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Abstract

This thesis presents a body of work relating to the automated discovery, reuse,

and generation of unit tests for software systems with the goal of improving the

efficiency of the software engineering process and the quality of the produced

software.

We start with a novel approach to test-to-code traceability link establishment,

called TCTracer, which utilises multilevel information and an ensemble of static

and dynamic techniques to achieve state-of-the-art accuracy when establishing links

between tests and tested functions and test classes and tested classes. This approach

is utilised to provide test-to-code traceability links which facilitate multiple other

parts of the work.

We then move on to test reuse where we first define an abstract framework,

called Rashid, for using connections between artefacts to identify new artefacts

for reuse and utilise this framework in Relatest, an approach for producing

test recommendations for new functions. Relatest instantiates Rashid by using

TCTracer to establish connections between tests and functions and code similarity

measures to establish connections between similar functions. This information is

used to create lists of recommendations for new functions.

We then present an investigation into the automated transplantation of tests

which attempts to remove the manual effort required to transform Relatest recom-

mendations and insert them into another project.

Finally, we move on to test generation where we utilise neural networks

to generate unit test code by learning from existing function-to-test pairs. The

first approach, TestNMT, investigates using recurrent neural networks to generate
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whole JUnit tests and the second approach, ReAssert, utilises a transformer-based

architecture to generate JUnit asserts.

In total, this thesis addresses the problem by developing approaches for the

discovery, reuse, and utilisation of existing functions and tests, including the

establishment of relationships between these artefacts, developing mechanisms to

aid automated test reuse and learning from existing tests to generate new tests.



Impact Statement

The work presented in this thesis has multiple impacts both inside and outside

academia. Inside academia, we have furthered the state-of-the-art in several areas

of research and provided to the research community a set of tools, data sets, and

learnings that will facilitate further research and assist other researchers in building

upon our achievements and outcomes. In the field of traceability research, we have

created an open source tool, TCTracer which implements our novel approach to

test-to-code traceability link establishment and is the first tool to establish links

at both the method and class levels. This tool would be useful by both traceability

researchers as a basis for further work or as a comparison point to any new approach.

Additionally, this tool is useful for researchers who do not work in traceability

research but need to use traceability links as part of their approach to solving other

problems. For these researchers, this tool would save a lot of effort and could

improve the results of their research. In addition to the TCTracer tool, we also

provide a new manually created ground truth data set of test-to-code traceability

links which other researchers can use for their evaluations. As the creation of these

data sets is time-consuming and error-prone, this is a contribution to the community

that can save others a lot of time and effort. In the field of reuse, we have developed

a general framework for the discovery of connections between software systems

artefacts in the Rashid framework. This is a generalised framework that could

be utilised by researchers in new ways, such as for the recommendation of other

artefacts types or revealing dependencies between artefacts. In the field of test

generation, we have introduced a new approach and data sets for generating test

code using machine learning. As this is a relatively new field of research, other
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researchers can now use this work as a starting point to build future approaches

and, in a similar fashion to our traceability data sets, utilise the new data sets

that we provided to compare any new approach to our results. The experience of

performing this research also created a set of learnings which we have passed on

to the community as takeaway lessons. Again, this saves other researchers a lot of

time and effort and lays the foundations for future work. Outside of academia, the

tools developed in this work could be put to good use in industry. The goal of our

tools, in general, is to assist software developers in a way that saves time and effort,

and therefore cost, while improving the resulting software. The realisation of this

goal, therefore, is very valuable to industry and there is a great demand for tools

that assist the automation of testing, especially if those approaches fit into industry-

standard practices such as continuous integration and delivery. We have shown that

our work is applicable in this fashion, for example by demonstrating how our tools

TCTracer and Relatest integrate into these types of development pipelines.
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Chapter 1

Introduction

Software development is a costly, time-consuming, and error-prone activity. Tools

that reduce the amount of development effort required and assist in the creation of

high-quality software can, therefore, have a large positive effect on both the cost and

outcome of the software development process. Testing is an aspect of development

that can be especially onerous as the process of creating and maintaining unit

tests is constant, complex, and often disliked by developers, frequently resulting

in software that has a low level of test coverage. This thesis tackles the problem

of how to alleviate these issues by assisting developers to create and maintain unit

tests in an efficient manner. This is crucially important as maintaining a high level

of good quality test coverage is required to produce robust software but has a large

cost in terms of developer time, and therefore, a large monetary cost. Previous work

has shown that to maintain a high level of unit test coverage, tests must be created at

the same time as the tested code as retroactively creating unit tests is rarely done and

only partially successful when attempted [Klammer and Kern, 2015]. Therefore, by

automating parts of the unit test creation process and making it easier for developers

to develop tests alongside implementation code, we hope to improve the overall

efficiency of the software engineering process and the robustness of the resulting

software. The work presented in this thesis aims to reduce the manual effort required

to develop software and improve the quality of the resulting software through the

development of novel approaches to assist discovery, reuse, and generation of unit

tests and the implementation of these approaches in a set of tools.
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To assist the discovery of unit tests for reuse, we first present TCTracer, a

multilevel approach to test-to-code traceability link establishment which allows us

to determine, with state-of-the-art precision, the tests which test each function and

the test classes which test each class. This work was motivated by our need to

establish test-to-code traceability links for use with our approaches to test reuse

and test generation but also by the general demand in academia and industry for

tools to accurately perform this task, as shown through case studies and developer

interviews [Ståhl et al., 2017]. While previous work has always only focused on

one level, usually the class level, and only utilised a single technique at once, our

approach establishes links at both the method and the class levels and utilises an

ensemble of new and existing techniques. This gives our approach better precision

and applicability than previous work with our evaluation of TCTracer showing that,

on average, we can establish test-to-function links with a mean average precision

(MAP) of 85% and test-class-to-class links with a MAP of 92%.

For test reuse, we utilise the test-to-code links produced by TCTracer and

Rashid, our framework for the discovery of relationships between artefacts to

create Relatest, an approach for generating recommendations of existing tests

to test new functions. Our evaluation finds that by using the recommendations

produced by Relatest we can achieve an average of 58% reduction in developer

effort (measured in tokens), for 75% of functions, resulting in an overall saving of

43% of the effort required to create tests. Additionally, a user study revealed that, on

average, developers needed 10 minutes less to develop a test when given Relatest

recommendations and all user study participants reported that the recommendations

were useful. Given that Relatest requires some manual effort from developers to

transform the recommended tests, we also developed an approach for automatically

transplanting tests from one context to another context utilising a multistage

approach incorporating genetic improvement (GI). Our evaluation shows that this

results, on average, in a passing transplanted test for 21% of functions and a

compiling test for 31% of functions. Our evaluation also revealed this approach

has the potential to create new tests which reveal real-world faults not revealed by



20

EvoSuite [Fraser and Arcuri, 2013].

As our approaches for test reuse and transplantation do not always produce a

working test for all functions, we also tackle the problem of unit test generation

for arbitrary functions. In pursuit of this we have established two approaches to

unit test code generation, TestNMT, for the generation of whole JUnit tests in

an approximate form, and ReAssert which focusses on the generation of JUnit

test asserts only. For both of these approaches, we adapt neural networks from

the domain of natural language processing and are a break from traditional unit

test generation tools which utilise random generation, search-based, or analysis-

based methods. The motivation for this approach firstly comes from the idea

that tests should be able to be translated into functions similarly to how one

language is translated into another in typical neural machine translation tasks.

Secondly, motivation is provided by the fact that test generation is subject to the

oracle problem and, therefore, the hardest parts of tests to generate, including

inputs and oracles may be best learnt from existing manually written tests. Our

evaluation of TestNMT resulted in a maximum BLEU score of 21.2, a maximum

ROUGE-L score of 38.67, and demonstrated that TestNMT is capable of generating

approximate tests that are easy to adapt to working tests. Our evaluation of

ReAssert shows up to 44% of generated asserts for a single project match exactly

with the ground truth, increasing to 51% for generated asserts that compile with

71% of the generated asserts being unique.

The primary benefit of utilising these approaches is an increase in develop-

ment productivity as reusing and generating artefacts is almost always faster than

creating new artefacts from scratch; thus reducing the cost and time of software

development. Reuse also improves the quality of the resultant software as reused

artefacts are, by definition, more mature and well tested than any freshly created

artefacts. Therefore we assume that, on average, reused artefacts are of higher

quality than freshly created artefacts and that software that was constructed using

a large number of reused artefacts should be of higher quality than a system that is

mostly comprised of new artefacts. This delta in quality may apply to correctness
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or a non-functional property, such as security or performance. As a secondary

benefit, reuse and generation can also increase the happiness and job satisfaction

of developers by reducing the amount of tedious and repetitive tasks they have to

perform, such as writing large numbers of similar unit tests.

1.1 Problem Statements of the Thesis
The problem addressed by this work is how to create and maintain, in a time-

efficient manner, a collection of effective unit tests when developing software

systems. This top-level problem is addressed by decomposing it into a set of sub-

problems: establishing test-to-code traceability links, identifying existing tests that

make good candidates for reuse, recommending reuse candidates to developers and

transplanting tests for reuse into a new environment, or learning from existing

test-to-code traceability links to generate new tests for functions. To establish

traceability links we address the problem of how to determine which functions

are tested by which tests and which classes are tested by which test classes. To

identify and recommend reuse candidates we address the problem of how to search

a large corpus of artefacts, determine the most suitable artefacts for reuse in a given

context, and recommend them to a developer. To tackle transplantation we tackle

the problems of how to extract tests and their dependencies from their environment,

implant them in a new environment, and adapt them to properly function in their

new environment. To generate new tests we address the problem of how to use

existing tests to learn to generate new tests.

1.2 Goal and Objectives
The goal of this thesis is to present a set of novel techniques and tools to assist

with the creation and maintenance of a large high-quality suite of unit tests when

developing software systems. The objectives of these techniques and tools include

achieving the following:

1. Establishing of traceability links between tests and tested code.

2. Aiding reuse of mature well-tested artefacts, especially tests.
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3. Generation of new test code for untested code.

1.3 Contributions
The contributions of this thesis are:

1. An approach to test-to-code traceability that utilises an ensemble of tech-

niques using dynamic and static information and a multilevel flow of infor-

mation.

2. A comparative evaluation of traceability techniques at both the method and

class levels with multilevel information, technique combination methods, and

technique combination weighting.

3. A manual investigation into the causes of false positive and false negative

test-to-code traceability links.

4. A manually curated ground truth dataset [White and Krinke, 2020a] of test-

to-function and test-class-to-class links.

5. Rashid, an abstract framework for the reuse of artefacts using artefact relation

graphs.

6. Relatest, a realisation of Rashid for recommending existing tests to be reused

to test new functions.

7. An evaluation of the effectiveness of Relatest using token-based edit dis-

tance, a manual investigation, and a user study.

8. An approach to test transplantation utilising genetic improvement, evaluated

with transplantation success rates and fault detection capability.

9. TestNMT, an approach to unit test generation utilising function-to-test neural

machine translation with recurrent neural networks (RNNs), evaluated with

edit distance and translation metrics.
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10. ReAssert, a project-based deep learning approach for the generation of unit

test asserts implemented for JUnit and evaluated using lexical accuracy and

dynamic analysis with Reformer, a new state-of-the-art transformer-based

model and two RNN-based models from previous work.

11. A comparative evaluation of ReAssert with all three models using lexical

accuracy and uniqueness versus a previous approach, Atlas.

12. Takeaway messages for researchers and practitioners concerning the con-

struction of data sets when applying sequence to sequence learning for code

generation.

1.4 Thesis Organisation
Chapter 2 presents the background, firstly for the research areas where we make our

contributions, and secondly for the research areas which are utilised to make those

contributions. Chapter 3 presents TCTracer, our approach and implementation of

a multilevel test-to-code traceability establishment technique. Chapter 4 presents

Rashid, an abstract framework for the reuse of artefacts using artefact relation

graphs and Relatest, a instantiation of Rashid, which utilises the links established

by TCTracer to make unit test recommendations for query functions. Chapter 5

presents our approach to automated transplantation of tests with a focus on the

transplantation of the recommendations produced by Relatest. Chapter 6 presents

TestNMT, an approach for the generation of new approximate unit tests for query

functions. Chapter 7 presents ReAssert, a project-based approach to the generation

of asserts for JUnit tests, and its implementation using two recurrent neural network

models and one transformer-based model. Chapter 8 presents a general discussion

of the results, observations, and take away messages from the work along with the

conclusion of the thesis and the potential future work.
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Background

In this chapter, we first describe the state of the art in the research areas of

traceability, code reuse, code transplantation, and test code generation as these are

the areas where the novel contributions of the thesis are made. Next, the background

for the research areas that are utilised to make our contributions, specifically code

similarity and graph edge prediction, are discussed where we establish the state

of the art in each specific area and how it is utilised by this work. Finally, we

conclude by motivating the contributions and demonstrate that the contributions are

an improvement over the current state of the art.

2.1 Traceability
The establishment and maintenance of traceability links between artefacts in soft-

ware systems is a research area that has received much attention from the commu-

nity and traceability techniques can be broadly categorised by the types of links that

they find in terms of the types of artefacts being linked. In this background, we

focus on techniques that find test-to-code, natural-language-to-code, and natural-

language-to-natural-language links. Examples of natural language artefacts include

requirements documentation, regulatory codes, and design documents.

Establishing and maintaining traceability links between tests and tested code

has received significant attention as these test-to-code traceability links have multi-

ple applications in the software engineering process: determining which test cases

need to be rerun after a change has been made, maintaining consistency during
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refactoring, and providing a form of documentation. Test-to-code traceability can,

for example, help to locate the fault that causes a test case to fail. Qusef et al. [2014]

describe these benefits in detail and [Parizi et al., 2014] present an overview of the

achievements and challenges of test-to-code traceability.

Rompaey and Demeyer [2009] investigates multiple methods for attempting

to establish traceability links between tests and their tested functions, specifically

Naming Conventions (NC), Fixture Element Types (FET), Static Call Graphs

(SCG), Last Call Before Assert (LCBA), Lexical Analysis (LA), and Co-Evolution

(Co-Ev). The findings from this study show that none of these techniques alone

performs well enough to effectively solve the problem and that a combination of

techniques is required. The sensitivity of the results to the subject system is also

highlighted as there are multiple variables related to the development practices

used by the project that can heavily influence the results. Despite these issues,

the study highlights NC and LCBA as the best overall performing techniques, with

LA, Co-Ev, and SCG performing poorly in most circumstances. They report perfect

precision and recall for the use of naming conventions, but report very low precision

and recall for using similarity (LSI) between test classes and classes-under-test.

An alternative approach to establishing test-to-code traceability links is pre-

sented in Hurdugaci and Zaidman [2012] where dynamic call graphs are used. In

this approach, the running test code is instrumented to build dynamic call graph

information which is used to establish many-to-many relationships between tests

and functions by simply linking any test and function pair if the function is called

by the test. These links are utilised by a tool, TestNForce, that alerts users as to

which unit tests need to be changed when a function is changed. Unfortunately,

although the evaluation states that developers found the tool useful, it does not

provide concrete results on the precision and recall of the discovered links. This

makes assessing the effectiveness of this technique for establishing traceability links

difficult.

At the class level, SCOTCH+ (Source Code and Concept based Test to Code

traceability Hunter) is a test-to-code traceability system introduced by Qusef et al.
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[2014] that uses a hybrid approach. SCOTCH+ applies dynamic slicing to identify

a set of candidate tested classes which it then filters using a textual coupling

analysis called Close Coupling between Classes (CCBC) and name similarity (NS)

scores. While SCOTCH+ achieves better accuracy than LCBA or NC, the current

implementation of Relatest does not use it because it operates at the class level, not

the method level.

At the method level, EzUnit [Bouillon et al., 2007] is a framework that allows

developers to annotate tests with links to the method-under-test. To do so, it

performs static analysis and identifies the methods called by a test which are

suggested for annotation. EzUnit highlights the linked methods when an error in

the test occurs. A similar tool is TestNForce [Hurdugaci and Zaidman, 2012] which

links tests to methods-under-test. Ghafari et al. [2015] also work at the method

level where they break down test cases into sub-scenarios for which they attempt to

establish the tested function, termed the focal method. This is done using static data

flow analysis.

SCOTCH+ (Source code and Concept based Test to Code traceability Hunter)

is a traceability system introduced by [Qusef et al., 2014] that achieves better

accuracy and provides more benefit to developers than LCBA or NC [Qusef et al.,

2013]. SCOTCH+ applies dynamic slicing to identify a set of candidate tested

classes which it then filters using a textual coupling analysis called Close Coupling

between Classes (CCBC) and name similarity (NS) scores.

The majority of other test-to-code traceability work is based on the assumption

that a test should be similar to the tested code by some code similarity measure.

Kicsi et al. [2018] explore the usage of Latent Semantic Indexing (LSI) over source

code to establish traceability links between test classes and tested classes. They

extract a ground truth from five open source systems by extracting only the links

between test classes and tested classes that follow (exact) naming conventions.

They report that the ground truth link is ranked top between 30% and 62% and

is present in the top 5 between 57% and 89%, suggesting a low recall (precision is

not investigated). Csuvik et al. [2019a] replaced LSI with word embeddings within
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the same approach and report better precision when using word embeddings (no

investigation of recall has been done). They also compare LSI, word embeddings

and TF-IDF [Csuvik et al., 2019b] in the same way and report that word embeddings

perform best in terms of precision and recall.

While test-to-code traceability based on name similarity has good accuracy on

the class level as developers usually follow naming conventions for the test classes,

on the method level, there exist various guidelines on how to name a test method.

Madeja and Porubän [2019] investigated 5 popular Android projects and found that

only 49% of tests contain the full name of the method-under-test in the test name

and that 76% of tests contain a partial name of a method-under-test in the test name.

Gergely et al. [2019] do not extract links between units directly, but instead,

use clustering. The clustering is done with static (packaging structure) and dynamic

(coverage) analysis. The two sets of traceability clusters are compared and the

differences are manually analysed to produce the final traceability links.

Ståhl et al. [2017] focus on the deployment of traceability into continuous

integration and delivery systems. As part of this work, they present an investigation

into existing needs and practices and propose a unified framework for integrating

traceability establishment into continuous integration systems.

A recent work [Aljawabrah et al., 2021] has also explored the visualisation

of traceability links as a way of assisting developers to utilise them and provide

the ability to see the differences in the predicted links between techniques. This

further demonstrates the potential applicability of test-to-code traceability links and

the appetite for their usage.

Other research has investigated the use of gamification to improve manual

maintenance of traceability links [Parizi, 2016, Meimandi Parizi et al., 2015] but

this approach has not seen significant adoption.

Establishing traceability links that include natural language artefacts accounts

for the bulk of traceability research. This is partly because in safety-critical

systems the maintenance of traceability links between regulatory codes and their

implementation in the system is often mandated by law. Other use cases for
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links with natural language artefacts, such as maintaining consistency between

documentation and implementation, also contribute to the existing work. The

techniques that have recently primarily been utilised in pursuit of establishing these

links are based on NLP and machine learning but IR techniques also have a long

history of being applied to traceability recovery, including probabilistic and vector

space models (VSM).

Marcus and Maletic [2003] presents an approach to establishing traceability

links between natural language artefacts and code artefacts by applying LSI to the

artefacts to encode them in vector space. The natural language artefact vectors

are then compared with the code vectors via cosine similarity and two artefacts

are considered linked if their cosine similarity is greater than a given threshold. The

threshold of 0.7 is selected, corresponding to a 45-degree angle between the vectors,

as this threshold yielded the best results of 71% precision at 42% recall. These

results are good, however, the evaluation only includes a single project with only

119 natural language artefacts. Therefore, the generality of the results presented in

this work is in question. In general, for establishing traceability links, LSI suffers

from the problem that it only encodes lexical information; whereas code implements

the semantics described by a natural language document. This means that when a

code artefact is linked to a natural language artefact but does not share significant

lexical information with the natural language artefact, LSI will not be able to recover

the link.

McMillan et al. [2009] presents a graph-based approach to establishing

documentation-to-documentation links. The approach uses textual and structural

analysis to first build code-to-code and code-to-documentation links which are then

used to construct a traceability link graph (TLG). The TLG is used to predict

documentation-to-documentation links by inferring edges in the graph through a

neighbourhood analysis. Relatest also utilises a graph-based approach, however,

Relatest uses the composition of unipartite and bipartite graphs through the Rashid

framework to make cross-domain recommendations, and is, therefore, tackling a

different problem with a more flexible approach.
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Most recently, machine learning has been brought to bear on the problem

of establishing traceability links. Asuncion et al. [2010] presents a system that

uses topic modelling, specifically Latent Dirichlet Allocation (LDA), to build

and maintain traceability links between a wide variety of artefact types such as

requirements, design documents, issue reports, test cases, and implementation code.

Unlike most previous work, Asuncion et al. [2010] make a distinction between

retrospective traceability, where traceability links are discovered in batch over an

existing set of artefacts, and prospective traceability, where the links are established

online at artefact creation time. This approach uses prospective traceability to build

the initial links between artefacts, by monitoring the behaviour of developers in

their development environments, and retrospective traceability to enhance the set of

links using Latent Dirichlet Allocation. Due to the mixture of link establishment

methods, this approach is not suitable for all traceability establishment tasks,

particularly in situations where developers cannot be monitored at artefact creation

time or the task is to establish links for a legacy system. However, the work also

provides a simple one-to-one comparison of the precision and recall attained by the

LDA versus standard LSI, which shows LDA winning on both precision and recall.

Cleland-Huang et al. [2010] provide a comparison between traditional trace-

ability methods, represented by a Probabilistic Network [Cleland-Huang et al.,

2007], and a machine learning classifier. This work shows that the traditional

method outperforms the classifier when establishing links that are relatively easy

to find, whereas the ML classifier performs better on links that are difficult to

establish. This showed that while still nascent, the machine learning techniques

have the potential to move traceability forward.

This potential is further realised in the recent work Guo et al. [2017] that

utilises deep learning for the establishment of traceability links between regulatory

codes and the design documents that specify the implementation of those codes in

the system. This system utilises word embeddings and a recurrent neural network

with an attention model to encode the artefacts into semantic vectors, which can

then be compared to predict links between the artefacts. The evaluation of this
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technique compares it to the more traditional semantic similarity techniques of LSI

and VSM, where it is shown to achieve higher levels of precision at high levels

of recall. The model is, however, very sensitive to the quantity of training data

and the distribution of the data between the classes. This study shows that deep

learning does have a large potential for the establishment of traceability links if a

large quantity of good quality training data can be obtained.

2.2 Code Search and Recommender Systems for

Reuse
Code reuse is a common practice in software development as developers look to

solve problems and save time by using existing code from other projects and the

web. Due to the prevalence of reuse, several research projects have focused on

developing approaches to discover and reuse existing code by performing code

search and making recommendations.

The simplest approach to code search is the traditional approach to plain text

search, string-based pattern-matching. However, this approach is very limited as it

does not deal well with complex code snippets that may contain multiple lines and

is also deficient in that it requires the user to know the exact text of the code that

they are looking for. String-based pattern-matching is therefore of limited use for

making source code recommendations.

To overcome the limitations of string-based pattern-matching, some code

search tools such as SCRUPLE [Paul and Prakash, 1994] adopted similar techniques

to static analysis tools such as GENOA [Devanbu, 1992] which use the components

of a compiler front-end (lexer, parser, type checker etc.) to construct internal

representations of the code. These representations can then be searched using

a pattern language that allows the user to define queries at the syntactic level,

essentially defining a pattern that will match to a subtree of an AST. This allows

the user to retrieve code snippets that are relevant and lexically diverse. However,

these techniques require the developer to manually provide the query patterns and

therefore demand the programmer have some a priori knowledge of what they are
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searching for. Relatest avoids this by having the search guided by the relationships

between existing artefacts through the Rashid framework.

Other approaches use textual Information Retrieval (IR) methods to search

existing code and make suggestions. One such example is Prompter, an IDE

plugin that searches Stack Overflow discussions and recommends code fragments

for developers [Ponzanelli et al., 2014]. Prompter starts by using the IDE context,

such as the currently displayed code, to formulate a query for a Stack Overflow

search, the results of which are displayed to the developer. However, a primary

weakness of this system is that the user must manually extract the code snippets

from the discussions and there is a high probability the contained code snippets

will not be executable without extensive modification. This is because there is a

high probability the code snippets are not complete and do not come directly from

a working system. In comparison, Relatest operates on complete functions from

existing projects.

Test-Driven Code Search (TDCS) is another approach to code search which

uses test suites to define the desired behaviour and test the code fragments that

are returned by a code search tool, ensuring that they can be executed in the

context of the target system and providing information as to the correctness of

the returned code. CodeGenie [Lemos et al., 2011] is an example of a tool that

utilises this approach to make code recommendations in an eclipse plugin. The

code search engine Sourcerer [Bajracharya et al., 2014] is used to perform the code

search. To make a recommendation, CodeGenie takes a test class as input, performs

feature extraction on the test class, and uses these features to perform a Sourcerer

code search. Once a result is found, the candidate functionality is extracted from

its current context via slicing and then presented in the plugin for testing. The

features extracted from the provided test class include keywords, identifiers, and the

interface definition of the required code which are extracted by analysing the AST

of the test class. CodeGenie, and TDCS in general, however, are only applicable to

a Test Driven Development (TDD) scenario as a test class is required to search for

the desired associated functionality and Relatest currently works in the opposite
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direction, finding tests for existing functions. TDCS may become useful in the

future if Relatest is extended to cover the TDD scenario.

Mcmillan et al. [2013] describe a tool, Portfolio, which takes the concept of

recommendation and extends it beyond individual code snippets to redefine it as the

search for a body of code that completely implements a high-level requirement. It is

argued that this is necessary as in most cases programmers are not just searching for

a single function, but for an implementation of a requirement, which likely consists

of multiple functions. Therefore, all the relevant functions and an example of how

they are called is required for the recommendation to be useful. Portfolio achieves

this using a combination of techniques, specifically natural language processing

(NLP), PageRank [Brin and Page, 1998], and spreading activation network (SAN)

algorithms [Crestani, 1997]. To enable the usage of these techniques, static call

graphs are constructed for all the code in the corpus. This allows the PageRank

matrix to be constructed over the transitions in the static call graphs and facilitates

the second ranking by SAN to be performed. Given these components, the process

starts with an initial keyword search to return relevant functions; SAN is then used

to expand the returned function to a set of linked functions and the PageRank

score over the transitions is computed. The SAN and PageRank scores are then

combined into the final score for the located functions, which is used for ranking the

recommendations. The evaluation shows Portfolio outperforming the now defunct

Google Code Search and Koders code search engines in confidence, precision, and

normalised discounted cumulative gain, with consistently higher means and lower

variance. In terms of applicability to Relatest this approach could be useful as

it returns not just single functions, but chains of functions which are more likely

to be the complete solution to the problem the programmer is looking to solve.

Therefore, the function chains could make good candidate organs for transplant.

The downside of this approach is the pre-processing work required to construct

the static call graphs and the PageRank matrix over the entire corpus, which gets

expensive as the corpus grows large. There is also a runtime cost associated with

the online computation of the SAN for each query but this should be negligible for
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almost all queries.

Machine learning has also been utilised in the field of code search, such as in

the work presented by Niu et al. [2017] which applies a learning-to-rank scheme

for ranking results from code search engines. One of the benefits of this technique

is that it can be integrated into any code search engine that ranks its results. The

evaluation compares the learning-to-rank technique with the standard ranking from

Codota1, a commercial code search tool and the best performing ranking engine

for API usage example code. In this analysis, learning-to-rank demonstrated a

35% and 48% improvement in normalised discounted cumulative gain and expected

reciprocal rank. The downside of these techniques is the need to gather the training

data, however, once the data is gathered the training itself can be done once offline.

A closely related work to the current implementation of Relatest is Erfani

et al. [2013] which presents work that is also concerned with the recommendation

of unit tests based on the similarities between functions. Erfani et al. build clone

classes using the clone detector NiCad [Roy and Cordy, 2008] and then identify

tests that cover any of the clones in the class. These tests are then recommended to

uncovered clones in the class. Relatest on the other hand uses the Jaccard index on

a function’s bag of tokens, a more general notion of function similarity, to define

sets of similar functions. For a newly written function, Relatest suggest the tests

that execute similar functions. One reason for the large difference in the number

of recommendations made is that the number of clone classes Erfani et al. [2013]

discover which contain both covered and uncovered functions is small. In contrast,

we can control how many recommendations are made by Relatest by adjusting the

function similarity threshold. Further, the quality of the recommendations made

by Erfani et al. [2013] is incomparable to Relatest as they neither evaluate quality

nor provide examples.

1https://www.codota.com/

https://www.codota.com/
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2.3 Code Transplantation

Automated transplantation of artefacts between systems is a more nascent area of

research than code search. However, in recent years there have been significant

advancements in this area, in part due to the maturation of genetic programming

techniques that lend themselves well to the task of transplantation.

Harman et al. [2013] present the Localise, Abstract, Target, Interface, Instan-

tiate, and Verify (LATIIVR) framework which describes a high-level approach for

performing code transplantation, which can be specialised for specific situations

depending on the techniques used to implement the individual steps.

A concrete implementation of an almost fully automated functionality trans-

plantation system, µTrans, can be found in Barr et al. [2015]. µTrans first takes a

manually specified entry point for the functionality in the donor and utilises program

slicing to constructing an organ that contains the functionality for transplant

and a vein that builds and initialises the execution environment expected by the

functionality. Genetic programming is then used, guided by a test suite from the

donor, to adapt the organ so that it can execute in the context of the host system.

Observational slicing is then used to reduce the organ and explore mappings from

host variables to the parameters of the organ. The organ is then implanted into

the host and validated by additional testing. This approach forms the basis of the

transplantation approach described in chapter 5 for use with Relatest, however, as

Relatest is concerned with the transplantation of tests instead of functionality, there

are some significant differences, discussed in Section 2.7.

Zhang and Kim [2017] presents a system, Grafter, that also performs a

form of transplantation. In the case of Grafter, the transplanted code is untested

fragments that are clones of tested fragments. The untested fragments are trans-

planted on top of their corresponding tested fragment to allow them to be tested by

the existing tests. While the overall concept has issues, such as the transplanted

fragment no longer being representative of the original fragment, Grafter does

provide an algorithm for adapting the organ fragment for integration into the target

location. The adaptation algorithm used by Grafter is claimed to be sound with
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respect to the compilation of the target code and provides mechanisms for handling

variable name variation, method call variation, variable type variation, expression

type variation, and recursion.

The fact that Grafter is sound with respect to compilation is positive, however,

there are issues with aspects of the algorithm which threaten its usefulness. One

such issue is the notion of the structural equivalence of types which is applied to

deal with translating the types in the transplanted fragment to match the target

context. This technique assumes that two types can be substituted for each other

if they contain the same number of fields and the types of all fields match or are

themselves structurally equivalent. Firstly, this is a broad definition of equivalence

that will often produce unwanted behaviour and secondly, if there is no matching

type in the patient for a type in the organ, the technique simply fails. Another

issue is the handling of variable name variation where the transplanted code

references variables that are not present in the patient scope. Here Grafter uses

the Levenshtein distance between the variable names to attempt to match variable

references in the transplanted fragment to variables in the patient scope. However,

the similarity between variables names may not be a good indicator of semantic

similarity.

In comparison, Relatest only has to deal with a subset of the issues that

Grafter deals with since Relatest will be transplanting whole tests, instead

of arbitrarily sized fragments. This difference makes the problem of matching

variables easier as all local variable declarations will be included in the transplanted

code; only global variable references will become disconnected.

Existing work can also provide some insight into the best sources for donor

artefacts. Barr et al. [2014] examine the plastic surgery hypothesis which tests the

extent to which new code for a system can be constructed from code fragments

that already exist in the system. The evaluation of this hypothesis compares how

suitable code taken from the same project is versus other projects, and discovers that

the same project has a significantly higher likelihood of already containing the new

code than other projects. This result complements the results in section 4.3 which
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show that good recommendations are more likely to come from within-project, and

reinforces the need to include the patient project in the corpus.

Petke et al. [2017] also utilise the transplantation of code fragments, in this case

for assisting a genetic improvement algorithm. Here different variations of the same

program, each of which has been optimised for different purposes act as a bank of

genetic material that can be utilised by a genetic improvement algorithm to improve

the original code. The success of this technique also gives evidence for the intuition

that programs that have similar purposes should contain good candidate organs for

each other in the same way that specialised variants of programs contain good

organs for each other. This demonstrates that there may be value in categorising

candidate donor systems in an attempt to select donors that are in the same category

as the host system.

2.4 Code Similarity

Source similarity and the closely related task of clone detection has generated a

great deal of work from the research community. This is due to the usefulness of

being able to determine the similarity between code fragments; a technique that is

helpful in multiple tasks including refactoring, bug fixing, and plagiarism detection

[Ragkhitwetsagul et al., 2017].

The approaches to clone detection can be broken down into categories: text-

based, token-based, tree-based, and graph-based. Text-based clone detectors

include NiCad [Roy and Cordy, 2008], a tool that detects clones using TXL [Cordy,

2006] with flexible pretty-printing to standardise the formatting of program text,

removing noise and making it easier to search. Island grammars to are used to

extract and compare potential clones. While lightweight, since NiCad is text-based,

it has limited capability to detect type 2 and type 3 clones where the clones are

significantly different lexically but may be very close syntactically.

CCFinderX [Kamiya et al., 2002] is an example of a token-based tool. CCFind-

erX first lexes the code into a sequence of tokens and then applies a rule-based

transformation to this token sequence. This transforms the code into a regular form
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in which clones can be detected using suffix trees. The token-based representation

allows the detection of syntactic clones that would have been missed by lexically

driven detectors.

Deckard [Jiang et al., 2007] is a tree-based tool that uses a vector space model

to detect similar subtrees. This is applied to clone detection by detecting similar

subtrees in an abstract syntax tree (AST). The parse trees are first constructed from

the source, processed to produce a set of characteristic vectors that capture the

syntactic information, and then clustered to detect clones. The evaluation shows

Deckard to have good accuracy and scalability.

In addition to the above, LSI has also been used to perform clone detection

[Ragkhitwetsagul et al., 2017, Mills and Haiduc, 2017]. However, all of these tools

perform approximately equivalently or worse than the token set ratio similarity

method that is currently used by Relatest, as empirically shown by Ragkhitwet-

sagul et al. [2017]. Moreover, a comparison of their performance on three clone

benchmarks shows that they offer lower search accuracy and performance than

Siamese [Ragkhitwetsagul et al., 2017]. A full survey of clone detection techniques

can be found in Ragkhitwetsagul et al. [2017].

Another similarity measurement is the normalized compression distance

(NCD). NCD is a practical analogue derived from the universal distance metric

known as normalized information distance (NID). NCD is based on real-world

compressors [Li et al., 2004] and, therefore, can measure the distance for objects of

all kinds, such as files [Axelsson, 2010].

NLP also provides an opportunity for measuring the similarity between code,

as exemplified in the recent work Zilberstein and Yahav [2016]. This tool, SIMON,

uses NLP and large-scale code repositories to establish semantic similarity between

snippets of code by utilising type information and natural language descriptions

associated with the code. Code snippets that are similar to a query snippet are

discovered using the following process: First, a database of code snippet to natural

language description pairs is searched to find a code snippet that is semantically

similar to the query snippet. The similarity of the natural language descriptions is
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then used to infer the semantic similarity between the code snippets. The evaluation

presented shows the system performing extremely well, at over 85% precision,

recall, and accuracy. However, this result should be approached with caution as the

test query snippets were generated by mutating snippets that already existed in the

database and, therefore, may be easier to match than snippets from the wild. Despite

this concern, the results do still appear to be very good. The largest drawback of this

system is that it requires a database of code snippet to natural language description

pairs, which is difficult to build and maintain.

The use of vector representations is another NLP technique that presents a

clear opportunity for discovering the similarity between code fragments. Vector

representations for similarity were first introduced in word2vec [Mikolov et al.,

2013], a technique for embedding the syntactic and semantic information of words

into vectors. These vectors can be directly compared and operated on to determine

the similarities of words or expose the relationships between words. Word2vec was

designed for use in natural language contexts, where it has been successfully applied

in many systems. Due to this success, a recent work [Alon et al., 2018] has taken

the concept and applied it to source code, creating code2vec; a tool that can take

a code fragment of arbitrary length and create a fixed-length vector representation

that captures the syntactic and semantic information encoded in the fragment. These

vectors can be compared in the same fashion as word vectors, such as via cosine

similarity, to determine the similarity of the source fragments. The evaluation of

code2vec reports precision, recall, and F1 score of 63%, 54%, and 58% respectively.

This means that the results for code2vec are not as good as that claimed by SIMON

[Zilberstein and Yahav, 2016], but code2vec has the advantage of not needing an

expensive database (in terms of construction and maintenance) of code fragment to

natural language description pairs; needing only a sufficiently large training set of

code fragments, which is easier to obtain.
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2.5 Bipartite Edge Prediction

Bipartite edge prediction is a graph theory technique that has been used to tackle

many different problems that involve creating links between two or more classes of

objects and is used in Relatest to determine which tests should be recommended

to which functions after we model the relationships between the artefacts as a

graph using the Rashid framework. There are multiple approaches to bipartite edge

prediction, including neighbourhood methods, path methods, and machine learning.

The majority of these methods are general graph edge prediction techniques that are

not specific to bipartite edge prediction, however, they can be used as such by only

accepting predictions made on bipartite edges.

Preferential attachment [Newman, 2001a] is a neighbourhood method that

calculates the edge prediction score for a pair of vertices as the product of their

degrees. Common Neighbours [Newman, 2001b] is another neighbourhood method

that calculates the edge prediction score for a pair of vertices as the number

of shared neighbours between the vertices. The Jaccard’s Coefficient [Salton

and McGill, 1986] neighbourhood method uses the number of shared neighbours

between the vertices divided by the total number of neighbours for both vertices.

Adamic/Adair [Adamic and Adar, 2003] is a variation on common neighbours

which weights the effect of neighbour vertices to be inversely proportional to the

log of their degree.

The common path methods include an adapted version of page rank [Brin and

Page, 1998] that calculates the significance of each vertex and makes predictions

under the assumption that it is beneficial to link to significant vertices. Rooted page

rank [Liben-Nowell and Kleinberg, 2007] adapts the page rank method to calculate

the edge prediction scores between two vertices as the probability of visiting one

vertex during a random walk from the other vertex. PropFlow [Lichtenwalter

et al., 2010] is another path-based method that calculates edge prediction scores

by starting with a source vertex with score 1 and propagating the score outwards,

at each step assigning an equal proportion of the score to each of the vertices

encountered. For example, if the source vertex has 4 neighbours, each of the
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neighbours will be assigned a score of 0.25 on the first step. On the second step,

these scores will again be propagated to the neighbours of those vertices and so on.

Where a vertex already has a score, any incoming score will be added to the existing

score. This mechanism encodes the intuition that vertices that have more than one

path to the source vertex should be favoured when deciding which vertices should

have an edge to the source vertex.

Machine learning has been applied to edge prediction using unsupervised,

semi-supervised, and supervised techniques. [Benchettara et al., 2010] presents

a supervised learning approach to edge prediction that uses the Preferential Attach-

ment, Common Neighbours, Adamic/Adar, and Jaccard Coefficient scores between

pairs of vertices as the features to learn from. As these features are not specific to

bipartite edge prediction, they firstly compute these features over only the bipartite

graph and label these direct features, then compute the features over the graphs

projected over each of the two vertex sets, labelled indirect features. These two

feature sets are then combined to make the final bipartite edge predictions. The

evaluation of this technique, however, is not complete as it does not compare the

results with other common techniques, instead only demonstrating that using a

combination of the direct and indirect features is better than using only the direct

features.

Davis et al. [2011] present firstly, a new bipartite edge prediction technique

derived from the standard neighbourhood methods called multi-relational link

prediction (MRLP) and secondly, a supervised learning approach. The goal of

MRLP is to adapt neighbourhood and path methods to specifically target bipartite

edge prediction. This is achieved by discovering incomplete 3-node subgraphs,

named partial triads, and calculating the probability that the partial triad should

be completed by each edge type. This is done by assigning a weighting for each

edge type to the common neighbours of the two non-neighbour vertices based on

their own connected edge types and the edge types of the path between the two

vertices and the common neighbour. The supervised learning approach presented

by Davis et al. [2011] use the High-Performance Link Prediction (HPLP) system
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[Lichtenwalter et al., 2010] to capture graph features for each pair of unconnected

vertices. These features include the scores of typical neighbourhood and path

methods, such as Common Neighbours, Jaccard’s Coefficient, Adamic/Adair, and

PropFlow. These features are used to learn to classify potential edges as one of

the edge types or no edge. The evaluation presents a comprehensive comparison

of the MRLP and its associated supervised learning approach with the standard

neighbourhood and path methods: Preferential Attachment, Common Neighbours,

Adamic/Adar, Jaccard Coefficient, Page Rank, Rooted Page Rank, and PropFlow

techniques. The effectiveness of each technique is evaluated over three large

datasets and reveals that on average MRLP and Jaccard Coefficient are the most

effective out of the non-learning methods and the supervised learning method

slightly outperforms both of them.

Another more recent machine learning approach to bipartite edge prediction

that is particularly applicable to Relatest is cross-graph learning. Liu and Yang

[2015] presents a semi-supervised transductive learning technique that utilises

cross-graph information to make bipartite edge predictions. This work formulates

the edge prediction problem as a label propagation problem over the product graph

between the two unipartite graphs. In this formulation, each vertex in this product

graph represents a possible bipartite edge between the two unipartite graphs; the

vertices representing known edges are labelled and semi-supervised learning is

applied to determine the labels of the other vertices. Liu and Yang [2016] extends

Liu and Yang [2015] to allow application of the technique to multipartite graphs

with more than two component unipartite graphs. The cross-graph information is

encoded in a Tucker decomposition [Tucker, 1966] of the product graph over the

unipartite graphs, which is then used to carry out semi-supervised learning over

the total bipartite edge set. The evaluation of this technique does not compare

its performance to neighbourhood or path methods but does demonstrate superior

performance to other machine learning techniques, specifically, tensor factorisation,

one class nearest neighbour, ranking support vector machines, and low-rank tensor

kernel machines. This technique was selected to be implemented as it uses semi-
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supervised transductive learning and therefore should be more resilient to sparsity

in the training data compared to inductive supervised learning techniques.

2.6 Unit Test Code Generation

Prior to the application of the machine learning techniques presented in this thesis,

unit test generation was done primarily by traditional test suite generation tools.

These tools can be split into distinct categories depending on the general approach

used, including random generation, search-based, and analysis-based approaches.

The primary examples of tools that use approaches based on random generation

are Randoop [Pacheco and Ernst, 2007], Nighthawk [Andrews et al., 2007],

JCrasher [Csallner and Smaragdakis, 2004], and CarFast [Park et al., 2012]. The

most well-used tool in this category, Randoop, uses feedback-directed random test

generation. Randoop implements this by iteratively building sequences of method

calls via random selection until a user-specified contract is violated or an implicit

failure oracle is triggered, such as a crash or exception. Sequences that violate a

contract are output as contract-violating tests and sequences that exhibit normal

behaviour are output as regression tests. Randoop can also generate regression

assertions by asking users to annotate the methods for which they wish assertions

to be generated. These are regression asserts as they utilise the current output of the

method as the oracle. Nighthawk generates tests by randomly building sequences

of method calls using a set of parameters that include the number of method calls

to make for each test, the number of tests to generate, and the frequency with which

each method should be called. This set of parameters is used as the genome for

a genetic algorithm that is applied to maximise a coverage-based fitness function.

JCrasher analyses classes to randomly generate inputs to methods that obey the

type system and uses these inputs to construct sequences of method calls. Crashes,

specifically unexpected exceptions, are used as the implicit oracle that a failure

has occurred. As not all exceptions necessarily represent a program failure but

could instead be an expected result of a pre-condition violation, JCrasher uses a

heuristic to attempt to determine when an exception is considered unexpected and,
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therefore, is a failure. CarFast employs an approach that mixes static analysis with

random generation in an attempt to maximise coverage more quickly than typical

purely random approaches. To do this, CarFast first performs a static analysis to

determine which branches contain the most lines of code and then uses constraint-

based selection to select inputs that guide the execution towards these branches.

Search-based tools include EvoSuite [Fraser and Arcuri, 2013] and eToc [Tonella,

2004], which utilise forms of meta-heuristic search guided by coverage goals. The

most widely studied and best-developed tool in this category, EvoSuite, utilises

a genetic algorithm with multiple branch coverage goals to concurrently evolve a

whole test suite. The EvoSuite approach starts with an initial randomly generated

population of test suites and applies the genetic algorithm to this population

using the coverage goals as its primary fitness function with a secondary goal

of minimising test suite size. After the genetic search budget has been expended,

regression test assertions are then added using mutation analysis [Fraser and Zeller,

2012]. These asserts are considered to be regression asserts only as they use the

current behaviour of the class under test as the oracle. As a final step, the tests are

minimised by iteratively removing statements until coverage is reduced, ensuring

that any statements which do not contribute to the coverage goal are not included.

jCUTE [Sen and Agha] and Symbolic Pathfinder [Păsăreanu and Rungta,

2010] are examples of analysis-based tools which attempt to generate inputs that

cover the largest number of code paths. jCUTE uses concolic execution, a mixture

of concrete and symbolic execution, iteratively, where first a random concrete input

is generated and a path constraint is constructed as the program executes with

that concrete input. The tool then backtracks and uses a constraint solver on the

path constraint to generate a new input. This process continues until all the paths

have been explored. Symbolic Pathfinder predominantly utilises dynamic symbolic

execution with constraint solvers to try to find inputs that cover the most branches

but support is also provided for concolic execution with a given input. As these

analysis-based tools are complicated to use, rely on path constraints being solvable,

and have difficulty scaling, they are less widely used and less well studied than the
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other categories of test generation tools.

2.7 Conclusion

The previous work on test-to-code traceability provides a good foundation by

establishing a baseline of several straightforward approaches to the establishment

of these links. However, there is much room for further novel contributions and

improvements to be made. The investigation by Ståhl et al. [2017] into existing

practices showed that there is a strong desire among developers for the integration of

automated traceability handing into build systems which is, in large part, currently

not being fulfilled. This demonstrates the demand for tools such as TCTracer.

Rompaey and Demeyer [2009] investigate mostly static techniques, using tracing

only to establish LCBA and only investigate establishing links on the class level.

We improve on this by utilising both static and dynamic techniques in concert on

both the class and the method levels. We also utilise much larger ground truths for

the evaluations. For Ghafari et al. [2015], while the results presented are promising,

two of the four subject projects used for the evaluation are very small (130 and 43

tests) and the other two are still smaller than our smallest subject. As it is easier to

achieve higher precision and recall on smaller projects, due to fewer candidate links,

the results cannot be directly compared to those presented in our work. In Hurdugaci

and Zaidman [2012], like our approach, tracing is used to identify the methods that

are called by a test. However, no further filtering is done and their approach will

thus include a large number of utility methods leading to low precision.

The previous work on code search and recommendation demonstrates that the

contribution to artefact discovery provided by the Rashid framework is novel as

no existing work, to the best of our knowledge, has defined a general model for

using the within-domain and cross-domain relationships between artefacts to find

appropriate existing artefacts for reuse. Erfani et al. [2013] is the closest known

work to the Rashid approach, however, the approach presented by Erfani et al.

[2013] is extremely limited and does not generalise. Further, the quality of the

recommendations produced cannot be determined and the number of recommenda-
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tions produced is very low.

The previous work that relates most closely to the transplantation contribution

is the work of Barr et al. [2015] which uses a similar approach to transplantation.

However, the contribution made by Relatest in this area is novel as Relatest is con-

cerned with the transplantation of tests and thus tackles a different research problem.

Achieving the successful transplantation of tests requires some solutions not given

by the existing work, such as how to guide a genetic search for transplantation

without the assistance of a test suite, which will be the primary contribution of the

transplantation component of Relatest. Relatest is also an improvement over the

existing work in terms of the level of automation achieved as the artefact search

component, facilitated through the Rashid framework, automatically finds the tests

to transplant and therefore removes the need for the manual identification of an

entry point.

The previous work on test code generation has led to a diversity of tools for the

generation of unit tests, however, with the advent of machine learning for software

engineering we have seized the opportunity to employ neural networks for this task

for the first time. Additionally, the previous tools all focus primarily on things

other than the generation of meaningful oracles and asserts. The typical goals for

the existing tools are maximising test coverage, executing the most code paths, or

exposing faults in other ways, such as generating exceptions and crashes. Therefore,

for even the most well developed and studied examples of these tools which have

some form of assert generation, such as EvoSuite and Randoop, the asserts they

generate are often trivial or not meaningful, contributing to the relatively high

rate of missed faults in real-world projects [Shamshiri, 2015, Shamshiri et al.,

2015]. For example, while Randoop can generate asserts, it requires the user to

explicitly annotate the methods which they wish assertions to be created for. Also,

only regression assertions can be generated, and the diversity of these assertions

is limited. These weaknesses are also present in the EvoSuite asserts as they use

mutation analysis with the current behaviour of the software and can not determine

if an assert is trivial. The problem of test generation tools producing poor asserts
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also has been reported by developers [Almasi et al., 2017] with quotes such as ”...

poor assertions, sometimes there is an assertion and sometimes there is not? The

assertions are mostly checking for simple stuff like list size and so on”. We address

these shortfalls by targeting ReAssert specifically for the generation of meaningful

and diverse asserts that can reveal real-world faults. One of the key motivations for

our approach of using neural networks to learn from existing test code is that we can

learn the patterns of asserts and oracles explicitly written by developers, potentially

helping to side step the oracle problem and produce asserts that developers would

write themselves.

In addition to the techniques that make up the contributions, Relatest utilises

a selection of techniques from other research areas to perform its tasks of finding

and transplanting tests; specifically test-to-code traceability, code similarity, and

bipartite edge prediction. For test-to-code traceability, the LCBA and NC tech-

niques have been selected as Rompaey and Demeyer [2009] shows those techniques

performing the best in a combined evaluation of six different techniques. To com-

pute the similarity between two fragments of code, the 3-gram Jaccard Index was

selected as a recent investigation [Ragkhitwetsagul et al., 2017] show that textual

similarity measurements can perform well on source code with modifications and

using Ragkhitwetsagul et al.’s framework [Ragkhitwetsagul et al., 2017], we have

confirmed that using the Jaccard index over 3-grams as implemented in the Java

String Similarity library performs better than most of the 30 algorithms as given

in the paper. For bipartite edge prediction, a selection of techniques from the

literature were tested but, so far, none have outperformed the triangle method used

by Relatest. The details of this investigation are provided in subsection 4.3.7.



Chapter 3

Establishing Test-to-Code

Traceability Links

Unit testing is an integral part of software development, however, to fully realise

the benefits of unit testing, it is necessary to maintain an accurate picture of the

relationships between the tests and the tested code. Traceability links provide an

intuitive mechanism for modelling these relationships.

Once established, test-to-code traceability links can improve the software

engineering process in several ways, including making changes to the system safer,

facilitating the reuse of artefacts, and aiding program comprehension [De Lucia

et al., 2008, Antoniol et al., 2002, Winkler and von Pilgrim, 2010]. Changes to

the system become safer as, when a developer makes a change to a piece of tested

code, they can use the traceability links to easily discover which tests also need to

be changed, and vice-versa. This helps to promote the co-evolution of code as it

highlights to the developer code that needs to evolve along with a change. This

is important as previous work has shown that test repair and test modification is a

common and important task [Pinto et al., 2012] and that co-evolution is desirable

but typically does not happen consistently over the course of a project [Zaidman

et al., 2011]. This work has shown that testing is often done in short intense periods

between periods of increasing test stagnation. Co-evolution, therefore, is often not

consistent in practice and the utilisation of automated test-to-code traceability link

establishment could help to improve this and reduce the risk of desynchronisation
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between the tests and code, an issue that can cause test failures and prevent the

discovery of new faults. While developers can use fault localisation techniques

to discover which functions may be causing test failures, traceability links have

the benefit of being bidirectional, so developers can start from a function and find

the corresponding tests. Traceability links are also used in regression test suite

optimisation in continuous integration [Elsner et al., 2021] to identify and execute

tests that are potentially affected by a change and where executing the full test

suite would be too expensive. This parallel between test-to-code traceability link

establishment and regression test case selection is also noted by Soetens et al. [2016]

who discovered that existing test-to-code traceability techniques, such as naming

conventions, fixture element types, static call graphs, and LCBA can work well but

are very situational.

Industrial need for the automated establishment of test-to-code traceability

links is demonstrated by Ståhl et al. [2017] through case studies and developer

interviews. The developer interviews were focused on themes and the theme

that encompasses this work, ‘Test Results and Fault Tracing’, attracted the most

number of relevant statements, with interviewees stating, for example, that it was

‘particularly important’ and ‘super crucial’. Using trace links to ‘drill down’ when

troubleshooting failed tests was specifically mentioned. The developers also made

clear that automation is crucial as manual traceability handling is a major blocker

for more frequent deliveries of software. Traceability is also gaining importance

due to the recent growth of machine learning for software engineering, where

traceability links have been used to build corpora of training data. White and

Krinke [2018], Watson et al. [2020], White and Krinke [2020b] are examples of

work that utilise test-to-code traceability links for building a training corpus for

neural networks that generate test code for a given function. In this use case, test-

to-code traceability links are used to train sequence to sequence machine learning

models to generate test code using a function as input. Therefore, a large, high-

quality data set of test-to-code traceability links is required to train and test the

model. As the performance of the model is dependent on the size and quality of
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the data set, developing approaches for automatically and accurately establishing

traceability links can produce larger data sets and reduce the amount of noise, thus

improving the ability of the models to solve these problems.

While there has been an effort on some projects to have developers manually

maintain traceability links, this practice is not common as it creates extra work for

developers. Instead, developers often employ naming conventions, e.g., matching

the names of test classes with the names of tested classes, with ‘Test’ appended. In

most instances, where projects have attempted to manually maintain traceability

links, these have been at the class level where the number of links is more

manageable and the relationships between test artefacts and tested artefacts are

usually simple. Therefore, to avoid creating extra work for the developers and the

errors associated with the manual maintenance of traceability links, the research

community has focused on developing approaches for the automatic establishment

of traceability links.

Most previous work on test-to-code traceability (see Parizi et al. [2014] for an

overview) has focused on the class level, where test classes are linked to their tested

classes [Rompaey and Demeyer, 2009, Qusef et al., 2014, Gethers et al., 2011, Kicsi

et al., 2018, Csuvik et al., 2019b,a]. Not much work has been done on the method

level [Bouillon et al., 2007, Hurdugaci and Zaidman, 2012, Ghafari et al., 2015],

where individual unit tests are linked to their tested functions, despite being shown

to be helpful for developers [Hurdugaci and Zaidman, 2012]. Our work is the first to

address both the class level and the method level simultaneously. This allows us to

construct both types of links and utilise a cross-level flow of information to improve

overall performance. This gives our approach a more accurate and fine-grained

view of the relationships between the artefacts. Our work also distinguishes itself

from previous work by utilising both dynamic and static information and ranking

potential links, instead of the purely static information that has typically been used

before to generate sets of (unranked) links.

The difficulty in establishing test-to-code links lies in the fact that not all code

executed by a test is part of the code that is being tested. This is because many tests
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will call functions that are not considered to be amongst the functions under test,

such as helper functions, getters and setters, or functions that initialise the state of

an object before the functions under test are invoked. Therefore, simply considering

all executed code as tested code [Hurdugaci and Zaidman, 2012] is not an accurate

technique of establishing test-to-code traceability links.

In this chapter, we present TCTracer, an approach and implementation1

which aims to overcome the weaknesses of existing test-to-code traceability link

establishment approaches by employing a wide range of techniques that utilise

information from dynamic call traces and static information. TCTracer also joins

these techniques to produce a combined score that performs better overall than any

individual technique. In addition, TCTracer is applied to both the method level and

the class level which allows us to establish links between individual tests and their

tested functions as well as whole test classes and their tested classes. TCTracer

uses its multilevel aspect to create a flow of information between the levels that can

improve effectiveness.

Our approach is evaluated using a manually curated ground truth [White and

Krinke, 2020a], at both the method and class levels, from five non-trivial and well-

studied subject projects2. Our findings show that, on average, using our combined

technique, we can achieve an increase in effectiveness over existing techniques at

both the method and the class levels. At the class level, our findings reveal that static

naming techniques alone can produce results equivalent to the combined score.

In addition to this evaluation, we conduct experiments to assess an alternative

technique for combining scores using machine learning (ML), the effect of weight-

ing techniques during combination, and a manual investigation into the causes of

false negatives and false positives.

This is an extension to our previous work [White et al., 2020] where we first

introduced TCTracer. We build on the previous work by incorporating static

techniques, investigating alternate combination methods and technique weighting

schemes, expanding the ground truth, and performing a more in-depth analysis of

1Available at https://github.com/RRGWhite/tctracer.
2Evaluation artefacts available at https://doi.org/10.5281/zenodo.4608587.

https://github.com/RRGWhite/tctracer
https://doi.org/10.5281/zenodo.4608587
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the accuracy of the approach.

The main contributions of this chapter are:

• An approach to test-to-code traceability that utilises an ensemble of tech-

niques using dynamic and static information and a multilevel flow of infor-

mation.

• A comparative evaluation of each technique at both the method and class

levels and across information types.

• An evaluation of the benefit gained by utilising multilevel information.

• An evaluation of two methods for combining individual techniques and the

effect of weighting individual techniques prior to combination.

• A manual investigation into the causes of false positive and false negative

links.

• An updated manually curated ground truth dataset [White and Krinke, 2020a]

of test-to-function and test-class-to-class links.

3.1 Motivation
The development of a new approach to test-to-code traceability establishment is

motivated primarily by the fact that all existing techniques have some weaknesses

that make them unsuitable for use as a general solution. One of the most common

techniques for establishing traceability links, naming conventions (NC), is a good

example of this. This approach relies on using the naming conventions for test

artefacts (unit tests or test classes) to identify their links to tested artefacts (functions

or classes). For example, JUnit 3 required a prefix of ‘test’ to identify test methods.

The specific conventions used may vary between projects, however, the standard

convention is that a test artefact should share the same name as the artefact that it

is testing, with test prepended or appended [Rompaey and Demeyer, 2009, Madeja

and Porubän, 2019]. For example, a function named union will be considered to

be tested by a test named testUnion. However, this technique is not effective if
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the project does not adhere to the naming conventions and can have poor recall

even for projects that do. This is because it assumes a one-to-one relationship

between test artefacts and tested artefacts when this is not always the case. The

Commons Collections project3 provides a real-world example of this, where the

function disjunction is tested by the tests testDisjunctionAsUnionMinusIntersection

and testDisjunctionAsSymmetricDifference. As this is a one-to-many relationship,

the names do not match the naming conventions and NC would not be able to

recover these links.

Last Call Before Assert (LCBA) is another existing technique that has severe

limitations. LCBA operates on the assumption that the function which returned last

before an assert is called is the function that the assert is testing. However, this

assumption is often incorrect. One common example of this is when the purpose

of a tested function is to change the state of an object. In this case, to check

that the function has performed the correct operation, a state checking function

must be called to get the changed state so that it can be compared to an oracle.

This causes LCBA to incorrectly identify the state checking function as the tested

function. Even if the tested function does directly return the value that needs to be

checked, this value will often not be checked by an assert immediately after being

returned. This could be because the test needs to call helper functions before the

assert, possibly to establish the oracle.

Finally, textual similarity measures based on information retrieval techniques

have also been used in an attempt to recover test-to-code traceability links, with

varying degrees of success [Antoniol et al., 2002, Csuvik et al., 2019b]. However,

none of them are sufficient on their own as techniques designed for natural language

do not directly translate to code. This is due to the bimodality of code which leads

to the possibility that two code snippets may be closely related semantically but

completely different lexically, or vice-versa [Allamanis et al., 2018].

Given these inherent weaknesses in the individual existing techniques, there is

a strong motivation to design a new approach that, while exploiting the strengths

3https://commons.apache.org/proper/commons-collections/

https://commons.apache.org/proper/commons-collections/
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of the individual techniques, collectively overcomes their weaknesses. This is the

approach utilised in TCTracer and presented in this chapter.

A secondary motivation for the development of a new approach to test-to-code

traceability stems from the fact that existing work has only focused on either the

method level or the class level. As both levels can provide useful information

to a developer, we were motivated to develop a single approach that worked at

both levels simultaneously. This resulted in the multilevel aspect of TCTracer,

which in turn facilitated the use of multilevel information flow to further increase

the effectiveness of the approach.

3.2 Approach

Our approach utilises dynamic call traces and static information to create candidate

links between test artefacts and tested artefacts. It assigns scores to the candidate

links using an ensemble of techniques and these scores are used to rank the

candidates and predict which of them are true test-to-code traceability links. The

predicted links can then be used, e.g., in an IDE, to navigate between tests and the

tested artefacts.

We utilise dynamic information as it provides us with the call traces showing

which functions were executed by which tests, thus providing a natural filtering that

serves as a starting place for establishing traceability links. However, as dynamic

analysis requires the system-under-analysis to be executed, gathering dynamic

information is not possible in all scenarios, such as where a large and diverse

corpus of code is being used. For example, if an approach uses a corpus that

includes the top 1000 GitHub projects, having to build and execute every project

would be prohibitively time-consuming. In this scenario, static information is the

only practical information source and we, therefore, incorporated techniques that

only require static information to determine the usefulness of the approach in this

scenario.

As we are establishing links on the method-level as well as on the class-level,

we use the terms function or method-under-test when referring to a tested method
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and the terms tested class or class-under-test for the class-level. Moreover, on

the class level, a class-under-test is tested by one or more test classes, and on the

method-level, a method-under-test is tested by one or more test methods.

Our multilevel approach starts by dynamically collecting information about

the function calls made by each test, specifically, which function was called and

the depth in the call stack of the function call relative to the calling test and the set

of functions that were executed immediately before an assert. Static information,

which consists of the fully qualified names (FQNs) and bodies of all classes, test

classes, functions, and tests is also collected by parsing the source code of the

project-under-analysis. We then apply an ensemble of traceability techniques to

the method level, using the collected dynamic and static information. This results

in a set of test-to-function scores for each technique, each of which encodes the

likelihood that a given function is the tested function for a given test that calls it.

We refer to these scores collectively as the method level information. The same

process is then applied at the class level, where sets of test-class-to-class scores are

established using the same techniques, providing us with the class level information.

At this stage, we create a cross-level flow of information by utilising the method

level information for class level predictions and the class level information to

augment the method level predictions.

To compute our scores we start with the techniques which utilise the dynamic

information, for which we selected two existing test-to-code traceability techniques

and formulated six new techniques. Six of the techniques produce a score in

the interval [0,1] for every possible link, indicating the likelihood that the link is

correct, while the other two produce binary scores. For the techniques which utilise

static information, we selected the dynamic techniques which were applicable and

modified them to work with static instead of dynamic information. We also compute

a combined score for all the individual techniques. The method of combining scores

is explored in Section 3.6.2.5. These scores are used to rank the candidate links so

that those ranked highest are most likely to be true traceability links. Thresholds

are then applied to construct the sets of predicted links.
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We describe our techniques in the following section where, for simplicity, we

will present them at the method level. To apply them on the class level, test classes

are used instead of test methods and tested classes instead of tested functions.

3.3 Techniques

As discussed in Section 3.1, existing test-to-code traceability techniques have weak-

nesses that we try to overcome with new techniques. Despite their weaknesses, we

selected two established techniques, Naming Conventions (NC) [Rompaey and De-

meyer, 2009] and Last Call Before Assert (LCBA) [Rompaey and Demeyer, 2009]

because they perform well in certain situations. The new techniques formulated for

TCTracer include four string-based techniques: a variant of Naming Conventions

(NCC), two variants of Longest Common Subsequence (LCS-B and LCS-U), and

using the Levenshtein edit distance [Levenshtein, 1966], which all utilise name

similarity. Two statistical call-based techniques (SCTs) based on Tarantula fault

localisation [Jones et al., 2002] and Term Frequency–Inverse Document Frequency

(TFIDF) [Manning et al., 2010] are also included in the new techniques. All the

mentioned techniques will be discussed in their dynamic (Section 3.3.1) and static

(Section 3.3.2) variants.

The original NC was selected for our technique ensemble as it should have high

precision, especially in projects where the naming conventions are strictly followed

and is a common method by which developers identify tests for a given method

during development [Hurdugaci and Zaidman, 2012, Madeja and Porubän, 2019].

LCBA was selected as it can perform well in certain circumstances, specifically

when the tests conform to the style of using an assert to test the returned value

from a function immediately after the function is called. As both NC and LCBA

are well-established techniques for test-to-code traceability recovery [Qusef et al.,

2013, 2014, Madeja and Porubän, 2019, Csuvik et al., 2019b], they also make good

candidates to serve as comparison points for our other techniques.

NCC requires that the name of the test contains the name of the tested artefact.

It was included in the technique ensemble as it utilises the strengths of NC but
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should achieve higher recall as it can establish many-to-one relationships between

functions and tests, as opposed to the solely one-to-one relationships that are

discoverable with traditional NC. This helps to alleviate some of the problems with

traditional NC, as discussed in Section 3.1. LCS-B and LCS-U compute the ratio of

the name lengths and the length of the longest common subsequence of the names

of the test and the tested artefact. They were used as they utilise the same intuitions

as NC and NCC respectively but instead of producing a binary score, they produce

a real-valued score that indicates how close to satisfying NC/NCC the potential

link is. This is useful as there are instances where NC/NCC are not satisfied but

are very close to being satisfied, for example, in the case of NC, if there are extra

words before or after the name of the function or, in the case of NCC, if the name

of the function is abbreviated or has grammatical differences in the name of the

test case. In these instances, the real-valued scores of LCS-B and LCS-U are more

useful than the binary scores of NC and NCC as we can still determine if a test and a

function are likely related. We include the normalised Levenshtein distance between

the names as a technique as it provides a different view of name similarity to the

longest common subsequence which is used in the LCS-B and LCS-U techniques.

For these naming techniques, we use the simple method or class names as using

FQNs causes the scores to have less difference between them. For example, all

the FQNs in Commons Lang share the common prefix org.apache.commons.lang3

and many share even longer prefixes. Using the FQNs, therefore, squashes the

distribution of the naming scores towards the high end making it more difficult to

distinguish correct links from incorrect links.

We include the Tarantula technique as, intuitively, the task of recovering test-

to-code traceability links is similar to the task of fault localisation as, if a function

is causing a test to fail, it is likely that the function and the test should be linked.

Therefore, our intuition is that by adapting a well-known fault localisation technique

to traceability we may find an effective method of recovering test-to-code trace

links. The inclusion of the TFIDF technique is motivated similarly to Tarantula in

that we view the task of determining the relevance of terms to a document as being
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analogous to the task of determining which functions are most relevant to a test

case and therefore which functions are most likely to be the targets of that test. As

TFIDF is a standard, well-tested method of establishing term relevance, we adapted

this method to test-to-code traceability.

All of the above techniques will be evaluated to identify individual strengths

and weaknesses and compared to the established techniques NC and LCBA to

establish if their known weaknesses can be overcome. We also include all

techniques in a combined score as we believe that each technique has the potential

to provide at least some information that cannot be wholly obtained using any other

technique.

All of our techniques utilise dynamic trace information and, where possible,

we have adapted the techniques to create variations that use static information. We

opted to only adapt the naming-based techniques to use static information as to

use the call-based techniques we would have to use static call graphs which are

inherently an over-approximation with regards to polymorphic function calls that

are resolved at run-time. This results in very low precision when using them for

traceability techniques.

We have discarded a series of other techniques. First, Fixture Element

Types (FET) [Rompaey and Demeyer, 2009] and SCOTCH+ [Qusef et al., 2014]

cannot be applied on method-level and Static Call Graph (SCG). Second, Lexical

Analysis (LA), and Co-Evolution (Co-Ev) have been discarded because evaluations

performed in previous work have shown a precision and recall of below 50%

[Rompaey and Demeyer, 2009].

3.3.1 Dynamic Techniques

In this subsection, we describe the techniques that use dynamic information to

compute traceability scores.

3.3.1.1 Naming Conventions

As naming conventions can change between projects [Rompaey and Demeyer,

2009], we have selected two techniques for traceability recovery using naming
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conventions: traditional and contains.

Traditional Naming Conventions (NC). NC establishes links by considering a

function to be linked to a test if the name of the test is the same as the function

after the word test has been removed from the test name. For example, a function

named union will be considered to be tested by a test named testUnion.

score(t, f ) =


1, if nt equals nf

0, otherwise
(3.1)

Where nt and nf are the names of t and f respectively, after the word test has been

removed from the name of test t.

Naming Conventions – Contains (NCC). NCC is a derivative of traditional NC

which replaces the requirement that the test name must match the function name

exactly, with the more relaxed requirement that the test name only needs to contain

the function name. Therefore, NCC considers a function to be linked to a test if the

name of the test contains the name of the function, after removing test from the test

name. A positive NCC result is counted as a score of 1 while a negative NCC result

is counted as 0:

score(t, f ) =


1, if nf substring of nt

0, otherwise
(3.2)

3.3.1.2 Name Similarity

Name similarity is a variation of the Naming Conventions approach and is based on

the premise that developers, following established naming conventions, give unit

tests names that are similar to or match the name of the function. Our hypothesis is

that name similarity measures have the potential to perform better than the existing

NC approach as they are less strict on exact matches and allow for slight variations

in name, for example, due to grammatical reasons. For instance, a method named

clone would not be identified under NC for a test named testCloning, whereas it

would be possible under name similarity measures for clone to be assigned a high

traceability score with testCloning. We consider the name for a method to be simply
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the name of the method in lower case without the class name and with the string test

removed from test names when performing comparisons. For example, for the fully

qualified method name com.example.ExampleClass.testComputeScore(boolean),

we perform name similarity comparisons on computescore. To compute the name

similarity, we use two well-established techniques, Longest Common Subsequence

(LCS) and Levenshtein Distance.

To establish the LCS similarity, we compare the length of the longest common

subsequence to the length of the function and test name. The longest common

subsequence techniques give function names that have more characters in common

with (and in the same order as) a test name a higher score.

Longest Common Subsequence – Both (LCS-B). In the first LCS variant, we

maximise the score at 1 when the method and function names coincide exactly

(aligned with the behaviour of the NC approach), that is, when nt = nf and

LCS(nt,nf ) = nt. We divide the length of the LCS by the greater of the length of the

two strings as follows:

score(t, f ) =
|LCS(nt,nf )|
max(|nt|, |nf |)

(3.3)

Longest Common Subsequence – Unit (LCS-U). In the second variant, we divide

the length of the LCS by the length of the function name only. This variant is more

closely aligned with the behaviour of the NCC approach, with the score maximised

at 1 when the function name is contained in the test name.

score(t, f ) =
|LCS(nt,nf )|
|nf |

(3.4)

Levenshtein Distance. The Levenshtein distance [Levenshtein, 1966], often known

as edit distance, measures the distance between two strings by measuring the

minimum number of edits it takes to transform one string into the other. Under this

technique, the distances between the function names and test names are computed

and links with the lowest Levenshtein distance are awarded the highest scores. We

first normalise the Levenshtein distance by dividing it by the length of the longest



3.3. Techniques 60

string and then take the compliment so that higher scores are given to closer strings:

score(t, f ) = 1−
(
Levenshtein(nt,nf )

max(|nt|, |nf |)

)
(3.5)

3.3.1.3 Last Call Before Assert (LCBA)

LCBA attempts to establish traceability links by working on the assumption that

the function returned last before an assert is called is the function that the assert is

testing. Therefore, LCBA will establish links between a test and every function that

is returned last before an assert that appears in that test. In TCTracer, if an LCBA

link is established between a test and a function it is counted as a traceability score

of 1 while no LCBA link is counted as a score of 0:

score(t, f ) =


1, if f is last return before an assert in t

0, otherwise
(3.6)

3.3.1.4 Tarantula

Tarantula [Jones et al., 2002] is an automatic fault localisation technique that assigns

a suspiciousness value to code, with higher suspiciousness values indicating a

higher probability of the code in question being responsible for the fault. The use

of automatic fault localisation is based on the idea that it would point to the most

relevant entity if the current test fails. The suspiciousness of a code entity e is

defined as follows:

suspiciousness(e) =

failed(e)
totalfailed

passed(e)
totalpassed +

failed(e)
totalfailed

(3.7)

Where failed(e) is the number of tests that executed e and failed, totalfailed is the

number of tests that failed in total, passed(e) is the number of tests that executed e

and passed, and totalpassed is the number of tests that passed in total.

To obtain the traceability score for a given test-to-function pair, where the test

executes the function, we compute the suspiciousness of the function with respect to
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the test, assuming that the test under consideration fails and all others pass4. It is a

heuristic to identify the methods that are most specific to the current test. Tarantula

decreases the suspiciousness of methods executing during passing tests – in our

case, passing tests that execute the method. Using this heuristic we can derive our

traceability score equation from Equation 3.8:

score(t, f ) =
1

|{t′∈T : f∈t′}|−1
|T |−1 + 1

(3.8)

Where T is the set of all tests in the test suite and f ∈ t′ indicates that function f

is executed by test t′. For pairs where the test t does not execute the function f , a

score of 0 is assigned.

3.3.1.5 Term Frequency–Inverse Document Frequency (TFIDF)

Term frequency–inverse document frequency (TFIDF) [Manning et al., 2010] is a

measure traditionally used in information retrieval to determine how significant a

term is to a document. TFIDF takes into account the prevalence of the term in the

document and in the corpus as a whole, with the intuition being that if a term is

frequent in a particular document but not frequent in the rest of the corpus, that

term must carry a high significance to the document and carries useful information

about the semantics of the document. We apply this to the domain of test-to-code

traceability by having tests take the role of the documents and functions take the role

of the terms. This expresses the intuition that if a function is executed frequently by

a particular test and infrequently by other tests, it is likely that the test is testing the

function. We define our traceability score using TFIDF as:

score(t, f ) = tf(t, f ) · idf( f ) (3.9)

The usual definition of the term frequency (tf) function does not match the

4A model under which all tests executing the function fail is not suitable as the Tarantula
suspiciousness would then be 100%.
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test/function scenario. Thus, tf and idf are defined as:

tf(t, f ) = ln
(
1 +

1
|{ f ′ ∈ F : f ′ ∈ t}|

)
(3.10)

idf( f ) = ln
(
1 +

|T |
|{t′ ∈ T : f ∈ t′}|

)
(3.11)

Where T is the set of all tests in the test suite and F is the set of all functions in the

system. The tf function measures how the information of a test is spread over the

called functions and the idf function measures how common the function is over all

tests.

3.3.2 Static Techniques

In this section, we describe the techniques we selected to adapt to using static

information and the changes that we had to make to them.

3.3.2.1 Naming Conventions

For the static versions of naming conventions, we use the same variants that we use

for our dynamic versions, namely the traditional and contains variants. However, in

contrast to how they are used in the dynamic approach, when using them statically

we must utilise both the function name and the class name. This is because in

the dynamic approach we are only using the names of functions that have been

executed, whereas in the static approach we are using all the functions in the project.

Therefore, if we were to use only the function name in the static approach, we would

likely have a very low precision as it is often the case that multiple classes contain

functions of the same name. This effect is most obvious when examining commonly

overloaded functions such as toString. In this instance, using only the simple name

would result in any test for a toString function being linked to all toString functions

in the project instead of just the one belonging to the appropriate class.

Static Naming Conventions (Static NC). Similar to the dynamic approach, we

compare function and test names after the word test has been removed from the

test name. However, we now also incorporate the class name and perform the same

comparison with the test class name. Therefore, we now link a test to a function
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if the test and function names match and the test class and functions class names

match.

score(t, f ) =


1, if nt equals nf ∧ ntc equals nfc

0, otherwise
(3.12)

Where nt and nf are the names of t and f respectively and ntc and nfc are the names

of the classes containing t and f respectively, after the word test has been removed

from the names of the test and test class.

Static Naming Conventions – Contains (Static NCC). Similar to static NC, we

adapt the NCC technique from the dynamic version to incorporate the class names

for the static version. Therefore, static NCC considers a function to be linked to a

test if the name of the test contains the name of the function and the name of the

test class contains the name of the functions class, after removing test from the test

name and test class name.

score(t, f ) =


1, if nf substring of nt∧ ntc substring of nfc

0, otherwise
(3.13)

3.3.2.2 Static Name Similarity

We use the same name similarity techniques in our static approach as in our dynamic

approach, namely LCS-B, LCS-U, and Levenshtein distance. The way the scores

are computed remains unchanged from the dynamic techniques, as described in

Section 3.3.1. However, in the case of the static techniques, we use the FQNs of the

functions and the tests, instead of just the simple names and we remove the word

test from anywhere it appears in the whole FQN of the test or test class. We use the

FQN because, like the static naming conventions techniques, we have to account for

the fact that multiple classes are likely to have functions of the same name. Using

the FQNs accounts for this, as well as for the situation where different packages

may contain classes of the same name.
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3.3.3 Score Scaling

Our approach utilises two techniques for scaling traceability scores which can be

applied independently as well as composed together.

3.3.3.1 Call Depth Discounting

Tests often do not invoke the tested functions directly, for example when a public

method delegates the actual implementation to a private method. The TCTracer

approach utilises the intuition that the relative depth between a test and a function

in the call stack can serve as an indicator of if the function is tested by the test. We

hypothesise that functions that are closer to a test in the call stack are more likely

to be the tested functions than functions that are far away. Therefore, we utilise a

relative call depth discount factor γ ∈ [0,1], which discounts the traceability score

for a test-to-function pair in proportion to the distance between them in the call

stack:

scored(t, f ) = score(t, f ) ·γ(dist(t, f )−1) (3.14)

Where scored is the discounted score, score is the non-discounted score, and

dist(t, f ) is the distance between the test and the function in the call stack. We

subtract one from the distance so as to apply no discount to functions that are called

directly by the test.

3.3.3.2 Normalisation

The computed scores can be used to rank the possible links to called functions

within a test directly, using the top-ranked link as the most likely link. However,

the actual distribution of scores can vary between techniques and between tests.

Therefore, we normalise the scores so that the largest score within a test is 1:

scoren(t, f ) =
scored(t, f )

max({scored(t, f ′) | f ′ ∈ t})
(3.15)

Where scoren is the normalised score. Normalisation allows us to define a threshold

around the top-ranked link.
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Table 3.1: Traceability techniques, their score range (Score), if the technique is normalised
(N), and the used threshold (τ).

Technique Score N τ

Naming Conventions (NC) 0 or 1 – –
Naming Conv. – Contains (NCC) 0 or 1 – –
LCS – Unit (LCS-U) [0,1] Yes 0.75
LCS – Both (LCS-B) [0,1] Yes 0.55
Levenshtein (Leven) [0,1] Yes 0.95
Last Call Before Assert (LCBA) 0 or 1 – –
Tarantula [0,1] Yes 0.95
TFIDF [0,1] Yes 0.90
Static Naming Conventions (Static NC) 0 or 1 – –
Static Naming Conv. – Contains (Static NCC) 0 or 1 – –
Static LCS – Unit (Static LCS-U) [0,1] Yes 1.0
Static LCS – Both (Static LCS-B) [0,1] Yes 1.0
Static Levenshtein (Static Leven) [0,1] Yes 0.995

In the end, we focus on thirteen individual techniques, shown in Table 3.1.

NC, NCC variants and LCBA are binary, i.e., they produce scores of either 1 or

0 which are used directly. The eight other non-binary techniques are normalised

and use call depth discounting. The thresholds (τ) are used as the prediction

boundary to determine which scores predict a link. Specifically, scores above the

threshold predict a link between the test and the function, whereas scores below the

threshold predict there is no link between them. The selection and application of

the thresholds is discussed further in Section 3.6.4.

3.4 Link Prediction

To construct link predictions, we first apply our traceability techniques to the

method level and class level individually. The techniques can be directly applied

to the class level by using the test classes instead of test methods and tested

classes instead of tested methods. The information extracted from each level is

then propagated between levels to produce another set of links at each level. The

propagation is done by utilising method level scores in the computation of class

level scores and class level scores in the computation of method level scores.
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3.4.1 Method-Level Prediction

The process starts by executing each of our individual traceability techniques at the

method level, resulting in a matrix of scores for each technique:

M ∈ R|T|×|F| (3.16)

Where T is the set of all tests in the system and F is the set of all functions. Each

element of M is the traceability score for a given test-to-function pair (t, f ) ∈ (T×F).

Another matrix is then constructed for the combined technique by averaging

over all the individual technique matrices and normalising the rows, using Equa-

tion 3.15.

Each of these nine matrices is used to build sets of predicted test-to-function

traceability links. To convert the real-valued scores into boolean link/no-link predic-

tions we introduce a set of thresholds, one for each technique (shown in Table 3.1),

and consider scores above the threshold as positive link predictions. Equation 3.17

defines how each set of method level traceability links are constructed.

LM = {(t, f ) ∈ T×F |Mt f ≥ τ} (3.17)

Where Mt f is the score for the given test-to-function pair and τ is the threshold for

the technique.

3.4.2 Class-Level Prediction

We now move to the class level where, in the same way as the method level, we

apply our individual traceability techniques and combine them, resulting in nine

matrices, one for each technique:

C ∈ R|TC|×|FC| (3.18)

Where TC is the set of all test classes in the system and FC is the set of all non-test

classes. Each element of C is the traceability score for a given test-class-to-class
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pair (ct,c f ) ∈ (TC×FC).

Similarly to the method level, C is used to compute sets of class level

traceability links using Equation 3.19.

LC = {(ct,c f ) ∈ TC×FC | Cctc f ≥ τ} (3.19)

3.4.3 Method- to Class-Level Propagation

Given the method level and class level score matrices, we can now propagate

information across levels. First, we elevate the method level information to the

class level by extracting scores from M and organising them into class level pairs.

This allows us to use them for computing class level traceability scores. To do this,

for each test-class-to-class pair (ct,c f ), we construct a matrix EM(ct,c f ) to hold the

relevant method level information:

EM(ct,c f ) ∈ R|t(ct)|×|f(c f )| (3.20)

Where t(ct) is the set of tests in test class ct, f(c f ) is the set of functions in class

c f . Each element of EM(ct,c f ) is the method level traceability score for a given

test-to-function pair (t, f ) ∈ (t(ct)× f(c f )).

To obtain the traceability score for the test-class-to-class pair, the method-level

scores in EM(ct,c f ) are summed along both dimensions, resulting in a scalar score.

This process is executed for each test-class-to-class pair in the system and the

produced scores are used to create a symmetric matrix that holds the scores for all

pairs:

EM ∈ R|TC|×|FC| (3.21)

Therefore, each element of EM is the score for a given test-class-to-class pair

(ct,c f ) ∈ (TC×FC) that is derived from method level information. All rows in EM

are normalised using Equation 3.15.

The scores in EM are then used to produce a set of class level predicted links
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using Equation 3.22.

LEM = {(ct,c f ) ∈ TC×FC | EMctc f ≥ τ} (3.22)

3.4.4 Class- to Method-Level Propagation

To propagate information from the class level to the method level, we take the

method level information in M and augment it with the class level information in

C, creating a new matrix AM ∈ R|T|×|F|. For each test-to-function pair (t, f ), the

augmentation is performed by first finding the test-class-to-class pair (ct,c f ) that

corresponds to the test-to-function pair, i.e., the test class ct that contains the test

t and the tested class c f that contains the function f . We then take the score for

the method level pair from M and the score for the class level pair from C and

multiply them to produce the augmented method level score for AM, as shown in

Equation 3.23.

AMt f = Mt f ·Cc(t)c( f ) (3.23)

Where c( f ) returns the class containing function f .

From AM, the set of augmented method level traceability link predictions are

produced using Equation 3.24.

LAM = {(t, f ) ∈ T×F | AMt f ≥ τ} (3.24)

3.5 Implementation
TCTracer is compatible with any Java system that uses the JUnit 3, 4, or 5 test

framework and is compatible with Java 8 or newer. Dynamic trace data is collected

from JUnit test suite executions, which is then used for computing the dynamic

traceability links by the techniques described in Section 3.3.1.

To collect the dynamic execution traces, TCTracer requires the system-under-

analysis to be instrumented. The Java Agent API was used for this as it provides



3.5. Implementation 69

Developer

Dynamic Information (log)TCAgent

JUnit

Trigger

Run Tests

Trace Links

Test class_t.method_t start
Call of class_1.method_1 at depth 0
Call of class_2.method_2 at depth 1

Call of class_3.method_3 at depth 0
Assert assertion_1
Call of class_4.method_4 at depth 0
Assert assertion_2
Test end

TCTracer
IDE Plugin
(e.g. EzUnit)

Static Information

Public int add(int x, int y){
return x + y;

}

Public void testAdd(){
int x, y = 0;
int expected = x + y;
assertEquals(add(x,y), expected);

} Log Analyser Code Parser

(Test, Unit) Candidate Links

Method Level Scoring (M) Class Level Scoring (C)

Elevated Method Level 
Scoring (EM)

Augmented Method Level 
Scoring (AM)

Threshold Filter, Ranking

Figure 3.1: Integration of TCTracer into JUnit.

access to the bytecode of Java classes and allows for them to be transformed before

being loaded by the JVM. As shown in Figure 3.1, the instructions for transforming

the bytecode are provided by a Java program, TCagent, which is passed to the JVM

at runtime through the -javaagent flag. TCagent utilises the ByteBuddy5 library

and allows us to easily transform the bytecode of the running system to log the data

that is used by TCTracer to compute the traceability links.

The execution traces are parsed to collect the dynamic information for each test

and record the set of methods that were the last return before an assert was called,

as is needed for LCBA. Methods that are not defined in the project-under-analysis,

such as those from third-party APIs, are filtered out.

The static information is obtained by scanning for .java files in the source and

test folders in the project-under-analysis and using Java Parser6 to parse the classes

and test classes. These are used to extract the functions and tests from the project

which are stored in TCTracer.

The main challenge of working with static information is the number of test-

5https://bytebuddy.net
6https://javaparser.org/

https://bytebuddy.net
https://javaparser.org/
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to-function pairs that we need to compute scores for. This is essentially the total

number of tests in the project-under-analysis multiplied by the total number of

functions. This leads to a very large number of candidates pairs, even in medium-

sized projects. For example, Commons Lang has a total of 9,522,771 candidate

pairs. This creates a problem when it comes to link prediction as it causes the

matrices to be very large and results in the time and space complexity of the analysis

increasing to the point where it is intractable on even high resource computers.

To work around this problem we set a threshold on the sum of the static scores,

which we use to discard any candidate pair that does not meet the threshold, before

progressing to the link prediction phase. This threshold was set by finding the

highest value which does not have any impact on the recall and, therefore, does

not filter out any true links. This does not mean that we will achieve 100% recall

overall, just that recall is not lower than it would be without this threshold being

applied. By doing this, we can filter out over 90% of the candidate links before

the link prediction phase, effectively managing the size of the matrices, while not

affecting the ability of TCTracer to find correct links.

In the final phase, TCTracer computes the sets of predicted links described in

Section 3.4 using the dynamic information, the static information, and configuration

parameters, such as threshold and call depth discount factor. If a ground truth is

present, TCTracer computes the evaluation metrics for each set of predicted links.

3.6 Evaluation

This section presents our research questions, the design of the experiments carried

out to answer these questions, the results, and a discussion of the findings.

3.6.1 Experimental Setup

The experimental setup consists of running TCTracer on a set of open source

subjects and computing a set of evaluation measures for each subject, using a

manually established ground truth.
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Subjects. For our subjects, we selected three well known open source projects

that are written in Java and utilise the JUnit testing framework: Commons IO7,

Commons Lang8, and JFreeChart9. These subjects were selected as they are

well known, widely used, and sufficiently large to demonstrate the applicability of

TCTracer to real-world systems. For the evaluation of TCTracer, we established

a ground truth for these projects at both the method level and the class level.

To establish the method level ground truth, we used a team of three judges, one

PhD student and two final-year undergraduate students, who each independently

inspected a set of tests selected uniformly at random from the subjects and made

determinations about which functions were tested by each test. To perform the

selection, we extracted all the tests from the subjects, assigned each test a number

from 1 to the number of tests, and then used a random number generator to select

100 tests in total. To make the judgements, the judges looked at evidence such as

which functions were called, how often they were called, how many other functions

were called, how often called functions were called by other tests, the names of

the tests, and which functions returned values that were then checked by an assert.

After conducting this process independently, the judges collectively inspected any

instances where there were disagreements and were able to reach a final, unanimous

judgement, resulting in full inter-rater agreement.

In addition to our own method level ground truth, we searched for an existing

ground truth that has been used in previous work to broaden our results and cross-

validate our ground truth creation protocol. This resulted in the discovery of two

other ground truths which contained seven projects between them. We investigated

the given link sets for all seven of these projects but decided to only use one of

them. The reasons for rejecting the link sets for the other projects were numerous,

with all of the link sets suffering from multiple problems. The list of problems

affecting these projects included a lack of random sampling, poor project selection,

including interface methods as tested methods, choosing functions in base classes

7https://commons.apache.org/proper/commons-io/
8https://commons.apache.org/proper/commons-lang/
9http://www.jfree.org/jfreechart/

https://commons.apache.org/proper/commons-io/
https://commons.apache.org/proper/commons-lang/
http://www.jfree.org/jfreechart/
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that were tested by many tests identical tests, choosing tests that are too similar

to each other, and inaccuracies in the links. Only the links for the project Gson10

from the TestRoutes [Kicsi et al., 2020] data set were not affected by any of these

issues, allowing us to utilise them. In total, the method level ground truth contains

218 oracle links and an analysis of the method level ground truth shows the number

of functions per test ranges from 1 to 12, with a median of 1 for all projects and

a mean average of 1.66. The difference between the median and the mean is due

to a handful of tests in each project having an unusually large number of tested

functions. For example, in Gson, there is one test with 12 tested functions and

another with 11 tested functions. This causes the average to be much higher at 1.89

while the median is still 1.

The class level ground truth was provided mostly by the developers as, in all

three projects, a subset of the test classes contain a comment at the start of the class

specifying which classes it tests. These developer provided links were extracted

and then manually verified by a judge to confirm that they are still valid. To boost

the number of links for the project with the least developer links, Commons IO,

a random sample of 20 test classes was drawn from the set of all test classes by

assigning every test class a number from 1 to the number of test classes and then

using a random number generator to select the test classes for the sample uniformly

at random. The tested classes for the test classes in this sample were the decided by

two judges in the same way as the method level sample, again resulting in full inter-

rater agreement. Another class level ground truth had previously been established

by SCOTCH+ [Qusef et al., 2014], which we also investigated for use. However,

due to the age of the projects, they were all no longer able to be built or were

incompatible with our tracing agent, TCagent, which requires Java 8 or newer. The

only ground truth links that we were able to use were for Apache Ant11 and the

results cannot be compared directly as the oldest version of Apache Ant that was

compatible with TCagent was newer than the version used by SCOTCH+. The

links that we used from SCOTCH+ were independently established by three judges

10https://github.com/google/gson
11https://ant.apache.org/

https://github.com/google/gson
https://ant.apache.org/
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with an average inter-rater agreement of 90%. In total, our class level ground truth

contains 608 links. Information about the subjects and ground truth is given in

Table 3.2.

As we use Gson at the method level, we have also investigated using it for a

class level ground truth, however, the nature of this project does not lend itself to an

evaluation at the class level. This is because most of the test classes test the same

class com.google.gson. This is due to the fact the library exposes the serialisation

and deserialisation methods through this class, which makes up the bulk of the

libraries interface. Thus the test classes testing different aspects of serialisation and

deserialisation are all linked to this single class. This makes Gson not representative

of software projects in general and therefore not useful for an evaluation which

needs to produce well generalised results.

In similar fashion, as we only have class level links for the Ant project, we

investigated using Ant for a method level ground truth also. However, Ant is not

suited to providing a method level evaluation as many of the tests are not unit testing

individual functions but are testing the execution of Ant tasks. A set of Ant tasks

have been pre-defined for testing purposes and the tests call into the execute method

of the task runner to run them. The runner then runs the task and returns the output,

which is then checked. This testing pattern doesn’t fit in with our approach as it

more closely resembles integration testing, rather than unit testing, and does not

allow us to establish clear test-to-function relationships.

Some previous work [Csuvik et al., 2019b] has used naming conventions to

establish a ground truth. However, as demonstrated by our work, this technique

has low recall and would introduce bias. Ultimately, when creating a new ground

truth, one cannot simply apply an existing traceability technique, as it causes a bias

towards that type of technique.

Evaluation Measures. The evaluation measures we selected are: precision, recall,

F1 score, mean average precision (MAP), and area under the precision-recall

curve (AUC) [Manning et al., 2010]. We selected precision and recall as they

are elementary measures for evaluating the performance of a binary classifier and
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Table 3.2: Subject statistics.

Project Ver.
Num.
Func.

Num.
Tests

Instr.
Coverage

Num.
Method Level
Ground Truth
Links

Num.
Class Level
Ground Truth
Links

Apache Ant 1.9.5 10477 1830 50% - 79
Commons IO 2.5 1246 994 89% 41 56
Commons Lang 3.7 3111 3061 95% 78 85
JFreeChart 1.0.19 9053 2244 52% 44 388
Gson 2.8.0 635 1006 83% 55 -

allow us to measure the proportion of true positives out of all positive predictions

and the proportion of all positive examples that are retrieved. As precision and

recall generally represent a trade-off between each other, the F1 score is a useful

measure as it evenly weights both precision and recall, allowing us to determine

which techniques best handle the trade-off. We also use the mean average precision

(MAP) as it takes into account the rank of the true positives in our link prediction

lists. This is useful information as it shows which techniques are better at ranking

true positives higher than false positives and will also punish techniques that more

often return no positives at all.

Finally, we use the area under the precision-recall curve (AUC) as it gives

us a view of the performance of each technique that is threshold independent. As

most of our techniques need a threshold to make predictions, the performance of

these techniques can be very sensitive to the values used for their thresholds. An

incorrectly chosen threshold can give the incorrect impression of the usefulness of

a technique and, therefore, while we have attempted to select the best threshold

for each technique, AUC gives us a general measure of the performance of these

techniques that is not affected by threshold values. We selected a precision-recall

(PR) curve over a receiver operating characteristics (ROC) curve because the classes

in our domain are unbalanced, there are many more negative links than positive

links, and PR curves exhibit better characteristics in this situation [Davis and

Goadrich, 2006]. All scores are presented as integer percentages for the sake of

readability.
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Rompaey and Demeyer [2009] also measure applicability, i.e., the ratio of tests

for which at least one link is retrieved. However, because of the normalisation that

we apply, all non-binary techniques will always produce at least one link, resulting

in 100% applicability.

3.6.2 Research Questions

In the following section, we will evaluate the presented techniques according to a

list of research questions:

1. How effective are our techniques at the method level?

2. How effective are our techniques at the class level?

3. What effectiveness is achieved by utilising method level information for class

level traceability?

4. Can we improve method level predictions by augmenting with class level

information?

5. Can we improve predictions by combining the individual technique scores

into a single score?

6. What are the reasons for the occurrence of false negatives and false positives?

The six research questions and findings will be presented below. While the

first five research questions are answered with a quantitative evaluation, the sixth

required a qualitative evaluation. The results are discussed in Section 3.7.

3.6.2.1 Research Question 1 (Method Level)

How effective are our techniques at the method level?

This research question investigates how effective each of the techniques is for

establishing test-to-function links using only method level information. To answer

this question, we compute the evaluation measures over the link sets produced using

Equation 3.17.
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Findings. From the results for RQ1, shown in Table 3.3, we see that, on average,

LCS-U is the most desirable as it performs best for F1 and AUC while only trailing

the best MAP (LCS-B) by one point. This means that it is good at balancing

precision and recall, is consistent when changing thresholds, and could benefit

from a further optimised threshold selection. For precision alone, NC is the best,

while LCS-B is best for recall. When comparing variants, the dynamic techniques

consistently outperform the static techniques.

3.6.2.2 Research Question 2 (Class Level)

How effective are our techniques at the class level?

This research question investigates how effective each of the techniques is for

establishing test-class-to-class links, using only class level information. To answer

this question, we compute the evaluation measures over the link sets produced using

Equation 3.19.

Findings. From the results for RQ2, shown in Table 3.4, we see that Static

Levenshtein is the most desirable overall with the best F1 score and only one

point lower than the best MAP (Static LCS-B) and the best AUC (Leven). It is

also evident that at the class level, the static techniques outperform the dynamic

techniques with generally higher precision and recall. For pure precision, NC

variants win again.

3.6.2.3 Research Question 3 (Elevated Method Level)

What effectiveness is achieved by utilising method level information for class level

traceability?

This research question investigates how each of the techniques perform for

establishing test-class-to-class links when we use method level information that

has been elevated to the class level. To answer this question, we compute the

evaluation measures over the link sets produced using Equation 3.22.
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Table 3.3: RQ1 – Method level traceability.

Technique Prec. Recall MAP F1 AUC True Pos. False Pos.

C
om

m
on

s
IO

NC 100 07 09 14 – 3 0
NCC 94 39 45 55 – 16 1
LCS-U 66 76 68 70 63 31 16
LCS-B 49 85 70 63 54 35 36
Leven 66 56 60 61 58 23 12
LCBA 44 34 32 38 – 14 18
Tarantula 58 68 67 63 52 28 20
TFIDF 59 66 65 62 59 27 19
Static NC 100 07 09 14 – 3 0
Static NCC 17 39 24 24 – 16 77
Static LCS-U 13 46 32 21 9 19 124
Static LCS-B 18 32 30 23 11 13 60
Static Leven 29 49 47 36 16 20 50

C
om

m
on

s
L

an
g

NC 100 10 18 19 – 8 0
NCC 98 53 57 68 – 41 1
LCS-U 82 77 86 79 84 60 13
LCS-B 67 85 82 75 74 66 32
Leven 84 55 73 67 76 43 8
LCBA 84 69 64 76 – 54 10
Tarantula 79 85 87 81 84 66 18
TFIDF 89 81 85 85 87 63 8
Static NC 90 12 20 20 – 9 1
Static NCC 26 53 40 35 – 41 116
Static LCS-U 20 58 46 29 14 45 183
Static LCS-B 25 38 37 31 15 30 88
Static Leven 25 46 51 33 16 36 107

JF
re

eC
ha

rt

NC 100 16 21 27 – 7 0
NCC 92 25 32 39 – 11 1
LCS-U 63 66 77 64 61 29 17
LCS-B 30 84 82 44 60 37 87
Leven 83 57 74 68 60 25 5
LCBA 67 77 79 72 – 34 17
Tarantula 39 77 78 52 41 34 53
TFIDF 55 66 73 60 57 29 24
Static NC 80 09 12 16 – 4 1
Static NCC 56 20 20 30 – 9 7
Static LCS-U 40 41 42 40 18 18 27
Static LCS-B 47 39 43 43 20 17 19
Static Leven 39 43 51 41 21 19 30

G
so

n

NC 100 11 10 20 – 6 0
NCC 80 22 20 34 – 12 3
LCS-U 56 82 78 67 65 45 35
LCS-B 34 85 79 49 63 47 90
Leven 75 76 77 76 66 42 14
LCBA 58 65 65 62 – 36 26
Tarantula 59 69 70 64 54 38 26
TFIDF 61 69 70 65 54 38 24
Static NC 100 07 06 14 – 4 0
Static NCC 47 16 15 24 – 9 10
Static LCS-U 23 49 30 31 14 27 93
Static LCS-B 17 22 18 19 9 12 59
Static Leven 17 29 25 22 11 16 76

A
ve

ra
ge

NC 100 11 14 20 – 6 0
NCC 91 35 38 49 – 20 2
LCS-U 67 75 77 70 68 41 20
LCS-B 45 85 78 58 63 46 61
Leven 77 61 71 68 65 33 10
LCBA 63 62 60 62 – 35 18
Tarantula 59 75 75 65 58 42 29
TFIDF 66 70 73 68 64 39 19
Static NC 93 09 12 16 – 5 1
Static NCC 37 32 25 28 – 19 53
Static LCS-U 24 49 38 30 14 27 107
Static LCS-B 27 33 32 29 14 18 57
Static Leven 27 42 44 33 16 23 66
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Table 3.4: RQ2 – Class level traceability.

Technique Prec. Recall MAP F1 AUC True Pos. False Pos.

A
pa

ch
e

A
nt

NC 100 73 75 84 – 57 0
NCC 89 73 75 80 – 57 7
LCS-U 65 71 73 67 62 55 30
LCS-B 51 72 66 60 86 56 53
Leven 87 68 72 76 86 53 8
LCBA 50 59 52 54 – 46 46
Tarantula 49 46 47 47 66 36 38
TFIDF 51 46 47 49 66 36 34
Static NC 100 83 86 91 – 65 0
Static NCC 40 87 68 54 – 68 104
Static LCS-U 37 87 64 52 40 68 118
Static LCS-B 86 88 91 87 84 69 1
Static Leven 91 87 90 89 84 68 7

C
om

m
on

s
IO

NC 100 86 89 92 – 43 0
NCC 94 90 92 92 – 45 3
LCS-U 73 90 88 80 86 45 17
LCS-B 61 92 80 73 92 46 30
Leven 100 90 93 95 92 45 0
LCBA 50 70 67 58 – 35 35
Tarantula 74 78 80 76 64 39 14
TFIDF 74 78 80 76 65 39 14
Static NC 100 86 89 92 – 43 0
Static NCC 98 92 95 95 – 46 1
Static LCS-U 82 94 94 88 78 47 10
Static LCS-B 92 88 90 90 84 44 4
Static Leven 94 90 93 92 88 45 3

C
om

m
on

s
L

an
g

NC 100 71 79 83 – 55 0
NCC 95 81 89 88 – 63 3
LCS-U 77 81 86 79 73 63 19
LCS-B 63 82 84 72 71 64 37
Leven 95 81 89 88 79 63 3
LCBA 51 68 67 58 – 53 51
Tarantula 50 59 63 54 38 46 46
TFIDF 34 56 56 43 32 44 85
Static NC 100 72 80 84 – 56 0
Static NCC 84 87 91 86 – 68 13
Static LCS-U 77 87 88 82 67 68 20
Static LCS-B 94 86 94 90 82 67 4
Static Leven 96 86 94 91 83 67 3

JF
re

eC
ha

rt

NC 100 85 91 92 – 329 0
NCC 73 86 84 79 – 330 123
LCS-U 56 86 79 68 62 332 266
LCS-B 58 86 81 69 86 332 239
Leven 99 86 92 92 86 332 3
LCBA 31 82 67 45 – 314 684
Tarantula 69 77 77 73 66 295 133
TFIDF 67 77 78 72 66 297 145
Static NC 100 85 91 92 – 327 0
Static NCC 59 85 79 70 – 328 229
Static LCS-U 46 85 72 60 40 328 381
Static LCS-B 98 85 91 91 84 327 6
Static Leven 98 85 91 91 84 327 6

A
ve

ra
ge

NC 100 76 80 86 – 121 0
NCC 87 78 81 82 – 124 34
LCS-U 65 77 78 70 71 124 83
LCS-B 56 78 74 65 84 125 90
Leven 92 76 81 83 86 123 4
LCBA 46 67 59 53 – 112 204
Tarantula 54 57 58 55 59 104 58
TFIDF 51 56 57 53 57 104 70
Static NC 100 81 86 89 – 123 0
Static NCC 55 87 76 66 – 128 87
Static LCS-U 49 87 72 61 56 128 132
Static LCS-B 91 87 92 89 84 127 6
Static Leven 94 86 91 90 85 127 5
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Findings. From the results shown in Table 3.5 we see that TFIDF is the best for

MAP, F1 score, and AUC by a clear margin. Static NC wins on precision and this

time LCS-B is best for recall.

3.6.2.4 Research Question 4 (Augmented Method Level)

Can we improve method level predictions by augmenting with class level

information?

This research question investigates if the method level traceability performance

can be improved by augmenting the method level information with class level

information. To answer this question, we compute the evaluation measures over the

link sets produced using Equation 3.24.

Findings. The results for RQ4, shown in Table 3.6, show that, on average, LCS-

U is the most desirable technique when utilising augmented scores as it has the

highest F1 and AUC scores. However, the average scores for LCS-U are similar

to the average scores when using the unaugmented method level technique. For

pure precision TFIDF is the best technique. It can be observed that for a number of

techniques the augmentation produces a drastically higher number of false positives.

3.6.2.5 Research Question 5 (Technique Combination)

As described in section 3.4, we also compute a combined score which averages and

normalises the individual technique scores. As this score takes a simple average and

weights all techniques equally we refer to it as the simple combination method.

Technique Exclusion: Can we achieve optimal performance with a subset of the

individual techniques?

Given that we are combining a set of techniques, it is natural to ask if any of the

techniques are redundant, or even harmful to performance, and if we can optimise

or improve performance by removing any of the techniques from the combined

score. To investigate this, we ran the method level experiments again looking at

the combined technique performance when one of the individual techniques was
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Table 3.5: RQ3 – Elevated method level traceability.

Technique Prec. Recall MAP F1 AUC True Pos. False Pos.

A
pa

ch
e

A
nt

NC 53 26 26 34 – 20 18
NCC 49 29 30 37 – 23 24
LCS-U 56 55 55 55 42 43 34
LCS-B 52 58 57 55 41 45 41
Leven 64 53 55 58 43 41 23
LCBA 70 58 59 63 – 45 19
Tarantula 72 56 59 63 49 44 17
TFIDF 76 60 63 67 54 47 15
Static NC 100 35 36 51 – 27 0
Static NCC 77 44 44 56 – 34 10
Static LCS-U 30 28 29 29 14 22 52
Static LCS-B 30 28 29 29 15 22 52
Static Leven 30 28 29 29 15 22 52

C
om

m
on

s
IO

NC 87 40 40 55 – 20 3
NCC 90 56 56 69 – 28 3
LCS-U 83 80 80 82 78 40 8
LCS-B 77 82 79 80 76 41 12
Leven 80 72 73 76 72 36 9
LCBA 71 60 63 65 – 30 12
Tarantula 82 74 76 78 74 37 8
TFIDF 82 74 76 78 75 37 8
Static NC 100 38 39 55 – 19 0
Static NCC 100 60 61 75 – 30 0
Static LCS-U 02 02 02 02 1 1 46
Static LCS-B 09 08 09 08 2 4 43
Static Leven 08 08 09 08 2 4 47

C
om

m
on

s
L

an
g

NC 90 55 62 68 – 43 5
NCC 91 64 71 75 – 50 5
LCS-U 81 73 79 77 70 57 13
LCS-B 83 76 82 79 69 59 12
Leven 85 74 81 79 70 58 10
LCBA 83 67 74 74 – 52 11
Tarantula 82 69 76 75 66 54 12
TFIDF 88 74 82 81 72 58 8
Static NC 100 49 55 66 – 37 0
Static NCC 96 68 76 80 – 52 2
Static LCS-U 23 21 21 22 14 16 53
Static LCS-B 28 24 26 26 15 19 50
Static Leven 27 24 26 26 15 19 51

JF
re

eC
ha

rt

NC 76 63 69 69 – 243 76
NCC 75 63 69 68 – 241 82
LCS-U 66 69 70 67 58 264 139
LCS-B 56 74 72 64 57 285 225
Leven 69 64 68 66 57 246 110
LCBA 81 76 79 78 – 292 70
Tarantula 73 63 67 68 58 243 90
TFIDF 83 75 78 79 72 287 57
Static NC 100 78 83 88 – 301 0
Static NCC 73 75 75 74 – 290 106
Static LCS-U 31 27 29 29 19 103 230
Static LCS-B 31 27 29 29 20 104 229
Static Leven 34 30 32 32 22 115 220

A
ve

ra
ge

NC 76 46 49 57 – 82 26
NCC 76 53 57 62 – 86 29
LCS-U 72 69 71 70 62 101 49
LCS-B 67 72 72 69 61 108 73
Leven 75 66 69 70 61 95 38
LCBA 76 65 69 70 – 105 28
Tarantula 77 66 70 71 62 95 32
TFIDF 82 71 75 76 68 107 22
Static NC 100 50 53 65 – 96 0
Static NCC 87 62 64 71 – 102 30
Static LCS-U 21 19 20 20 12 36 95
Static LCS-B 24 22 23 23 13 37 94
Static Leven 25 23 24 24 14 40 93
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Table 3.6: RQ4 – Augmented method level traceability.

Technique Prec. Recall MAP F1 AUC True Pos. False Pos.

C
om

m
on

s
IO

NC 03 90 18 06 – 37 1237
NCC 12 73 54 21 – 30 217
LCS-U 73 73 74 73 75 30 1
LCS-B 50 90 78 64 59 37 37
Leven 65 59 63 62 62 24 13
LCBA 05 41 31 10 – 17 294
Tarantula 64 66 68 65 59 27 15
TFIDF 65 68 69 67 65 28 15
Static NC 03 90 18 06 – 37 1237
Static NCC 09 71 30 16 – 29 297
Static LCS-U 14 51 38 22 10 21 125
Static LCS-B 34 44 42 38 19 18 35
Static Leven 27 49 47 34 18 20 55

C
om

m
on

s
L

an
g

NC 03 95 31 07 – 74 2095
NCC 10 78 63 17 – 61 566
LCS-U 81 81 89 81 87 63 15
LCS-B 56 90 86 69 80 70 54
Leven 44 60 76 51 43 47 59
LCBA 17 74 64 27 – 58 286
Tarantula 86 79 84 83 83 62 10
TFIDF 90 81 85 85 89 63 7
Static NC 03 82 29 06 – 64 2086
Static NCC 09 77 44 15 – 60 637
Static LCS-U 20 59 47 30 14 46 184
Static LCS-B 28 44 44 34 16 34 88
Static Leven 26 47 52 33 16 37 106

JF
re

eC
ha

rt

NC 06 77 31 11 – 35 514
NCC 08 75 43 15 – 34 372
LCS-U 44 75 74 55 45 33 42
LCS-B 24 89 84 38 49 39 123
Leven 58 66 74 62 51 29 21
LCBA 57 70 71 63 – 32 23
Tarantula 43 59 64 50 36 26 34
TFIDF 52 59 63 55 49 26 24
Static NC 06 73 24 10 – 32 550
Static NCC 07 59 31 12 – 26 372
Static LCS-U 45 45 50 45 25 20 24
Static LCS-B 43 45 51 44 23 20 27
Static Leven 37 48 52 42 24 21 36

G
so

n

NC 09 80 28 16 – 44 465
NCC 10 76 33 18 – 42 360
LCS-U 62 78 76 69 63 43 26
LCS-B 32 85 81 46 65 47 102
Leven 75 75 76 75 66 41 14
LCBA 24 75 69 36 – 41 129
Tarantula 64 69 70 67 55 38 21
TFIDF 62 69 69 66 55 38 23
Static NC 08 78 24 15 – 43 481
Static NCC 10 75 29 17 – 41 389
Static LCS-U 19 73 36 30 16 39 170
Static LCS-B 18 67 34 28 15 37 171
Static Leven 19 71 39 30 16 39 166

A
ve

ra
ge

NC 05 86 27 10 – 48 1078
NCC 10 76 48 18 – 42 379
LCS-U 65 77 78 70 68 42 24
LCS-B 41 89 82 54 63 48 79
Leven 60 65 72 62 56 35 27
LCBA 26 65 59 34 – 37 183
Tarantula 65 68 72 66 58 38 20
TFIDF 67 69 72 68 65 39 17
Static NC 05 81 24 09 – 44 1089
Static NCC 08 70 33 15 – 39 424
Static LCS-U 25 57 42 32 16 32 126
Static LCS-B 31 50 43 36 18 27 80
Static Leven 27 54 47 35 19 29 91
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excluded. This analysis was run once for each technique to determine what the

impact of removing that technique was.

Technique Weighting: Can we improve the performance of the combined scores by

weighting individual techniques differently?

As we are combining techniques, it is natural to investigate if there is a way

we can improve the results achieved using the combined score by weighting the

individual technique scores before combining them. To perform a weighting we

must define a weight vector that contains a value for each of the thirteen individual

techniques which we can multiply with the scores matrix before combination. This

gives us an extremely large space of possible weight vectors to choose from. There

are many possible approaches for determining the values of the weight vectors

as it is simply an optimisation problem to which a wide range of search-based

approaches can be applied. However, before investing large amounts of time and

resources into optimising the weight vector, some preliminary work is required to

determine if using weightings even has the potential to deliver significant results.

To test the hypothesis that weighting can significantly change the results we used

a simple approach to weighting called precision-based weighting which allows

us to select a weight vector that should intuitively have a good chance of being

beneficial. When using precision-based weighting, we set the weight of a technique

to the precision achieved by that individual technique. For example, the weight for

the Levenshtein technique at the method level is set to 0.66 as it achieves a 66%

precision in the RQ1 results. This provides an intuitive weight vector as the more

precise a technique is, the higher is it weighted.

Machine Learning: Can a machine learning method for technique combination

outperform our standard approach?

Choosing the right weights for combining the scores is complex due to the

size of the search space. We, therefore, investigate if a machine learning method

can outperform our standard approach. As the development of machine learning

techniques for combination is not a primary focus of this work, we opted to use a

very simple feedforward network consisting of just a single hidden layer with 64
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units. To use our feedforward network for technique combination, we supply the

vector of individual technique scores between a test and a function as the input

and use a single real-valued output as the probability that the test and function

form a true link. To implement this, we used the keras.Sequential model from

TensorFlow with the mean squared error loss function and the Adam optimiser. The

model was constructed with one hidden layer of 64 units and 1 unit in the output

layer. We trained for 12000 steps, checkpointing every 1000 steps, and selected the

checkpoint with the best accuracy for inference. The biggest challenge with this

approach is obtaining a labelled data set for training and validation. As discussed

in Section 3.6.1, creating ground truth data sets for traceability is time-consuming

and error-prone. Therefore, manually creating an entire data set that is large enough

to train a neural network is not feasible. Our solution to this was to augment our

manually created ground truth with extra links which we extracted by assuming that

links that had an NC score of 1 were true positive links, and links that had a very

low sum of technique scores were true negative links. We make the first assumption

as the results for RQ1 and RQ2 show that the NC technique has perfect precision.

We need the second assumption as we need to label as many true negatives as true

positives to have a balanced data set. Therefore, we take a sum of the scores for

all the techniques and mark the lowest scoring N links as true negatives, where N

is the number of links marked as true positive using the manual ground truth and

the NC assumption. This gives us 2N total links with a 50/50 split between true

positive labels and true negative labels. We drew the training and validation sets

from the Commons IO, Commons Lang, and JFreeChart projects, leaving the Gson

and Apache Ant projects as hold outs to check for project overfitting.

Findings. The results, shown in Table 3.7 and Table 3.8, reveal that, on average,

the simple combined technique outperforms any individual technique. The results

from the technique exclusion (not shown in the tables) revealed that removing any

technique made the results worse for at least two of the projects with the exception

of naming conventions, for which the removal had no effect on the results. As

for precision-based weighting, at the method level it under-performs no weighting,
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Table 3.7: RQ5 – Method level technique combination comparison.

Technique Prec. Recall MAP F1

Commons IO
Simple 71 83 79 76
Prec. Based Weighting 66 79 79 72
FFN 71 37 34 48

Commons Lang
Simple 89 86 92 88
Prec. Based Weighting 85 71 84 77
FFN 84 72 67 77

JFreeChart
Simple 81 80 86 80
Prec. Based Weighting 63 68 74 65
FFN 65 80 64 71

Gson
Simple 73 84 83 78
Prec. Based Weighting 72 85 84 78
FFN 56 36 36 44

Average
Simple 79 83 85 81
Prec. Based Weighting 72 76 80 73
FFN 69 56 50 60

while at the class level both approaches are essentially equivalent. The results

for the machine learning based combination reveal that the standard combination

approach consistently outperforms the neural network approach.

3.6.2.6 Research Question 6 (False Negative and False Positive

Analysis)

What are the reasons for the occurrence of false negatives and false positives?

Although we achieve high F1 scores using the simple combined technique there are

still instances where we produce false positives and false negatives. Investigating

these instances and determining the reasons for them is useful as it may reveal ways

in which we can improve the approach or show opportunities for improving the

software engineering process. To do this, we investigated every false positive and

false negative in the Commons IO, Commons Lang, and JFreeChart projects using

the simple combined score at the method level and categorised the reason for it. This
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Table 3.8: RQ5 – Class level technique combination comparison.

Technique Prec. Recall MAP F1

Apache Ant
Simple 79 90 92 84
Prec. Based Weighting 78 90 91 83
FFN 60 67 70 63

Commons IO
Simple 98 96 97 97
Prec. Based Weighting 98 96 97 97
FFN 84 86 87 85

Commons Lang
Simple 90 85 92 87
Prec. Based Weighting 92 86 94 89
FFN 84 78 85 81

JFreeChart
Simple 98 86 92 92
Prec. Based Weighting 98 86 92 92
FFN 90 86 90 88

Average
Simple 91 89 93 90
Prec. Based Weighting 92 90 94 90
FFN 74 74 79 74

was done by determining the cause of the false positive or false negative and either

adding that cause to the list of categories or assigning it to the existing category if we

had already encountered that cause for another example. The resulting categories

are defined in Table 3.9.

Findings. The results for RQ6, shown in Table 3.10, show the largest sources

of false negatives are the tested function scoring poorly in the naming techniques

versus some other non-tested function and the test being named after an issue

number rather than a tested function. The primary source of false positives is non-

tested functions being called frequently, leading to high scores from the SCTs, and

the fact that fail calls are not captured by LCBA because they are not executed in

passing tests.
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Table 3.9: RQ6 – Incorrect Link Reason Categorisation.

Category ID Description

A The tested function has low naming scores compared to other functions.
B LCBA finds a non-tested function and does not find the tested function.
C LCBA cannot find the tested function as JUnit fail calls are not executed

and therefore not accounted for by LCBA.
D A non-tested method is called frequently.
E A non-tested overload of a tested function has similar scores to the tested function.

F
A non-tested or default constructor is wrongly marked as tested due to similar
naming technique scores as the tested constructor.

G A non-tested function is higher in the call stack than the tested function.
H The test tests class functionality, not individual functions.
I The test is named after an issue number resulting in poor naming scores.
J The test doesn’t execute the tested method.
K The test tests an exception not the function.

Table 3.10: RQ6 – False positive and false negative analysis.

Category Commons IO Commons Lang JFreeChart Totals
FP FN FP FN FP FN FP FN

A 0 0 0 10 0 5 0 15
B 0 0 0 1 5 0 5 1
C 0 2 0 0 5 0 5 2
D 1 0 5 0 0 0 6 0
E 3 0 0 0 1 0 4 0
F 0 0 3 0 1 0 4 0
G 2 2 0 0 0 0 2 2
H 4 2 0 0 0 0 4 2
I 0 0 0 2 0 3 0 5
J 0 0 0 0 0 1 0 1
K 0 1 0 0 0 0 0 1

3.6.3 Extended Manual Precision Evaluation

To further demonstrate the generalisability of the results we executed TCTracer on

two other projects: Commons Net12 and Commons Text13 and manually labelled a

sample of 25 predicted links from each project as true positives or false positives.

These links were produced by the combined technique with simple combination,

as RQ5 shows this is the most effective technique and were selected uniformly at

random. The links were then independently judged by two judges and the inter-

rater agreement was computed using Fleiss’ kappa. Once the inter-rater agreement

12https://commons.apache.org/proper/commons-net/
13https://commons.apache.org/proper/commons-text/

https://commons.apache.org/proper/commons-net/
https://commons.apache.org/proper/commons-text/
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Table 3.11: Extended Manual Precision Evaluation Results.

Project True Positives False Positives Precision Fleiss’ kappa

Commons Net 5 20 20% 0.48
Commons Text 22 3 88% 0.62

over the original ratings had been computed the judges conferred to resolve differing

judgements leaving one canonical set of judgements from which the precision could

be calculated.

The results, presented in Table 3.11, show a very large difference between

the two projects with Commons Text performing very well with 88% precision

while Commons Net lags behind with only 20%. There are several reasons

for this. Firstly, Commons Net contains a sizeable number of empty tests and

abstract functions. TCTracer does not currently filter these out and where one

of these empty tests or abstract functions were predicted in a link, that link was

necessarily a false positive. This issue is easily resolvable by simply filtering out

those artefacts. Another contributing factor is the number of classes in Commons

Net that have very similar names due to them implementing the same logic for

different protocols. For example, UnixFTPEntryParser, VMSFTPEntryParser,

NTFTPEntryParser, OS2FTPEntryParser, OS400FTPEntryParser, and others have

very similar names, making false positives more likely. In projects where this

regularly occurs, it may be possible to somewhat negate this effect by setting the

thresholds more strictly to reduce the number of false positives.

3.6.4 Parameter Value Selection

Our approach includes tunable parameters; a threshold value for each technique

and the call depth discount factor, all of which are real numbers. The current values

for the thresholds and the call depth discount have been established in a pre-study

with smaller ground truth and a smaller set of projects. We used the pre-study

to empirically determine the threshold for each technique by starting from zero

and incrementing the threshold in steps of 0.01, each time recording the precision,

recall, and F1 score. We then gathered all of the results and selected thresholds that

generalised well across projects for the F1 score. We, therefore, consider the current
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thresholds to be sufficiently general and the best performing overall. However, the

score distributions can vary between projects and a practitioner may want to alter

the thresholds to match to a specific project if they have a ground truth or some

other heuristic on which to base this decision. In the absence of a mechanism to

measure precision and recall on a specific project, we suggest that practitioners use

the given thresholds.

We also observed that a discount factor <= 0.5 usually gives the highest F-score

and varying the factor between 0 and 0.5 does not change the results. Increasing the

factor above 0.5 has only a small effect on recall and a larger negative effect on

precision, lowering the F-score overall. Given these results, we selected a final

discount factor of 0.5.

3.6.5 Call Depth Discounting Analysis

As discussed in Section 3.3.3.1, we incorporate the principal of call depth discount-

ing into our approach as it encodes the assumption that the further away in the call

stack a function is from its calling test, the less likely it is that the function is tested

by the test. Using our evaluation, we can determine the accuracy of this assumption

by looking at the depth of the known tested functions in our ground truth links. This

data, as shown in Table 3.12, reveals that Commons IO is the only project which has

more than one tested function that is not called directly by the test and, therefore, has

a depth greater than zero. These results support the assumption behind call depth

discounting in general. However, as Commons IO has a relatively large number of

such examples, it shows the quality of this assumption can vary between projects.

One such example is the function XmlStreamWriter.detectEncoding(char[], int,

int) which is tested by multiple tests that call it through other forwarding func-

tions. XmlStreamWriterTest.testLatin7Encoding() is one such test that first calls

XmlStreamWriterTest.checkXmlWriter() which then calls an overloaded version

of itself which calls XmlStreamWriterTest.checkXmlContent() which then calls

XmlStreamWriter.write(char[], int, int) which in turn calls the tested function. We,

therefore, also wanted to assess how well our approach handles tested functions that

have a depth greater than zero when they do occur. Table 3.12 shows the number
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Table 3.12: Call depths of true positive functions (found versus total).

Project Depth 0 Depth 1 Depth 2 Depth 3 Depth 4

Commons IO 28/31 5/6 1/1 0/1 0/2
Commons Lang 66/77 1/1 0/0 0/0 0/0
JFreeChart 35/44 0/0 0/0 0/0 0/0
Gson 46/55 0/0 0/0 0/0 0/0

Table 3.13: Total predicted function call depths.

Project Depth 0 Depth 1 Depth 2 Depth 3 Depth 4

Commons IO 1554 (82%) 291 (15%) 51 (3%) 9 (0.5%) 0 (0%)
Commons Lang 4136 (83%) 757 (15%) 49 (1%) 36 (0.7%) 0 (0%)
JFreeChart 3923 (95%) 179 (4%) 10 (0.2%) 6 (0.1%) 3 (0.07%)
Gson 1602 (93%) 112 (7%) 6 (0.3%) 1 (0.006%) 0 (0%)

of ground truth links at each depth that we discover using the combined score and

shows that our approach handles tested functions at depth one and two very well

as we correctly identify seven out of the eight tested functions at these depths. We

do not discover the few tested functions at depth three and four as the scores are so

heavily discounted at this level that we very rarely make a prediction at those depths.

In general, this is the correct approach as the few counter-examples at depth three

and four are outliers in the way the tests are implemented and are not representative

of tests in general. A breakdown of the number of functions we predict to be the

tested function at each depth is presented in Table 3.13 and the numbers shown here

are broadly in line with the distribution of tested functions over depths in the ground

truth data where the two projects that have tested functions at a depth greater than

zero are the two projects that have a lower proportion of predicted functions at depth

zero.

3.7 Discussion

The results reveal some insights that allow us to draw conclusions about the relative

effectiveness of the techniques and differences between the projects, weighting, and

combination techniques.
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3.7.1 Techniques

First, we compare the naming conventions techniques, NC and NCC. At the method

level, NC has perfect precision for the dynamic variant and very high precision for

the static variant. This is expected as it is unlikely that a test and function will

share the same name, after the word test has been removed, without being linked.

However, this strictness results in generally low recall for NC. In contrast, NCC

trades-off some of this precision for more recall, resulting in better F1 scores for the

NCC variants. However, due to their overall low recall on the method level, NC and

NCC are unsuitable at that level. On method-level, other naming conventions are

often followed. This observation was also made by Madeja and Porubän [2019].

At the class level, NC beats NCC for F1 score as it is easier for developers to

maintain traditional naming conventions at this level compared to the method level

and, therefore, recall does not suffer as much with NC at the class level.

When comparing LCS-U and LCS-B, we see that LCS-U usually performs

better for precision, whereas LCS-B generally performs better for recall. However,

as the difference in precision is greater than the difference in recall, LCS-U is the

better choice overall as evidenced by its better F1 score.

LCBA performs poorly in general but is especially bad for Commons IO in

RQ1. This is an artefact of the nature of Commons IO, where the effect of many

function calls is to change some state, rather than return the result of a computation.

Therefore, the returns of method calls are not as frequently testable by simply

comparing the return value to an oracle; instead, a further function call is required

to check that the state was changed correctly. This causes many false positives for

LCBA. Commons Lang is the opposite of Commons IO in this regard, as tested

functions usually have their return values checked against oracles immediately after

returning, resulting in a relatively high LCBA score. The differences in scores for

LCBA are due to the simplicity of the LCBA heuristic which cannot distinguish

between acting and asserting methods (when the arrange–act–assert pattern is used).

Overall, LCS-U, Levenshtein, and TFIDF are the most consistently well-

performing from the set of individual techniques, but which one performs best is
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project dependent. However, the results from RQ5 show that our simple combined

score is consistently better than any individual technique for MAP, F1, and AUC

at the method level. These results confirm our intuition that the benefit gained

from combining the individual strengths of the techniques outweighs the negative

effects of combining their weaknesses, thus giving a better result overall. Due to

the strengths of the static techniques at the class level, the combined score is not

always the best here for F1, but it is the best on average for AUC, indicating that its

performance could be improved with a more optimised threshold.

3.7.2 Static vs. Dynamic Techniques

When comparing dynamic and static techniques, a mixed picture emerges due to the

large differences in the method level results and class level results. At the method

level, the dynamic techniques outperform the static techniques by a large margin,

however, at the class level, the static techniques often perform marginally better

than the dynamic techniques. This is due to the complexity of the task. At the

method level, we have to match both the test class to the tested class and the test to

the function, whereas at the class level we only have to do the former. This makes

the method level task significantly more difficult, especially when using naming

based techniques where we have issues relating to the reuse of function names

across multiple classes or many classes/functions being named similar things. The

dynamic techniques perform better as we are only considering executed functions as

candidates and, therefore, we find less false positives. At the class level, the problem

is much simpler and good naming conventions are more strictly adhered to as its is

relatively straightforward to name a test class similar to the tested class. The static

techniques, therefore, do not suffer the same precision loss as at the method level

and can pick up slightly more recall, resulting in marginally better F1 scores overall.

This is an important observation as it shows that, if only class level traceability is

required, the static techniques alone are sufficient and there is no reason to go to the

extra effort of using dynamic information. However, if method level traceability is

required, the use of static name-based techniques alone will likely not be sufficiently

accurate.
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3.7.3 Multi-Level Information

In terms of the usefulness of multilevel information, RQ3 shows that using method

level information for class level traceability produces worse results than just using

class level information. RQ4 shows that method level traceability performance may

be improved when augmenting with class level information, such as in the case of

Commons IO where the largest F1 score is improved by three points. However,

on average there is no significant improvement. As a result of the augmentation

changing the distribution of scores, some of the techniques, most notably NC and

NCC, change their characteristics with regards to how they balance precision and

recall. However, this does not confer an overall benefit for F1 score. These results

are in contrast to our previous work [White et al., 2020] where we showed that using

multilevel information at the method level has a positive impact on results. This

work shows that adding static techniques removes this benefit, however, it produces

better results using only method level information than the previous work.

3.7.4 Weighted Technique Combinations

In RQ5, our technique exclusion study results confirm that all techniques contribute

some useful information, with the possible exception of NC, which has no effect on

the results obtained over our subject projects. One possible explanation for this is

that NCC also provides all the information provided by NC, which is, therefore,

redundant. However, despite this possibility, our advice to practitioners would

be to include the technique as it does not incur significant cost in time or space

complexity and may still provide useful information on projects outside of our set

of experimental subjects.

With regards to the weighting experiments, the results seem unintuitive as

weighting better techniques more should benefit the combined score. However, we

selected precision as our weighting mechanic because it was a simple and intuitive

way of testing the value of weighting as a concept and it is very possible this

approach may not be the best way of weighting techniques. There is also the issue

of thresholds. As the threshold was set based on the unweighted combination, we

cannot be sure the threshold is still optimised when changing weights, as weighting
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changes the overall distribution of the scores. This means that to extensively search

for weights, optimal thresholds would have to be recomputed every time any of

the weights are changed, adding complexity. Overall, our experiments showed that

weighting techniques do not seem to be beneficial.

Our experiments assessing the possibility of using neural networks to perform

the technique combination show disappointing results for the performance of our

neural network. However, the model we used was extremely simple as we wanted

to ensure it was fast to implement and train and would provide a baseline for

comparison with our standard combination approach. Therefore, it’s likely the

results in this work are not representative of the maximum achievable using a

machine learning combination method, as it is entirely possible that larger more

complex models would perform better. Also, as mentioned in Section 3.6.2.5, the

manual creation of a labelled data set large enough to train a network on is not

feasible and, therefore, we had to make some assumptions and use technique scores

to label additional true positives and true negatives. This approach to creating a data

set is not perfect and some noise or bias may be introduced into the data set.

3.7.5 Interpretation

Our investigations into the causes of false negatives and false positives show

that the majority of these errors occur when our fundamental assumptions about

the relationships between tests and their tested functions are subverted. These

assumptions include the idea that test and tested function names should in some

way be similar, tests should execute their tested functions relatively frequently, and

tested functions should be high up in the call stack. These types of assumptions

help us craft our techniques and achieve good performance, however, as shown

by this analysis, there will always be examples where these assumptions do not

hold and TCTracer produces a false negative or false positive. Some of these

assumptions can be tested, such as in the case of call depth discounting, as discussed

in Section 3.6.5.

Finally, we gain some additional insights into the differences between subjects

by utilising the two categories of techniques, naming-based and statistical call-
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based techniques (SCTs), to provide a new interpretation of the results: We use

the naming-based techniques as a proxy for how well organised the test suites are,

the SCTs at the method level as a proxy for how coherent the tests are, and the SCTs

at the class level as a proxy for how cohesive the test classes are. This interpretation

of the naming-based techniques flows from the intuition that the better test suites

are organised, such as by maintaining simple one-to-one relationships between tests

and units-under-test, the better the naming techniques will perform. For the SCTs,

this interpretation comes from the fact that they are measures of how many different

units-under-test are called by an individual test unit and, thus, serve as a proxy

for method level coherence and class level cohesiveness. Using this interpretation,

we see that Commons Lang is the best organised and most coherent at the method

level, while Commons IO is the best organised and most cohesive at the class level.

Commons Lang scores poorly for the SCTs at the class level because some of its

test classes are large and contain many tests. Therefore, these test classes have lots

of calls to non-tested classes, introducing noise.

3.7.6 Comparison with Earlier Work

We attempted to compare our results to results from previous work. However,

the only two previous works on method level [Bouillon et al., 2007, Hurdugaci

and Zaidman, 2012] suggest all called methods in a test, leading to very low

precision. On the class level, we can compare our results as we have (in part)

reimplemented suggested approaches, namely NC and LCBA. Our results are

similar to [Rompaey and Demeyer, 2009], but direct comparison is not possible

as their ground truth is not available. Moreover, their techniques do not provide any

ranking over recommended links. They also evaluate combined techniques, but as

their ground truth has 100% precision and recall for NC, all combinations result in

lower accuracy. In comparison, our results show that a combination of techniques

outperforms individual techniques.

Previous work that is based on similarity between tests and units-under-

test [Kicsi et al., 2018, Csuvik et al., 2019a,b] use the NC results as a ground truth

and therefore cannot be directly compared to our study, however, their precision and



3.7. Discussion 95

recall values are lower than the ones from our class-level combined approach.

3.7.7 Traceability Integration

As shown in Figure 3.1, our approach can be easily integrated into the software

development process. TCagent is injected into the JUnit framework to collect the

necessary data which is then analysed by TCTracer at the end of a JUnit run to

generate the test-to-code traceability links which are ready to be used. TCagent

and TCTracer can be used inside the IDE via a framework like EzUnit [Bouillon

et al., 2007], allowing a developer to navigate between tests and tested code

quickly. TCTracer is also easy to integrate into a standard continuous integration

process [Shahin et al., 2017, Elsner et al., 2021]. This integration is made simple by

the fact that TCagent instruments the JUnit test suite and, therefore, the gathering

of dynamic trace information happens automatically during the testing stage. All

that remains is to add an extra step that executes TCTracer. The addition of this

step is easy in most modern continuous integration frameworks such as Travis CI14

and Jenkins15. The gathered traceability links can then be used to backtrack from

executed tests to the tested code or vice versa. Moreover, the traceability links are

constantly kept up-to-date as part of the continuous integration pipeline and are

readily available. For example, a developer can change code and corresponding

tests at the same time, ensuring their co-evolution. Also, further analysis of the

produced links can be performed as part of the continuous integration process, such

as automatically alerting developers when a function has no tests even if it is covered

(executed) during testing or identifying tests affected by a change for regression test

optimisation [Elsner et al., 2021]. Therefore, using TCTracer to automate test-to-

code traceability link capture through continuous integration can provide multiple

benefits and could be especially useful in safety-critical systems that are subject to

regulations requiring that traceability links are maintained [Cleland-Huang, 2012].

14https://travis-ci.org/
15https://jenkins.io/

https://travis-ci.org/
https://jenkins.io/
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3.7.8 Unit vs. Integration Testing

A further point of discussion is how TCTracer interacts with integration tests and

what the differences are between using TCTracer for unit tests and using it for

integration tests. Our approach targets traceability for unit tests. we excluded

some obvious integration tests from our evaluation as discussed in Section 3.6.1.

As Trautsch et al. [2020] conclude, there is no longer a clear distinction between unit

testing and integration testing in modern software testing, and the JUnit framework

is often used for both. Interestingly Orellana et al. [2017] use naming conventions

to distinguish unit and integration tests and Trautsch et al. [2020] use coverage

information for the same purpose, thus utilising techniques which are similar to

those we evaluate. Orellana et al. [2017] did find a difference between unit

and integration tests with regards to the time and developer coordination needed

to fix them but the findings were unintuitive as they found that unit tests took

more time and coordination to fix than integration tests. Given this, it may not

be easy to clearly define the differences one may find when using TCTracer

for integration tests versus unit tests. However, if we accept the fundamental

assumption that integration tests test more units than unit tests and may not have

as close a relationship to them, for example, not be as easily matched by name

similarity, intuitively, TCTracer may struggle to work with the same level of

precision. However, this is merely conjecture and would need to be validated with

experimental evidence but we are not aware of a ground truth that would allow this.

3.7.9 Takeaway Messages

The first key takeaway message is to use the combined score at both the method

and the class levels as it is the most consistent and performs the best in the majority

of cases. Secondly, we selected our thresholds for good generalisability so they

should be sufficient in the general case but if a ground truth is available for the

project under analysis, practitioners can tune the thresholds to their specific project.

The final takeaway is that, at the class level, static (name-based) techniques alone

are sufficient as adding dynamic techniques confers no benefit.

Method level traceability has recently become important for approaches that
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generate assert statements. However, current approaches use simple approaches

with low precision or recall that may affect the quality of the recommendations. For

example, Watson et al. [2020] use a static version of LCBA which in our evaluation

only achieved 63% precision and 62% recall. Another approach [Villmow et al.,

2021] use a name similarity based approach where from the called methods of a

test method the most similar name is assumed to be the tested method. The authors

report 94% precision over a random sample, but their approach was only able to

identify a tested method for 36% of tests (an upper limit for recall). As our approach

achieves significantly higher precision and recall, it has the potential to improve

recommendation approaches like ATLAS or CONTEST significantly.

3.8 Threats to Validity
This section describes the main external and internal threats to validity.

3.8.1 External Threats

The main threats to validity come from the subjects and the ground truth. Firstly,

the representativeness of the subjects is an external threat to validity as we have no

clear evidence as to how representative these subjects are of the general population

of software projects. However, the subjects that we have selected are widely used in

research and by practitioners and are large enough to demonstrate the applicability

of our approach to non-trivial systems.

While our work targets unit testing, JUnit is used for unit and integration

testing and therefore our evaluation includes both, unit and integration tests. The

presence of integration tests can be a challenge for traceability techniques as

discussed in Section 3.6.1. It would be interesting to separate integration tests and

unit tests in our evaluation, however, Trautsch et al. [2020] observe that the current

definitions of unit and integration tests may need to be reconsidered.

Finally, there is a threat to generalisability as our experiments only cover Java

projects that use the JUnit framework and we do not know how representative our

chosen projects are. Therefore, we do not have direct evidence that this approach

would apply to other languages or testing frameworks. However, in our estimation,
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there is nothing inherent in our approach that would prevent the application of the

TCTracer approach in other scenarios.

3.8.2 Internal Threats

The use of manual investigation for establishing the ground truth poses an internal

threat to validity as there is room for interpretation when determining which

functions or classes are tested by a test or test class. However, all judgements

were validated by more than one judge. For the method level ground truth,

three judges were used and a full inter-rater agreement was achieved. All of the

judges were students which may have introduced some bias but despite sharing the

student status, the judges were from varied backgrounds with significant previous

experience and there is no clear reason to believe their judgements on which

tests test which functions would be different to that of an average developer.

Additionally, as there was a meeting to discuss differences after each judge had

independently made their judgements, the process was not entirely independent.

However, the number of differences was small and the minimal changes enacted

in the meeting were the result of fixing mistakes rather than convincing judges to

change their judgements. At the class level, the majority of links were provided

by the developers and verified by a judge, and a small number of links (12) were

created by two judges, again with a full inter-rater agreement. As we are using

some developer created links, there is potential for a bias to be introduced due to

the selection of classes that were annotated by the developers. While a manual

inspection does not reveal any obvious bias, the existence of one cannot be ruled

out.

As with any approach that uses thresholds, the results are based on the chosen

values for the thresholds. While we attempted to choose good general thresholds,

different thresholds may lead to different results, observations, and conclusions.

3.8.3 Ethics

The ethics of analysing the subject systems and the extraction of traceability

links have been considered and are in line with the ethics of mining software
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repositories [Gold and Krinke, 2020]. The work presented in this chapter was

performed in line with research ethics at UCL [UCL Research Ethics Committee].

3.9 Related Work

Establishing and maintaining traceability links between tests and their tested

functionality has received significant attention as traceability links have multiple

applications in the software engineering process: determining which test cases

need to be rerun after a change has been made, maintaining consistency during

refactoring, and providing a form of documentation. Test-to-code traceability can,

for example, help to locate the fault that causes a test case to fail. Qusef et al.

[2014] describe these benefits in detail and [Parizi et al., 2014] present an overview

of the achievements and challenges of test-to-code traceability. Prior research has

investigated the use of gamification to improve manual maintenance of traceability

links [Parizi, 2016, Meimandi Parizi et al., 2015] but this approach has not seen

significant adoption.

At the method level, EzUnit [Bouillon et al., 2007] is a framework that allows

developers to annotate tests with links to the method-under-test. To do so, it

performs static analysis and identifies the methods called by a test which are

suggested for annotation. EzUnit highlights the linked methods when an error in

the test occurs. A similar tool is TestNForce [Hurdugaci and Zaidman, 2012] which

links tests to methods-under-test. Like our approach, tracing is used to identify the

methods that are called by a test. No further filtering is done and their approach will

thus include a large number of utility methods leading to low precision. Ghafari

et al. [2015] also work at the method level where they break down test cases into

sub-scenarios for which they attempt to establish the tested function, termed the

focal method. This is done using static data flow analysis. The results for this

technique are promising, however, two of the four subjects used for the evaluation

are very small (130 and 43 tests), while the other two are still smaller than our

smallest subject. As it is easier to achieve higher precision and recall on smaller

projects, due to fewer candidate links, the results cannot be directly compared to
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those presented in this chapter.

SCOTCH+ (Source code and Concept based Test to Code traceability Hunter)

is a traceability system introduced by [Qusef et al., 2014] that achieves better

accuracy and provides more benefit to developers than LCBA or NC [Qusef et al.,

2013]. SCOTCH+ applies dynamic slicing to identify a set of candidate tested

classes which it then filters using a textual coupling analysis called Close Coupling

between Classes (CCBC) and name similarity (NS) scores.

Other test-to-code traceability work is based on the assumption that a test

should be similar to a tested unit. Kicsi et al. [2018] explore the usage of Latent

Semantic Indexing (LSI) over source code to establish traceability links between

test classes and tested classes. They extract a ground truth from five open source

systems by extracting only the links between test classes and tested classes that

follow (exact) naming conventions. They report that the ground truth link is ranked

top between 30% and 62% and is present in the top 5 between 57% and 89%,

suggesting a low recall (precision is not investigated). Csuvik et al. [2019a] replaced

LSI with word embeddings within the same approach and report better precision

when using word embeddings (no investigation of recall has been done). They also

compare LSI, word embeddings and TF-IDF [Csuvik et al., 2019b] in the same way

and report that word embeddings perform best in terms of precision and recall.

While test-to-code traceability based on name similarity has good accuracy on

the class level as developers usually follow naming conventions for the test classes,

on the method level there exist various guidelines on how to name a test method.

Madeja and Porubän [2019] investigated 5 popular Android projects and found that

only 49% of tests contain the full name of the method-under-test in the test name

and that 76% of tests contain a partial name of a method-under-test in the test name.

Rompaey and Demeyer [2009] is the closest work to ours as they investigate six

traceability techniques to link test classes to classes-under-test over three projects

from which they extracted a ground truth of 59 links. They report perfect precision

and recall for the use of naming conventions, but report very low precision and recall

for using similarity (LSI) between test classes and classes-under-test. Rompaey
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and Demeyer investigate mostly static techniques and only use tracing to establish

LCBA. While they only investigate on the class level, we investigate dynamic

techniques on the class and the method level over much larger ground truths.

Gergely et al. [2019] do not extract links between units directly, but instead,

use clustering. The clustering is done with static (packaging structure) and dynamic

(coverage) analysis. The two sets of traceability clusters are compared and the

differences are manually analysed for producing the final traceability links.

Ståhl et al. [2017] focus on the deployment of traceability into continuous

integration and delivery systems. As part of this work they present an investigation

into existing needs and practices and propose a unified framework for integrating

traceability establishment into continuous integration systems. The investigation

into existing practices showed that there is a strong desire among developers for

the integration of automated traceability handing into build systems which is, in

large part, currently not being fulfilled. This demonstrates the demand for tools

such as TCTracer. Elsner et al. [2021] have used a subset of the techniques

we presented in their evaluation of regression test optimisation approaches in a

continuous integration setting.

Soetens et al. [2016] uses static and dynamic method invocations for de-

termining which tests need to be included in a regression test case run. This

problem is similar to that of traceability establishment and they experimented with

some existing traceability techniques in previous work. The TCTracer approach

could, therefore, also improve over these existing techniques when utilised for the

regression test selection use case. Conversely, the techniques developed by Soetens

et al. [2016] could be recast as a traceability recovery techniques and evaluated for

that use case.

A recent work [Aljawabrah et al., 2021] has also explored the visualisation

of traceability links as a way of assisting developers to utilise them and providing

the ability to see difference in predicted links between different techniques. This

further demonstrates the potential applicability of test-to-code traceability links and

the appetite for their usage.
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3.10 Conclusion
In this chapter, we have presented TCTracer, an approach and implementation for

establishing test-to-code traceability links at both the method level and class level.

TCTracer utilises a wide range of new and existing test-to-code traceability link

establishment techniques using dynamic and static information and enhances them

by combining them and applying them to both the method level and class level. This

makes TCTracer the first approach that establishes two types of links and utilises a

cross-level information flow. An empirical evaluation of TCTracer was conducted,

at both the method level and class level, with five real-world open source projects.

The results show that, on average, TCTracer is more effective at both the method

level and the class level than any single existing technique and at the class level

only static information is required to achieve the best performance. This makes

TCTracer the most effective approach for test-to-code traceability to date.



Chapter 4

Reuse of Unit Tests

Reuse is a core pillar of software development that delivers multiple benefits

including an increase in development productivity and a reduction in the cost and

development time of software projects. Reuse can also improve the quality of

the resultant software as reused artefacts tend to be more mature and well tested

than newly created artefacts. For example, developers often create new tests from

existing tests by copying and adapting them. However, reuse opportunities are often

missed due to the cost of discovering suitable artefacts to reuse.

Discovering relationships between artefacts facilitates reuse as software arte-

facts are linked to each other by their relationships, for example, a test for a function,

or a design artefact for a requirement. Revealing new connections between existing

artefacts can, therefore, be used to discover situations where artefacts may be

reused. For example, an existing test may be discovered and adapted to test a new

function, or an existing function may be discovered that can be adapted, or even

used directly, to fulfil a new requirement. The discovered relationships may also

be useful for traceability establishment, such as discovering which regulatory codes

are relevant to a particular requirement. Development artefacts form groups that

have both internal connections between artefacts of the same type, and cross-group

connections between artefacts of different types.

This chapter presents Rashid1, an abstract framework for facilitating the reuse

of software artefacts by modelling the relations between artefacts of two different

1Rashid (meaning “guide”): the Arabic name of Rosetta, the town where the Rosetta Stone was
discovered.
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types using what we define as an artefact relation graph: a graph with a bipartite

subgraph connecting the artefacts of the two types. We also present a tool, Relatest,

that instantiates Rashid and utilises the traceability links established by TCTracer

(presented in Chapter 3) to partially automate the reuse of existing unit tests.

Test reuse was selected to serve as the practical example for this approach as

many modern software systems struggle to maintain a high level of test coverage,

especially as projects grow in size and complexity. This is in part due to the heavy

burden that writing many unit tests places on the developers and the de-prioritisation

of this work in the presence of tight release deadlines. The failure to maintain an

adequate level of test coverage can result in large numbers of bugs going undetected

for long periods of time, jeopardising the correctness and reliability of the system.

Relatest assists in test reuse by using Rashid to discover existing tests that are

closely related to a new function and can therefore be recommended and adapted

to test the new function. When the recommended test is close to the needed

test, Relatest saves time and avoids introducing new faults that might have been

introduced if the developer had written a new test from scratch.

Relatest also provides a unique benefit over test generation tools in that the

recommended tests contain human written elements that are difficult or impossible

for test generation tools to produce, such as oracles and specific test inputs.

An investigation of the quality of Relatest’s recommendations showed that

developers consider 65% of its recommendations to be useful and, when using the

token-based edit distance to known tests as a proxy for effort, represent a 58%

reduction in developer effort versus writing tests from scratch. When considering

only top-ranked recommendations, the chance of being considered useful by a

developer rises to 91% and the reduction in developer effort rises to 66%. When

considering the rate of functions that receive recommendations, this results in a 43%

reduction in the total effort required to create tests. A user study revealed that, on

average, developers needed 10 minutes less to develop a test when given Relatest

recommendations and all developers reported that the recommendations were

useful. We demonstrate the applicability of Relatest in a real-world application
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by using Relatest to create twelve tests for a large open source project, yielding an

average 45% saving of effort.

The main contributions of this chapter are:

• Rashid, an abstract framework for the reuse of artefacts using artefact relation

graphs.

• Relatest, a instantiation of Rashid to recommend existing tests to be reused

for new functions.

• An evaluation of the effectiveness of Relatest which shows a 43% overall

reduction in effort to create tests across a project.

Our evaluation artefacts are available at:

https://figshare.com/s/2e54394880818d6d32dc.

public class Quarter {
…

public RegularTimePeriod next() {
Quarter result;
if (this.quarter < LAST_QUARTER) {

result = new Quarter(this.quarter + 1, this.year);
} else {

if (this.year < 9999) {
result = new Quarter(FIRST_QUARTER, this.year + 1);

} else {
result = null;

}
}
return result;

}
…

public class Month {
…

public RegularTimePeriod next() {
Month result;
if (this.month != MonthConstants.DECEMBER) {

result = new Month(this.month + 1, this.year);
} else {

if (this.year < 9999) {
result = new Month(MonthConstants.JANUARY, this.year + 1);

} else {
result = null;

}
}
return result;

}
…

𝑓!

public class QuarterTest {
…

public void testNext() {
Quarter q = new Quarter(1, 2000);
q = (Quarter) q.next();
assertEquals(new Year(2000), q.getYear());
assertEquals(2, q.getQuarter());
q = new Quarter(4, 9999);
assertNull(q.next());

}
…

𝑡"
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Similarity Link

Recommendation
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public class MonthTest {
…

public void testNext() {
Month m = new Month(1, 2000);
m = (Month) m.next();
assertEquals(new Year(2000), m.getYear());
assertEquals(2, m.getMonth());
m = new Month(12, 9999);
assertNull(m.next());

}
…

𝑡!

Manual Transformation

New Traceability Link

New Function

Existing Function

Existing Test

New Test

𝑓"

Figure 4.1: Unit Test Recommendation using Relatest.

4.1 Approach
This section presents the approach of Rashid and its realisation in Relatest. The

overall idea of Rashid is to use existing relationships between the artefacts of two

domains and the domain-intrinsic relationships between the artefacts to recommend

https://figshare.com/s/2e54394880818d6d32dc
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new relationships across the two domains. For example, if two artefacts are related

across domains, then a relationship to similar artefacts is recommended.

4.1.1 Example

Figure 4.1 shows how test reuse through Relatest can be applied to a real-world

example from the JFreeChart system. In this example, the developer has just

implemented a new function ( f2) implementing next for a new class and requires a

new unit test for it. Without Relatest, the developer would need to either write the

new test from scratch or manually search through a potentially very large codebase

to find an appropriate test to reuse: both time consuming and repetitive tasks.

Relatest streamlines this process by finding f1, a function similar to f2 (actually

implementing next in a different class) in the corpus and exploiting the traceability

link between f1 and t1 (the unit test testNext) to recommend t1 to the developer

as the starting point for a test for f2 (the new unit test). In Figure 4.1 the developer

needs only to make a few edits to transform t1 (the old unit test) into the new test t2 to

test f2 and all but one of the changes (marked in bold) are simple type replacements

or variable renames to match the new type.

4.1.2 Artefact Reuse Framework

Figure 4.2 illustrates Rashid, which utilises an artefact relation graph to model the

intra- and inter-domain relationships for a set of artefacts over two distinct domains.

The artefact relation graph is defined as G = (V1,V2,E1,E2,EB,EP) where V1 and

V2 are the sets of vertices representing the artefacts in domain 1 and domain 2

respectively; E1 is the edge set that contains the edges between the vertices in V1,

and E2 is the edge set that contains the edges between the vertices in V2. E1 and E2

model the intra-domain relationships between the artefacts. EB is the edge set that

contains the edges of the bipartite subgraph, that is the edges between the vertices

in V1 and the vertices in V2. EB models the inter-domain connections between the

artefacts. EP is a set of predicted bipartite edges that we will construct using E1,

E2, and EB.

To construct E1, E2, and EB, we define three binary relations (R1,R2,RB), one
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Figure 4.2: Artefact Reuse Framework.

for each of the three edge sets, such that two vertices will be connected by an edge

if they satisfy the relation. For E1: (v,v′) ∈ E1 if vR1v′ (v,v′ ∈ V1). For E2: (v,v′) ∈

E2 if vR2v′ (v,v′ ∈ V2), and for the bipartite edges EB: (v,v′) ∈ EB if vRBv′ (v ∈

V1,v′ ∈ V2). In the case of R1 and R2, the relation is defined over pairs of the

same specific type of artefact. For example, for code artefacts, the relation may be

similarity, where the vertices representing two functions satisfy the relation if the

code similarity between the artefacts is above a certain threshold.

The relation RB that constructs the bipartite edge set EB is over pairs of

artefacts of different types and will therefore be defined in terms of a traceability

technique that establishes links between artefacts of the two types, for example

naming conventions [Rompaey and Demeyer, 2009] for test-to-function links, or

a tracing network for requirement-to-design-element links [Guo et al., 2017]. The

relation would then be satisfied if the artefacts represented by the two vertices were

identified as linked by the traceability technique.

After E1, E2, and EB have been constructed, Rashid predicts a set of new

edges EP. The edges in EP can reveal inter-domain artefact connections that could

not be discovered otherwise. The newly revealed connections present opportunities

to reuse artefacts but can also be considered as predicted traceability links and

therefore used as a method for combating the missing link problem in traceability.

Since the edge prediction is being performed over a bipartite subgraph, the

edge prediction techniques that can be applied are not limited to only those

applicable in strictly bipartite graphs, as the non-bipartite edges provide extra
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Figure 4.3: Example framework instantiation for Relatest.

information. This means that almost any edge prediction method can be used,

including neighbourhood methods, such as Common Neighbours and Jaccard’s

coefficient [Nigam and Chawla, 2016], path methods, such as Page Rank [Liben-

Nowell and Kleinberg, 2007], or supervised machine learning [Benchettara et al.,

2010]. The edge prediction method used in Figure 4.2 is a neighbourhood method

that predicts a bipartite edge in EP where the addition of that edge creates a semi-

bipartite 3-vertex clique, consisting of two vertices from the same domain and one

vertex from the other domain. This clique forms an inter-domain triangle and this

method will be referred to as the triangle method hereafter. Simplified, an edge

(v,v′) is added to EP if vR1v′′RBv′.

4.1.3 Relatest

Figure 4.3 shows how the Relatest approach uses Rashid to make test recommen-

dations for functions. Relatest utilises a code corpus consisting of a set of unit tests

T = {t1, t2, ...tn}, where n is the total number of test functions, and a set of functions

F = { f1, f2, ... fm}, where m is the total number of functions. This corpus is used to

build a set of traceability links L that maps tests to tested functions:

L = {(t, f ) ∈ T ×F | t tests f } (4.1)

When we want to make recommendations for a new function, hereafter referred

to as the query function fq, we instantiate Rashid so that V1 contains a vertex for

each function in F ∪ { fq}, and V2 contains a vertex for each test in T . The relation
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R1 for building the edge set E1 is a similarity relation, where R1 is satisfied by a

pair of vertices (v ∈ V1,v′ ∈ V1) if the function represented by v and the function

represented by v′ are similar to each other above a certain threshold, formally

vR1v′ if sim(A(v),A(v′)) ≥ τ, where A(v) returns the artefact represented by vertex

v, sim(a1,a2) returns the code similarity between artefacts a1 and a2, and τ is a

similarity threshold. The technique used for implementing the similarity function is

dependent on the implementation and is discussed in Section 4.2.2. E2 is assigned

the empty set as in this instance we do not use intra-domain edges in the test domain.

The relation RB used to construct the inter-domain edges EB is defined using

the traceability link set L so that a pair of vertices (v,v′) where v,v′ ∈ V1∪V2 satisfy

the relation if the artefacts represented by those vertices are linked in L, formally,

vRBv′ if (A(v),A(v′)) ∈ L.

Now that we have E1, E2, and EB, we apply the triangle method for bipartite

edge prediction, as described in Section 4.1.2, to construct our set of predicted edges

EP. The set EP links all functions to the tests of similar functions.

We use the completed artefact relation graph to discover recommendations by

constructing a ranked list of recommendations R( fq) for our query function fq. First,

we build a list S ( fq) which ranks the functions that are neighbours of fq in the graph

in descending order of similarity to fq so that:

∀
1≤i<|S ( fq)|

sim( fq,S ( fq)i) ≥ sim( fq,S ( fq)i+1) (4.2)

Where sim( f1, f2) is the similarity between f1 and f2.

Given the list of similar functions S ( fq) and the inter-domain edges, the

recommendation list is built by iterating through the elements of S ( fq) and for each

member f ∈ S ( fq) constructing the set of tests T f that are neighbours with f :

T ( f ) = {t ∈ T | ∃(V( f ),V(t)) ∈ (EB∪EP)} (4.3)

Where V(a) returns the vertex representing artefact a.

The elements in T ( f ) are added to R( fq) until T ( f ) has no more elements or
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Figure 4.4: System diagram. T is all tests from the corpus, F is all functions from
the corpus, L is all traceability links, fq is the query function, S ( fq) is the
list of functions similar to the query function, and R( fq) is the list of test
recommendations for fq.

because we also want to place an upper bound k on the size of the recommendation

list, if |R( fq)| = k. Otherwise, the next element in S ( fq) is selected and the process

continues. Once this process terminates, the recommendation list R( fq) is presented

to the user.

4.2 Implementation
Figure 4.4 shows the overall architecture of Relatest. The core of Relatest is

comprised of two component groups; the data store and the query processing. The

data store builds and maintains the corpus of existing functions and tests, establishes

test-to-function traceability links from the code corpus, and stores those links in the

traceability link database. Query processing takes the query function, discovers

similar functions, and builds the test recommendations. The UI allows the user

to specify the locations of the existing code to add to the corpus, input the query

function, and view the recommendations. To discover similar functions, one may

rely on clone detectors that build a clone index over existing code.

One key distinction between the data store and query processing is that the data

store is constructed once and only updated when the user changes the existing code.

The query processing components are invoked for every individual query.

4.2.1 Data Store: Traceability Link Establishment

The correct selection and configuration of the traceability link establishment

method is of high importance as it has a large impact on the performance of the
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system. Given this, we selected a state-of-the-art test-to-code traceability tool,

TCTracer [White et al., 2020], to generate the traceability links. TCTracer

implements a set of traceability techniques that use dynamic information from

both the method and class levels gathered during the execution of test suites to

create links between tests and tested functions along with test classes and tested

classes. In Relatest, we utilise the method level links produced using the LCS-B

technique which utilises the distances between the names of tests and the names of

executed functions to make predictions as to which functions are tested functions.

The distance is measured based on the longest common subsequence (LCS) in both

names. We chose to use LCS-B as it has high recall with good precision and high

recall is important for Relatest because if we do not have any traceability links for

a test we cannot use it as a recommendation.

The first time Relatest is run on a new project, the output from TCTracer is

parsed and then stored in the traceability link database. The traceability database is

refreshed only when a project is added or removed from the corpus, ensuring that

the expensive operations involved in building the traceability links are only executed

when necessary.

4.2.2 Query Processing: Similar Code Discovery

The measure that we have used to implement the similarity function sim( f1, f2)

is based on the Jaccard index [Jaccard, 1901]. This measure was selected as the

Jaccard index is a widely accepted language-agnostic measure of similarity and

a recent investigation [Ragkhitwetsagul et al., 2017] show that textual similarity

measurements can perform well on source code with modifications. Using the

framework from Ragkhitwetsagul et al. [2016], Ragkhitwetsagul et al. [2017], we

have confirmed that using the Jaccard index over 3-grams as implemented in the

Java String Similarity library2 performs better than most of the 30 algorithms as

given in the paper (the framework reports a precision of 0.891 and an accuracy of

0.884).

The pair-wise Jaccard index method finds every existing function in the corpus

2https://github.com/tdebatty/java-string-similarity

https://github.com/tdebatty/java-string-similarity


4.3. Evaluation 112

that is a member of at least one traceability link and adds it to S ( fq) if the similarity

to the query function is greater than or equal to a certain threshold τ (function f ∈ L

is added to S ( fq) if sim( f , fq) ≥ τ). S ( fq) is then ranked by these similarity scores.

Pair-wise Jaccard index may become too expensive for a large corpus of many

projects so one may substitute the pair-wise comparison with a scalable clone

detector to create a clone index from which similar functions can be retrieved

instantly. The corpus used in the evaluation is sufficiently small that the substitution

with a clone detector is not necessary. Moreover, using Jaccard we establish a

baseline which is not affected by implementation details of a clone detector as

different clone detectors may produce very different results.

4.2.3 Query Processing: Recommendation List Construction

Given the ranked list of similar functions S ( fq) that has been constructed by the

similar code discovery, the recommendation list R( fq) is constructed using the

algorithm in Figure 4.5. The function append(R( fq), t) appends test t to the end

of the list R( fq) and truncate(R( fq),k) truncates the list R( fq) to length k. This

algorithm uses the ranked list of similar functions to the target function and the

set of traceability links to build a recommendation list by iterating through the

similar functions and, for each function, adding the tests linked to that function

to the recommendation list. If necessary, the recommendation list is truncated to

the given maximum length at the end of this process.

4.3 Evaluation
We now present our research questions, the design of the experiments carried out to

answer them, and the results.

Experimental Setup To carry out the experiments, we first establish the sets of

test-to-function traceability links for all projects using TCTracer, as described in

Section 4.2.1. We then take the functions that are a member of at least one trace-

ability link as the query functions – the functions we are making recommendations

for. The maximum recommendation list size was set to five as it has been shown

that the average person is only able to reason about five to nine different items
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Input: The set of traceability links L, The ranked list of existing similar
functions S ( fq), The max length of recommendation list k

Result: A list of recommendations R( fq) for the query function
R( fq)← ∅;
i← 0;
(s1, ..., sn)← S ( fq);
while |R( fq)| < k do

foreach t ∈ {t ∈ T | (si, t) ∈ L} do
append(R( fq), t);

end
i← i + 1;

end
if |R( fq)| > k then

truncate(R( fq),k);
end

Figure 4.5: Recommendation List Construction.

at a given time [Miller, 1956]. We chose to stay at the bottom of that range as test

recommendations can be relatively complex and may take some time for a developer

to assess.

Corpus For our corpus, we selected four well known open source projects that

are written in Java and utilise the JUnit testing framework as subject projects:

Commons Collections, Commons IO, Commons Lang, and JFreeChart. These

subjects were selected as they are well known, widely used, and sufficiently large

to demonstrate the applicability of Relatest to real-world systems. Three of the

subject systems have been used in the TCtracer evaluation [White et al., 2020] and

we added Commons Collections to increase the size and diversity of the subject

sample. To filter out empty tests, we define a minimum test length θ in terms of

lines of source code and set it to three.

Table 4.1 gives the following information about the subjects:

• Version (Ver.): The version that was used.

• Number of Functions (F): The total number of functions.

• Number of Tests (T): The total number of JUnit tests.
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Table 4.1: Subject statistics.

Project Ver. F T IC BC |FQ|

Commons Collections 4.1 4132 2819 84% 78% 1063
Commons IO 2.4 1187 1430 89% 87% 690
Commons Lang 3.7 3169 3556 95% 90% 2033
JFreeChart 1.0.19 9061 2502 52% 45% 2179

• Instruction Coverage (IC): The total instruction coverage provided by the

JUnit tests – measured with Jacoco3.

• Branch Coverage (BC): The total branch coverage provided by the JUnit tests

– measured with Jacoco.

• Number of Queries (|FQ|): Number of query functions for each project.

4.3.1 RQ1 (Intra-project Recommendations):

What performance is achieved by the tool when recommending tests from the same

project as the query function?

We perform an investigation to evaluate the usefulness of the recommendations

in an intra-project scenario, where the recommendations come from the same

project as the query function. The evaluation uses the token-based Levenshtein edit

distance between the recommendations and the tests linked to the query function to

determine the usefulness of the recommendations. To compute this, we tokenise the

code using JavaParser and calculate the Levenshtein edit distance between the two

tests being compared.

To perform the evaluation we use the following process for each project:

First we construct the set of test-to-function traceability links L as shown in

Equation (4.1). We then use L to construct the set of functions FQ that are a member

of at least one traceability link FQ = { f | ∃( f , t) ∈ L}, these functions are used as the

query functions. Then, for each query function fi ∈ FQ, we construct the set of test

recommendations TR( fi) for that function and the set of linked tests TL( fi) for that

function TL( fi) = {t | ( fi, t) ∈ L}. Then for each member of TR( fi) the average edit

3https://www.jacoco.org/jacoco/

https://www.jacoco.org/jacoco/
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distance to the members of TL( fi) is computed. This provides a measure of how

close to the actual tests each test recommendation is, and therefore also provides an

approximation of the amount of manual effort that would be required for a developer

to turn the recommendation into a working, useful test. To avoid biasing the results,

we ensure that TR( fi) does not contain any elements of TL( fi) by skipping any tests

in TL( fi) when we build the recommendation list. Table 4.1 shows the number of

query functions (|FQ|) for each project.

Table 4.2 presents the results for the following measures:

• Rank (Rank): The rank in the recommendation lists that the recommendations

come from.

• The Number of Recommendations (NR): The number of test recommenda-

tions made.

• Average Recommended Test Length (ARTL): The average length in tokens

of the recommended tests.

• Average Known Test Length (AKTL): The average length in tokens of the

known tests for the query functions.

• Median Average Edit Distance (MAED): The median of the average token-

based edit distances between each recommendation and the known tests for

the query function.

• Average Relative Distance (ARD): The median average token-based edit

distance (MAED) divided by the average length of the known tests (AKTL)

for the query functions.

• Average Edit Distance Standard Deviation (AEDSD): Standard dev. of the

average token-based edit distances.

As the Median Average Edit Distance (MAED) and the Average Relative

Distance (ARD) measure the token-based difference between the recommendations

and the known desired tests, they can be seen as an approximation for the effort
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required by the developer to adapt the recommendations to the desired tests versus

writing the tests from scratch. This is discussed further in Section 4.3.8.

Findings The results show that, firstly, the recommendations at rank 1 in the lists

were consistently the best performing in terms of average relative distance, with a

maximum of a 17% improvement over the rank 2 recommendations, and that the

quality (average relative distance) of the recommendations consistently decreases

as the rank increases. As every list has a rank 1 recommendation, we can say that,

in the average case, if recommendations are found, the developer will only have

to expend 34%4 of the effort required to adapt the rank 1 recommendation for use,

as opposed to writing a test from scratch. This result is computed by taking the

average of all the average relative distances (ARD) for the rank 1 recommendations

for all projects, which is the proxy that we use for developer effort. From looking

at the number of rank 1 recommendations generated and the total number of query

functions, we can see that 75% of the query functions received recommendations.

Further discussion of the results and their implications is presented in Section 4.3.8.

4.3.2 RQ2 (Inter-project Recommendations):

What is the effect on the performance of the tool when incorporating other projects

into the corpus?

For RQ2 we perform the evaluation in the same fashion as for RQ1 except

that, as we are now testing inter-project recommendations as well, the corpus used

by Relatest for making recommendations contains all subject projects. Table 4.3

presents the results for the same measures as in RQ1.

Findings The results show very little difference from the intra-project recommen-

dations in RQ1 and where differences do occur the results tend to be slightly worse

more often than they are slightly better. The reasons for this are discussed in

Section 4.3.8.

4the average ARD using rank 1 recommendations
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Table 4.2: RQ1 – intra-project recommendations results.

Rank NR ARTL AKTL MAED ARD AEDSD

C
om

m
on

s
C

ol
le

ct
io

ns

1 752 326 326 150 46% 267
2 622 302 319 167 52% 257
3 514 294 314 178 57% 280
4 420 303 300 172 58% 272
5 344 265 296 157 53% 255

All 2652 302 314 164 52% 256

C
om

m
on

s
IO

1 487 266 231 81 35% 245
2 403 243 219 114 52% 261
3 343 240 210 110 52% 348
4 294 220 209 109 52% 306
5 253 196 200 113 56% 170

All 1780 238 216 105 49% 347

C
om

m
on

s
L

an
g

1 1592 264 245 59 24% 313
2 1442 251 240 67 28% 265
3 1340 247 235 70 30% 265
4 1208 249 226 71 31% 272
5 1133 246 223 76 34% 309

All 6715 252 235 68 29% 293

JF
re

eC
ha

rt

1 1669 250 261 85 33% 344
2 1537 241 262 92 35% 447
3 1417 216 263 98 37% 301
4 1285 212 263 101 38% 355
5 1196 238 268 125 47% 327

All 7104 232 263 99 38% 325

4.3.3 RQ3 (Recommendation Evaluation):

To what extent does edit distance to known tests predict the usefulness of a

recommendation to a developer?

We perform an investigation to determine the relationship between edit dis-

tances and the perceived usefulness of the recommendations to a developer. We

first establish a range of edit distances from 0 to 1000 and split this range into

ten bands. We then organised all recommendations into their respective bands and

uniformly sampled 50 recommendations from each band for manual evaluation.

The recommendations were classified by a judge as either true positive (a useful

recommendation), or false positive (not a useful recommendation). The classified
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Table 4.3: RQ2 – inter-project recommendations results.

Rank NR ARTL AKTL MAED ARD AEDSD

C
om

m
on

s
C

ol
le

ct
io

ns

1 754 327 326 151 46% 268
2 625 301 319 168 52% 257
3 519 293 314 178 57% 279
4 425 305 300 174 58% 275
5 350 263 296 158 53% 254

All 2673 302 313 164 52% 256

C
om

m
on

s
IO

1 488 266 230 81 35% 246
2 405 242 218 114 52% 260
3 344 240 209 111 53% 348
4 294 220 209 109 52% 306
5 253 195 200 113 56% 170

All 1784 238 215 105 49% 347

C
om

m
on

s
L

an
g

1 1598 245 245 60 25% 313
2 1452 250 239 68 28% 264
3 1347 246 235 71 30% 266
4 1213 249 226 72 32% 272
5 1139 246 223 77 34% 309

All 6749 252 235 68 29% 293

JF
re

eC
ha

rt

1 1669 261 261 85 33% 344
2 1537 241 262 92 35% 447
3 1417 216 263 98 37% 301
4 1285 212 263 101 38% 355
5 1196 238 268 125 47% 327

All 7104 232 263 99 38% 325

recommendations were then used to compute the precision (true positives / number

recommendation samples) for each band. As usefulness is inherently subjective, the

judge had to establish some criteria by which they would determine if a recommen-

dation would reduce the time/effort of writing a test or improve the quality of the

resulting test. The criteria included looking for elements in the recommendations

that exactly matched or were close to the elements that would be required in a final

test. These elements included asserts, function calls, control flow statements, and

object declarations/initialisations. Where an element of the recommendation did

not match exactly a required element, if only a minor change was required, e.g.,

simply changing an identifier, type name, or value, the element was still considered
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Table 4.4: RQ3 – manual recommendation validation.

Avg. Edit Distance Samples TP FP Precision

1–99 50 45 5 90%
100–199 50 41 9 82%
200–299 50 32 18 64%
300–399 50 38 12 76%
400–499 50 36 14 72%
500–599 50 37 13 74%
600–699 50 39 11 78%
700–799 50 33 17 66%
800–899 50 33 17 66%
900–1000 50 28 22 56%

useful. To cross-validate the judgements, a second judge evaluated a sample of 100

of the same recommendations and the inter-rater agreement between the judges was

computed using Fleiss’ kappa [Fleiss, 1971].

Findings The results, as reported in Table 4.4, show firstly that the large majority of

recommendations which achieve an average edit distance of less than 200 are judged

to be useful, with an average precision of 86%. In contrast, the recommendations

which have an average edit distance of over 900 are less likely to be judged

as useful, with only 56% precision. Between these two extremes, the precision

of the recommendations hovers between the mid-sixties and mid-seventies. The

consequences of these results in the context of the RQ1 and RQ2 results is discussed

in Section 4.3.8. The inter-rater agreement between the judges was κ = 0.43, which

is interpreted as “moderate agreement”.

4.3.4 RQ4 (Benefit of Using Relatest):

What benefit does using Relatest provide in real-world test creation tasks?

For RQ4 we conducted a user study in which we presented four unit test

creation tasks to a set of developers. For each task, we asked the developers to

create a JUnit test for a target function that was selected randomly from our subject

projects (trivial functions such as getters and setters were ignored). The participants

were provided with a dedicated interface in which, for each task, the participants

were given the fully qualified name and source of the target function and anywhere
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between zero and five Relatest recommendations for the target function in the

ranked order produced by Relatest. The source code for the project of the target

function was also given to the participants to simulate a real development scenario

and the existing tests for the target functions of all tasks were removed to stop the

participants simply copying the existing tests. The participants were asked to write a

test for the target function and rate any recommendations that had been provided as

either useful or not useful. The ability to run the written tests and receive the output

was also provided and the participants were encouraged to not submit tests that did

not pass. A link to the JUnit documentation was also provided to the participants

and no time limit was imposed on the tasks.

To evaluate the effect of using Relatest, we split the participants into two

groups and gave group one Relatest recommendations for the first and third tasks,

while group two was given Relatest recommendations for tasks two and four. The

other two tasks had to be done without a provided recommendation (tasks two and

four for the first group and tasks one and three for the second group). This allowed

us to compare the tests created by the participants when they had recommendations

versus when they had no recommendations.

The participants consisted of 17 computer science students, 16 at masters level

and one at undergraduate level, with 9 participants assigned to group one and 8

assigned to group two. We collected information on the level of experience of the

participants (Table 4.5). For the evaluation, we measured the median time taken

to complete each task both with and without Relatest recommendations. We also

asked the participants to rate each recommendation as either useful or not useful.

We conducted the study over multiple sessions, using the first session as a pilot

to determine if we needed to change the design. We did not deem it necessary to

change the design as the results on four tasks revealed a noticeable difference. The

desired outcomes and the practicalities of conducting a user study in a lab setting

with supervision informed the study design, e.g., we limited the number of tasks to

four to keep the participant’s time commitment to reasonable 2–3 hours.
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Table 4.5: Experience levels of user study participants.

Programming Experience (years) None < 1 1–3 > 3

Total Programming Exp. 0% 7% 40% 53%
Java Programming Exp. 0% 27% 47% 27%
Industrial Programming Exp. 20% 47% 27% 7%

Table 4.6: RQ4 – Median time taken in seconds for the task completion.

Task 1 2 3 4

With Recommendations 1766 549 795 708
Without Recommendations 2769 808 1324 1082

Findings The results for the task timings in Table 4.6 show that there is a clear

difference in the median time taken to complete the task when recommendations

are provided. On average, there is a 541 second difference in the median time

taken to complete a task, representing a saving of almost 10 minutes to create a

test when recommendations are provided. We performed a Wilcoxon signed-rank

test (α < 0.05) to assess if the time-to-complete the user study tasks with Relatest

recommendations is significantly lower than the time-to-complete them without

recommendations; the difference is significant with a p-value of 0.034. The results

for the participants ratings of recommendations, as reported in Table 4.7, show that

at rank 1, the recommendation that Relatest judges to be best, we achieve a 91%

useful rating. At lower ranks we see that percentage drop to between 50% and 62%,

demonstrating that the majority of recommendations are still seen as useful at lower

ranks.

4.3.5 RQ5 (Developer Opinions of Relatest):

What are the opinions of developers that use Relatest?

Table 4.7: RQ4 – Developer ratings of Relatest recommendations.

Rank 1 2 3 4 5

Total Rec. 34 34 26 26 18
Useful Rec. 31 21 13 16 11
Percent Useful 91% 62% 50% 62% 61%
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Table 4.8: Questionnaire – answers to test development practice question: ”While develop-
ing without a test recommendation tool, do you typically write tests from scratch
or use existing tests as a template?”.

I usually write tests from scratch 27%
I usually use an existing test as a template 47%
I usually write tests from scratch, but I look at other tests before 27%

Table 4.9: Questionnaire – Relatest usage question.

Overall, did the recommendations Yes 100%
help you complete the tasks? No 0%

If freely available, Always 13%
how often would you use Most of the time 34%
Relatest or a similar tool Some of the time 27%
in normal development? Rarely 13%

Never 13%

For RQ5, we conducted a questionnaire with fifteen of the seventeen devel-

opers that participated in the RQ4 user study. As part of this questionnaire, we

asked the participants to state if they believed that the recommendations helped

them complete the task and if they would use Relatest in their typical development

workflow were it to be freely available (Table 4.9). We also asked if the developers

were already using existing tests as templates when creating a new test to determine

how easily Relatest could be adopted by developers (Table 4.8). The intuition

for this question is that if developers are already searching for existing tests to

use as templates, it would not be a big change for them to use Relatest and they

would be more likely to adopt it. The questionnaire was administered immediately

after the participants completed the user study tasks so that they were fresh in their

mind. Two of the participants did not complete the questionnaire and thus were not

included in the results.

Findings The results for the questionnaire (shown in Tables 4.8 and 4.9) show that

all participants believed that the recommendations were useful and that 74% would

use Relatest in normal development at least some of the time, with 47% saying they

would use it most or all of the time. As for their current development practices, 74%

used existing tests in some capacity when creating new tests.
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4.3.6 Real-world Applicability Example

To help demonstrate applicability, we used Relatest to create a set of new tests

for a large open source system. We measured the reduction in effort achieved by

using Relatest versus writing the tests from scratch using the token-based edit

distance, in the same way as the research questions. To select a suitable system

to generate tests for, we used SonarCloud [SonarCloud, 2022] to create a set of

projects which fulfilled the criteria of being currently active (last analysed within

the previous week), having the appropriate level of test coverage (30% to 70%),

and being of adequate size (over 100k lines of Java code). We then randomly

selected and inspected the projects from this set to find an appropriate untested

class as a target to generate new tests for. To do this we used the “Explore”

section of SonarCloud to browse the set of open source projects that use SonarCloud

and set the filters to match our selection criteria. This allowed us to extract a

list of projects that satisfied the criteria and then perform a random selection by

assigning a number to each project and using a random number generator to pick

the numbers. Our criteria for target class selection included looking for a class

that contained approximately ten uncovered methods that were neither trivial, such

as getters/setters, nor overly complex, such as graphics rendering methods. Using

this process we selected the SmsUtils class from the District Health Information

Software 2 (DHIS2)5 project, which contains 12 such methods. Relatest was

used to generate the recommendation lists for each of these methods and the best

recommendation was selected and transformed into a test for that method. These

new tests were submitted to the project in a pull request, which has been merged. We

computed the absolute and relative token-based edit distance, in the same manner

as the research questions, between the recommendations and the final tests. This

showed an average absolute edit-distance of 12 tokens and an average relative

edit-distance of 0.55. This means that, on average, 12 tokens were changed in

a recommendation to produce a final test, an average of 55% of the tokens in a

recommendation.

5https://github.com/dhis2

https://github.com/dhis2
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4.3.7 Edge Prediction Technique Comparison

The Rashid framework is compatible with any bipartite edge prediction technique

for generating the predicted edge set; therefore we must select which of these

techniques to use for Relatest. As discussed in Section 2.5 there are many

different techniques for performing bipartite edge prediction including neighbour-

hood methods, path methods, and machine learning. The triangle method, which

was ultimately selected for use in our approach, was also our initial approach

as it reflects our intuition on how the recommendations should be informed by

the relationships between the artefacts. We validated this choice by comparing

the results obtained using the triangle method with several other bipartite edge

prediction techniques, specifically spectral clustering, matrix factors learning, and

cross-graph learning.

In order to compare these techniques to the triangle method we present a subset

of measures from the full evaluation that can efficiently illustrate the important

differences in performance between the techniques, specifically, the number of

recommendations produced and how much effort these recommendations save.

We calculate these measures both for recommendations at rank 1 only, and for

recommendations at all ranks:

• The number of Recommendations (NR @ R1) – The number of test recom-

mendations made at rank 1 in the list.

• Average Relative Distance (ARD @ R1) – The average relative effort, as

described in Section 4.3, when considering the rank 1 recommendations.

• The number of Recommendations (NR @ R-All) – The number of test

recommendations made at all ranks.

• Average Relative Distance (ARD @ R-All) – The average relative effort, as

described in Section 4.3, when considering the recommendations from all

ranks.

The baseline results provided here differ from the results provided in section 4.3

as these experiments were conducted prior with different parameter values, such
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as the similarity threshold. However, as these values were consistent throughout

these experiments the results still serve to provide a fair comparison to the other

techniques. The approach and findings for each technique is presented below, with

a general discussion of the results provided in Section 4.3.8.

4.3.7.1 Matrix Factors Learning

The matrix factors learning technique was adapted from one typically used in the

field of collaborative filtering [Koren et al., 2009] where the goal is to predict

a users rating for a given product based on their ratings for other products. In

our formulation the products are replaced with tests, the users are replaced with

functions, and the ratings signify the relevance of a test to a function.

The goal is to learn a factor vector for each function and test such that r̂ui =

qT
i pu where qi is the vector representing test i, pu is the vector representing function

u, and r̂ui is the predicted relevance of test i to function u. These vectors are learnt

by minimising the loss function in Equation 4.4 by stochastic gradient decent. The

training data is the known bipartite edges in the EB edge set.

min
q,p

∑
u,i∈κ

(rui−qT
i pu) + (‖qi‖2 + ‖pu‖2) (4.4)

The results for this technique compared to the baseline of the triangle method

are presented in Table 4.10 which shows the performance of both techniques over

the evaluation data used in RQ1.

Findings The triangle method outperforms matrix factors learning in all measures

as the triangle method consistently achieves better average relative effort while

finding a similar number of recommendations.

4.3.7.2 Spectral Clustering

We applied spectral clustering to bipartite edge prediction by constructing a product

graph over the two unipartite graphs: the function similarity graph G and test

similarity graph H, so that each possible bipartite edge between the vertex sets in G

and H is encoded as a vertex in the product graph P . We then cluster the vertices in

P into two clusters and mark the cluster that contains the most vertices representing
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Table 4.10: Comparison of Matrix Factors Learning to Triangle Method over Commons
Collections.

Triangle Method Baseline
Project NR @ R1 ARD @ R1 NR @ R-All ARD @ R-All

Commons Collections 228 28% 594 39%
Commons Lang 1007 27% 3962 30%
JFreeChart 945 35% 3893 41%

Matrix Factors Learning
Project NR @ R1 ARD @ R1 NR @ R-All ARD @ R-All

Commons Collections 288 41% 1440 56%
Commons Lang 986 65% 4725 62%
JFreeChart 889 109% 4413 104%

bipartite edges in EB as the predicted true edge set, while the other is marked as

the predicted false edge set. The product graph is constructed using the Kronecker

(Tensor) product, as shown in Equation 4.5, where ⊗ is the kronecker product, G

is the weight matrix of G, H is the weight matrix of H, and P is the weight matrix

of P , which is used to represent it. This approach to constructing the product graph

was informed by Liu and Yang [2015].

P = G⊗H (4.5)

However, these product graphs have the problem that they are extremely large

for any non-trivial software system as the number of vertices in the product graph

is the product of the number of vertices in each of the unipartite graphs |VP| =

|VG | ∗ |VH |. This problem is compounded by needing to use the weight matrix of the

product graph, thus needing a matrix of size |VP| ∗ |VP|. For example, when applying

this to the Commons Collections project: |VP| = 1947114 and P ∈ R1947114∗1947114

which is so large as to make the approach intractable. In order to combat this we

perform size reduction on both G and H by first constructing a reduced graph G′

by culling all vertices from G that are not 1-hop connected to the query function.

We then construct another reduced graph H′ by culling all the vertices from H

that are not connected to a vertex in G′ via the bipartite graph. We then construct a
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Table 4.11: Comparison of spectral clustering to triangle method over RQ1 data set.

Triangle Method Baseline
Project NR @ R1 ARD @ R1 NR @ R-All ARD @ R-All

Commons Collections 228 28% 594 39%
Commons Lang 1007 27% 3962 30%
JFreeChart 945 35% 3893 41%

Spectral Clustering
Project NR @ R1 ARD @ R1 NR @ R-All ARD @ R-All

Commons Collections 137 25% 299 31%
Commons Lang 758 35% 2775 34%
JFreeChart – – – –

product graph P ′ over G′ and H′. This results in a very large reduction in the size of

the product graph, making the Commons Collections and Commons Lang projects

tractable, however, JFreeChart is still intractable.

To perform the clustering we use an unnormalised spectral clustering over the

vertices in P ′. This is done by computing the unnormalised graph laplacian L =

DP ′ −P
′ where DP′ is the degree matrix of the product graph, then the first two

eigenvectors of L, u1 and u2, and then construct a matrix U with u1 and u2 as the

columns, so that each row of U is a 2 dimensional vector representing a vertex in

the product graph. These points are then clustered using k-means.

The results for this technique compared to the baseline of the triangle method

are presented in Table 4.11 which shows the performance of both techniques over

the evaluation data used in RQ1.

Findings While spectral clustering produces a better average relative effort when

making recommendations for Commons Collections, the number of recommen-

dations made is significantly lower than the triangle method. This represents a

trade-off between the usefulness of the recommendations and the number of query

functions that will generate no recommendations. For Commons Lang the triangle

method is better for all measures and for JFreeChart, the size of the project makes

the spectral clustering approach intractable due to the size of the graphs.
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4.3.7.3 Cross-graph Transductive Learning

Given the inituition that the relatively poor results from the matrix factors learning

and spectral clustering techniques are partially a result of training data sparsity,

we decided to try a semi-supervised transductive learning technique. Transductive

learning is an attractive approach to dealing with label sparsity in label propagation

problems as it does not need to learn a general model which is then used to infer

predictions, and instead directly learns labels for the unlabelled points in the specfic

problem instance. To test this technique we implemented a version of the approach

detailed in Liu and Yang [2016] that is simplified to only support 2 unipartite graphs

as opposed to n unipartite graphs in the original approach. This approach formulates

the cross graph learning problem as a label propagation problem over a product

graph constructed from the unipartite graphs, similar to that used for the spectral

clustering. However, this technique does not need the product graph size reduction

techniques that we used for the spectral clustering approach as it does not need

to actually construct the product graph or its weight matrix. The construction of

these elements are avoided by using a tucker decomposition [Tucker, 1966] of the

objective tensor, parameterised by spectral approximations of each unipartite graph.

Despite this we found performing this technique on the JFreeChart project to still

be intractable on a Ryzen 2700x CPU due to the size of the graphs.

The results for this technique compared to the baseline of the triangle method

are presented in Table 4.12 which shows the performance of both techniques over

the evaluation data used in RQ1.

Findings The triangle method outperforms this technique in all measures as the

triangle method consistently achieves better average relative effort while finding a

similar number of recommendations.

4.3.8 Discussion

We use the average relative distance (ARD) as a proxy for relative effort as there is

no established method for accurately measuring required developer effort [Shihab

et al., 2013]. While there are instances where token-based edit distance may not

translate into effort, we believe that token-based edit distance is an adequate proxy
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Table 4.12: Comparison of transductive learning to triangle method over RQ1 data set.

Triangle Method Baseline
Project NR @ R1 ARD @ R1 NR @ R-All ARD @ R-All

Commons Collections 228 28% 594 39%
Commons Lang 1007 27% 3962 30%
JFreeChart 945 35% 3893 41%

Transductive Learning
Project NR @ R1 ARD @ R1 NR @ R-All ARD @ R-All

Commons Collections 369 45% 1840 61%
Commons Lang 1332 68% 6660 68%
JFreeChart – – – –

(not requiring correlation). Our user study showed no results that would invalidate

our assumption.

When comparing the results from RQ1 and RQ2 to examine the impact of inter-

project recommendations, the minimal difference and slight worsening of results

from RQ1 to RQ2 can be accredited to the fact that the shared lexicon between

functions from the same project is much larger than between functions from differ-

ent projects, where the purpose and formatting of the code often differ greatly. This

means that firstly, Relatest is far more likely to make recommendations from the

same system as the query function since it is using the similarity between functions

to find recommendations. Secondly, this factor means that in the instances where

Relatest does make inter-project recommendations, the average edit distances are

likely to be larger than for intra-project recommendations.

Another useful observation provided by the RQ1 and RQ2 results is that

the performance of the rank 1 recommendations is always the best rank and the

performance almost always decreases as the rank increases. This is a positive

result as rank 1 always has the most recommendations and demonstrates that our

approach is correct in assuming that the more similar two functions are, the better

the recommendations that they generate for each other will be.

A further notable observation emerges from the average relative distance in

RQ1 and RQ2: Commons Lang has only a small reduction in performance as
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the rank of the recommendations increases, compared to the other projects. This

indicates the number of high-quality recommendations is higher in Commons Lang,

which may be indicative of a high number of similar functions in the project.

The RQ3 results give important context to the RQ1 and RQ2 results as they

provide an indication as to how average edit distances translate into the usefulness of

the recommendations to the developer and can, therefore, give us a more complete

picture of the value of using Relatest as opposed to writing tests from scratch.

For example, when considering the rank 1 results from RQ1 we can see that all of

the median average edit distances for recommendations at rank 1 fall into the first

and second bands (0–200), which have an average precision of 86% in the RQ3

results. Given the 75% rate of at least one recommendation being made, and the

34% average relative distance for rank 1, we can state that in 86% of the 75% of

cases where at least one recommendation was generated, the developer saved 66%

of development effort on average. This gives us a final figure of a 43% reduction in

effort to create tests overall, even when only considering rank 1 recommendations.

This represents a large amount of effort, especially over the full development cycle

of a large project.

The RQ4 results reveal that the average task completion time was 36% less

when recommendations were given, indicating a reduced amount of effort required

to create the tests. This result is complemented by the developer ratings of the

recommendations which show that 91% of the rank 1 recommendations were seen

as useful and, on average, 59% of the lower-ranked recommendations were also

seen as useful. The RQ5 results further demonstrate that the developers believed

the recommendations, and Relatest in general, to be useful.

The real-world applicability example demonstrated that it was possible to use

the recommendations to create useful tests even when the test author has no previous

expertise in the system. This is not the usual scenario in which the recommendations

would be used, however, the recommendations will still be useful when used by

developers for their own systems.

One important consideration to bear in mind when considering the results is the
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that the traceability technique used to build the test-to-function links and the used

similarity measure have a direct impact on the results and if the same experiments

were to be conducted with a better traceability technique or a better similarity

measure, we would expect the results to improve as there will be less noise in the

recommendations.

4.3.9 Threats To Validity

As the evaluation was done on a small set of projects, the results may not generalise

to other projects. Moreover, only Java projects have been analysed. As the

implementation relies on a third-party traceability technique, the evaluation results

depend on the accuracy of the links generated by TCtracer because developers

rarely annotate their tests with the methods it is supposed to test [Bouillon et al.,

2007].

The main threat comes from the reliance on a manual investigation for the

RQ3 results. Firstly, the manual evaluation is a very time-consuming process which

limited the size of the sample that we could evaluate. This is an external threat to

validity as we have no clear evidence as to the representativeness of this sample.

However, the fact that the subjects are large and diverse projects helps to ameliorate

this threat. The use of manual investigation for evaluation also poses an internal

threat to validity as there is some amount of subjectivity for what constitutes a

useful recommendation. However, this risk is mitigated by our approach of firstly,

establishing criteria for how recommendations should be judged and secondly,

computing an inter-rater agreement between two judges using Fleiss’ kappa, which

shows statistically significant agreement.

There is also an external threat to validity created by the sample of participants

for the user study who are all students and may not be representative of the

wider developer community. However, given that all but one of the participants

were graduate students at the masters level, there is a reasonably diverse range

of experience levels and the majority (80%) had at least one year of industry

experience, as shown in Table 4.5.

The user study underwent Ethics Review and was approved by the UCL
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Research Ethics Committee. The participation was anonymous.

4.4 Related Work
The related work breaks down into two distinct sections: recommendation systems

and similarity of functions.

4.4.1 Code Recommender Systems

Code reuse is a common practice in software development as developers look to

solve problems and save time by using pre-existing code from other projects and the

web. Most of this reuse comes from libraries, APIs, and code snippets [Gallardo-

Valencia and Sim, 2014]. Due to the prevalence of reuse, a number of tools have

been developed to discover and reuse existing code. Early examples of these tools

include SCRUPLE [Paul and Prakash, 1994], which locates code features using a

simple pattern-based query processor.

One recent approach is Test-Driven Code Search (TDCS) which uses test suites

to define the desired behaviour and ensure that the code fragments returned by a

code search engine can be tested in the context of the target system. CodeGe-

nie [Lemos et al., 2011] utilises this approach by taking the designated test as input

and performing a Sourcerer [Bajracharya et al., 2014] code search using keywords,

identifiers, and interface definitions. Discovered candidate functionality is extracted

via slicing and presented in the plugin for testing. However, CodeGenie and TDCS,

in general, cannot be used directly with Relatest as they are geared towards a Test

Driven Development (TDD) scenario where a new test is used to find an existing

function.

Other approaches use textual IR methods to search code and make suggestions.

One example of this is Prompter, an IDE plug-in that searches Stack Overflow

discussions and recommends code fragments for developers [Ponzanelli et al.,

2014]. Prompter uses the IDE context, such as the currently displayed code, to

formulate a query for a Stack Overflow search which is presented to the developer.

The weakness of this system in comparison to Relatest is that the user must

manually extract the code snippets and there is a high probability the snippets will
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not be executable without extensive modification. In comparison, Relatest returns

whole functions from existing projects.

Erfani et al. [2013] is related to Relatest as their system also recommends

unit tests based on the similarity between tested code. This can be shown to

be an instantiation of Rashid as it is also based on the principle of utilising the

relationships between artefacts in one domain (functions) to make recommendations

of artefacts from another domain (tests).

However, the results presented by Erfani et al. show that they were only able to

make a recommendation for 8.6% of untested functions and the quality of these

recommendations was not evaluated. In contrast, Relatest makes at least one

recommendation 75% of the time, saving at least 43% of developer effort in total.

Landhäußer and Tichy [2012] utilises the idea of using existing tests for similar

functions, with the difference that they attempt to programmatically transform the

tests instead of providing them as recommendations. However, given the limited

evaluation and the acknowledged issues with the approach to test transformation,

we believe that Relatest has greater applicability.

Makady and Walker [2013] explore the concept of aiding the reuse of existing

tests when the corresponding tested code is reused. This provides an alternative

scenario in which Relatest could be used where the reused tested function is

provided as the query function instead of a new function.

Recently, machine learning techniques have been utilised to generate code

recommendations by learning from existing code. TestNMT [White and Krinke,

2018] and ReAssert [White and Krinke, 2020b] use recurrent and transformer

neural networks respectively to generate code recommendations, specifically unit

tests, by learning from existing tests.

4.4.2 Similarity Measurements

Like traceability, code similarity measures have received a great deal of interest

from the community. The tasks for which code similarity is useful include

refactoring, fixing a bug, or performing plagiarism detection [Ragkhitwetsagul

et al., 2017].
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Natural language processing (NLP) can be used for measuring the similarity

between code, such as in recent work by Zilberstein and Yahav [Zilberstein and

Yahav, 2016]. Their tool, SIMON, uses NLP to establish similarity between

snippets of code. Finding code snippets that are similar to a query snippet involves

searching a database of code snippet to natural language description pairs to find a

snippet that is semantically similar to the query snippet. The similarity of the natural

language descriptions is then used to establish similarity between their respective

code snippets.

The approach utilised by SIMON can also be shown to be an instantiation of

Rashid defined in Section 4.1.2 as it utilises inter-domain relationships between

artefacts to discover other relationships between artefacts, specifically using the

two domains of code snippets and natural language descriptions to find similar

code snippets. The way that SIMON instantiates Rashid is slightly different from

Relatest and Erfani et al. [2013] in that the relationships that are being searched

for are intra-domain (code-snippet-to-code-snippet). In this instance EB is the first

set of edges constructed, by using a relation defined by a database of code snippet

to natural language description mappings. This database is used for the RB relation

such that vRBv′ (v,v′ ∈ (V1∪V2)) if the code snippet represented by v and the natural

language description represented v′ are linked in the database. The intra-domain

edges in the natural language description domain E2 are constructed using textual

similarity as the relation, such that vR2v′ (v,v′ ∈ V2) if the descriptions represented

by v and v′ have a textual similarity above a certain threshold. The predicted edges

are not the new inter-domain edges EP, as is the case for Relatest, but are the

intra-domain edges in the code snippet domain E1. The prediction method uses

squares, specifically that an edge (v,v′), v,v′ ∈ V1, is added to E1 if there exists a

path (v,n1,n2,v′) of length three from v to v′, where n1 ∈ E2 and n2 ∈ E2.

The advantage that Relatest has over this system is that Relatest does not

require a database of code snippet to natural language description pairs, which is

difficult to build and maintain.
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4.5 Conclusion
We have presented Rashid, an abstract framework for assisting the reuse of existing

artefacts, and Relatest, an instantiation of Rashid that discovers existing tests which

can be recommended to developers to test new functions. We have also presented

an empirical evaluation of Relatest with four real-world open source projects in

two possible usage scenarios (intra and inter-project) and through a user study.

The results show that overall Relatest can make reductions of 43% of the total

amount of developer effort required to test new functions. The user study shows

that, on average, developers needed 10 minutes less to develop a test when given

Relatest recommendations and all developers reported that the recommendations

were useful. The results demonstrate the power of discovering and exploiting

connections between artefacts to improve the software development process.



Chapter 5

Test Transplantation

This chapter presents the work completed for an investigation into the transplan-

tation of tests between projects. The concept for this work follows on naturally

from the work presented in chapter 4, which is concerned with the discovery and

recommendation of existing test cases for reuse. The logical next step from this

is to attempt to automatically transplant those recommended tests into the target

project, rather than leaving it up to the developer to manually adapt them. We,

therefore, conducted an investigation into the feasibility of performing automated

test transplantation, the approach and results of which are described in this chapter.

5.1 Motivation
The ability to transplant tests between projects has the potential to provide great

utility in the software engineering process by opening up a whole corpus of existing

tests to use, such as those contained in open source repositories. A reliable approach

to test transplantation could improve the software engineering process in the same

ways as Relatest: by reducing the cost of development and improving the quality

of the output, however, with the added automation these benefits would be even

greater.

5.2 Approach
To perform the transplantation we use a staged process to identify the test for reuse

(donor test), retarget the test for the new function (target function), transplant it into
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Figure 5.1: Transplantation Approach.

the new project (target project), and transform it to work in its new environment,

creating the desired final test (target test). This process is shown in Figure 5.1.

The specific stages used are: Identify, Extract, Retarget, Insert, Compile, and Pass.

The extraction stage extracts the donor test from its project. The retarget stage

transforms the extracted donor test to target the new function to be tested. The

insert stage inserts the donor test into the target project. The compile stage further

transforms the inserted test so that it can compile. The pass stage makes more

transformations to the inserted test so that it can pass. Once the inserted test passes,

the transplantation is complete.

5.2.1 Identify

We start the process by identifying appropriate existing tests to use as the donor

tests that we will attempt to transplant. The goal of this stage is to identify a test or

set of tests that we consider to be sufficiently close to the target test to use as donor

test(s). This is important as the closer a donor test is to the target test, the fewer

transformations we have to make to convert the donor test into the target test. In the

case where we identify multiple appropriate donor tests, we execute the rest of the

stages for each donor test until we achieve a successful transplantation or run out of
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donor tests.

There are multiple approaches for identifying appropriate donor tests and we,

therefore, investigated several approaches. The first approach was to use Relatest

from Chapter 4, the second approach was to use an interface-based filter, and the

third approach was to use unit test generation tools, such as EvoSuite [Fraser and

Arcuri, 2013].

To use the Relatest approach we simply provide the target function to

Relatest, generate the recommendations, and use those as the donor tests. The

filter-based approach uses the interface of the target function, specifically the types

of the parameters and the return type to find tests that test other functions with the

same interface. We utilised this approach as it has two primary benefits. Firstly, if

the interface of the function tested by the donor test is the same as the interface of

the target function, the task of transforming the donor test to test the new function is

easier as we can replace calls to the old function with calls to the target function and

not cause a compilation issue. Secondly, if the interfaces of the previously tested

function and target function match, there is a higher chance of the donor test being a

good candidate to test the target function. The issue with this approach is that it can

create a very large number of donor tests for functions that have common interfaces,

usually where only built-in types are used and the number of parameters is small.

For example, a function that takes in a string and returns a string will produce a

large number of donor tests. Functions with void return types and no parameters

are extreme examples of this issue. To avoid this issue, we add another condition to

the filter to include only tests from the same package as the target function. This is

a trade-off as it may reduce the number of donor tests discovered to a point where

no suitable donor test is found. However, if there are too many donor tests that

are not suitable, we will waste a lot of computational time attempting to transplant

unsuitable donor tests.

The third approach utilises generated unit tests from test generation tools, such

as EvoSuite [Fraser and Arcuri, 2013], as donor tests. This approach was used due

to our intuition that our transplantation process could improve upon what the test
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generation tools can produce and generate target tests that are more likely to reveal

a fault or provide higher coverage.

5.2.2 Extract

Once we have identified our donor test for transplantation, the first step is to extract

it from its current project in a manner that allows us to then insert it into another

project after we have targeted it. As tests are often not entirely self-contained and

can rely on other code elements, it is not sufficient to simply extract the code of

the test itself. Instead, we build an object, called an organ which contains all the

elements required for the insertion of the donor test into a new project. The number

of elements included in the organ is determined by the number of dependencies

the test has. These dependencies are usually contained with the test class that the

donor test is a member of and can include import statements, class fields, setup

and teardown functions, and inner classes. All of these elements are required to

be transplanted with the donor test to be able to execute it in the target project

and, therefore, must be saved in the organ. A further complication is added if the

test relies on helper functions as we must then also take a backward slice from the

call site to the helper function. This may not make the organ significantly more

complicated if the helper function is self-contained or if the slice is small but a

large slice will make it very difficult to insert the organ without causing compilation

failures. This complication is mostly avoided if the donor test is from the same

project as the target function as any public helper functions will be available to the

inserted test as well and therefore they do not need to be added to the organ. If

helper functions that are defined outside the test class need to be included in the

organ, the file structure is preserved in the organ.

5.2.3 Retarget

Once we have constructed the organ we can begin the process of transforming it

and inserting it. The first stage of this is a transformation performed before the

organ is inserted called retargeting which performs the initial switch from testing

the previous function to testing the target function. To do this we must first replace
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any references to the class of the previous test with references to the class of the

target test and any calls to the previous function with calls to the target function.

If the name of the donor test contains the name of the previous function we also

update the name to replace these instances with the name of the target function.

The complexity of this transformation is situational as it depends on the

interfaces of the previously tested function and the target function. If the interfaces

of the functions match, the transformation is simpler but if the interfaces do

not match, and especially if the return types do not match, the process is more

complicated and we have to also update the types of objects that have been returned

from the new calls to the target function. Another complicating factor is that it is

not uncommon for a test to test multiple functions. In this case, we have to update

references to the containing classes and the call sites, as described above, for all of

the previously tested functions. We also have to handle the special cases where one

or more of the previously tested functions or the target function are constructors, as

calls to constructors do not have a call scope. Additionally, if the organ contains

helper functions from the original project, the retargeting may have to also be

applied to those functions if they called the previously tested function.

5.2.4 Insert

Once the retargeting is complete we insert the retargeted organ into the target

project. To do this we must first identify a test class to insert the test into or create

a new test class if there is no existing appropriate test class. The identification of an

existing test class is done by searching the project for a test class that matches the

name of the class containing the target function by naming conventions, as described

in Section 3.3.1.1 If this does not find any existing test class to use, we create a new

test class that does satisfy the naming convention. Now we have established our

target test class, we insert the organ by adding the code elements that were present

in the original test class into the new test class. These include the retargeted test

itself, the import statements, the class fields, any setup and teardown functions,

and any helper methods that were defined within the original test class and copied

into the organ. If the organ contains helper functions that were not defined in the
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original test class and are, therefore, contained in other files, the files containing

those classes are inserted into the target project using the same file structure with

the directory of the target test class as the root.

As the final step in the insertion stage, we utilise our assert generation tool,

TestNMT, described in Chapter 6 to generate new asserts for the test and insert

them at the end of the test. After the insertion stage is complete, all of the elements

required for the new test have now been inserted into the target project in the

appropriate locations.

5.2.5 Compile

The retargeting and insertion stages have left us with inserted code in multiple

places that have been transformed to target the target function but is likely not

yet fully integrated into its new environment so the purpose of this stage is to

transform the test so that it is well-integrated enough to be able to compile in its

new environment. The likelihood of successfully completing this stage depends

heavily on a range of factors, including how dissimilar the donor test is to the target

test, i.e, how much further modification needs to be performed, and how many other

elements the organ contained, such as the number of setup and teardown functions,

class fields, and helper functions, as each of these things can cause compilation

problems. For example, a setup, teardown, or helper function may contain calls to

other functions or reference types that are not present in the target context.

There are multiple potential approaches to this stage, which may include

the use of static analysis techniques such as inter-procedural analysis, data flow

analysis, and other static analysis techniques. However, the approach that we

selected to use was genetic improvement (GI) [Petke et al., 2018] as it has the benefit

of being a generic technique that can be applied to any donor test. This avoids

the complexity of having to define a large set of rule-based transformations. We

experimented with two different GI algorithms, described in Section 5.3. To utilise

our GI algorithms for this transplantation stage we defined the fitness function as

the total number of compilation errors. This allows our GI algorithms to search for

solutions that compile.
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5.2.6 Pass

If we succeed on the compilation stage, we now have a transplanted test that

compiles but we still do not know if it is testing the function in the way that it

is supposed to. However, the evaluation of the quality and usefulness of tests is a

complex issue that is outside the scope of this work. Therefore, we use the result of

the test as a proxy for the correctness of the test and aim for getting the test to pass.

To achieve this we apply our GI algorithms again but this time we use the number

of failing asserts as the fitness function to search for solutions that pass.

5.3 Genetic Improvement

To properly assess the performance of GI for transplantation, we implemented two

different GI algorithms: Elite Breeding Group and Two Elite Parents to explore if

the choice of algorithm has a significant impact on the results. For both algorithms,

a two-point crossover was used as the crossover operator and the mutation operators

used were delete, move, insert, and replace.

Elite Breeding Group For each generation, we select the fittest x% of the popu-

lation to breed by crossover. The created offspring are mutated and added to the

population. The fitness of the population is computed and the fittest y% of the

population is selected as the elite and this elite becomes the new generation.

Two Elite Parents For each generation, the fittest x% of the population is selected

as the elite and the top two elite individuals breed by crossover. the offspring is

mutated and evaluated for fitness. If the best offspring fitness is better than the best

parents fitness, the offspring are added to the elite, otherwise, the parents are added

back into the elite. The elite then becomes the new generation.

5.4 Evaluation

We evaluate our transplantation approach in two primary ways: how often we

successfully complete our transplantation stages, and how effective our transplanted

tests are at successfully revealing real faults.
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Table 5.1: Subject statistics.

Project Ver. Num. Functions Num. Tests Coverage

Commons Collections 4.1 4132 2819 84%
Commons Lang 3.7 3169 3556 95%
JFreeChart 1.0.19 9061 2502 52%

Table 5.2: Genetic improvement algorithm parameters.

Parameter Value

Search budget 300s
Initial Population Size 5
Minimum Population Size 5
Max Population Size 10
Reproduction Proportion 60%
Elite Proportion 40%
Crossover Probability 0.75
Insert Probability 0.25
Replace Probability 0.25
Delete Probability 0.25
Move Probability 0.25

5.4.1 Experimental Setup

For our evaluation, we used several mature real-world open source projects com-

monly used as research subjects, specifically Commons Collections, Commons

Lang, and JFreeChart. The subject statistics are provided in Table 5.1. To assess the

benefit of applying GI to the compile and pass stages, we also run our experiments

with GI disabled to provide a baseline. Additionally, as we define a GI search

budget of five minutes for each of the compile and pass stages, running experiments

that require a large number of transplantation attempts have a high time cost. To

reduce this burden, we ran some preliminary experiments on a small sample size

to compare the performance of the two GI algorithms. This revealed that the

two algorithms consistently perform very similarly to each other, with the Elite

Breeding Group variant coming out slightly ahead being one to two percent more

successful at completing the compiling and pass stages. Given this, we simply

selected the Elite Breeding Group to be the GI algorithm that we used in the

main experiments with the full sample. The parameters used for our GI algorithm
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are given in Table 5.2. As each generation took approximately 20 seconds of

computation time, we achieved approximately 15 generations within the 300 second

time budget. For the identification of donor tests we use Relatest and the interface-

based filter approaches, as described in Section 5.2.1. While GI is stochastic, it

became apparent when executing multiple runs that the results of the analysis were

largely consistent from run to run so the results presented are each the result of a

single representative run and not an average across a sample of runs.

5.4.2 Research Question 1 (Success of Transplantation Process)

How often are the transplantation attempts successful?

To evaluate how successfully we can complete our transplantation process, we used

all three of our subject projects, took a random sample of functions, and executed

our donor test identification and transplantation approach for these functions. We

recorded the number of attempted transplantations, the number of transplantation

attempts that resulted in a compiling test and the number of attempts that resulted

in a passing test. We included the attempts that resulted in a compiling test but not a

passing test as the compiling test may only need a minor manual change to become

a passing test and therefore may still be valuable. There is also the possibility that

the test may be revealing a real fault.

Findings The results, shown in Table 5.3 compare the results we achieve when

using GI versus not using GI where “With GI” means we utililsed the full approach

including the application of GI in the compile and pass stages and “Without GI”

means we simply tried to compile and run the test after the insert stage, without

performing any further transformation. The results reveal that using GI produces

approximately double the number of compiling transplanted tests (from 127 to 248)

and a greater than doubling of the number of passing transplanted tests (from 75 to

168).
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Table 5.3: Transplantation success results.

GI Type
Num.
Functions

Attempted
Transplantations

Num.
Compiling

Num.
Passing

Commons Collections
Without GI 1500 231 32 (14%) 15 (6%)
With GI 1500 231 62 (27%) 46 (20%)

Commons Lang
Without GI 150 280 60 (21%) 28 (10%)
With GI 150 280 106 (38%) 52 (19%)

JFreeChart
Without GI 300 282 35 (12%) 32 (11%)
With GI 300 282 80 (28%) 70 (25%)

Totals
Without GI 1950 793 127 (16%) 75 (9%)
With GI 1950 793 248 (31%) 168 (21%)

5.4.3 Research Question 2 (Effectiveness of Transplanted Tests)

How successful are the transplanted tests at revealing real-world faults?

To assess the effectiveness of our transplanted tests, we utilise the Defects4J

dataset [Just et al., 2014]. Defects4J is a dataset of faults from multiple projects,

including the 64 faults from Commons Lang that we used for this evaluation.

For each fault, Defects4J provides a “faulty” and a “fixed” version and we use

these faults to assess the effectiveness of our approach by using the functions

containing the faults as the target functions, performing the donor test identification

and transplantations, and record which faults are revealed by the transplanted tests.

We considered a fault revealed if the test fails on the buggy version but passes on the

fixed version. To provide a comparison to existing unit test generation techniques,

we also performed the evaluation using tests generated by EvoSuite.

Findings The results, provided in Table 5.4, show that our transplantation approach

reveals faults 12 and 30 without GI and that using GI allows us to also reveal

fault 27. EvoSuite on the other hand reveals more faults than the transplantation

approaches, however, we were able to reveal fault 30, which EvoSuite was not able

to reveal.
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Table 5.4: Defects4J fault discovery results.

System Faults Revealed

EvoSuite 5, 7, 9, 11, 12, 19, 27, 32, 33, 41, 43, 47
Relatest Transplantation - Without GI 12, 30
Relatest Transplantation - With GI 12, 27, 30

5.5 Discussion

Throughout our investigation of test transplantation, we discovered multiple points

for discussion. Firstly, we discovered that the chance of success of transplantation

is heavily dependent on both the complexity of the donor test and the size of the

organ. This is because the biggest challenge during transplantation is how to handle

references to classes, functions, and fields that are only present in the source context

and not the target context as these references become compilation failures that need

to be resolved. Resolving these compilation issues is difficult and, therefore, the

less of them we have to resolve, the more likely successful transplantation is. This

means that transplantations are much more likely to succeed if the source project

and target project are the same as it reduces the number of references that will

no longer be valid. These references are maximally reduced when transplanting

within the same package. As we are using Relatest and our interface-based filter

for identifying donor tests, the majority of our donor tests are from the same project

as the target function and often from the same package. This is because Relatest is

far more likely to recommend tests from the same project than from other projects,

as discussed in Chapter 4 and our interface-based filter only selects from the same

package, for the reasons discussed in Section 5.2.1.

When investigating the usefulness of applying GI to our transplantation ap-

proach we see that it approximately doubles how often we achieve a compiling test

and more than double how often we get a passing test. GI also increases the number

of Defects4J JFreeChart faults reveals from 2 to 3. These results show that utilising

GI has a large positive impact on the effectiveness of the approach, however, it does

increase the time taken to transplant as we allow a maximum GI search budget of

five minutes for each of the compile and pass stages. In the future, the benefit of
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the GI could potentially be improved by investigating the effect of utilising other

algorithms and operators, such as those compared in Blot and Petke [2021].

The RQ2 results also show that overall EvoSuite reveals more faults in the

Defects4J JFreeChart data set than our transplantation approach. This is expected

as EvoSuite is a mature, well-developed tool that has been at the cutting edge of

unit test generation for multiple years. However, our approach revealed a fault, fault

number 30, which was not revealed by EvoSuite. This fault was from the project

Commons Lang in a function that finds a given character sequence in a character

array and returns its index. We were able to discover this fault while EvoSuite was

not able to as our transplantation process injected a new assert that discovered the

fault while the asserts generated by EvoSuite were less specific and could not detect

it. This shows that our approach has the potential to be useful when used in addition

to EvoSuite as it may reveal faults that EvoSuite cannot reveal.

5.6 Conclusion
In this chapter, we have presented an approach for the transplantation of test cases

utilising a multi-stage process including assert generation and genetic improvement.

We performed an evaluation of this approach which assesses how often the trans-

plantation process completes successfully by sampling target functions from three

large mature open source systems and how effective the transplanted tests are at

revealing real faults by utilising the Defects4J data set. The results show that, when

using genetic improvement, we achieve a compiling transplanted test 31% of the

time and achieve a passing transplanted test 21% of the time. Our transplanted tests

were able to reveal 3 of the JFreeChart faults in Defects4J, including 1 fault that

was not revealed by EvoSuite.



Chapter 6

Automated Generation of Test Code

Chapter 4 and Chapter 5 present approaches to the identification, recommendation,

and transplantation of existing tests to test new functions. However, while effective

at reducing developer effort overall, there are some functions for which no good

recommendations of existing tests can be found. To deal with these cases and

to broaden the set of techniques available to developers looking for new tests,

this chapter presents TestNMT, an approach to test code generation that uses

neural networks adapted from the domain of natural language processing (NLP)

to generate approximate JUnit tests for a given function. However, as these are

approximate tests, developers still have to expend manual effort to transform them

into the desired executable tests.

TestNMT is an exploratory approach to unit test generation which aims to

generate tests by learning to translate from the function domain to the test domain.

However, as the model only sees the output as a sequence of tokens and has no

concept of the syntax of the target programming language or test framework, there

is no guarantee that the output will be a syntactically correct test. We, therefore,

refer to the output as approximate tests. Given this, the goal is to allow a user to

provide a function as input and receive an approximate test as output, which the

developer can then manually adapt to a working test for that function.

This document provides an overview of the preliminary investigation into

the potential of this approach, including the network design, data collection, and

a preliminary quantitative and qualitative evaluation of TestNMT for two usage
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Figure 6.1: Overview of the TestNMT architecture.

scenarios: cross-project and within-project.

The evaluation shows that, while TestNMT is most likely not useful in the

cross-project scenario, it does have the potential to be of use within-project. The

quantitative evaluation demonstrates this with a maximum BLEU score of 21.2, a

maximum ROUGE-L score of 38.67, and edit distances between existing linked

tests and generated approximate tests which show that on average approximately

half of the content of the tests can be generated by TestNMT. The qualitative

evaluation also shows that TestNMT has a strong potential for usefulness by

demonstrating that it can produce approximate tests that are easy to adapt to the

desired tests.

6.1 Approach
TestNMT uses the techniques of neural machine translation for natural languages

and applies them to the programming language domain, specifically to translate

from functions to tests. TestNMT uses an encoder-decoder with attention archi-



6.2. Experimental Setup 150

tecture for sequence to sequence translation, such as that shown in Figure 5 of

the Tensorflow neural machine translation tutorial [Luong et al., 2017]. In this

architecture, the encoder encodes the source sequence into a vector representation

which is then decoded into a translated target sequence by the decoder.

The encoder builds the vector representation of the source sequence by travers-

ing the sequence one token at a time converting each token into a real-valued vector

embedding via an embedding layer which is then provided as input to the encoder

recurrent neural network (RNN) for that time step. After the source sequence has

been fully processed, the final hidden state of the encoder RNN is used to initialise

the hidden state of the decoder RNN. Then, at each time step, the decoder RNN

uses the current hidden state, the previously generated target sequence token, and

the attention mechanism, to generate a new target sequence token. This continues

until the end-of-sequence token is generated. The TestNMT architecture is shown

in Figure 6.1.

To create the training data we apply a function-to-test traceability technique

over a corpus of software, generating a set of example function-to-test links. These

links are pre-processed into source and target token sequences which are then used

to train the embedding layer and RNN units by backpropagating the sequence-to-

sequence cross-entropy loss. The implementation used for these experiments was

derived from the implementation provided by Luong et al. [2017].

6.2 Experimental Setup

The experiments are split into two scenarios: cross-project, and within-project. The

cross-project scenario tests the possibility of training a single model using a large,

general corpus taken from many projects, and using it to generate an approximate

test for any arbitrary function. The within-project scenario tests the possibility of

training a model for an individual project and using it to generate an approximate

test for a function from the same project.

Experiment configuration one tests the cross-project scenario using 156 open

source projects from GitHub. Configurations two, three, and four test the within-
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project scenario by individually using the OpenJDK 9, Netbeans, and OpenLiberty

projects respectively. A natural language translation baseline for the chosen

translation quality measures was obtained by also training the model for Vietnamese

to English translation on a small corpus of TED talks [Luong and Manning, 2015].

6.2.1 Data

To train the model we need a dataset consisting of test-to-function traceability links

– pairs of functions and tests where the test tests the function. As the performance

of the model is dependent on the size and accuracy of the training data, we need to

gather as much high-accuracy training data as possible. Ideally, the dataset would

be constructed from manually labelled test-to-code traceability links but given the

amount of data required this is infeasible and, therefore, we must use an automated

traceability establishment technique.

When selecting an automated traceability establishment technique, we must

balance precision with recall; low precision techniques will result in very noisy

training data, whereas low recall techniques will result in a dataset that is too small.

Both of these factors can limit the performance of the model.

6.2.1.1 Generation through Naming Conventions (NC)

For this set of initial experiments, we have limited the data to Java projects with

JUnit test cases and are generating the training data using variants of the Naming

Convention (NC) [Rompaey and Demeyer, 2009] technique. NC was selected for

these initial experiments as it is performed statically and should have relatively

high precision on projects that use the naming convention, however, in future work

a more extensive set of traceability techniques could be used to increase both the

size and precision of the dataset.

The two variants of NC that we tested are Strict NC and Relaxed NC. Strict NC

matches both the class names and the function names, for example, the toString()

function in the class Point will only be matched to a test called testToString() or

toStringTest() in a test class called TestPoint or PointTest. Relaxed NC however,

matches only on the function name, so toString() in any class will match to



6.2. Experimental Setup 152

Table 6.1: Number of test-to-code trace links generated by naming convention techniques.

Project JUnit Tests Strict NC Relaxed NC

Apache Poi 1,582 0 10,546
JFreeChart 2,482 1,016 1,016
Closure Compiler 153 56 101
Commons Lang 3,061 2,385 10,647
Commons Math 4,461 770 10,033
Commons Collections 2,661 455 12,167
Eclipse CDT 856 42 1,759
Android Platform 4,021 1,128 34,711
Chromium 6,334 435 7,347
Netbeans 1,582 399 57,156
Total 28,500 5,688 145,828

testToString() or toStringTest() in any test class. Therefore, Strict NC is better for

precision, while Relaxed NC is better for recall.

NC Generation Experiments Table 6.1 shows the results of an experiment com-

paring the sizes of the datasets generated by Strict NC and Relaxed NC on a set of

popular open source Java projects.

We can see from these results that while projects which closely follow the

naming convention, such as JFreeChart and Commons Lang, may produce a good

amount of links for Strict NC, most projects do not follow the convention closely

and produce little to no links for Strict NC. Overall the number of links found using

Strict NC is not enough for training a model.

When we switch to Relaxed NC the number of links increases to levels that

make training a model feasible. While this increase in links has a concomitant

increase in noise due to false positives (functions and tests that are incorrectly

matched), some of the false positives may provide useful information for the model

in cases where the test is related to the function even though it does not directly

test it. One example of this is typically overridden methods (toString, hashCode,

equals), which should all share a similar structure and relationship to their tests.

Therefore these links can provide useful information for the network to learn even

if they are false positives. Given this, we selected Relaxed NC to generate the data

for our experiments.
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6.2.1.2 Preparation

The data for the experiments was obtained by first applying the Relaxed NC

technique over the subject(s) to establish the traceability links. The source of the

functions and tests was then pre-processed to remove camel-casing, convert all

strings to lower case, remove all numbers, and add spaces between all words and

symbols. Programming language keywords and syntax were retained. Camel-cased

tokens were split into individual tokens to keep the vocabulary sizes manageable

as the individual tokens are more likely to appear in multiple sequences than the

complete camel-cased tokens, the same applies to adding spaces between words

and symbols. Numbers were removed as some exploratory experiments showed

that their inclusion degraded the results. The pre-processed sequence pairs are then

split between the training and test sets and all training set pairs that contain a source

or target sequence that also appears in the test set are removed, this helps to avoid

overfitting.

6.2.2 Network Configuration

The network configuration used for the experiments set the dimensions of the

embeddings at 128, the number of RNN layers at 2, dropout at 0.2, and uses

an attention mechanism named Scaled Luong, a scaled variant of the attention

mechanism described in Luong et al. [2015a]. This network configuration was

selected simply as a default reference; the optimisation of the network configuration

has not yet been explored. The maximum sequence length for training was set to

50 tokens for the baseline natural language translation and 200 tokens for the test

translation experiments, with any longer sequences truncated to this limit. This

difference is due to the fact that the functions and tests are significantly longer than

the natural language sentences. This sequence length limitation hinders the learning

of any relationships that are predominantly found in long sequences, after the 200

token limit. Therefore, increasing the maximum sequence length could improve the

results, however, it also increases the training time which made using a sequence

length longer than 200 infeasible for these initial experiments.
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6.3 Evaluation
We evaluate the performance of TestNMT both quantitatively and qualitatively.

The quantitative evaluation is carried out using the standard techniques for mea-

suring the quality of translations BLEU [Papineni et al., 2002] and ROUGE-L [Lin,

2004]. BLEU is a precision-based measure that utilises a modified n-gram precision

to calculate the co-occurrence of tokens in the candidate and reference sequences.

Clipping is applied at the frequency of the n-gram in the reference sequence.

ROUGE-L uses the Longest Common Subsequence (LCS) between the candidate

and reference to calculate the precision and recall of the matching unigrams which

are then used to calculate the F-Score. At each training step, these measures are

calculated over all instances in the test set and averaged to get the scores for that

step. The maximum scores for each experiment are reported in the results.

The quantitative evaluation also includes statistics for the average length of

the pre-processed linked tests and the median edit distance from the generated

approximate tests to these linked tests for the functions from the test set. This

gives us a metric for how close the approximate tests generated by TestNMT are

to the linked tests, therefore indicating the potential usefulness of TestNMT in a

real-world scenario.

The qualitative evaluation is conducted by inspecting some example generated

approximate tests and comparing them to the pre-processed linked tests for the input

function to determine the type of edits that the developer would have to make to

adapt the approximate tests for use.

6.3.1 Quantitative Results

The results from the quantitative evaluation are presented in Table 6.2. The Config 1

results indicate that the cross-project scenario may not be feasible as the maximum

BLEU (1.3) and ROUGE-L (16.3) scores are very poor and the median edit distance

is larger than the average length of the pre-processed linked tests. These numbers

also saw no improvement during training showing that no significant translation is

occurring and suggests that no amount of training will improve the scores at this

dataset size of approximately 750,000 training examples. More training data may
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Table 6.2: TestNMT experimental results.

Baseline Config 1 Config 2 Config 3 Config 4

Data
Project(s) N/A 156 OSS OpenJDK 9 Netbeans OpenLiberty
Train Set Size 133k 744k 105k 11k 88k
Test Set Size 1500 300 100 100 100
Src. Vocab Size 17k 24k 9k 6k 7k
Tgt. Vocab Size 8k 13k 2k 2k 4k

Results
Max BLEU 20.24 1.3 19.51 21.20 19.60
Max ROUGE-L 50.40 16.3 38.3 33.73 38.67
Avg. Test Len. N/A 375 522 543 625
Med. Edit Dist. N/A 1431 246 344 269

bring this scenario into a reasonable range of performance but the dataset may have

to be extremely large.

Configs 2, 3, and 4 indicate that TestNMT has significant potential for useful-

ness in the within-project scenario as the maximum BLEU scores are equivalent

to that of the Vietnamese to English natural language translation baseline, and

the ROUGE-L scores average 73% of the baseline score, which is also a strong

result. The edit distance results also reinforce this conclusion by indicating that,

on average, the edit distance between the generated approximate tests and the pre-

processed linked tests is within ˜50% of the length of the pre-processed linked tests.

This demonstrates that TestNMT is producing useful content and indicates that

using it should save the developer time over creating tests from scratch.

6.3.2 Qualitative Results

Here we present some examples taken from the approximate tests generated by the

trained models in each experiment. The “linked test” is the test from an example

link drawn from the test set after the data pre-processing has been applied. The

“approximate test” is the output of the model when provided with the function

from the example link as input. The differences are highlighted with red to

indicate deletions and green to indicate insertions in the diffs between the linked

and generated approximate tests.
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Examples from Config 1 are not included as the model did not train, however,

configs 2 and 4 demonstrate the potential of TestNMT in the within-project

scenario as we can see that there are only a few differences between the linked

and approximate tests. For the first example of Config 2, the differences are only a

change in the naming of the test case and the arguments for one function call. For

the second example of Config 2, there is just a type change to a related exception

type and a change to an assert condition. The only differences in the examples from

Config 4 are two string literals and two changes to an assert.

6.3.2.1 Config 2 – Example 1

Pre-processed linked test:

@ test public void test _ minus _ %*\textcolor{deleted}{long

period unit}*) _ zero () { local

date time t = test _ _ _ _ _ _ _ . minus (

%*\textcolor{deleted}{,chrono unit . }*)days ) ;

assert same ( t , test _ _ _ _ _ _ _) ; }

Generated approximate test:

@ test public void test _ minus _

%*\textcolor{inserted}{period}*) _ zero ( ) { local date

time t = test _ _ _ _ _ _ _ . minus ( %*\textcolor{inserted}{mock

simple period . zero _ }*)

days ) ; assert same ( t , test _ _ _ _ _ _ _ ) ; }

6.3.2.2 Config 2 – Example 2

Pre-processed linked test:

@ test public void test ( ) { sql

%*\textcolor{deleted}{transaction rollback}*) exception ex

= new sql %*\textcolor{deleted}{transaction rollback}*) exception

( ) ; assert true ( ex . get

message ( ) %*\textcolor{deleted}{= = null}*) & & ex . get sql

state ( ) = = null & & ex .

get cause ( ) = = null & & ex . get error code ( ) = = ) ; }

Generated approximate test:
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@ test public void test ( ) { sql %*\textcolor{inserted}{data}*)

exception ex = new sql %*\textcolor{inserted}{data}*)

exception ( %*\textcolor{inserted}{reason}*) ) ; assert true ( ex

. get message ( ) %*\textcolor{inserted}{. equals ( reason}*)

%*\textcolor{inserted}{ )}*) & & ex . get sql state ( ) = =

null & & ex . get cause ( )

= = null & & ex . get error code ( ) = = ) ; }

6.3.2.3 Config 4 – Example 1

Pre-processed linked test:

@ test public void get unique group id ( ) throws exception {

string

group = " %*\textcolor{deleted}{vmmgroup}*) " ; string unique

group id = "cn = %*\textcolor{deleted}{vmmgroup}*) ,

%*\textcolor{deleted}{ou = users , dc = rtp , dc = raleigh , dc =

ibm , dc = com}*) " ; log . info (

c , " get unique group id " , " checking with a valid group . "

) ;

assert d ns equal ( %*\textcolor{deleted}{null , }*)unique group

id , servlet . get unique

group id ( group ) ) ; }

Generated approximate test:

@ test public void get unique group id ( ) throws exception {

string

group = " %*\textcolor{inserted}{vmmgrp}*) " ; string unique

group id = "cn = %*\textcolor{inserted}{vmmgrp}*) ,

%*\textcolor{inserted}{o = ibm , c = us}*) " ; log . info ( c

, " get unique group id " , " checking with

a valid group . " ) ; assert d ns equal ( unique group id ,

servlet

. get unique group id ( group ) ) ; }

6.3.2.4 Config 4 – Example 2

Pre-processed linked test:

@ test public void get groups _ empty list ( ) throws exception {



6.4. Future Directions 158

search result result = reg . get groups ( " * " , ) ; assert not

null

( " search result must never be null " , result ) ; assert

%*\textcolor{deleted}{true}*) (

result . get list ( ) . %*\textcolor{deleted}{is empty}*) ( ) ) ;

assert false ( result .

has more ( ) ) ; }

Generated approximate test:

@ test public void get groups _ empty list ( ) throws exception {

search result result = reg . get groups ( " * " , ) ; assert not

null ( " search result must never be null " , result ) ; assert

%*\textcolor{inserted}{equals}*) ( %*\textcolor{inserted}{,

}*)result . get list ( ) . %*\textcolor{inserted}{size}*) ( )

) ; assert false ( result

. has more ( ) ) ; }

6.3.3 Results Discussion

Overall these preliminary results are encouraging and show that although TestNMT

may not be able to produce complete and finished tests that can be plugged directly

into the system in question, it has the potential to produce recommendations that

are very close to the required test. A developer may then only have to make small

changes to the generated approximate test to adapt it for use in the system.

6.4 Future Directions
There are a few key areas in which this research can be expanded to produce an

extensive and robust investigation. Firstly no attempt has yet been made to optimise

the network architecture or hyperparameters, which could have a large impact on

the results. Aspects to explore in this area include using different types of RNN

units, such as GRU, DGRU, or peephole LSTM units, as well as greater numbers

of layers and different attention mechanisms. Bi-directional units should also be

tested as previous works have noted the effect that the order of the input sequence

can have [Sutskever et al., 2014], and the effectiveness of bi-directional units in
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exploiting this [Bahdanau et al., 2014]. The use of Beam Search could also be

investigated.

The evaluation also needs to be extended to confirm the findings of the cross-

project scenario with a larger dataset and confirm the findings of the within-project

scenario with a wider range of projects of varying sizes. This will facilitate the

application of statistical analysis to strengthen the results and empirically test the

effect of project size on the results. This analysis could also provide insights into

any other properties of a project that may affect its viability for use with TestNMT

and more generally uncover any currently hidden problems with the approach.

Further, as TestNMT learns from human-written tests that contain elements

that are difficult or impossible for typical unit test generation tools to produce, such

as oracles and specific test inputs, TestNMT may be more useful than typical test

generation tools for generating these types of elements. Testing this hypothesis

should also be addressed in future work.

6.5 Conclusion
This preliminary investigation into the performance of TestNMT and, more gener-

ally, the viability of using neural machine translation as a test generation technique

has shown that it has the potential to be of use, especially when applied to large

individual projects. However, there is still much work to be done to optimise the

implementation and carry out a full evaluation to determine the overall benefit and

generality achievable by TestNMT.



Chapter 7

Automated Generation of Test

Asserts

In Chapter 6 we utilised recurrent neural networks adapted from the natural lan-

guage processing domain to generate unit tests using our tool TestNMT. However,

as TestNMT produces approximate tests, developers still have to expend manual

effort to transform them into the desired executable tests. ReAssert takes a different

approach by focusing on the generation of assertions only, requiring less developer

intervention and allowing the generation of more accurate code. Given both of these

approaches, developers can individually decide which best suits their needs.

The process of creating and maintaining unit tests is time-consuming, error-

prone, and often disliked by developers, frequently resulting in software that has a

low level of test coverage. Previous work has shown that to maintain a high level

of unit test coverage, the tests must be created at the same time as the tested code

as retroactively creating unit tests is rarely done and only partially successful when

attempted [Klammer and Kern, 2015]. Therefore, by automating parts of the unit

test creation process we hope to improve the efficiency of the software engineering

process and the robustness of the resulting software. To achieve this, we present

ReAssert, an approach for generating JUnit assert statements using deep learning.

Test suite generation tools such as EvoSuite [Fraser and Arcuri, 2013],

Randoop [Pacheco and Ernst, 2007], and AgitarOne [Agitar Technologies, 2020]

employ techniques that primarily focus on generating high-coverage tests rather
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than meaningful asserts and, therefore, the asserts they generate are often weak

and lack specificity. This problem contributes to the deficiencies these tools show

when attempting to revealing real-world faults [Shamshiri, 2015, Shamshiri et al.,

2015] and to the low opinion that developers generally have of generated asserts.

Almasi et al. [2017] reveal these developer frustrations, including quotes such as

”... poor assertions, sometimes there is an assertion and sometimes there is not?

The assertions are mostly checking for simple stuff like list size and so on”.

To overcome the issues that existing unit test generation techniques have

with generating asserts, we turn to deep learning. Previous work [White and

Krinke, 2018] investigated generating JUnit tests using a sequence to sequence

recurrent neural network (RNN) trained on individual projects in an approach

named TestNMT. After this, Watson et al. [Watson et al., 2020] used a similar RNN

model in their Atlas approach, trained on a general corpus mined from GitHub

for generating just the assert statements for JUnit tests. These previous works

have demonstrated that this type of deep neural network is capable of generating

useful test code, however, in the case of TestNMT, the generated candidate tests

need some manual transformation before being usable and, in the case of Atlas,

only 17% of the generated asserts were exact matches with the ground truth when

using the raw dataset and the test (minus the asserts) was required to already been

written. In addition, only a single assert could be generated for a given method and

no analysis beyond lexical accuracy was performed to assess the usefulness of the

asserts.

Our approach, called ReAssert, builds on the previous work by focusing on

generating JUnit asserts, similar to Watson et al. [2020], but utilises a project-

based approach that does not require the (assert-less) test to be written before

asserts can be generated and allows for the generation of more than one assert

per tested method. ReAssert can use three different models and includes the new

Reformer model [Kitaev et al., 2020] in addition to the two RNN models used in

TestNMT [White and Krinke, 2018] and Atlas [Watson et al., 2020]. Reformer

utilises a state-of-the-art deep learning architecture and may push the accuracy and



7.1. Background 162

usefulness of the generated asserts beyond that of the previous models. All three

models are applied to both ReAssert and a re-implementation of Atlas, and we also

expand the evaluation in two other ways to focus more on real-world usefulness and

applicability. Firstly, we perform an extended lexical accuracy evaluation (how

close is the text of the generated asserts to the ground truth from the test set)

and an analysis of the uniqueness of the generated asserts, which gives further

evidence as to their usefulness. Secondly, for ReAssert, we go beyond the static

lexical accuracy analysis, to use a dynamic analysis that determines how many

generated asserts compile and how many pass when inserted into existing tests.

By evaluating all three models for both ReAssert and Atlas with the uniqueness

and dynamic evaluation, along with the typical lexical evaluation, we demonstrate

which approach and model combinations are the most useful in a real-world setting.

The main contributions of this chapter are:

• ReAssert, a project-based deep learning approach for the generation of unit

test asserts implemented for JUnit.

• An evaluation of ReAssert using lexical accuracy and dynamic analysis with

Reformer, a new state-of-the-art transformer-based model and two RNN-

based models from previous work.

• An extended comparative evaluation of all three models using lexical accu-

racy and uniqueness on a previous approach, Atlas.

• Takeaway messages for researchers and practitioners concerning the con-

struction of data sets when applying sequence to sequence learning for code

generation.

7.1 Background
Test assert generation has previously been the domain of test suite generation tools,

such as EvoSuite [Fraser and Arcuri, 2013], Randoop [Pacheco and Ernst, 2007],

and AgitarOne [Agitar Technologies, 2020]. However, these tools primarily gener-

ate tests through methods that optimise for coverage, such as genetic programming



7.1. Background 163

and random testing. Therefore, these tools produce tests that aim primarily to

achieve high coverage rather than include meaningful assert statements, resulting

in a deficiency in the ability of these generated tests to detect real faults. This was

quantified in a study [Shamshiri, 2015] which discovered that neither EvoSuite,

Randoop, or AgitarOne were able to detect more than 40.6% of faults in the

Defects4J [Just et al., 2014] database. As 63.3% of the undetected faults were

covered, this indicates weaknesses in the asserts of the generated test cases.

With the advent of deep learning and the successful application of deep

learning techniques to tasks that require the processing of sequential data, especially

language-based tasks such as machine translation [Kalchbrenner and Blunsom,

2013, Sutskever et al., 2014, Cho et al., 2014], an opportunity to apply these

methods to source code was created. These deep learning models have been

applied to a wide range of software engineering problems such as code sum-

marisation [Allamanis et al., 2016, Alon et al., 2018, Iyer et al., 2016], program

comprehension [Henkel et al., 2018], clone detection [White et al., 2016], code

similarity [Zhao and Huang, 2018], method name generation [Alon et al., 2019],

comment generation [Hu et al., 2018], traceability [Guo et al., 2017], and type

inference [Hellendoorn et al., 2018]. However, for the task of code generation, deep

learning models initially were only applied to the generation of implementation

code [Ling et al., 2016], not test code. TestNMT [White and Krinke, 2018] applied

these techniques to unit test generation by utilising a sequence to sequence RNN-

based neural network adapted from a model that had previously been used for

neural machine translation and applied it to translate from Java methods to JUnit

tests. TestNMT demonstrated that, when applied to large individual projects, this

technique is capable of generating some tests that only require a small amount of

manual effort on the part of the developers to turn into useful tests. However, many

tests still required a large amount of effort to be converted and the approach was

not effective when using a single multi-project data set to train a general model

that works for any project. After TestNMT, Atlas [Watson et al., 2020] applied

the same type of model to the problem of generating test code, however, instead
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Figure 7.1: Overview of the ReAssert approach.

of attempting to generate whole tests, Atlas attempts only to generate the asserts

for JUnit test cases. This removes the issue of developers having to expend a lot

of effort to transform the output of the model into usable code and also allows the

training of a single network on a corpus of general Java code to apply to any project.

However, unlike TestNMT [White and Krinke, 2018], Atlas only uses tests with

a single assert statement and the test code (minus the assert) is included in the

source sequence, requiring that a developer writes a test before using Atlas, which

can then only generate a single assert. The model used by TestNMT [White and

Krinke, 2018] and the model used by Atlas [Watson et al., 2020] are utilised in this

work for a comparative evaluation with ReAssert and the Reformer model.

7.2 Approach

The ReAssert approach, illustrated in Figure 7.1, facilitates the generation of

assert statements for a given method by using deep neural network models trained

on pairs of assert statements and tested methods, extracted from existing test-to-

tested-method pairs. To train the model, we start by gathering the test-to-tested-

method pairs from a target project via test-to-code traceability links [Rompaey

and Demeyer, 2009]. Then, for each test-to-tested-method pair, we extract the

assert statements from the test method and concatenate them to produce the string

of assert statements associated with the tested method. The tested method and

assert strings are then processed into input and output token sequences, known as

method sequences and assert sequences respectively. These sequences are used

to train the model. Once trained, the model can be used to generate an assert

sequence, given a method sequence as input. The generated assert sequences are

then processed into syntactically correct code that can be directly inserted into a

test for that method. Figure 7.2 illustrates an example from Stanford CoreNLP
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for how ReAssert generates asserts for a new method by processing the method

into an input sequence, inferring over the trained model, and processing the output

sequence into syntactically correct asserts. As the example shows, the generated

assert statements can easily be expanded into a test.

We specifically target our work more toward applicability than previous work

by ensuring that we do not apply any filtering or abstraction and we do not use

any prediction techniques that generate multiple outputs, such as beam search. We

also only use the training set to create the vocabulary that is used when generating

the method sequences and assert sequences. This is to ensure, firstly, that we are

evaluating in a scenario that is true to real-world development and, secondly, that we

minimise the amount of work that a developer has to do to utilise the produced assert

statements in their code. Also, in contrast to Atlas, ReAssert does not include the

test code in the source sequence as this would require the developer to have already

written the test case (except for the assert statements) before using ReAssert to

generate asserts. As we believe that the generated asserts should help the developer

to write the rest of the test, this is an important improvement over prior work. Our

use of tests that have multiple assert statements is another improvement over Atlas

which only uses tests that contain a single assert statement. We believe this further

increases the applicability of ReAssert.

7.2.1 Test-to-code Traceability Establishment

Given the code for a project, we first need to extract the test-to-code traceability

links to build our training and testing data sets. Establishing test-to-code traceability

links is an open research problem in software engineering for which multiple

different techniques have been developed. Each technique has its own strengths and

weaknesses, resulting in different balances between precision and recall [Rompaey

and Demeyer, 2009, White et al., 2020]. Finding the right balance of precision and

recall is important for building a data set for machine learning as if the precision

is too low, the data will have too much noise (incorrect links) but if the recall is

too low the data set will be too small to effectively train from. In addition, the

optimal precision versus recall trade-off differs depending on which data set we are
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public List<Sentence> sentences(Properties props) {

return this.sentences(props, props == EMPTY_PROPS ? 

defaultTokenize :

getOrCreate(Annotator.STANFORD_TOKENIZE, props,

() -> backend.tokenizer(props)).get());

}

assert Equals ( 2 , sentences . size ( ) ) ; assert Equals ( " the quick brown fox jumped over the lazy dog . 
" , sentences . get ( 0 ) . text ( ) ) ; assert Equals ( " The lazy dog was not impressed . " , sentences . get ( 
1 ) . text ( ) ) ;

public List < Sentence > sentences ( Properties props ) { return this . sentences ( props , props = = 
EMPTY _ <unk> ? default <unk> : get Or Create ( Annotator . STANFORD _ <unk> , props , ( ) - > 
backend . tokenizer ( props ) ) . get ( ) ) ; }

Write method

Trained Model

Provide input sequence

Lexical processing

assertEquals(2, sentences.size());

assertEquals("theQuickBrownFoxJumpedOverTheLazyDog.",

sentences.get(0).text());

assertEquals("TheLazyDogWasNotImpressed.",

sentences.get(1).text());

Generate output sequence

@Test

public void testSentences() {

Document doc = new Document(

"the quick brown fox jumped over the lazy dog. The lazy dog 

was not impressed.");

List<Sentence> sentences = doc.sentences();

assertEquals(2, sentences.size());

assertEquals("the quick brown fox jumped over the lazy dog.",

sentences.get(0).text());

assertEquals("The lazy dog was not impressed.",

sentences.get(1).text());

}

Test integration

Figure 7.2: Example from the Stanford CoreNLP project demonstrating the ReAssert
process to generate asserts for a method.
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constructing. When constructing the training set, we prefer recall, however, for

the validation set (used for configuring the parameters of the networks) and test set

(used for the evaluation) we prefer precision. This is because when we are training

the model we want to ensure we have as much data as possible, whereas, when we

are evaluating the model using the validation or test set, we want to ensure that we

are not evaluating the model with noisy data.

When training a model, we can tolerate some noise in the data as we want to

maximise the amount of data and, even if a link is technically incorrect, we may

still be able to learn some useful structure from it. An example of this can be

seen when looking at tests for commonly overridden methods such as equals or

toString. In these cases, even if a link is incorrect, a link between the test for the

equals method of one class to the equals method of a different but similar class,

the network may still learn some useful information about the general structure of

equals tests because most tests for equals methods tend to be very similar. However,

when we are evaluating the model, we want to ensure that there are as few incorrect

links as possible as we don’t want to be evaluating the model by asking it to generate

something that is incorrect. Doing so will give an inaccurate view of how well the

model performs, usually resulting in an underestimation of its accuracy.

Given the above concerns, we firstly want to find a high precision technique

for building the validation and training sets. Using the recent work by White et

al. which compares the precision and recall of multiple techniques [White et al.,

2020], we selected the naming conventions (NC) technique for building these data

sets as it has a precision of 100%. The naming convention technique establishes

links by taking the fully-qualified names (FQNs) of both the tested method and the

test method and comparing them after the word test has been removed from the

test method name. If the names match exactly, the test method is linked to the

tested method. However, given the very low recall of only 11%, this technique was

not suitable for building the training set so we created a variant of this technique

called “Relaxed NC” (we conversely call the standard NC “Strict NC”). Relaxed

NC utilises the same concept as Strict NC but instead of performing the matching
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on the FQN, the matching is performed only over the tested method and test method

name. Therefore, a link will still be created even if the class name does not match

the test class name. While this will create some incorrect links, we can often still

learn some useful structure from these links (as described above) and it gives us

much more data to train on, which is critical, especially for the smaller projects.

7.2.2 Data Set Construction

To build the data sets, we start by constructing all the Strict NC and Relaxed NC

links and place all the Relaxed NC links into the training set. The Strict NC links

are then split between the validation set (used for configuring the parameters of the

networks) and test set (used for the evaluation), up to the maximum size of 100

links for each set. Any excess Strict NC links are placed in the training set. As

we want to ensure that we are not unfairly biasing the model, we then filter out

any links from the training set that appear in either the validation or the test sets.

This filtering can result in a large reduction of the number of links in the training

set, with the number of links in the validation and test set greatly influencing the

magnitude of this reduction as the larger the validation and test sets are, the more

links will have to be removed from the training set. Therefore, it is important to

balance the sizes of the sets so that each set has an adequate amount of links to

perform its function. This is why we limit the number of links in the test and

validation sets to 100. Now that we have the links for each set we must process the

links into pairs of source sequences (from the tested methods) to target sequences

(from the tests). To do this we first tokenise the source for each artefact, build

the vocabularies based on the tokenised sequences, then replace out-of-vocabulary

(OOV) tokens with UNK. Our tokenisation process consists of stripping all non-

printing and non-alphanumeric characters that are not used in Java, adding spaces

around all programming language characters, de-camelcasing identifiers and adding

spaces around the resulting tokens. This results in a sequence of individual tokens

consisting of the split identifiers and programming language characters. At this

stage the tested methods have been fully tokenised into source sequences, however,

for the tests we want to keep only the assert statements so we add another stage of
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processing for the tests where detect which tokens are part of assert statements by

checking for the “assert” token, finding the next opening parenthesis and its partner

closing parenthesis and treating all the tokens in-between as being part of the assert

statement. Any tokens that are not determined to be part of an assert statement are

deleted. This results in a target sequence that is just the tokenised assert statements

for the test. It is important to note that, unlike Watson et al. [2020], we use tests that

have multiple assert statements and we add all of the assert statements in the test to

the target sequence. Once we have applied this process to all the code snippets for

the tested methods and the tests we have our sets of input-output examples (source

sequence to target sequence pairs). We then build the source and target vocabularies

by collecting all the tokens in all the sequences and taking the top n most frequent

tokens, where n is the desired size of the vocabulary. The vocabularies are then

used to replace OOV tokens in the sequences by replacing any token which does

not appear in the relevant vocabulary with UNK.

7.3 Models
To compare the performance of established and new models, we selected a set

of networks consisting of two that use a traditional seq-to-seq architecture with

recurrent neural network (RNN) units [White and Krinke, 2018, Watson et al.,

2020], and a more efficient variant of the newer Transformer architecture called

Reformer [Kitaev et al., 2020]. All of these models utilise the encoder-decoder with

attention architecture type where the encoder encodes the source sequence into a

vector representation which is then decoded into a target sequence by the decoder.

The attention mechanism allows for modelling of out-of-sequence dependencies by

attending over the whole source sequence. This is the typical architecture used for

sequence to sequence learning tasks, such as neural machine translation.

7.3.1 RNN models

The two RNN type models we use are Atlas [Watson et al., 2020] and Test-

NMT [White and Krinke, 2018]. For both of these models, the encoder builds the

vector representation of the source sequence by traversing the sequence one token
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at a time converting each token into a vector embedding via an embedding layer

which is then provided as input to the encoder RNN unit for that time step. After

the source sequence has been fully processed, the final hidden state of the encoder

RNN is used to initialise the hidden state of the decoder RNN. Then, at each time

step, the decoder RNN uses the current hidden state, the previously generated target

sequence token, and the attention mechanism, to generate a new target sequence

token. This continues until the end-of-sequence token is generated.

The attention mechanism assists in determining the next token by assigning

attention weights to each of the tokens in the source sequence, computing a context

vector representing the full attention, and combining them with the hidden state of

the decoder to compute the attention vector. The attention weight αts for a given

target token and source token is computed by performing a normalised comparison

between the target hidden state ht and the source hidden state hs using the score

function:

αts =
expscore(ht,hs)∑S

s′=1 expscore(ht,hs′)

These attention scores are used to compute the context vector ct using a

weighted sum ct =
∑

sαtshs and the attention vector is computed by combining the

context vector with the current decoder hidden state at = tanh(Wc[ct;ht]).

The attention vector is then passed to the softmax layer to generate the

predicted target token. After decoding the target token for the current step, the

attention vector is passed to the next step in the decoder to ensure that past

attention information is carried forward. This helps to capture contextual and out-

of-sequence dependencies by allowing the network to attend to the source tokens in

differing amounts as the target sequence is generated. The attention mechanism can

be global (attending over the whole source sequence) or local (attending over only

a subsequence of the source sequence), as visualised in Figure 7.5.

While the Atlas and TestNMT networks both utilise this same basic archi-

tecture, as shown in Figure 7.3 and Figure 7.4, and both utilise LSTM cells with

the tanh activation function, they do differ in several significant ways. One major

difference is that the Atlas network includes a copy mechanism [Gu et al., 2016]
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Figure 7.5: Overview of attention in RNN networks.

that replaces UNK token predictions with a token from the source sequence. In

contrast, the TestNMT network does not use an UNK replacement mechanism.

Another difference is that the TestNMT network uses two unidirectional layers in

the encoder and two layers in the decoder, whereas the Atlas network uses a single

bidirectional layer in the encoder and two layers in the decoder. This difference

between the networks can provide some insight as to the relative effect of the

directionality of layers vs the number of layers. The networks also differ in the way

that attention is calculated. Atlas uses Bahdanau’s additive technique [Bahdanau

et al., 2014]:

score(ht,hs) = v>a tanh(W1ht + W2hs)

TestNMT uses Luong’s multiplicative style [Luong et al., 2015b]:

score(ht,hs) = h>t Whs
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7.3.2 Reformer model

The Reformer model [Kitaev et al., 2020] is a less resource-intensive iteration of the

recently popularised Transformer model [Vaswani et al., 2017]. The Transformer

model differs from the RNN based models in that it relies solely on attention and

simple point-wise fully connected feedforward network layers. The Transformer

still employs encoder-decode attention, however, it also utilises another form

of attention called multi-headed self-attention. The Transformer architecture is

comprised of a series of layers stacked on top of each other where each layer

contains an encoder and a decoder. The source sequence is fed through each encoder

sequentially and the result is given to each decoder along with the output from

the previous decoder (if one exists). The encoders and decoders are themselves

comprised of sub-layers with the encoders containing multi-head self-attention and

feedforward sub-layers, while the decoders contain multi-head self-attention, multi-

head encoder-decoder attention, and feedforward sub-layers. The output from the

final decoder passes through a single linear layer and into the softmax to compute

the output token predictions. Figure 7.6 shows a high-level example of a two-layer
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Transformer architecture.

The multi-headed attention mechanism works to improve performance by

allowing the model to attend to information from multiple different representation

subspaces concurrently, enhancing the model’s ability to focus on different posi-

tions. This is done by projecting the information from the input vectors h times,

where h is the number of heads, performing the attention calculations over each

head, and then combining the results from all heads. All heads are initialised

randomly and trained with random dropout so that different heads learn to attend

more appropriately over different positions, making the combination of multiple

heads more effective than a single attention function.

However, although Transformers achieve state-of-the-art performance they can

be very resource-intensive due to the extreme number of parameters and the size

of the calculations required for multi-head attention. Given this limitation, the

Reformer model was created to reduce the resource requirements of the model

while still applying the concepts that make the Transformer effective. To do

this, Reformer targets the three main sources of resource consumption in the

Transformer, specifically the large self-attention computation, which is OL2 for

sequences of length L, the large numbers of layers, and that the feedforward layers

are often much deeper than the attention activations. The Reformer deals with

the size of the attention computation by employing Locality Sensitive Hashing

(LSH) attention and deals with the large number and depth of layers by using

a Reversible Residual Network (RevNet) [Gomez et al., 2017] with chunking.

However, as the current implementation of the Reformer [Google, 2020] does not

use LSH attention for encoder-decoder sequence to sequence tasks (only decoder-

only language models), we omit discussion of LSH here and focus on RevNet and

chunking.

RevNet improves the memory consumption of the model by replacing the

Residual Network (ResNet) units of the standard Transformer with RevNet units.

This reduces memory consumption as ResNet units need to store all of the

activations for each layer in memory for the backpropagation calculations, requiring
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Figure 7.7: Residual Network (ResNet) units (used in Transformer) vs Reversible Network
(RevNet) units (used in Reformer).

a lot of space when using deep networks. RevNet units, however, can recover the

activations in the nth layer from the activations in the (n+1)th layer, meaning only

the activations from one layer need to be stored at any time. Figure 7.7 provides

an example of this by comparing a Transformer encoder with ResNet units and a

Reformer encoder with RevNet units. In traditional transformers, the self-attention

and feedforward sub-layers are each contained in their own ResNet units and require

that all the activations be stored. However, in the Reformer, the self-attention and

feedforward layers are wrapped together in a single RevNet unit where the input

(activations from the previous layer) can be recovered from the outputs (activations

from the current layer). This is done by partitioning the units in each layer into

two groups with inputs (x1, x2) and outputs (y1,y2) and arranging them so that the

inputs can be recomputed from the outputs simply by reversing the direction of

computation and changing the combination operators from addition to subtraction.

The final improvement is using chunking in the feedforward sub-layers.

Improving the efficiency of these layers is important as the dimensionality of the

vectors in these layers can reach 4K or higher. Chunking can be used because

the computations are independent across the positions in a sequence, meaning that
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Table 7.1: Subject project details.

Project Version Set Sizes
Training Validation Test

Apache OpenNLP 1.9.1 2027 66 66
DL4J 1.0.0 2122 67 68
EJML 0.38 26999 100 100
ND4J 1.0.0 5728 49 50
Stanford CoreNLP 3.9.2 3930 100 100

the computation can be split into n chunks, as shown in Equation (7.1), which are

executed in series, reducing memory requirements.

Y2 = [Y (1)
2 ; ...;Y (n)

2 ] =

[X(1)
2 + FeedForward(Y (1)

1 ); ...; X(n)
2 + FeedForward(Y (n)

1 )]
(7.1)

By using this combination of efficiency improvements, the Reformer can

achieve performance on par with that of traditional large Transformers while being

much more memory-efficient and faster, especially on large sequences.

7.4 Evaluation – ReAssert
We evaluate the ReAssert approach using the two RNN-based models from

TestNMT [White and Krinke, 2018] and Atlas [Watson et al., 2020] in addition

to the new Reformer model [Kitaev et al., 2020]. The projects that we selected to

perform the evaluation are Apache OpenNLP1, Deep Learning for Java (DL4J)2,

Efficient Java Matrix Library (EJML)3, ND4J4, and Stanford CoreNLP5. These

projects are well-tested, widely used, and include two natural language processing

libraries (Apache OpenNLP and Stanford CoreNLP), two linear algebra libraries

(EJML and ND4J), and one deep learning library (DL4J). The details of the data

sets obtained from these projects are given in Table 7.1.

The evaluation of ReAssert is split into two research questions which col-

1https://opennlp.apache.org/
2https://deeplearning4j.org/
3http://ejml.org/
4https://github.com/deeplearning4j/nd4j
5https://stanfordnlp.github.io/CoreNLP/

https://opennlp.apache.org/
https://deeplearning4j.org/
http://ejml.org/
https://github.com/deeplearning4j/nd4j
https://stanfordnlp.github.io/CoreNLP/
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lectively evaluate the usefulness of the generated asserts by performing a lexical

accuracy and a dynamic analysis over individual asserts and the applicability of

these asserts to the test suites of the projects.

7.4.1 Research Question 1 (Assert Accuracy)

How many of the generated asserts are exact matches, passing, and compiling?

In RQ1 we examine the effectiveness of ReAssert at generating individual asserts

when paired with each of the three models. We perform an analysis on the generated

asserts that first establishes which are exact matches (the generated assert exactly

matches an assert written by the developers), then which of the remaining asserts

compile and which of those then pass when used to replace the developer written

asserts in the existing test.

Experimental Setup To evaluate ReAssert, we first take each test-to-tested-method

pair from the test set, provide the tested method as input to the model, get the output

sequence, process the output sequence into syntactically correct assert statements,

and compare those statements to those given in the test method. Where a generated

assert exactly matches any assert in the test, we mark it as an exact match (and

therefore also as passing and compiling). We can automatically categorise exact

matches in this way as the test suites are fully green (have no failing tests) for

all of the projects. For generated asserts that are not exact matches, we take the

test from the pair, remove all existing asserts from the test method, insert the non-

matching assert at the end of the test method, attempt to compile and, if compilation

is successful, run the test to see if it passes. We repeat this process for all test-to-

tested-method pairs in the test sets of all the projects.

Findings The results, presented in Table 7.2, show that, in general, the three models

perform similarly. However, there are some noticeable trends, such as the TestNMT

model being slightly higher for F1 score in most projects and the Reformer model

being slightly lower in some projects (precision, recall, and F1 scores are for exact

matches only). Note that in most cases, there are more asserts that pass than asserts

that are exact matches and there are more asserts that compile than asserts that pass

(i.e., there are some asserts generated that compile, but where the test fails). A
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Table 7.2: RQ1 – Exact match, passing, and compiling asserts.

Apache
OpenNLP

DL4J EJML ND4J
Stanford
CoreNLP

TestNMT/RNN

Gen. Asserts 173 191 179 118 236
Matches 45 39 51 10 103
Precision (%) 26 20 28 15 44
Recall (%) 21 13 27 5 30
F1 23 16 27 7 35
Passing 47 40 61 10 108
Passing (%) 27 21 34 15 46
Compiling 47 44 69 10 120
Compiling (%) 27 23 39 15 51

Atlas/RNN

Gen. Asserts 150 111 184 96 197
Matches 47 21 45 9 85
Precision (%) 31 19 24 9 43
Recall (%) 22 7 24 4 25
F1 26 10 24 6 31
Passing 47 21 53 14 87
Passing (%) 31 19 29 22 44
Compiling 47 28 63 14 100
Compiling (%) 31 25 34 22 51

Reformer
Gen. Asserts 192 217 212 132 271
Matches 30 17 38 8 88
Precision (%) 16 8 18 6 32
Recall (%) 15 6 20 4 25
F1 15 7 19 5 29
Passing 30 17 49 9 98
Passing (%) 16 8 23 7 36
Compiling 31 26 61 9 110
Compiling (%) 16 12 29 7 41

discussion exploring the implications of these results can be found in Section 7.6.1.

7.4.2 Research Question 2 (Test Applicability)

What percentage of tests contain at least one assert from the categories? In RQ2 we

perform an analysis that uses the generated asserts from RQ1 where, for each assert
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Table 7.3: RQ2 – Percentage of tests with at least one generated assert that is an exact
match, passing, or compiling.

Apache
OpenNLP

DL4J EJML ND4J
Stanford
CoreNLP

TestNMT/RNN

Matched 26% 27% 29% 20% 40%
Passing 27% 28% 32% 20% 44%
Compiling 27% 31% 37% 20% 49%

Atlas/RNN

Matched 26% 12% 32% 18% 40%
Passing 26% 12% 37% 22% 40%
Compiling 26% 18% 42% 22% 44%

Reformer
Matched 17% 13% 28% 16% 41%
Passing 17% 13% 33% 18% 45%
Compiling 18% 21% 38% 18% 48%

category (exact match, passing, compiling), we determine the percentage of tests

that have at least one generated assert from that category. This is to give evidence

as to how useful the generated asserts are across a whole test suite.

Experimental Setup To answer this research question, we use the asserts generated

for RQ1 and, for each category, count the percentage of tests in each project that

contains at least one assert from that category.

Findings The results, presented in Table 7.3, show that in the best case, using the

TestNMT model, nearly half of the tests in a project receive a generated assert that

at least compiles (Stanford CoreNLP). On average, a third of tests receive at least

one generated assert that compiles and 28% receive at least one exact match assert.

When comparing models the performance is similar but, like RQ1, the Reformer

model is slightly lower in some projects than the two RNN models TestNMT and

Atlas.

7.5 Evaluation – Atlas
We present our evaluation of the three models using Atlas to determine if we can

improve over previous results using the new Reformer model or the TestNMT
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model. Atlas significantly differs from ReAssert in two aspects: (a) Atlas uses the

tested method and the test method for training and querying and (b) Atlas uses a

very simple and imprecise test-to-code traceability technique. However, it has been

applied in a multi-project setting in which the corpus is created from a large number

of projects. To construct the data set, Watson et al. [2020] mined 9,275 projects from

GitHub and used the Spoon library [Pawlak et al., 2016] to extract the test methods

by looking for the @Test annotation. However, any test that contained more than

one assert statement or was longer than 1000 tokens was discarded, leaving 188,154

tests in total.

The traceability technique used by Watson et al. [2020] in Atlas is a simplified

version of Last Call Before Assert (LCBA) [Rompaey and Demeyer, 2009]. Instead

of using a static or dynamic call graph, Atlas simply extracts the name of the last

called method before the assert and then searches the package for methods of the

same name. If no match can be found, Atlas extends the search to the whole project.

While having the benefit of being able to be used on a large and diverse corpus, this

method for establishing test-to-code traceability links can result in a lot of noise in

the data. The noise can be especially bad if multiple classes define methods with the

same names or if there are a lot of overloaded methods. After establishing the links,

Atlas processes them into input-output examples by extracting the asserts from

the tests to use as the outputs with their respective tested methods as the inputs.

Further filtering is then performed on the resulting data set to remove duplicate

examples and any example where the assert contains a token that does not appear

in the vocabulary. The data set provided by Watson et al. is already filtered, so our

evaluation uses the data set directly without mining or extraction.

The evaluation of the three models using Atlas is split into three research

questions which collectively evaluate the usefulness of the generated asserts by

looking at the accuracy (RQ3 and RQ4) and uniqueness (RQ5) of the generated

asserts.
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Table 7.4: RQ3 – Exact match asserts.

TestNMT/RNN Atlas/RNN Reformer

Generated Asserts 18 817 18 817 18 817
Matched Asserts 1355 3323 5262
Accuracy 7% 18% 28%

7.5.1 Research Question 3 (Assert Accuracy)

How many of the generated asserts are exact matches for developer written asserts?

For RQ3 we examine the effectiveness of our three models at generating exact

match asserts, similar to RQ1, but in the Atlas setting. The evaluation is limited to

exact matches as performing a dynamic analysis to discover passing or compiling

non-matched asserts is not possible with Watson et al.’s data set. We do not use

beam search when applying the Atlas model as it results in multiple tokens being

predicted for the same position in the output sequence. Therefore, when it is

utilised in the same way as Watson et al. and all of the predicted tokens are used to

build a list of possible outputs, the output of the model is a set of candidate assert

recommendations rather than a single assert.

Experimental Setup To answer RQ3, we use the model to generate an assert for

each test-to-tested-method pair in the test set and compare the generated assert to

the assert from the test as present in the data set. Where the generated assert and

the test assert match, we count it as an exact match and use the number of exact

matches divided by the total number of generated asserts to calculate the precision.

Findings The results, as shown in Table 7.4, reveal that TestNMT is the worst-

performing model with only 7% precision. While Atlas fairs much better than

TestNMT with 17% precision, Reformer is the best by a wide margin at 28%

precision. Note that our results of 3323 exact matches for our reimplementation

of Atlas is identical to the results reported by Watson et al. [2020], giving us

confidence that our reimplementation is faithful to the original Atlas. Discussion

regarding these results can be found in Section 7.6.1.
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7.5.2 Research Question 4 (Edit Distance Evaluation)

How far from exact matches are non-matched asserts? RQ4 investigates how

much transformation, measured in absolute and relative token-based edit distance,

is required to turn non-exact match asserts into exact matches. These measures give

evidence as to how useful non-matched asserts are to developers as, intuitively, the

easier it is to turn a non-exact match assert into an exact match, the more useful that

assert would be for developers. We use the relative edit distance as we want to take

the length of the asserts into account to avoid favouring models that are more likely

to produce short asserts. Discussions relating to the length of generated asserts can

be found in Section 7.6.2. We also report the count of asserts that are less than two

token changes away from being a matched assert. This group, therefore, includes

asserts that are either exact matches or only one token change away from an exact

match. Given the ease of changing a single token, we consider these non-matched

asserts to be in the group of asserts which should be of most use to developers.

Experimental Setup This evaluation is performed using the asserts generated for

RQ5. First, we find the edit distance by computing the Levenshtein distance

between the generated assert and each developer written assert, using tokens instead

of characters as the atomic unit, and take the smallest distance. The distance is then

used to compute the relative edit distance by dividing it by the number of tokens in

the assert with the most tokens out of the generated assert and the developer written

assert.

Findings The results, as shown in Table 7.6 reveal that the Atlas and Reformer

models perform essentially equivalently to each other in edit distance, with the

TestNMT model trailing behind them. However, when looking at asserts that are

less than 2 token changes away from an exact match, the Reformer model has a

clear advantage.

7.5.3 Research Question 5 (Uniqueness Evaluation)

What is the uniqueness of generated asserts? RQ5 investigates how unique the

generated asserts are, which is important as the more unique an assert is, the more

useful it is likely to be. This belief is driven by the fact that, in general, asserts that
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Table 7.5: RQ4 – Exact match edit distance evaluation.

TestNMT/RNN Atlas/RNN Reformer

Median Edit Dist. 5 2 2
Mean Edit Dist. 5.07 3.85 4.00
Median Rel. Edit Dist. 0.28 0.15 0.15
Mean Rel. Edit Dist. 0.26 0.18 0.19
Dist. < 2 Count 3375 6984 8180
Dist. < 2 (%) 18% 37% 43%

are more unique are more likely to encode specific information about the task. For

example, an assert statement that simply checks the equality of two generically

named variables contains less specific information than an assert statement that

contains method calls. We use the asserts generated by each of the three models

only with the Watson et al. data set because this data set is taken from a large

number of projects and, therefore, demonstrating the ability to generate a diverse

and unique range of asserts is important.

To evaluate uniqueness, we first look at the absolute number of unique asserts

the models produce and what percentage of generated asserts were unique at

generation time for all generated asserts and all matched asserts. This measures

how frequently the models are generating unique asserts. However, we do not

only want to look at unique asserts but also the distribution of non-unique asserts.

We perform this analysis with a view that a more even distribution, in general,

indicates a greater diversity of asserts and, therefore, greater useful informational

content. This assumption is discussed in more detail in Section 7.6.2. To assess the

distribution of non-unique asserts, we compute the absolute number and percentage

of matched asserts that are among the top five and top ten most common asserts,

essentially showing us how common the most common asserts are. To demonstrate

a good ability to generate asserts with a high degree of uniqueness, we are looking

for a model to maximise the unique assert percentages while minimising the most

common assert percentages.

Experimental Setup To conduct RQ5, for each model, we first take the list of assert

statements generated by the model and group identical asserts together. The sizes of
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Table 7.6: RQ5 – Assert uniqueness analysis results.

TestNMT/RNN Atlas/RNN Reformer

Unique Asserts 470 11 496 13 331
Unique Asserts (%) 2% 62% 71%
Unique matched 97 948 2647
Unique matched (%) 7% 29% 50%
Top 5 matched (%) 59% 25% 16%
Top 10 matched (%) 71% 37% 20%

these groups give us the count of how many times each assert appears. We take the

number of groups as our count of distinct asserts and calculate this as a percentage

of all the generated asserts. This is the percentage of asserts that were unique at

the time of generation. The groups are then ordered by their cardinalities and we

take the sum of the cardinalities of the top five and the top ten largest groups and

use these to calculate the percentage of generated asserts that are members of these

groups.

Findings The results, as shown in Table 7.6 reveal that Reformer is the best model

for uniqueness as it has the highest percentages of unique asserts and the lowest

percentages of asserts that are among the top 5 and top 10 most common asserts.

These results show Reformer is better for uniqueness than the next best model,

Atlas, by a sizeable margin in all measures. The TestNMT model performs poorly

as it rarely generates unique asserts. Discussion regarding these results can be found

in Section 7.6.2.

7.6 Discussion

We discuss the findings of the research questions and other subjects relating to our

methodology and outcomes. The topics of assert accuracy (RQ1 – RQ4) and assert

uniqueness (RQ5) are of particular interest as they constitute the primary ways

in which we assess the usefulness of the generated asserts. In addition, there are

important takeaway messages regarding the practicalities of applying this general

approach to code generation tasks, both in research and in industrial practice.
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7.6.1 Assert Accuracy

Assessing the accuracy of the generated asserts by comparing them to a ground

truth test set is the primary method for evaluating assert generation techniques as it

shows us how similar the generated asserts are to developer written asserts. Given

the assumption that developers write useful asserts, this gives direct evidence for

the usefulness of the generated asserts.

For RQ1 we use precision and recall as our measure for accuracy which shows

that the accuracy achieved by ReAssert is heavily dependant on the project it is

applied to. In the best case of our experiments, using the TestNMT model with

Stanford CoreNLP, the accuracy is greater than what is achieved in the best case

with Atlas, using the Reformer model. However, when using the ND4J project, the

accuracy is lower. Despite this, when considering the RQ2 results, we see that even

for the worst-performing project, ND4J, we still have 20% of tests receiving at least

one exact match assert.

When using the accuracy to compare models within the Atlas approach, in

RQ3 we see that the Reformer model with 5262 matched asserts is 58% more

accurate than the Atlas model with 3323 matched asserts, the next best performing

model, while the TestNMT model is far behind with only 1355 matched asserts.

The poor performance of TestNMT is due to its lack of an UNK replacement

mechanism which results in an UNK token appearing in 80% of the asserts it

generates. As any assert which contains an UNK token cannot be matched, the

accuracy of the model is very poor. This is one of the primary ways in which

the Atlas model differs from the TestNMT model in that it implements a copy

mechanism that replaces UNK token predictions with a token from the source

sequence, the effects of which are seen in these results. RQ1 paints a different

picture in terms of the comparisons between models when using the ReAssert

approach. This shows that all the models are close to each other in general but

where there are larger differences, the ordering from RQ1 is typically reversed,

with TestNMT coming in first and Reformer coming in last. The reasons for

this are two-fold. Firstly, it seems that the accuracy of the models is ultimately
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Table 7.7: Top 5 most common matched asserts across all models.

Assert Count

assertEquals(expected, actual) 1288
assertEquals(expResult, result) 419
assertEquals(expected, result) 337
assertTrue(true) 253
assertNotNull(result) 181

being bottlenecked by the quantity and diversity of training data. Given that the

amount of training data that can be extracted from a single project is limited, there

are a proportion of asserts appearing in the test set that bear no resemblance to

any assert in the training set and, therefore, will never be able to be replicated by

any model. Given this, it seems that TestNMT may be the best model at learning

and recreating a restricted set of asserts that appear frequently, while Reformer is

better at generalising when given a more diverse data set. This would explain the

differences between these models when comparing the RQ1 and RQ3 results. The

subject of the effect of data sets on the performance of the models is discussed

further in Section 7.6.3.

The takeaway message from these RQs is that the best performing model is

dependent on the usage scenario. If generating asserts for a project that has a data

set that is conducive to sequence to sequence learning, ReAssert with a TestNMT

model is the best performing with up to 44% precision and the ability to generate

at least one matching assert for up to 40% of tests with the projects we used in the

evaluation. Otherwise, when using the Atlas approach, the Reformer model may

be the best choice.

7.6.2 Assert Uniqueness

In RQ5, we performed a uniqueness evaluation on the generated asserts to provide

more evidence for how useful the asserts are in practice. This was done as

uniqueness is an indicator of specificity and the more specific information an assert

contains, the more useful that assert is likely to be in practice. Therefore, we use

uniqueness as a partial proxy for evaluating usefulness. The intuition behind this
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Table 7.8: Top 5 most common matched asserts containing a method call.

Assert Count

assertEquals(0, result.size()) 172
assertTrue(getNoErrorMsg(), result) 59
assertEquals(0, meldingen.size()) 57
assertEquals(200, response.getStatusCode()) 38
assertEquals(“test”, echo.echo(“test”)) 26

evaluation is clear when inspecting the least unique (most commonly generated)

asserts, as shown in Table 7.7. This demonstrates how the most common asserts are

extremely generic and provide almost no specific information to the developers as

they simply compare values of generically named variables. In the extreme case,

as exemplified by the fourth most common assert, assertTrue(true), the assert is

of no use at all and has been learnt from developers writing a placeholder assert

into their tests (which is considered bad practice). As a comparison, if we look at

the top five most common generated asserts that contain a method call, as shown

in Table 7.8 we see that, while still somewhat generic, these asserts contain more

specific information for how to test the tested method. This comparison highlights

how uniqueness relates to specificity, which in turn relates to practical usefulness.

We, therefore, favour models which generate the greatest diversity of asserts.

Given that Reformer produces more unique asserts and has a lower percentage

of its asserts belonging to the top 5 and top 10 most common asserts as compared

to Atlas in the evaluation for RQ5, Reformer is the most desirable model in this

regard. TestNMT performs poorly in this evaluation for the same reason as its poor

performance in accuracy, namely that the lack of an UNK replacement mechanism

limits the range of matched asserts that it can produce. The takeaway message is

that the use of a state of the art model like Reformer can improve the usefulness of

the generated asserts due to the higher uniqueness of the asserts.

7.6.3 Data Set Size, Diversity, and Quality

As discussed in Section 7.6.1, we see a surprising result when we compare the

accuracy between models when using ReAssert versus when using Atlas, in that
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the models perform much more similarly with ReAssert. This indicates that some

of the projects selected for the ReAssert evaluation produce data sets that do not

allow all the models to generalise maximally, most likely due to insufficient size,

low diversity, or too much noise. This is an important takeaway for those wishing to

use these code generation techniques in the future as these properties are determined

not just by the size of the projects from which the data is taken but also by the

traceability technique used to establish the test-to-tested-method links, the filtering

that is applied to the data sets, and the way the code is written. This diversity of

concerns is evident when investigating the relationship between data set sizes and

performance. In this regard, it’s important to note that the project with the largest

data set (EJML) is only the second-best performing project in terms of F1 score

in RQ1 with the Reformer model (and third-best with the RNN models), while the

project that performs best for F1 score with all models (Stanford CoreNLP) has only

the third largest data set. This shows that the size, diversity, and quality of the data

set has a large impact and, for projects of this size, ultimately limits the ability of

the models to generalise. The takeaway message, therefore, is that it is crucial to

select a corpus of software that is large and diverse and that appropriate techniques

which balance data set size and accuracy must be selected.

7.7 Threats to Validity

The threats to validity are related to the data used for training and evaluating the

models, both in terms of subject selection and the method of data set collection.

An external threat to validity is the representativeness of the subjects chosen for

the ReAssert evaluation, as we have no strong evidence that the subjects are

representative of the general population of software. However, the subjects cover

a range of project types, are widely used in research and industry, and are large

enough to demonstrate applicability to complex software. The second threat comes

from the method by which the data was collected as the traceability techniques used

to build the test-to-tested-method links do not have complete precision and there

is, therefore, some noise in the data. However, as discussed in Section 7.2.1, we
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believe that having some noise in the data does not necessarily significantly hamper

the training. For the individual project data sets, we ensure that the validation and

test sets contain minimal noise by using a very high precision traceability technique

for constructing those sets. However, when using multi-project data sets, such as

in the Atlas evaluation, the results may vary if using a data set with a significantly

different amount of noise in the data sets.

7.8 Related Work
Prior to the application of the machine learning techniques that are the subject

of this chapter, assert generation was done primarily by test suite generation

tools. These tools can be split into several categories depending on the general

approach used for the generation of their tests. Randoop [Pacheco and Ernst,

2007], Nighthawk [Andrews et al., 2007], JCrasher [Csallner and Smaragdakis,

2004], and CarFast [Park et al., 2012] are the primary examples of tools that use

approaches based on random generation while EvoSuite [Fraser and Arcuri, 2013]

and eToc [Tonella, 2004] are examples of meta-heuristic search-based tools and

Symbolic Pathfinder [Păsăreanu and Rungta, 2010] and jCUTE [Sen and Agha]

are examples of tools that use dynamic symbolic execution. However, despite the

diversity of approaches to unit test generation employed by these tools, they all

focus primarily on things other than the generation of meaningful asserts. The usual

goal for these tools is achieving coverage or exposing faults in other ways, such as

generating exceptions and crashes. Therefore, even the most well developed and

studied examples of these tools which do have some form of assert generation,

such as EvoSuite and Randoop, the asserts they generate are often trivial or not

meaningful, contributing to the relatively high rate of missed faults in real-world

projects [Shamshiri et al., 2015] and poor developer opinions of the quality of

generated asserts [Almasi et al., 2017].

7.9 Conclusion
We have presented ReAssert, a project-based deep learning approach for the

generation of JUnit test asserts. We also utilise the state-of-the-art Reformer
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model and two RNN-based models from previous work to evaluate ReAssert

and provide an extended evaluation of Atlas, allowing us to compare models

and approaches for assert generation. ReAssert improves over previous work by

generating asserts that are, in general, more accurate and does not require that a

test be written before being able to generate asserts, in addition to being able to

generate multiple asserts for a single function. Also, the Reformer model is shown

to improve the results achievable by the Atlas approach [Watson et al., 2020]

generating asserts that are more accurate and more unique. However, when the

Reformer model is used with ReAssert, the difference in effectiveness between the

models is greatly lessened. This indicates that some of the projects selected for the

ReAssert evaluation produce data sets that do not allow all the models to generalise

maximally, most likely due to insufficient size, low diversity, or too much noise.

Therefore, researchers and practitioners must be aware of this limitation and select

code corpora and traceability techniques that provide suitably large, diverse, and

clean data sets.



Chapter 8

Discussion, Conclusion, and Future

Work

This chapter concludes the thesis starting with a discussion section containing gen-

eral observations and discussion points emerging from the work. This is followed

by the conclusion which summarises the primary outcomes and achievements of the

thesis.

8.1 Discussion
This section provides a recap and exploration of the general themes and discussion

points raised by the work presented in this thesis. One recurring theme is the

issues surrounding the construction and quality of datasets, especially for use with

machine learning techniques or as a ground truth for evaluation. All three main

research areas explored in this thesis utilise data sets of test-to-code traceability

links: TCTracer uses a set of ground truth links for evaluation, Relatest uses links

for finding test recommendations, and TestNMT and ReAssert utilise them for

training neural networks.

To evaluate TCTracer we needed a set of ground truth links that we could

use to evaluate our predictions. For this we manually created a new data set of

ground truth links and also attempted to find existing data sets of ground truth links

to use, however, we found only two existing sets of links that were appropriate to

use out of the many sets that we investigated. This experience resulted in some
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important takeaway lessons as we learned that there are a set of mistakes that are

commonly made which introduce bias or generally result in a poor quality data

set. Firstly, failure to uniformly sample tests from the project can lead to the

data set containing mostly very similar links, resulting in the data set not being

representative of the project as a whole or tests in general. Secondly, selecting

projects that are too small, out of date, or have low test coverage also produces

data sets that are poor in variation and present challenges in building and executing

the project to test your approach. Additionally, a valid link needs to be defined in

such a way that avoids links that are not useful being included. This includes not

considering interface methods or overridden methods as tested methods as doing so

can result in many tests being linked to a single interface or overridden method when

they are actually testing different methods which implement or override it. Finally,

determining which functions are tested by which tests includes some amount of

judgement and is error-prone. Therefore, to ensure that judgements are consistent

and reasonable, links should be validated by a second judge. The conclusion from

this is that building high precision data sets of test-to-code links is time-consuming

and difficult.

These time and effort constraints make it non-viable to manually establish data

sets of links that are large enough to train machine learning models, where we

ideally need at least thousands of training examples. Therefore, to build data sets

appropriate for this task, automated techniques must be used. Other work that has

attempted this, such as Atlas [Watson et al., 2020], has used techniques that produce

data sets with high amounts of incorrect links, resulting in noisy data sets which

may impact the maximum achievable accuracy of the model and the reliability

of its evaluation. This issue served as one of the motivations for TCTracer: to

develop an automated approach to test-to-code traceability establishment which can

produce large data sets for training machine learning models with less noise than

existing approaches. TCTracer was, therefore, used by us to create the data set for

ReAssert.

The difficulties surrounding the construction of large high-quality datasets
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leads to the next discussion point which is the effectiveness of machine learning

techniques vs more traditional approaches. While machine learning is a very

powerful tool that has many applications and proved effective for TestNMT and

ReAssert, we also found instances in which traditional approaches were more

effective. The two main areas in which we applied machine learning and discovered

it did not perform better than our more traditional approaches were bipartite edge

prediction in Relatest and technique combination in TCTracer. For bipartite edge

prediction in Relatest, discussed in Section 4.3.7, we experimented with three

different machine learning techniques: matrix factors learning, spectral clustering,

and cross-graph learning. This represents a good sample of machine learning

techniques as there is one supervised method, one unsupervised method, and one

semi-supervised method. Despite this, our graph-based method called the triangle

method, outperformed all of these machine learning techniques. There are two

primary reasons for this: firstly, to utilise these methods we have to convert the

artefact relationship graphs to matrices and secondly, the quantity and quality of

training data available. Due to the nature of the task, predicting edges in a very

sparse bipartite graph, the resulting matrices are also very sparse and when this

is coupled with a lack of training examples, the models struggle to learn a good

function. Additionally, as we are dealing with projects that have thousands of tests

and functions, the sizes of the matrices very quickly become extremely large making

computation intractable. Therefore, some form of dimensionality reduction has to

be used which adds further complication and can affect accuracy. In comparison,

our traditional graph-based approach is effective and has low time and space

complexity, making it the best choice. The other example where machine learning

was trumped by a traditional method was the technique combination method in

TCTracer. Here we see that simply taking an average of the individual technique

scores performed better than using a feedforward network to combine them.

Overall, the takeaway message is that there is no universal approach to solving

all of the problems around the automation of discovery, reuse, and generation of

tests that can be applied to all aspects of the problem. Only by combining different



8.2. Conclusion 194

types of approaches from software engineering, graph theory, and machine learning,

along with a hybrid of manually and automatically generated data sets were we able

to achieve a body of work that can identify relationships between tests and functions

and utilise those relationships for automating reuse and generation of new test code,

resulting in a saving of developer effort and ease of testing.

8.2 Conclusion

This thesis has presented a body of work addressing the general problem of how to

establish and maintain, in a time-efficient manner, a collection of high-quality tests

for software systems. This top-level problem was tackled by decomposing it into

several sub-problems: establishing test-to-code traceability links, reusing existing

tests, and generating new test code.

To establish test-to-code traceability links, Chapter 3 introduced TCTracer,

the first multilevel approach to test-to-code traceability which establishes links at

both the method level and class level. TCTracer utilises an ensemble of individual

static and dynamic techniques and a cross-level flow of information to achieve state-

of-art performance. Our evaluation of TCTracer reveals that only static information

is required to achieve the best performance at the class level, however, at the method

level dynamic information is also needed for the best performance. Our evaluation

also investigates the use of machine learning for technique combination and the

application of weightings for individual techniques. Additionally, we conducted a

manual investigation into the causes of false positives and false negatives which

revealed that the majority of these cases are due to developers breaking conventions

or writing code in unusual ways. To perform our evaluation of TCTracer we also

created a ground truth data set which has been made publicly available and a set of

takeaway messages for researchers that are creating or using similar data sets.

For assisting the automation of reuse, Chapter 4 introduced the concept of

the artefact relation graph and used it to formulate Rashid, a general framework

for modelling the relationships between artefacts. We then created Relatest, an

approach for the recommendation of existing tests for new functions by instantiating
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Rashid using functions and tests as the artefact types and code similarity measures

and test-to-code traceability to define the relations. Our evaluation demonstrated

that using Relatest can substantially reduce the amount of effort required to write

tests and in the majority of cases only a single recommendation is needed to get the

maximum benefit. However, given that some manual effort is still required to trans-

form the recommendations made by Relatest, we also investigated the automatic

transplantation of tests between environments. This investigation showed that fully

automated transplantation is not always feasible but can be achieved, especially

if certain conditions are met. In addition, applying genetic improvement to the

transplantation process greatly increases the likelihood of success. Additionally,

while transplanted tests overall reveal fewer faults than EvoSuite, they also have the

potential to reveal faults that are not revealed by EvoSuite.

As we are not able to find and transplant an existing test for all functions we

also focus on the task of unit test generation as we can then generate a test for

any function. This thesis contains two approaches to the generation of test code:

TestNMT and ReAssert. Chapter 6 presents TestNMT, an approach that uses

recurrent neural networks repurposed from the field of neural machine translation to

generate full unit tests. This approach was demonstrated to be capable of generating

approximate tests which are close to ground truth tests, however, as the generated

tests are approximations, some manual work is still required by the developers

to transform the generated approximate tests for use. Additionally, as generating

entire tests often requires a large number of output tokens the accuracy can be

low for complicated or long tests. To counter these issues, Chapter 7 presents

ReAssert, an approach to test code generation which focuses on the generation

of asserts as opposed to entire tests. This is motivated by the fact that asserts are

the most important components of the tests and contain fewer tokens than the whole

tests which are generated by TestNMT. ReAssert defines a new approach for data

collection, pre-processing, and post-processing and utilises the Reformer, a new

transform-based model. This allows us to generate asserts with higher accuracy than

TestNMT generates approximate whole tests and removes the need for developers
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to make manual syntax changes before integrating the generated code into existing

project code. The evaluation of ReAssert shows that we generate asserts with

greater accuracy and greater diversity than previous approaches. Additionally,

unlike previous approaches, ReAssert does not require that the body of the test

already be written to generate asserts for it and can generate multiple asserts for a

single test.

In total, this thesis presents a set of novel approaches and their implementations

in tools for tackling the key problems associated with assisting the automation of

test suite development, specifically, establishing relationships between tests and

tested code, automating reuse recommendations and test transplantation, and the

generation of new test code. The evaluations of these approaches show state-of-the-

art effectiveness in their respective tasks and demonstrate the potential to make large

savings of manual time and effort when used in the software development process.
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V. Csuvik, A. Kicsi, and L. Vidács. Evaluation of textual similarity techniques in

code level traceability. In International Conference on Computational Science

and Its Applications, pages 529–543. Springer, 2019b.

D. Davis, R. Lichtenwalter, and N. V. Chawla. Multi-relational link prediction in

heterogeneous information networks. In Advances in Social Networks Analysis

and Mining (ASONAM), 2011 International Conference on, pages 281–288.

IEEE, 2011.

http://portal.acm.org/citation.cfm?doid=1806799.1806825
http://doi.wiley.com/10.1002/spe.602
http://doi.wiley.com/10.1002/spe.602
https://dl.acm.org/citation.cfm?id=3355319


BIBLIOGRAPHY 201

J. Davis and M. Goadrich. The relationship between precision-recall and roc curves.

In Proceedings of the 23rd International Conference on Machine Learning, pages

233–240. ACM, 2006.

A. De Lucia, F. Fasano, and R. Oliveto. Traceability management for impact

analysis. In 2008 Frontiers of Software Maintenance, pages 21–30. IEEE, 2008.

P. T. Devanbu. GENOA: A customizable language- and front-end independent

code analyzer. In Proceedings of the 14th International Conference on Software

Engineering, ICSE ’92, pages 307–317, New York, NY, USA, 1992. ACM. ISBN

0-89791-504-6. doi: 10.1145/143062.143148. URL http://doi.acm.org/

10.1145/143062.143148.

D. Elsner, F. Hauer, A. Pretschner, and S. Reimer. Empirically evaluating readily

available information for regression test optimization in continuous integration.

In Proceedings of the 30th ACM SIGSOFT International Symposium on Software

Testing and Analysis, pages 491–504, 2021.

M. Erfani, I. Keivanloo, and J. Rilling. Opportunities for clone detection in test

case recommendation. In 37th Annual Computer Software and Applications

Conference Workshops, pages 65–70, July 2013. ISBN 978-1-4799-2159-1. doi:

10.1109/COMPSACW.2013.11.

J. L. Fleiss. Measuring nominal scale agreement among many raters. Psychological

bulletin, 76(5):378, 1971.

G. Fraser and A. Arcuri. Whole test suite generation. IEEE Transactions on

Software Engineering, 39(2):276–291, feb 2013. ISSN 0098-5589. doi: 10.1109/

TSE.2012.14. URL http://ieeexplore.ieee.org/document/6152257/.

G. Fraser and A. Zeller. Mutation-driven generation of unit tests and oracles. IEEE

Transactions on Software Engineering, 38(2):278–292, mar 2012. ISSN 0098-

5589. doi: 10.1109/TSE.2011.93. URL http://ieeexplore.ieee.org/

document/6019060/.

http://doi.acm.org/10.1145/143062.143148
http://doi.acm.org/10.1145/143062.143148
http://ieeexplore.ieee.org/document/6152257/
http://ieeexplore.ieee.org/document/6019060/
http://ieeexplore.ieee.org/document/6019060/


BIBLIOGRAPHY 202

R. E. Gallardo-Valencia and S. E. Sim. Source Code Seeking on the Web: A Survey

of Empirical Studies and Tools. Lulu.com, 2014.
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