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Abstract: Fluorescence guided surgery, augmented re-
ality, and intra-operative imaging devices are rapidly
pervading the field of surgical interventions, equipping the
surgeon with powerful tools capable of enhancing the
surgical visualisation of anatomical normal and patho-
logical structures. There is a wide range of possibilities in
the adult population to use these novel technologies and
devices in the guidance for surgical procedures and mini-
mally invasive surgeries. Their applications and their use
have also been increasingly growing in the field of paedi-
atric surgery, where the detailed visualisation of small
anatomical structures could reduce procedure time, mini-
mising surgical complications and ultimately improve the
outcome of surgery. This review aims to illustrate the
mechanisms underlying these innovations and their main
applications in the clinical setting.

Keywords: augmented reality; fluorescence-guided surgery;
general surgery; image-guided surgery; intra-operative
visualisation; novel devices; optical imaging; paediatric
surgery.

Introduction

The field of surgery faces an ever-increasing need for
real-time intraoperative visualisation of small anatomical
structures, such as vessels and nerves. In the last decade,
there has been a great effort to develop novel technologies
and devices that could better visualise vital organs, with the
final aim to minimise surgical complications and improve
outcomes. Technological innovations, such as fluorescence-
guided surgery and augmented reality, are developing the
broad field of image-guided surgery with the aid of more
responsive and artificial intelligence enhanced robots [1–3].
In addition, innovative intra-operative imaging devices,
such as intraoperative MRI, ultra-high frequency ultra-
sound, and photoacoustic imaging, are becoming crucial to
give the surgeons novel tools for better field visualisation,
anatomical prediction, and possible automated guidance
[4–9]. These novel imaging techniques and devices repre-
sent the future of surgery, and they are fast approaching
clinical implementation. This review illustrates the most
promising and innovative image-guided techniques and
devices to enhance surgical visualisation of anatomical
normal and pathological structures.

Fluorescence-guided surgery (FGS)

FGS has proved to be a feasible tool for visualising vessels,
organ perfusion, and tumours during surgical procedures
thanks to generating a near-infrared (NIR) signal using
different fluorescent markers [1, 2]. The main benefits of
this novel technique are related to the absence of ionising
radiations, the high contrast and sensitivity, and the good
spatial resolution of fine anatomical structures, which
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could improve the real-time and high-resolution delinea-
tion of vital structures and tumours’ margins during sur-
gery [2]. Both indocyanine green (IGC) and fluorescein
sodium have been used in children and adults, with no
significant reported side-effect [2]. In addition, a broad
array of imaging and diagnostic technologies employ an
experimental technique known as immunofluorescence
consisting of fluorophore-labelled antibodies for specific
and targeted visualisation.

IGC and fluorescein sodium

ICG is a safe, anionic amphiphilic tricarbocyanine dye that
received the Food andDrug Administration approval in the
1950s, and it is currently indicated for determining cardiac
output, hepatic blood flow and performing ophthalmic
angiography [1, 10]. Other promising but off-label appli-
cations include the visualisation of vascular anatomy
[11–13], lymphatic vessels [14–16], biliary flow [17, 18],
surgical margin definition during tumour resections
[19, 20], bronchial tree visualisation [21] and ureter identi-
fication [22]. When intravenously administered, ICG is
usually confined into the vascular stream by binding al-
bumin, and it has hepatic clearance with an intravascular
half-life of approximately 3 min [10].

Some of the most common clinical applications of ICG
are linked to the visualisation of intestinal perfusion before
anastomosis [11, 13] and the visualisation of blood and
lymphatic vessels during laparoscopic urological surgery
procedures [23, 24]. Moreover, the exclusive hepatic
clearance leads to fluorescence cholangiography as an
adjunct for laparoscopic cholecystectomy and Kasai hep-
atoportoenterostomy [17, 18]. The increased vascular
permeability of the neo-angiogenetic vessels allows ICG to
passively accumulate within the hepatic and non-hepatic
primary tumour, enhancing margin delineation during
surgical resections [19, 20, 25]. Other uses of ICG include its
injection under CT guidance into pulmonary nodules to
precisely localise neoplastic lesions intraoperatively [26].
In this regard, Quan et al. suggest that lung-specific inha-
lation delivery of ICG can be also helpful for the intra-
operative visualisation of tumour margins in clinical
practice [21]. Interestingly, when interstitially injected, ICG
is protein-bound and confined into the lymphatic system.
This can be exploited to track lymphatic drainage and to
facilitate sentinel lymph node detection and biopsy [14–16,
27]. Apart from ICG, fluorescein sodium has also been
described as a safe and inexpensive water-soluble dye to
assess ischaemic bowels and intracranial tumours [28, 29].

Fluorophore-labelled antibodies

Tumour-targeted fluorescent probes, such as fluorescently
labelled monoclonal antibodies, are currently under
investigation in adult oncology to detect viable tumour
cells and better define surgical margins [30, 31]. Two of the
most popular commercial near-infrared (NIR) cyanine
heptamethine fluorophores for antibody conjugation are
IRDye800CW and DyLight800.

There is only one clinical trial in the paediatric popu-
lation, not yet recruiting, which will evaluate the safety,
dosing and efficacy of Panitumumab-IRDye800 as an op-
tical imaging agent in patients requiring brain surgery to
remove tumours. For this clinical study, patients will un-
dergo standard of care, histopathological-based, surgical
resection of tumour 1–5 days after the infusion of the
labelled antibody. IRDye800 is more commonly used in
adult clinical trials, and we have summarised completed,
terminated or currently recruiting studies using IRDye
800CW in the adult population (Table 1).

Even if the past decade has undoubtedly witnessed
significant advances in the clinical application and tech-
nical development of fluorescent optical imaging, there is
the need to translate these technologies more stably and
effectively. Further studies involving larger cohorts of pa-
tients and continued experience with fluorophores and
optical imaging systems will soon allow FGS to become a
well-establish technique to improve surgical outcomes in
surgery.

New intra-operative devices

Augmented reality (AR)

Augmenting pre-operative imaging into a 3D model super-
imposed onto a real-time surgical field represents an
exciting novel opportunity to enhance surgical practice. AR
has the potential to act as an effective intraoperative adjunct
by increasing information accessible to a surgeon whilst
remaining aseptic and within anaesthetic-implicated time
restraints [43]. Augmented reality technology can be defined
into clear stages: the acquisition of 2D pre-operative images
to produce a 3Dmodel of patient-anatomy, then calibrating
the model onto the real-time field so that changes in view
angles are simultaneously adjusted in the 3D model. The
modality by which the surgeon views the artificial image
overlay can vary and includes artificial colouring/texturing,
enhancing tissue identification and overall anatomical
depiction (Figure 1) [2, 3]. Despite the potential benefit ofAR,
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there are significant limitations to its use. AR is an expensive
technology to use, requiring relatively powerful microcom-
puters balanced with the need for equipment to be practical
to use. In addition, the differences between pre-operative
imaging and actual intraoperative anatomy may be signifi-
cant and, reducing the AR reliability and usability during
surgery. This is especially true in the paediatric population,
where minor errors in mapping imaging to AR visualisation
can lead to major inconsistencies [44].

AR applications in adult surgery have been extensive,
especially in neurosurgery, otolaryngology and ortho-
paedics, due to spatial preservation of internal structures
with anatomical landmarks intraoperatively [45, 46]. On
the other hand, the intraoperative use of AR in paediatric
surgery is still limited. Nonetheless, the use of AR has
been explored in the field of endoscopic surgery. Ieiri et al.
discussed six paediatric cases undergoing laparoscopic
splenectomy, where pre-operative 3D imaging produced
corresponded to body surface markers intraoperatively to
produce an augmented reality. The real strength outlined
was of hidden structures that would not be visualised

without further exploration. This may be a particular
strength in a paediatric setting due to a higher prevalence
of “anomalous anatomy”, whereby identifying unique
anatomy could reduce navigation time, improve accuracy
and ultimately improve the success of surgery [44]. Sou-
zaki et al. provided some valuable insights into further
potential benefits of this technology used intraoperatively
during the tumour resection without complications. They
highlighted the particular benefit of AR with malig-
nancies, as tissue discrimination can be difficult due to
peri-organ adhesions formed from neoadjuvant therapy
and re-operative factors [47]. Finally, Pennacchietti et al.
described intraoperative AR in a neuronavigation setting,
which may be easier to implement with more fixed spatial
anatomical relationships in head and neck surgery than
abdominal surgery. Despite the difficulty in interpreting
the results due to the lack of controls for comparison of
patient outcomes, the authors stress the accuracy of the
AR system intraoperatively, especially in identifying
anatomical landmarks to better execute the surgical plan
and its reproducibility [48].

Figure 1: AR in the surgical field through the visualisation of data projected on a screen (panel A) or with a head-mounted display (black arrow
in panel B) that superimposed objects onto real-time images (panel B). The picture shows a tumour (yellow) before surgical resection. The area
in orange shows the extension of the tumour into the liver (red). The bowel is marked in light blue.
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Intraoperative contrast-enhanced
ultrasound (CEUS)

CEUS is an attractive imaging modality because of its high
safety profile, lack of ionising radiation, absence of specific
patient preparation or sedation, and the possibility of
bedside access (Figure 2). Its use is well established inmany
clinical settings for the adult population, with detailed
guidelines on its application [49, 50]. Ultrasound contrast
agents can be administered intravenously to characterise
the enhancement patterns of focal lesions; into the urinary
bladder for detection andgrading of vesicoureteral reflux; or
endo-cavitary for drainage or detection of an abnormal
communication between two cavities [51, 52].

The use of CEUS in the paediatric population has been
increasingly growing for a wide variety of indications,
providing stimulating improvements to diagnosis, treat-
ment and intraoperative surgical management. For
example, CEUS appeared to have a great potential for the
accurate visualisation, characterisation and malignancy
assessment of hepatic tumours at the time of resection [53].
Arita et al. further validated its utility in the definition of
hepatic lesions as their results showed a strong correlation
between CEUS parameters and the histological features of
the hepatocellular carcinomas [54]. The contrast-enhanced
US may be able to improve on the performance of con-
ventional B_mode ultrasound, where there may be a
discrepancy between preoperative and intraoperative
findings in a significant minority of children. For example,

Felsted found that 20% of intraoperative US gave discor-
dant results compared to pre-operative MRI, including the
extent of tumour involvement and diffuse vs. focal disease.
In 3/19 cases the operative plan was altered [55]. CEUS has
also been used in neurosurgery to assist surgeons in dis-
tinguishing margins between viable intracranial tumours
and adjacent healthy parenchyma [56].

Not only CEUS can help guide tumours’ biopsy to
improve the accuracy of the final diagnosis, but the real-
time visualisation of the vascular pattern in higher-grade
tumours could also improve the intraoperative manage-
ment by identifying structures at high risk for bleeding or
the need for more aggressive margins at the time of
resection [57]. Prantl et al. explored another application
into the intraoperative field by using CEUS to assess the
viability of the femoral head before and after develop-
mental dysplasia of the hip reduction [58]. Finally, the use
of CEUS in urology is mainly related to evaluating ves-
icoureteral reflux’s treatment, where the real-time intra-
operative assessment of residual reflux following the
injection of endoscopic bulking agents allows for repeated
injections to improve the success of the procedure [59].

Ultra-high frequency ultrasound (UHFUS)

In the last decade, novel matrix transducers able to pro-
duce ultra-high frequency emission have been developed,
enabling higher spatial resolution and improvement of

Figure 2: Schematic representation of contrast-enhanced ultrasound mechanism of action, with intravenously administered contrast agent.
Ultrasound contrast agents consist of gas-filledmicrobubbles (1–10 µm) with a lipid, protein, or polymer shell. The pressure changes induced
by the ultrasonicwaves leadmicrobubbles to contract (compression) and expand (rarefaction) to a higher degree compared to the surrounding
tissues. This, along with the impedance mismatch between the microbubble and surrounding fluid caused by the gas, makes the bubbles
highly echogenic. Abbreviations: RBC, red blood cell; EC, endothelial cell.
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imaging quality of superficial layers, at the expense of a
shallower US beam penetration (23.5 mm when applying
48 MHz frequencies vs. 10 mm using 70 MHz frequencies)
[60, 61]. Despite the lack of consensus around the cut-off
frequencies for very high and ultra-high frequencies,
UHFUS can be defined as a diagnostic technique charac-
terised by the use of frequencies ranging from 30 to
100MHz [62–64]. The highly detailed image resolution and
its ability to provide a thorough investigation of small
anatomy favoured the first clinical applications of UHFUS,
which predominantly involved the evaluation of the skin
and vessels [64]. Regarding its safety, pre-clinical research
onmice demonstrated the absence of significant biological
effects related to the increase in thermal and mechanical
energy deposition in tissues [65].

In the adult population, UHFUS is expanding rapidly
in different fields, including dermatological applications
[66, 67], vascular analysis [68, 69], lymphatic channel
identification [70], and musculoskeletal evaluation of the
hand anatomy for presurgical planning [71, 72].

The use of UHFUS in children is still in very early
development but is appealing for smaller anatomy without
using radiation. One of the most common applications
addresses difficult vascular access, with UHFUS being a
promising tool in reducing vascular injuries related to pe-
ripheral arteries cannulation and central venous access [6].
Ultrasonography as a means of examining soft tissue was
also explored by Granéli et al., whose hypothesis was that
UHFUS could be used to differentiate aganglionic and
ganglionic bowel wall during surgery for Hirschsprung
Disease [7]. In fact, there is no other intraoperative method
other than frozen biopsy to secure the level of ganglionic
bowel. In their study, they used 70 MHz transducers on a
total of 11 unique bowel segment samples. Findings at the
ultrasonography were confirmed by histo-immunologic
analysis in 42 out of the 44 analysed sites, proving the
potential use of UHFUS intra-operatively for instantaneous
verification of aganglionosis and a more precise bowel
length resection [7].

Intraoperative MRI (iMRI)

Intraoperative MRI has been particularly beneficial in
neurosurgery, where it provides the evaluation of surgical
execution by delineating the relationships with surrounding
functionally relevant structures and assessing the dynamic
changes (i.e. brain shift) that occur during surgery in near
real-time. This is important particularly in children, where
the extent of tumour removal represents themain prognostic
factor in malignant intracranial tumours [4]. Giordano et al.

looked at the safety, advantages, and limitations of iMRI for
neurosurgical procedures in paediatric patients showing
that, particularly in low-grade gliomas and craniophar-
yngiomas, iMRIwasmost effective in increasing the extent of
tumour resection [4]. Wach et al., in their metanalysis,
evaluated the impact of iMRI on surgery of paediatric brain
tumours by analysing data on the frequency of histopatho-
logic entities, additional resections secondary to iMRI, rate of
gross total resections in glioma surgery, and neurologic
outcome after surgery. Overall, iMRI-guided surgery seems
to improve paediatric glioma surgery, with a frequency of
new neurologic deficits after iMRI-guided surgery within the
normal range of paediatric neuro-oncologic surgery [73].
About brain tumour resection, Avula et al. compared the
effectiveness of the final intraoperative MRI and early post-
operative MRI as baseline scans to evaluate whether the
former could be used as a postoperative baseline. Their re-
sults showed no difference between iMRI and postoperative
scans in identifying residual tumourwhen standard imaging
guidelines are followed and the evaluation is done jointly by
the operating neurosurgeon and neuroradiologist [74]. Gal-
lieni et al. published their experience in treating six children
withminimally pneumatised sphenoid sinus, demonstrating
that the transsphenoidal approach is still possible with a
minimal level of pneumatisation, especiallywith the support
of neuronavigation and iMRI. They reportednoperioperative
complications and no mortality cases due to the surgical
approach, demonstrating that the transsphenoidal approach
can be safely used even inminimally pneumatised sphenoid
sinus as in young children [75].

Another application of iMRI was reported by Di Carlo
et al., who determined the safety and efficacy of iMRI
guided surgical reconstruction to identify the pelvic floor
anatomy during the closure of classic bladder exstrophy
and cloacal exstrophy. The intraoperative registration was
performed after pre-operative planning with a paediatric
radiologist using five anatomical landmarks immediately
before surgery initiation. There was 100% accuracy in all
patients in the correlation of gross anatomical landmarks
with 3D iMRI identified landmarks, and all patients had
successful closure without any major complications. Thus,
intraoperative MRI represents an effective way to accu-
rately identify pelvic anatomy and offers a unique surgical
skill education opportunity in this complex reconstructive
operation [5].

Finally, Jarboe et al. demonstrated that muscle-
sparing laparoscopic anorectoplasty using real-time MRI
is feasible and facilitates needle placement through the
sphincter muscle complex when repairing imperforate
anus [76]. In fact, a challenge when performing this pro-
cedure is to put the neo-rectum into the centre of the
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sphincter muscle complex with limited muscle injury and
scarring. The authors treated five children using real-time
MRI to delineate the complex and guide the needle through
the centre. After needle placement, laparoscopic mobi-
lisation, fistula takedown and pullthrough were performed
using the needle to guide dilations to create a tract into the
pelvic floor. They reported no intraoperative complica-
tions, although one patient had temporary urinary reten-
tion postoperatively.

Photoacoustic imaging (PAI)

PAI is an emerging non-invasive technique imaging mo-
dality with great potential in the clinical field and the oper-
ating room as a standard technological assistant. Its
functioning is based on the absorption of short, low-energy
non-ionising laser pulses of specific wavelengths by light-
absorbingmolecules of the imaged tissue (i.e. haemoglobin,
melanin,water and lipids) [77]. TheNIR spectral range (600–
900 nm) offers the greatest penetration depth extending to
several centimetres, making PAI particularly well suited to
visualising the vasculature without using contrast agents,
with scalable spatial resolution ranging from tens to hun-
dreds ofmicrometres. The arrival of thesewaves at the tissue
surface leads to an initial pressure increase, which then re-
laxes and results in the emission of broadband low-
amplitude acoustic waves. Ultrasonic transducers detect
the generated waves, and the image is then reconstructed,
knowing the speed of the sound, by measuring the time of
arrival of the acoustic waver (Figure 3) [78].

There is a wide range of possibilities regarding PAI
guidance for surgical procedures and minimally invasive
surgeries in the adult population. Augmented surgical
tools can be created by attaching the optical fibres to the
surgical instruments, and the photoacoustic signals can be
detected with an ultrasound probe. Photoacoustic imaging
has been used in liver surgeries to determine the location of
a major hepatic blood vessel based on its appearance as a
focused signal rather than a diffuse signal, which is pre-
dominant in the liver tissue [79]. The utility of PAI has also
been proved in spinal fusion surgeries, performed to alle-
viate pain or neurologic deficit, and in the gynaecological
field, where iatrogenic injuries to the ureter are often
caused by clamping, clipping, or cauterising the uterine
arteries [80, 81]. Allard M et al. performed a feasibility
study to use PAI to visualise both the ureter and uterine
artery during hysterectomies performed with the Da Vinci®

robot. Their experiments were performed in a mock oper-
ating room, and their results proved that photoacoustic
imaging is a promising approach to enable visualisation of
the uterine arteries to guide hysterectomies and be effec-
tively integrated into robotic systems [82].

Children and adolescentsmight be good candidates for
this scanner as their organs and muscles are closer to the
surface. In fact, the image quality can be significantly
influenced by air, thick bones, body fat, and body hair.
Interventional PAI could be valuable for minimally inva-
sive foetal surgery by visualising superficial and subsur-
face chorionic placental vasculature. In the study by
Maneas et al., the authors imaged a normal placenta and a
placenta from an identical twin pregnancy complicated by

Figure 3: Schematic representation of photoacoustic imagingmechanismof action. The absorption of light by endogenous chromophores (or
pigments) generates heat, leading to a pressure change. The resulting fleeting expansions generate an ultrasound wave which can then be
detected and used to produce clear, high-resolution images of biological structures.
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twin-to-twin transfusion syndrome, which was treated
with photocoagulation in utero, providing the first
demonstration that 3D photoacoustic imaging of the hu-
man placenta can generate detailed maps of surface and
subsurface vasculature to a depth of approximately 7 mm.
Superficial chorionic placental vessels were visualised,
while fetoscopy photocoagulation was manifested as an
absence of signal (Table 2) [8].

Conclusions

Fluorescence-guided surgery, augmented reality, iMRI,
UHFUS, and PAI represent an exciting novel opportunity to
enhance surgical practice, with the potential to yield sig-
nificant advantages in specific challenges faced with pae-
diatric patients. Further testing of these novel intraoperative
techniques together with the use of robotic instruments will
determine their role in surgical precision and visualisation,
which should lead to highly precise resection of targeted
tissues, revolutionising surgery.
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