, for 
example face-?, and then attempted to learn new material, 
e.g., face-occupation. This distinction is important because 
research has highlighted that interleaving may carry a neg-
ative effect on new learning if participants preferentially 
encode the original materials over the new materials. 

In the Chan et al. (2018) meta-analysis, the interleaved 
subgroup contained pre-testing studies which used feed-
back as new learning. In the current analysis, our inter-
leaved subgroup did not. In total, the following 22 studies 
were removed from the interleaved subgroup: Grimaldi and 
Karpicke (2012) Experiments 1 and 2, Hays, Kornell, and 
Bjork (2013) Experiments 1 and 2, Knight, Ball, Brewer, De-
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Table 1. Effect size estimate (Hedges’ g) from reanalyses of Chan et al.’s (2018) dataset with publication bias 
adjustments, 95% confidence interval in brackets. Non-significant effects are those where 0.00 is included in the 
confidence interval. 

Design Random effects estimate Publication bias adjustment 3PSM Publication bias adjustment PET 

Overall 0.44 [0.35, 0.53] 0.02 [-0.14, 0.18] -0.02 [-0.26, 0.22] 

Standard 0.75 [0.66, 0.85] 0.52 [0.34, 0.71] -0.08 [-0.30, 0.14] 

Pre-test 0.34 [0.19, 0.50]* N/A** N/A** 

Interleaved -0.56 [-0.73, -0.40]* -0.55 [-0.75, -0.35] 0.02 [-0.30, 0.33] 

*The random effects meta-analysis estimates are different from those reported by Chan et al. due to differences in coding. Their estimate for the pre-test design was 0.35 [0.20, 0.50] 
and for the interleaved design was -0.02 [-0.16, 0.13]. 
** Symmetric funnel plot and non-significant Egger’s test indicated that publication bias was unlikely in the pre-testing designs. 

Witt, and Marsh (2012) Experiments 1a and 1b, Kornell, 
Hays, and Bjork (2009) Experiments 1-6, Potts and Shanks 
(2014) Experiments 1-3, Potts (2013) Experiments 4, 6-8, 
and Vaughn, Hausman, and Kornell (2016) Experiments 1-4. 
This recoding permitted us to calculate a separate meta-
analytic effect size estimate for interleaved designs. As we 
show below, Chan et al.'s treatment of interleaving as a vari-
able rather than as a category led them to conclude that its 
overall meta-analytic effect was very close to zero. In con-
trast, we show that interleaved designs yield a strong neg-
ative effect size, though with clear evidence of publication 
bias. 

Within their meta-analysis Chan et al. (2018) noted that 
the standard, pre-test and interleaved designs produce rad-
ically different effects. We argue that rather than pooling 
these studies, analysis favours subcategorization treating 
each as a different pool of studies and as three distinct ef-
fects. This has the additional advantage of reducing be-
tween-study heterogeneity, allowing a more accurate as-
sessment of publication bias. As will be shown, these effects 
are: (1) a medium-sized TPNL effect assessed using stan-
dard designs but with clear evidence of publication bias; 
(2) a small but reliable pre-testing effect, assessed using a 
pre-testing design (referred to by Chan et al. as a single-
list blocked and interleaved design); and (3) a negative in-
terleaved-testing effect, measured through interleaved de-
signs, again with evidence of publication bias. 

Extension of Chen et al.'s analyses 

We conducted a replication and extension of the Chan 
et al.'s (2018) meta-analysis treating the studies using stan-
dard, pre-testing, and interleaved designs as distinct, using 
the same random-effects model and parameters described 
above. The original and corrected estimates are reported in 
Table 1. The funnel plots demonstrating the differences be-
tween the TPNL, pre-testing, and interleaving effects are 
depicted in Figure 1, panels B-D. Our analyses reproduced 
the effect sizes described in the Chan et al. meta-analysis 
for the standard and pre-testing paradigms. The interleaved 
sample used in our analysis was different to that used by 
Chan et al., as were our results. 

TPNL in standard designs. When treated as an indepen-
dent effect, testing robustly potentiated new learning rela-
tive to comparison tasks in standard designs, k = 84, t(83) = 

15.53, p < .0001, I2 = 70.5%. Given the large heterogeneity, 
we conducted an influence analysis and inspected a Baujat 
plot which did not highlight any significant outliers con-
tributing disproportionately to between-study heterogene-
ity. Importantly, Egger’s test found a very strong relation-
ship between effect size and standard error, B = 3.25, t(83) 
= 6.70, p < .0001. The 3PSM adjusted estimate was signif-
icantly smaller, but still robust and reliable (see Figure 1, 
panel B), and a likelihood ratio test confirmed that the ad-
justed model fit the data better than the unadjusted model, 
χ2(1) = 15.85, p < 0.001. In contrast the PET adjusted esti-
mate as shown by the intercept of the red line was not only 
much smaller, but was also not significantly different from 
zero, t(83) = 0.71, p = .48. These results indicate notewor-
thy uncertainty surrounding the magnitude and existence 
of the standard TPNL effect. 

Pre-testing designs. Experiments employing pre-testing 
designs (k = 45) only provided a small-to-medium benefit 
to learning, t(44) = 4.47, p < .0001, I2 = 87.8%. However Eg-
ger’s test was not significant, consistent with a symmet-
ric funnel plot (see Figure 1, panel C) and negligible pub-
lication bias: B = 1.28, t(44) = -0.90, p = .37. An influence 
analysis and inspection of Baujat plot highlighted six out-
liers disproportionately contributing to the overall effect. 
When these were excluded from the analysis (k = 39), the 
effect size estimate was larger and heterogeneity was sub-
stantially reduced, g = 0.44, CI [0.32, 0.55]), t(38) = 7.50, p < 
.0001, I2 = 73.2%. An inspection of those studies, however, 
reveals that rather than being outliers, they are indicative of 
a variable that affects the pre-testing effect but not TPNL: 
The presence of a lag between the initial test and new learn-
ing completely eliminates the pre-testing effect but has lit-
tle impact on TPNL. This is discussed later. 

Interleaved designs. There were few studies using an in-
terleaved design (k = 22). Although the overall effect size 
suggests that interleaving produces a medium-sized im-
pairment to new learning, g = -0.56, CI [-0.73, -0.40]), t(21) 
= -7.07, p < .0001, with relatively little between-study het-
erogeneity (I2 = 49.0%), Egger’s test was significant, B = 
-2.42, t(21) = -3.46, p = .003, suggesting publication bias 
(see panel D, Figure 1). The 3PSM adjusted estimate was 
however similar in magnitude (g = -0.55, CI[-0.35, -0.75], Z 
= -5.45, p = .008), and the adjusted fit was not significantly 
better than that of the unadjusted model, X2(1) = 0.02, p = 
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0.90. Once again, however, the PET adjusted estimate was 
not only significantly smaller in magnitude, but was also 
not different from zero, (g = 0.02, CI [-0.30, 0.33]), t(21) = 
0.124, p = .90). As with the standard design, this analysis of 
publication bias calls into question the reliability of the un-
corrected meta-analytic effect. 

Summary. Chan et al. concluded that TPNL, pooled 
across all designs, is a robust phenomenon, and reached a 
similar conclusion about studies employing standard and 
pre-testing designs. They concluded that interleaving de-
signs yielded no overall effect. Our extensions of their 
analysis, which include corrections for publication bias, 
point to a very different set of conclusions for at least two 
of these four cases: (1) There is no overall effect when all 
designs are pooled; both the 3PSM and PET methods yield 
corrected estimates that are not significantly different from 
zero; (2) Experiments employing the standard design fall 
short of providing convincing evidence of TPNL; although 
the corrected estimate is significantly greater than zero 
with one correction method (3PSM), it is not with the other 
(PET); (3) We concur with Chan et al.'s conclusions regard-
ing pre-testing designs: these yield a small but reliable ef-
fect; (4) Finally, we find a medium-sized negative effect for 
interleaved designs, but this effect must be regarded as only 
weakly supported by the available evidence: it survives ap-
plication of one correction method (3PSM) but not the other 
(PET). It is important to note that publication bias adjust-
ment is complex, and estimates derived from the 3PSM and 
PET methods should be interpreted cautiously. Although 
Carter et al.'s (2019) application indicates that both are ap-
propriate adjustment methods, it is notable that they pro-
duced dramatically different estimates for the standard and 
interleaved designs. Rather than treat these estimates as 
robust metrics of the true effect size, we argue that it is 
more appropriate to interpret them as markers of signifi-
cant uncertainty regarding the magnitude and existence of 
the effects described in the Chan et al. (2018) meta-analy-
sis. 

The source of funnel plot asymmetry is also complex. 
Although usually associated with publication bias (Begg & 
Berlin, 1988; Light & Pillemer, 1984), there are alternative 
reasons why a funnel plot may be asymmetric (Egger et al., 
1997; Sterne et al., 2000). For example, if the true effects 
are heterogeneous but researchers engage in pilot work that 
provides an estimate of the likely effect size, then testing a 
smaller sample when the anticipated effect is larger would 
be sound experimental practice. Within the Chan et al. 
(2018) dataset, there is a small suggestion that pilot work 
might have informed effect size estimates and sample size 
planning: in a random selection of 20 studies, 5 mentioned 
pilot work. But even if this pilot work provided effect size 
information that informed sample size planning (which is 
explicitly stated in none of these cases), the majority of 
studies offer no evidence of sample size planning. 

Evaluating Theoretical Accounts 

Should effects from standard, pre-testing, and interleaved 
designs be combined? As previously mentioned, we believe 
that the standard, pre-testing and interleaved effects re-
cruit partially distinct cognitive mechanisms and that pool-

ing these effects is unwarranted. Chan et al. (2018) did note 
that the three designs produced significantly different ef-
fect sizes, and that the effects were also differentially im-
pacted by moderators. However, they did not adequately 
question whether this was indicative of a contrast in core 
mechanisms and grouped the impact of moderators in an 
overall evaluation of mechanisms for an aggregated “TPNL” 
effect. This is important as we have demonstrated that the 
aggregated effect is not reliable when publication bias is 
accounted for, undermining any discussion on potential 
mechanisms. 

To demonstrate this point, we replicated the theoretical 
evaluation conducted by Chan et al. (2018), which evaluated 
the aggregated effect, but applied the analysis separately to 
the standard, pre-testing and interleaved samples. Full de-
tails are provided in their article, but in short, Chan et al. 
coded each study on the number of characteristics that an 
account predicts would boost the aggregated TPNL effect, 
and meta-regressed observed effect sizes on these charac-
teristics. This permits an assessment of how accurately each 
account predicted differences in effect sizes. For example, 
Chan et al. argued that integration theories predict that in-
terleaving, using a comparison task that is not restudy, us-
ing related materials, using an initial test format that is ei-
ther episodic retrieval or pre-testing, and higher initial test 
performance, are all methodological characteristics that 
should boost TPNL. If a study had five of these characteris-
tics, it would score 5 on the integration theory score. In con-
trast, if it had none of these characteristics, it would score 0. 
Integration theories reason that higher scores predict larger 
TPNL effects as they have more of these positive charac-
teristics. As Chan et al. evaluated four theories of TPNL, 
four scores were computed, one for each: resource theories, 
metacognitive theories, context theories, and integration 
theories. The conclusion drawn from their meta-regression 
was: 

In sum, according to the qualitative assessment, both 
resource theories and integration theories received 
considerable support from our data. Results from the 
metaregression analysis and dominance analysis 
largely corroborated this conclusion, but they also es-
tablished that integration theories provided better pre-
dictions for the data than did all other theories, includ-
ing resource theories. (p. 1133) 

This conclusion, we argue, is unwarranted. The numeric 
data of our reanalysis are presented in Table 2. To sum-
marise, when looking at the pooled effect, we reproduced 
their results, and the order of the regression coefficients 
was Integration > Resource > Context > Metacognitive. 
However, the patterns were very different for the subgroups. 
In the standard designs, the order is Resource > Integration 
> Metacognitive = Context. In the pre-testing designs it is 
Resource > Metacognitive > Integration > Context, and in 
the interleaved designs the order is Integration > Metacog-
nitive > Resource = Context. The conclusion that both in-
tegration and resource theories are better supported by the 
data is only partially true for the pre-testing dataset, but is 
not for either standard or interleaved datasets. 

We do not draw any major theoretical conclusions about 
the mechanisms for the different effects from this ordering. 
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Table 2. Results of the Meta-Regression Analysis 

Design and Theory B 95% CI t p-value R2 

Overall      

0.35 [0.27, 0.43] 8.37 <.0001 0.38 

0.15 [0.04, 0.25] 2.77 0.01 0.06 

0.22 [0.06, 0.38] 2.73 0.01 0.05 

0.37 [0.29, 0.45] 8.96 <.0001 0.41 

Standard 

0.10 [-0.02, 0.22] 1.72 0.09 0.04 

-0.01 [-0.16, 0.14] -0.13 0.90 0.00 

-0.01 [-0.16, 0.13] -0.19 0.85 0.00 

0.04 [-0.11, 0.18] 0.51 0.61 0.00 

Pre-test 

0.33 [0.11, 0.54] 3.11 0.00 0.19 

0.26 [-0.14, 0.66] 1.30 0.20 0.02 

0.11 [-0.16, 0.38] 0.81 0.42 0.00 

0.20 [-0.04, 0.45] 1.69 0.10 0.05 

Interleaved 

0.00 [-0.52, 0.52] 0.01 0.99 0.00 

-0.07 [-0.27, 0.14] -0.70 0.49 0.05 

0.00 [-0.52, 0.52] -0.01 0.99 0.00 

0.13 [-0.35, 0.60] 0.55 0.59 0.00 

Resource theories 

Metacognitive theories 

Context theories 

Integration theories 

Resource theories 

Metacognitive theories 

Context theories 

Integration theories 

Resource theories 

Metacognitive theories 

Context theories 

Integration theories 

Resource theories 

Metacognitive theories 

Context theories 

Integration theories 

It is likely the meta-regression for each subgroup is un-
derpowered1. However, our analysis demonstrates that any 
strong theoretical conclusions regarding what mechanisms 
govern TPNL are unjustified. The support for the different 
accounts is substantially different across the subgroups. 
This is particularly evident in the different ordering of the 
regression weights of the moderator variables for Resource 
and Integration theories across the standard and inter-
leaved designs. 

Concluding Remark 

In conducting a meta-analysis, how studies are pooled, 
assessing whether there is too much heterogeneity for valid 
aggregated analysis and interpretation, and testing (or cor-
recting) for publication bias are important factors affecting 
the inferences that can be drawn. On all these counts, we 
argue that the data from Chan et al.'s (2018) meta-analysis 
suggest that pooling was inappropriate, resulting in the 
combination of three very different effects, that the hetero-
geneity made it impossible to quantify an overall effect, and 
that there was clear evidence of publication bias that was 
not adequately addressed. As such, we propose that TPNL is 
best treated as three distinct effects which are measurable 
via the impact of previous retrieval practice on new learn-

ing in standard designs, the impact of guessing and seman-
tic generation on learning in pre-testing designs, and the 
impairment of new learning following intermixing original 
and new learning in interleaved designs. 

The results from the current analysis also question the 
reliability of the TPNL effects in standard and interleaved 
designs. In both datasets there was evidence of significant 
publication bias. It would be inappropriate to infer that 
these effects do not exist, and that is certainly not our con-
clusion. Correcting for bias in meta-analysis is a complex is-
sue. Although we employed Carter et al.'s (2019) state-of-
the-art method for selecting suitable correction methods, 
the different methods employed in our analyses reached 
different conclusions about the true underlying effect: for 
both the standard and interleaved designs, 3PSM suggested 
that there is a residual true effect after correction for pub-
lication bias, but PET did not. One possible solution to this 
issue is the use of pre-registered replication studies. Pre-
registration would permit TPNL to be precisely estimated in 
the absence of publication bias. 

As a separate issue, the validity of this meta-regression analysis, compared to more conventional theory-testing approaches (Farrell & 
Lewandowsky, 2018), is unknown. This method, in which studies are coded in an all-or-none way according to features that a given the-
ory regards as important, has to the best of our knowledge never been evaluated in simulation studies using data generated by different 
theories, to ascertain whether it permits the true theory to be recovered. 

1 
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