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Abstract

In the future, artificial learning agents are likely to become increasingly widespread

in our society. They will interact with both other learning agents and humans in

a variety of complex settings including social dilemmas. We argue that there is a

need for research on the intersection between game theory and artificial intelligence,

with the goal of achieving cooperative artificial intelligence that can navigate social

dilemmas well.

We consider the problem of how an external agent can promote cooperation

between artificial learners by distributing additional rewards and punishments based

on observing the learners’ actions. We propose a rule for automatically learning how

to create right incentives by considering the players’ anticipated parameter updates.

Using this learning rule leads to cooperation with high social welfare in matrix

games in which the agents would otherwise learn to defect with high probability. We

show that the resulting cooperative outcome is stable in certain games even if the

planning agent is turned off after a given number of episodes, while other games

require ongoing intervention to maintain mutual cooperation.

Finally, we reflect on what the goals of multi-agent reinforcement learning

should be in the first place, and discuss the necessary building blocks towards the

goal of building cooperative AI.
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Impact Statement

If progress in machine learning and artificial intelligence continues, artificial learning

agents will likely become increasingly widespread in our society. If such systems

are employed in a variety of economically or socially relevant tasks, then they will

interact both with other artificial agents and humans in complex settings, including

social dilemmas.

This raises the question of how we can ensure that artificial agents will learn

to navigate the resulting social dilemmas productively and safely. Failing to learn

cooperative policies would lead to socially inefficient or even disastrous outcomes.

Studying the behaviour of artificial agents in social dilemmas is thus of both theoret-

ical and practical importance.

This research presents methods that will help inform the design of more coop-

erative AI systems. We also expect it to contribute to establishing a paradigm that

goes beyond the conventional perspective of a single reinforcement learning agent

navigating an environment. We also hope that this work will spark further research

on cooperative AI, a new subfield of multi-agent learning that focuses on how to

best achieve mutually beneficial outcomes in both human-AI interactions and AI-AI

interactions.
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Chapter 1

Introduction

Since the dawn of history, human societies have struggled with social dilemmas.

A social dilemma is a situation where individual interests are in conflict with the

common good. If everyone cooperates, the outcome is better for all participants, but

individual participants are tempted to increase their own payoff at the expense of

others.

Examples of social dilemmas are ubiquitous. For instance, the contribution of

each individual nation to climate change is small, so there is an incentive to hold

back and hope that other nations will curb their emissions; but if everyone reasons

like this, then climate change continues unabated. Likewise, nations may prefer

peaceful coexistence but worry about the threat posed by their neighbour, resulting in

arms races and preemptive wars. Indeed, even the perennial debate over capitalism

and socialism can be viewed as different attempts to align an economy consisting of

self-interested individuals with the common good.

What all these examples have in common is that unchecked selfish incentives

often result in outcomes that make everyone worse off. Yet this is not inevitable.

Cooperation often becomes possible through various mechanisms including direct

reciprocity [1], indirect reciprocity [2], social norms [3] and institutions that are

specifically designed to solve social dilemmas [4]. For instance, modern societies

have succeeded in dramatically reducing rates of violence [5], through institutions

like the police and the judicial system as well as strong social norms of non-violence.

Studies of social dilemmas usually focus on human contexts. However, if
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progress in machine learning continues, artificial learning agents will likely become

increasingly widespread in our society. If artificial intelligence is employed in a

variety of economically or socially relevant tasks, then such systems will interact

both with other artificial agents and humans in complex settings, including social

dilemmas. In this case, the usual perspective of a single reinforcement learning agent

navigating an environment may prove to be insufficient.

This raises the question of how we can ensure that artificial agents will learn

to navigate the resulting social dilemmas productively and safely. Failing to learn

cooperative policies would lead to socially inefficient or even disastrous outcomes.

In particular, in safety-critical systems, the escalation of conflicts between artificial

agents (or between artificial agents and humans) may pose a serious security risk.

The behaviour of artificial agents in social dilemmas is thus of both theoretical and

practical importance and constitutes a fruitful research area at the intersection of

(multi-agent) reinforcement learning and game theory.

This thesis aims to tackle this question by proposing novel methods that can

help achieve more cooperative outcomes in social dilemmas involving artificial

agents. This has been termed cooperative AI. The goal of research on cooperative AI

is not just to build intelligent systems, but to equip these systems with the necessary

techniques and methods to achieve high joint welfare in interactions with other

(human and non-human) agents.

In the next chapter, we will survey the relevant literature in various disciplines

including game theory, machine learning, social psychology and economics. Chapter

3 will introduce basic concepts in game theory and (multi-agent) reinforcement

learning.

In Chapter 4, we will examine how mechanism design can promote beneficial

outcomes in social dilemmas among artificial learners. We consider a setting with

N agents in a social dilemma and an additional planning agent that can distribute

(positive or negative) rewards to the players after observing their actions, and aims

to guide the learners to a socially desirable outcome (as measured by the sum of

rewards). We derive a learning rule that allows the planning agent to learn how to set
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the additional incentives by looking ahead at how the agents will update their policy

parameter in the next learning step.

We then evaluate the learning rule on several different matrix game social

dilemmas. The planning agent learns to successfully guide the learners to cooperation

with high social welfare in all games, while they learn to defect in the absence of a

planning agent. We show that the resulting cooperative outcome is stable in certain

games even if the planning agent is turned off after a given number of episodes. In

other games, cooperation is unstable without continued intervention. However, even

in the latter case, we show that the amount of necessary additional rewards decreases

over time.

In chapter 5, we propose an value-function-based reinforcement learning frame-

work that allows for degrees of cooperation. Agents following this approach will

gradually adapt their policies based on evidence on the opponents’ cooperativeness,

aiming to roughly mirror their level of cooperativeness. This is useful because

achieving the highest possible level of cooperation is often difficult, while a lower

degree of cooperation is feasible and still allows for significant improvements in

social welfare compared to complete defection.

Finally, in chapter 6, we will discuss the advantages and limitations of these

approaches. We will also reflect on what the goals of multi-agent reinforcement

learning should be in the first place, and how the proposed methods can help achieve

the goal of building cooperative artificial intelligence.



Chapter 2

Literature Review

2.1 Social dilemmas

Social dilemmas highlight conflicts between individual and collective interests. A

social dilemma is a situation where cooperation allows for better outcomes for all

participants, but individual participants are tempted to increase their own payoff

at the expense of others. Selfish incentives can therefore destabilize the socially

desirable outcome of mutual cooperation and often lead to outcomes that make

everyone worse off [6]. The study of social dilemmas has a long tradition in many

disciplines, including game theory, social psychology, economics, and biology.

Social dilemmas can take many forms. One particularly well-known model is

the Prisoner’s Dilemma [7], a simple game analysed in game theory. The Prisoner’s

Dilemma entails two players that each choose whether to cooperate or defect. In

this game, mutual cooperation results in the highest total payoffs, but defection is a

dominant strategy in the single-stage game. As a result, self-interested actors often

end up in a suboptimal equilibrium of mutual defection.

The Prisoner’s Dilemma is but one example of a broader class of two-player

matrix game social dilemmas. There is a substantial body of literature that fruitfully

employs matrix games to study how stable mutual cooperation can emerge among

self-interested actors [8].

Cooperation often emerges due to direct reciprocity [1] in iterated interactions.

The temptation to defect for a higher immediate payoff can be outweighed by the
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anticipation that the other player will retaliate by defecting in the future. Conversely,

a player may choose to cooperate in the hope of eliciting future cooperation from the

other player. This conditional retaliation or reward turns mutual cooperation into a

stable equilibrium.

Indeed, this simple Tit-for-Tat strategy is often considered the best strategy in

the iterated Prisoner’s Dilemma, going back to the famous tournaments by Axelrod in

which this strategy performed best [9, 10]. However, later research suggests that the

full picture is more complicated [11] and that other strategies can also be competitive

[12, 13]. Generous or forgiving variants of Tit-for-Tat can also outperform the non-

generous variant as they prevent escalating retaliation arising from a single defection

[14].

Despite this rich body of literature, matrix games are a very simple and therefore

limited model of social dilemmas. Many real-world settings involve more than two

agent, which gives rise to additional dynamics. [15] explores the variety of possible

multi-agent social dilemmas and proposes a classification based on their payoff

structure. A particularly well-known multi-agent social dilemma is the tragedy of

the commons, a situation where self-interested users of a shared resource deplete or

spoil the shared resource through their collective action [16].

Indirect reciprocity [2] has been proposed as a mechanism for how cooperation

may evolve even in settings where direct reciprocity is not feasible. If one’s actions

are observed by third parties, self-interested actors have an incentive to cooperate in

order to build a reputation as a reliable and trustworthy partner. However, indirect

reciprocity only fosters cooperation if reputations are sufficiently accurate and widely

known, so that the cost-to-benefit ratio of acting cooperatively becomes positive

[17].

Social norms are another powerful mechanism that can serve to stabilize the

socially preferred outcome of mutual cooperation [3]. Social norms are standards

of behaviour that individual actors are expected to follow. There is a rich literature

in the social sciences on how such norms are formed, how their specific content is

determined, and how norms are maintained [18]. In particular, the enforcement of
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norms often gives rise to a second-order free-riding problem [19].

Last, research in social psychology suggests that the behaviour of humans

in social dilemmas is guided not only by dispassionate cost-benefit calculations,

but also by emotional factors including trust [20] and affect [21]. Such emotions

arguably evolved in humans (and possibly other animals) as a means to navigate

social dilemmas [22].

2.2 Institutions and mechanism design

Reciprocity and norm enforcement are often not sufficient on their own to achieve

socially beneficial outcomes. In these cases, it may still be possible establish cooper-

ation by changing the structure of the social dilemma. This is often referred to as

mechanism design. For instance, institutions such as the police and the judicial sys-

tem incentivize humans to cooperate in the social dilemma of peaceful coexistence,

and have succeeded in dramatically reducing rates of violence [5].

The field of mechanism design, pioneered by [23], aims to design economic

mechanisms and institutions to achieve certain goals, most notably social welfare

or revenue maximization. [24] studies how informal and formal incentives for

cooperative behaviour can prevent a tragedy of the commons. [25] considers a

setting in which an interested party can commit to non-negative monetary transfers,

and studies the conditions under which desirable outcomes can be implemented with

a given amount of payment. [26] examine how cooperation can be stabilized via

supplemental payments from an external party. Mechanism design has also been

studied in the context of computerized agents [27] and combined with machine

learning techniques [28].

There is also a rich literature on the principal-agent problem [29], which can be

considered a special case of mechanism design. The principal-agent problem occurs

when a person or entity (the agent) makes decisions or takes actions on behalf of

another person or entity (the principal), resulting in a potential mismatch between

the interests of the agent and the principal. This frequently occurs in organisations

of various kinds [30, 31] and is related to mechanism design in that both aim to
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implement a coordination mechanism to align the interests of the agent with the

principal [32]. This mirrored in feudal reinforcement learning, an approach in which

a high-level manager learns to break down a task into subtasks that are carried out

by sub-managers or workers[33, 34]. A common technique is reward shaping [35],

which aims to guide the learning process by augmenting the natural reward signal

with additional rewards for progress towards a good solution.

[4] contains a comprehensive analysis of possible policies and institutions to

solve the collective action problem of using common pool resources. According to

this analysis, there is no universal solution to the problem, as neither state control nor

privatization of resources have been uniformly successful in avoiding the tragedy of

the commons. The most successful and sustainable forms of common pool resource

governance emerge organically, are fitted to local conditions, impose graduated

sanctions for rule violations, and define clear community boundaries.

2.3 Bargaining theory

So far, we have assumed that it is clear what cooperation means. However, in many

situations, there are different possible ways to share the surplus that two or more

agents can create compared to a disagreement point. This gives rise to a bargaining

problem in which the agents negotiate which division of payoffs to choose.

The most well-known solution to the bargaining problem is the Nash bargaining

solution [36], which maximises the product of surplus utilities (also called the

Nash welfare). This solution uniquely satisfies the properties of Pareto optimality,

symmetry, invariance to affine transformations, and independence of irrelevant

alternatives. The Nash bargaining solution can also be obtained as the subgame-

perfect equilibrium of an alternating-offers bargaining model as the patience of the

players goes to infinity [37].

However, maximising the Nash welfare is not the only plausible bargaining so-

lution. The Kalai-Smorodinsky bargaining solution [38], which is based on different

axioms, chooses the payoffs that equalise the ratios of maximal gains.

Another possibility is to maximise the sum of utilities (the utilitarian welfare
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function). This is not usually considered a bargaining solution because it violates

individual rationality in some cases. However, maximising the utilitarian welfare

function can be derived on different grounds [39].

2.4 Multi-agent reinforcement learning

Reinforcement learning takes the perspective of an agent that learns to maximize

its reward through trial-and-error interactions with its environment [40, 41]. These

methods have achieved substantial successes in classic board games such as Go

[42] and in video games including the Atari platform [43] or Starcraft 2 [44]. Re-

inforcement learning has also been applied in robotics [45], management of power

consumption [46] and indoor navigation [47]. For a more comprehensive survey, we

refer the reader to [48].

For purposes of this work, we are most interested in the rich literature on the

subfield of multi-agent reinforcement learning [49, 50, 51]. While the artificial

intelligence literature focuses on different aspects compared to the game theoretic

literature, multi-agent learning is arguably one of the most fruitful interaction grounds

between computer science and game theory (and the study of social dilemmas in

particular).

Unlike single-agent learning algorithms, multi-agent reinforcement learning

methods explicitly consider the presence of other agents in the environment. How-

ever, there has been some discussion on the precise nature of this distinction. [52]

argue that the multi-agent learning literature actually pursues several different agen-

das that are often left implicit or conflated, resulting in confusion.

From a computational perspective, the key difference between single and multi-

agent learning is that in the latter, learning processes of other agents render the

environment non-stationary from the perspective of an individual agent. Hence,

applying variations of the basic Q-learning algorithm to multi-agent settings [53] can

fail when an opponent adapts its choice of actions based on the past history of the

game. Various approaches have been proposed to address this problem, including the

minimax-Q-learning algorithm [54], joint-action learners [55], and the Friend-or-Foe
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Q-learning algorithm [56].

A common approach to learning in repeated games is fictitious play, a learning

rule which assumes that the opponent follows a stationary strategy. At each round,

the player aims to play the best response to the empirical distribution of opponent

actions. It has been shown that this approach results in convergence to a Nash

equilibrium under certain assumptions [57].

2.5 Cooperation and competition in multi-agent rein-

forcement learning
Most work on multi-agent reinforcement learning considers coordination or com-

munication problems in the fully cooperative setting, where the agents share a

common goal[58, 59]. However, there has been less emphasis on mixed cooperative-

competitive case, i.e. the question of how we can ensure that artificial agents learn to

navigate social dilemmas productively, without being stuck in suboptimal equilibria.

Studies of social dilemmas have traditionally focused on the context of human agents

[60, 61], while the machine learning literature tends to focus more on computational

aspects.

As an exception, [62] study the learned behaviour of deep Q-networks in a

fruit-gathering game and a Wolfpack hunting game that represent sequential social

dilemmas. [63] successfully train agents to play Pong with either a fully cooperative,

a fully competitive, or a mixed cooperative-competitive objective. [64] introduce a

learning algorithm that uses novel mechanisms for generating and acting on signals

to learn to cooperate with humans and with other machines in iterated matrix games.

[65] use a variant of best response policy iteration to navigate social dilemmas arising

in the multi-player board game Diplomacy. Finally, [66] propose a centralized actor-

critic architecture that is applicable to both the fully cooperative as well as the mixed

cooperative-competitive setting.

However, these methods assume a given set of opponent policies as given in that

they do not take into account how one’s actions affect the parameter updates on other

agents. In contrast, [67] introduce Learning with Opponent-Learning Awareness
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(LOLA), an algorithm that explicitly attempts to shape the opponent’s anticipated

learning. The LOLA learning rule includes an additional term that reflects the effect

of the agent’s policy on the parameter update of the other agents and inspired the

learning rule in this work. However, while LOLA leads to emergent cooperation in

an iterated Prisoner’s dilemma, the aim of LOLA agents is to shape the opponent’s

learning to their own advantage, which does not always promote cooperation.

Another approach, suggested by [68], is that reinforcement agents learn both a

cooperative and a defective policy. The idea is to cooperate as long as one’s opponent

follows the cooperative policy, and switch to defection when the opponents’ actions

indicate that this is no longer the case. A variety of approaches have been suggested

to address the key subproblem of detecting defection [69, 70, 71]. For instance, it is

possible to switch when one’s rewards indicate that the other agent is not cooperating

[72]. However, this approach is binary as the agent only switches between two

policies, representing full cooperation or full defection. [73] instead suggest a

trained defection-detection model that also considers degrees of cooperation.



Chapter 3

Basic concepts

3.1 Game-theoretic concepts

3.1.1 Nash equilibrium and Pareto-optimality

An n-person game is defined in terms of the strategy sets S1, . . . ,Sn representing the

actions available to players 1, . . . ,n and the utility functions ui : S1×·· ·×Sn→ R

which describe their payoffs. A tuple s = (s1, . . . ,sn) for si ∈ Si is called a strategy

profile. We also use the notation s = (si,s−i), where s−i represents all strategies of

players other than i.

A Nash equilibrium is a strategy profile (s∗1, . . . ,s
∗
n) such that

ui(s∗i ,s
∗
−i)≥,ui(si,s∗−i) (3.1)

for all players 1, . . . ,n and all si ∈ Si. In other words, a Nash equilibrium is a strategy

profile in which each player plays the best response to others’ strategies, and no

player can improve by deviating unilaterally.

A strategy profile (s∗1, . . . ,s
∗
n) is Pareto-optimal if there is no strategy profile

(s1, . . . ,sn) such that ui(si,s−i)> ui(s∗i ,s
∗
−i) for some i ∈ {1, . . . ,n} and ui(si,s−i)≥

ui(s∗i ,s
∗
−i) for all i ∈ {1, . . . ,n}. That is, in a Pareto-optimal profile it is not possible

to make some players better off without making others worse-off.
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Table 3.1: Payoff matrix of a symmetric 2-player matrix game. A cell of X ,Y represents a
utility of X to the row player and Y to the column player.

C D
C R,R S,T
D T,S P,P

3.1.2 Matrix game social dilemmas

A matrix game is a two-player game with only two actions available to each player,

which we will interpret as cooperation and defection.

Table 3.1 shows the generic payoff structure of a (symmetric) matrix game.

Players can receive four possible rewards: R (reward for mutual cooperation), P

(punishment for mutual defection), T (temptation of defecting against a cooperator),

and S (sucker outcome of cooperating against a defector).

A matrix game is considered a social dilemma if the following conditions hold

[74]:

1. Mutual cooperation is preferable to mutual defection: R > P

2. Mutual cooperation is preferable to being exploited: R > S

3. Mutual cooperation is preferable to an equal probability of unilateral defection

by either player: R > T+S
2

4. The players have some reason to defect because exploiting a cooperator is

preferable to mutual cooperation (T > R) or because mutual defection is

preferable to being exploited (P > S).

The last condition reflects the mixed incentive structure of matrix game social

dilemmas. We will refer to the motivation to exploit a cooperator (quantified by

T −R) as greed and to the motivation to avoid being exploited by a defector (P−S)

as fear. As shown in Table 3.2, we can use the presence or absence of greed and fear

to categorize matrix game social dilemmas.
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Table 3.2: The three canonical examples of matrix game social dilemmas with different
reasons to defect. In Chicken, agents may defect out of greed, but not out
of fear. In Stag Hunt, agents can never get more than the reward of mutual
cooperation by defecting, but they may still defect out of fear of a non-cooperative
partner. In Prisoner’s Dilemma (PD), agents are motivated by both greed and fear
simultaneously.

Chicken C D
C 3,3 1,4
D 4,1 0,0

Stag Hunt C D
C 4,4 0,3
D 3,0 1,1

PD C D
C 3,3 0,4
D 4,0 1,1

3.1.3 Bargaining

In many situations, it is not obvious what defection and cooperation means, as there

are many possible ways to share the surplus that two or more agents can generate.

This gives rise to a bargaining problem over how to divide this surplus.

Formally, a (two-player) bargaining problem is defined by a feasibility set

F ⊂R2 that describes all possible agreements, and a disagreement point d = (d1,d2)

which represents the payoffs if no agreement can be reached. Payoffs are commonly

normalised so that d = 0.

A bargaining solution selects an agreement point from F . Various solutions

have been proposed based on slightly different criteria. The Nash bargaining solution

[36] maximises the product of surplus utilities, that is, it selects the point (u1,u2)∈ F

that maximises the Nash welfare function (u1−d1)(̇u2−d2), or simply u1u̇2 if d = 0.

The Nash bargaining solution is the unique bargaining solution that results from the

assumptions of Pareto-optimality, symmetry, scale-invariance, and independence of

irrelevant alternatives.

An alternative is the Kalai-Smorodinsky bargaining solution, which drops the

independence of irrelevant alternatives axiom in favor of a monotonicity requirement.

The Kalai-Smorodinsky bargaining solution considers the best achievable utilities

u∗1 and u∗2 and selects the point on the Pareto frontier that maintains the ratio of

achievable gains u∗1−d1
u∗2−d2

.
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3.2 Reinforcement learning

Reinforcement learning is concerned with how an agent ought to take actions in an

environment so as to maximize some notion of reward. At each time step t, the agent

receives a representation of the environment’s state, st ∈S and it selects an action

at ∈A . Then, as a consequence of its action, the agent receives a reward rt+1 ∈ R.

The agent follows a policy, which is a mapping π : S →P(A ) that describes

the actions taken by the agent. That is, π(s) represents the probability distribution

over actions that the agent could take in when in state s.

The aim of the agent (at time step t) is to maximise its discounted accumulated

reward

Gt =
∞

∑
k=0

γ
krt+k+1 (3.2)

for a given discount factor 0 < γ < 1.

The value function

Vπ(s) = E[Gt |st = s] = E[
∞

∑
k=0

γ
krt+k+1|st = s] (3.3)

is the expected reward in state s when following policy π . Informally, it describes

how good it is to be in a given state s when following a certain policy π .

Alternatively, we can express the expected reward in terms of state-action pairs

using the Q-function:

qπ(s,a) = Eπ

[
Gt |st = s,at = a

]
(3.4)

We seek to find the optimal policy which fulfils

V∗(s) = max
π

Vπ(s) (3.5)

or

q∗(s,a) = max
π

qπ(s,a). (3.6)
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Using this new notation, we can express V∗ using q∗:

V∗(s) = max
a∈A

qπ∗(s,a) (3.7)

That is, under the optimal policy, the value of a state is equal to the expected return

from the best action from that state.

3.2.1 The Bellman equation

We can expand the value function to obtain the following recursive property:

Vπ(s) = Eπ

[
Gt |St = s

]

= Eπ

[
∞

∑
k=0

γkRt+k+1|St = s
]

= Eπ

[
Rt+1 + γ

∞

∑
k=0

γkRt+k+2|St = s
]

= ∑
a

π(a|s)∑
s′

∑
r

p(s′,r|s,a)[
r+ γEπ

[
∞

∑
k=0

γkRt+k+2|St+1 = s′
]]

= ∑
a

π(a|s)∑
s′

∑
r

p(s′,r|s,a)
[
r+ γVπ(s′)

]

(3.8)
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We can do the same for the Q function:

qπ(s,a) = Eπ

[
Gt |St = s,At = a

]

= Eπ

[
∞

∑
k=0

γkRt+k+1|St = s,At = a
]

= Eπ

[
Rt+1 + γ

∞

∑
k=0

γkRt+k+2|St = s,At = a
]

= ∑
s′,r

p(s′,r|s,a)
[

r+ γEπ

[
∞

∑
k=0

γkRt+k+2|St+1 = s′
]]

= ∑
s′,r

p(s′,r|s,a)
[
r+ γVπ(s′)

]

(3.9)

The same holds for the optimal value function and Q-function V∗ and q∗. This

so-called Bellman equation can be solved using dynamic programming methods.

3.2.2 Markov games

We consider partially observable Markov games [75] as a multi-agent extension of

Markov decision processes (MDPs). An N-player Markov game M , sometimes also

called a stochastic game [76], is defined by a set of states S , an observation function

O : S ×{1, . . . ,N} → Rd specifying each player’s d-dimensional view, a set of

actions A1, . . . ,AN for each player, a transition function T : S ×A1×·· ·×AN →

P(S ), where P(S ) denotes the set of probability distributions over S , and a

reward function ri : S ×A1× ·· ·×AN → R for each player. To choose actions,

each player uses a policy πi : Oi→P(Ai), where Oi = {oi | s ∈S ,oi = O(s, i)} is

the observation space of player i. Each player in a Markov game aims to maximize

its discounted expected return Ri = ∑
T
t=0 γ trt

i , where γ is a discount factor and T is

the time horizon.

A matrix game is the special case of two-player perfectly observable Markov

games with |S |= 1, T = 1 and A1 = A2 = {C,D}.
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3.2.3 Policy gradient methods

Policy gradient methods [40] are a popular choice for a variety of reinforcement

learning tasks. Suppose the policy πθ of an agent is parametrized by θ . Policy

gradient methods aim to maximize the objective J(θ) =Es∼pπθ ,a∼πθ
[Gt ] by updating

the agent’s policy steps in the direction of ∇θ J(θ).

Using the policy gradient theorem [77], we can write the gradient as follows:

∇θ J(θ) = Es∼pπθ ,a∼πθ
[∇θ logπθ (a|s) Qπθ (s,a)] (3.10)

where pπθ is the state distribution and Qπθ (s,a) = E[R|st = s,at = a].

The policy gradient theorem has given rise to several practical algorithms, which

often differ in how they estimate Qπθ . For example, the REINFORCE algorithm

[78] uses a sample return Rt = ∑
t
k=0 γ t−krk to estimate Qπθ . Alternatively, one could

learn an approximation of the true action-value function via temporal-difference

learning [40] or a variety of actor-critic algorithms [40].

3.2.4 Multi-agent learning methods

Traditional reinforcement learning methods, such as Q-learning, are not always

suitable for the multi-agent case. This is due to the challenge posed by the inherent

non-stationarity of the environment. As a result, specialised techniques for multi-

agent learning have been developed.

For example, [66] present a multi-agent adaptation of actor-critic methods.

Consider a game with N players following policies π1, . . . ,πN parametrised by

θ1, . . . ,θN . Then we can write the gradient of the expected reward J(θi) for agent i

as

∇θiJ(θi) = Es∼pπθ ,ai∼πθi
[∇θi logπθi(ai|si) Qπθ (s,a1, . . . ,aN)], (3.11)

where π = (π1, . . . ,πN) and θ = (θ1, . . . ,θN). Here Qπθ (s,a1, . . . ,aN) is a centralised

action-value function that takes as input the actions of all agents, and is therefore

stationary.



Chapter 4

Adaptive Mechanism Design:

Learning to Promote Cooperation

4.1 Methods

4.1.1 Amended Markov game including the planning agent

Suppose N agents play a Markov game described by S , A1 . . .AN , r1, . . . ,rn, O

and T . We introduce a planning agent that can hand out additional rewards and

punishments to the players and aims to use this to ensure the socially preferred

outcome of mutual cooperation.

To do this, the Markov game can be amended as follows. We add another

action set Ap ⊂ RN that represents which additional rewards and punishments are

available to the planning agent. Based on its observation Op : S ×{1, . . . ,N}→ Rd

and the other player’s actions a1, . . . ,an, the planning agent takes an action ap =

(rp
1 , . . . ,r

p
N) ∈Ap ⊂ RN .1 The new reward function of player i is r(tot)

i = ri + rp
i , i.e.

the sum of the original reward and the additional reward, and we denote the corre-

sponding value functions as V tot
i (θ1, . . . ,θN ,s) =Vi(θ1, . . . ,θN ,s)+V p

i (θ1, . . . ,θN ,s).

Finally, the transition function T formally receives ap as an additional argument,

but does not depend on it (T (s,a1, . . . ,aN ,ap) = T (s,a1, . . . ,aN)).

1Technically, we could represent the dependence on the other player’s actions by introducing
an extra step after the regular step in which the planning agent chooses additional rewards and
punishments. However, for simplicity, we will discard this and treat the player’s actions and the
planning action as a single step. Formally, we can justify this by letting the planning agent specify its
action for every possible combination of player actions.
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4.1.2 The learning problem

Let θ1, . . . ,θN and θp be parametrizations of the player’s policies π1, . . . ,πN and the

planning agent’s policy πp.

The planning agent aims to maximize the total social welfare V (θ1, . . . ,θN ,s) :=

∑
N
i=1Vi(θ1, . . . ,θN ,s), which is a natural metric of how socially desirable an outcome

is. Note that without restrictions on the set of possible additional rewards and

punishments, i.e. Ap = RN , the planning agent can always transform the game into

a fully cooperative game by choosing rp
i = ∑

N
j=1, j 6=i r j.

However, it is difficult to learn how to set the right incentives using traditional

reinforcement learning techniques. This is because V (θ1, . . . ,θN ,s) does not depend

directly on θp. The planning agent’s actions only affect V (θ1, . . . ,θN ,s) indirectly by

changing the parameter updates of the learners. For this reason, it is vital to explicitly

take into account how the other agents’ learning changes in response to additional

incentives.

This can be achieved by considering the next learning step of each player (cf.

[67]). We assume that the learners update their parameters by simple gradient ascent:

∆θi = ηi∇iV tot
i (θ1, . . . ,θN ,s)

= ηi(∇iVi(θ1, . . . ,θN ,s)+∇iV
p

i (θ1, . . . ,θN ,s))
(4.1)

where ηi is step size of player i and ∇i := ∇θi is the gradient with respect to parame-

ters θi.

Instead of optimizing V (θ1, . . . ,θN ,s), the planning agent looks ahead one step

and maximizes V (θ1 +∆θ1, . . . ,θN +∆θN ,s). Assuming that the parameter updates

∆θi are small, a first-order Taylor expansion yields

V (θ1 +∆θ1, . . . ,θN +∆θN ,s)≈

≈V (θ1, . . . ,θN ,s)+
N

∑
i=1

(∆θi)
T

∇iV (θ1, . . . ,θN ,s)
(4.2)

We use a simple rule of the form ∆θp = ηp∇pV (θ1+∆θ1, . . . ,θN +∆θN ,s) to update

the planning agent’s policy, where ηp is the learning step size of the planning agent
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and ∇p = ∇θp . Exploiting the fact that V (θ1, . . . ,θN ,s) does not depend directly on

θp, i.e. ∇pV (θ1, . . . ,θN ,s) = 0, we can calculate the gradient:

∇pV (θ1 +∆θ1, . . . ,θN +∆θN ,s)≈

≈
N

∑
i=1

∇p(∆θi)
T

∇iV (θ1, . . . ,θN ,s)

=
N

∑
i=1

ηi(∇p∇iV tot
i (θ1, . . . ,θN ,s))T

∇iV (θ1, . . . ,θN ,s)

=
N

∑
i=1

ηi(∇p∇iV
p

i (θ1, . . . ,θN ,s))T
∇iV (θ1, . . . ,θN ,s)

(4.3)

since ∇iVi(θ1, . . . ,θN ,s) does not depend on θp either.

4.1.3 Policy gradient approximation

If the planning agent does not have access to the exact gradients of V p
i (θ1, . . . ,θN ,s)

and V (θ1, . . . ,θN ,s), we use policy gradients as an approximation. Let τ =

(s0,a0,a0
p,r0 . . . ,sT ,aT,aT

p ,rT) be a state-action trajectory of horizon T +1, where

at = (at
1, . . . ,a

t
N), rt = (rt

1, . . . ,r
t
N), and at

p = (rt
1,p, . . . ,r

t
N,p) are the actions taken

and rewards received in time step t. Then, the episodic return R0
i (τ) = ∑

T
t=0 γ trt

i

and R0
i,p(τ) = ∑

T
t=0 γ trt

i,p approximate Vi(θ1, . . . ,θN ,s) and V p
i (θ1, . . . ,θN ,s), re-

spectively. Similarly, R0(τ) = ∑
N
i=0 R0

i (τ) approximates the social welfare

V (θ1, . . . ,θN ,s).

We can now calculate the gradients using the policy gradient theorem:

∇iVi(θ1, . . . ,θN ,s)≈ ∇iE[R0
i (τ)]

= E[∇i logπi(τ)R0
i (τ)]

(4.4)

The other gradients ∇iV (θ1, . . . ,θN ,s) and ∇p∇iV
p

i (θ1, . . . ,θN ,s) can be approxi-

mated in the same way. This yields the following rule for the parameter update of
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the planning agent:

∆θp = ηp

N

∑
i=1

ηi
(
E
[
∇p logπp(τ)∇i logπi(τ)R0

i,p(τ)
])T

·E
[
∇i logπi(τ)R0(τ)

] (4.5)

See algorithm ?? for an overview of the process for updating each agent’s parameters.

Algorithm 1: Pseudocode
Initialise policies π1, . . . ,πN and πp with parameters θ1, . . . ,θN and θp
Initialise the environment state s = s0
for t = 0 to T do

for i = 1 to N do
Sample ai according to πi(s)

end
Sample ap = (rp

1 , . . . ,r
p
N) according to πi

for i = 1 to N do
Update θi according to Equation 4.1:
θi = θi +ηi(∇iVi(θ1, . . . ,θN ,s)+∇iV

p
i (θ1, . . . ,θN ,s))

end
Update the planning agent parameters according to 4.3:
θp = θp +ηp ∑

N
i=1 ηi(∇p∇iV

p
i (θ1, . . . ,θN ,s))T ∇iV (θ1, . . . ,θN ,s)

Update the state of the environment:
s = T (s,a1, . . . ,aN ,ap)

end

4.1.4 Opponent modeling

Equations 4.3 and 4.5 assume that the planning agent has access to each agent’s in-

ternal policy parameters and gradients. This is a restrictive assumption. In particular,

agents may have an incentive to conceal their inner workings in adversarial settings.

However, if the assumption is not fulfilled, we can instead model the opponents’

policies using parameter vectors θ̂1, . . . , θ̂N and infer the value of these parameters

from the player’s actions [79]. A simple approach is to use a maximum likelihood

estimate based on the observed trajectory:

θ̂i = argmax
θ
′
i

T

∑
t=0

logπ
θ
′
i
(ai

t |st). (4.6)
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Table 4.1: Levels of fear and greed and resulting temptation (T ) and sucker (S) payoffs in
three matrix games. Note that the level of greed in Chicken has to be smaller than
1 because it is otherwise not a social dilemma (R > T+S

2 is not fulfilled).

Game Greed Fear T S
Prisoner’s Dilemma 1 1 4 0

Chicken 0.5 -1 3.5 2
Stag Hunt -1 1 2 0

Given this, we can substitute θ̂i for θi in equation 4.3.

4.1.5 Cost of additional rewards

In real-world examples, it may be costly to distribute additional rewards or pun-

ishment. We can model this cost by changing the planning agent’s objective to

V (θ1 +∆θ1, . . . ,θN +∆θN ,s)−α||V p(θ1, . . . ,θN ;θp,s)||2, where α is a cost param-

eter and V p = (V p
1 , . . . ,V

p
N ). The modified update rule is (using equation 4.3)

∆θp= ηp


N

∑
i=1

ηi(∇p∇iV
p

i (θ1, . . . ,θN ,s))T
∇iV (θ1, . . . ,θN ,s)

−α∇p||V p(θ1, . . . ,θN ;θp,s)||2

 (4.7)

4.2 Experimental setup
In our experiments, we consider N = 2 learning agents playing a matrix game social

dilemma (MGSD) as outlined in section 3.1.2. The learners are simple agents with a

single policy parameter θ that controls the probability of cooperation and defection:

P(C) = exp(θ)
1+exp(θ) , P(D) = 1

1+exp(θ) . The agents use a centralized critic [66] to learn

their value function.

The agents play 4000 episodes of a matrix game social dilemma. We fix the

payoffs R = 3 and P = 1, which allows us to describe the game using the level of

greed and fear. We will consider three canonical matrix game social dilemmas as

shown in Table 4.1.

The planning agent’s policy is parametrized by a single layer neural network.

We limit the maximum amount of additional rewards or punishments (i.e. we restrict

Ap to vectors that satisfy maxN
i=1 |r

p
i | ≤ c for a given constant c). Unless specified

otherwise, we use a step size of 0.01 for both the planning agent and the learners, use



4.3. Results 34

cost regularisation (Equation 4.7) with a cost parameter of 0.0002, set the maximum

reward to 3, and use the exact value function. In some experiments, we also require

that the planning agent can only redistribute rewards, but cannot change the total

sum of rewards (i.e. Ap is restricted to vectors that satisfy ∑
N
i=1 rp

i = 0). We refer to

this as the revenue-neutral setting.

4.3 Results
In this section, we summarize the experimental results.2 We aim to answer the

following questions:

• Does the introduction of the planning agent succeed in promoting significantly

higher levels of cooperation?

• What qualitative conclusions can be drawn about the amount of additional

incentives needed to learn and maintain cooperation?

• In which cases is it possible to achieve cooperation even when the planning

agent is only active for a limited timespan?

• How does a restriction to revenue-neutrality affect the effectiveness of mecha-

nism design?

Figure 1a illustrates that the players learn to cooperate with high probability if

the planning agent is present, resulting in the socially preferred outcome of stable

mutual cooperation. Thus the planning agent successfully learns how to distribute

additional rewards to guide the players to a better outcome.

Figure 1b shows how the planning agent rewards or punishes the player condi-

tional on each of the four possible outcomes. At first, the planning agent learns to

reward cooperation, which creates a sufficient incentive to cause the players to learn

to cooperate. In Figure 1c we show how this changes the level of fear and greed in

the modified game. The levels of greed and fear soon drop below zero, which means

that the modified game is no longer a social dilemma.

2Source code available at https://github.com/tobiasbaumann1/Adaptive Mechanism Design

https://github.com/tobiasbaumann1/Adaptive_Mechanism_Design
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(a) Probability of cooperation (b) Additional rewards for player 1

(c) Fear and greed in the modified game (d) Cumulative additional rewards

Figure 4.1: Mechanism design over 4000 episodes of a Prisoner’s Dilemma. The initial
probability of cooperation is 0.25 for each player. Shown is (a) the probability
of cooperation over time, (b) the additional reward for the first player in each of
the four possible outcomes, (c) the resulting levels of fear and greed including
additional rewards, and (d) the cumulative amount of distributed rewards.

Note that rewarding cooperation is less costly than punishing defection if (and

only if) cooperation is the less common action. After the player learns to cooperate

with high probability, the planning agent learns that it is now less costly to punish

defection and consequently stops handing out additional rewards in the case of

mutual cooperation outcome. As shown in Figure 1d, the amount of necessary

additional rewards converges to 0 over time as defection becomes increasingly rare.

Table 4.2 summarizes the results of all three canonical social dilemmas. Without

adaptive mechanism design, the learners fail to achieve mutual cooperation in all

cases. By contrast, if the planning agent is turned on, the learners learn to cooperate
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Table 4.2: Comparison of the resulting levels of cooperation after 4000 episodes, a) without
mechanism design, b) with mechanism design, and c) when turning off the
planning agent after 4000 episodes and running another 4000 episodes. Each
cell shows the mean and standard deviation of ten training runs. P(C,C) is the
probability of mutual cooperation at the end of training and V is the expected
social welfare that results from the players’ final action probabilities. The initial
probability of cooperation is 0.25 for each player.

Prisoner’s
Dilemma Chicken Stag Hunt

Greed 1 0.5 -1
Fear 1 -1 1

No
mech.
design

P(C,C)
0.004%
±0.001%

3.7%
±1.3%

0.004%
±0.002%

V
2.024
±0.003

5.44
±0.01

2.00
±0.00

With
mech.
design

P(C,C)
98.7%
±0.1%

99.0%
±0.1%

99.1%
±0.1%

V
5.975
±0.002

5.995
±0.001

5.964
±0.005

Turning
off

P(C,C)
0.48%
±0.4%

53.8%
±29.4%

99.6%
±0.0%

V
2.60
±0.69

5.728
±0.174

5.986
±0.002

with high probability, resulting in a significantly higher level of social welfare.

The three games differ, however, in whether the cooperative outcome obtained

through mechanism design is stable even when the planning agent is turned off.

Without additional incentives, mutual cooperation is not a Nash equilibrium in the

Prisoner’s Dilemma and in Chicken [80], which is why one or both players learn

to defect again after the planning agent is turned off. These games thus require

continued (but only occasional) intervention to maintain cooperation. By contrast,

mutual cooperation is a stable equilibrium in Stag Hunt [80]. As shown in Table

4.2, this means that long-term cooperation in Stag Hunt can be achieved even if the

planning agent is only active over a limited timespan (and thus at limited cost).

Table 4.3 compares the performance of different variants of the learning rule.

Interestingly, restricting the possible planning actions to redistribution leads to

lower probabilities of cooperation in Prisoner’s Dilemma and Stag Hunt, but not in
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Table 4.3: Resulting levels of cooperation and average additional rewards (AAR) per round
for different variants of the learning rule. The variants differ in whether they
use the exact value function (Equation 4.3) or an estimate (Equation 4.5) and in
whether the setting is revenue-neutral or unrestricted.

Prisoner’s
Dilemma Chicken Stag Hunt

Greed 1 0.5 -1
Fear 1 -1 1

Exact V

P(C,C)
98.7%
±0.1%

99.0%
±0.1%

99.1%
±0.1%

AAR
0.77
±0.21

0.41
±0.02

0.45
±0.02

Exact V
Revenue-neutral

P(C,C)
91.4%
±1.0%

98.9%
±0.1%

69.2%
±45.3%

AAR
0.61
±0.04

0.31
±0.02

0.19
±0.11

Estimated V

P(C,C)
61.3%
±20.0%

52.2%
±18.6%

96.0%
±1.2%

AAR
3.31
±0.63

2.65
±0.31

4.89
±0.39

Chicken. We hypothesize that this is because in Chicken, mutual defection is not in

the individual interest of the players anyway. This means that the main task for the

planning agent is to prevent (C,D) or (D,C) outcomes, which can be easily achieved

by redistribution. By contrast, these outcomes are fairly unattractive (in terms of

individual interests) in Stag Hunt, so the most effective intervention is to make (D,D)

less attractive and (C,C) more attractive, which is not feasible by pure redistribution.

Consequently, mechanism design by redistribution works best in Chicken and worst

in Stag Hunt.

Using an estimate of the value function leads to inferior performance on all

three games, both in terms of the resulting probability of mutual cooperation and

with respect to the amount of distributed additional results. However, the effect is by

far least pronounced in Stag Hunt. This may be because mutual cooperation is an
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equilibrium in Stag Hunt, which means that a beneficial outcome can more easily

arise even if the incentive structure created by the planning agent is imperfect.

Finally, we note that the presented approach is also applicable to settings with

more than two players.3 We consider a multi-player Prisoner’s Dilemma with N = 10

agents.4 Figure 2a illustrates that, just as in the case of N = 2, the players learn to

(a) Average probability of cooperation with
mechanism design

(b) Average probability of cooperation without
mechanism design

Figure 4.2: Mechanism design in a multi-player Prisoner’s Dilemma. The initial probability
of cooperation is 0.25 for each player. Shown is the average probability of
cooperation over time (a) in the presence of a planning agent, (b) without
mechanism design.

cooperate with high probability if the planning agent is present. By contrast, without

mechanism design, the players (unsurprisingly) converge to the socially undesirable

outcome of mutual defection. This shows that the presented approach for learning

how to distribute additional rewards scales easily to multi-agent social dilemmas.

4.3.1 Adaptive mechanism design in the stateful case

4.3.1.1 Experimental setup

In the following experiments, we study adaptive mechanism design in a more com-

plex stateful setting. We consider N = 2 learning agents playing the Coin Game.

The Coin Game features two agents, called ’red’ and ’blue’, that move in a 3x3 grid

3Source code available in a separate repository at https://github.com/tobiasbaumann1/Mechanism
Design Multi-Player

4The payoffs are as follows: 3 if all players cooperate, 1 if all players defect, 4 if you are the only
to defect, 0 if you are the only to cooperate. Payoffs of intermediate outcomes, where some fraction
of players cooperate, are obtained by linear interpolation.

https://github.com/tobiasbaumann1/Mechanism_Design_Multi-Player
https://github.com/tobiasbaumann1/Mechanism_Design_Multi-Player
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world. The agents are tasked with collecting red or blue coins that appear randomly

on the grid world. Agents pick up coins by moving onto the position where the coin

is located. A new coin with random colour and random position appears after the

last one is picked up. Each episode consists of 100 steps.

Every agent receives a unit of reward for picking up a coin of any colour, but

when picking up a coin of the wrong colour, the other agent loses 2 points. This

turns the Coin Game into a social dilemma: the cooperative strategy is to only pick

up coins of one’s own colour. But if both agents greedily pick up all the coins, they

get 0 reward in expectation.

We parametrise the learners’ policies using feedforward neural networks with

one hidden layer containing 64 units. We apply an actor-critic algorithm for train-

ing, using a centralized critic [66]. The learning rate for both actor and critic is

0.000083333.

The planning agent’s policy is likewise parametrised by a neural network and

updated using the learning rule from equation 4.3. We limit the maximum amount

of additional rewards or punishments. That is, we restrict Ap to vectors that satisfy

maxN
i=1 |r

p
i | ≤ c. (In the following experiments, we set c = 1.) However, the planning

agent is not restricted to being revenue-neutral.

Unless specified otherwise, the planning agent has full access to the actions

played by the learners and the observed state. The planning agent also receives the

exact value function used by each learner for the calculation of gradients.

To further stabilise the training of the planning agent, we use cost regularisation

(Equation 4.7) (with a cost parameter of 1.5 ·10−8) as well as entropy regularisation

to force sufficient exploration. Also, we clip on the planning agent’s loss to prevent a

small number of optimization steps with particularly high gradients from dominating

all other training steps.

4.3.1.2 Results

In the following, we summarize the experimental results.5 Figure 4.3 shows the

social welfare (per time step) for five training runs with different random seeds. The

5Source code available at https://github.com/tobiasbaumann1/amd

https://github.com/tobiasbaumann1/amd
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Figure 4.3: Mean total reward per time step (summed over both learning agents, excluding
planning rewards) over the course of 250000 episodes, for five training runs.
The solid lines are averages over the last 100 episodes, while the lighter shade
shows the value in each individual episode.

resulting degree of cooperation is at least somewhat higher than the baseline of a

mean reward of 0 (which results from both agents picking up coins of both colours).

However, there is substantial variation between training runs, and some result in

only a minor degree of cooperation. This suggests that the training process can be

unstable or get stuck in local optima.

Figure 4.4: Mean reward (excluding planning reward) of player 1 (’red’) over the course of
250000 episodes, for five training runs.

Figure 4.4 and figure 4.5 show the average reward levels received by the indi-

vidual learners. We observe that the resulting equilibria can be asymmetric, with
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Figure 4.5: Mean reward (excluding planning reward) of player 2 (’blue’) over the course
of 250000 episodes, for five training runs.

one agent achieving substantially higher rewards than the other. In one training run

(light blue), one learner even fares much worse than the baseline of 0. It is not clear

why this happens, but one possible explanation is that the planning agent rewards

or punishes learners for picking up coins of any colour (rather than differentiating

between the ’right’ or ’wrong’ colour), which results in an equilibrium where one

learner picks up more coins overall than the other.

Figure 4.6: The red player’s fraction of picked up coins of the right color (red), divided by
the total number of coins that are picked up.

A different metric of cooperation in the Coin Game is to consider how many

coins of one’s own color the agents pick up, compared to the total number of coins
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Figure 4.7: The blue player’s fraction of picked up coins of the right color (blue), divided
by the total number of coins that are picked up.

collected. This is shown in figure 4.6 and figure 4.7. In line with the previous

discussion, we observe levels of cooperation that are above the baseline of 0.5

(picking up all coins means that half of them are of the right colour). However, the

degree of cooperation varies across training runs and full cooperation is not achieved.

Overall, these are mixed results. It is possible in principle to achieve cooper-

ation in more complex settings using adaptive mechanism design. However, these

experiments suggest that the training process is brittle, that learning takes a long

time (more than 100000 episodes), and that it does not result in consistent mutual

cooperation.

4.4 Conclusions and Future Work

We have presented a method for learning how to create the right incentives to ensure

cooperation between artificial learners. Empirically, we have shown that a planning

agent that uses the proposed learning rule is able to successfully guide the learners

to the socially preferred outcome of mutual cooperation in several different matrix

game social dilemmas, while they learn to defect with high probability in the absence

of a planning agent. The resulting cooperative outcome is stable in certain games

even if the planning agent is turned off after a given number of episodes, while other

games require continued (but increasingly rare) intervention to maintain cooperation.
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We also showed that restricting the planning agent to redistribution leads to worse

performance in Stag Hunt, but not in Chicken.

In the future, we would like to explore the limitations of adaptive mechanism

design in more complex environments, particularly in games with more than two

players, without full observability of the players’ actions, and using opponent model-

ing (cf. Equation 4.6). Future work could also consider settings in which the planning

agent aims to ensure cooperation by altering the dynamics of the environment or

the players’ action set (e.g. by introducing mechanisms that allow players to better

punish defectors or reward cooperators).

Finally, under the assumption that artificial learners will play vital roles in

future society, it is worthwhile to develop policy recommendations that would

facilitate mechanism design for these agents (and the humans they interact with),

thus contributing to a cooperative outcome in potential social dilemmas. For instance,

it would be helpful if the agents were set up in a way that makes their intentions as

transparent as possible and allows for simple ways to distribute additional rewards

and punishments without incurring large costs.



Chapter 5

Gradual Tit-for-Tat

5.1 Introduction
[68] suggest that reinforcement agents learn both a cooperative and a defective policy.

The idea is to cooperate as long as one’s opponent follows the cooperative policy, and

switch to defection when the opponents’ actions do not follow the cooperative policy.

Alternatively, it is possible to switch when one’s past rewards indicate that the other

agent is not cooperating. [72] show that this method, which they call consequentialist

conditional cooperation, is sufficient to construct good strategies in a broad class of

games. Yet another possibility is to switch based on a trained defection-detection

model [73].

However, this approach is binary as the agent only switches between two

policies, representing full cooperation or full defection. This is a significant limitation

as many environments allow for degrees of cooperation, and neither full cooperation

nor full defection may be an appropriate response to an opponent that cooperates

partially.

In the following, we will develop a value-function-based reinforcement learning

framework in which agents will gradually adapt their policies based on evidence

on the opponents’ cooperativeness.1 The idea is to roughly mirror the degree of

cooperation of one’s opponent. This way, it is possible to construct agents that to

achieve beneficial outcomes with high degrees of cooperation (if the opponent is

1[73] also consider degrees of cooperation. However, their approach is entirely policy-based,
rather than considering value functions.
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cooperative), thus rewarding a cooperative partner, while at the same time avoiding

the risk of exploitation by pure defectors.

In many settings, achieving the highest possible level of cooperation is difficult

while a lower degree of cooperation is feasible, and still allows for significant

Pareto improvements compared to complete defection. For instance, laws and

norms often focus on avoiding particularly harmful actions (e.g. crimes), but do not

prescribe maximal cooperation, as that would be hard to enforce. Similarly, agents

following the approach outlined in this chapter will be able to achieve some degree

of cooperation across a variety of settings, thus reaching equilibria with significantly

higher social welfare.

A related perspective is that cooperation between humans is often driven by an

innate notion of fairness which this approach aims to mimic. An agent with such a

notion of fairness will only take actions to benefit the opponent (or partner) if they

consider that they themselves are getting a fair share.

5.2 Setup
Consider two agents in a shared environment, and let V1(π1,π2) and V2(π1,π2)

denote their respective value functions. The non-cooperative policies are those that

simply maximise Vi(π1,π2) without taking any effect on the other agent into account.

A fully cooperative policy is to maximise a social welfare function W (π1,π2) that

gives equal weight to each agent. The simplest example of such a welfare function

is the sum, i.e. W (π1,π2) = V1(π1,π2)+V2(π1,π2). Alternatively, one could use

a welfare function based on bargaining theory; for instance, the Nash bargaining

solution maximises the product of surplus utilities.

Suppose that there is agreement about which welfare function would be fair,

and the agents maximise a combination

α ·W (π1,π2)+(1−α) ·V1(π1,π2)

or

β ·W (π1,π2)+(1−β ) ·V2(π1,π2),
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respectively. In the following, we will consider the social welfare function

W (π1,π2) =V1(π1,π2)+V2(π1,π2), in which case this is equivalent to maximising

V1(π1,π2)+α ·V2(π1,π2)

for player 1 and

V2(π1,π2)+β ·V1(π1,π2)

for player 2.

The parameters 0≤ α,β ≤ 1 describe how much weight is given to the other

agent, and therefore characterise the degree of cooperation exhibited by each agent,

with 0 representing full defection and 1 representing full cooperation. For intermedi-

ate values, the agent may still take actions to help (or not cause harm to) the other

agent if the selfish gain or loss is sufficiently small in comparison. This parameter

can be said to represent the attitude of the agent towards the opponent. Specifically,

if it is possible to unlock significant gains in social welfare at a marginal cost to

oneself, then the agents will do so unless the cooperation parameters are very close

to 0.

This is not the only way to describe degrees of cooperation, but it is mathe-

matically simple and commonly used in the literature (e.g. it is also used in [73]).

Harsanyi’s social aggregation theorem [39] provides a theoretical justification for

this. The theorem states that when the actors have a common prior on the outcome

distributions of all policies, a Pareto optimal policy is one that maximizes a fixed,

weighted linear combination of the agents’ utility functions. (As an alternative, we

could instead describe cooperativeness directly through the expected reward that the

other player receives relative to pure cooperation or pure defection.)

We can now express the value function in terms of the reward resulting from

cooperativeness parameters α,β , that is, we write Vi(α,β ) instead of Vi(π1,π2),

where π1,π2 are the policies resulting from the degrees of cooperation α,β . Likewise,

we write W (α,β ) for W (π1,π2). V1 is decreasing in α and increasing in β , and vice

versa for V2. W is increasing in both arguments. (Proof to be delivered.)
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Given this, a straightforward strategy is to try and mirror the degree of coopera-

tion exhibited by one’s opponent; that is (from player 1’s perspective), to set α = β̂ ,

where β̂ is an estimate of the other agent’s cooperativeness. This can be considered

a generalisation of playing Tit-for-Tat in an iterated Prisoner’s Dilemma. Similar to

forgiving variants of Tit-for-Tat, it may make sense to give the opponent the benefit

of the doubt by setting α = β̂ + ε for some positive ε .

5.3 Estimating degrees of cooperativeness
The key problem, when following the approach outlined in the previous chapter,

is how to compute β̂ , that is, to estimate the opponent’s degree of cooperation. In

this section, we will describe how this can be achieved under different assumptions

of how much is known about the opponent. This estimate can be based either on

observations of actions taken by the opponent, or the levels of received rewards.

For the classical iterated Prisoner’s Dilemma (or similar matrix games), a

number of techniques have been proposed to estimate the opponent’s degree of

cooperation, including counting the cooperation frequency when actions can be

observed or using a Bayesian approach otherwise [71, 69, 70, 62]. For sequential

social dilemmas, [73] formulate the problem of estimating the opponents’ degree

of cooperation as a supervised learning problem: given a sequence of moves of an

opponent, the task is to detect the cooperation degree of this opponent.

5.3.1 Inferring cooperativeness from the opponents’ actions

In this method, the agent starts with a prior P0(β ) over opponent cooperativeness

and performs a Bayesian update in each time step upon observing an action from the

opponent. This is an adaptation of Bayesian policy reuse [81].

Starting with a probability distribution Pt(β ) at time t, the posterior Pt+1(β )

after observing an action a from the opponent is given by

Pt+1(β ) =
P(aopp

t = a|β )Pt(β )∫ 1
0 P(aopp

t = a|β )Pt(β )dβ
, (5.1)

where P(aopp
t = a|β ) denotes the probability that the opponent would take action
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a when following the degree of cooperativeness β . This reduces the problem of

inferring cooperativeness to calculating or estimating P(aopp
t = a|β ).

One challenge when estimating P(aopp
t = a|β ) is that the agent may not have a

good understanding of how the environment works, or how the opponent models the

environment. This could result in them mistaking cooperative opponent behaviour

for defection, or vice versa. In general, estimating P(aopp
t = a|β ) is a very difficult

problem. However, if the environment is symmetric and fully observable, then

one’s own action probabilities given a certain level of cooperativeness can be used

to estimate opponent action probabilities, i.e. one could plug in P(at = a|·) for

P(aopp
t = a|·) in equation 5.1.

5.3.2 Inferring cooperativeness from received rewards

An alternative is to infer the opponent’s degree of cooperativeness from outcomes,

i.e. the rewards that the agent receives [72]. The levels of rewards are more or

less consistent with different levels of opponent cooperativeness: one would expect

higher rewards if β is high.

Specifically, let Gt be the time-weighted average reward of agent 1. (That is,

G1 = r1 and Gt = τ · rt +(1− τ)Gt−1 for some decay parameter τ .) For a given

degree of cooperativeness (of the agent itself) α , the expected reward is V1(α,β ),

which is a monotonically increasing function of β . We can now estimate β̂ as the

value such that

V1(α, β̂ ) = Gt

holds. (If Gt <V1(α,β ) for any β ∈ [0,1], then we estimate β̂ = 0, if Gt >V1(α,β )

for any β ∈ [0,1], we estimate β̂ = 0.)

5.4 Directions for future research
Further work in this area could show experimentally that this approach can result in

mutual cooperation in many cases, and compare its performance to other approaches,

such as learning with opponent-learning awareness (LOLA) or unmodified reinforce-

ment learning. Experiments could test the performance of (different variants of) this

strategy against cooperators, against defectors, against agents following the same
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strategy, and against agents using conventional reinforcement learning.

On the theoretical side, it would be worthwhile to analyse the conditions that the

functions Vi(α,β ) have to fulfil in order for this approach to result in convergence

to either partial or full cooperation. For simplicity, one could restrict the analysis

to symmetric games or assume linear separabillty (i.e. the property that there are

functions fi,gi such that Vi(α,β ) = fi(α)+gi(β )).



Chapter 6

Towards cooperative AI

In this chapter, we will outline why research on cooperative artificial intelligence is

important and neglected. We will also clarify conceptual ambiguities concerning the

meaning of ’cooperation’ and the goal of learning in multi-agent systems. Last, we

describe key challenges to cooperation and outline possible approaches to overcome

these hurdles.

6.1 The importance of cooperation
Machine learning systems already interacts with humans in myriad ways. This

interaction ranges from self-driving vehicles to recommender systems and personal

assistants powered by artificial intelligence. And as the technology matures, it is

likely that artificial agents increasingly ubiquitous and fulfill increasingly important

roles in our economy and society, which further amplifies the scope of human-AI

interaction.

Yet the fields of machine learning and artificial intelligence have largely brack-

eted questions arising from these interactions. In particular, cooperation and coor-

dination problems have often been sidestepped. This is reflected in the canonical

reinforcement learning paradigm, which features a single actor that interacts repeat-

edly with an environment, with no mention of other actors and social dilemmas

arising from interactions with these other actors.

Even for learning environments that involve multiple agents, most headline

results have come from two-player zero-sum games. In these competitive examples,
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gains can be made only at the expense of others. Potential reasons why research

has nevertheless focused on zero-sum games are that zero-sum games tend to be

more exciting or dramatic, with a clear winner and loser. They are also usually easy

to benchmark (by asking whether the AI has beaten the opponent), have natural

curricula (in terms of opponent skill level) and are analytically simpler than mixed

motive settings.

However, such settings of pure conflict, without any possibility for compromise

or cooperation, are rare in the real world. Most real-world interactions are mixed-

motive interactions. Improving skill at zero-sum games is therefore unlikely to be

the most promising way for AI to achieve mutually beneficial outcomes in human-AI

and AI-AI interactions. To ensure that AI can be integrated safely in a world that

does entail other actors with both competing and overlapping interests, we need to

re-conceive artificial intelligence as cooperative artificial intelligence.

Games of pure common interest, where all agents share the same goal and

the challenges lies in mere coordination, are a step towards developing cooperative

agents. Yet the fully cooperative setting represents a particularly easy case, and

sidesteps much harder problems of cooperation. It is also uncommon for goals to

be so perfectly aligned: real-world relationships almost always involve a mix of

common and conflicting interests. This tension gives rise to phenomena such as

bargaining, trust and mistrust, deception and credible communication, commitment

problems and assurances, politics and coalitions, and norms and institutions. To

ensure socially valuable outcomes, artificial learners will need to manage hard

cooperation problems, just as humans do.

We therefore see an opportunity for a subfield of artificial intelligence to ex-

plicitly focus effort on this class of problems, which has been termed Cooperative

AI.[82] Cooperative AI, as scoped here, refers to AI research aiming to build artificial

learners that achieve high joint welfare in social dilemmas across a wide range of

settings.
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6.2 What is the goal of multi-agent learning?
In this section, we will consider the question of what exactly the goal of multi-agent

learning in mixed motive environments even is. We argue that this is not only a

technical problem, but also conceptually challenging. Relevant aspects include the

strategic context, the extent of common versus conflicting interest, the kinds of

entities who are cooperating, and whether researchers take the perspective of an

individual or of a social planner.

6.2.1 Convergence to a Pareto-optimal outcome

On the theoretical side, convergence of a learning algorithm (against certain classes

of opponent learning algorithms) is a common criterion. The most common notion

is that of convergence to a Nash equilibrium, assuming that the setting features at

least one Nash equilibrium.

However, we argue that this criterion is not ideal for the quest of building

cooperative artificial intelligence. This is because Nash equilibria are often highly

defective and exhibit low social welfare.

We instead suggest that convergence to a Pareto-optimal outcome should be

a key goal when evaluating learning algorithms in mixed motive multi-agent set-

tings. Of course, in some cases, such as the single-shot Prisoner’s dilemma, a

Pareto-optimal outcome is impossible to achieve, as it does not constitute a Nash

equilibrium. However, under the assumption that there is at least one Pareto-optimal

Nash equilibrium, then the agents should converge to one of the Pareto-optimal

equilibria, rather than a defective equilibrium.

We argue that this is a suitable criterion not only because Pareto optimality is

an established concept in economics and game theory, but also because it represents

a sufficiently weak notion of cooperation (the absence of ’easy wins’ that would

improve both agents’ payoff) to be realistic across a wide range of settings.

Another plausible criterion is convergence to a jointly welfare-optimal Nash

equilibrium, i.e., the Nash equilibrium that results in highest social welfare.1 This

1For purposes of this discussion, welfare can be understood as either the sum of rewards or as one
of the welfare functions used in bargaining solutions.



6.2. What is the goal of multi-agent learning? 53

is a stronger criterion than convergence to a Pareto-optimal Nash equilibrium, as a

welfare-optimal equilibrium is always Pareto-optimal (but not vice versa). It may be

very challenging to achieve convergence to a welfare-optimal equilibrium, especially

if the actors use different notions of fairness or have different models of the strategic

situation. (More on this below.)

An additional complication is that any such convergence results are opponent-

relative (as well as environment-relative). For instance, it is impossible to achieve

Pareto-optimality, or any other notion of a cooperative outcome, against an opponent

that always defects regardless of one’s own actions. A plausible starting point

for theoretical analysis of the behaviour of a learning algorithm is to consider

convergence against opponents using the same (or at least a similar) algorithm.

6.2.2 The individual perspective and the planner perspective

Another distinction relates to whether we look at a social dilemma from the individual

perspective or the planner perspective. The individual perspective seeks to achieve

the goals of an individual in a mixed motive setting, which usually involves improving

the individual’s understanding of the strategic situation and the workings of other

agents. The question, in this perspective, is what the agent can do to get the opponent

to cooperate, or (more adversarially) how it may be possible to exploit the opponent.

The planner perspective, which was assumed in the earlier chapter on mecha-

nism design, instead looks at the setting from the outside and seeks to intervene to

improve some notion of social welfare for interacting agents. This could correspond

to a government or other authority that is tasked with ensuring cooperation (and

thereby good social outcomes). The means that the planner has at their disposal, as

well as the degree of insight into the players’ inner workings, are usually key con-

straints that determine the degree to which the planner’s interventions can improve

social welfare.

To some degree, the two perspectives are entwined. From an individual perspec-

tive, the best way to achieve a cooperative outcome may be to create an institution

that acts as a planner, to the degree to which this is feasible. Reasoning over how to

get one’s opponent to cooperate (from the individual perspective) is also similar to
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reasoning how to get all agents to cooperate (from the planner perspective).

Conversely, the planner perspective should understand the interests (and ca-

pabilities) of the individuals, if only to know how best to intervene to facilitate

cooperation. Work on cooperative artificial intelligence should therefore consider

both the individual perspective and the planner perspective.

6.3 Challenges for cooperation
A failure to cooperate is a Pareto-inefficient outcome, and destructive conflict can

lead to very bad outcomes for all actors. Therefore, one may expect that intelligent

actors should be able to coordinate to avoid outcomes with (very) poor social welfare.

The ability to cooperate is often instrumentally useful, so one might expect that

learning agents will automatically find ways to solve social dilemmas as part of their

training process. However, we argue that intelligence, or successful learning, does

not automatically imply cooperation or good bargaining, as that is a distinct skill.

Defective equilibria can still arise even when intelligent agents are competent

at navigating their environment, as evidenced by humanity’s failure to avoid wars

and other catastrophic conflicts throughout history. This is due a variety of factors,

including but not limited to an inability to credibly commit to a negotiated agreement,

incompatible (hawkish) commitments, different notions of fairness, intrinsic malev-

olent preferences, or uncertainty and possibly false beliefs about the capabilities,

intentions, and available courses of action of the other party. In the following, we

will describe some of these challenges in more detail.

6.3.1 Different notions of fairness

A key problem stems from the inherent vagueness of ’cooperation’. In toy exam-

ples, such as the (single-stage or iterated) Prisoner’s dilemma, it is clear what the

cooperative and what the defective action is. However, in more complex, realistic

settings, this is often up to interpretation. An outcome that is considered fair and

cooperative by one agent may be considered unfair exploitation by the other agent.

This can happen even if everyone’s payoffs are completely transparent. For instance,

one side may consider the Nash bargaining solution to be fair, while the other uses
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the Kalai-Smorodinsky bargaining solution.

Since this dynamic can cause cooperation to fail, it is critical that agents can

handle different notions of fairness in a productive way. In particular, agents should

be able to resist exploitation while also preventing cooperation from breaking down

entirely due to such different notions of fairness.

A closely related issue is the equilibrium selection problem. Complex environ-

ments will often feature many different equilibria on the Pareto frontier that could

all be considered ’cooperation’, but differ in their payoffs. In this case, the agents

need to be able to coordinate on a ’fair’ equilibrium, rather than insisting on an

equilibrium that is slated in one’s favor.

6.3.2 Incompatible models and beliefs

In particular, agents are less likely to reach a mutually acceptable agreement if they

don’t have the same (or at least similar) model of their strategic situation. This is

especially true in adversarial settings, where agents have incentive to conceal their

private information. The challenge, then, is either to more likely that agents have

sufficiently compatible beliefs (e.g. through greater transparency), or to find ways to

avoid a full breakdown of cooperation when beliefs diverge.

6.3.3 Existing algorithms are ill-equipped to overcome these

challenges

There has been a fair amount of research in recent years on sequential social dilemmas

(SSDs) (of which the iterated Prisoner’s Dilemma is an example), which are mixed-

motive games. However, these environments fail to capture at least some essential

hurdles for cooperation outlined above. While the SSDs that have been studied so far

have a single, clear cooperative outcome, real-world problems have many outcomes

which might be considered cooperative, and it is up to interpretation or subjective

judgment what the fairest outcome is.

Existing algorithms are therefore ill-equipped to deal with these cooperation

hurdles, and we likely need better methods to achieve the goal of cooperative AI.
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6.4 Cooperative skills
To build cooperative artificial intelligence, we need to equip an agent with key skills

and capabilities necessary for cooperation, such as understanding, communication,

and the ability to make cooperative commitments. It is also crucial to integrate game

theory, as cooperative AI lies at the intersection between game theory and artificial

intelligence. Research on cooperative AI will need to integrate ongoing work on

multi-agent systems, game theory and social choice, human-machine interaction and

alignment, and the construction of social tools and institutions.

6.4.1 Reasoning correctly about other agents

As discussed above, having accurate models and beliefs of the strategic situation is

critical in achieving cooperation. In particular, it is necessary to be able to predict

the behaviour of other agents in order to understand which courses of action will

result in cooperation (or defection) from one’s opponent. A simple example is to

predict that defection will make it more likely that one’s opponent will also defect in

the future.

This is a challenge for reinforcement learners because most conventional meth-

ods do not take into account how other actors update their policies in response to

one’s actions, since this is an indirect long-term consequence rather than an imme-

diate reward signal. This dynamic can result in convergence to defective equilibria

because it is much easier to learn about the immediate gain in reward from defection

than about more indirect effects such as endangering cooperation in the long run.

To ameliorate this, novel algorithms (such as learning with opponent-learning

awareness [67]) need to explicitly reason about how opponents update their policies.

This knowledge can then be applied towards the goal of achieving cooperation,

similar to our work on mechanism design. (While our work assumed the planner

perspective, this can also be applied from the individual perspective.)

Another aspect is learning to communicate with other agents. This is key to

create an adequate joint model of the situation and avoid misunderstandings that

could result in cooperation failures. Of course, communication is easiest when

interests are aligned and more challenging when the agents’ preferences might be in
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conflict, as there could be an incentive to conceal or misrepresent information. The

ability to communicate effectively when negotiating possible agreements - even in

a potentially adversarial setting - is thus a critical skill for achieving a cooperative

outcome. (This might involve understanding how to construct transparency tools for

gaining insights into how agents reason.)

6.4.2 Robust motivation to cooperate

Most of the points made so far had to do with methods for bargaining that allow

agents to achieve cooperation and avoid catastrophic outcomes. However, malicious

agents may lack the motivation to use these techniques in the first place. Conversely,

agents who are highly motivated to find cooperative agreements might automatically

figure out good bargaining strategies in their training process. So we want to ensure

that agents are adequately motivated to achieve cooperation, such as by also giving

some weight to the interests of others, at least as long as one is not exploited.

A key skill in this context is to be able to handle interactions with other agents

that are not well-motivated, or perhaps even have built-in hostile or belligerent

tendencies. Such agents might be indifferent to the harm their actions cause to others.

In such cases, the agent should be able to resist exploitation while avoiding possible

escalating conflicts.

6.4.3 Partial cooperation and failing gracefully

Considering the many challenges to cooperation, it is often hard to achieve a perfectly

cooperative outcome. In these cases, the agent should be able to at least achieve

partial cooperation, to the extent to which it is possible. This is particularly impor-

tant when dealing with agents with a different notion of fairness (precluding full

cooperation), as it is often possible to still salvage some level of cooperation.

To achieve this, the agent needs to learn to use incentives in a gradual and

balanced way to encourage cooperation, resist exploitation, and avoid worst-case

outcomes. In particular, punishments for (actual or perceived) opponent defection

should be proportionate rather than excessive, i.e. avoiding a ’grim trigger’ that

permanently precludes cooperation.
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Conclusion

We have argued that artificial learning agents are likely to become increasingly

widespread in our society, resulting in an increasing need to navigate complex

interactions with other (human and nonhuman) agents. There is a need for research

on the intersection between game theory and artificial intelligence, with the goal of

finding methods and techniques that allow artificial intelligence to navigate social

dilemmas in a productive fashion.

We considered the perspective of an external agent that aims to promote cooper-

ation between artificial learners, by distributing additional rewards and punishments.

We have proposed a rule for how the planning agent could automatically learn how

to create right incentives by considering the players’ anticipated parameter updates.

This resulted in cooperation with high social welfare in matrix games in which the

agents would otherwise learn to defect with high probability. The resulting coopera-

tive outcome is stable in certain games even if the planning agent is turned off after

a given number of episodes, while other games require continued (but increasingly

rare) intervention to maintain cooperation. However, the results in more complex

games are mixed. Future research on adaptive mechanism design could further

explore the limitations of this approach, particularly in games with more than two

players or without full observability of the players’ actions.

We have also reflected on what the goals of multi-agent reinforcement learning

should be in the first place. We identified key capabilities that are desirable, such

as adequate reasoning about other agents, the ability to handle different notions
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of fairness, and graceful failure if full cooperation is not feasible. We argued that

the primary goal of multi-agent learning should be to build cooperative artificial

intelligence and view this thesis as a modest contribution to the nascent field of

research on cooperative AI.
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