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METHODOLOGICAL STUDIES

The Internal Validity of the School-Level Comparative
Interrupted Time Series Design: Evidence From Four New
Within-Study Comparisons

Sam Simsa , Jake Andersa and Laura Ziegera

Centre for Education Policy and Equalising Opportunities, UCL, London, UK

ABSTRACT
Comparative interrupted time series (CITS) designs evaluate impact
by modeling the relative deviation from trends among a treatment
and comparison group after an intervention. The broad applicability
of the design means it is widely used in education research. Like all
non-experimental evaluation methods however, the internal validity
of a given CITS evaluation depends on assumptions that cannot be
directly verified. We provide an empirical test of the internal validity
of CITS by conducting four within-study comparisons of school-level
interventions previously evaluated using randomized controlled trials.
Our estimate of bias across these four studies is 0.03 school-level (or
0.01 pupil-level) standard deviations. The results suggest well-con-
ducted CITS evaluations of similar school-level education interven-
tions are likely to display limited bias.
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Introduction

In education, many interventions of interest to school leaders and policymakers are
implemented at the school-level, without random allocation. Consequently, researchers
are required to adopt a non-experimental evaluation method. Comparative interrupted
time series (CITS) (Cook & Campbell, 1979) methods constitute one such design, prem-
ised on projecting outcomes from the pre- into the post-treatment period. Perhaps the
best-known variant of the CITS is the conventional two-period difference-in-difference
(Card & Krueger, 1993), in which the change in the outcome in the comparison group
is used to project the pretreatment level of the outcome in the treatment group into the
post-treatment period. Under the parallel trends assumption, this acts as a proxy for the
untreated outcomes among the treated units. However, the family of CITS methods also
includes variants that focus on quantifying the relative deviation from trends, rather
than levels, of the outcome. These alternative approaches are valuable in settings where
selection into treatment occurs based on pretreatment values of the outcome variable,
rendering the common trends assumption implausible (St. Clair & Cook, 2015). The
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deviation from pretreatment trends in the comparison group is then used to adjust the
projection of the pretreatment trend in the treatment group into the post-treatment
period, providing the necessary proxy for untreated outcomes among the treated units.

The various CITS specifications were first deployed to evaluate a school improvement
programme (Bloom et al., 2001). Since then, CITS have been used in evaluations of No
Child Left Behind (Dee et al., 2013; Grissom et al., 2014; Lee & Reeves, 2012; Wong
et al., 2015), curricular reforms (Bell et al., 2016; Jacob et al., 2017), school wraparound
programmes (Gandhi et al., 2018), and school turnaround programmes (Henry et al.,
2020; Strunk et al., 2016). Indeed, the approach is in many ways well-suited to educa-
tion settings. Conducting a CITS evaluation requires a well-measured outcome variable
recorded consistently across multiple periods. In many countries, high-stakes school
examination results are recorded and made publicly available for each academic year,
meaning the data requirements for CITS are often easy to fulfill for education research-
ers. Moreover, CITS’ emphasis on modeling and then projecting the outcome variable,
rather than focusing on adjusting for or matching on covariates, means that the method
can often be implemented without access to sensitive individual-level data on pupil
characteristics (Jacob et al., 2014). In addition, the key identifying assumption of CITS-
that unobserved time-varying confounders are shared between the treatment and com-
parison groups-are often more plausible in education, where schools are nested within
common regional and national administrative units.

Nevertheless, any violation of the CITS identifying assumptions could undermine
internal validity, yielding biased impact estimates. Since the identifying assumption
relates to a counterfactual, it cannot be directly empirically tested in any given evalu-
ation. However, an alternative method for assessing bias is available in the form of
within-study comparisons (WSC). These involve comparing the impact estimates from a
benchmark study—often a randomized controlled trial (RCT)—with those of an alterna-
tive evaluation of the same intervention using the same outcomes, but employing a sep-
arate, non-experimental comparison group (LaLonde, 1986; Wong et al., 2018). Thus,
between-study comparisons quantify differences in effect size estimates for a given inter-
vention. RCTs in education tend to provide noisy estimates of the true impact (Lortie-
Forgues & Inglis, 2019; Spybrook et al., 2016) which means that comparing the effect
sizes from a single within-study comparison provides a noisy estimate of bias. However,
the accumulation of multiple WSCs for a given non-experimental design does allow bias
to be estimated across WSCs (Glazerman et al., 2003).

Within-Study Comparisons of the CITS Design

Wong et al. (2018) identified twenty WSCs of interrupted time series (ITS) or CITS
designs with experimental benchmarks across environmental policy (Ferraro & Miranda,
2014); epidemiology (Fretheim et al., 2013); health (Schneeweiss et al., 2004); welfare-to-
work (Bloom et al., 2002) and immigration (McKenzie et al., 2010). Coopersmith et al.
(2022) provide the most recent meta-analytic summary, identifying 12 unique CITS
WSCs. The average deviation of the CITS estimates from the benchmark estimates was
0.03 SD. At the level of individual WSCs, all but one of the twelve deviated from the
benchmark estimate by less than 0.1 SD.
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Within education, we identified six WSCs that contrasted CITS impact estimates with
those from RCTs. St. Clair et al. (2016) report WSCs from three whole-school interven-
tions: two in Indiana and one in Florida. In the two trials in which the pre-trends were
stable and thus easier to model, the non-experimental estimates came within 0.02
school-level SD of the experimental benchmark. In the third trial, where the pre-trends
were highly unstable and thus harder to model, the non-experimental estimates deviated
from the experimental estimates substantially. This highlights the importance of the sta-
bility of pre-trends for the validity of the CITS design (Kim & Steiner, 2016). Hallberg
et al. (2020) report WSCs from a further three whole-school interventions—a college
readiness programme, an early literacy programme, and an online mathematics pro-
gramme—and find an average absolute bias of between 0.05 and 0.08 school-level SD in
the immediate post-intervention period. However, the bias was found to be strongly
influenced by the specific modeling approach adopted and the authors recommend
deciding which of the specific CITS specifications to adopt based on careful inspection
of the pre-trends.

Aims and Scope

The current paper aims to substantially increase the number of such WSCs in the edu-
cation literature by conducting four additional WSCs of CITS. As previously discussed,
contrasts of impact estimates from single WSCs provide limited information about bias
because the typical RCT impact estimate in education is noisy. Accumulating four new
WSCs is therefore particularly valuable in that it allows estimates of bias across studies,
netting out the noise from the individual RCTs. By synthesizing the results across four
new WSCs, we aim to contribute to the empirical evidence on the validity of a widely
used evaluation design in the education literature. The next section describes the set of
interventions that we reevaluate and the school-level data that we employ in this ana-
lysis. The ‘Methods’ section then describes our approach to conducting each of the
CITS evaluations and the techniques by which these are subsequently synthesized. The
‘Results’ section presents our findings for each of the individual WSCs, followed by the
within-study comparisons, and the ‘Discussion’ section concludes by reflecting on the
limitations and implications of these findings.

Sample

Interventions

We set out to reevaluate interventions previously tested using RCTs by the Education
Endowment Foundation (EEF). The EEF is a large research funder in England, which
typically commissions RCTs of interventions judged to have previously shown evidence
of promise. EEF was established in 2010 and has since commissioned over 100 RCTs,
the results of which are routinely published on their website (Dawson et al., 2018).
These interventions can be reevaluated using school-level CITS if five conditions hold:
(1) the intervention was originally randomized at school-level, (2) the trial used all
pupils in the treated cohorts’ results in standardized national tests at age 11 or age 16 as
one of the outcome measures, (3) the trial is complete and results have been reported,
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(4) the time series necessary to conduct the CITS does not include discontinuities in
how the outcome variables were recorded, and (5) it is possible to calculate effect sizes
from the original RCT that are comparable to those generated by our CITS.

The EEF supplied us with a list of all of their trials/interventions that met criteria 1–3
as of December 2019, which amounted to 19 in total.1 Among these, eight did not meet
criterion 4) due to the relevant section of time series straddling major reforms of either
age-11 examinations (implemented in 2015/16) or age 16 examinations (implemented in
2016/17).2 Similarly, three interventions had to be dropped because the relevant time
series included a year in which we had missing data due to e.g., a the boycott of the
age-11 examinations.3 A further three interventions had to be dropped because the ori-
ginal evaluation report did not include the information necessary to calculate an effect
size measure that would be comparable with our school-level CITS evaluations.4 Finally,
one intervention had to be dropped because of discrepancies in the number of observa-
tions in the EEF data archive and the published evaluation report, which could not be
resolved by the EEF’s data scientists.

This left four interventions: two in primary schools and two in secondary schools
(see Table 1). The interventions are diverse in nature, ranging from teacher professional
development (PD) to the use of educational technology to adapt instruction. All four tri-
als measured outcomes for all pupils in the relevant cohorts in participating schools and
conducted analysis on an intention-to-treat basis. Attrition at both the school and pupil
level was below the What Works Clearinghouse conservative standards across all four
trials (What Works Clearinghouse, 2017). The estimated effect sizes reported in the ori-
ginal evaluation reports range from 0.00–0.26 school-level standard deviations (SD) or
0.00–0.09 pupil-level SD. None of these estimates were statistically significant at conven-
tional levels, which is perhaps unsurprising given the lack of statistical power in many
educational trials (Lortie-Forgues & Inglis, 2019; Spybrook et al., 2016). In line with
EEF analysis guidelines, all four trials used pupil prior achievement as the only covariate
(besides strata and cluster variables) in their main analytical models.

Data

We utilize school-level data derived from the UK Department for Education’s National
Pupil Database, an administrative census containing information on all publicly funded
schools in England since 1991/92.5 Each school in the data has a unique identifier,
which allows them to be linked across years. However, a large proportion of schools
have either converted to academy status or undergone other changes that cause their
identifier to change between years. Accordingly, we utilize an additional database of

1EEF originally sent us 21 interventions but two of these (Affordable Maths Tuition and Engage in Education) did not
use school-level outcomes.
2Changing Mindsets (regrant), Grammar for Writing (regrant), Lesson Study, Philosophy for Children, Research Learning
Communities, Scratch Maths, Affordable Tuition (regrant) and Embedding Formative Assessment.
3Philosophy for Children; Thinking, Doing, Talking Science; Chess in Primary Schools.
4Children’s University, Pupil Motivation Financial, Pupil Motivation Non-financial. The first of these did not report any
effect size measure. The latter two did report an effect size but the mean difference was divided by the population-
level standard deviation, which not included in the report.
5Publicly accessible school-level data can be found here: https://www.compare-school-performance.service.gov.uk/
download-data
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consistent school identifiers to ensure that we maintain the integrity of the time series
when linking schools across waves. Since these school-level data are technically averages
of repeated cross-sections of pupils, it is important that we control for compositional
changes (Hallberg et al., 2018; Pohl et al., 2009). We do this using the following covari-
ates: the percentage of pupils that are eligible for free school meals (FSM), the percent-
age of pupils with English as an additional language (EAL), percentage of pupils with
special educational needs (SEN), school size (number of pupils) and school type.6

Summary statistics are available in Table 2.
For both of our primary school interventions, the original RCTs used as their out-

come measure pupils’ scores in SATs (Statutory Attainment Tests), which are standar-
dized, high-stakes tests taken by all pupils in state schools in England at age 11. For
both of our secondary interventions, the original RCTs used as their outcome measure
pupils’ scores in their math GCSE (General Certificate of Secondary Education), which
are standardized, high-stakes tests taken by all pupils in state schools in England at age
16. In line with this, we use school average math SATs scores (primary) and school
average math GCSE score (secondary) as our outcome measure in the within-study
comparisons. For each of our four interventions, we then create a time-series of the
relevant outcome measure, spanning the four years prior to the intervention being

Table 2. Characteristics of the RCT treatment group, RCT control group, and CITS comparison group
averaged across the four pretreatment years.

Intervention Covariate RCT treat RCT cont CITS comp
Test of difference on RCT

cont and CITS comp

– # Schools 12 12 4169 –
FLIP %FSM 36.1 40.5 23.9 ��

%EAL 31.2 41.7 9.8 ��
%SEN 9.9 9.5 10.2 –

Prior ach. 14.7 14.4 15.3 ��
– # Schools 48 45 7228 –
LERS %FSM 58.3 59.2 28.9 ��

%EAL 9.8 18.8 17.7 –
%SEN 16.2 16.4 10.6 ��

Prior ach. 13.7 13.7 15.2 ��
– # Schools 20 19 2269 –
RISE %FSM 23.6 27.6 27.9 –

%EAL 4.9 15.9 14.4 –
%SEN 6.9 6.1 7.0 –
%PLO 14.4 16.0 15.7 –

Prior ach. 27.6 27.3 27.4 –
– # Schools 41 40 2877 –
TEOB %FSM 33.3 27.5 23.5 �

%EAL 16.3 11.6 12.8 –
%SEN 9.7 9.0 8.5 –
%PLO 19.3 19.0 16.0 �

Prior ach. 26.6 26.7 27.3 �
See Table 1 for intervention acronyms. FSM: free school meals; EAL: English as an additional language; SEN: special edu-
cational needs; Prior Ach: prior achievement; For the primary school interventions (FLIP and LERS) prior achievement is
the average Key Stage 1 (age 7) SATs score of the cohort. For the secondary school interventions (RISE and TEOB) prior
achievement is the average Key Stage 2 (age 11) SATs score. PLO: pupils with low prior attainment at end of KS2;
Variables in brackets: information not available for all years (not included in CITS modeling and conditional plots).��p< 0.01. �p< 0.05.

6State-funded schools in England operate under a range of legal frameworks (see Eyles & Machin, 2019). We code the
school type variables as having five categories: academy (including free schools and city technology colleges),
community, foundation, voluntary aided or voluntary controlled.
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introduced (t-4, t-3, t-2 and t-1) and a single period after the intervention (t þ 1), which
is always the same year in which the original RCT estimated the impact.7 We also utilize
prior achievement measures: end of Key Stage 1 (age 7) SATs math scores for the pri-
mary school interventions, and end of Key Stage 2 (age 11) math SATs scores
for secondary.

Methods

Models for the within-Study Comparisons

The conventional two-period difference-in-difference model (also referred to as the
“baseline mean” model) can be written as:

Mathssy ¼ b0 þ b1Treats þ b2Posty þ b3Treats�Posty þ b4Xsy þ us þ esy

Where Mathssy is the average math score in school s in year y; Treats is a binary vari-
able indicating whether school s is in the treatment group or not; Posty is a binary vari-
able capturing whether the treatment is “on” or “off” in year y (our models only include
one post-treatment period); Xsy is a vector of school-level covariates (FSM, EAL, SEN
and cohort prior achievement); us is a school-specific random error term and esy is a
year-specific random error term. b1 captures the difference in the level of the outcome
variables between the treatment and comparison groups in the pretreatment period and
b2 captures the level change between the pre- and post-treatment periods in the com-
parison group. b3 is the coefficient of interest since it captures the level change between
the pre- and post-treatment period in the treatment group, over and above that in the
comparison group. The key threats to the validity of the baseline mean model in our
setting are changes in the composition of students attending the schools from one year
to the next in a way that is related to the outcome, or a lack of common trends in treat-
ment and comparison schools (Cunningham, 2020).

In the absence of common trends, the baseline-linear trends model (Bloom, 2003)
can be adopted instead:

Mathssy ¼ b0 þ b1Yeary þ b2Treats þ b3Yeary�Treats þ b4Posty þ b5Posty�Treats þ b6Xsy þ us þ esy

Where Yeary is a variable capturing the periods t-4, … , t þ 1 and all other variables
are defined as in the previous model. b0 and b2 now capture the intercepts for the
comparison and treatment groups, respectively. b1 now captures the gradient of
the comparison group time series in the pretreatment period, b1 þ b3 does the same for
the treatment group, and b4 captures the deviation from trend in the post treatment
period for the comparison group. b5 is now the coefficient of interest since it captures
the deviation from trend in the treatment group, over and above that in the comparison
group. The key threats to the validity of the baseline linear-trends model in our setting
are compositional changes, time-varying confounders that cause the treatment group to
deviate from trend in the post-treatment period differently to those in the comparison
group, or misspecification of the model capturing the pretreatment trends such that

7We utilise just one period of post-treatment data in order to minimise the number of time series straddling a change
in the way that outcomes are recorded and because previous empirical work suggest that adding more post-treatment
periods can increase bias (Hallberg et al., 2020).
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they would be incorrectly projected into the post-treatment period (Hallberg et al.,
2018; St. Clair & Cook, 2015).

Misspecification of the model due to non-linear pretreatment trends showing a single
turning point (quadratic functional form) can be accommodated through the addition
of quadratic year terms in the baseline nonlinear-trends model:

Mathssy ¼ b0 þ b1Yeary þ b2Year
2
y þ b3Treats þ b4Years�Treats þ b5Year

2
y�Treats þ b6Posty

þ b7Posty�Treats þ b8Xsy þ us þ esy

In this model, b1 and b2 capture the linear and quadratic components of the pre-
treatment trends in the comparison group and b4 and b5 captures the linear and quad-
ratic components of the way in which the pretreatment trend in the treatment group
deviates from that of the comparison group. b7 is the coefficient of interest, since it cap-
tures the deviation from trend in the treatment group, over and above that in the com-
parison group.

The choice between the various CITS specifications should be based on the functional
form of the pretreatment trends (St. Clair et al., 2016) and it is therefore common prac-
tice for CITS papers to begin by graphing the time series. Technically, however, the rele-
vant consideration is the pretreatment trends conditional on observables. We therefore
use the binsreg command (Cattaneo et al., 2019) to plot the mean values of the outcome
variables for each year and each intervention, conditional on the covariates. These can
be found in Appendix Figure A1. Based on visual inspection of these figures, we catego-
rized each of the interventions as showing either: parallel trends, in which case we ana-
lyzed it using the baseline mean model; non-parallel linear trends, in which case we
analyzed it using the linear baseline-trends model; non-parallel trends displaying one
turning point, in which case we analyzed it using the non-linear baseline-trend model
(Hallberg et al., 2020).

A final methodological decision relates to which schools to include in our comparison
time series. In line with guidance based on previous within-study comparisons, we chose
to use only geographically local schools, on the grounds that they are more likely be
similar in terms of unobservable characteristics (Bifulco, 2012; Cook et al., 2008;
Hallberg et al., 2016; Wong et al., 2017). More specifically, for each intervention we
include in our comparison group all state-funded schools in the same phase (primary/
secondary) in regions of England that contain at least one treatment school.8

Comparisons of the characteristics of schools in the RCT treatment, RCT control and
CITS comparisons groups can be found in Table 2. Comparisons of the outcomes across
the same three groups, after conditioning on covariates, can be found in Figure A1 in
the appendix. Appendix Table A3 provides a summary of the design of all four within-
study comparisons.

Estimating Overall Bias

Once we have used the relevant models to estimate impact relative to this comparison
group, we are in a position to compare the CITS and RCT results. Within-study

8There are nine regions in England, each containing between three million and ten million people.
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comparisons generally compare both the impact estimates (in effect size units) and the
precisions or p values from the two evaluations. The latter often involves comparing the
p values of the benchmark (experimental) impact estimate and the p values of the com-
parison (non-experimental) study, which yields a simple binary metric for whether the
results of the two studies agree. We avoid this approach for two reasons. First, p values
have very different interpretations in experimental and observational research, calling
into questions their comparability (Berk, 2004; Rosenbaum, 2017). Second, the differ-
ence between one statistically significant impact estimate and another not statistically
significant impact estimate may not itself be statistically significant (Gelman &
Stern, 2006).

Instead, we focus exclusively on comparisons of the impact estimates expressed as the
standardized mean difference effect sizes, calculated by subtracting the mean math out-
come in the untreated schools (T¼ 0) from that in the treated schools (T¼ 1) and
dividing by the SD across both T¼ 0 and T¼ 1 schools pooled together. This is also
known as the standardized effect difference (Steiner & Wong, 2018). The school-level
data that we employ for our CITS evaluations leads us to employ the school (s) level SD
of the outcome measures in the denominator. Where effect sizes in the original RCT
reports were calculated using the pupil level SD, we recalculate these using the school-
level SD in order to ensure comparability (see Appendix Table A1 for details). Using
school-level SD is also consistent with existing CITS WSC, which makes our findings
comparable with the existing literature (Hallberg et al., 2020; St. Clair et al., 2016).
However, because most analysts are used to pupil-level effect sizes, which are much
smaller, we also report these wherever possible (Kraft, 2020).

Effect Size ¼ ðMathss, T¼1� Mathss, T¼0Þ
SDs, pooled

Summary Measures of Bias

Well-implemented RCTs provide an unbiased estimator for the causal impacts of inter-
ventions. In an individual RCT with finite sample size, however, there will be impreci-
sion due to sampling error or so-called “realized confounding” (Deaton & Cartwright,
2018). Indeed, in education, RCT impact estimates tend to be very imprecise—the mean
width of 95% confidence intervals in EEF trials, for example, is 0.34 pupil-level SD
(Lortie-Forgues & Inglis, 2019). For a given intervention i, differences in treatment

effect estimates between an RCT (dATT
RCT

i Þ and a CITS evaluation (dATT
CITS

i Þ can

therefore reflect either selection bias from the CITS ðhCITSi Þ or random sampling error

from the RCT (eRCTi ) or the CITS (eCITSi ), which have mean 0 and variance v :

dATT
RCT

i � dATT
CITS

i ¼ hCITSi þ eRCTi þ eCITSi

eRCTi � Nð0, vRCTi Þ
eCITSi � Nð0, vCITSi Þ

Given that the ei are unknown, we need some method for isolating hCITSi : A simple

way to address this is to take the mean of dATT
RCT

i � dATT
CITS

i across interventions i.
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Since eRCTi and eCITSi are zero in expectation, across many WSC we would expect these
terms to fall out of the equation above. An important corollary of this is that we should

not consider dATT
RCT

i � dATT
CITS

i for a given intervention to provide an unbiased esti-

mate of hCITSi for that intervention. For a given intervention, we have no way of know-

ing how much of dATT
RCT

i � dATT
CITS

i is composed of bias hCITSi and how much is

composed of noise. We therefore only interpret the mean of dATT
RCT

i � dATT
CITS

i across
our four interventions as an estimate of bias.

A more sophisticated approach to combining estimates would use random effects
meta-analysis in order to account for both the noise from RCT estimate within each
WSC and the variation in selection bias across the WSCs (Chaplin et al., 2018;
Weidmann & Miratrix, 2021). However, to our knowledge, there is no established
method for ascertaining the variance surrounding the difference in effect size estimates
without access to micro-data. Our school-level data does not permit this. However, in
Appendix Table A4, we re-estimate the impact of the original RCTs using our school-
level data, bootstrap the standard errors for the effect size difference (Steiner & Wong,
2018), and then meta-analyse the results. This approach ignores the units (pupils) within
each cluster (school) and the resulting standard errors should therefore be considered as
an upper bound on the true standard errors. However, this allows us to provide an
approximate precision-weighted meta-analytic estimate of the bias across studies, as well
as providing information that may be useful for subsequent meta-analysts.

Results

Table 3 shows the results of the CITS regression models for each of the four interven-
tions, with all coefficients expressed in terms of school-level SD. The coefficient of

Table 3. Comparative interrupted time series regressions.
FLIP LERS RISE TEOB

Treat x post 0.13
(0.51)

�0.03
(0.10)

0.16�
(0.08)

0.22
(0.15)

Treat �0.05 0.06 �0.05 �0.35�
(0.50) (0.09) (0.09) (0.15)

Post 0.09�� 0.15�� �0.07�� 0.16��
(0.03) (0.01) (0.01) (0.02)

Year 0.70�� – – 0.43��
(0.02) – – (0.02)

Year x treat 0.13 – – 0.24
(0.44) – – (0.13)

Year2 –0.09�� – – –0.08��
(0.01) – – (0.01)

Year2 � treat –0.01 – – –0.04
(0.09) – – (0.02)

Marginal R2 0.442 0.338 0.707 0.738
Conditional R2 0.660 0.607 0.881 0.892
N 4,067 7,117 2,124 2,694
Parallel trends – � � –
Model type Baseline non-linear trend Baseline mean Baseline mean Baseline non-linear trend

Each column is a separate OLS regression. Coefficients and standard errors are expressed in school-level standard devia-
tions. Numbers in parentheses are standard errors.��p< 0.01. �p< 0.05.
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interest can be found in bold in the first row (Treat�Post), which shows the change in
the outcome in the treatment group in the post-treatment period, relative to that in the
comparison group. The LERS and RISE models use the baseline linear trends specifica-
tion. The FLIP and TEOB models use the non-linear baseline trends model, which also
include quadratic terms for year interacted with treatment status, which allows for
divergent non-linear trends in the treatment and comparison groups. The coefficients of
interest vary from �0.03 to þ 0.22 SD. It should be kept in mind that these coefficients
are expressed in terms of school-level SD, which are typically 1.5–3 times larger than
those expressed using pupil-level SD (Kraft, 2020). For transparency, we also report the
results for each intervention using all three CITS specifications in Table A2 in
the Appendix.

Our primary interest is in comparing the impact estimates from Table 3 with those
from prior RCT evaluations of the same interventions. Table 4 shows the results of these
four within-study comparisons. The effect size columns report the impact estimates
from the original RCT and new CITS evaluations and the final two columns shows the
RCT effect size minus the CITS effect size. The differences in effect sizes in the four
WSCs vary from 0.03 to 0.13 school-level SD (0–0.04 pupil-level SD) in absolute magni-
tude. The mean absolute difference is 0.07 school-level SD (0.02 pupil-level SD).

The two interventions that showed parallel trends in the pretreatment period (LERS
and RISE) showed the smallest absolute differences between the RCT and CITS impact
estimates: 0.03 school-level SD or � 0.01 pupil-level SD. By contrast, the interventions
showing non-linear, non-parallel trends (TEOB and FLIP) showed slightly larger abso-
lute differences: 0.07–0.13 school-level SD or 0.03–0.04 pupil-level SD. While all of these
results rely on estimates from single within-study comparisons, it is notable that the
more complicated the pretreatment trends are, the further the CITS impact estimate
tends to be from the RCT impact estimate. Taking the mean of the signed (rather than
absolute) differences helps net out the (mean zero) noise across the RCT impact

Table 4. Within-study comparison results.

Specification

ES and (SE) in school-level SD ES in pupil-
level SD�

RCT CITS RCT-CITS RCT-CITS

FLIP Non-parallel trends, one
turning point: Baseline non-
linear trends

0.26 0.13 þ0.13 þ0.04
(0.55) (0.51)

LERS Parallel trends: Baseline
mean model

0.00 �0.03 þ0.03 0.00
(0.84) (0.10)

RISE Parallel trends: Baseline
mean model

0.19 0.16 þ0.03 þ0.01
(0.13) (0.08)

TEOB Non-parallel trends, one
turning point: Baseline non-
linear trends

0.15 0.22 �0.07 �0.03
(0.10) (0.15)

– – Mean difference: 0.03 0.01
– – Mean absolute difference: 0.07 0.02

See Table 1 for intervention acronyms. ES: effect size; RCT: randomized controlled trial; CITS: comparative interrupted
time series; RCT-CITS: RCT effect size minus the CITS effect size; To calculate the RCT-CITS effect size difference in terms
of pupil-level SD we carry out a conversion using the pupil-and school-level SD appropriate to each trial, as reported in
Appendix Table A1. We multiply the estimated difference by the school-level SD and divide by the pupil-level SD. This
is a direct reversal of the process used to convert the RCT-estimated effect size into one expressed in terms of the
school-level SD.
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estimates and gives us our key result on the bias across the four CITS studies in our set-
ting: 0.03 school-level SD or 0.01 pupil-level SD.

As discussed in the methods section, we cannot calculate correct standard errors for
our effect size differences (RCT-CITS) using our school-level data. However, in
Appendix Table A4, we calculate upper-bound estimates, which allows us to conduct a
random-effects meta-analysis across the four effect size differences. Using this method,
we estimate mean bias of 0.11 school-level SD, with an upper-bound standard error of
0.1 school-level SD (Appendix Figure A2). Scaling this down by the ratio of our school-
level and pupil-level SD estimates in Table 4, this is equivalent to 0.04 pupil-level SD,
with a standard error of 0.03 pupil-level SD. This precision-weighted average is slightly
larger than our estimate in Table 4 (0.01 pupil-level SD) but is not statistically distin-
guishable from zero (p¼ 0.25).

Discussion

The CITS is in an increasingly popular approach for studying the impact of educa-
tion policies, in part because it is well suited to the institutional characteristics and
data available in education settings. Yet like all non-experimental methods, the
assumptions on which the CITS depend cannot be directly verified. Within-study
comparisons provide an alternative approach to evaluating the internal validity of
CITS design, by comparison with an experimental benchmark. Using a database of
experimental evaluations in England, we have contributed four new within-study
comparisons of the school-level CITS design. By summarizing the effect size differen-
ces across the WSCs, we were able to get a better estimate of the bias across school-
level CITS evaluations, providing important new evidence on the internal validity of
the design in this setting.

Across the four interventions, we estimate mean bias to be 0.03 school-level SD, or
0.01 pupil-level SD. One way of putting these findings into perspective is to compare it
to the effect sizes typically found in the education literature. Median effect sizes for aca-
demic achievement in RCTs in education are between 0.07 around 0.1 pupil-level SD
(Evans & Yuan, 2020; Kraft, 2020). Our estimate of bias thus represents 10–14% of the
effect size that researchers might expect to find in similar research. Put another way, a
recent review of effect sizes recommended deeming 0–0.05 pupil-level SD as a “small”
effect, suggesting that 0.01 is also small (Kraft, 2020).

At the intervention level, the differences between the RCT impact estimates and the CITS
impact estimates are all below 0.13 school-level SD or 0.04 pupil-level SD in absolute value.
This suggests that our (across intervention) estimate of bias is not the result of large inter-
vention-level bias but with random sign, canceling each other out. Rather, our small across
intervention estimate of bias likely reflects similarly small bias at the intervention level.

An important caveat on our overall findings is that the choice between the baseline
mean, baseline linear trends and baseline non-linear trend models does have an effect
on our estimates (see Appendix Table A2). In line with previous research in this litera-
ture, this highlights the importance of choosing the correct model specifications through
careful inspection of the pre-trends (St. Clair et al., 2016). However, our findings also
serve as reminder that this is not entirely straightforward. Looking across the rows in
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Table A2 it is clear that we did not always choose the CITS specification that minimized
the difference in impact estimates between the CITS and the original EEF RCT.

How do our results compare to those from similar education WSCs? St. Clair et al.
(2016) report results from three within-study comparisons of education interventions.
Two of the three interventions showed modellable pretreatment trends and in these
cases the CITS impact estimates differed from the RCT impact estimates by 0.01–0.07
school-level SD in the authors’ preferred specifications. The third of their three inter-
ventions showed pretreatment trends with more than one turning point and, as
hypothesized, the CITS impact estimates showed much larger differences with those
from the RCT. Across the three CITS within-study comparisons reported by Hallberg
et al. (2020), the CITS estimates for one year post-intervention differed from the RCT
estimates in absolute magnitude by 0.05–0.08 school-level SD, depending on the model
specification adopted. Our estimate of 0.03 school-level SD bias is therefore quantita-
tively similar to those in the existing literature on CITS within-study comparisons.

Weidmann and Miratrix (2021) report within-study comparisons of 14 interventions
but using propensity score matching rather than CITS as their non-experimental estima-
tor. Their meta-analytically derived estimate of mean bias across the interventions is
0.01 pupil-level SD. Our overall estimates of bias are hence also very similar to those
from within-study comparisons using propensity score matching. The set of interven-
tions studied by Weidmann and Miratrix are drawn from the same database as ours,
and two of these interventions (LERS and FLIP) overlap with those in our study. The
CITS impact estimates for the LERS intervention differs from the CITS RCT impact
estimate by approximately 0.01 pupil-level SD. The equivalent result in Weidmann &
Miratrix is reported graphically rather then numerically but appears very similar in
magnitude. Our CITS impact estimate for the FLIP intervention differs from the RCT
by approximately 0.05 pupil-level SD, which again appears very similar to the equivalent
result in Weidmann and Miratrix. Although based on only two interventions, the results
reviewed in this paragraph suggest that CITS and PSM methods, as implemented in
these two papers, perform similarly.

Limitations

These findings should, of course, be interpreted in light of the limitations of this
research. In particular, as we have emphasized, selection bias depends upon the setting
and characteristics of the specific intervention. The treatments studied here involve
school-level interventions deemed by the EEF to have shown evidence of promise in
previous evaluations. All schools that participated in these trials volunteered to take part
and, as can be seen from Table 2, these volunteer schools tended to have higher propor-
tions of pupils eligible for free school meals than those in the surrounding areas. While
volunteer schools appear to be comparable to surrounding schools in terms of their
other observable characteristics, they may also differ in terms of unobservable character-
istics, such as the extent to which they are open to adopting evidence-based practices.
This limits the generalizability of our findings to other settings.

Relatedly, our sample of interventions is–by necessity–composed entirely of interven-
tions that have previously been evaluated using RCTs. This highlights an important
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constraint on the generalization of our findings to settings where an RCT is infeasible
for ethical or logistical reasons. This is an important limitation, given that such settings
are a prime candidate for the use of non-experimental designs. Having said that, the
findings are still informative with respect to CITS designs used to retrospectively evalu-
ate policies in similar settings in which random allocation was feasible but was not in
fact used. Indeed, our view is that many of the interventions previously evaluated using
CITS could have been randomly allocated but were not (e.g. Bell et al., 2016; Gandhi
et al., 2018; Henry et al., 2020; Jacob et al., 2017; Strunk et al., 2016). In addition, as we
discuss below, the results are also useful in assessing the validity of CITS designs for
analysis of interventions in which attrition or noncompliance has raised doubts about
the validity of an RCT.

A further limitation of the present research is that we only reevaluate four interven-
tions; a larger sample of interventions would do a better job of purging noise from the
estimates of bias. Finally, our within-study comparisons exclusively used CITS specifica-
tions that projected the counterfactual outcomes one period into the future. Other
research has found that CITS that project more periods into the future show larger bias
(Hallberg et al., 2020). Our study is silent on this and therefore does not provide any
warrant for using such CITS specifications.

Implications

Despite these limitations, we believe these findings have implications for the practice of
impact evaluation in education. Hierarchies of evidence quality often privilege the use of
RCTs over those from observational studies (Clarke et al., 2014) for the understandable
reason that they provide impact estimates that are unbiased in expectation. However,
this tends to ignore two important limitations of such studies in education. The first is
that many such RCTs are underpowered, yielding findings that are either uninformative
with respect to impact (Lortie-Forgues & Inglis, 2019) or yield apparently positive find-
ings but with exaggerated effect sizes (Sims et al., 2021). A second limitation of RCTs in
education is that they often suffer from high levels of attrition or noncompliance
(Edovald & Nevill, 2020). This limits the internal validity of the trial by undermining
the group-level balance initially achieved through randomization.

Our results suggest that CITS designs show substantively small bias when used to
estimate promising education interventions among volunteer schools. Moreover, in line
with theory, differences between the CITS and RCT estimates are particularly small in
cases that show stable, easily-modellable and parallel pre-trends. This implies that–if
used judiciously–CITS evaluations can be used to complement RCT evaluations in such
settings. In particular, school-level CITS designs could be used to corroborate effect size
estimates from weakly-powered trials, in order to check that these are not overly influ-
enced by residual imbalance from the RCT. Furthermore, school-level CITS estimates
can be used to recover non-experimental impact estimates from “broken” trials in which
attrition or contamination has compromised the initial random allocation. In the case of
a trial with high attrition, a CITS can help wherever it is possible to obtain the school-
level outcome data on the full sample. In the case of trial with treatment contamination,
a CITS can help wherever the contamination has been caused by control group schools
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seeking the treatment as a result of being allocated to the control group. The CITS can
address this problem by using a comparison group that does not overlap with the RCT
control group. Our results suggest that these non-experimental impact estimates are
likely to provide a good second-best impact estimate in a situation that would otherwise
yield little useful evidence.

It should be noted that other non-experimental methods, such as careful propensity
score matching designs (Weidmann & Miratrix, 2021), can also be used to complement
RCTs in the same way. Indeed, our results suggest that these two methods result in very
similar levels of bias in this setting. The main advantage of the school-level CITS rela-
tive to propensity score matching is that it can often be implemented using non-sensi-
tive, publicly available, school-level data (Jacob et al., 2014). The corresponding
downside, as this paper has illustrated, is the need for a consistently recorded time ser-
ies, which is often not available due to exam reforms or the cancelations of examina-
tions in certain years. The relative benefits of the two non-experimental designs are
therefore likely to depend on data availability. Either way, the evidence presented here
suggests CITS are a form of non-experimental design that can estimate impact with sub-
stantively small bias in similar settings.
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Appendix

Figure A1. Treatment and comparison group trends across the four interventions. Notes: FLIP: flipper
learning-N¼ 4,084 schools; LERS: learner response system-N¼ 7,165 schools; RISE: N¼ 2,224 schools;
TEOB: teacher observation-N¼ 2,829 schools; All Ns include treatment, control and comparison group
schools. Non-trial GOR: schools in the same Government Office Region of England that did not partici-
pate in the original RCT; RCT Treatment: schools that were in the treatment group in the original RCT;
RCT Control: schools that were in the control group in the original RCT; The years left to the vertical
line are used as pretreatment year and the year right to the vertical is the post-treatment year. The
mathematics scores were conditioned upon prior achievement, % special educational needs (except
for RISE), % free school meals, % English as additional language, % pupil low prior achievement at
the end of KS2 (only RISE and TEOB), school type and school size.

Figure A2. Forest plot of the RCT-CITS for the four interventions. Notes: Figure A2 shows a forest plot
of the effect size differences taken from Table A4. The meta-analytic (precision weighted) average of
these effect size differences is 0.11 school-level standard deviations, with a 95% CI of -0.08–0.3
school-level standard deviations. It should be noted that these SE are upwardly biased (see the notes
to Table A4) and should be considered upper bounds on the true SE.
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Table A1. Calculating the school-level effect sizes for the RCT impact estimates.

Study

EEF RCT pupil-
level

effect size
EEF pupil-level
pooled SD

Measure
correction formula

School-level
pooled SD

RCT effect size
using school-

level
pooled SD Notes

FLIP 0.09 5.28 None 1.82 0.26 EEF-reported effect size
extracted from Table 4
in the FLIP report.

LERS 0.00 22.22 Unknown but moot
due to zero effect

1.83 0.00 EEF-reported effect size for
Cohort 1 extracted from
Table 10 in the
LERS report.

RISE 0.09 10.79 1/6 � SD(X) ¼ SD(Y)
with Y the original
scale of RISE and X

our scale

5.06 0.19 EEF-reported effect size for
cohort A extracted from
Table 12 in the
RISE report.

TEOB 0.06 11.98 None 4.83 0.15 EEF-reported effect size for
Cohort 1 extracted from
Table 13 in the
TEOP report.

Study acronyms can be found in Table 1.

Table A2. CITS results using all three specifications.
EEF RCT

School-level
effect size

CITS

Study Baseline mean Linear trends Non-linear trends

FLIP 0.26 0.14 0.04 0.13
(0.55) (0.21) (0.28) (0.51)

LERS 0.00 20.03 0.17 0.40
(0.84) (0.10) (0.13) (0.25)

RISE 0.19 0.16 0.06 0.16
(0.13) (0.08) (0.11) (0.20)

TEOB 0.15 0.08 0.01 0.22
(0.10) (0.06) (0.08) (0.15)

Study acronyms can be found in Table 1. Bolded numbers represent the specification adopted in our preferred esti-
mates. Coefficients and standard errors are shown in school-level SD. Numbers in parentheses are standard errors.
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Table A4. Summary table for the within-study comparisons (expressed in school-level SD).
RCT CITS RCT-CITS

ES SE ES SE ES SE

FLIP 0.76 0.41 0.13 0.43 0.63 0.52
LERS 0.12 0.19 �0.02 0.12 0.13 0.18
RISE 0.23 0.16 0.15 0.07 0.08 0.15
TEOB 0.27 0.17 0.21 0.10 0.07 0.20

Table A4 summarizes the inputs to our meta-analysis of the effect size differences across our four within-study compari-
sons. All effect sizes (ES) and standard errors (SE) are expressed in terms of school-level standard deviations. The two
RCT columns show the results of re-estimating the impact of the four interventions using the experimental treatment
and control group schools, using school-level data. In each case, the models use the same outcomes, measured at the
same timepoint, for the same treatment cohorts, using the same covariates (albeit measured at school-level), as the ori-
ginal EEF RCT. The equivalent results derived from pupil-level data, as reported in the original EEF evaluation reports,
can be found in the “RCT” column of Table 4. The ES differ from those in Table 4 because we do not have access to
the underlying micro data, meaning that we cannot control for prior attainment at the pupil-level. In addition, the SE
are upwardly biased because they do not take account of the units (pupils) within each cluster (schools). The SE should
therefore be considered upper bounds on the true SE. The CITS columns contain the results from Table 3. The ES in the
RCT-CITS columns are simply the ES from the RCT column minus the ES from the CITS columns. The SE in the RCT-CITS
columns are derived using the procedure from footnote 3 of Steiner and Wong (2018) and are upwardly biased for the
same reason that the SE in the in the RCT columns are upwardly biased. The results in the RCT-CITS columns form the
bases for our meta-analysis, as reported in Figure A2.
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