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Modeling liquid-vapor phase change using the lattice Boltzmann (LB) method has attracted significant
attention in recent years. In this paper, we propose an improved three-dimensional thermal multiphase LB
model for simulating liquid-vapor phase change. The proposed model has the following features. First, it is
still within the framework of the thermal LB method using a temperature distribution function and therefore
retains the fundamental advantages of the thermal LB method. Second, in the existing thermal LB models for
liquid-vapor phase change, the finite-difference computations of the gradient terms ∇ · u and ∇T usually require
special treatment at boundary nodes, while in the proposed thermal LB model these two terms are calculated
locally. Moreover, in some of the existing thermal LB models, the error term ∂t0 (T u) is eliminated by adding
local correction terms to the collision process in the moment space, which causes these thermal LB models
to be limited to the D2Q9 lattice in two dimensions and the D3Q15 or D3Q19 lattice in three dimensions.
Conversely, the proposed model does not suffer from such an error term and therefore the thermal LB equation
can be constructed on the D3Q7 lattice, which simplifies the model and improves the computational efficiency.
Numerical simulations are carried out to validate the accuracy and efficiency of the proposed thermal multiphase
LB model for simulating liquid-vapor phase change.
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I. INTRODUCTION

In the past three decades, the lattice Boltzmann (LB)
method has been developed into a very efficient numerical
methodology for simulating fluid flow and heat transfer [1–6].
The fundamental idea of the LB method is to construct a sim-
plified kinetic model that incorporates the essential physics
of a target process so that the macroscopic averaged proper-
ties obey desired macroscopic equations [2]. Compared with
traditional numerical methods based on the discretization of
macroscopic continuum equations, the LB method exhibits
some distinctive advantages owing to its kinetic nature, such
as the simple form of the governing equation, the easiness
of programming, and the easy implementation of complex
boundary conditions. Besides, the LB method can be easily
parallelized due to its explicit scheme and local interactions.
Furthermore, the LB method has been proven to be very suit-
able for modeling multiphase and multicomponent systems
[4,6,7], where the interfacial dynamics and phase separation
are present.

In recent years, the LB method has been extensively
employed to simulate liquid-vapor phase change [4], such
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as boiling, condensation, and evaporation. Historically, the
first LB study of the boiling phenomena was attributed to
Zhang and Chen in 2003 [8]. They successfully reproduced a
nucleate boiling process by considering a standard Rayleigh-
Bénard setup. Since then a variety of thermal multiphase LB
models have been developed to simulate liquid-vapor phase
change. Generally, these thermal multiphase LB models can
be classified into three categories. The first category is based
on the phase-field multiphase LB method, such as the mod-
els proposed by Dong et al. [9], Safari et al. [10,11], and
Sun et al. [12]. In these models, the liquid-vapor interface
is captured by solving an interface-capturing equation and a
source term is incorporated into the continuity equation or the
interface-capturing equation to mimic the liquid-vapor phase
change [4]. The main weakness of these thermal multiphase
LB models lies in that they are inefficient for simulating the
nucleation of bubbles and seed bubbles should be prescribed
a priori on a heated surface to trigger nucleate boiling.

The second category consists of some double-distribution-
function (DDF) and hybrid thermal LB models based on the
pseudopotential multiphase LB method [13–16], such as the
thermal multiphase LB models developed by Márkus and Házi
[17,18], Biferale et al. [19,20], Gong and Cheng [21], Kamali
et al. [22], Li et al. [23,24], and Zhang et al. [25]. An important
advantage of the pseudopotential multiphase LB method is
that the phase separation between different phases can emerge
automatically as a result of particle interactions. Therefore,
the interface between different phases can arise, deform, and
migrate naturally, without resorting to any technique to track
or capture the interface [13–15]. Accordingly, these thermal
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LB models are capable of simulating nucleate boiling without
prescribing seed bubbles on a heated surface [23,26]. Most of
the aforementioned thermal LB models utilize a temperature-
based thermal LB equation to simulate the temperature field
of nonideal fluids. For the hybrid thermal LB model devised
in Ref. [23], the temperature equation is solved by a finite-
difference algorithm.

The third category is based on the multispeed LB method,
such as the thermal multiphase LB models proposed by
Gonnella et al. [27] and Gan et al. [28]. These models employ
a single density distribution function like that in the standard
LB method but utilize more discrete velocities [29,30]. In
these models, the equilibrium density distribution function
includes higher-order velocity terms so as to recover the en-
ergy equation. Besides the aforementioned three categories,
Reyhanian et al. [31] recently proposed a thermokinetic LB
model for nonideal fluids. In their model, the local thermo-
dynamic pressure is imposed through appropriate rescaling of
the particle’s velocities and a total-energy-based thermal LB
equation is employed to describe the energy conservation law.
In addition, Huang et al. [32] recently devised a thermal multi-
phase LB model for liquid-vapor phase change by introducing
a total-kinetic-energy-based thermal LB equation to recover
the energy equation of nonideal fluids.

Compared with the temperature-based thermal LB models
mentioned in the second category, the total-energy-based and
total-kinetic-energy-based thermal LB models usually have a
simpler source term for simulating liquid-vapor phase change.
Nevertheless, it should also be noted that the thermal bound-
ary treatment becomes relatively complex in these models
owing to the fact that the total energy or the total kinetic
energy involves not only the temperature but also the den-
sity [31,32]. When a liquid-vapor interface meets a solid
boundary with the Dirichlet thermal boundary condition, the
temperature remains unchanged along the solid boundary but
the density changes significantly. Correspondingly, the total
energy and the total kinetic energy will also vary significantly
along the solid boundary. In the LB community it is a little
difficult to treat such a boundary condition with sufficient
numerical stability for the related energy-based distribution
functions over a wide range of applications and numerical
instability may occur when complex boundaries are encoun-
tered.

Actually, the total-energy-based thermal LB method has
been widely used in the simulations of single-phase incom-
pressible thermal flows [33]; the method does not suffer
from the aforementioned problem since the density is nearly
constant (ρ ≈ ρ0) for single-phase incompressible thermal

flows. Similarly, there is no such a problem in the thermal
multiphase LB models that utilize a temperature distribu-
tion function, in which the thermal boundary treatment does
not involve the density. This is also the main reason why
many researchers prefer to use a temperature-based thermal
multiphase LB model to simulate liquid-vapor phase change.
However, the previous temperature-based thermal multiphase
LB models [17–19,21,24,25] suffer from the complex treat-
ment of gradient terms such as ∇ · u and ∇T at boundary
nodes. Meanwhile, an error term caused by ∂t0 (T u) exists
in some early models. To eliminate the error term, several
improved two-dimensional (2D) models [24,25] have been
devised by adding correction terms to the collision process
in the moment space. When these models are extended to the
three-dimensional (3D) space, the thermal LB equation would
be limited to the D3Q15 or D3Q19 lattice [34].

In the present work, we aim at proposing an improved
three-dimensional (3D) thermal multiphase LB model for
simulating liquid-vapor phase change. To retain the advan-
tages of the previous temperature-based thermal multiphase
LB models, the present model is also a DDF-LB model and
is constructed based on the pseudopotential multiphase LB
method. To be specific, the density and velocity fields are
simulated by a 3D pseudopotential multiphase LB model,
while the temperature field is simulated by an improved ther-
mal LB equation using a temperature distribution function.
Meanwhile, the gradients ∇ · u and ∇T in the source term
can be calculated locally at boundary nodes in a simple way.
Furthermore, the present model does not suffer from the error
term caused by ∂t0 (T u) and therefore the thermal LB equation
can be constructed on the D3Q7 lattice. The rest of this paper
is organized as follows. A 3D pseudopotential multiphase
LB model is briefly introduced in Sec. II. The improved 3D
thermal multiphase LB model for liquid-vapor phase change
is presented in Sec. III. Numerical validation is performed in
Sec. IV. Finally, Sec. V summarizes the present paper.

II. THREE-DIMENSIONAL PSEUDOPOTENTIAL
MULTIPHASE LB MODEL

The original pseudopotential multiphase LB method was
proposed by Shan and Chen around 1993 [13,14]. This
method has been applied with great success to many prob-
lems owing to its conceptual simplicity and computational
efficiency [4]. In this section, we briefly introduce a 3D
pseudopotential multiphase LB model. Using a multiple-
relaxation-time (MRT) collision operator, the LB equation can
be written as follows [35–38]:

fα (x + eαδt , t + δt ) = fα (x, t ) − �̄αβ ( fβ − f eq
α )

∣∣
(x,t ) + δt (Gα − 0.5�̄αβGβ )

∣∣
(x,t ), (1)

where fα is the density distribution function, f eq
α is the equilibrium density distribution function, t is the time, eα is the discrete

velocity along the α-th direction, x is the spatial site, δt is the time step, Gα is the forcing term in the discrete velocity space, and
�̄αβ = (M−1�M) is the collision operator, in which M is a transformation matrix and � is a diagonal matrix.

The D3Q19 lattice is adopted for the LB equation and the lattice velocities are given by

eα = c

⎡
⎣0 1 −1 0 0 0 0 1 −1 1 −1 1 −1 1 −1 0 0 0 0

0 0 0 1 −1 0 0 1 −1 −1 1 0 0 0 0 1 −1 1 −1
0 0 0 0 0 1 −1 0 0 0 0 1 −1 −1 1 1 −1 −1 1

⎤
⎦, (2)
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where c = 1 is the lattice constant. Multiplying Eq. (1) by the transformation matrix M, the right-hand side of Eq. (1), i.e., the
collision step of the LB equation, can be implemented in the moment space:

m∗ = m − �(m − meq) + δt

(
I − �

2

)
S, (3)

where m = Mf , meq = Mfeq, I is the unit matrix, and S = MG is the forcing term in the moment space. In the present work,
the MRT collision operator formulated by Li et al. [37] is adopted. After the collision step in the moment space, m∗ given by
Eq. (3) can be transformed back to the discrete velocity space and then the streaming step is given by

fα (x + eαδt , t + δt ) = f ∗
α (x, t ), (4)

where f∗ = M−1m∗, in which M−1 is the inverse matrix of the transformation matrix. The details of the transformation matrix
M and its inverse matrix M−1 can be found in Ref. [37]. The corresponding equilibrium moments meq = (meq

0 , meq
1 , . . . , meq

18)T

in Eq. (3) are given by

meq
0 = ρ, meq

1 = ρux, meq
2 = ρuy, meq

3 = ρuz, meq
4 = ρ + ρ|u|2,

meq
5 = ρ

(
2u2

x − u2
y − u2

z

)
, meq

6 = ρ
(
u2

y − u2
z

)
, meq

7 = ρuxuy, meq
8 = ρuxuz, meq

9 = ρuyuz,

meq
10 = ρc2

s uy + ρu2
xuy, meq

11 = ρc2
s ux + ρu2

yux, meq
12 = ρc2

s uz + ρu2
xuz,

meq
13 = ρc2

s ux + ρu2
z ux, meq

14 = ρc2
s uz + ρu2

yuz, meq
15 = ρc2

s uy + ρu2
z uy,

meq
16 = ϕ + ρc2

s

(
u2

x + u2
y

)
, meq

17 = ϕ + ρc2
s (u2

x + u2
z ), meq

18 = ϕ + ρc2
s

(
u2

y + u2
z

)
,

(5)

where cs = c/
√

3 and ϕ = ρc4
s (1−1.5|u|2), in which c = 1

and |u| =
√

u2
x + u2

y + u2
z . The first ten moments in Eq. (5)

are related to the macroscopic density, momentum, and the
viscous stress tensor, respectively, whereas the other moments
are higher-order moments that do not affect the Navier-
Stokes-level hydrodynamics. The diagonal matrix � for the
relaxation times can be expressed as follows [37]:

�= diag(1, 1, 1, 1, τ−1
e , τ−1

v , τ−1
v , τ−1

v , τ−1
v , τ−1

v , τ−1
q ,

τ−1
q , τ−1

q , τ−1
q , τ−1

q , τ−1
q , τ−1

π , τ−1
π , τ−1

π ), (6)

where τe and τv are determined by the bulk and shear vis-
cosities, respectively, while τq and τπ are free parameters
related to high-order nonhydrodynamic moments. The relax-
ation times of the conserved moments have been chosen as 1.0
following Ref. [38].

According to the pseudopotential multiphase LB method
[13,14], the intermolecular interaction force for single-
component multiphase flows is given by [4,39]

Fm = −Gψ (x)
∑

α

ω(|eα|2)ψ (x + eαδt )eα, (7)

where the weights ω(|eα|2) are given by ω(1) = 1/6 and
ω(2) = 1/12 for the D3Q19 lattice, G represents the strength
of the interaction force, and the pseudopotential ψ (x) is de-
fined as [40,41]

ψ (x) =
√

2
[
pEOS(ρ, T ) − ρc2

s

]/
Gc2, (8)

where pEOS(ρ, T ) is a nonideal equation of state. In the
present work, we adopt the Peng-Robinson equation of state
[23,41]. Note that, when the pseudopotential is defined by
Eq. (8), the only requirement for the parameter G is to ensure
that the whole term inside the square root on the right-hand
side of Eq. (8) is positive and it is usually chosen as G = −1
in many practical applications. The forcing term S in Eq. (3)

is given by [37]

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

Fx

Fy

Fz

2F · u + 6σ |Fm |2
ψ2δt (τe−0.5)

2(2Fxux − Fyuy − Fzuz )

2(Fyuy − Fzuz )

Fxuy + Fyux

Fxuz + Fzux

Fyuz + Fzuy

c2
s Fy

c2
s Fx

c2
s Fz

c2
s Fx

c2
s Fz

c2
s Fy

2c2
s (uxFx + uyFy)

2c2
s (uxFx + uzFz )

2c2
s (uyFy + uzFz )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (9)

where σ is a constant employed to adjust the mechanical
stability condition of the pseudopotential LB model to achieve
thermodynamic consistency [15,42]. The macroscopic density
and velocity are calculated as follows:

ρ =
∑

α

fα, ρu =
∑

α

eα fα + δt

2
F, (10)
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where F is the total force acting on the system. The Chapman-
Enskog analysis of the aforementioned 3D pseudopotential
multiphase LB model and the related numerical validation
have been performed in Ref. [37].

III. IMPROVED 3D THERMAL LB MODEL

In this section, an improved 3D thermal multiphase LB
model is proposed based on the 3D pseudopotential LB
model. Specifically, the density and velocity fields are simu-
lated by the 3D pseudopotential LB model, while an improved
thermal LB equation is devised to simulate the tempera-
ture field of nonideal fluids. The coupling between the 3D
pseudopotential LB model and the thermal LB equation is
established via the nonideal equation of state pEOS(ρ, T ) in
Eq. (8).

A. Target macroscopic temperature equation

In 2002, He and Doolen [40] investigated the thermody-
namic foundation of kinetic theory for multiphase flows and
derived a macroscopic energy equation for nonideal fluids
with interfaces, which is given by (see Eq. (30) in Ref. [40])

∂t (ρen) + ∇ · (ρenu) = ∇ · (λ∇T ) − P: ∇u + � : ∇u

+ κ

[
∇(ρ∇ρ ) − 1

2
∇ · (ρ∇ρ )I

]
: ∇u,

(11)

where ρen is the internal energy density (en is the internal
energy), λ is the thermal conductivity, P is the pressure tensor,
� is the viscous stress tensor, and κ is the surface tension
coefficient. The last term on the right-hand side of Eq. (11)
stands for the heat generation by the surface tension. The
internal energy en includes the internal kinetic energy and the
intermolecular potential energy [40], which can be expressed
as follows:

ρen = ρe0
n − 1

2κρ∇2ρ, (12)

where the superscript “0” is used to denote the standard
bulk-phase thermodynamic properties of nonideal fluids that
do not involve interfaces [43]. Subsequently, Onuki [44,45]
presented a dynamic van der Waals theory for liquid-vapor
phase change. In their work the energy equation is expressed
in terms of the total energy density, ρeT

n = ρen + 0.5ρ|u|2.
Using the thermodynamic relationships of nonideal fluids,

Eq. (11) can be transformed to the following temperature
equation:

ρcV (∂t T + u · ∇T ) = ∇ · (λ∇T ) − T

(
∂ pEOS

∂T

)
ρ

∇ · u

+ � : ∇u + �, (13)

where cV is the specific heat at constant volume, � : ∇u is
the viscous heat dissipation, and the term � is proportional
to the surface tension coefficient κ . In many previous studies
[17–20,23–25], the last two terms on the right-hand side of

Eq. (13) are neglected, which leads to the following equation:

∂t T + u · ∇T = 1

ρcV
∇ · (λ∇T ) − T

ρcV

(
∂ pEOS

∂T

)
ρ

∇ · u.

(14)

To match the thermal LB method, Eq. (14) is usually
rewritten as follows [17–21,24,25]:

∂t T + ∇ · (T u) = ∇ · (χ∇T ) + φ, (15)

where φ is a source term. When χ in Eq. (15) is taken as the
thermal diffusivity, i.e., χ = λ/(ρcV ), the source term is given
by [25]

φ = (χ∇T ) · ∇(ρcV )

ρcV
+ T

[
1 − 1

ρcV

(
∂ pEOS

∂T

)
ρ

]
∇ · u.

(16)

It is noted that Eq. (15) is a convection-diffusion equation
with a source term. However, in the literature it has been
revealed that the standard thermal LB equation cannot recover
a correct convection-diffusion equation [6,34] and it yields
an error term proportional to ∂t0 (T u) [4,6,24,34]. Such an
error term can be negligible for incompressible thermal flows,
but may lead to considerable numerical errors for multiphase
flows [24]. In some of the previous studies [24,25], this error
term is eliminated by adding local correction terms to the
collision process in the moment space based on the MRT colli-
sion operator. Nevertheless, such treatment causes the thermal
LB equation in these studies to be limited to the D2Q9 lattice.
When this treatment is extended to the 3D space, the ther-
mal LB equation would be limited to the D3Q15 or D3Q19
lattice [34].

Through the Chapman-Enskog analysis, it can be readily
found that [24] the appearance of the error term proportional
to ∂t0 (T u) is actually related to the recovery of the term ∇ ·
(T u) on the left-hand side of Eq. (15). In fact, from Eq. (16)
we can see that the first term on the right-hand side of Eq. (16)
can be written as A · ∇T , which just takes the same form as
the convective term u · ∇T on the left-hand side of Eq. (14).
In other words, the target macroscopic temperature equation
given by Eq. (14) can be rewritten as follows:

∂t T = ∇ · (χ∇T ) + φs, (17)

where χ = λ/(ρcV ) is the thermal diffusivity and the new
source term φs is given by

φs =
(

χ∇(ρcV )

ρcV
− u

)
· ∇T − T

ρcV

(
∂ pEOS

∂T

)
ρ

∇ · u. (18)

Compared with the formulation given by Eqs. (15) and
(16), our proposed formulation given by Eqs. (17) and (18)
has the following features. First, recovering the term ∇ · (T u)
by the thermal LB equation is no longer needed. As a re-
sult, the error term caused by ∂t0 (T u) will disappear and the
aforementioned limitation of the thermal LB models can be
eliminated. Second, the transformation u · ∇T = ∇ · (T u) −
T ∇ · u used in the formulation given by Eqs. (15) and (16) is
also not needed in our formulation. Recently, Zhang et al. [46]
found that such transformation may lead to additional errors
in numerical simulations.
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In the following subsections, we will present an improved
thermal LB equation that is aimed at recovering the tem-
perature equation given by Eqs. (17) and (18). For practical
applications, we prefer to use an MRT collision operator for
the improved thermal LB equation since it has been well
demonstrated that an MRT collision operator is superior to
a Bhatnagar-Gross-Krook (BGK) collision operator in terms
of numerical accuracy and stability [47]. Nevertheless, in or-
der to provide a better understanding for general readers, we
will start with the BGK version of the improved thermal LB
equation.

B. Thermal LB-BGK equation

To recover the target macroscopic temperature equation
formulated by Eqs. (17) and (18), the following thermal LB-
BGK equation can be used:

gα (x + eαδt , t + δt ) = gα (x, t ) − 1

τg

[
gα (x, t ) − geq

α (x, t )
]

+ δt Qα (x, t ), (19)

where gα is the temperature distribution function, geq
α = wαT

is the equilibrium temperature distribution function, τg is the
nondimensional relaxation time for the temperature field, and
Qα is the source term in the thermal LB equation. The macro-
scopic temperature is calculated by

T =
∑

α

gα. (20)

For the D3Q7 lattice model, the discrete velocities are
given by

eα =

⎡
⎢⎢⎣

0 1 −1 0 0 0 0

0 0 0 1 −1 0 0

0 0 0 0 0 1 −1

⎤
⎥⎥⎦. (21)

Correspondingly, the weights of the equilibrium temperature
distribution function geq

α = wαT can be chosen as w0 = 1−d
and w1−6 = d/6 (d = 0.95) for the D3Q7 lattice. Then geq

α

satisfies∑
α

geq
α = T ,

∑
α

eαgeq
α = 0,

∑
α

eαeαgeq
α = c2

sT T I, (22)

where csT = √
d/3. For the D3Q15 and D3Q19 lattices,

the weights wα are the same as those used in the standard
LB method and csT = cs = 1/

√
3. In order to eliminate the

discrete effect of the source term, Qα (x, t ) in Eq. (19) is
designed to be the following form:

Qα (x, t ) = 3
2Cα (x, t ) − 1

2Cα (x, t − δt ), (23)

in which Cα satisfies the following relationships:∑
α

Cα = φs,
∑

α

eαCα = 0, (24)

where φs is given by Eq. (18). For simplicity, we can directly
choose Cα = wαφs.

The Chapman-Enskog analysis can be employed to demon-
strate that the macroscopic temperature equation formulated
by Eqs. (17) and (18) can be correctly recovered from the

thermal LB-BGK equation given by Eq. (19). Firstly, the
following multiscale expansions are introduced [48]:

∂t = ∂t0 + δt∂t1 , gα = geq
α + δt g

(1)
α + δ2

t g(2)
α , (25)

where t0 and t1 are two different time scales. The Taylor series
expansion of Eq. (19) yields

δt (∂t + eα · ∇)gα + δ2
t

2
(∂t + eα · ∇)2gα + · · ·

= − 1

τg

(
gα − geq

α

) + δt Qα. (26)

Similarly, through the Taylor series expansion, Qα given by
Eq. (23) can be rewritten as

Qα (x, t ) = Cα (x, t ) + 1
2δt∂tCα (x, t ) + O

(
δ2

t

)
. (27)

Substituting Eq. (27) into Eq. (26) gives

δt (∂t + eα · ∇)gα + δ2
t

2

(
∂t + eα · ∇)2

gα + · · ·

= − 1

τg

(
gα − geq

α

) + δtCα + 1

2
δ2

t ∂tCα + · · · . (28)

With the aid of Eq. (25), Eq. (28) can be written in the
consecutive orders of δt as follows:

δt :
(
∂t0 + eα · ∇)

geq
α = − 1

τg
g(1)

α + Cα, (29)

δ2
t : ∂t1 geq

α + (
∂t0 + eα · ∇)

g(1)
α + 1

2

(
∂t0 + eα · ∇)2

geq
α

= − 1

τg
g(2)

α + 1

2
∂t0Cα. (30)

Substituting Eq. (29) into Eq. (30) leads to

∂t1 geq
α + (

∂t0 + eα · ∇)(
1 − 1

2τg

)
g(1)

α + 1

2
eα · ∇Cα

= − 1

τg
g(2)

α . (31)

Taking the summations of Eqs. (29) and (31), the following
equations can be obtained:

∂t0 T = φs, (32)

∂t1 T + ∇ ·
(

1 − 1

2τg

)(∑
α

eαg(1)
α

)
= 0. (33)

The relations
∑

α g(1)
α = ∑

α g(2)
α = 0,

∑
α Cα = φs, and∑

α eαCα = 0 together with
∑

α geq
α = T and

∑
α eαgeq

α = 0
have been used in the above derivations. According to
Eqs. (29) and (22), we have

∑
α

eαg(1)
α = −τg

[
∂t0

(∑
α

eαgeq
α

)
+ ∇ ·

(∑
α

eαeαgeq
α

)

−
∑

α

eαCα

]

= −τgc2
sT ∇T . (34)
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Combining Eq. (32) with Eqs. (33) and (34) through ∂t =
∂t0 + δt∂t1 gives

∂t T = ∇ · (χ∇T ) + φs, (35)

where χ = λ/(ρcV ) = (τg − 0.5)c2
sT δt and φs is given by

Eq. (18).
Obviously, the above equation is exactly the target

macroscopic temperature equation. It should be noted that
the previous temperature-based thermal LB models yield∑

α eαgeq
α = T u, which leads to an error term proportional

to ∂t0 (T u) according to Eq. (34). Such an error term may
result in considerable numerical errors for liquid-vapor phase
change [24]. In addition, from Eq. (34) it can be found that the
temperature gradient in the source term φs can be calculated
as follows:

∇T = − 1

τgc2
sT

∑
α

eαg(1)
α ≈ − 1

τgc2
sT δt

∑
α

eα

(
gα − geq

α

)
.

(36)

A similar strategy can be found in the LB study of Li
et al. [49] for axisymmetric thermal flows. In such a way,
the temperature gradient in the source term can be calculated
locally. Note that Eq. (36) utilized the approximation δt g(1)

α ≈
gα − geq

α , which neglects the higher-order part g(2)
α and there-

fore is invalid when the higher-order effects are dominant,
such as rarefied gas flows with a large Knudsen number.

C. Thermal LB-MRT equation

Now we turn our attention to the MRT version of the
improved thermal LB equation. Using an MRT collision oper-
ator, the thermal LB equation can be written as follows:

gα (x + eαδt , t + δt ) = gα (x, t ) − (N−1�N)αβ

× [
gβ (x, t ) − geq

β
(x, t )

]
+ δt Qα (x, t ), (37)

where N is a transformation matrix and � is a diagonal matrix
for the relaxation times. For the D3Q15 and D3Q19 lattices,
the transformation matrices used in the standard LB method
can be directly adopted. For the D3Q7 lattice, the present work
employs the following transformation matrix [50,51]:

N =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1

0 1 −1 0 0 0 0

0 0 0 1 −1 0 0

0 0 0 0 0 1 −1

0 1 1 1 1 1 1

0 1 1 −1 −1 0 0

0 1 1 0 0 −1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (38)

Through the transformation matrix N, the first and second
terms on the right-hand side of Eq. (37) can be executed in the
moment space:

n∗ = n − �(n − neq ), (39)

where n = Ng and neq = Ngeq. Then the thermal LB-MRT
equation can be rewritten as follows:

gα (x + eαδt , t + δt ) = g∗
α (x, t ) + δt Qα (x, t ), (40)

where g∗ = N−1n∗. Here N−1 is the inverse matrix of the
transformation matrix N and is given by

N−1 = 1

6

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6 0 0 0 −6 0 0

0 3 0 0 1 1 1

0 −3 0 0 1 1 1

0 0 3 0 1 −2 1

0 0 −3 0 1 −2 1

0 0 0 3 1 1 −2

0 0 0 −3 1 1 −2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (41)

The equilibrium temperature distribution function is still
given by geq

α = wαT , in which the weights wα are chosen
as w0 = 1−d and w1−6 = d/6 (d = 0.95) for the D3Q7 lat-
tice. Using the relation neq = Ngeq, the equilibrium moments
neq = (neq

0 , neq
1 , . . . , neq

6 )T can be obtained as follows:

neq = (
T, 0, 0, 0, 3c2

sT T, 0, 0
)T

, (42)

where csT = √
d/3. Correspondingly, the diagonal matrix �

for the relaxation times is given by

� = diag
(
1, ς−1

T , ς−1
T , ς−1

T , ς−1
q , ς−1

π , ς−1
π

)
, (43)

where ςT is the relaxation time related to the thermal diffusiv-
ity, while ςq and ςπ are free parameters.

By conducting a similar Chapman-Enskog analysis for the
aforementioned thermal LB-MRT equation, it can be readily
verified that the macroscopic temperature equation formulated
by Eq. (17) can be correctly recovered and the ther-
mal diffusivity is given by χ = λ/(ρcV ) = (ςT − 0.5)c2

sT δt .
Meanwhile, the temperature gradient can be calculated locally
as follows:

∇T ≈ − 1

ςT c2
sT δt

∑
α

eα

(
gα − geq

α

)
. (44)

The above equation is just the same as Eq. (36) except that the
single relaxation time τg has been replaced by the relaxation
time ςT . Besides, Eq. (44) can also be written as follows:

∂xT ≈ − 1

ςT c2
sT δt

(
n1 − neq

1

)
, ∂yT ≈ − 1

ςT c2
sT δt

(
n2 − neq

2

)
,

∂zT ≈ − 1

ςT c2
sT δt

(
n3 − neq

3

)
. (45)

This equation can be applied in the whole computational
domain for computing the temperature gradient in the source
term.

Moreover, according to the Chapman-Enskog analysis of
the aforementioned 3D pseudopotential LB model [37], the
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Solid nodes

wT

Internal nodes

Boundary nodes

FIG. 1. Two-dimensional sketch of the grid nodes near a solid
wall. The blue nodes are internal fluid nodes, the red nodes are
boundary nodes, and the nodes beneath the solid wall are solid nodes.

following equation can be obtained:

∂t0 meq
4 + ∂x

(
meq

1 + meq
11 + meq

13

) + ∂y
(
meq

2 + meq
10 + meq

15

)
+ ∂z

(
meq

3 + meq
12 + meq

14

)
= − 1

τe
m(1)

4 +
(

1 − 1

2τe

)
S4, (46)

where δt m
(1)
4 ≈ m4 − meq

4 , τe can be found in Eq. (6), and S4

is the fifth moment of the forcing term S in Eq. (9). Substi-
tuting the equilibrium moments given by Eq. (5) into Eq. (46)
leads to

2ρc2
s ∇ · u + 2F · u = − 1

τe
m(1)

4 +
(

1 − 1

2τe

)
S4

+ 3ρu2
i ∂iui + u3

i ∂iρ, (47)

where i is a dummy summation index. The last two terms on
the right-hand side of Eq. (47) are cubic velocity terms. In the
previous studies, the velocity gradient is usually calculated via
an isotropic finite-difference scheme (see Eq. (73) in Ref. [4]),
which can be well implemented for internal fluid nodes (see
Fig. 1), but is not suitable for boundary nodes near solid walls.
Therefore special treatment is usually required for the bound-
ary nodes. Actually, since the velocity near a nonslip solid
wall is very small, the cubic velocity terms in Eq. (47) can be
neglected and the velocity divergence at boundary nodes can
be approximately calculated by

∇ · u ≈ 1

2ρc2
s

[
− 1

τeδt

(
m4 − meq

4

) +
(

1 − 1

2τe

)
S4 − 2F · u

]
.

(48)

In summary, Eqs. (39), (40), and (23) together with
Eqs. (45) and (48) constitute the improved thermal LB-MRT
equation for simulating the temperature field of nonideal
fluids.

Finally, we would like to mention the wetting boundary
scheme used in the present work. A two-dimensional sketch of
the grid nodes near a solid wall is shown in Fig. 1. The nonslip
solid wall is located at the middle of the fluid boundary nodes
and the solid nodes. In this work, we utilize an improved
virtual-density contact-angle scheme [52] to implement the
wetting boundary, which specifies a virtual density for a solid
node. As a result, the density gradient ∇ρ at a fluid boundary
node can be well calculated by the isotropic finite-difference
scheme used in the multiphase LB community [4].

IV. NUMERICAL SIMULATIONS

In the previous section, an improved 3D thermal multi-
phase LB model has been proposed for liquid-vapor phase
change, which consists of a 3D pseudopotential LB model for
simulating the density and velocity fields, and an improved
thermal LB equation for modeling the temperature field. In
this section, numerical simulations are carried out to validate
the proposed model. Unless otherwise mentioned, the MRT
version of the improved thermal LB equation is used and
the relaxation times in Eq. (43) are all taken as 1.0 except
that ςT is determined by the thermal diffusivity. Three tests
are considered. Firstly, the well-known D2 law for droplet
evaporation is employed to validate the proposed model. Con-
sidering that the test of the D2 law does not involve solid
boundaries, we later simulate droplet evaporation on a heated
surface, and finally the test of bubble nucleation and departure
is utilized to verify the capability of the proposed model for
simulating nucleate boiling.

A. Validation of the D2 law

The D2 law states that the square of the diameter of
an evaporating droplet decreases linearly with time; i.e.,
D2(t )/D2

0 = 1−kt [53,54]. This law is mainly established
based on the following assumptions: The evaporation occurs
in an environment with negligible viscous heat dissipation and
no buoyancy, the liquid and vapor phases are quasisteady,
and the thermophysical properties are constant. Numerical
simulations are carried out in a 3D cubic domain Lx × Ly ×
Lz = 100 l.u.×100 l.u.×100 l.u., where l.u. denotes the lat-
tice units. Initially, a droplet with a diameter of D0 = 50 l.u.

is located at the center of the computational domain.
In this work, we adopt the Peng-Robinson equation of state

[41],

pEOS = ρRT

1 − bρ
− aϑ (T )ρ2

1 + 2bρ − b2ρ2
, (49)

where ϑ (T ) = [1 + (0.37464 + 1.54226ω−0.26992ω2)
(1−√

T /Tc)]2 with ω = 0.344 being the acentric factor,
a = 0.45 724R2T 2

c /pc, and b = 0.0778RTc/pc, in which
R is the gas constant, Tc is the critical temperature, and
pc is the critical pressure. In simulations, (∂ pEOS/∂T )ρ
is approximately taken as (∂ pEOS/∂T )ρ ≈ ρR/(1−bρ )
and the parameters are chosen as a = 1/49, b = 2/21,
and R = 1. The saturation temperature of the system is
chosen as Tsat = 0.86Tc, which corresponds to ρl ≈ 6.5
and ρg ≈ 0.38. Initially, the temperature of the droplet is
Tsat and the temperature of the surrounding vapor is given
by Tg = Tsat + �T , in which the superheat �T is taken as
0.14Tc. The specific heat at constant volume is chosen as
cV = 5.0 [24]. The kinematic viscosity is fixed at ν = 0.1 for
both the liquid and vapor phases. Accordingly, the relaxation
time τv in Eq. (6) is given by τv = 0.8. The relaxation time τe

is chosen as τe = 1.25, while the remaining relaxation times
are taken as 1.0. The spurious currents are examined via the
simulation of a static droplet at the saturation temperature
and the maximum spurious current is found to be about
7.0×10−4.
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FIG. 2. Numerical validation of the D2 law. Snapshots of the density contours obtained by (left) the present thermal LB model and (right)
a hybrid thermal LB model with a finite-difference algorithm. (a) t = 30 000δt and (b) t = 120 000δt .

At the boundaries, a constant temperature (Tg) is applied.
According to the assumption of the D2 law, the thermal
conductivity λ is constant. In this test, λ is taken as 0.2.
Figure 2 shows some snapshots of the density contours ob-
tained by the present thermal LB model and those given by a
hybrid thermal LB model, which employs a finite-difference
algorithm (FDM) [23] to solve the macroscopic temperature
equation given by Eq. (14). Owing to the temperature gradient
at the liquid-vapor interface, the droplet gradually evaporates.
Quantitatively, the variations of (D/D0)2 with time are dis-
played in Fig. 3. For comparison, the results obtained by a
3D thermal LB equation devised by Biferale et al. [19,20]

0 40 000 80 000 120 000
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(D
/D

0)2

time (units of
t
)

 FDM
 Present model
 Model of Biferale et al. [19,20]

FIG. 3. Numerical validation of the D2 law. The variations of
(D/D0 )2 with time.

are also presented in the figure. The linear relationship be-
tween (D/D0)2 and the time can be observed in Fig. 3 for
the results given by the present model and those obtained
by a finite-difference algorithm for solving the macroscopic
temperature equation, and there are no significant differences
between them. However, the thermal LB model of Biferale
et al. [19,20], which suffers from the error term ∂t0 (T u), leads
to considerable numerical errors as shown in Fig. 3.

B. Droplet evaporation on a heated surface

The preceding test does not involve solid boundaries. To
further validate the capability of the proposed thermal LB
model, in this subsection we consider the test of droplet evap-
oration on a heated solid surface. The grid system is chosen as
Lx × Ly × Lz = 200 l.u.×200 l.u.×100 l.u. with the periodic
boundary condition being applied in the x and y directions. A
heated surface is located at the bottom of the computational
domain. Initially, a semispherical droplet with a radius of
r = 30 l.u. is placed at the center of the bottom surface. The
equilibrium contact angle of the bottom surface is chosen as
θ ≈ 88◦ [52]. The popular halfway bounce-back scheme [55]
is utilized to treat the unknown density distribution functions
at the boundary nodes around the bottom solid surface (see
Fig. 1):

fᾱ (xb, t + δt ) = f ∗
α (xb, t ), (50)

where xb denotes a fluid boundary node and eᾱ = −eα . Simi-
larly, the anti-bounce-back scheme [56] is adopted to treat the
Dirichlet thermal boundary condition:

gᾱ (xb, t + δt ) = −g+
α (xb, t ) + 2wαTw, (51)

where g+
α (xb, t ) represents the right-hand side of Eq. (40).
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FIG. 4. Variations of normalized droplet mass with time during
droplet evaporation on a heated surface.

The main simulation parameters are the same as those used
in the previous test except that the thermal conductivity is
taken as λ = ρcV χ with χ = 0.02 [24]. The saturation tem-
perature is still taken as Tsat = 0.86Tc, while the temperature
of the heated surface is chosen as Tw = 0.87Tc. The open
boundary condition is employed at the top of the domain with
the temperature being fixed at Tsat. The first 104 time steps of
the simulations are carried out without evaporation so that the
droplet can reach its equilibrium state on the bottom surface
and the thermal LB model is added after t = 104δt . During the
evaporation process, the contact angle hysteresis [57] is taken
into consideration with a hysteresis window of (0◦, 180◦).
As a result, the droplet will evaporate on the heated bottom
surface in the constant-contact-radius (CCR) mode. Figure 4
illustrates the variations of the normalized droplet mass with
time during the evaporation process. As shown in the figure,
the numerical results predicted by the present thermal LB
model are in good agreement with those obtained by solving
the macroscopic temperature equation with a finite-difference
algorithm, while the thermal LB model of Biferale et al.
[19,20] yields considerable numerical errors. Some snapshots
of the density contours obtained by the present model are

FIG. 5. Snapshots of the density contours obtained by the present
model during droplet evaporation on a heated surface. From left to
right: t = 10 000δt , 90 000δt , and 180 000δt , respectively. A 3D view
is shown in the top row with x ∈ [50, 150], y ∈ [50, 150], and z ∈
[0, 50], while in the bottom row the density contours of the y − z
cross section at x = 100 are presented.

displayed in Fig. 5, from which the CCR evaporation mode
can be clearly observed.

C. Bubble nucleation and departure

In this subsection, numerical simulations are performed
for bubble nucleation and departure to verify the capability
of the proposed thermal LB model for simulating nucleate
boiling. The grid system of the computational domain is taken
as Lx × Ly × Lz = 200 l.u.×200 l.u.×280 l.u. The kinematic
viscosity, the specific heat at constant volume, the saturation
temperature, and the relaxation parameters are the same as
those used in the previous subsection. The thermal conduc-
tivity is given by λ = ρcV χ with χ = 0.08. The parameters
of the equation of state are taken as a = 2/49, b = 2/21,
and R = 1. Initially, the domain is filled with saturated liq-
uid (0 � z � 200 l.u.) below its vapor at Tsat = 0.86Tc. The
temperature of the bottom solid surface is fixed at Tw =
0.96Tc. A square hydrophobic region with its side length of
55 l.u. is located at the center of the bottom surface and the
equilibrium contact angle is set to θpho ≈ 130◦. The rest of
the region of the bottom surface is hydrophilic with θphi ≈
37◦. The halfway bounce-back scheme is employed at the
boundary nodes around the top and bottom surfaces, while
the periodic boundary condition is applied in the x and y
directions. A buoyant force is applied in the computational
domain, i.e., Fb = (ρ − ρave)g, where ρave is the average den-
sity over the domain and g = (0, 0, − g) is the gravitational
acceleration.

Figure 6 displays some snapshots of the density contours
obtained by the present thermal LB model and a hybrid ther-
mal LB model with a finite-difference algorithm in the case
of g = 1.5×10−5. From Fig. 6(a) we can see that a bubble is
nucleated at the central region of the bottom surface, which is
attributed to the hydrophobicity of the central region [26]. As
time goes by, the bubble gradually grows. After reaching its
departure diameter, the bubble is separated into two parts, i.e.,
a departure bubble and a residual bubble left on the bottom
surface, as shown in Fig. 6(c). Generally, it can be seen that the
bubble nucleation, growth, and departure processes are well
simulated and there are no obvious differences between the
bubble dynamic behaviors predicted by the present thermal
LB model and those produced by a hybrid thermal LB model
that utilizes a finite-difference algorithm to solve the macro-
scopic temperature equation.

Furthermore, to quantify the numerical results, the power-
law relationship between the bubble departure diameter and
the gravitational acceleration is verified. Figure 7 illustrates
the variation of the bubble departure diameter with the grav-
itational acceleration, in which the solid line represents the
results of Dd = 0.253g−0.5. From the figure we can see that
the values of the bubble departure diameter predicted by the
present thermal LB model are basically in good agreement
with those given by the solid line, which indicates that the
results obtained by the present model are consistent with
the experimental correlations in the literature [58,59] (i.e.,
Dd ∼ g−0.5). Furthermore, no significant differences are ob-
served in Fig. 7 between the results of the present thermal LB
model and those given by a hybrid thermal LB model with a
finite-difference algorithm.
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FIG. 6. Simulations of bubble nucleation and departure. Snapshots of the density contours obtained by (left) the present thermal LB model
and (right) a hybrid thermal LB model with a finite-difference algorithm in the case of g = 1.5×10−5. The snapshots include a 3D view and
the cross-sectional view at x = 100. (a) t = 3000δt , (b) t = 10 000δt , and (c) t = 14 000δt .

8.0x10-6 1.2x10-5 1.6x10-5 2.0x10-5 2.4x10-5

50

60

70

80

90 Present model
FDM

D
d
 = 0.253g-0.5

de
pa

rt
ur

e 
di

am
et

er
 (

l.u
.)

g

FIG. 7. Simulations of bubble nucleation and departure. Numer-
ical validation of the power-law relationship between the bubble
departure diameter and the gravitational acceleration.

V. SUMMARY

In this paper, we have developed an improved 3D ther-
mal multiphase LB model for simulating liquid-vapor phase
change, which consists of a 3D pseudopotential LB model for
simulating the density and velocity fields and an improved
thermal LB equation for modeling the temperature field of
nonideal fluids. The coupling between the 3D pseudopotential
LB model and the thermal LB equation is established via
the nonideal equation of state. The improved model does not
suffer from the error term caused by ∂t0 (T u) and therefore the
thermal LB equation can be constructed on the D3Q7 lattice
to simplify the model and improve the computational effi-
ciency. Moreover, in the previous temperature-based thermal
LB models for liquid-vapor phase change, the finite-difference
computations of the gradient terms ∇ · u and ∇T usually
require special treatment at boundary nodes, while in the
improved model these two terms can be calculated locally in a
simple way. The accuracy and efficiency of the improved ther-
mal multiphase LB model for simulating liquid-vapor phase
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change have been well validated by testing the well-known
D2 law, droplet evaporation on a heated surface, and bubble
nucleation and departure in nucleate boiling.

In the literature, most of the previous LB studies on liquid-
vapor phase change were limited to the so-called wet-node
system, in which the solid boundaries are located on lat-
tice nodes. In contrast, the aforementioned advantages of
the proposed thermal multiphase LB model make it suited
not only for the wet-node system but also for the linkwise
system (see Fig. 1), which is often utilized with the popu-
lar halfway bounce-back scheme to simulate fluid flows in
complex geometries, such as porous media. Furthermore, the
proposed model may be useful for thermal nonequilibrium
flows [60] and can be extended to the problems involving

curved boundaries by combining it with the related hydro-
dynamic and thermal curved boundary schemes in the LB
community [61,62]. Finally, it is worth mentioning that the
proposed thermal LB equation can also be used on the D3Q15
or D3Q19 lattice for both the BGK and MRT collision op-
erators. A major advantage of the MRT version lies in its
better numerical stability than the BGK version as the thermal
diffusivity varies over a wide range.
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