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Abstract

Analgesic and sedative drugs are mostly used in an “off label” fashion in children. The

pharmacokinetic-pharmacodymamic (PK/PD) approach is useful in order to determine

the dose-concentration-response relationship and therefore the optimal dose regimens

in different populations. However, this approach has not been fully explored for all

analgesics and sedatives. This is mostly due to the complex and multidimentional

nature of pain, making it challenging to evaluate objectively their effect particularly in

neonates and infants. Hence, there is an important need for PK/PD studies in pain

and sedation. This thesis focuses on analysing clinical trial results on specific areas that

lack good quality PK/PD data in order to optimise the dose of analgesic and sedative

agents in children.

The studies described in this thesis aimed to address the following questions: what is

the optimal dose of fentanyl for procedural pain in preterm infants (NEOFENT study);

what is the adequate dose regimen of fentanyl and clonidine to provide an adequate pain

and sedation management in asphyxiated newborns receiving hypothermic treatment

(SANNI study); and finally what is the optimal dose of clonidine and midazolam in the

PICU (CloSed study). In order to address these questions, PK and PK/PD models

were developed in order to describe the relationship between drug concentration and

analagesic/sedative effect using pain and sedation scores. These models were used to

define target concentrations and perform simulations to determine the optimal dose.

The results of the NEOFENT study showed that three genetic variants had a

significant influence on the fentanyl clearance and suggested an IV dose of 2 µg/kg for

procedural pain in preterm infants. The results of the SANNI analysis showed that

the hypothermic treatment significantly decreased the clearance of both fentanyl and

clondine. Finally, the models developed for the CloSed and SANNI studies suggested

that the dose routinely prescribed in clinical practice should be increased in order to

provide an adequate pain and sedation management.
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IMPACT STATEMENT

The findings of this thesis improve our knowledge on the adequate use of sedatives

and analgesics in children using non-linear mixed effect modelling. The PK/PD models

developed in the different chapters provide information on the optimal dose of analgesics

and sedatives necessary to provide adequate pain and sedation in specific paediatric

populations. In addition, subgroups that require dose adjustments were determined by

identifying covariates that affect the PK of the drugs.

The results of the NEOFENT chapter highlight the influence of genetic variants

on the fentanyl elimination in preterm infants. The PK/PD model developed in this

chapter was also used to suggest an optimal dose of fentanyl that could be given to this

population in clinical practice. The results of the SANNI chapter show that hypothermia

affects clonidine and fentanyl elimination by reducing the clearance of both drugs in

asphyxiated newborns receiving hypothermic treatment. The findings of the CloSed

and SANNI chapters support the hypothesis that the dose of clonidine alone should

be increased in children in order to provide adequate pain/sedation management and

therefore suggest that clonidine should be given in combination with other sedatives.

In this thesis, target concentrations for fentanyl, clonidine and midazolam were

defined in specific peadiatric populations using PK/PD models and optimal doses for

these drugs were suggested using simulations. Together these findings could be used in

clinical practice to improve pain and sedation management in children.
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1 Introduction

1.1 Pain and sedation in children

Pain is defined as “an unpleasant sensory and emotional experience associated

with actual or potential tissue damage, or described in terms of such damage” (1).

Recognising and treating pain early in children is essential in order to limit distress and

avoid physical and psychological outcomes (2, 3). However assessing pain in children is a

complicated task especially in infants and neonates. This is due to the multidimensional

nature of pain perception which differs for each child and their difficulty to express

their distress in a way well understood by adults who have to learn the language of the

child’s pain expression. Hence, pain is frequently inadequately treated (2, 4).

Infants and neonates are particularly vulnerable to pain and stress exposure because

pain mechanisms are still in development during the first years of life (3). Thus, there is

a risk of adverse consequences later in life on both mental and physical health. Reports

have shown that repeated painful stimuli during the neonatal period might influence

normal brain development (5). As a consequence, somatosensory processes might alter

pain sensitivity later in life (6, 7, 8, 3). For example, it has been observed that term

newborns who had undergone circumcision without analgesia were more sensitive to

immunization than the uncircumcised infants (9). Studies have also shown a higher risk

of cognitive development alteration in preterm infants and newborns who experienced

neonatal intensive care (10).

Sedation and change in level of consciousness can be caused by administration of

sedative and analgesic medications (11, 12). Levels of sedation can be ranked as follows

(11):

- Minimal sedation: anxiolysis is provided but the patient is still conscious.

- Moderate sedation: at this state, a depression of consciousness is observed but the

patient can breathe independently and respond to verbal commands.

- Deep sedation: the child has difficulties to stay awake but reacts to appropriate

stimulations. At this state, the patient might need ventilatory support.
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- General anaesthesia: the child looses consciousness. This is a state during which the

patient is unresponsive to stimulations and may need breathing assistance.

The level of sedation needed is different for each child and depends on the desired effect

which can be anxiety relief, pain or agitation control. For this reason, individualized care

and identification of the child’s needs are essential in order to provide an appropriate

sedation (13, 14). However, several studies have shown that in many cases, patients do

not receive adequate sedation (15).

1.1.1 Developmental pathophysiology

Pain stimuli (mechanical, thermal or chemical) leads to activation of peripheral pain

receptors called nociceptors. The signal is conducted to the spinal cord via different

primary afferent nerves which undergo anatomical changes after birth. The nerve

distribution and functionality are developing with age changing the balance between

excitatory and inhibitory signalling. As a result, the spinal reflex is more generalized in

newborns increasing their sensitivity to less intense stimuli (3, 7). Due to the maturation

of these pain mechanisms, the degree of pain response changes with age. Physiological

and behavioural pain responses are different for each child since it depends on age, sleep

state, previous pharmacological treatments and experiences (16).

Furthermore, invasive medical care such as surgery can induce “trauma” and thus a

stress response leading to changes in their metabolism, endocrinology and immunology.

Stress response is the result of the activation of both the hypothalamic–pituitary–adrenal

(HPA) axis and the sympathetic-adrenal-medullary (SAM) axis in the central nervous

system (CNS) as well as the action of cytokines produced locally which act in the CNS

(17). Because of the developmental differences discussed above, it has been argue that

the children might need a higher dose of sedatives in order to reduce this stress response

and maintain the physiological stability (avoid fluctuation of blood pressure, heart rate,

oxygen saturation and intra-cranial pressure) (18, 19).

Before administering analgesics and sedatives in young infants and neonates, it is

essential to evaluate the potential risks and benefits individually for each child. The
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analgesic effect has to be balanced against the potential drug adverse reactions (acute

and long term) which depend on the dose and type of agent. Studies have shown

that general anaesthetics and analgesics may have adverse neurodevelopmental effects

when they are administered in a prolonged way during the neonatal period (7, 20).

Agents that have been associated with such neurotoxic effects in laboratory animals are

primarily barbiturates, propofol and ketamine (2, 13).

1.1.2 Pharmacological treatments

In PICU, sedatives and analgesics are used alone or in combination in order to relieve

the pain and stress in various situations such as procedural pain (e.g. endotracheal

intubation), perioperative and postoperative pain management (21). Relatively few

pharmacological trials have been conducted in children particularly in neonates and

infants for analgesics and sedatives (22). Many of these drugs are prescribed in an

“off label” fashion. In USA, only 30% of the medications prescribed in children were

properly studied in paediatric population (23). In Europe, more than 90% of the

newborns are exposed to drugs prescribed “off-label” in neonatal intensive care units

(NICU) (24). In this case, “Off-label” use means that the drug is licensed in adults

but is still prescribed in children outside the group age (e.g neonatal group) defined by

the license terms of the product. However, because of differences in pharmacokinetics

(PK) and pharmacodynamics (PD) due to developmental changes, children can’t be

considered like small adults and therefore it is not accurate to assume that the drug

effect is the same in adults and children (8). Inadequate extrapolation can lead to

under and overdosing which can cause side-effects especially in neonates (25). The risk

of adverse effect is different for each drugs. Respiratory events are the most common

and dangerous adverse reactions of both analgesics and sedatives when prescribed in

peadiatric population and therefore should be carefully monitored (26). When possible,

a single drug should be prescribed in order to improve the child safety (26).

Paracetamol is the analgesic most commonly used in children to relief pain. Correct

dosing associated with a favourable safety profile and efficacy has now been elucidated
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(27, 28, 29). In addition, paracetamol presents the advantage of reducing the need of

opioids. Studies have shown that when prescribed in combination with paracetamol, the

dose of morphine could be significantly reduced in term neonates and preterm infants

(21).

Similarly, non-steroidal anti-inflammatory drugs can provide benefits alone or as part of

multimodal analgesia if there are no contraindications in the individual patient (28, 29).

However, the use of these drugs have been limited because of their adverse reactions

which include gastric irritation, haemorrhage and kidney lesion (21).

In children as in adults, opioids remain the gold standard treatment for moderate

and severe pain during postoperative settings and invasive procedures (30). Morphine

is the most prescribed opioid for perioperative pain in infants and children followed by

fentanyl. Although the benefit of opioids in preterm infants is clear for acute pain, its

long term use in NICU may be associated with adverse effects that may be exacerbated

by dose-dependent hypotension (20, 7). For this reason, the use of opioids should be

as short as possible and carefully monitored by the carers. There is a clear need for

additional PK/PD data to inform opioid use in neonates, infants and children. In

addition, pharmacogenetic differences may also need to be considered. For instance,

ultra rapid metaboliser phenotypes of CYP2D6, one of main enzyme in charge of the

codeine and tramadol metabolism have been associated with several deaths related to

respiratory depression. As a result, the FDA no longer recommends the use of codeine

for children under 12 years old (31, 32, 33).

With regard to sedation and until recently, benzodiazepines such as midazolam and

lorazepam were the first line agents. They are routinely prescribed in combination

with opioids for post-operative pain management. Midazolam is the most common

benzodiazepine used in children because it induces anterograde amnesia in addition to

anxiolysis and sedation. This effect is particularly convenient in PICU and NICU since

it minimizes the recall of unpleasant events. However, midazolam might cause many

adverse effects such as agitation, tolerance, dependence and withdrawal symptoms (34).

Moreover, studies have shown that its long term use may alter the brain development
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(34, 35).

For these reasons, the use of alpha-2-adrenergic receptor agonists such as clonidine and

dexmedetomidine has been increasing in recent years (36). These drugs present a clear

advantage in terms of safety with lower incidence of withdrawal, respiratory depression

as well as agitation and delirium (13). In addition, several studies show that both drugs

reduce the need of opioids in children. Dexmedetomidine has been described as effective

as benzodiazepine in term of anxiolysis and sedation, therefore it can be used as sole

agent to provide adequate short term and long term sedation in non intubated children.

Alpha-2-adrenergic receptor agonists can cause hypotension and bradycardia which

might limit their use particularly in cardiac patients, however safety studies report a

low incidence of such adverse reactions in peadiatric population (4).

Propofol is the most common drug used for procedural sedation in infants and children

(37). Since propofol was one of the first anesthetics commercialized, many studies

including several PK/PD modelling analysis have been published. Hence, its safety

and efficacy are well documented for children over 3 years old (38, 39, 40, 41). Among

other adverse reactions, propofol can cause cardiovascular instability (hypotension) and

respiratory effects (desaturation and apnoea) (42).

Ketamine is widely used in emergency department setting and for procedural pain

management in children (13). The popularity of this drug has been increasing recently

because it provides anxiolysis and analgesia with a low risk of respiratory depression

while maintaining stable hemodynamics (4). However, ketamine might cause neurode-

generative effects in the developing brain. Therefore, it should be used with caution in

neonates and infants (43).

1.1.3 Role of Pharmacokinetic/Pharmacodymamic modelling

The pharmacokinetic/pharmacodymamic (PK/PD) approach is used to develop

mathematical models which describe and predict the relationship between drug exposure

and response intensity (desired effect and/or a toxic effect) (44, 45). Population PK

is the approach most commonly used because it provides population PK and PD
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estimates and describes the interindividual variability for each parameter which allows

the identification of subgroups (e.g responder vs no responder). In addition it allows

the analyse of unbalanced data with different number of samples by patients (46,

45, 47). In recent years, PK/PD modelling for analgesics and sedatives has been

increasing. However, due to the complex and multidimentional nature of pain, it is

challenging to evaluate objectively the sedative and analgesic effect particularly in young

children. This issue explains why the PK/PD approach has not been fully explored

for all drugs (44). PK/PD modelling is an essential tool in pain and sedation, which

informs on the appropriate use of analgesic and sedative agents by determining the

optimal dose and studying their interaction with complex pain processes (45). There

are various application of PKPD modelling in clinical practice; PK/PD models are

used for target controlled infusion (TCI), drug interaction models describe the effect of

drugs given simultaneously and simulations inform trial design and dose optimisation

after commercialisation (47).

1.1.4 Challenge of paediatric clinical trials

Clinical studies conducted in paediatric populations present some challenges for the

clinicians. These challenges include ethical considerations, study design, safety, patient

recruitment, product formulation and economic considerations (48, 49).

ETHICAL CONSIDERATIONS

When conducting research in children, important ethical implications have to be

taken into account. Documents produced by organisations such as World Health Organ-

isation (WHO) and European Medicines Agency (EMA) describing these implications

state that children should be included in research studies only if there is no other

population in which the drug can be studied. For ethical reasons, clinicians also have to

monitor closely pain and discomfort experienced by children during the trials in order

to provide adequate care and avoid distress when feasible (48, 49).

STUDY DESIGN

Planning the study design of a paediatric trial is an important step. Factors specific
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to the paediatric population must be taken into account such as early stopping, smaller

sample size and impact of rescue medications. For this reason, flexible designs which

allow sample size re-estimation and adaptive randomisation should be considered. Blood

sampling also need to be adapted to the population. The frequency, volume, timing,

and type of blood sampling have to be carefully considered when planning the trial

since these procedures are more invasive in young children. Moreover unlike adult

studies, the trials performed in children do not include healthy volunteers. Therefore

most patients receive concomitant medications that must be closely monitored since

they might interact with the drug studied (48, 49).

When planning clinical trials in pharmacometrics, additional factors need to consid-

ered. The number of subjects and measurements which are reduced in children trials

have a high impact in pharmacometric analyses and therefore are an essential part of

the study design (48).

SAFETY

In all clinical trials, it is important to measure and monitor the drug toxicity.

However, safety assessment in children can be challenging for different reasons. First,

adverse effects that do not occur in adults can be observed in children. Secondly, adverse

effects might not be detectable in young children because they are not able to express

their symptoms. In addition, safety assessment tools might not be validated in children.

As a consequence, adverse effects can be under or over-interpreted which can lead to a

misinterpretation of the results (48).

PATIENT RECRUITMENT

Patient recruitment is a critical stage of paediatric studies because it presents

numerous challenges. Studies have shown that up to 19% of trials conducted in children

are terminated early because of issues in the patient recruitment. In addition, there is a

large percentage of patient withdrawal that occurs during paediatric studies compared

to adult trials. In most cases, the recruitment issues are compensated by using different

sites for the study. However, a multicenter study increases the cost and time since

regulatory approvals are needed in different regions and/or countries (49).
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Several factors explain why patient recruitment is challenging in paediatric studies.

Parents can be reluctant to give their consent because of the lack of knowledge about

the drug studied and the risks that clinical studies present. It has been shown that

even though the benefices and risks of a study are explained to the parents prior their

consent, it does not ensure that the parents are making their choice objectively. In

addition, the consent process is different across countries (48, 49).

DRUG FORMULATION

In paediatric clinical studies, the drug formulation needs to be adapted to the

population. For most studies, the children included are divided by age groups and

each group receives a different formulation based on their age and weight. Therefore

more than one formulation are needed which can increase the time, cost and resources

required. Product availability can also be a challenge particularly if the trial is not

done using a pharmaceutical industry as partner. These issues can be reduced if the

drug studied is routinely given at the site of investigation (49).

ECONOMIC CONSIDERATIONS

Clinical studies in children are economically challenging for the following reasons.

First, the number of patients targeted is smaller compared to a drug given to adults

which reduces the market’s size. Secondly, the investigators and carers might need to

be trained in order to be able to conduct a study in children. As mentioned previously,

the formulations need to be adjusted depending on age or weight. In addition, the risk

of short and long-term adverse reactions is unpredictable. All these factors explain why

clinical trials in paediatric populations are less profitable than in adults and therefore

are not conducted as frequently (49).

1.1.5 Clinical challenge in drug dosing

Once a pharmacometric paediatric trial is conducted, one of the main challenges

for the clinicians is to apply the findings in clinical practice. This is partly due to

the large interindividual variability observed in children. Ideally, the dosage regimens

should be adapted to each child individually based on the covariates influencing the
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drug PK and PD that can be identified using pharmacometric models. However, this is

not always feasible. In clinical practice, some covariates can be challenging to measure

routinely (e.g. genetic variants) making it difficult for the clinician to adjust the dose

based on such covariates. Most pharmacometric studies suggest doses regimens that

differ depending on age/weight groups which is not always easy to apply in clinical

practice since it requires to sub-classify the patients. One of the systems that can

facilitate this issue is the Target-Controlled Infusion (TCI) system (50). The TCI

presents the advantage to administer the drug based on real time PK calculation and to

maintain the therapeutic levels within the efficacy/safety margin. It takes into account

developmental age and weight and therefore allows to adjust the dose to the individual

patient (50). Although TCI systems are used for propofol administration, it has not

been developed for most analgesics and sedatives. This can be explained by the lack of

PK and PD data available for these drugs. In addition, a robust PK/PD model needs

to be developed in order to be able to implement a TCI system. However, this can

be a challenging task in children due to the small sample size of patients, the large

unexplained interindividual variability, the need of rescue medications and the lack of

validated objective tools that can be used as PD endpoints (51).

1.2 Developmental pharmacology

1.2.1 Developmental differences in pharmacokinetics

In paediatric pharmacology, children may not be seen as “small adults”. Their

response differs in terms of efficacy but also toxicity (52). During childhood, they undergo

developmental changes which affects the pharmacokinetic and pharmacodynamic profile

of analgesic and sedative drugs . Hence, the dose cannot be simply scaled using

linear weight (53). These changes include physical growth, maturation of organs and

biochemical mechanisms and they vary considerably between age groups (25).

ABSORPTION

Absorption is the first PK phase for all non intravenous drug administrations. This
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process is altered in children. The gastric pH varies after birth and that can affect the

drug absorption. The pH is neutral at birth but decreases to 1 within 2 days after birth

before gradually returning to neutral at day 8. The pH reaches the adult value only by

age 2-3 (54, 55, 56). As a result, the bioavailability of weakly basic drugs is increased

and the bioavailability of weakly acidic drugs is reduced (57). Bile acid synthesis and

pancreatic lipase function are low during the first year of life, which might affect the

absorption of some lipophilic drugs that can’t be solubilized properly. In addition, the

prolonged time of gastric emptying in neonatal population can cause a delay in the

absorption of some orally administered drugs (56).

DISTRIBUTION

The distribution phase is also affected by developmental maturation. The volume of

distribution depends on tissue binding, plasma protein binding and properties of the

drugs, all different aspects that are affected by developmental changes early in life (56).

The weight fluctuates considerably after birth. Newborn infants lose weight during the

first days following the birth, then they return to their initial birth weight during the

second week of postnatal life and reach a 50% increase weight compared to their birth

weight at 6 weeks of life (58). In term newborns, the percentage of body water is high

(70% of the body weight) and it progressively decreases to reach 60% around the second

year of life. This percentage is even higher in preterm infants (80-90%) (59, 54). On

the opposite, body fat increases with age from 10% in term neonates to 20% after the

first year of life (56). Compared to adults, the neonates volume of distribution (Vd) is

larger for water soluble drugs and smaller for lipophilic compounds (57).

The distribution in children is also affected by a higher membrane permeability.

As a consequence, the penetration in the CNS is easier due to the immaturity of the

blood-brain barrier (BBB). This may lead to toxicity if the doses are not adapted (54,

59). These physiological changes are particularly important to consider for analgesics

and sedatives since these drugs target the CNS.

In addition, infants and neonates have lower concentration of plasma proteins and

lower binding capacity which affect both distribution and elimination rate. The active
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drugs are able to diffuse more easily in the body resulting in higher Vd and clearance

(59, 57). For example, the concentration of alpha-1-acid glycoprotein in neonates

corresponds to half of the adult concentration. However, it is important to note that

this number increases when the child undergoes surgery inducing stress (56).

METABOLISM

Most drugs are metabolised in the liver although metabolism can also take place in

the kidney, gastrointestinal tract and lung (55). The metabolism depends on several

factors: blood flow, extraction rate and drug-metabolizing enzyme capacity.

There are two phases in the hepatic metabolism (54). Phase I reactions include

oxidation (CYP450), reduction, and hydroxylation whereas phase 2 involves reactions of

glucuronidation (UGT), sulfation, and acetylation (57). Organ maturation may impact

the efficiency of these reactions by changing hepatocellular distribution and expression

of the enzyme involved in both phases (57). Studies suggest three different categories

of metabolism enzymes based on their patterns of development; the class 1 corresponds

to the enzymes with a high foetal concentration that significantly decreases at birth,

class 2 represents the enzymes that stay stable during the development and the class 3

corresponds to the enzymes which have a low concentration during the gestation and

increase substantially after birth (58). Most enzymes of phase I are 50% mature at birth

and reach adult activity at the end of the first year of life. Regarding the enzymes of

phase two, there is a large variability of maturation depending on the type of enzymes

(55). For example, UGT enzymes reach their adult activity at the end of the infancy

whereas sulfotransferases are already active at birth (57). These enzyme deficiencies

early in life can increase the risk of toxicity and should therefore be taken into account

when defining the safe dose for young infants.

The drug distribution can also be affected by uptake and efflux transporters of the

hepatocytes such as anion transporting polypeptides (OATPs) and P-gp, respectively.

The developmental expression of such transporters has not been well described in the

literature. However, studies suggest that P-gp expression increases gradually to reach

the adult levels after 2 years of life (56).
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ELIMINATION

Most of the drugs are excreted though urine and faeces although other routes of

elimination are possible (i.e. saliva, sweat, breast milk) (55). Renal elimination depends

on three processes: glomerular filtration, tubular secretion, and tubular re-absorption

(54). These processes are reduced at birth, which explains why newborn renal activity

is only of 35% (25). Functional renal development is associated with an improvement of

these three processes, an increase of renal blood flow and a maturation of renal tubules.

Glomerular filtration undergoes rapid maturation during the first two weeks whereas

maturation of tubular secretion occurs later in life around 15 months. Tubular secretion

is reduced at birth to 20-30% of the adult values. Unfortunately, there are limited data

describing the maturation of renal tubular transporters (58). Tubular re-absorption

(which is an important function for the lipophilic and non metabolised drugs) reaches

adult function only after 2 years of age (59). As a result, drug renal clearances are

reduced in young infants (57).

In addition, anatomic formation of the kidney occurs during the gestational period

in utero, between the week 6 and 36. Hence, elimination pathways might be more

immature in preterm infants than in term newborns. This also explains why it is more

appropriate to use the postmentrual age (PMA) instead of postnatal age (PNA) to

describe the renal maturation function (60).

The developmental change in the kidney should be taken into consideration to

determine the optimal dose of drugs eliminated in the urine in neonatal population.

Because of the immaturity of the kidney, drugs are not eliminated efficiently and

therefore the elimination half life is prolonged leading to an increase of risk of toxicity.

In that case, the dose can be adjusted either by increasing the dosing intervals or

decreasing the dose (56).

1.2.2 Developmental differences in pharmacodynamics

Ontogeny also applies to therapeutic targets that act as mediators of the drug

response. Since the biological systems depend on organ maturation, it is challenging to
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extrapolate pharmacodynamic profile from adults to children. Unfortunately, very little

is known about developmental pharmacodynamics in humans to date (59, 61). However,

ontogeny can affect the affinity, density and signal transduction of the receptors as well

as biochemical pathways. Therefore it can have a high impact on the drug response and

should be taken into account when developing PK/PD models in children. Furthermore,

the pathophysiology of certain diseases might be different in children and neonates, and

it can therefore impact the drug response (62).

Developmental pharmacodymamics also affect the adverse reactions. As a conse-

quence, young children can have smaller therapeutic windows and therefore be more

vulnerable to adverse effects than older children. Although there is a lack of knowledge

about the developing brain, it has been shown that some neurotransmitters play a

different role in children and in adults. They can act through the same second messenger

system than in the mature brain but as developmental regulators (63).

The interindividual variability in children of the PD parameters is expected to be

much larger than for the PK parameters (63). However, due to the limited knowledge

on the developmental pharmacodymamics, it is challenging to identify and include

the covariates that could explain a part of this variability in the PK/PD models (64).

Improving our understanding of developmental physiology that leads to PD differences

between age groups would help to develop adequate and robust PK/PD models that

could be used to determine the optimal dose for different sub-populations (63).

PD changes can also be due to other factors than physiological development which

can lead to an overestimation of “real” PD differences. For example, PK differences

can cause changes in drug response. As described in the previous section, PK changes

with age due to organ maturation and as a consequence, the same dose might result in

smaller concentrations in infants and thus, smaller effect. Another factor is the difficulty

in adequately measuring a significant effect in children because this effect is too small

and the assessment of pain and sedation is challenging in young infants and neonates

(62).

Animal models can be used to improve our understanding of developmental pharma-
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codymamics. However, such models are challenging to translate to humans for different

reasons. First, there is no certainty that the ontogeny of the receptors and pathways

is similar in animals and humans. Secondly, animals undergo maturation faster than

humans (65).

For instance, animal models have been used to study the developmental response to

opioids. These studies show that the expression of opioid receptors as well as opioid

binding vary with postnatal age. A rapid increase was observed during the first three

weeks following birth. In addition, studies in rats showed that the morphine effect

assessed using mechanical sensors was higher in neonates compared to older rats. These

findings could explain why the sensibility and selectivity of the opioid response observed

in human change with age. A better understanding of opioid receptor density and

function in neonates and young infants would help to optimise the dose of opioids in

this population particularly vulnerable to opioids adverse effects (63).

1.3 Pharmacokinetic/pharmacodymic modelling in pain

and sedation

1.3.1 Pharmacodynamic tools in pain and sedation

Pain assessment is an essential step in order to provide optimal pain management. A

regular measure of pain intensity improves pain management and thus the satisfaction

of both patients and carers (37). However, it is a complex task particularly in infants

and neonates because of the lack of specificity and sensitivity of the available assessment

tools for this population. An ideal pain assessment should take into account all factors

which influence pain perception including a description of the pain by the child and their

parents, the sociocultural context, physical evaluation and individual characteristics

such as age, gender and pathology. However, there is no such perfect standard tool.

Three fundamental approaches can be used to assess pain in children. First, self-

report which measures the experience of pain as described by the patient. Secondly,

observation/behavioural measures, which report the experience of pain as observed by
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the medical staff or patient’s family. Finally, the physiological approach which measures

the physiological body reactions caused by the pain (66).

Self report is the gold standard tool. However, in intensive care, a verbal response

may be limited by communication, ability to describe pain, or developmental stage.

Hence, it is not always possible to use self report particularly in neonates, infants and

young children (37). To provide the most accurate measure, the tool has to be carefully

described and explained to the child by the carer. It is essential to make sure that the

patient fully understands how the tool works before the assessment (67). Behavioural

indicators require the presence and expertise of a caregivers. Hence, a large individual

variability might be observed depending on the knowledge and observational skills of

the carer in charge of the report. In addition, the behaviour can be different for each

child making the interpretation of the pain tool challenging (66).

The choice of the approach is different for each child and it is based on clinical

setting, available resources and characteristics of the patient. When feasible, self report

should be preferred as assessment tool alone or in combination with other approaches

because it provides the most accurate description of the pain experience (68). For

children between 3 and 5 years old, it has been shown that the self report may be

unreliable in certain cases. For this reason, it is recommended to use a behavioural

measure in addition with the self report (69).

Physiological measures such as heart rate variability and blood pressure, should not

be used alone to asses pain due to the lack of evidence regarding their reliability and

validity (66).

Assessment tools from these approaches can be used in PK/PD modelling in order

to relate concentration to sedative/analgesic effect. These tools can be divided in two

categories: those which evaluate pain and sedation based on human judgement such as

self report and behavioural measures and those which monitor it, such as physiological

measures. They can be unidimentional if they include only behavioural observations

for example or multidimentional if they incorporate a combination of behavioural,

physiological and contextual factors (66).
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1.3.2 Evaluating pain and sedation

Depending on their age, their ability to communicate and their development status,

there are many reliable and valid scales available for children which can be used as PD

endpoints to evaluate pain and sedation (70).

For children older than 8 years old and able to communicate, the Visual analogue

scale (VAS) and the Numerical rating scale (NRS) are the pain scales of first choice (71,

67, 69). The use of these scales requires a level of development to be able to translate

and express the pain in abstract concept such as numbers or distances (71, 70).

For children between 3 and 8 years old, the revised version of Faces Pain Scale

(FPS-R) is more appropriate (69). The original FPS which incorporated seven faces was

revised by Hicks and al. (72) in order to provide a score which can be easily compared

and combined with other pain assessment tools such as NRS scale (73).

Several scales have been validated for younger children (under 3 years old) and/or

children not able to express verbally their pain in order to assess pain and sedation.

Among them, the Faces, Legs, Arms, Cry and Consolability (FLACC) and COMFORT-

behavioural (COMFORT-B) scales are widely used because of their excellent reliability

(71). These tools are both based on observations by a carer of behavioural items which

reflect the pain intensity and sedation levels (71). The original COMFORT scale was

developed by Ambuel et al. (74) and includes eight items: alertness, calmness/agitation,

respiratory response, physical movement, blood pressure, heart rate, muscle tone, and

facial muscle tension. Each item has five possible responses rated from 1 to 5 which

provides a total score from 8 to 40 (75). Even though the validity of the COMFORT

scale for assessing pain in children has been well established over the years (74, 76,

77), studies have shown that the validity of the scale was improved by excluding blood

pressure and heart rate, two items which can be affected by other factors than pain

and sedation (75). Hence, Ista et al. (78) developed the COMFORT-B score in 2005, a

tool derived from the COMFORT score excluding these two physiological items. The

COMFORT-B score is widely used in clinical trials for infants between 0 and 3 years

old (79). It shows a better validity than the original COMFORT score without losing
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information. This scale has later been modified by Van Dijk et al. (80) resulting in

the COMFORT-neo, a scale able to assess pain and sedation in preterm infants. Both

COMFORT-B and COMFORT-neo provide a score between 6 to 30. Thanks to their

good reliability, COMFORT-B and COMFORT-neo become the gold standard of pain

assessment tool in young children (78, 79, 81). In addition, researches have shown that

these scales assess effectively pain changes due to analgesic and sedative administration

making it a reliable tool for PD modelling (79).

Many pain scales more specific to newborns are available such as Behavioural

Indicators of Infant Pain (BIIP) and the Astrid Lindgren and Lund Children’s Hospitals

Pain and Stress Assessment Scale (ALPS-neo). ALPS-Neo is a new Swedish scale

developed and validated for the first time by Lundqvist et al. in 2014 (82). The

advantage of this scale is that it evaluates stress in addition to pain for both term and

preterm infants. ALPS-neo is an unidimensional scale including 6 behavioural items

(facial expression, breathing pattern, tone of extremities, hand and foot activity and

level of activity). Each item can take a number between 0 and 2 which gives a total

pain score between 0 and 10, 0 being a state with no pain or stress (82). Another tool

validated in newborns is the BIIP scale which has been validated for procedural pain

assessment. It combines four sleep/wake state indicators, 5 facial actions and 2 hand

actions. Each behavioural item takes a score of 1 if it is observed or 0 if not. Hence,

the total score can reach 11 (worst pain). The BIIP has been originally developed and

validated in preterm infants by holsti et al. (83).

Among the scales for assessing pain in newborns, two tools have been validated

particularly in preterm infants, Premature Infant Pain Profile (PIPP) and Échelle

Douleur Inconfort Nouveau-Né (EDIN) (82). The EDIN scale was originally developed

and validated by Debillon et al. in 2001. It aims to assess prolonged pain in preterm

newborns and includes 5 items: facial expression, body movements, quality of sleep,

quality of contact with nurses or sociability, and consolability; each item given a score

between 0 (no pain) and 3 (worst prolonged pain) (84). The PIPP score is using

physiological (heart rate and oxygen saturation) and contextual factors (gestational age
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and behavioural state) in addition to behavioural indicators (brow bulge, eye squeeze

and nasolabial furrow) to describe pain in preterm infants. With a total of 7 items, the

PIPP gives a score between 0 and 21. The PIPP was developed in 1996 by Stevens

and al, and has becoming a reliable and valid tool (70). However, the inclusion of the

contextual factors is controversial. For example, a state of deep sleep doesn’t relate to

pain intensity in every cases (83).

The pain and sedation scales used in this thesis as PD endpoints are summarised in

Table 1.

Table 1: Table describing the 4 scales used as PD endoint in this thesis.
ALPS-neo EDIN COMFORT-B COMFORT-

neo
Name Astrid Lindgren

and Lund
Children’s
Hospitals Pain
and Stress
Assessment
Scale

Échelle Douleur
Inconfort
Nouveau-Né

COMFORT-
behavioural

COMFORT-
neo

Pain assessed Continuous Continuous Continuous Continuous
Validated
population

Term/preterm
newborns

Term/preterm
newborns

Term newborns/
children

Term/preterm
newborns

Item Facial
expression,
breathing
pattern, tone of
extremities,
hand and foot
activity-level of
activity

Facial
expression,
body
movements,
quality of sleep,
Sociability,
Consolability

alertness, calm-
ness/agitation,
respiratory
response,
physical
movement,
muscle tone,
facial tension

alertness, calm-
ness/agitation,
respiratory
response,
physical
movement,
muscle tone,
facial tension

Score item 0-2 0-3 0-5 0-5
Score total 0-10 0-15 0-30 0-30

1.3.3 Monitoring physiological effects of pain and sedation

There are different tools which monitor pain and sedation and can be used as PD

endpoints.

Firstly, it is possible to measure physiological changes due to the autonomic response
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to stress induced by pain. This includes measures of heart rate, blood pressure, oxygen

saturation, respiratory rate, galvanic skin response and pupillary changes (85, 86).

However, heart rate as well as blood pressure, oxygen saturation and respiratory rate

have not been validated for pain assessment because of their lack of specificity. It

has been shown that changes in these variables can be the consequence of different

pathological and psychological conditions other than pain (85). Biomarkers such as

cortisol can also be used to evaluate pain (85) . For a better specificity and reliability

of the pain assessment, it is recommended to use these physiological measures in

combination with behavioural indicators (87).

Quantitative EEG is the most frequent tool used in PK/PD modelling for analgesics

and sedatives (38, 39, 40, 41). EEG signal reflects the neuron voltage fluctuation caused

by the pain process. The signal is obtained via electrodes placed on the patient scalp

and can be analysed using Bispectral index (BIS) or State Entropy (SE) (88, 89). Both

BIS and SE scores are correlated to a level of pain/sedation and can be used in PK/PD

modelling to evaluate the analgesic/sedative effect (90).

The use of magnetic resonance imaging (MRI) and Near Infrared Spectroscopy

(NIRS) to monitor pain and sedation has been increasing in recent years (85, 26) mostly

because it is non invasive and provides information about location and intensity of pain.

Both MRI and NIRS assess pain by detecting changes of cerebral blood flow (91, 85).

1.4 Aim of the thesis

The overall aim of this thesis was to optimise the dose of analgesics and sedatives in

children using non-linear mixed effect modelling. More specifically, the aims were to

suggest regimen dosages using pain scales to assess efficacy in different specific paediatric

populations for which the drugs are prescribed “off-label”.

In the second chapter, the methods used to estimate the PK and PK/PD parameters

in this thesis are described. In the third chapter describing the NEOFENT study, the

goal was to determine the optimal dose of IV bolus fentanyl for procedural pain in

preterm infants. The fourth chapter focused on newborns who received hypothermic
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treatment for asphyxia. This study called SANNI1 aimed to determine the optimal

dose combination of fentanyl and clonidine in this specific population. The fifth chapter

presents a study called CloSed that aimed to compare clonidine and midazolam and

suggest an adequate dose regimen for both sedatives in children.

In order to determine the optimal dose of fentanyl for the NEOFENT study, a PK

model was first developed for fentanyl in preterm infants and this model was then used

to develop PK/PD models using four different pain scales: ALPS-neo, EDIN, BIIP and

PIPP scores. For the SANNI1 chapter, a PK model was developed for both clonidine

and fentanyl in order to identify the covariates influencing their PK and then PK/PD

models were developed for both drugs using ALPS-neo and COMFORT-neo in order to

determine the optimal dose of both drugs in newborns receiving hypothermia to treat

asphyxia. To achieve the aim of the CloSed chapter, the first objective was to develop

PK models for clonidine, midazolam and morphine. The second objective was to build

PK/PD models for clonidine and midazolam in children using the COMFORT-B scale.

The structure of the chapters 3, 4 and 5 is similar; each chapter starts with an

introduction describing the background of the subject, then the methods and results

to achieve the main goal are presented. The chapters end with a discussion of the

results and a summary of the findings. For each chapter of this thesis, the method

and result parts first present the PK model built for the drugs studied describing

the effect of covariates followed by a description of the PK/PD models developed in

order to establish the relationship between PK and pain scales and determine a target

concentration. The last part of the results corresponds to the simulations performed

in order to establish the adequate dose of each population using the PK and PK/PD

models developed.
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2 Parameter estimation

2.1 Modelling approaches

PK data can be analysed using two different approaches: non compartmental or

compartmental analysis. Non compartmental analysis (NCA) is a model-independent

method which estimates parameters such as maximum drug concentration (Cmax) and

area under curve (AUC). NCA presents some benefits: it is simple, fast, and few

assumptions are required. In contrast, the compartmental analysis represents the body

using compartments connected to each other and kinetically homogeneous. One of the

advantages of this approach compared to NCA is that it can analyse sparse data. This is

particularly useful for PK studies in the paediatric population (e.g neonates, infants) for

which it is challenging to collect a large number of samples for ethic or medical reasons.

In addition, it is easier to analyse PK data after complex infusion administration using

the compartmental analysis. Another advantage is that this approach can be used to

investigate the influence of various covariates on the PK variability (92).

2.2 Statistical modelling

There are four main methods which can be used to model PK and PD data: naïve

pooled data, naïve average data, two-stages and non linear mixed effect approach

(NLME). Both naive pooled data and naive average data methods estimate population

parameters in ignoring the correlation within individual’s data points. Naïve average

data is the simplest method, it fits a model to mean values of concentrations calculated

for all individuals at each sampling time in order to estimate the PK and PD parameters.

This method requires identical sampling times for all individuals and therefore is not

ideal to analyse sparse data. The naïve pooled data method pools together all data

from all individuals and fits all data at once as if it was only one individual. This

model is able to estimate parameters with sparse data, however it performs poorly if the

interindividual variability is important leading to an over-estimation of the variability.
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Two-stages approach and NLME take into account the correlation within individuals.

The two stages approach consists in first, estimate individual parameters by fitting each

individual data and then estimate population parameters.

The NLME approach fits a model to all data from all individuals simultaneously in

order to estimate PK parameters. However, the model allows the parameters to vary

between individuals and therefore it is able to estimate the variability. There are two

different sources of variability: interindividual variability (IIV) which is the variance of

parameters between subjects and the unexplained variability called residual variability

due to noise or model misspecification. The model generates population parameters,

their interindividual variability and the variance of residual variability unexplained by

the model. This approach is preferred to analyse PK data particularly in the paediatric

population since it is appropriate for sparse data and it can be used to investigate the

covariates (e.g. age, weight) which can partly explain the interindividual variability

estimated by the model. The NLME approach requires modelling software (93).

The software most commonly used in PK studies is the non-linear mixed-effect modelling

(NONMEM) which maximizes the likelihood function in order to estimate the population

parameters that are most likely to occur. NONMEM provides an objective function value

(OFV) which corresponds to the minus 2 log likelihood with a chi-squared distribution.

The difference between two OFV can be used to compare nested models (a difference of

3.84 and 6.63 corresponding to a p-value of 0.05 and 0.01 respectively). In NONMEM,

IIV and residual errors are assumed to follow a normal distribution of mean 0 and

variance estimated by the model.

2.3 Pharmacokinetic models in children

In paediatric population modelling, it is necessary that the model accounts for

changes in size and age due to the growth and development of organs over time. For

children older than 2 years, a scaling based only on size usually adequately describes the

PK parameters. However for younger infants, maturation of glomerular filtration and

enzymes involved in drug metabolism should be taken into account since organs such as
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the liver and kidneys are still in development during the first months of gestation (94,

95). A standard method of scaling for size and maturation is to fix the allometric weight

exponent to 0.75 and use a sigmoidal maturation function driven by post menstrual

age (PMA) to estimate the fractional decrease in allometrically scaled clearance with

decreasing age (95):

CLi = CLT ·
(
WTi
70

)n
· PMAHilli

PMAHill50 + PMAHilli

Where CLi is the drug clearance in an individual, CLT is the typical CL for a 70

kg adult, WT is the body weight, n the allometric weight exponent, PMA50 is the

PMA (weeks) when the maturation has reached 50%, and Hill is the shape parameter.

However, there are other methods of scaling for size and different types of maturation

functions that have been used (96, 97, 98). Germovsek et al. (99) compared the fit of

all the major types of published model for size and age scaling of clearance in children

and found that no model gave superior fit to this standard model describe above. In

addition, this method presents the advantage to be suitable for the analyse of PK studies

that include different age populations and to allow the the comparison of clearance

estimated by the model with values previously published in the literature.

2.4 Pharmacokinetic/pharmacodynamic models

There is no standard method to develop a PK/PD model. Either PK and PD can be

estimated simultaneously (“simultaneous” method), or first the PK model is built, then

the PD is estimated with the PK parameters fixed if the model is unstable (“sequential”

method) (100). There are different ways to model the PD variables depending on

whether the variables are continuous or categorical. For continuous PD variables such

as VAS scale or EEG index signal (BIS and SE), linear, log linear and Emax models

are usually used (38, 101). Often a delay between observed concentration and effect

occurs, in which case effect compartment models and indirect response models can be

used to describe the data (102). For categorical PD variables, the data are analyzed
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with logistic regression. A model of cumulative probabilities can be used to describe

ordinal categorical data such as the COMFORT scale. However Peeters et al. in their

PK/PD study of propofol in children modelled the COMFORT score as a continuous

variable with an Emax value corresponding to the maximum score of the scale (103).

2.4.1 Models for continuous response variables

Continuous variables are numeric variables that can take on any score or value

within a measurement scale. The difference between each of the values has a real

meaning. There are two main types of continuous variables, interval and ratio. Interval

variables have numerical values which can be ordered and the distance between each

score is equal and static (e.g temperature). If this variable has a clear 0 point which

indicates that there is none of that variable and the ratio of the scores make sense, this

variable is called ratio (e.g weight, age, distance). For instance, if respondents were

being surveyed about their pain levels on a scale of 0-10, a respondent with a pain level

of 10 should have twice the pain experienced as a respondent who selected a pain level

of 5.

2.4.1.1 Direct models

Firstly, it is important to define the PD model which describes the response data.

The direct models are the most commonly used PD models in the literature due to

its simplistic but also mechanistic nature (102). In these models, a change in blood

drug concentration causes an effect which can be observed instantaneously. These

models can be linear and log linear which suppose a proportional relationship between

concentration or log-transformed concentration and effect as described by the following

equations (102):

E = m · Cp + E0

E = m · log(Cp) + E0

Where E is the effect, Cp is drug plasma concentration, E0 the baseline effect, m is
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the slope.

The linear model may provide a good description of concentration-effect for small

concentration ranges. However, the log linear model is more appropriate for concentra-

tions that produce effects between 20% and 80% of the maximum effect (Emax). These

models have some disadvantages since they are not able to predict a saturated Emax

for high concentrations. This issue is removed in the Emax model:

E = Emax · Cp
EC50 · Cp

E = E0 + Emax · Cp
EC50 · Cp

Where E is the observed effect, Emax the maximum effect, EC50 is the drug

concentration for 50% Emax effect observed, E0 the baseline effect and Cp the drug

concentration.

The limited resources of biological systems (e.g. receptor protein) are taken into

account in this model by the notion of maximum effect (104). When the effect is

between 20% and 80%, the relationship between Cp and effect is log linear. The slope

of this log linear function can be controlled by adding an exponent to the Emax model;

this model is called sigmoidal Emax model:

E = E0 +
Emax · Cnp
ECn50 · Cnp

When n >1 , the hyperbolic function becomes sigmoidal hyperbolic. However in

PK/PD this n parameter has no real physiological meaning. For n<1, Emax/2 is

reached quickly then the evolution to Emax is slow whereas for n>1 Emax is reached

more rapidly with lower concentration (Figure 1).
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Figure 1: Plot of a sigmoidal Emax model with a logarithmic abscissa and three different
values of n

It is common to observe a time delay between a dose given and the observed

effect. In this case the PK and PD don’t belong to the same compartment. A plot

of the effect versus concentration would show a hysteresis which is the typical curve

observed in indirect response models. Hysteresis describes the time delay between

plasma concentration and effect and can be caused by different physiological mechanisms

such as sensitisation or formation of active metabolites (105).

2.4.1.2 Effect compartment model

In case of hysteresis, the PK/PD model commonly used is the biophase model also

called effect compartment model. The concept is to integrate a hypothetical effect

compartment to the PK compartment models as described in the Figure 2.
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Figure 2: Representation of a biophase model

It is assumed that the amount of drug in the effect compartment is negligible and

therefore the mass balance in the system is not affected. By adding the hypothetical

effect compartment, the drug concentration in the effect compartment is then linked

with observed PD effect.

Keo is the equilibrium rate constant and determines alone the time delay between

observed drug concentration and PD effect. Thus it is essential to estimate this

parameter. At an extreme scenario where Keo. is estimated as a very large value, this

suggests a fast equilibrium between plasma and effect compartments and therefore the

effect compartment can be removed without a delay in effect. In case of a delay in

effect, the effect compartment can be then regarded as a direct model making possible

the use of direct pharmacodynamic models such as a Emax sigmoid model to describe

the effect.

2.4.1.3 Indirect response model

The indirect response corresponds to the PD response caused by the drug which

alters the production (Kin) or dissipation (Kout) process of endogenous factors. Drugs

are able to inhibit or stimulate these processes. For example, the NSAIDs inhibit the

production of endogenous pain mediators which results in pain reduction. Although this

model is frequently used in PK/PD modelling within other therapeutic areas for adult
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and paediatric populations, it assumes the measurement and inclusion of a biomarker

which is rarely used to assess pain and sedation. Hence, there is no indirect model

published to date describing the effect of analgesics and sedatives in children.

2.4.2 Models for categorical PD variables

A categorical variable is a measurement scale composed of a set of finite number

of categories or distinct groups which can be ordinal or nominal. A nominal variable

does not have an intrinsic order and is called binary or dichotomous if it has only two

possible outcomes such as gender or awake versus asleep. However in clinical practice,

variables are commonly rank ordered as in sedation and pain scores (e.g COMFORT

scale) . In this instance, the data is described as ordinal categorical data.

2.4.2.1 PK/PD analysis of binary data

The analysis of binary endpoints involves logistic regression. To model this type

of data, it is important to understand the statistical basis. The two categories can be

quantified as “success” (S) and “failure” (F). The response R is denoted by 1 for S and

0 for F. The corresponding proportion or probability P has a Bernouilli distribution as

described in the following equations (102):

P (S) = π

P (F ) = 1− π

P (R = r) = πr(1− π)1−r

Since the response changes with time following drug administration, the goal of

PK/PD is to describe the relationship between those binary endpoints Y and variables

x (E(Y |x)), such as dose and time. This expectation is expressed as a linear function

E(Y |x) = β0 +β11x where beta are constants. Because of the binary nature of the data,

π can take values only between 0 and 1. To ensure this, it is necessary to transform p

from onto a −∞ to +∞ which is done using the logistic transformation or logit. The

logit transforms the 0 to 1 probability scale to a −∞ to +∞ scale and is expressed as
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a function of pi (102):

logit(πi) = ln

(
πi

1− πi

)

In PK/PD modeling, many strategies can be adopted to evaluate the influence of the

PK (exposure) and covariates on this response. These variables have to be implemented

on transformed scales, as is shown is the following example (102):

Logit(πi(tj)) = θ1 + θ2Ce(tj) + ηi

Pj = eLogitj

1 + eLogitj

Where Ce(t) represents the drug concentration at effect site at time point t for

the jth patient j which can be linear or folow an Emax model, thetas are the Logit

baseline, η the residual error for the observation which is independent and follows a

normal distribution with mean 0 and variance ω2 and P is the predicted probability of

success S in the jth patient.

2.4.2.2 PK/PD analysis of ordinal categorical data

To analyse ordinal categorical data, the probability of an observation instead of the

numerical value of this observation is used. Several approaches can be used to model

these data. The most common method is called the proportional odds model (PO)

which is a logit model for cumulative probabilities (106). Recently, more sophisticated

approaches have been developed such as the bounded integer (BI) which respect the

bounded nature of such data using a probit-based approach.

2.4.2.2.1 Proportional odds model (PO)

This model has been described for the first time in PK/PD modelling by Lewis

Sheiner in 1994 (107). Since then, this approach has been applied widely to model

ordinal categorical data in various therapeutic areas such as pain and sedation. If

necessary, it is possible to merge original categories into a lesser number of categories,

especially when a small number of observations are available for each category.
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The proportional odds model is parametrized in order to estimate the cumulative

probabilities in the logit scale. The response is able to take different values Y of

probability P (Y ). If we consider a trichotomous variable Y = 1, 2 or 3 the probabilities

can be modelled as following:

P (Y = 1) = 1− P (Y > 1)

P (Y = 2) = P (Y > 1)− P (Y > 2)

P (Y = 3) = P (Y > 2)

For this model, the probability needs to be transformed in logit function in order to

ensure the probability to be between 0 and 1.

Logit[P (Y >= j)] = αj + βx

Where α represents the logit baseline probability for each category (α1 < α2 < ....αj),

β is the parameter identical for all categories and x is the effect of explanatory factors

called predictors which can be the drug effect, dose effect, biomarkers and other variables

(106).

It is important to note that the parameters are estimated on the logit scale and

therefore can’t be compared with the values estimated by a continuous model (106,

108).

In the proportional odds model, time effect can also be a significant predictor,

however the potential relationship between a current observation and the previous one

is not taken into account (no Markov element) (109).

An important assumption of the proportional odds model is that the predictor effect

is the same for all the categories which might be inaccurate when analysing complex

categorical scales with composed scores.

2.4.2.2.2 Bonded integer model (BI)

The BI model which has been developed in 2019 by Wellhagen et al. uses a probit-

based approach to provide the probability of the scores. The concept of this model is
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to assume a grid defined by quantiles of the normal distribution in which each patient

has a location described by its mean and variance over time (110).

More precisely, the model uses cut-off values to divide the area under a standard normal

distribution (of mean 0 and variance 1) into areas of same size. The number of sub-areas

corresponds to the number of categories of the scale. The cut-off values are defined

using the probit (or quantile function of the standard distribution). The probability

of each score corresponds to the the area under a variable defined function within the

interval defined by the cut-offs.

The BI model is a flexible model in which a markov element can easily be added in

order to allow the model to take into account the correlation between two consecutive

observations (110).

2.5 Model evaluation

The model evaluation of a model includes the assessment of goodness of fit, stability

and reliability. The methods of model evaluation can be divided in two categories:

internal (basic and advanced) and external.

Basic internal methods include mostly goodness of fit (GOF) and the reliability of

parameter estimation using relative standard error (RSE) for example. The standard

estimate used to calculate the RSE can be obtained using a bootstrap analysis or the

covariance step in NONMEM. If the parameters are adequately estimated by the model,

the RSE should not exceed 50%.

The typical diagnostic plots used as goodness-of-fit are population predictions

(PRED) and individual predictions (IPRED) versus observations (DV). If the model

describes well the data, a symmetry should be observed around the unit slope line. Plot

of conditional weighted residuals (CWRES) or weighted residuals (WRES) versus PRED

or TIME are also commonly checked to investigate the distribution of standardized

residuals. If the residuals are following a normal distribution N (0,1) indicating that

the model fits well the data, the CWRES should be dispersed between -2 and 2

and no pattern should be observed over time. The plot of IWRES versus TIME or
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IPRED can be used to analyse if the error model is adequate. When the data are

treated as categorical using for instance the proportional odds model or BI model, the

PK/PD models predict probabilities rather than the actual values so the residual does

not represent a link between model and data. Therefore, residual errors described

above cannot be calculated and residual plots cannot be generated. For the BI model,

the goodness of fit can be analysed using diagnostic plot of the Pearson residual for

categorical data (PWRES) versus time. As the CWRES, the PWRES should ideally be

between the interval [-2, 2] and no trend should be observed over time (110).

Advanced internal techniques include resampling techniques (bootstrap) and

simulation-based diagnostics such as visual predictive check (VPC) and normalised

prediction distribution errors (NPDE). The bootstrap tests the robustness of the model

by generating new samples (ideally 1000) in resampling with replacement from the

entire database and then fitting the model to each of these new samples in order to

generate multiple parameter estimates. If the model describes well the data, the

parameter estimates should fall within the 95% confidence interval produced by the

bootstrap evaluation and the median should be close to the estimates obtained with

the final model. The VPC simulates a large number of datasets using the parameter

estimates of the final model. The model fits the data if at least 90% of the observations

are captured by the prediction interval 95%. More recently Bergstrand et al. (111)

developed a modified version of the VPC called prediction-corrected visual predictive

checks (PC-VPC) that corrects the prediction taking into account independent variables

such the dose.

External evaluation methods consist in testing the final model using a different

dataset to the one used to develop the final model (92).

2.6 Systematic verification and validation of the models

In addition of the main evaluation methods presented in the previous section,

different aspects were systematically verified after running a model in order to validate

it. First, it was checked that NONMEM provided the message “optimisation successful”
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meaning that the model ran successfully. Secondly, we verified that non of the parameter

gradient was equal to 0 which would mean that the model was not able to estimate

these parameters. Thirdly, we ensured that the parameter estimated were biologically

plausible. Finally, the shrinkage for each parameter estimate was checked to ensure

that they were all below 30%.
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3 Pharmacokinetic/pharmacodynamic mod-

elling of the results of the NEOFENT trial

3.1 Introduction

3.1.1 Fentanyl pharmacology

Fentanyl is widely used in children. It is the opioid the most prescribed in the NICU

in the United Kingdom (UK) (112, 113). Fentanyl is a synthetic opioid first synthesized

in 1960 in Belgium (114). The drug binds both µ and κ opioid receptors and has

analgesic, sedative and aesthetic properties (112). Its molecular formula is C22H28N20

and its molecular weight is 336.5 g/mol. Fentanyl is prescribed in children for invasive

surgery or painful procedures such as intubation (21). Fentanyl is commercialised in

various forms such as IV formulations, sublingual tablets, nasal sprays and transdermal

patches (115). Fentanyl is often prescribed with sedatives such as midazolam. The

combination midazolam/fentanyl has been shown more efficient than midazolam alone

in mechanically ventilated children (116). In several clinical studies, pain scores as

well as heart and hormone rates have been shown significantly reduced in infants after

administration of fentanyl proving the efficacy of the drug in this population (113).

Figure 3: Fentanyl structure

59



3.1.1.1 Fentanyl toxicity

As all the µ receptor opioids, fentanyl presents numerous adverse reactions such as

fatigue, sedation, nausea, vomiting, dizziness, respiratory depression and bradycardia

(115). Depending on the dose, fentanyl can cause chest wall rigidity and respiratory

depression (117, 113). Chest wall rigidity is a well known severe adverse reaction of

bolus IV administration of fentanyl that can be better controlled when the drug is

given via slow infusion (21). In addition, prolonged administration of fentanyl can lead

to dependence and tolerance which result in withdrawal syndrome, a adverse reaction

particularly undesired in young children (113).

In preterm infants, it has been shown that fentanyl can be associated with a decrease

of reflex, impairment of motor skills and brain size reduction (118). These effects seem

to be more important in case of high cumulative doses (119).

3.1.1.2 Fentanyl pharmacokinetics

Fentanyl has a high gastrointestinal permeability, but it has a low bioavailability

(30%) due to a high first pass metabolism (120). As a result, there is no oral formulation

available (120).

Fentanyl has a high volume of distribution between 5 and 17 L/kg in young children.

Because of its lipophilic properties (log P = 4), it is rapidly distributed to muscles and

fat tissues. The compound crosses the BBB by both diffusion and active transport

mechanisms to reach the CNS, the principal target of the drug (112). Around 80-85%

of the drug binds to plasma proteins, mainly alpha-1-acid glycoprotein.

Fentanyl is metabolised in the liver by the CYP3A4. The drug undergoes a N-

dealkylation to provide its main inactive metabolite, norfentanyl. A minor metabolite

is produced as well following a N-hydorxylation (117). 75% of the drug is eliminated in

the urine, of which 10% corresponds to unchanged fentanyl (112). The half life is very

variable between patients, it has been observed that the half life is longer in newborns

(6-32h for preterm infants) compared to older children (2-3h) (121, 112).

Due to their organ immaturity, newborns and particularly preterm infants have higher
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blood flow and altered protein binding that affect both distribution and elimination

of fentanyl. As a result, the volume of distribution is higher in this population and

fentanyl clearance varies widely in young children following the maturation of the

organs involved in the drug elimination. In noenates, clearance is significantly reduced

compared to adults even when scaling for body size with allometric scaling (112,122).

3.1.2 Previously published models

Fentanyl pharmacokinetics have been well described in the literature by compart-

mental and non compartmental analyses (123, 124, 121, 125). A large interindividual

variability on the fentanyl clearance was observed in children particularly in newborns

and preterm infants (126). The majority of the previous PK studies explained a part of

this variability using age and weight as covariates. Table 2 summarize the clearances

estimated in neonates by PK analyses published in the literature.

Table 2: Table summarising the fentanyl clearances found in the literature for neonates and
preterm infants.
Author n Age Weight (kg) Clss (L/h)
Völler (2019) 98 Preterm 0.90 0.42
Encinas (2013) - Full term 3.0 1.68
Saarenmaa
(1999)

38 Preterm, full
term

1.8 2.1

Gauntlett
(1988)

14 Preterm, full
term

2.7 2.2

Johnson (1984) 2 - 3.2 3.1
Koehntop
(1886)

14 - 2.9 4.1

Most of the fentanyl compartmental PK studies in children included the effect of

weight using an allometric weight scaling with an allometric exponent fixed to 0.75

for the clearances and 1 for volumes (127, 128). Age was included in the majority

of the models using postnatal age as covariate. However, it has been shown that the

postmentrual age is highly correlated to the CYP3A4 activity in newborn infants since

the enzyme is still in development during the the neonatal period (117). No model has
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been published to date using a PMA-based maturation function to describe the effect

of age on clearance.

Table 1 shows that the clearance of preterm infants is reduced compared to the

clearance of term newborns and older children. This is probably due to the immaturity

of the elimination pathways which is more important in preterm infants. Recently, two

analyses have been published that describe specifically the fentanyl PK in preterm

infants: a non compartmental analysis published by Norman et al. (124) in 2019 and a

compartmental PK model developed by Völler et al. (123) in 2018.

In their model, Völler et al. (124) included the effect of age on the clearance using

both postnatal age (PNA) and gestational age (GA) as follows:

CLi = CLT ·
(

PNAi
PNAmedian

)θPNA
·
(

GAi
GAmedian

)θGA
Where CL is the clearance, GA the gestational age, PNA the postnatal age, GAi

individual GA, PNAi individual PNA, θGA is the exponent for the influence of GA on

CL and θPNA is the exponent for the influence of PNA on CL.

The authors found a significant effect of weight only on the central volume of

distribution. Each covariate (PNA, GA and weight) was included in the model using

a centred multiplicative covariate model. Although the model seemed to adequately

describe the fentanyl PK in a large population of approximatively 100 preterm infants,

it is not ideal for extrapolation purposes since the authors did not use an allometric

weight scaling nor a PMA-based maturation function to describe the influence of weight

and age, respectively.

Norman et al. (124) used a non compartmental analysis to describe the fentanyl

PK in 14 preterm infants receiving fentanyl for procedural pain. These patients were

included in the compartmental model described in this chapter. With this approach,

the authors weren’t able to explain the interindividual variability on the clearance.

In addition, they weren’t able to find a correlation between pain score and fentanyl

concentration.
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Only one PK/PD model describing the relationship between analgesic effect and

fentanyl PK in children has been published in the literature. This model developed by

Encinas et al. (129) was a predictive model based on a semi physiologic approach using

adult data. In this study, the level of sedation expressed in percentage (100% being the

maximum effect) was modelled using a predictive sigmoidal Emax model. Based on

their results, the authors suggested a new regimen of continuous infusion in newborns.

However, there is no PK/PD model in the literature which describing the relationship

between fentanyl concentration and analgesic effect using a paediatric cohort.

3.1.3 Rationale

Preterm infants are particularly vulnerable to pain since their brain and pain

mechanisms are still in development after birth (119). Compared to older children,

preterm infants experience a higher hormonal and physiological response following

painful stimuli leading to hyperalgesia, allodynia and prolonged periods of stress (130).

In addition, studies have reported evidences that repeated and prolonged expositions

to pain early in life could cause alterations in the brain development resulting in

neurological impairments in the long term (124, 119). Preterm babies stay in the NICU

longer than term newborns and are therefore more exposed to painful procedures such

as blood sampling, intubation or line insertion (124).

For this reason, it is fundamental to provide adequate pain management in this

population in order to decrease the risk of pain adverse effects. However, drug safety

should be carefully considered since the preterm infants are more sensitive to the drug

adverse reactions due to the immaturity of their brain and elimination pathways. Hence,

it is essential to administer the adequate dose of analgesics in order to provide an

optimal effect at the lowest dose possible to avoid adverse reactions (124).

Opioids such as morphine and fentanyl are routinely prescribed for procedural pain

management in preterm infants. Their use in newborns should be closely monitored

because they might affect normal brain development. Studies in animals have shown

that such medications can lead to apoptotic neurodegeneration in newborns. Fentanyl
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might be the most adequate opioid for analgesic treatment in preterm infants. It

presents numerous advantages in terms of efficacy and safety compared to morphine

which might cause a prolonged decrease of brain activity (131, 132). Fentanyl has a

faster onset of action and shorter effect duration (132). For these reasons, fentanyl is

the opioid most commonly prescribed in the NICU. However, its optimal dose has not

been determined in preterm infants.

Additional PK studies are needed in order to describe the fentanyl PK in preterm

newborns and determine the covariates that explain the large interindividual variability

observed on the parameters. The influence of age and weight on fentanyl PK have

been previously described by published PK models. However, only one recent model

studied a cohort of preterm infants (123). This model did not include an allometric

weight scaling nor a PMA-based maturation function, making the model difficult to

extrapolate.

Ontogeny is not the only factor that can influence the drug response (59). Genetic

polymorphisms can explain a part of the interindividual variability on the PK and

PD parameters. For instance, studies have reported that mutations in genes coding

for metabolism enzymes such as CYP450 can cause an induction or inhibition of that

metabolism and therefore explain a part of the variability on the clearance. In addition,

it has been shown that single nucleotide polymorphisms (SNPs) in genes involved in

the opioid mechanisms can also affect the drug response. These mutations might alter

the sensitivity of opioid receptors or enzymes and therefore the drug pharmacokinetics

(62). More PK/PG studies are needed in order to identify the SNPs which affect the

fentanyl PK and determine the optimal dose of fentanyl in these sub-populations.

Because fentanyl might cause significant adverse reactions even at low doses, it is

essential to evaluate the PK/PD relationship of fentanyl in this vulnerable population

in order to determine the optimal dose. One predictive semi-physiologic model using

extrapolation data from adults to predict the PK and PK/PD relationship in term and

preterm infants has been published (129). However, there is no previous PK/PD model

including clinical data from a neonatal cohort. The target concentration or optimal IV
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bolus dose for procedural pain in preterm infants has not been determined.

3.1.4 Aim

The aim of the NEOFENT project was to study the PK and the PK/PD relationship

of a new formulation of fentanyl 5 µg/mL for procedural pain in preterm infants. This

study was used to improve our understanding of dose-concentration-effect relationship

of fentanyl and therefore optimize the dose in preterm infants. The other objective of

this chapter was to determine if certain gene polymorphisms can explain a part of the

interindividual variability observed on the pharmacokinetic parameters and identify

subgroups of patients which will need a dose adaptation.

3.2 Methods

3.2.1 Data

The data used for this study have been collected from September 2012 to November

2014 in two Swedish university centres, the NICUs at Skåne University Hospital and at

Karolinska University Hospital in Stockholm. The study was registered as EUDRACT

(number 2011-000310-19) and monitored by the Unit for Clinical Study Support within

Clinical Studies Sweden Forum South. For both investigation sites, the study was

approved by the Regional Ethical Review Board for Southern Sweden in Lund. In

addition, The European Medicines Agency (EMA) and the Swedish Medical Products

Agency both approved the protocol.

A fentanyl formulation of 5 µg/mL was produced in Sweden by Apotekarnas

laboratorium (manufacturing authorisation number 24;2011/500192). The formulation

was suitable for preterm infants and based on the commercially manufactured fentanyl

formulation available (Janssen-Cilag AB, Solna, Sweden). It was confirmed that the

dilution was stable with a shelf life up to 36 months.

Thirty perterm infants born between 24 and 34 weeks of gestation with a postnatal

age below 28 days were included in the study. The exclusion criteria were: concurrent
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or previous opioid administration, congenital anomaly, neonatal encephalopathy and

renal/hepatic failure. They received 0.5 µg/kg during 1 minute within 10 minutes

before skin-breaking procedure or 2 µg/kg over 5 minutes before tracheal intubation

with other short acting drugs (atropine, suxamethonium and thiopentone). Depending

on the pain score, a second similar bolus was allowed after 15 minutes.

Blood samples of 0.8 mL used to measure fentanyl concentrations were collected

at 10 minutes and 2, 4, 6, 8h post-administration. The number of samples collected

was adapted to the patient weight; 3 samples if the body weight was between 600g and

1000g and 2 samples if body weight was inferior to 600g.

The genetic variants tested in the PK/PG study came from genes expressing enzymes

involved in the metabolism (UGT2B7, OPRM1, CYP3A7, CYP3A4, COMT, CYP2D6)

and opioid receptors (SLC22A1, ABCC1, ABCC3, KCNJ6). The choice of the genetic

variants to test was based on the paper published by Matic et al. (133). The genotypes

of patients were obtained by whole-exome sequencing performed at the Center for

Translational Genomics, Lund University and Clinical Genomics Lund, SciLifeLab. In

total, 153 different genotypes were analysed.

Pain and stress were assessed using four different pain scales: Échelle de douleur

et d’inconfort du nouveau-né (EDIN), Astrid Lindgren and Lund Children’s Hospitals

Pain and Stress Assessment Scale for Preterm and sick Newborn Infants (ALPS-neo),

Premature Infant Pain Profile (PIPP), and the Behavioural Indicators of Infant Pain

(BIIP). EDIN and ALPS-neo scores were evaluated every hour for 48h in order to assess

continuous pain. PIPP and BIIP scores were used to assess procedural pain.

3.2.2 Fentanyl pharmacokinetic modelling

The data were analysed using NONMEM (version 7.4) and the plots were obtained

using R (version 3.4.4).

A NLME model was built to describe the fentanyl concentration data. First, a one-,

two- and three-compartment models were tested to define the basic structural model.

In order to describe the residual variability, an additive, proportional, and a combined
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additive with proportional error model were tested.

Body weight and postmenstrual age (PMA) were included in the model using an

allometric weight scaling standardized to a body weight of 70 kg and a sigmoidal

maturation function, respectively, as described by the following equation:

CLi = CLT ·
(
WTi
70

)n
· PMAHilli

PMAHill50 + PMAHilli

Where CLi is the drug clearance in an individual, CLT is the typical CL for a 70 kg

adult, WT is the body weight, n the allometric weight exponent, PMA50 is the PMA

(weeks) when the maturation has reached 50%, PMAi is the individual postmentrual

age and Hill is the shape parameter.

The allometric weight exponent was fixed to 0.75 for the clearances and 1 for the

volumes of distribution. The parameters of the sigmoidal maturation function (PMA50

and Hill) were estimated by the model or fixed to values estimated by a previous model

published by Anderson et al. (134).

Interindividual variability was tested on each parameter in a stepwise fashion using

a multiplicative model and included in the model if the objective function decreased of

at least 3.84 points.

The concentration values below the limit of quantification (BLQ) corresponding to

0.05 µg/mL ( > 10%) were included in the model using the M3 method. With this

method, the BLQ values are treated as categorical data. Their likelihood functions

are maximized with respect to the model parameters but the model assumes that the

values are below the limit of quantification (LOQ) (135).

3.2.3 Fentanyl pharmacokinetic/pharmacogenetic modelling

The genetic variants with no minor allele detected or with a minor allelic frequency

(MAF) below 5% were excluded of the PK/PG analysis. The remaining genetic markers

were tested for Hardy-Weinberg equilibrium in order to detect genotyping errors.

To test the influence of the genotypes on the PK, a screening process was conducted
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in order to increase the power of the analysis and avoid false positives since 153 SNPs

were tested and only 25 patients were included in the study. The concept was to test the

genetic association between variants and fentanyl individual clearances (CLi) extracted

from the final PK model using multiple linear regression. This screening was done with

the software Plink 1.9 and an additive genetic model was used to test the SNPs. A

Bonferroni correction was applied with a p-value of 0.2 in order to select the significant

genotypes and avoid false positives due to multiple testing.

Once the SNPs have been selected with the screening process, they were tested one

by one as covariate on the clearance using the final PK model with NONMEM. In the

dataset, the genotypes for each patient were coded with three variables: 0 (homozygous

wild type), 1 (heterozygous type), 2 (homozygous mutant type). In the model, the

heterozygous type and homozygous mutant type were grouped and included as follows:

CLi = CLT ·
(
WTi
70

)n
· PMAHilli

PMAHill50 + PMAHilli

· (1 +H1)

Where H1 is equal to 0 for the wild homozygous type and is estimated for the others

(mutant type). CLi is the drug clearance in an individual, CLT is the typical CL for

a 70 kg adult, WT is body weight, n the allometric weight exponent, PMA50 is the

PMA (weeks) for CL to reach 50% mature, and Hill is the shape parameter.

3.2.4 Fentanyl pharmacokinetic/pharmacodynamic modelling

The PK/PD models were developed using a sequential method. Four different

models (one for each pain scale: ALPS-neo, EDIN, BIIP, PIPP) were built in order to

describe the relationship between fentanyl concentration and analgesic effect.

First, a continuous Emax model with and without effect compartment was tested

to link the fentanyl PK and PD. Then the scores were treated as categorical and a

proportional odds model was tested for each scale.

In the proportional odds model, if we consider a vector of categorical response Yin

for the ith patient with N observations, the probability that Yin is superior or equal to
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the score m can be calculated with the following equations:

Logit[P (Yin ≥ m|ηi)] = fm + ηi

P (Yin ≥ m|ηi) = e(fm+ηi)

1 + e(fm+ηi)

where Logit[P (Yin ≥ m|ηi)] is the logit function of the probability P (Yin ≥ m|ηi).

ηi is a normally distributed random variable of mean 0 and variance estimated by the

model describing the interindividual variability. fm denote the function of baseline

conditions and predictors.

This function fm can be described as follows:

f1 = B1 + f(predictor)

f2 = B1 +B2 + f(predictor)

f3 = B1 +B2 +B3 + f(predictor)

where B1, B2, B3 is the baseline probability of a score >= to 1, 2 and 3, respectively.

The baseline probabilities of all the categories except the lowest one are estimated by the

model and limited to negative values. For the highest category there is no need to esti-

mate this parameter since it is equal to one by definition of the cumulative probabilities.

f(predictor) corresponds to the function describing the effect of a predictor.

In this chapter, the predictors evaluated were the drug effect (using the predicted

concentration), age (using PMA) and weight. For each predictor, a linear and Emax

model was tested.

The objective function of the baseline model without predictor was first estimated.

The predictor effect was then added in the model and found significant if it induced a

decrease of the baseline OFV of at least 3.84 points.

The categories of score missing in the databases were ignored in the proportional odds

model. If the model was not able to find a relationship between fentanyl concentration

and pain scores, a proportional odds model in which the scores were grouped into 3

equal categories was tested. These categories can be described as low pain, middle pain
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and high pain level.

The target concentration was then graphically determined using the results of the

PK/PD model.

3.2.5 Simulations

Simulations were performed with NONMEM in order to determine the optimal

dose to reach the target concentration defined by the PK/PD model. A database of

1000 patients with different demographic characteristics (PMA, weight and sex) was

generated with R using the Sumpter function (136). This function uses an equation

which takes into account the change of weight with PMA to simulate patients with

demographic characteristics similar to the population studied. The database generated

was then used with the final PK model to performed simulations with different doses

of fentanyl (0.5, 1 ,1.5, 2, 3 and 4 µg/kg). The simulations were limited to 2h which

corresponds approximately to the procedure time during which fentanyl is used in

preterm infants.

3.2.6 Model evaluation

For all the models developed, the RSE were calculated using the standard error

from NONMEM covariance step.

Goodness-of-fit plots were produced in order to evaluate graphically if the PK model

adequately described the data. The goodness-of-fit includes the following plots: DV

vs. PRED, DV vs. IPRED, CWRES vs. time after dose, and CWRES vs. PRED. In

addition, a histogram and a QQ-plot of the CWRES distribution were done to ensure

the normality and homogeneity of the residual error.

The final PK model was also evaluated using a bootstrap analysis based on 1000

samples of the data using Perl-speaks-NONMEM (PsN).

Both PK and PK/PD models was evaluated using visual predictive check (VPC).

1000 simulations from the final PK model were performed in order to produce the VPC.

VPC was done using PsN and the plot was generated using the package Xpose4 in R.
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The categorical VPC for the proportional odds model were stratify by score categories

for a better visualisation.

3.3 Results

3.3.1 Data

Twenty five preterm infants born with a gestational age between 23.3 and 30.7

weeks were included in the final dataset of the PK study. The demographic data of the

patients are summarized in Table 3. 18 patients received 0.5 µg/kg before skin-breaking

procedures and 7 children received 2 µg/kg before tracheal intubation. Only one patient

included received a second dose after 15 min.

Table 3: Table summarising the demographic characteristics of the NEOFENT cohort.
Range Median

Birth weight (kg) 0.56 - 1.37 0.83
Gestational age (weeks) 23.3 - 34.1 26.7
Postnatal age (days) 0.25 - 28.2 6.90
Postmenstrual age (weeks) 24.5 - 28.2 27.5

In total, 107 samples were used to build the model. Around 13% of the observations

were below the limit of quantification. The relationship between concentration and

time are presented on Figure 4.
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Figure 4: plots of the concentration observed vs time from the final dataset after administration
of 0.5 mcg/kg (left) and 2 mcg/kg of fentanyl (right). Each line represents a patient.

The plot shows that higher concentrations were observed for a patient receiving 2

µg/kg compared to the others. This patient is the only one who received a second dose

after 15 min which explains why its profile is different. The graph shows that the data

are limited with a number of samples between 2 and 5 by patient.

The 25 patients were included in the PK/PG analysis. Eleven SNPs were excluded

because no minor allele was detected and 30 were excluded because the minor allele

frequency was below 5%. Therefore, in total the effects of 112/153 genetic variants were

tested on the PK.

To increase the relevance of the PK/PD models, the observation time of the scores

were fixed to 12h for continuous pain scale (ALPS-neo and EDIN) and 6h for procedural

pain scale (BIIP and PIPP). All patients for which the pain was assessed during this
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time were included in the PK/PD models. Hence, the 25 preterm infants were included

in the models for ALPS-neo and EDIN whereas only 21 and 16 of them were included

in the analyses of BIIP and PIPP, respectively.

3.3.2 Fentanyl pharmacokinetic modelling

The PK data were best described by a two-compartment model with interindividual

variability on clearance (CL) and central volume of distribution (V1). The residual

model was a proportional error model. The inclusion of a peripheral compartment

induced an OFV decreased corresponding to 148.4 points.

When trying to estimate the parameters of the maturation function, the model

estimated PK parameters to non plausible values. Therefore the clearance was best

described by fixing these parameters to values estimated by the midazolam model

published by Anderson et al. (134). This maturation model could be used for fentanyl

since both drugs are mainly metabolised by the same enzyme: CYP3A4.

The estimates of the final PK parameters and the RSE corresponding are presented

in Table 4.
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Table 4: Estimates from the final PK model.

Parameter Estimate RSE (%) Bootstrap estimate

(95% CI)

CL (L/h/70kg) 94.0 18 95.3 (32.6 - 158.4)

V1 (L/70kg) 175.1 12 171.8 (121.9 -

208.2)
Q (L/h/70kg) 6.01 37 7.4 (2.3 - 92.1)

V2 (L/70kg) 17.1 28 20.4 (9.3 - 82.3)

IIV CL (%) 95.1 28 94.3 (48.5 - 187.8)

IIV V1 (%) 60.2 54 59.1 (21.3 - 88.6)

Err prop (%) 46.9 31 0.13 (0.089 - 0.18)

PMA_50 73.6 FIX - -

Hill 3 FIX - -

CL is the clearance, V1 is the central volume of distribution, Q is the inter-

compartmental clearance, V2 is the peripheral volume of distribution, RSE is the

relative standard error (from NONMEM covariance step), IIV is the interindividual

variability. PMA_50 is the PMA (weeks) for CL to reach 50% maturity, and Hill is the

shape parameter. FIX means that the value of the parameter was fixed a priori in the

model.

Basic goodness-of-fit plots are presented in Figure 5.
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Figure 5: Goodness-of-fit plots of the final PK model. Plots of the observed concentration vs
population predicted concentration (top left) and vs individual predicted concentration (top
right), the CWRES versus time after dose (bottom left) and plot of the IWRES vs time after
dose (bottom right) from the final fentanyl population PK model. The red line is the lowess
line and the black line is the line of unity.

The distribution of the conditional weighted residuals are shown in Figure 6.

Figure 6: Distribution of conditional weighted residuals presented by a histogram (left) and
a QQ plot (right)

The VPC are presented in Figure 7.
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Figure 7: Visual Predictive Check produced using the parameters estimated by the final PK
model. The shaded grey area is the 95 percent prediction interval. The black solid line is the
median of the observed data; the black dashed lines are the 5 th and 95 th percentiles of the
observed data.

3.3.3 Fentanyl pharmacokinetic/pharmacogenetic modelling

All the variants were in Hardy-Weinberg equilibrium based on the statistic test

conducted using a Bonferroni adjusted p-value.

The results of linear regression analysis used for the screening process to test the

association between the variants and individual clearances (CLi) are summarized in

Table 5.
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Table 5: Results of the linear regression analyses used for the screening process of the SNPs
Conditioning
variant

Variant beta p-value

1 2
Model 1
- - rs111517339 0.74 5.1 x 10-5
- - rs11079921 1.01 1.4 x 10-4

rs8077268

- - rs11079922 0.77 6.6 x 10-4
Model 2
rs111517339 - rs4780592 0.33 5.3 x 10-4
rs111517339 - rsrs4238623 0.29 1.2 x 10-3
Model 3
rs111517339 rs4780592 rs11079921 0.60 1.2 x 10-3

rs8077268

Four genetic variants had a significant relationship with CLi after correcting the

p-value using Bonferroni: rs111517339, rs4780592, rs11079921 and rs8077268. The

effect of these 4 SNPs was then tested in the final PK model. The model showed that 3

of these genetic variants significantly increased the clearance. Table 6 summarises the

characteristics of these 3 SNPs as well as the parameters estimated by the model with

the RSE corresponding.
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Table 6: Estimates of the final PK/PG model

Variant Receptor

coded

Alteration n Estimate

(CL

increase-

fold)

RSE (%)

rs111517339 ABCC1 T/TA 8/25 1.6 61

rs11079921 ABCC3 T/C 4/25 4.3 38

rs8077268 ABCC3 C/T 4/25 4.3 38

n is the number of patients that carry the minor alleles and the parameter estimates

corresponds to the clearance increase expressed using a multiplication factor.

A significant influence of the genetic variant rs111517339 T/TA in the gene coding

for the receptor ATP Binding Cassette Subfamily C Member 1 (ABCC1) was found.

This mutation is the result of an insertion in position 16146287 on the chromosome 16.

Two variants coding for the receptor ATP Binding Cassette Subfamily C Member 3

(ABCC3) had a significant impact on the CL: rs11079921 T/C and rs8077268 C/T. Both

genotypes are the consequences of a single nucleotide variant (SNV) on the chromosome

17 in position 48752379 and 48753522, respectively.

In total, the 3 genetic variants explained 15% of the IIV estimated on the clearance

by the final PK model.

3.3.4 Fentanyl pharmacokinetic/pharmacodynamic modelling

No significant relationship between fentanyl PK and the four scales was found using

a continuous Emax model.

When the scores were treated as categorical, the proportional odds model was not

able to describe the effect of fentanyl concentration on any of the four scales when the

scores were not grouped. However when the scores were grouped into 3 equal categories,

the model established a significant relationship between fentanyl concentration and
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EDIN scale with an OFV decrease corresponding to 5.06 points. This model used a

linear model to describe the drug effect on EDIN score. No other predictor was found

significant when the scores were grouped.

In the final PK/PD model, the EDIN scores were grouped as follows:

- Group 1 (P0): scores between 0 and 3 (“low pain”)

- Group 2 (P1): scores between 4 and 6 (“middle pain”)

- Group 3 (P2): scores between 7 and 9 (“high pain”)

The estimates of the final PK/PD parameters and the RSE corresponding are

presented in Table 7.

Table 7: Estimates of the final PK/PD model

Parameter Estimate RSE (%)

B1 -1.86 31

B2 -2.23 34

ETA(1) 2.03 50

SLOPE -4.51 60

B1 and B2 are the baseline values, ETA (1) is the variance of the random effect and

SLOPE corresponds to the slope of the linear drug effect.

The model was evaluated using categorical VPC presented in Figure 8 and Figure

9. Figure 8 shows the proportion of the observed scores plotted against time whereas

Figure 9 presents the proportion plotted against fentanyl concentration. The categorical

VPC were stratified in three different graphs by observed scores (=DV).
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Figure 8: Categorical VPC (proportion vs time) produced using the parameters estimated by
the final PK/PD model. The shaded blue area is the 95 percent prediction interval. The blue
solid line is the median proportion of the observed scores. DV corresponds to the observed
scores and the VPC were stratified by scores.
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Figure 9: Categorical VPC (proportion vs concentration) produced using the parameters
estimated by the final PK/PD model. The shaded blue area is the 95 percent prediction
interval. The blue solid line is the median proportion of the observed scores. DV corresponds
to the observed scores and the VPC were stratified by scores.

The relationship between fentanyl concentration and the probabilities to observe a

score is presented Figure 10.
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Figure 10: Probability to observe a score plotted against fentanyl concentration. The red
point corresponds to the proportions of the scores observed in the group P0, the green points
to the scores in the group P1 and the blue points the scores in the group P2. The black solid
lines are smooth lines for each category.

The graph shows that the probability to have a score in the category P0 corresponding

to a low pain level increases gradually to reach 100% around 0.6 ng/mL and 95% around

0.3 ng/mL. The probability to have a score higher or equal to 4 (categories P1 or P2)

corresponding to a higher pain level decreases gradually to reach 0% around 0.6 ng/mL.

Therefore, target concentrations of 0.6 ng/mL and 0.3 ng/mL were graphically chosen

to perform simulations.

3.3.5 Simulation

The simulated concentrations for the dose of 1.5, 2 and 3 µg/kg are presented in

Figure 11, 12, and 13, respectively.
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Figure 11: Simulated plasma fentanyl concentrations for a dose of 1.5 mcg/kg. The red line
represents the target concentration of 0.6 ng/mL defined using the PK/PD model. The black
line is the predicted median concentration and the dotted line represents the 95 percent
prediction interval. The simulation graph was stratified by PMA.
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Figure 12: Simulated plasma fentanyl concentrations for a dose of 2 mcg/kg. The red line
represents the target concentration of 0.6 ng/mL defined using the PK/PD model. The black
line is the predicted median concentration and the dotted line represents the 95 percent
prediction interval. The simulation graph was stratified by PMA.
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Figure 13: Simulated plasma fentanyl concentrations for a dose of 3 mcg/kg. The red line
represents the target concentration of 0.6 ng/mL defined using the PK/PD model. The black
line is the predicted median concentration and the dotted line represents the 95 percent
prediction interval. The simulation graph was stratified by PMA.

The simulated concentration plots presented in Figure 11, 12 and 13 show that there

is a high interindividual variability in preterm patients receiving fentanyl IV bolus. For

a dose of 1.5 µg/kg, the predicted median reaches the target concentration of 0.6 ng/mL

only during the first minutes post-administration whereas for the dose of 2 µg/kg and

3 µg/kg, this target concentration is reached by the median during the 2h following

fentanyl administration.

Figure 14 and 15 show the probability of achieving the target concentration of 0.6

ng/mL and 0.3 ng/mL, respectively for the dose of 1.5, 2 and 3 µg/kg by PMA range.

After a rapid increase to reach its maximum few minutes after the dose administration,

the probability of target achievement deceases progressively over time. This decrease

varies between PMA groups. The probability of achieving the target concentration

decreases faster with age.
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Figure 14: Probability of achieving the target concentration of 0.6 ng/mL plotted against
time stratify by dose. Each line represents the simulated probability of target achievement
for different PMA ranges.

Figure 14 shows that only 51% of the patients reaches the target concentration

few minutes after the dose administration of 1.5 µg/kg. This percentage decreases

progressively to reach 25% after 2h for the preterm babies with a PMA over 31.5 weeks.

Around 70% of the patients reaches the target after receiving 2 µg/kg of fentanyl.

However this number decreases to 50% 2h following the drug administration. The plot

also shows that 90% of the patients reaches the target concentration for a dose of 3 µg/kg

and this percentage only decreases to a minimal value of 76% 2h post-administration.
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Figure 15: Probability of achieving the target concentration of 0.3 ng/mL plotted against
time stratify by dose. Each line represents the simulated probability of target achievement
for different PMA ranges.

Figure 15 shows that the target concentration of 0.3 ng/mL is reached by 87% of the

patients receiving a dose of 1.5 µg/kg and by more than 90% for the patients receiving

higher doses (2 µg/kg and 3 µg/kg)

3.3.6 Model evaluation

The RSE of the final PK and PK/PD models presented in Table 4 and Table 7 are

below 61% for all parameters, which indicates that the parameters were well estimated

by the models.

The goodness-of-fit plots of DV vs PRED and IPRED (Figure 5) show that the

model underpredicted the population concentration. However, the correlation between

observed and predicted concentrations is improved for the individual predictions which

suggests that the inclusion of IIV on CL and V1 improved the model. The points are

distributed uniformly around the line of unity, hence the model with IIV seems to

adequately describe the data. The plot of CWRES vs time shows that the residual

points are distributed homogeneously around 0. In addition, the vast majority of the

values (>95%) are within -2 and 2, indicating that the model predicted well the fentanyl
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concentration. The lowess line for both bottom plots is flat around the value 0, therefore

the error model also seems to be appropriate. The histogram in Figure 6 confirms that

the CWRES follow a normal distribution. The QQ plot shows that the majority of the

points are within -2 and 2 and follows the normal distribution although some extreme

points deviate from the normality.

The VPC of both PK (Figure 7) and PK/PD models (Figure 8 and 9) show that

more than 90% of the observed data are captured by the prediction interval 95%. Hence,

the PK and PK/PD models were successfully evaluated by the VPC, meaning that the

model was able to simulate data with similar properties to the observed data.

3.4 Discussion

In this chapter, population PK and PK/PD models have been developed for fentanyl

in preterm infants. The final PK model was a two-compartment model with an IIV on

clearance and central volume of distribution. Age and weight were included as covariates

and the model showed that three genetic variants coding for ABCC1 and ABCC3 had

an influence on fentanyl clearance. The final PK/PD model was a proportional odds

model with a linear drug effect. Using the final PK/PD model, a target concentration

of 0.3 ng/mL was defined for procedural pain in preterm infants.

To our knowledge, the PK model developed in this chapter is the first one to describe

fentanyl clearance using an allometric weight scaling and a PMA-based sigmoidal

maturation function to include the effect of weight and age in neonates. The clearance

and volume of distribution at steady state were estimated by the model at 0.2 L/h and

2.75 L, respectively. The model confirms that the clearance in preterm infants is lower

compared to older children. The elimination half life calculated from the final model

was 2.3 hours, which is close to the value found in the literature in neonates.

The PK/PG model reveals that three genetic variants (one coding for ABCC1

receptor and two coding for ABCC3 receptor) had a significant effect on fentanyl

elimination. The patients who carried these minor allele variants had a higher clearance

explaining a part of the large intervariability estimated. Both ABCC1 and ABCC3
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are part of the MRP subfamily involved in multi-drug resistance. ABCC1, also called

MPR1 is an efflux transporter expressed in most human tissues including the endothelial

cells of the BBB. Recently, it has been shown that ABCC1 was involved in the brain

disposition of morphine in rodents by modulating opioid efflux in the BBB (137, 138).

ABCC3 or MRP3 is also an efflux transporter but it is mainly expressed in the liver

and intestine cells. Studies have reported that certain genetic variants of MRP3 were

associated with an increase of the formation clearance of both morphine metabolites

M3G and M6G (139, 140). The role of ABCC1 and ABCC3 in fentanyl elimination

remains unclear. Hence, further research should be done to better understand the

impact of these genotypes on the fentanyl clearance.

Ontogeny also influences the expression of transporters such as ABCC1 and ABCC3.

Although the maturation of ABCC1 in humans remains unknown, the literature reports

that the transporter level of expression in the rat BBB increases during the gestation to

reach its highest level at birth (141). The expression level of ABCC3 in rats increases

gradually during the gestation and after the birth (142). According to the maturation

profiles of both transporters, preterm infants might already have a high level of both

transporters. However, more studies are needed to confirm their maturation profiles in

humans.

Due to the limited number of patients included in the model, each genotype was

tested in the model as a dichotomous covariate in order to simplify the model. Therefore,

the model assumed that heterozygous and homozygous mutants had the same effect on

the clearance whereas it is not the case for most genes. Further models should include

more patients in order to confirm these findings and describe the impact of the genetic

variants with more precision by using trichotomous variables.

In this study, the association between analgesia and fentanyl concentration has been

tested using four different pain scales: two scales evaluating continuous pain (ALPS-neo

and EDIN) and two evaluating procedural pain (PIPP and BIIP). For the procedural

scales, the observation time was limited to 6h whereas for scale evaluating continuous

pain the observation time was 12h. The PK/PD models were only able to establish a
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relationship for one scale: EDIN score. Although all the scales have all been validated

in preterm infants, they don’t include the same items. Only two items are common

for the four scales: facial expression and state of agitation. The differences between

the scales might be the reason why the model wasn’t able to establish a relationship

between fentanyl PK and three of the scales. For instance, ALPS-neo presents the

specificity to include items that evaluate stress as well as pain and PIPP scale include

physiologic factors which have been discussed in numerous papers because of its lack of

specificity for pain. In addition, a smaller number of score observations were available

for PIPP and BIIP scales compared to the other scales because the observation time

was shorter, which could explain why no relationship was found between the fentanyl

concentration and procedural pain scales.

One of the main limits of this PK/PD model is that the scores had to be grouped

into 3 categories in order to find a significant concentration-effect relationship. Reducing

the number of categories was necessary in this analysis because the observed data were

limited due to the small number of patients. The 3 categories can be considered as

low pain (score=0-3), middle pain (score=4-6) and high pain (score=7-8). Grouping

categories is a model simplification that might cause a loss of information.

Since the EDIN scale used to assess pain and sedation in the NEOFENT chapter

does not allow the assessment of oversedation, a target concentration of 0.3 ng/mL

(corresponding to 95% probability of having a score in the group defined as low pain)

seems more appropriate than 0.6 ng/mL (corresponding to a probability of 100%) in

order to take into account the risk of oversedation that can be observed with fentanyl

(Figure 11).

Simulation results show that in order to have at least 80% of the patients reaching

the target of 0.6 ng/mL, a single dose of fentanyl IV bolus corresponding to 3 µg/kg

should be administered (Figure 14). However, Figure 13 shows that due to the important

interindividual variability in the population, the fentanyl simulated concentrations can

reach values over 2 ng/mL for a dose of 3 µg/kg, which is more than three time higher

than the target concentration defined in this chapter. Figure 15 shows that from a dose
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of 2 µg/kg, at least 90% of the patients would reach the target concentration of 0.3

ng/mL.
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4 Pharmacokinetic/pharmacodynamic mod-

elling of the results of the SANNI1 trial

4.1 Introduction

4.1.1 Clonidine

Clonidine is an alpha-2-adrenergic receptor agonist first synthesised in 1962. It

was initially developed as a nasal decongestant before finding application as an anti-

hypertensive agent in the late 1960s (143). However, serious adverse reactions were

observed after long term administration in adults including withdrawal syndrome,

hypotension and tachycardia. Hence, clonidine is rarely used today for the treatment

of hypertension (144). More recently, its sedative and analgesic properties have been

highlighted. Since 2000s, clonidine has become a popular sedative agent in the paediatric

population. Studies suggest that clonidine decreases pain, discomfort and agitation in

children (145). In addition to pain and sedation management, clonidine can be used to

treat attention-deficit/hyperactivity disorder (ADHD), drug withdrawal and neonatal

abstinence syndrome (NSA) (146). Clonidine is available in various preparations

including IV, oral, intramuscular, transdermal, rectal and intranasal (146). Clonidine

formula is C9H9Cl2N3 and its molecular weight is 230.093 g/mol.

Figure 16: Clonidine structure
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4.1.1.0.1 Mechanism of action

Clonidine acts as an agonist with a specificity for the alpha-2-adrenoreceptors which

are present in numerous organs including CNS, pancreas and kidney. The stimulation

of the alpha 2-adrenoreceptors in the vasomotor centre in the locus coeruleus and in

the brain results in an inhibition of the release of excitatory neurotransmitters such as

noradrenaline leading to sedation as well as hypotension and bradycardia. The analgesic

effect might be the consequence of the stimulation of these receptors located in the

substantia gelantinousa of the dorsal horn (147, 148, 143). The full mechanism behind

the drug effects remains unclear (143). Studies have suggested that part of the analgesic

effect could be due to an hyperpolarisation of the neuronal membrane decreasing the

neuronal excitability and repolarization time (146).

Clonidine limits the stress response by suppressing the increase of both sympathetic

outflow and vasoconstrictors such as noradrealine, vasopressin and angiotensin. In

addition, the drug acts on the neuroendocrine system by inhibiting the release of cortisol

and ACTH (143). Hence, clonidine prevents organ failure of heart or kidney which can

be observed in children after surgery (149, 150, 151).

Some studies have shown that clonidine is associated with neuroprotective effects which

might be related to the inhibition of glutamate and aspartate releases (152).

4.1.1.0.2 Clonidine toxicity

Clonidine has shown an excellent safety profile in children. Rare cases of overdose,

bradycardia and hypotension have been observed (4). Minor adverse reactions such

as dry mouth have been reported at the beginning of treatment but tend to disappear

after a prolonged exposure (153). In case of overdose, clonidine can cause respiratory

depression in addition with bradycardia and hypotension. Although the safety profile

of clonidine is reassuring, more studies are necessary in order to evaluate the risk of

long term exposure particularly in critically ill patients (154).

4.1.1.0.3 Clonidine pharmacokinetics

Clonidine has a high oral biovailability between 75 and 100% and is therefore almost
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totally absorbed. Hence, clonidine is ideal for oral administration (143, 148). Clonidine

plasma protein binding is only around 30-40%. Due to its lipophilic properties, the

drug is rapidly distributed to fat tissues and diffuses through BBB to reach the CNS as

well as placenta barrier (143, 147).

Around 50% of clonidine is metabolised in the liver where the compound undergoes a 4-

hydroxylation by CYP2D6 to produce p-hydroxyclonidine, its main inactive metabolite.

Clonidine is mainly eliminated in the urine of which 50% is unchanged (143, 148).

Like most drugs, clonidine clearance is affected by the immaturity of the elimination

pathways. Compared to adults, the drug clearance is reduced at birth and increases

gradually and significantly during the first month of life (21).

Clonidine has a long elimination half life (that has been estimated around 17 hours in

neonates). Hence, a loading dose is required in order to reach therapeutic steady state

concentrations in less than 24 hours (155).

4.1.1.0.4 Previously published models

The PK of clonidine in children and neonates has been well described by models

published by Potts et al. (156) and Larsson et al. (148). To describe the influence

of weight on PK parameters, both models used an allometric weight scaling with an

allometric exponent of 0.75 for clearance and 1 for volumes. The age related changes

on clearance was included in both models using different maturation functions. Potts

et al. used the PNA to describe these changes whereas Larsson et al. used a sigmoidal

maturation function driven by the PMA. The clearance in neonates has been estimated

at approximately one third of that is expected in adults (based on allometric scaling)

due to immature elimination pathways (156).

Few PD studies of clonidine can be found in the literature. Hall et al. have published

PD models using both EEG (BIS score) and pain scores (OAA/S, VAS) to evaluate

the sedative effect of clonidine (157). The results suggest that clonidine is an effective

sedative agent in adults. The efficacy of clonidine has been confirmed in children by

Kleiber et al. in a recent study using the COMFORT-B score to assess the level of
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sedation (158).

There is no PK/PD model published to date describing the relationship between

clonidine concentration and effect.

4.1.2 Hypothermic treatment for perinatal asphyxia

Asphyxia is the consequence of multiple causes in neonates and can occur either

intrauterine or during the delivery (perinatal). Perinatal asphyxia is characterised by

a reduced oxygenation of the body that might result in vital organ failure. Because

the brain is still in development during the first weeks of life, the CNS is particularly

vulnerable to perinatal oxygen deficit. For this reason, the CNS is routinely monitored

after birth for Hypoxic Ischemic encephalopathy (HIE). Newborns suffering from

asphyxia are monitored using EEG in order to prevent neurodepression and seizure.

Asphyxia is commonly treated in the NICU using hypothermic treatment, a technique

which has proven its efficacy for moderate and severe HIE. The body temperature is

maintained at 33.5 degree Celsius for 72h before a gradual rewarming of 14h (159). An

EEG is performed during the hypothermia as well as before the hypothermic treatment

in order to decide when/if to start the treatment. An MRI is also used after the

hypothermic treatment to evaluate the brain lesions.

Analegesics and sedatives are prescribed during hypothermia in order to minimise the

distress of the child. It has been proven that the hypothermic treatment is more efficient

if the patient’s pain is adequately managed (159). A combination of morphine and

midazolam is traditionally used during hypothermia. However, recently it is frequently

replaced by a combination of fentanyl and clonidine due to their numerous advantages

including a neuroprotective effect and a reduction of opioid need (160).

The effect of hypothermic treatment on the drug PK depends on several factors:

the characteristics of the drug (Log P, molecular weight, protein binding), the patient

(weight, age, illness) and the ADME (161).

The effect of hypothermic treatment on pharmacodynamics has not been extensively

described in the literature. A large variability regarding the impact of hypothermia on
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pharmacodynamic parameters was observed between the drug studied (162).

4.1.3 Effect of perinatal asphyxia and hypothermic treatment on

ADME

ABSORPTION

Drug absorption is affected by both perinatal asphyxia and hypothermic treatment.

Perinatal asphyxia induces an increase of the intestinal permeability, therefore the

absorption of drugs administered orally might be higher compared to healthy neonates.

It has been shown that hypothermic treatment is associated with a lower arterial flow

which can also decrease the drug absorption (161).

DISTRIBUTION

Although hypothermic treatment has a minor effect on protein binding, studies have

shown that hypothermia affects the blood pH by inducing a decrease of carbon dioxide

partial pressure in the blood. Therefore, the pH of the neonates receiving hypothermic

treatment is higher than for the uncooled children (161). In addition, hypothermia

causes peripheral vasoconstriction leading to a decrease of the drug distribution in

muscles, skin and fat. As a result, the volume of distribution of some drugs such as

fentanyl can be reduced (163). The severity of the perinatal asphyxia can also be a factor

affecting the drug distribution since it can induce changes in plasma protein composition

(161). Furthermore, the rewarming of the body can influence the drug distribution. For

instance, drugs with a large volume of distribution that are administrered before the

hypothermic treatment can get trapped in the peripheral tissues during hypothermia

and then released in the blood circulation during the rewarming causing an increase of

the drug concentration.

METABOLISM

The activity of metabolism enzymes such as CYP450 is reduced during the cooling

leading to a drug accumulation. In vitro studies have shown that the activity of the

CYP3A4 is decreased to 69% at 32 degrees Celsius (164). Therefore the drug clearance

is also reduced, the elimination half life is longer and the drug concentrations higher
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(163). In addition, hypothermic treatment causes a decrease of the hepatic blood flow.

As a result, hypothermia has a more important effect on the metabolic clearance of

the drugs with a high hepatic extraction ratio such as propofol (161). During the

rewarming, the activity of the metabolism enzymes undergoes a rapid change to return

to its baseline value leading to an increase of the drug clearance.

ELIMINATION

Studies have shown that perinatal asphyxia and hypothermic treatment both reduced

the elimination of drugs excreted by glomerular filtration. This might be due to the

reduced blood flow in the kidney. However, the reasons explaining the reduced renal

drug excretion have not been fully explored (161).

4.1.4 Rationale

Hypothermic treatment can alter the PK and PD of analgesics and sedatives.

Because their body is still in development, the neonatal population is particularly

vulnerable to the numerous adverse reactions of these drugs. Therefore, it is essential

to study the impact of hypothermia in asphyxiated neonates receiving hypothermic

treatment in order to adapt the doses and decrease the risk of toxicity.

Few PK studies have been previously done to describe the effect of the hypothermic

treatment on analgesics and sedatives PK in asphyxiated infants. A multicenter study

called PharmaCool was conducted in order to optimise the doses of antibiotics, analgesics,

sedatives and anti-epileptic drugs in asphyxiated newborns receiving hypothermic

treatment using PK and PK/PD modelling (165). The PK analyses published in 2019

showed that the clearance of morphine and midazolam metabolite (1-hydroxymidazolam)

were both reduced by hypothermia (166, 167). These findings confirm the influence

of hypothermia on morphine that was shown by Frymoyer et al. (168) in 2016. The

PharmaCool study also showed that the hypothermic treatment did not influence the

elimination of phenobarbital and midazolam (167). These results are supported by the

phenobarbital PK model developed by Shellhaas et al. (169) and the midazolam PK

analysis published by Welzing et al. (170). No PK/PD result from the PharmaCool trial
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has been published to date. A recent study conducted by Mcadamms et al. (171) showed

that the elimination half-life of dexmedetomidine was markedly lower in newborns

treated with hypothermic treatment compared to the uncooled newborns. However,

these findings should be interpreted carefully because only 7 patients were included in

the analysis.

Although the influence of hypothermia has been explored for some analgesics and

sedatives, the effect of hypothermic treatment on clonidine and fentanyl PK has not

been studied. In addition, no previous analysis included PD data in order to establish

the relationship between concentration and effect during hypothermia.

For these reasons, it is essential to conduct PK and PK/PD studies in order to

determine if the cooling has an effect on the parameters and optimise the doses of both

clonidine and fentanyl in this vulnerable population.

4.1.5 Aim

The overall aim of the SANNI1 project was to determine the optimal doses of

clonidine and fentanyl given in combination in asphyxiated newborns treated using

hypothermia. To reach this aim, the first objective of the project was to develop a PK

model for clonidine and fentanyl in this population in order to identify the covariates

(such as hypothermia) that influence the PK. The second objective was to use PK/PD

modelling to establish a relationship between the concentrations of both drugs and

analgesic/sedative effect assessed using pain/sedation scores. These models were then

used to performed simulations in order to suggest an optimal dose for both drugs.

4.2 Methods

4.2.1 Study population

The SANNI1 study was a non randomized prospective observational study. The

asphyxiated newborns included in the study received hypothermia as routine treatment

in the NICU. Because of the limited number of patients in each hospital, a multicenter
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trial was chosen. The study took place in three different NICU in Sweden: Kånes

University Hospital in Lund and Karolinska University Hospital Solna and Huddinge in

Stockholm. The combination of fentanyl and clonidine is routinely prescribed in these

NICU to provide analgesia and sedation during hypothermic treatment.

To be included in the study, the patients had to be term infants receiving hypothermic

treatment following perinatal asphyxia and in need of analgesics and sedatives according

to the Thomsons and ALPS-neo scores. In addition, the newborn infants should have

an existing arterial or venous catheter for blood sampling and a parental consent was

required. The exclusion criteria were the following: AV-block I-III or a heart rate below

70, serious congenital heart disease that require surgery and a mean arterial blood

pressure below 35 mmHg.

The infants with perinatal asphyxia were admitted in the NICU following their birth.

The patient physiological parameters and aEEG/EEG were monitored immediately.

The hypothermic treatment was started at a maximal PNA of 6h. The temperature

was maintained at 33.5 degrees Celsius for 72h before proceeding to a rewarming for

approximately 14h (0.5 degrees Celsius/h).

The study started 30 minutes before the beginning of the hypothermic treatment

and ended once the temperature was back to baseline (normothermia). The study could

reach a maximal period of 7 days.

As clinical routine during the study, several variables were monitored: encephalopa-

thy degree assessed using the Thompson score, physiological functions (heart rate, mean

arterial blood pressure and peripheral oxygen saturation), cerebral perfusion using

NIRS score and aEEG/EEG. In addition, cerebral ultrasound were performed during

the first 24h of the study and an echocardiography was done directly after reaching

the hypothermia and the normothermia post hypothermic treatment. A MRI was also

performed after the rewarming. Pain and sedation were assessed using two different

pain scales (ALPS-neo and COMFORT-Neo sore) and the skin conductance algesimetry

to register the galvanic skin response of the patient.

Fentanyl and clonidine were administered intravenously following an algorithm based
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on pain and sedation scores. A loading dose of 1 µg/kg for both drugs was given over 10

minutes before the start of the continuous infusion 30 minutes after. The starting dose

of the infusion was fixed to 1 µg/kg/h for fentanyl and 0.1 µg/kg/h for clonidine. Both

drugs were not administrered at the same time. It was recommended to give fentanyl

first followed by clonidine 1 hour later. The doses could be adapted following the dosing

algorithm based on the ALPS-neo score. The maximal infusion dose was 3 µg/kg/h

for fentanyl and 0.5 µg/kg/h for clonidine. The exact time of the starting doses and

dose changes for both drugs were carefully recorded. The concomitant medications

were also recorded. The patients did not receive any muscle relaxant drug during the

hypothermic treatment.

The blood samples used for the PK analyses from which the concentration of fentanyl,

nor-fentanyl and clonidine were measured were taken from existing catheters (umbilical,

arterial or venous). Dried blood spot was used for the sampling of all compounds. All

samples were analysed using LC-MS standard method. The limit of quantification for

all compounds was 0.1 ng/mL. Mandatory samples were taken at the following time of

the study:

- 5 minutes after starting the loading dose for each drug

- Before starting the maintenance infusion and then at 1, 6, 24, and 48h following the

infusion start

- Just before starting both the hypothermic treatment and the rewarming and once the

normothermia was reached

- Once every 24h during the 3 days following normothermia

Blood samples were also routinely used to monitor blood gas, albumin and cortisol

as well as liver and renal function.

COMFORT-neo and ALPS-neo scores were both used as PD endpoints in order to

establish the relationship between drug concentration and the analgesic/sedative effect.

Both scores were recorded approximately every hour during the entire time of the study.
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4.2.2 Pharmacokinetic model building

Two separate population PK models were built in order to describe the concentrations

of clonidine and fentanyl in the population studied and identify the covariates that

influence the PK parameters.

To define the structural model of both drugs, one and two-compartment models

were tested.

An additive, proportional and combined error model was tested for each drug in

order to describe the residual variability.

Body weight and age using PMA were included a priori in both models using the

standard method including an allometric scaling and a maturation function as described

in section 1.2.3. The parameters of the maturation function were estimated by the

model or fixed to values estimated in previous models published by Larsson et al. (148)

for clonidine and Anderson et al. (134) for fentanyl.

The observed values below the limit of quantification of 0.1 ng/mL were implemented

in the database by dividing the BLQ by 2 or using the M3 method.

The samples taken before the drug administration were included in the model and

used to estimate the baseline concentration values.

Once the structural models of both drugs were defined, the influence of body

temperature was tested on each parameter as continuous covariates using a centred

multiplicative model as follows:

CLi = CLT ·
(
WTi
70

)n
· PMAHilli

PMAHill50 + PMAHilli

·
(

TEMP

MTEMP

)index
Where CLi is the drug clearance in an individual, CLT is the typical CL for a

70 kg adult, WT is body weight, n the allometric weight exponent, PMA50 is the

PMA (weeks) for CL to reach 50% maturation. Hill is the shape parameter, TEMP is

the body temperature, MTEMP the median temperature and index the temperature

exponent.

The values of temperature missing were implemented in the final database by
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calculating the mean between the previous and the next temperature observed using a

linear slope to take into account the time difference between the samples.

4.2.3 Pharmacokinetic/pharmacodynamic model building

All the PK/PD models were built using a sequential method. For both clonidine

and fentanyl, two separate PK/PD models were developed (one for ALPS-neo and one

for COMFORT-neo) in order to describe the relationship between drug concentration

and analgesic/sedative effect.

For both scales, PK/PD models were developed using two steps; a PK/PD model for

each drug was built then a joint model including data from both drugs was developed.

First, the PD data were treated as continuous and an inhibitory sigmoid Emax model

was tested. The inclusion of an effect compartment in the continuous Emax model was

also tested. Then, the data were treated as categorical variables and two categorical

models were tested: a proportional odds model and a bounded integer model (with and

without Markov effect).

The Emax model tested was an inhibitory sigmoid model with and without effect

compartment. The maximal effect Emax was fixed to 1. A logit scale was used in order

to limit the prediction in the scale interval. The influence of PMA and temperature

was tested using a centred multiplicative covariate model. The scores recorded before

the drug administration were used to estimate the baseline score value in logit scale.

The exponent of the Emax model corresponding to the shape parameter HILL was

either fixed to 1 or estimated by the model. In the joint continuous model, the effects

of both drugs on the scores were combined using an additive model. Therefore the

model estimated separate parameters for the Emax model of each drug and a common

baseline for both drugs.

In the inhibitory Emax sigmoid joint models, the drug effect of clonidine (CEF )

and fentanyl (FEF ) were combined using an additive model as follows:
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CEF = Emaxc · Cpcnc

EC50cnc · Cpcnc

FEF = Emaxf · Cpfnf

EC50fnf · Cpfnf

TEF = B0− (B0 ∗ CEF ∗ FEF )

Where TEF is the total effect, Emaxc corresponds to the maximum effect for

clonidine, EC50c is the clonidine concentration for 50% Emax effect and Cpc is the

clonidine concentration. Emaxf corresponds to the maximum effect for fentanyl, EC50f

is the fentanyl concentration for 50% Emax effect and Cpf is the fentanyl concentration.

nc and nf represent the slope for clondine and fentanyl, respectively. B0 is the baseline

effect.

A proportional odds model as described in section 2.2.4 was also built for each

scale and drug. In addition to the drug effect, the predictors tested were PMA and

temperature. Each predictor was tested using a linear and Emax model. The categories

corresponding to the scores missing in the database were ignored in the model. No

score were grouped into categories. If the proportional odds model was chosen as final

model, the target concentration was determined graphically using the model results.

In the joint proportional odds model tested, the drug effects of clonidine and fentanyl

were both used as predictor in the same model.

The last model developed was a BI model. In this model, the probability of the kth

category of a patient i was defined as:

Pi,j(k) = φ(
Zk/n − f(θ, ηi, t,Xi,j

g(σ, ηi,g, t,Xi,g)
)− φ(

Z(k−1)/n − f(θ, ηi, t,Xi,j

g(σ, ηi,g, t,Xi,g)
)

where f(.) is a function of fixed effect θ, random effect for individual i ηi, time

t and covariate X. g(.) is the variance function. Together, the two functions define

the following normal distribution: N(f(.), g(.)). φ corresponds to the cumulative

distribution of the normal distribution.

Since the model uses cumulative distribution, the first category is in the interval

[−∞, Z1/n] and corresponds to the equation:
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Pi,j(1) = φ(
Z1/n − f(θ, ηi, t,Xi,j

g(σ, ηi,g, t,Xi,g)
)

whereas the last category is in the interval [Z(n−1)/n,∞] and was defined as:

Pi,j(1) = 1− φ(
Z(n−1)/n − f(θ, ηi, t,Xi,j

g(σ, ηi,g, t,Xi,g)
)

A Markov effect was included in the model if the addition of the Markov element

induced a significant decrease of the OFV.

If the observation Yi,j is similar to the previous observation Yi,j−1, the probability

of a score k for a patient i at a time j follows the equation:

Pi,j(k|Yi,j−1 = k) = Pk,i,j + PM

1 + PM

When Yi,j−1 and Yi,j are different, the equation becomes:

Pi,j(k|Yi,j−1 6= k) = Pk,i,j
1 + PM

The parameter PM includes in the model that there is a higher probability for a

score to have the similar value that the previous score observed. PM estimates the

balance between the component of the model given by f and g and the component

corresponding to the previous observation. The model does not predict that two scores

with low probabilities and very close in time should be similar. Therefore, it is able to

describe large score jumps of observation with more precision. In addition, the Markov

element is implemented such as the markovian properties decrease in time, resulting on

higher probabilities of having two consecutive same scores with time.

The Markov effect Meff was implemented in the BI model as follows:

Meff = BASE + PMAX · (1− e−Ln(2)/HL·TIME)

Where BASE is the baseline score estimate of the latent variable, PMAX is the
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maximal Markov effect and HL is the half life of the Markov effect.

4.2.4 Simulations

To determine the optimal dose of clonidine and fentanyl in asphyxiated infants

receiving hypothermic treatment, simulations were performed using the final PK and

PK/PD models. A database of 1000 patients was used as described in section 2.2.5.

The simulations were done for a time period of 96 h. In order to follow the study design,

the temperature in the simulated database was fixed to 33.5 degrees Celsius during

the first 72h and 37 degrees Celsius for the last 24h.The simulations did not take into

account that the rewarming is done gradually over 14h in clinical practice.

The simulated doses of clonidine were:

- Loading dose of 1 µg/kg followed by a continuous infusion of 0.1, 0.5, 1 µg/kg/h

- Loading dose of 2 µg/kg followed by a continuous infusion of 0.1, 0.5, 1 µg/kg/h

- Loading dose of 3 µg/kg followed by a continuous infusion of 0.1, 0.5, 1 µg/kg/h

- Loading dose calculated using the target concentration at steady state followed by a

continuous infusion of 0.5 and 1 µg/kg/h

The simulated doses of fentanyl were:

• Loading dose of 1 µg/kg followed by a continuous infusion of 1 µg/kg/h

• Loading dose of 2 µg/kg followed by a continuous infusion of 1, 2 µg/kg/h

• Loading dose of 3 µg/kg followed by a continuous infusion of 1, 2, 3 µg/kg/h

• Loading dose calculated using the target concentration at steady state followed

by a continuous infusion of 1,2,3 µg/kg/h

4.2.5 Model evaluation

RSE, goodness-of-fit plots and PC-VPC were used to evaluate the PK and PK/PD

models built in this chapter, as described in section 2.2.6. PWRES plotted against time

were also used as goodness-of-fit plot to evaluate the BI models.

In addition, the Akaike information criterion (AIC) was used to compare the models.

For a model of m parameter, the AIC can be calculated as follows:
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AIC = OFV + 2m

4.3 Results

4.3.1 Study population

Thirty-one patients who received a combination of clonidine and fentanyl during

hypothermic treatment were included in the PK and PK/PD analyses. The demographic

characteristics of the population are summarised in Table 8.

Table 8: Table summarising the demographic characteristics of the SANNI1 cohort.
Median (Range)

Birth weight (kg) 3.7 (2.5 - 4.7)
Gestational age (weeks) 40 (35 - 42)
Postnatal age (days) 3 (0 - 6)
Postmenstrual age (weeks) 40 (36 - 42)

4.3.2 Pharmacokinetic models

4.3.2.1 Clonidine

In total, 267 samples were used to build the clonidine final PK model. The observed

clonidine concentrations are presented in Figure 17.
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Figure 17: Observed concentrations of clonidine plotted against time after dose administration
(TAD). Each line represents a patient.

Clonidine PK data were best described by a one-compartment model with IIV on

clearance (CL) and central volume of distribution (V1). The error model that best

described the residual error was a combined error model. The BLOQ were included

in the model by dividing the BLQ by 2 (BLOQ < 5%). When trying to estimate the

parameters of the maturation function, the model estimated PK parameters to non

plausible values. Therefore the parameters of the maturation function were fixed to the

values estimated by the model published by Larsson et al. (148). A significant effect of

the temperature was found on the clearance inducing an OFV decrease of 4.7 points.

The estimates of the final clonidine PK parameters and the RSE corresponding are

presented in Table 9.
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Table 9: Estimates from the final clonidine PK model.

Parameter Estimate RSE (%) Bootstrap estimate (95% CI)

CL (L/h/70kg) 14.3 19 15.2 (9.2-18.9)

V1 (L/70kg) 276 9 273 (234-325)

TEMP INDEX 2.61 78 2.54 (-0.65 - 7.58)

IIV CL (%) 76.4 44 71.4 (50.9-102.9)

IIV V1 (%) 35.4 38 33.1 (19.7-45.2)

Err prop (%) 27.5 23 27.2 (20.9-31.1)

Err add (ng/mL) 0.0185 36 0.017 (0.011-0.035)

PMA_50 61.6 FIX - -

Hill 2.42 FIX - -

CL is the clearance, V1 is the central volume of distribution, RSE is the relative

standard error (from NONMEM covariance step), IIV is the interindividual variability.

PMA_50 is the PMA (weeks) for CL to reach 50% maturity, and Hill is the shape

parameter. TEMP index is the estimate corresponding to the temperature as covariate.

FIX means that the value of the parameter was fixed a priori in the model. Err prop

and Err add correspond to the estimates of the proportional and additive error model,

respectively.

Basic goodness-of-fit plots and VPC used to evaluated the final clonidine PK model

are presented in Figure 18 and Figure 19, respectively.
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Figure 18: Goodness-of-fit plots of the final clonidine PK model. Plots of the observed
concentration vs population predicted concentration (top left) and vs individual predicted
concentration (top right), the CWRES versus time after dose (bottom left) and plot of the
IWRES vs time after dose (bottom right) from the final clonidine population PK model. The
red line is the lowess line and the black line is the line of unity.
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Figure 19: Visual Predictive Check produced using the parameters estimated by the final
clonidine PK model. The shaded grey area is the 95 percent prediction interval. The black
solid line is the median of the observed data; the black dashed lines are the 5 th and 95 th
percentiles of the observed data.

Figure 20 shows the change in percentage of the clonidine individual clearances

estimated by the final PK model plotted against the temperature.

Figure 20: Percentage of clonidine clearance change plotted against the temperature. Each
line represents a patient.

Figure 20 shows that the clonidine clearance can be reduced up to 40% during the

hypothermic treatment (at 33 degrees Celsius).
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4.3.2.2 Fentanyl

In total, 290 samples were used to develop the fentanyl final PK model. The observed

concentrations of fentanyl plotted against time are presented in Figure 21.

Figure 21: Observed concentration of fentanyl plotted against time after dose administration
(TAD). Each line represents a patient.

Fentanyl observed concentrations were best described by a one-compartment model

with IIV on clearance (CL) and central volume of distribution (V1). The BLOQ were

included in the model using the M3 method. The final residual model was an additive

error model. The model could not estimate the parameter of the maturation function,

therefore they were fixed to values previously estimated by Anderson et al. (134). The

change of temperature was found to be a significant covariate on fentanyl clearance.

Table 10 summarises the parameter estimates from the final fentanyl PK model.
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Table 10: Estimates from the final fentanyl PK model.

Parameter Estimate RSE (%) Bootstrap estimate

(95% CI)

CL (L/h/70kg) 135 16 137 (107-178)

V1 (L/70kg) 480 15 472.6 (370-647)

TEMP INDEX 3.94 24 4.01 (1.72-6.24)

IIV CL (%) 73.1 31 73.4 (53.8-92.2)

IIV V1 (%) 52.3 40 48.9 (26.4-62.4)

Err add (ng/mL) 0.477 29 0.469 (0.243-0.688)

PMA_50 73.6 FIX - -

Hill 3 FIX - -

CL is the clearance, V1 is the central volume of distribution, RSE is the relative

standard error (from NONMEM covariance step), IIV is the interindividual variability.

PMA_50 is the PMA (weeks) for CL to reach 50% maturity, and Hill is the shape

parameter. TEMP index is the estimate corresponding to the temperature as covariate.

FIX means that the value of the parameter was fixed a priori in the model. Err add

corresponds to the additive error estimate.

Figure 22 shows the goodness-of-fit plots of the final fentanyl model.
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Figure 22: Goodness-of-fit plots of the final fentanyl PK model. Plots of the observed
concentration vs population predicted concentration (top left) and vs individual predicted
concentration (top right), the CWRES versus time after dose (bottom left) and plot of the
IWRES vs time after dose (bottom right) from the final fentanyl population PK model. The
red line is the lowess line and the black line is the line of unity.

The VPC used to evaluate the fentanyl model are presented in Figure 23.
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Figure 23: Visual Predictive Check produced using the parameters estimated by the final
fentanyl PK model. The shaded grey area is the 95 percent prediction interval. The black
solid line is the median of the observed data; the black dashed lines are the 5 th and 95 th
percentiles of the observed data.

Figure 24 shows the relationship between temperature and individual clearances

estimated by the final PK model.

Figure 24: Percentage of fentanyl clearance change plotted against temperature. Each line
represents a patient.

Figure 24 shows that the fentanyl clearance can be reduced up to 60% during the
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hypothermic treatment (at 33 degrees Celsius).

4.3.3 Pharmacokinetic/pharmacodymamic models

4.3.3.1 ALPS-neo score

The histogram presented in Figure 25 shows the distribution of ALPS-neo scores.

Figure 25: Proportion of ALPS-neo score

The graph shows that the scores are not distributed uniformly. The proportions of

scores higher than 6 are considerably lower than the others. In addition, the histogram

shows that the proportion of score 0 corresponding to no pain at all is one of the highest.

4.3.3.1.1 Clonidine

All the 31 patients were included in the PK/PD models. In total, 2999 ALPS-neo

scores were used to build the models. The relationship between the observed score and

clonidine concentration is presented in Figure 26.

115



Figure 26: Observed clonidine concentration plotted against boxplot of ALPS-neo scores.
The red line is the regression line.

The graph in Figure 26 shows that the ALPS-neo scores seem to decrease when the

clonidine concentrations increase.

Emax model

The continuous Emax model that best described the clonidine data was an inhibitory

sigmoid Emax model with IIV on EC50 and the baseline B0. The inclusion of an effect

compartment did not induce a significant decrease of the OFV. The best error model

was an additive error model. A significant influence of age and temperature was found

on EC50 and baseline (B0), respectively (∆OFV=12.4). The parameter estimated by

the Emax model and the RSE corresponding are summarised in Table 11.
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Table 11: Estimates from the ALPS-neo Emax clonidine

PK/PD model.

Parameter Estimate RSE (%) Bootstrap estimate

(95% CI)

EC50 (ng/mL) 3.7 14 3.7 (2.9-7.0)

HILL 2.5 7 2.4 (1.6-2.7)

EMAX 1 FIX - -

B0 0.42 8 0.43 (0.37-0.56)

PMA EC50 -1.5 118 -1.5 (-6.9 - 4.9)

TEMP B0 -0.66 132 -0.65 (-2.2 - 0.56)

IIV EC50 (%) 53.2 42 51.9 (33.2-76.8)

IIV B0 (%) 64.1 36 59.1 (44.3-86.6)

Err add 0.59 9 0.58 (0.49-0.67)

EMAX is the maximal effect, EC50 is the concentration to reach 50% of the maximal

effect in logit scale. B0 is the baseline score in logit scale. HILL is the shape parameter.

TEMP B0 and PMA EC50 are the index corresponding to the effect of the temperature

on the baseline and PMA on EC50, respectively. IIV is the interindividual variability.

Err add is the error in logit scale.

Goodness-of-fit plots for the Emax model linking clonidine concentration and ALPS-

neo scores are presented in Figure 27.
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Figure 27: Goodness-of-fit plots of the clonidine Emax model. Plots of the observed scores
vs population predicted scores (top left) and vs individual predicted scores (top right) and
the CWRES versus time after dose (bottom) from the clonidine Emax model. The red line is
the lowess line and the black line is the line of unity.

Figure 28 shows the PC-VPC used to evaluate the clonidine Emax model.
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Figure 28: Visual Predictive Check produced using the parameters estimated by the clonidine
Emax model. The shaded grey area is the 95 percent prediction interval. The black solid line
is the median of the observed data; the black dashed lines are the 5 th and 95 th percentiles
of the observed data.

Proportional odds model

A significant effect of the clonidine concentration as predictor on the ALPS-neo

score was found using a proportional odds model (∆OFV=29.3). An Emax model was

used to describe the drug effect because it induced a higher decrease of the OFV than

the linear model (OFV=11663.4 for the linear model compared to 11681.6 for the Emax

model). Change in temperature was also a significant predictor (∆OFV=33.9). Its

effect was described using a linear model. The estimates of the proportional odds model

are presented in Table 12.

119



Table 12: Estimates from the ALPS-neo proportional odds

clonidine PK/PD model.

Parameter Estimate RSE (%) Bootstrap estimate (95% CI)

B1 6.97 41 6.64 (1.22-10.9)

B2 -1.09 10 -1.09 (-1.30 - -0.89)

B3 -1.02 9 1.0 (-1.2 - -0.89)

B4 -0.78 11 -0.78 (-0.95 - -0.65)

B5 -0.78 10 -0.77 (-0.94 - -0.65)

B6 -0.92 12 -0.94 (-1.1 - -0.76)

B7 -0.71 14 -0.69 (-0.89 - -0.54)

B8 -0.83 18 -0.81 (-1.1 - -0.57)

B9 -0.83 24 -0.80 (-1.32 - -0.53)

B10 -0.77 38 -0.75 (-1.64 - -0.42)

EC50 (ng/mL) 0.77 76 0.94 (0.13-3.3)

EMAX 0.92 56 1.10 (0.33-2.60)

TEMP -0.12 7 -0.11 (-0.24 – 0.05)

IIV 1.38 33 1.35 (0.76-2.1)

B are the baseline for each category. EMAX is the maximal effect, EC50 is the

concentration to reach 50% of the maximal effect in logit scale. TEMP is the index

corresponding to the effect of the temperature. IIV is the interindividual variability.

The model was evaluated using categorical VPC showing the proportion of the

observed scores plotted against time in Figure 29 and the same proportion plotted

against clonidine concentration in Figure 30.
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Figure 29: Categorical VPC produced using the parameters estimated by the proportionnal
odds PK/PD model (score proportion vs time). The shaded blue area is the 95 percent
prediction interval. The blue solid line is the median proportion of the observed scores. DV
corresponds to the observed scores and the VPC were stratified by scores.
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Figure 30: Categorical VPC produced using the parameters estimated by the proportionnal
odds PK/PD model (score proportion vs concentration). The shaded blue area is the 95
percent prediction interval. The blue solid line is the median proportion of the observed
scores. DV corresponds to the observed scores and the VPC were stratified by scores.

Bounded integer model

A BI model was developed to describe the relationship between clonidine concen-

tration and ALPS-neo score. An Emax model was used to describe the drug effect.

The addition of a Markov element significantly improved the model (∆OFV=1791.1),

therefore the parameter was included in the model with an IIV on the baseline score

estimate (BASE). The parameters estimated by the BI model are summarised in Table

13.
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Table 13: Estimates from the ALPS-neo BI clonidine PK/PD

model.

Parameter Estimate RSE (%) Bootstrap

estimate (95%

CI)

EC50 (ng/mL) 1.29 56 1.21

(0.32-3.47)
DRUG

EFFECT

EMAX 0.40 42 0.47

(0.22-0.88)
HILL 1 FIX - -

SD 0.57 5 0.56

(0.52-0.61)
BASE -0.57 35 -0.64 (-1.0 -

-0.36)

MARKOV

EFFECT

PMAX 0.22 104 0.30

(0.05-0.79)
HL 0.082 90 0.079

(0.022-0.36)
PM 0.63 13 0.62

(0.48-0.77)
IIV BASE (%) 0.11 45 0.09

(0.042-0.17)

EMAX is the maximal effect, EC50 is the concentration to reach 50% of the maximal

effect in logit scale. HILL is the shape parameter. IIV is the interindividual variability.

SD is the residual error. PM is the markov element, BASE is the baseline score estimate

of the latent variable, PMAX is the maximal Markov effect and HL is the half life of

the Markov effect.

Figure 31 and 32 show the goodness-of-fit plots of the PWRES used to evaluate the
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model including the clonidine drug effect without and with a Markov effect, respectively.

Figure 31: Goodness-of-fit plot of the clonidine BI model without Markov effect. Plot of the
Pearson residual for categorical data (PWRES) vs time after dose. The red line is the lowess
line and the black line is the line of unity.
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Figure 32: Goodness-of-fit plot of the clonidine BI model with Markov element. Plot of the
Pearson residual for categorical data (PWRES) vs time after dose. The red line is the lowess
line and the black line is the line of unity.

The relationship between clonidine concentration and probability to observe an

ALPS-neo score calculated using the final BI model is presented Figure 33. The graph

shows that at 2.5 ng/mL, there is a probability around 70% to have a score below 4

corresponding to a low level of pain. At 2.5 ng/mL, there is also a probability of 80%

to get a score below 5.
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Figure 33: Probability to observe a score plotted against clonidine concentration. The solid
lines are smooth lines for different category group.

4.3.3.1.2 Fentanyl

All the 31 patients were also included in the PK/PD models to describe the

relationship between fentanyl PK and ALPS-neo score. In total, 3237 scores were used

to develop each model. Figure 34 shows the relationship between observed score and

fentanyl concentration.
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Figure 34: Observed fentanyl concentration plotted against ALPS-neo score. The red line is
the regression line.

The graph in Figure 34 does not show a clear relationship between ALPS-neo score

and fentanyl concentration.

Emax model

The Emax model that adequately described the fentanyl data was also an inhibitory

sigmoid Emax model with IIV on EC50 and the baseline B0 and an additive error

model. The inclusion of an effect compartment was not significant. A significant effect

of hypothermia was found on both EC50 and B0 (∆OFV = 159.7). The estimates from

the Emax model and the RSE corresponding are presented in Table 14.
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Table 14: Estimates from the ALPS-neo Emax fentanyl

PK/PD model.

Parameter Estimate RSE (%) Bootstrap estimate

median

EC50 (ng/mL) 4.6 19 5.1

HILL 1.8 9 1.7

EMAX 1 FIX - -

B0 0.48 9 0.46

TEMP EC50 -4.3 22 -4.4

TEMP B0 29.3 73 32.3

IIV EC50 (%) 85.2 46 94.8

IIV B0 (%) 65.4 27 64.0

Err add 0.56 9 0.53

EMAX is the maximal effect, EC50 is the concentration to reach 50% of the maximal

effect in logit scale. B0 is the baseline score in logit scale. HILL is the shape parameter.

TEMP B0 and TEMP EC50 are the index corresponding to the effect of the temperature

on the baseline and EC50, respectively. IIV is the interindividual variability. Err add is

the error in logit scale.

Goodness-of-fit plots for the fentanyl ALPS-neo Emax model are presented in Figure

35.
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Figure 35: Goodness-of-fit plots of the fentanyl Emax model. Plots of the observed score vs
population predicted score (top left) and vs individual predicted score (top right) and the
CWRES versus time after dose (bottom) from the fentanyl Emax model. The red line is the
lowess line and the black line is the line of unity.

Figure 36 shows the PC-VPC used to evaluate the fentanyl Emax model.
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Figure 36: Visual Predictive Check produced using the parameters estimated by the fentanyl
Emax model. The shaded grey area is the 95 percent prediction interval. The black solid line
is the median of the observed data; the black dashed lines are the 5 th and 95 th percentiles
of the observed data.

Proportional odds model

The addition of fentanyl concentration as predictor in the proportional odds model

describing the ALPS-neo scores was not found significant with an OFV decrease below

3.84 points (∆OFV=0.4).

Bounded integer model

A BI model was built in order to describe the relationship between fentanyl con-

centration and ALPS-neo score. An Emax model was used to describe the drug effect.

IIV were added on EC50 and BASE. The addition of a Markov effect increased the

instability of the model which was not able to estimate the parameters. The parameter

estimates and RSE corresponding are presented in Table 15.
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Table 15: Estimates from the ALPS-neo BI fentanyl PK/PD

model.

Parameter Estimate RSE (%) Bootstrap estimate (95% CI)

EC50 (ng/mL) 0.16 1512 0.16 (0.0067-1.99)

EMAX 0.88 22171 0.86 (0.70-1.18)

HILL 1.03 33 1.04 (0.99-1.34)

SD 0.574 642 0.564 (0.425-1.434)

IIV EC50 (%) 21.8 880 21.3 (2.8-40.7)

IIV BASE (%) 0.122 436 0.101 (0.0347-0.180)

EMAX is the maximal effect, EC50 is the concentration to reach 50% of the maximal

effect in logit scale. HILL is the shape parameter. IIV is the interindividual variability.

SD is the residual error.

Goodness-of-fit plot of the PWRES used to evaluate the BI model with an Emax

drug effect is presented in Figure 37.
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Figure 37: Goodness-of-fit plot of the fentanyl BI model. Plot of the Pearson residual for
categorical data (PWRES) vs time after dose. The red line is the lowess line and the black
line is the line of unity.

4.3.3.1.3 Joint models

Emax model

A joint Emax model describing the relationship between ALPS-neo score and both

drugs was developed. IIV were added on the EC50 of both drugs and the error model

used was an additive error model. A significant influence of the hypothermia was found

on the baseline B0 (common for both drugs) and the fentanyl EC50 (∆OFV=154.3).

The parameters estimated by the joint Emax model are presented in Table 16.
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Table 16: Estimates from the ALPS-neo joint Emax PK/PD

model.

Parameter Estimate RSE (%) Bootstrap estimate (95% CI)

CLO EC50 (ng/mL) 6.11 20 6.33 (4.65-58.01)

CLO HILL 1.78 9 1.82 (0.50-2.04)

FENT EC50 (ng/mL) 2.53 12 2.56 (1.42-4.09)

FENT HILL 1.99 11 1.91 (0.66-6.66)

EMAX 1 FIX - -

B0 0.418 8 0.410 (0.359-0.473)

TEMP BO -2.03 43 -1.96 (-2.83 - -0.677)

FENT TEMP EC50 28.9 15 31.4 (25.7-289.9)

CLO IIV EC50 (%) 101 40 104 (69-451)

FENT IIV EC50 (%) 60.1 41 64.0 (44.7-812.4)

IIV B0 65.2 36 57.4 (18.4-494.9)

Err add 0.59 9 0.59 (0.51-0.67)

CLO corresponds to clonidine and FENT to fentanyl. EMAX is the maximal effect,

EC50 is the concentration to reach 50% of the maximal effect in logit scale. B0 is the

baseline score in logit scale. HILL is the shape parameter. TEMP BO and FENT

TEMP EC50 are the index corresponding to the effect of the temperature on B0 and

EC50, respectively. IIV is the interindividual variability. Err add is the error in logit

scale.

Goodness-of-fit plots and PC-VPC used to evaluate the joint Emax model are

presented in Figure 38 and 39, respectively.
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Figure 38: Goodness-of-fit plots of the joint Emax model. Plots of the observed score vs
population predicted score (top left) and vs individual predicted score (top right) and the
CWRES versus time after dose (bottom) from the joint Emax model. The red line is the
lowess line and the black line is the line of unity.
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Figure 39: Visual Predictive Check produced using the parameters estimated by the joint
Emax model. The shaded grey area is the 95 percent prediction interval. The black solid line
is the median of the observed data; the black dashed lines are the 5 th and 95 th percentiles
of the observed data.

Proportional odds model

A significant effect of both predictors corresponding to clonidine and fentanyl

concentrations was found on the ALPS-neo score using a joint proportional odds model

(∆OFV=69.2). The clonidine drug effect was best described using an Emax model

(∆OFV=5.4) whereas a linear model was used to describe the fentanyl drug effect. The

Emax model tested to describe the fentanyl concentration did not induce a significant

decreased of the OFV and estimated an EC50 to non plausible value. The change in

temperature was also a significant predictor (∆OFV=41.1). The estimates from the

joint proportional odds model are summarised in Table 17.
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Table 17: Estimates from the ALPS-neo proportional odds

joint PK/PD model.

Parameter Estimate RSE (%) Bootstrap estimate

(95% CI)

B1 2.71 14 2.37 (2.15-3.43)

B2 -1.09 11 -1.11 (-1.27 - -0.91)

B3 -1.02 9 -1.02 (-1.19 - -0.89)

B4 -0.778 11 -0.784 (-0.919 -

-0.618)
B5 -0.779 10 -0.776 (-0.938 -

-0.643)

B6 -0.923 12 -0.944 (-1.125 -

-0.766)
B7 -0.706 14 -0.707 (-0.882 -

-0.539)
B8 -0.824 18 -0.836 (-1.081 -

-0.587)
B9 -0.831 24 -0.803 (-1.280 -

-0.552)
B10 -0.767 38 -0.739 (-1.711 -

-0.375)

CLO EC50

(ng/mL)

0.946 70 1.05 (0.23 – 3.16)

CLO EMAX 1.26 52 1.413 (0.545-2.740)

FENT SLP 0.0929 102 0.105 (-0.085 -

0.275)
TEMP INDEX 3.32 68 3.20 (-0.69 – 6.47)

IIV 1.32 36 1.35 (0.70 – 2.068)
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CLO corresponds to clonidine and FENT to fentanyl. B are the baseline for each

category. EMAX is the maximal effect, EC50 is the concentration to reach 50% of the

maximal effect in logit scale. TEMP INDEX is the index corresponding to the effect of

the temperature. IIV is the interindividual variability.

The categorical VPC showing the proportion plotted against time used to evaluate

the model are presented in Figure 40, 41 and 42. Figure 41 and 42 show the categorical

VPC of the proportion plotted against the concentration of clonidine and fentanyl,

respectively.

Figure 40: Categorical VPC for both drugs produced using the parameters estimated by
the joint proportionnal odds PK/PD model (score proportion vs time). The shaded blue
area is the 95 percent prediction interval. The blue solid line is the median proportion of
the observed scores. DV corresponds to the observed scores and the VPC were stratified by
scores.
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Figure 41: Categorical VPC for clonidine produced using the parameters estimated by the
joint proportionnal odds PK/PD model (score proportion vs clonidine concentration). The
shaded blue area is the 95 percent prediction interval. The blue solid line is the median
proportion of the observed scores. DV corresponds to the observed scores and the VPC were
stratified by scores.
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Figure 42: Categorical VPC for fentanyl produced using the parameters estimated by the
joint proportionnal odds PK/PD model (score proportion vs fentanyl concentration). The
shaded blue area is the 95 percent prediction interval. The blue solid line is the median
proportion of the observed scores. DV corresponds to the observed scores and the VPC were
stratified by scores.

The relationship between the fentanyl concentration and the probability to observe

an ALPS-neo score is presented Figure 43. The graph shows that at 2.6 ng/mL, there

is a probability around 80% to have a score below 5 corresponding to a low level of

pain. At the same value, there is also a probability of 67% to get a score below 4.
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Figure 43: Probability to observe a score plotted against fentanyl concentration. The solid
lines are smooth lines for different category group.

Bounded integer model

The joint BI model was not able describe the relationship between ALPS-neo score

and concentration of clondine and fentanyl. The BI model estimated parameters of

both drugs to non plausible values.

4.3.3.2 COMFORT-neo score

4.3.3.2.1 Clonidine

Twenty-nine patients were included in the clonidine COMFORT-neo PK/PD models.

In order to develop the models, 2809 COMFORT-neo scores were used. Figure 44
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shows the relationship between the observed scores and clonidine concentrations using

boxplots.

Figure 44: Observed clonidine concentration plotted against COMFORT-neo scores. The red
line is the regression line.

Figure 44 shows that the COMFORT-neo score seems to increase when the clonidine

concentrations increase. This can be explain by the Simpson’s paradox (172).

Emax model

The Emax model that best fitted the data was an inhibitory sigmoid Emax model

with additive error model and IIV on clonidine EC50 and baseline B0. The inclusion of

an effect compartment did not induce a significant decrease of the OFV. A significant

effect of the covariate temperature was found on B0 (∆OFV=29.6). The estimates

produced by the Emax model and the RSE corresponding are summarised in Table 18.
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Table 18: Estimates from the COMFORT-neo Emax clonidine

PK/PD model.

Parameter Estimate RSE (%) Bootstrap estimate

(95% CI)

EC50 (ng/mL) 4.45 22 5.15 (3.23-76.51)

HILL 1.99 18 1.68 (0.66-2.48)

EMAX 1 FIX - -

B0 0.244 10 0.249 (0.217-0.300)

TEMP B0 1.27 99 1.01 (-1.19 – 3.23)

IIV EC50 (%) 79.1 54 98.4 (51.1-665.4)

IIV B0 (%) 51.1 46 55.6 (35.3-91.1)

Err add 0.430 11 0.421 (0.335-0.497)

EMAX is the maximal effect, EC50 is the concentration to reach 50% of the maximal

effect in logit scale. B0 is the baseline score in logit scale. HILL is the shape parameter.

TEMP B0 is the index corresponding to the effect of the temperature on the baseline.

IIV is the interindividual variability. Err add is the error in logit scale.

Goodness-of-fit plots and the PC-VPC used to evaluate the clonidine Emax model

are presented in Figure 45 and 46, respectively.
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Figure 45: Goodness-of-fit of the clonidine COMFORT-neo Emax model. Plots of the
observed score vs population predicted score (top left) and vs individual predicted score (top
right) and the CWRES versus time after dose (bottom) from the joint Emax model. The red
line is the lowess line and the black line is the line of unity.
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Figure 46: Visual Predictive Check produced using the parameters estimated by the clonidine
COMFORT-neo Emax model. The shaded grey area is the 95 percent prediction interval.
The black solid line is the median of the observed data; the black dashed lines are the 5 th
and 95 th percentiles of the observed data.

Proportional odds model

A proportional odds model for the COMFORT-neo score was also developed. Cloni-

dine concentration was a significant predictor in the model (∆OFV=18.4). However,

the model estimated the EC50 to a non plausible value therefore the model did not fit

well the data.

Bounded integer model

A BI model was developed to describe the relationship between COMFORT-neo

score and clonidine concentration. The drug effect was described using an Emax model.

The addition of a drug effect and a Markov element in the baseline BI model induced a

significant decrease of the OFV (∆OFV= 4140.7 for the drug effect and ∆OFV=6085.8

for the Markov effect). However, the goodness-of-fit plots used to evaluate the model

after addition of a drug or Markov effect (PWRES vs time) show that the lowess line

of the PWRES is higher than 0, indicating the the model did not fit well the data.

4.3.3.2.2 Fentanyl
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The 31 patients were included in the PK/PD models developed in order to describe

the relationship between COMFORT-neo score and fentanyl concentration. To build

the model, 3044 observed scores were used. Figure 47 shows the observed fentanyl

concentrations plotted against boxplot of COMFORT-neo scores.

Figure 47: Observed fentanyl concentration plotted against COMFORT-neo scores. The red
line is the regression line.

The graph presented in Figure 47 does not show a clear relationship between the

COMFORT-neo scores and fentanyl concentrations.

Emax model

An inhibitory sigmoid Emax model with an additive error model and an IIV on

EC50 and B0 adequately described the relationship between fentanyl concentration and

COMFORT-neo score. The covariate temperature was found significant on the EC50

and B0 (∆OFV=415.7). The parameters estimated by the Emax model are presented

in Table 19.
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Table 19: Estimates from the COMFORT-neo Emax fentanyl

PK/PD model.

Parameter Estimate RSE (%) Bootstrap estimate

median

EC50 (ng/mL) 1.72 54 1.68

HILL 0.87 32 0.92

EMAX 1 FIX - -

B0 0.385 11 0.366

TEMP EC50 22.5 48 25.7

TEMP B0 -4.86 30 -5.17

IIV HILL (%) 79.4 32 80.6

IIV EC50 (%) 185.2 145 181.4

IIV B0 61.8 36 59.9

Err add (ng/mL) 0.36 9 0.36

EMAX is the maximal effect, EC50 is the concentration to reach 50% of the maximal

effect in logit scale. B0 is the baseline score in logit scale. HILL is the shape parameter.

TEMP B0 and TEMP EC50 is the index corresponding to the effect of the temperature

on B0 and EC50, respectively. IIV is the interindividual variability. Err add is the error

in logit scale.

Goodness-of-fit plots and PC-VPC used to evaluate the fentanyl Emax model are

presented in Figure 48 and 49, respectively.
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Figure 48: Goodness-of-fit plots of the COMFORT-neo fentanyl Emax model. Plots of the
observed score vs population predicted score (top left) and vs individual predicted score (top
right) and the CWRES versus time after dose (bottom) from the joint Emax model. The red
line is the lowess line and the black line is the line of unity.
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Figure 49: Visual Predictive Check produced using the parameters estimated by the
COMFORT-neo fentanyl Emax model. The shaded grey area is the 95 percent predic-
tion interval. The black solid line is the median of the observed data; the black dashed lines
are the 5 th and 95 th percentiles of the observed data.

Proportional odds model

The addition of the predictor corresponding to the fentanyl concentration in the

proportional odds model describing the COMFORT-B score induced a significant

decrease of the OFV (∆OFV=92.3). However, the model estimated the EC50 to an

non plausible value. Therefore, the model did not fit well the data.

Bonded integer model

A BI model was built in order to describe the relationship between COMFORT-neo

score and fentanyl concentration. The drug effect was described using an Emax model.

As for the clonidine model, the addition of a drug as well as a Markov effect in the

baseline BI model induced a significant decreased of the OFV (∆OFV=6032.6 for the

drug effect and ∆OFV=4247.2). However, the goodness-of-fit plots (PWRES vs time)

used to evaluate the models showed that it did not adequately described the data with

a lowess line higher than 0.

4.3.3.2.3 Joint model
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Emax model

A joint Emax model describing the relationship between the concentrations of both

drugs and COMFORT-neo score was built. The model included an IIV on the baseline

B0 and the EC50 of both drugs. The residual error used was an additive error model.

A significant effect of hypothermia was found on the fentanyl EC50 (∆OFV=114.6).

The estimates from the joint Emax model and the RSE corresponding are summarised

in Table 20.

Table 20: Estimates from the COMFORT-neo Emax joint

PK/PD model.

Parameter Estimate RSE (%) Bootstrap estimate

(95% CI)

CLO EC50

(ng/mL)

2.78 13 2.84 (2.26-89.5)

CLO HILL 3.60 14 3.59 (0.46-4.46)

FENT EC50

(ng/mL)

2.72 44 2.81 (0.85-37.80)

FENT HILL 0.92 3 0.91 (0.75-1.05)

EMAX 1 FIX - -

B0 0.235 7 0.237 (0.204-0.269)

FENT TEMP

EC50

11.9 26 13.6 (10.3-244.9)

CLO IIV EC50

(%)

31.2 43 32.7 (20.9-656.5)

FENT IIV EC50

(%)

264.3 36 291.0 (185.4-952.8)

IIV B0 47.8 45 42.4 (24.5-61.6)

Err add 0.436 10 0.433 (0.352-0.532)
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CLO corresponds to clonidine and FENT to fentanyl. EMAX is the maximal effect,

EC50 is the concentration to reach 50% of the maximal effect in logit scale. B0 is the

baseline score in logit scale. HILL is the shape parameter. TEMP EC50 is the index

corresponding to the effect of the temperature on EC50. IIV is the interindividual

variability. Err add is the error in logit scale.

Figure 50 shows the goodness-of-fit plots of the joint Emax model.

Figure 50: Goodness-of-fit plots of the joint Emax model. Plots of the observed score vs
population predicted score (top left) and vs individual predicted score (top right) and the
CWRES versus time after dose (bottom) from the joint Emax model. The red line is the
lowess line and the black line is the line of unity.

The PC-VPC used to evaluate the joint Emax model are presented in Figure 51.
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Figure 51: Visual Predictive Check produced using the parameters estimated by the
COMFORT-neo joint Emax model. The shaded grey area is the 95 percent prediction
interval. The black solid line is the median of the observed data; the black dashed lines are
the 5 th and 95 th percentiles of the observed data.

Proportional odds model

The inclusion of both predictors corresponding to the concentration of fentanyl and

clonidine in the joint proportional odds model used to describe the COMFORT-neo

score induced an overparametrization. Therefore the model was not able to fit the data

or estimate the parameters.

Bounded integer model

The joint BI model estimated most of the parameters to non plausible values,

therefore the model was not able to adequately describe the data.

4.3.4 Simulations

4.3.4.1 Clonidine

A loading dose of 11 µg/kg was calculated using the EC50 (2.78 ng/mL) of the

clonidine COMFORT-neo model. To reach the target concentration defined graphically

using the ALPS-neo model (2.5 ng/mL), a target concentration of 10 µg/kg was

calculated.
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The simulated concentration of clonidine after a loading dose of 2 and 11 µg/kg

followed by a continuous infusion of 0.5 or 1 µg/kg/h are presented in Figure 52.

Figure 52: Simulated plasma clonidine concentrations stratify by dose. The blue line represents
the target concentration defined graphically using the BI ALPS-neo PK/PD model. The red
line corresponds to the EC50 defined using the joint Emax COMFORT-neo PK/PD model.
The black line is the predicted median concentration and the dotted line represents the 95
percent confidence interval. The vertical green line corresponds to the starting time of the
rewarming.

Figure 52 shows that a loading dose of 11 µg/kg is necessary in order for the

predicted median to reach the targets defined by the models during the first hour

post-administration. After a loading dose of 2 µg/kg followed by a continuous infusion

of 0.5 µg/kg/h , the predicted median reaches the targets only 30h post-administration.

When the continuous infusion is increased to 1 µg/kg/h, the predicted median reaches

the same targets 12h post-administration. It can also be observed that the slope

corresponding to the concentration increase is more abrupt after a continuous infusion

of 1 µg/kg/h compared to 0.5 µg/kg/h. All plots presented in Figure 52 show a high

interindividual variability.

Figure 53 presents the probability of achieving the clonidine target concentration

graphically defined using the BI ALPS-neo model.
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Figure 53: Simulated probability of achieving the clonidine target concentration for ALPS-neo
(2.5 ng/mL). Each line (each colour) represents the probability for a different dose.

Figure 53 shows that the probability of achieving the target concentration for ALPS-

neo reaches 50% after receiving a loading dose of 10 µg/kg. This probability increases

to 75% 40h post-administration. For a dose of 2 µg/kg followed by 0.5 µg/kg/h, the

probability reaches 50% after 25h. For the patients who are given a continuous infusion

of 1 µg/kg/h, the probability increases rapidly to reach 50% 10h post-administration.

Figure 54 shows the probability of achieving the EC50 estimated by the joint

COMFORT-neo model.
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Figure 54: Simulated probability of achieving the clonidine EC50 for COMFORT-neo (2.78
ng/mL). Each line (each colour) represents the probability for a different dose.

Figure 54 shows that there is a probability of 50% of instantly achieving the EC50

estimated by the COMFORT-neo model for a loading dose of 11 µg/kg . This probability

increases slowly to reach a maximum of 70% 40h post-administration. A dose of 2

µg/kg followed by 1 µg/kg/h is necessary to have at least 90% of the patients achieving

the EC50. However this percentage is only reached 50h post-administration.

4.3.4.2 Fentanyl

The simulated fentanyl concentrations for a loading dose of 2, 2.5, 3 µg/kg followed

by continuous infusion of 2, 2.5, 3 µg/kg/h are presented in Figure 55.
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Figure 55: Simulated plasma fentanyl concentration stratify by dose. The blue line represents
the target concentration defined graphically using the proportional odds ALPS-neo PK/PD
model. The red line corresponds to the EC50 defined using the joint Emax COMFORT-neo
PK/PD model. The black line is the predicted median concentration and the dotted line
represents the 95 percent prediction interval. The vertical green line corresponds to the
starting time of the rewarming.

Figure 55 shows that the predicted median concentration reaches the target con-

centration 22h following the administration of a 2 µg/kg loading dose followed by 2

µg/kg/h. The target is reached faster with a loading dose of 2.5 µg/kg followed by 2.5

µg/kg/h (12h). The graphs show that in order for the predicted median to achieve the

target before 10h, a dose of 3 µg/kg followed by 3 µg/kg/h is necessary.

Figure 56 presents the probability of achieving the fentanyl target concentration

graphically defined using the joint ALPS-neo proportional odds model.
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Figure 56: Simulated probability of achieving the fentanyl target concentration for ALPS-neo
(2.6 ng/mL). Each line (each colour) represents the probability for a different dose.

Figure 56 shows that the probability of achieving the target concentration gradually

increases to reach a maximum of 65% for a loading dose of 2 µg/kg followed by 2

µg/kg/h, 72% for a dose of 2.5 µg/kg followed by 2.5 µg/kg/h and 90% for a dose of 3

µg/kg followed by 3 µg/kg/h. 10h post-administration, the probability of achieving

the target is only of 25%, 40% and 55% for the dose of 2, 2.5 and 3 µg/kg, respectively.

The probability of achieving the EC50 estimated by the joint COMFORT-neo model

is presented in Figure 57.
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Figure 57: Simulated probability of achieving the fentanyl EC50 COMFORT-neo (2.72
ng/mL). Each line (each colour) represents the probability for a different dose.

Figure 57 shows that the probability to reach the EC50 for the COMFORT-neo

score increases gradually to reach a maximum that differs for each dose (85% for 3

µg/kg, 75% for 2.5 µg/kg and 64% for 2 µg/kg). To have at least 50% of the patient

achieving the EC50 10h post-administration, a dose of 3 µg/kg followed by 3µg/kg/h

is necessary.

4.4 Discussion

PK/PD models for both ALPS-neo and COMFORT-neo scores have been developed.

Models treating the data as continuous or categorical have been tested. The final model

for the COMFORT-neo was an inhibitory sigmoid Emax joint model. For ALPS-neo

score, the final clonidine model was a BI model with Markov effect and the final fentanyl

model was a joint proportional odds model.
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4.4.1 Pharmacokinetic models

Population PK models describing the concentrations of clonidine and fentanyl were

developed. For each drug, the model that best fitted the data was a one-compartment

model. Both models included the influence of weight and age on the CL. Both models

show that the hypothermic treatment significantly decrease the CL.

The RSE, goodness-of-fit plots and VPC used to evaluate the clonidine and fentanyl

PK model show that both models adequately described the PK data.

The RSE of the parameters presented in Table 9 and 10 are all below 50% except

for the RSE evaluating the parameter corresponding to the effect of hypothermia on

the clonidine clearance (78%). The medians produced by the bootstrap analysis were

close to the parameter estimates.

The goodness-of-fit plots (Figure 18 and 22) presenting the observed concentrations

plotted against the predicted concentrations show that both models slightly overpre-

dicted the concentrations. However, the graphs presenting the observed concentrations

plotted against the individual predictions show that the inclusion of the IIV improved

both models. Most of the CWRES used to evaluate the models are between -2 and 2

and no trend can be observed with a lowess line flat around 0, indicating that both

models fit well the data.

The final models of clonidine and fentanyl were also successfully evaluated by the

VPC presented in Figure 19 and 23, respectively.

4.4.2 Pharmacokinetic/pharmacodynamic models

4.4.2.1 Comparison of the modelling techniques tested

There is no rule for the choice of model that should be used to treat ordinal

categorical data. The choice between treating the data as continuous or categorical

(with a proportional odds or BI model) can be made based on different aspects such as

parsimony, run time and parameter uncertainty. These aspects depend mainly on the

size of the scale which is therefore a key information for the model choice.

Treating pain and sedation score as continuous variable is the most common approach
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in peadiatric population because the scales are often composed of more than 10 categories.

This model presents the advantage to be simple to implement, easy to interpret and

requires less parameter estimations. However, this approach ignores the integer nature

of the data which might be an issue at the boundaries of the scale. If not restrained,

the residual error can give predictions outside the scale range. To correct this problem,

logistic transformation or beta regression can be used. However, such methods only

predict the extreme values asymptotically (110).

In addition, when modelling scores as continuous variable, the parameters can be

estimate using a first-order conditional method which is more robust than the Laplacian

method used to estimate categorical data (110). One limitation to consider with

this type of model is the important run time due to the number of observations and

estimations of the interindividual variabilities (173).

The proportional odd model respects the categorical nature of the data, but requires

a large number of parameters which can be an inconvenient for large scales (110).

Overparameterization can occur when using a proportional odds model since the

model estimates the probability of the baseline for each score as well as the parameters

corresponding to the predictors. For this reason, the proportional odds model is generally

not used to analyse large scales with more than 11 categories such as COMFORT-neo

score. Only few studies used an ordered categorical based model to analyse scale with

scores superiors or equal to 7 (173). In addition, the number of observations required

for the proportional odds model increases with the number of categories in order to

adequately estimate the parameters. If some categories of the scales are not observed in

the data, the proportional odds model is not able to estimate their probabilities. The

probability of such score would need to be ignored or categories would need be merged

into groups. One of the limit of the proportional odds model is the assumption that the

random effect as well as the predictor effect is the same for all categories. Changing

this assumption would require to increase the model size considerably and therefore

increase the risk of overparameterization (110).

Compared to the proportional odds model, the BI model presents the advantage to
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be able to analyse scales of any category number and predict scores that are not observed

in the database. Additionally, the BI model predicts that there is a lower probability to

get an extreme score. This assumption requires for the data to be distributed in an

unimodal way, which might not be the case depending on the scale analysed. Unimodal

distribution are observed more frequently in rating scale using verbal expression instead

of numerical values to identify categories (110).

To choose the right model it is important to consider the possibility that two

consecutive observations may not be independent because of clinical reasons and

database characteristics such as collection frequency. For this reason, it is useful to test

if the inclusion of a Markov element leads to a model improvement. It has been shown

that applying a proportional odds model to data with markovian properties can lead to

model misspecification and therefore poor performance and inaccurate prediction. If the

Markov feature of a data is not negligible, the proportional odds model should be avoid

and Markov elements should be taken into account by using Markov models or other

ordinal categorical models that include markov components such as BI model. Unlike

the proportional odds model, the BI model allows the inclusion of Markov elements in

the model (109).

In conclusion, the continuous model is easy to develop but takes a long time to run

and does not respect the integer nature of the data unlike categorical models such as

proportional odds and BI models. Compared to the proportional odds model, the BI

model presents the advantage to be flexible, it requires less parameter estimates and

allows the addition of Markov elements. However, both categorical models are more

complex to implement than continuous models (173).

4.4.2.2 Model evaluation

4.4.2.2.1 ALPS-neo score

Clonidine

The Emax model describing the relationship between clonidine concentration and

ALPS-neo score was successfully evaluated using the PC-VPC as shown in Figure 28
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and the bootstrap presented in Table 11. However, the RSE presented in Table 11

show that the model was not able to adequately estimate the parameters corresponding

to the covariate index (PMAEC50 and TEMPB0) with RSE>100%. Although the

majority of the CWRES presented in Figure 27 are within -2 and 2 and the lowess line

is flat around 0, the goodness-of-fit plots show that some CWRES values are over 2.

The proportional odds model describing the ALPS-neo score using the clonidine effect

and the temperature as predictors was also successfully evaluated by the categorical

VPC presented in Figure 29 and 30. Based on the RSE and the bootstrap summarised

in Table 12, the model estimated with precision most parameters. However, the estimate

corresponding to the EC50 has a RSE > 70%.

The RSE evaluating the parameters estimated by the BI model summarised in Table

13 show that although the BI model adequately estimated most parameters, it was not

able to estimate with precision two parameters describing the Markov effect (PMAX

and HIL). However, all the parameter estimates fall within the 95% confidence interval

produced by the bootstrap evaluation. The goodness-of-fit plots presented in Figure 31

and 32 show that the majority of the PWRES of the model with and without Markov

effect are between -2 and 2. However, the graphs also show that that some PWRES

reach a value between 4 and 6. Figure 31 shows that the lowess line of the PWRES

is flat around 0 for the first 70h after the first dose administration, however after 70h

a trend below 0 can be observed. This trend is improved on the graph presented in

Figure 32 evaluating the model including a Markov element. This indicates that the

inclusion of a Markov effect improved the model by improving the description of the

data observed after 70h following the first dose administration.

Fentanyl

The RSE and bootstrap results suggest that the model was able to adequately

estimate most parameters. The RSE presented in Table 14 are below 50% except for

the parameter corresponding to the temperature index on the baseline. In addition,

the median generated by the bootstrap evaluation are close to the parameter estimates.

The goodness-of-fit plot of the observed concentrations plotted against the population
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predictions in Figure 35 shows that without inclusion of the IIV, the model did not fit

well the data. The inclusion of IIV highly improved the model as it is shown on the

plot presenting the observed concentrations vs individual predictions in Figure 35. The

CWRES graph shows that the lowess line is around 0 and no trend can be observed.

The Emax model was successfully evaluated by the PC-VPC presented in Figure 36.

Most of the RSE used to evaluate the BI model summarised in Table 15 are over 400%.

However, the parameter estimates fall within the 95% confidence interval produced by

the bootstrap evaluation and the median is close to the estimates obtained with the

BI model. The majority of the PWRES presented in Figure 37 are between -2 and 2.

However a clear trend of the lowess line can be observed.

Joint models

The joint Emax model describing the relationship between ALPS-neo score and both

drug concentrations was successfully evaluated by the PC-VPC presented in Figure 39.

Based on the RSE and the bootstrap results presented in Table 16, the model estimated

with precision all the parameters. The goodness-of-fit plots (Figure 38) show that the

inclusion of IIV on the parameters considerably improved the model. The lowess line of

the CWRES is flat around 0 and no trend can be observed indicating that the model

fit well the data.

The joint proportional odds model was also successfully evaluated by the categorical

VPC shown in Figure 40, 41 and 42. Although the RSE corresponding to the slope of

the fentanyl linear drug model (FENT SLP), the EC50 of the clonidine Emax drug

model (CLO EC50) and the index of the temperature effect (TEMP INDEX) are over

60%, the bootstrap show that the model was able to estimate with precision all the

parameters (Table 16).

4.4.2.2.2 COMFORT-neo score

Clonidine

Based on the RSE and bootstrap results summarised in Table 18, the Emax model

built to describe the relationship between clonidine concentration and COMFORT-neo
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score estimated all the parameters with precision except the parameter corresponding

to the temperature effect (TEMP B0) for which the RSE was close to 100%. The

goodness-of-fit plots in Figure 45 show that the IIV improved the model. Although

most of the CWRES are between -2 and 2, the graph of the CWRES shows that some

CWRES points are over 2, reaching the values of 6 in certain cases. The PC-VPC

presented in Figure 46 successfully evaluated the model even though some points are

outside the prediction interval.

Fentanyl

Based on the RSE summarised in Table 19, the fentanyl Emax model described all

parameters with precision except the parameter corresponding to the EC50. However,

all parameters are close to the median obtained with the bootstrap analysis. The

goodness-of-fit plots show that the model was also improved by the the inclusion of IIV.

However the graph presented in Figure 48 shows that the model did overpredict the

observed scores higher than 12. Some CWRES values are over 2 even though the lowess

line seems to be flat around 0. Most of the observations are within the 90% prediction

interval produced by the PC-VPC presented in Figure 49.

Joint model

The RSE and bootstrap results show that the joint Emax model estimated with

precision all the parameters (Table 20). The goodness-of-fit plots presented in Figure

50 show that the inclusion of IIV considerably improved the model. Although some

CWRES points are over 2, the lowess line of CWRES is flat around 0. The PC-VPC

(presented in Figure 51) show that some points are outside the PC-VPC prediction

interval.

4.4.2.3 Choice of the final pharmacokinetic/pharmacodynamic mod-

els

The choice of the final model for each score was based on model evaluation, AIC

and relevance of the type of model.

4.4.2.3.1 ALPS-neo score
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For a scale of 10 categories such as ALPS-neo, a categorical model is preferred

because it respects the categorical nature of the data unlike the continuous Emax model.

For this reason, even though the Emax models were successfully evaluated, they were

not selected as final models for both drugs.

Even though the AIC of the clonidine BI model without Markov effect (AIC =

11746) was higher than the one corresponding to the proportional odds model (AIC

= 11659), the inclusion of a Markov element in the BI model induced an important

decrease of the OFV and AIC (AIC = 9962). In addition, it would be logical to include

a Markov effect to describe pain and sedation scores when possible. For these reasons

and based on the RSE and PWRES goodness-of-fit plot used to evaluated the model,

the BI model including a drug effect and a Markov element was chosen to be the final

clonidine model.

The inclusion of fentanyl concentration as predictor in the fentanyl proportional

odds model was not significant. The AIC of the BI model (AIC = 12703) was higher

than the AIC of the joint ALPS-neo proportional model (AIC = 11653). In addition, the

RSE estimated by the fentanyl BI model were higher than 100%. Therefore, the joint

proportional odds model was chosen as final model to describe the concentration-effect

relationship of fentanyl with ALPS-neo score.

4.4.2.3.2 COMFORT-neo score

Since the COMFORT-neo score is a large scale with more than 20 categories, the

proportional odds is not the most adequate model to describe the data because of

the risk of overparameterization which can increase the instability of the model. In

addition, the proportional model odds model is not able to include the COMFORT-neo

score categories that are not observed in the population studied. Because its respect

the categorical nature of the PD data, a BI model would be preferred compared to a

continuous Emax model. However, the Emax model presents the advantage to be easy

to develop and combine into a joint PK/PD model for both drugs.

The model evaluation techniques show that both categorical models (proportional
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odds and BI models) were not able to adequately describe the data. For each drug, the

separate continuous Emax models provided a good fit. Based on the model evaluation,

the separate Emax model were improved when they were combined into a joint Emax

model including the effect of both drugs. In addition, a joint model is more relevant since

both drugs were administered in combination. For these reasons, the joint PK/PD Emax

model was chosen as final model to describe relationship between the COMFORT-neo

score and both drugs.

4.4.2.4 General discussion points on the PK/PD models

The hypothermia explained a part of the IIV observed in the final joint proportional

odds model chosen to link ALPS-neo and fentanyl. In addition, a significant effect of

the temperature was found on the fentanyl EC50 estimated by the final joint Emax

model for the COMFORT-neo but not on the clonidine EC50. This result might be

explained by the differences in terms of pharmacodynamics between the two drugs.

The pathways and receptors involved in fentanyl mechanism of action might be more

affected by hypothermia than the ones involved in clonidine response.

The final models were used to define the target concentrations for both drugs. For

the ALPS-neo score, the target concentrations of fentanyl and clonidine were defined

graphically to a value of 2.5 ng/mL for clonidine and 2.6 ng/mL for fentanyl. These

values as well as the EC50 estimated by the joint COMFORT-neo Emax model were

used to perform simulations in order to determine the optimal dose of both drugs and

suggest dose regimens for this particular population.

One of the main limitations of the PK/PD analysis is that a Markov effect could

not be tested on the final joint proportional odds model for ALPS-neo as well as on

the final joint Emax model for COMFORT-neo. The inclusion of a Markov element in

the model as it was done for the final BI model linking ALPS-neo and clonidine might

improve the model and therefore describe with more precision the relationship between

drugs concentration and scores.

Both PK and PK/PD models will be updated by including the data of the 50
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newborns once all the patients have been recruited. Including more patients in the

analyses should not induce important changes in the findings presented in this chapter.

However, it should improve the models and therefore the precision of the estimations.

4.4.3 Simulations

Based on the clonidine simulation results for the ALPS-neo score (Figure 53), a

clonidine loading dose of 10 µg/kg should be administered in order to have 50 % of the

patients reaching the target concentration during the first hour post-administration.

For the COMFORT-neo score (Figure 54), a loading dose of 11 µg/kg should be given

to have 50% of the patients reaching the EC50 in less than an hour. When using

the EC90 as target concentration for the COMFORT-neo score, this dose should be

increased by a factor 2 in order to obtain the same results. These doses are considerably

higher than the doses routinely used in the NICU, therefore the clonidine adverse

effects have to be considered. Although the incidence of adverse effects reported after

clonidine administration is low in most studies, cases of hypotension and bradycardia

in children have been observed. A recent study has shown that after administration

of loading doses up to 2 µg/kg followed by continuous infusions up to 2 µg/kg/h,

severe bradycardia and systolic hypotensionsion were observed in 40% and 50% of the

PICU patients, receptively (174). Due to the lack of information on clonidine safety,

prescribing loading doses over 10 µg/kg may not be feasible in the NICU. Therefore,

the simulation results suggest that clonidine should be used in combination with other

sedatives in order to adequately manage pain and sedation in asphyxiated newborns

treated with hypothermia.

Fentanyl simulation results (Figure 56 and 57) suggest that a loading dose of 3

µg/kg followed by a continuous infusion of 3 µg/kg should be administered in order

to have at least 80% of the patients reaching the target concentration for ALPS-neo

and the EC50 for COMFORT-neo. However, this percentage is only reached after 20h.

5h post-administration, only 25% of the patients would reach the target. To increase

the probability of achieving the target during the first hours post-administration, a
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higher loading dose should be given. However, because of the well known side effects of

fentanyl that can occur even at low doses in neonates, increasing the dose would not be

feasible.
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5 Pharmacokinetic/pharmacodynamic mod-

elling of the results of the CloSed trial

5.1 Introduction

5.1.1 Drugs studied

5.1.1.1 Midazolam

Midazolam is a short acting benzodiazepine that provides anxiolysis, sedation,

amnesia as well as muscle relaxation (21). It is mainly used in combination with

opioids as sedative for pain management during post-operative and procedural settings

(175). Midazolam is the sedative most commonly prescribed in the NICU because it

presents some advantages such as stopping seizures and causing anterograde amnesia

that minimizes the child’s painful memories (176). Compared to other benzodiazepines,

midazolam acts faster and has a shorter effect duration with less active metabolites

(21). It can be administered using various routes such as oral, IV, intranasal and

intramuscular (177). Midazolam formula is C18H13ClFN3 and its molecular weight is

325.78 g/mol.

Figure 58: Midazolam structure

5.1.1.1.1 Mechanism of action
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The midazolam effect is due to its action on the neuronal inhibitory pathways

mediated by gamma-aminobutyric acid (GABA), a major inhibitory neurotransmitter

of the central nervous system. Midazolam potentiates the inhibitory action of GABA by

binding a receptor complex called GABA-A which cause the opening of the membrane

chloride channels leading to a hyperpolarisation of the membrane cell. Both midazolam

and GABA bind the same complex receptor GABA-A at different sites. This mechanism

is responsible for most clinical effects of the drug including sedation and amnesia (175,

176, 178).

5.1.1.1.2 Midazolam toxicity

Despite its good efficacy/safety ratio, midazolam can cause numerous adverse

reactions. Therefore its use in children should be carefully monitored. The most

common adverse effects of midazolam include hiccough, cough, nausea, and vomiting

(175). In case of overdose, midazolam can induce respiratory depression and infusion

syndrome in which case continuous ventilator support is required (179, 175). Studies have

reported that the risk of respiratory depression is significantly higher when midazolam

is given in combination with opioids such as morphine and fentanyl (180). The long

term administration of midazolam induces a high rate of tolerance in children and

adults, in which case the dose should be increased in order to maintain the therapeutic

effects. As all benzodiazepines, its long term use can also induce a dependence, leading

to a withdrawal syndrome if the drug is stopped abruptly. Midazolam is known for

its heamodynamic safety, however the literature has reported some cases of modest

reduction of arterial blood pressure and increase of heart rate (180). Other adverse

effects include memory loss, pseudo-seizure and myoclonic jerking (181). In preterm and

term newborns, adverse neurological effects have been observed after administration of

midazolam such as impaired level of consciousness, abnormal movements and vision.

However, the long term consequences of these effects on the immature brain remains

unknown (178).

5.1.1.1.3 Midazolam pharmacokinetics
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When given orally, midazolam has a good permeability but a low bioviailabiliy as a

result of an important first pass metabolism.

Midazolam has a relatively large volume of distribution and is rapidly distributed after

IV administration (180). Thanks to its lipophilic properties, it can easily cross the BBB

to reach its main target: the central nervous system. Approximately 97% of the drug is

bound to plasma proteins.

Midazolam is metabolised in the liver where the drug undergoes an hydroxyla-

tion by CYP3A4 and CYP3A5 to form two metabolites, 1-hydroxymidazolam and

4-hydroxymidazolam (176, 180). These active metabolites contribute to 10% of the

sedative effect of the drug. They are then glucuronidated and excreted into urine (176).

Studies have reported a large interindividual variability of the midazolam clearance

in children (182). The clearance is significantly reduced in neonates compared to older

children due to the immaturity of the renal function and liver enzymes involved in the

drug metabolism (176). Both CYP3A4 and 3A5 undergo important developmental

changes during the first year of life. CYP3A4 appears in the liver during the first weeks

following the birth, whereas CYP3A4 is already present at birth. Both enzymes reach

their adult activity after 1 year of life. The immaturity of the elimination pathways are

more important is preterm newborns, increasing the drug elimination half-life up to

22h compared to 6h in term newborns (176).

5.1.1.1.4 Previously published models

Several PK models describing midazolam concentration in children have been

published in the literature. Anderson et al. (134) developed a sigmoidal maturation

model for midazolam that takes into account the influence of age and size using published

clearance estimates after IV administration. This model can be used in combination with

an allometric scaling in order to estimate the clearance in various peadiatric populations.

The authors estimated a maturation half-life around 70 weeks of postmentrual age.

More recently, Kos et al. (183) developed a different model in order to describe the

pharmacokinetics of midazolam in critically ill children with severe bronchiolitis. This
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model also used a sigmoidal maturation function to describe the population clearance,

however the authors estimated a maturation half-life shorter around 45 weeks of PMA.

Such differences might be explained by the type of population studied.

In addition to the influence of age and weight on midazolam clearance, few models

studied the effect of severe illness on the PK (184, 185). These models showed that

critical illness in children significantly affect the midazolam clearance. This effect is

probably the consequence of inflammation causing a reduction of the CYP3A4/5 activity

(185).

Few PK/PD models have been published in the literature describing the relationship

between midazolam concentration and sedative effect in children. In 2002, Johson et

al. (186) developed the first model that linked the concentration of midazolam and

its active l-hydroxy metabolite to the sedation effect using a binary sedation scale

(awake/asleep). The model predicted the adequate scores in 86% of the cases and

showed that the metabolite effect should be taken into account since it was able to

compensate the decrease effect of the parent after metabolism. Peeters et al. (103)

developed a more complex PK/PD model in 2006 describing the relationship between

midazolam concentration and sedation using the COMFORT-B score in non ventilated

infants after major surgery. The authors included a postanesthesia effect in order to

take into account the influence of drugs administered during the surgery on the sedative

effect observed. Simulation were performed using the model in order to determine

the optimal dose of midazolam in this population. More recently, Valkenburg et al.

(187) built a model to compare the PK and PD of IV midazolam after cardiac surgery

between children with and without Down syndrome. Unlike Peeters et al. (103), they

found a minimal effect of the drug concentration on the COMFORT-B score.

5.1.1.2 Morphine

Morphine which is extracted from the Papaver somniferum, is one of the opioids

most commonly prescribed in the PICU and NICU. It is used as reference to compare

the efficacy and safety of other opioids (122). Because of its strong analgesic properties,
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morphine is indicated for pain management in post-operative settings and during invasive

procedures. It is also suitable for mechanically ventilated children (30). Morphine

formula is C17H19NO3 and its molecular weight is 285.34 g/mol. It can be administered

by IV, oral, intramuscular as well as subcutaneous routes (122).

The analgesic effect of morphine is mainly due to its binding to the opioids µ

receptors in the central nervous system leading to a stimulation of the descending

inhibitory pathways (21)

Figure 59: Morphine structure

5.1.1.2.1 Morphine toxicity

Morphine can cause various adverse effects such as miosis, pruritus, constipation,

increased biliary pressure, urinary retention, and hypotension. Respiratory depression is

the major adverse effect observed in children after administration of morphine limiting its

indication in certain cases. The literature reports that the risk of respiratory depression

is higher in neonates and infants under 1 year old. A recent trial that aimed to evaluate

morphine efficacy for procedural pain in preterm infants had to be stop early because

of the high incidence of respiratory depression observed in the preterm population.

Other factors increasing this risk include severity of illness and co-medication (other

sedatives). In addition, long term use of morphine can induce tolerance and dependence

and therefore withdrawal syndrome if the dose is not gradually decreased (122).

5.1.1.2.2 Morphine pharmacokinetics
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When administered orally, morphine undergoes a high first pass metabolism resulting

in a limited biovailability around 40% (188).

Despite its poor lipophilic properties, morphine has a large volume of distribution.

However, its penetration in the CNS is delayed compared to other opioids since it has

more difficulties to cross the BBB due to its low solubility in lipid tissues. Therefore, the

analgesia effect of the drug only occurs 20 minutes after IV administration (188). Only

20 to 40% of morphine is bound to plasma proteins. This value is decreased in neonates

but the impact on the drug distribution is minimal given the limited percentage of

protein binding in older children (117). The morphine volume of distribution increases

gradually to reach its adult value around 6 months of life. However, studies show that

the volume of distribution is higher in preterm infants compared to term newborns.

This can be due to different factors including percentage of fat and size of the immature

organs (122).

Morphine is almost entirely metabolised (90%) in the liver by glucuronidation in

two major metabolites: morphine-3-glucuronide (M3G) and morphine-6-glucuronide

(M6G). M3G is considered inactive and is produced in higher proportion compared to

M6G (around 50%). M3G does not bind opioid receptors, however it does stimulate the

CNS via other receptors that does not induce analgesia. After IV administration, the

highest concentrations of M3G are observed after 15 minutes. M6G binds the opioid

receptors and is highly active with an analgesic effect more potent than morphine. This

metabolite reaches its concentration peak after 45 minutes post IV administration and

is produced in lower amount (around 15%) (188). Both metabolites have a high water

solubility and are excreted in the urine. Morphine clearance is significantly reduced

in young children due to the immaturity of the liver and kidney. Preterm and term

newborns are able to produce M3G from birth, however concentration of M6G can

only be found after 2 days of life which explains the unpredictable analgesia effect and

numerous adverse effects reported in preterm population (122, 117).

5.1.1.2.3 Previously published models
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Since morphine was one of the first analgesic commercialised, its pharmacokinetic and

pharmacodynamic properties have been studied more extensively than other analgesics

in preterm and term newborns, infants and older children. Most analyses published

in the literature have used a non-compartimental approach, however more recently

few PK compartmental models have been developed in order to determine the factors

that contribute to the large interindividual variability of the drug PK in children (122).

These models show that age, weight and critical illness affect the morphine elimination

leading to a clearance reduction due to the immaturity and/or dysfunction of both liver

and kidney (189).

Few models have described the effect of organ maturation on morphine clearance.

Anand et al. (190) developed a model that includes a sigmoidal maturation function

using the PMA in order to describe the morphine clearance. However, this model

didn’t include any metabolite data. Using a different PK model, Bouwmeester et al.

(191) were able to describe the metabolite clearances for both metabolites with an

exponential maturation function using the postnatal age. Recently, both maturation

functions were used by Knosgaard et al. (192) in order to developed a meta-model

which described the drug PK in preterm and term neonates. In addition to the effect of

age on clearance, some models found a significant effect of organ maturation on the

central volume of distribution of the parent (191), however these findings have been

discussed in numerous studies.

The relationship between effect and morphine concentration has not been clearly

established using PK/PD modelling. In their study, Knosgaard et al. were not able to

describe the effect of morphine on PIPP score in neonates. Recently, Valkenburg et al.

(193) developed a PK/ PD model describing the relationship of morphine concentration

and oversedation in young children after cardiac surgery using the COMFORT-B score.

5.1.2 Rationale for the CloSed trial

Clonidine is frequently used instead of intravenous midazolam in children because of

its better safety including a lower incidence of delirium, agitation, withdrawal syndrome
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and respiratory depression (144). Clonidine presents some additional advantages

compared to opioids and benzodiazepines: it prevents organ dysfunction, it does not

affect the natural sleep and does not cause neurotoxic effects, tolerance or dependance

(154). It is often prescribed in combination with opioids such as morphine and fentanyl.

Studies have shown that when given with fentanyl, the dose of both drugs could be

reduced providing a lower risk of toxicity (146). The combination of opioids and

clonidine seems to be a better alternative to the common use of opioids and midazolam

(194).

There are limited data supporting the non inferiority of clonidine compared to

midazolam. Wolf et al. (194) tried to compared both drugs in a double blind randomised

controlled trial called SLEEP. However, the study was terminated due to enrolment

issues. Although the authors conclude to the non inferiority of clonidine, these results

have to be interpreted with caution since the analysis had a low statistical power due

to the limited number of patients included. Wolf et al. (194) identified that the main

reason for the challenging recruitment was the reluctance of parents and clinicians to

give their consent to a sedation study in critically ill infants.

Unfortunately, there is a lack of efficacy and safety data informing the clonidine use

as sedative agent in children. In their pilot study, Duffet et al. (195) tried to prove the

efficacy of clonidine in a double-blind, randomised controlled trial of oral clonidine vs

placebo. However, the authors were not able to find a significant difference of efficacy

between the two groups. When given in combination with midazolam, two studies

published in the literature have reported that clonidine was safe and effective (196,

197). Hünseler et al. (198) have shown that clonidine reduced the need of opioids and

benzodiazpines in a double blind randomised controlled trial comparing the requirement

of fentanyl and midazolam with and without clonidine.

There is no study published to our knowledge that describes the relationship between

clonidine and sedative effect using PK/PD modelling. The target concentration and

adequate dose regimens for clonidine in children have not been yet determined. For

these reasons, additional PK and PK/PD studies are needed.
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5.1.3 Aim

The initial aim of the CloSed (CLOnidine compared with midazolam for SEDation

of paediatric patients in the intensive care unit) trial was to provide necessary data in

order to obtain a Paediatric Use Marketing Authorisation (PUMA) for clonidine use in

PICU. However, the trial was terminated early due to recruitment issues and therefore

this aim could not be achieved.

A secondary endpoint of the CloSed trial was to develop PK/PD models for clonidine

and midazolam. This chapter therefore focussed on developing these models in the

patients who were recruited.

To reach this goal, the first objective of this chapter was to develop PK models for

clonidine, midazolam and morphine in order to identify the covariates influencing the

PK of the three drugs (e.g. weight, age, genetic variants). The second objective was to

developed PK/PD models for clonidine and midazolam to establish the relationship

between drug concentration and sedative effect for both drugs using COMFORT-B

score.

5.2 Methods

5.2.1 Study population

Data for the PK and PK/PD analyses were collected from the European trial CloSed

(EudraCT: 2014-003582-24, Clinicaltrials.gov: NCT02509273). The CloSed trial was a

double blind, multicentre, phase III randomised controlled trial with two parallel groups

(children were randomly allocated to clonidine or midazolam arm). The trial ran from

May 2016 to October 2018. Ethical approval was obtained for each participating centre.

Patients were recruited from five different European countries (Czech Republic,

Germany, Italy, The Netherlands and Sweden). Children were included in the CloSed

trial if the following criteria were met: age between birth and 18 years old, expected

admission to the PICU, expected indication for mechanical ventilation and need for a

continuous sedation for at least 24 hours. Informed consent from the parents or the
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legal guardians was necessary in order to enrol a child in the study.

The patients were not included in the study if they had a gestational age below 34

weeks, or if they had severe organ insufficiencies, brain injuries, acute asthma, severe

bradycardia and arterial hypertension. Other exclusion criteria included pregnancy,

CPAP or ECMO treatment and known hypersensitivity to any of the drugs prescribed

in the trial. In addition, the patient could not have received clonidine during the 7 days

prior to the admission and not have had sedation for more than 72 hours prior to the

screening.

Clonidine and midazolam which correspond to the investigational medical product

(IMP) were administered for a maximal period of 7 days. The patients received loading

doses of 15 minutes followed by maintenance continuous infusions. The starting doses

of IMP were a loading dose of 2 µg/kg followed by a continuous infusion of 1 µg/kg/h

for clonidine and a loading dose of 200 µg/kg followed by 100 µg/kg/h for midazolam.

The doses were halved in neonates younger than 28 days old. The maintenance infusion

rates were then adjusted following a dosing algorithm based on the sedation levels

assessed using both COMFORT-B score and Nurses Interpretation of Sedation Score

(NISS). Three formulations of IMP with different strength (low, medium and high)

depending on the child’s weight were available.

In addition to the IMP, all patients received IV continuous infusion of morphine as

background drug for pain. The dose of morphine was adjusted individually based on the

pain scores assessed using the Numerical Rating Scale (NRS). Propofol could also be

administered as bridging sedative therapy before and until the 30 minutes following the

initiation of the IMP treatment. Bolus of ketamine were allowed as additional analgesic

when needed. Additionally, some patients included in the study were transferred to the

PICU after undergoing major surgery during which they received anaesthetic drugs.

The time, date and duration of surgery as well as every co-medication given before and

during the IMP treatment were carefully documented.

In summary, the dose adjustment of IMP and morphine was done as follows:

- NRS score >= 4: increase of morphine
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- NRS score < 4: no increase of morphine

- COMFORT-B score > 22: increase sedative agent

- COMFORT-B score <= 22 - >= 11, NISS score 1: increase of sedative agent

- COMFORT-B score <= 22 - >= 11, NISS score 2: maintain sedation

- COMFORT-B score <= 22 - >= 11, NISS score 3: decrease of sedative agent

- COMFORT-B score < 11: decrease of sedative agent

The trial can be divided using the following periods of time: screening, baseline,

treatment period, completion, post-dose monitoring period and 14 day follow up visit .

Pain and sedation were assessed using the COMFORT-B, NISS and NRS score every

3 hours during the study period. Additional assessments were also done 30 minutes

after an increase of IMP dose and an adjustment of morphine dose. The pain scores

always took precedent over the sedation scores.

In addition to the pain and sedation assessment, a physical examination was per-

formed before and after the IMP treatment and the vital signs including blood pressure,

heart rate (supine pulse rate), respiratory rate, occurrence of apnoea and peripheral

arterial oxygen saturation were recorded during the entire time of the trial. The vital

signs were recorded every 15 minutes during the first two hours following the IMP

administration, then these variables were measured every 3 hours at the same time as

the pain and sedation assessment.

The type of ventilation received by the patient and the fluid balance were recorded

from the baseline period. The severity of illness including organ dysfunction, neurode-

velopmental long term effects and withdrawal symptoms were also assessed during the

trial.

Blood gas, heamatology, coagulation and clinical chemistry were recorded from

the beginning of the study. Clinical chemistry assessment included the measure of

parameters describing the kidney function (creatinine) and the liver function such as

aspartate aminotransferase (ASAT), alanine aminotransferase (ALAT), gamma-glutamyl

transferase (GGT) and bilirubine.

Two blood samples used to measure the drug concentrations for the PK study were
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mandatory: the first one was taken after the first loading dose and the second just before

the end of the IMP treatment. Additional PK blood samples were taken during routine

clinical procedures with a maximum number of six samples per patient. Ideally, the

samples were taken once a day. In order to define the baseline concentration of the drugs,

a mandatory blood sample was taken just before starting the IMP treatment for the

patients who received clonidine or midazolam within 5 days before the screening. The

samples were collected using arterial or central venous catheters or by vein or arterial

puncture. The samples had a volume between 0.6 and 1.0 mL. The concentration of

clonidine, midazolam, morphine and their main metabolites (1-OH midazolam, M3G

and M6G) were measured using plasma extracted from each PK blood sample.

The genetic variants tested on the PK came from genes coding for enzymes of the

metabolism and specific receptors involved in the mechanism of each drug (clonidine,

midazolam and morphine). The genes coding for metabolism enzymes were CYP3A4,

CYP3A5, CYP2D6, UGT2B7, POR, COMT and MC1R. The genes coding for the

receptors were ABCB1, GABA, MDR1, MRP1, MRP2, MRP4, BRCP, ADRA2A,

OPRM1, OCT1, ABCC3, IL-1Ra, IL-1b, ARRB2 and STAT6.

The COMFORT-B scores were used as PD endpoints in the PK/PD modelling in

order to establish a relationship between sedation and concentration of clonidine or

midazolam. To evaluate the safety of clonidine, heart rate and blood pressure were used

to build PK/PD models describing the correlation between clonidine concentration and

adverse effects.

5.2.2 Primary endpoint of the CloSed trial

The primary objective of the CloSed trial was to assess the non inferiority of

continuous intravenous clonidine compared with continuous intravenous midazolam in

mechanically ventilated children in the PICU. Therefore, the primary endpoint was

sedation success or failure.

Sedation failure was defined using pain and sedation scores as follows:

• NRS < 4 / COMFORT-B > 22
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• NRS < 4 / 11 <= COMFORT-B >= 22 / NISS = 1

The analysis was done using logistic regression with treatment, centre and age group

as covariates at a one-sided significance level of alpha corresponding to 2.5%.

The statistical hypotheses were defined as follows:

• H0: OR <= δOR

• H1: OR > δOR

With

OR = pC · (1− pM)
(1− pC) · pM)

. H0 is the null hypothesis and H1 is the alternative hypothesis.

pC and pM are the probabilities of sedation success in the clonidine group and

midazolam group, respectively. δOR is the non-inferiority margin which was predefined

as 0.583.

5.2.3 Pharmacokinetic model building

Three separate population NLME models were developed in order to describe the

concentration of the three drugs administered in this study: clonidine, midazolam and

morphine. For clonidine, a one- and two-compartment models were tested to define the

basic structural model. For midazolam and morphine a model with one compartment

for the parent and separate compartments for the metabolites were tested.

If the clearance of the main compartment could not be estimated by the model, it

was assumed that the parent (midazolam or mophine) was entirely metabolised therefore

the clearance of the parent was ignored. This assumption could be made because more

than 90% of midazolam and morphine is metabolised in the liver. The parameters of

the model were estimated by the model or fixed using previously published values.

In order to describe the residual variability for each model, an additive, proportional

and combined error model was tested for the parent compartments and the metabolite

compartments.

Body weight was included a priori on the parameters of the three models using
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allometric scaling with the allometric exponent fixed to 0.75 for the clearances and 1

for the volumes.

Age was included in the models also a priori using different maturation functions

depending on the drug and the type of parameters. A bibliography research was

undertaken in order to select previous PK models published that were able to adequately

describe the effect of age on clearances and volumes using maturation functions. These

maturation functions were then used in the models developed in this chapter.

A standard sigmoidal maturation function using PMA as described in section 1.2.3

was used to describe the influence of age on the parent clearances and the formation

clearances of the metabolites (1-OH-midazolam, M3G and M6G). This function was

also used to include age as covariate on the elimination clearance of 1-OH-midazolam.

For the morphine model, additional maturation functions were used on the elimina-

tion clearances of both metabolites and on the central volume of distribution. Effect of

age on the metabolite clearances of both M3G and M6G was included in the model

using the following maturation function (MFM) (199):

MFM = 1− 0.832 · e−PNA· log(2)
129

To describe the morphine central volume of distribution , PNA was included in the

maturation function (MFV) as follows (199):

MFV = 1 + 0.391 · e−PNA· log(2)
26.3

In addition to age and weight, the effect of covariates reflecting the kidney functions

(creatinine) and the liver function (ASAT, ALAT, GGT and bilirubin) were tested and

included in the model if it induced a OFV decrease of more than 3.64 points. The

covariates corresponding to the liver function were tested on each parameter using a

centred multiplicative covariate model. Creatinine was included in the model using a

maturation function (MSCR) published by Cerrioti et al. as follows:
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MSCR = −2.37330− 12.91367 · Ln(AGEY ) + 23.93581 ·AGEY 0.5

Where AGEY is the age in years calculated dividing PNA by 365.25.

The concentration values below the limit of quantification of 0.05 ng/mL were

implemented in the database of the three models by dividing the BLQ by 2.

5.2.4 Pharmacokinetic/pharmacogenetic model building

The effect of genetic variants on the clearances of the three drugs was tested as

describe in section 2.2.3.

5.2.5 Pharmacokinetic/pharmacodynamic model building of the effi-

cacy variables

The PK/PD models were built using a sequential method. Different PK/PD

models (for each drugs) were tested in order to establish the relationship between drug

concentration and sedative/analgesic effect assessed using COMFORT-B score. The

data were first treated as continuous variables using an Emax model, then the data

were treated as ordered categorical variable and a proportional odds model as well as a

BI model were tested.

5.2.5.1 Continuous model

Firstly the data were treated as continuous and an inhibitory sigmoid Emax model

with and without effect compartment was tested in order to describe the IMP effect of

both drugs (IMPEFF).

Then, the addition of a post-surgery effect in the Emax model for the patients who

underwent surgery before starting the IMP treatment was tested as described in the

PK/PD model published by Peeters et al. (103).

For the patients who had major surgery, the post-surgery effect (PS) was implemented

using an Emax model as follows:
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PS = BASE + PAEFF

PAEFF = PAEMAX · TPS
TPS50 + TPS

PAEMAX = SMAX −BASE

Where BASE is the score at the end of the surgery and PAEFF is the postanethesia

effect. SMAX corresponds to the maximal score obtained once the effect of the

anesthetic used for the surgery is gone, PAEMAX is the maximal postanesthesia effect

from BASE (difference between BASE and SMAX), TPS is the time post-surgery

in hours and TPS50 is the time post-surgery at half maximum postanesthesia effect in

hours.

In order to reflect the complete anesthesia induced during the surgery the BASE

parameter was fixed to 6 which corresponds to the minimal COMFORT-B score.

For the patients who did not undergo surgery before starting the IMP treatment, the

baseline score (B0) was either estimated or set to the observed values in the database

for each individual in a separate column in order to simplify the model.

The effect of the comedication (morphine, propofol and ketamine) on the COMFORT-

B score (CMEFF ) was also tested one by one using an additive model.

In order to test the effect of morphine, the concentrations and doses of morphine

were added in the database and the PK parameters were fixed in the model to the

values estimated by the morphine PK model developed in this chapter. The effect of

morphine was implemented using an Emax model.

The concentration of ketamine and propofol were not collected, therefore only the

doses of both drugs were added in the PK/PD database. Since the PK parameters

could not be estimated, an Emax K-PD model was used to test the influence of both

drugs on the sedation score as described by the following equation:

CMEFF = EMAXCM · (KDE ·ACM )
EC50CM + (KDE ·ACM )

where CMEFF is the effect of the comedication (ketamine or propofol), EMAXCM
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corresponds the the maximal effect of the co-medication, EC50CM is the concentration

of co-medication to reach 50% of the maximal effect and ACM is the quantity of drug

in the co-medication compartment. KDE is the parameter estimated by the model

corresponding to the elimination rate constant describing the equilibrium between dose

rate and observe effect (first order).

The total effect on the COMFORT-B score (EFFECT) was characterised as follows:

• For the patients who underwent surgery:

EFFECT = PS − IMPEFF − CMEFF

• For the patients who did not undergo surgery:

EFFECT = B0− IMPEFF − CMEFF

Where PS is the post-surgery effect, IMPEFF is the IMP effect and CMEFF is

the co-medication effect. B0 corresponds to the baseline score which was estimated or

fixed.

Once both separate PK/PD models for clonidine and midazolam were developed, a

joint model was tested in order to improve the precision of the parameter estimates.

The common parameter for both drugs was the time post-surgery at half maximum

postanesthesia effect (TPS50). The parameters that could not be estimated by the joint

model were fixed to the values estimated by the separate models developed previously

in this chapter. The effect of both drugs on the scores were combined using an additive

model.

5.2.5.2 Categorical models

The data were then treated as categorical and a proportional odds model as well as

a BI model were tested in order to describe the relationship between both drugs and

COMFORT-B score. The models were developed as described in section 3.2.3.

The predictors tested in the proportional odds model were the drug concentration
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(using an Emax or a linear model) and the post-surgery effect (using a linear model). To

include a post-surgery effect in the model, a binary categorical variable was implemented

in the database with 0 corresponding to the patients who did not undergo surgery

before starting the trial and 1 corresponding to the children who underwent surgery

before receiving the IMP.

In the BI model tested, the drug effect was included using an Emax model. A

Markov effect was included in the model if it induced a significant decrease of the OFV.

The Markov component was implemented in the model as described in section 3.2.3.

The post-surgery effect was tested in the Emax model as described in the previous

section.

5.2.6 Pharmacokinetic/pharmacodynamic model building of the

safety variables

The safety PK/PD models were also built using a sequential method. Two PK/PD

models were developed in order to describe the relationship between clonidine concen-

tration and adverse effects using heart rate (HR) and mean arterial pressure (MAP).

The PK/PD models tested were Emax models with or without effect compartment.

The values of HR and MAP recorded before IMP were used as baseline values in the

models.

5.2.7 Simulations

Simulations were performed in order to determine the optimal dose of clonidine and

midazolam necessary to reach the target concentrations defined by the PK/PD models.

A database of 1000 patients was used for the simulations as described in section 2.2.5.

Separate simulations were done for the patients who underwent surgery before

receiving IMP and for those who do not need surgery. For the children receiving surgery,

separate simulations were performed for a time post-surgery corresponding to 1, 2 and

3h.

All simulations were limited to 12h. For each dose and each drug, the graphs
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simulated the drug concentrations and the COMFORT-B scores corresponding for two

age groups (neonates younger than 28 days old and children older than 28 days old).

Plots presenting target achievement over time were also generated using the simulations

results.

The simulated dose of clondine for the neonates younger than 28 days old were:

- Loading dose of 1 µg/kg followed by a continuous infusion of 0.75, 1 and 1.5 µg/kg/h

- Loading dose of 2 µg/kg followed by a continuous infusion of 1, 1.5 and 2 µg/kg/h

- Loading dose of 3 µg/kg followed by a continuous infusion of 1.5, 2 and 2.5 µg/kg/h

- Loading dose of 5 µg/kg followed by a continuous infusion of 2, 3 and 4 µg/kg/h

The simulated dose of clondine for the children older than 28 days old were:

- Loading dose of 2 µg/kg followed by a continuous infusion of 1, 1.5 and 2 µg/kg/h

- Loading dose of 4 µg/kg followed by a continuous infusion of 2, 3 and 4 µg/kg/h

- Loading dose of 6 µg/kg followed by a continuous infusion of 3, 4 and 5 µg/kg/h

- Loading dose of 10 µg/kg followed by a continuous infusion of 3, 4 and 5 µg/kg/h

The simulated dose of midazolam for the neonates younger than 28 days old were:

- Loading dose of 100 µg/kg followed by a continuous infusion of 50, 75 and 100 µg/kg/h

- Loading dose of 150 µg/kg followed by a continuous infusion of 50, 75 and 100 µg/kg/h

- Loading dose of 200 µg/kg followed by a continuous infusion of 75, 100, 150 µg/kg/h

The simulated dose of midazolam for the children older than 28 days old were:

- Loading dose of 200 µg/kg followed by a continuous infusion of 100, 150 and 200

µg/kg/h

- Loading dose of 300 µg/kg followed by a continuous infusion of 150, 200 and 250

µg/kg/h

- Loading dose of 400 µg/kg followed by a continuous infusion of 250, 300, 350 µg/kg/h

5.2.8 Model evaluation

The PK and PK/PD models developed in this chapter were evaluated using RSE,

bootstrap, goodness-of-fit and VPC as described in section 2.2.6.

186



5.3 Results

5.3.1 Study population

In total, 28 patients were included in the study. Thirteen of them received midazolam

and 15 received clonidine. Morphine was administered to all the patients as background

for pain. In addition, 10 children from the clonidine arm and 6 from the midazolam

arm received propofol as bridging sedative via IV continuous infusion or bolus prior

to enrolment. The dose of propofol in the clonidine group was higher than in the

midazolam group. The demographic data of the cohort (by type of drug administered)

are summarized in Table 21.

Table 21: Table summarising the demographic characteristics of the CloSed cohort.
All drugs Median
(Range)

Clonidine Median
(Range)

Midazolam
Median(Range)

Birth weight (kg) 3.8 (2.0 - 16.7) 4 (2.7 - 16.1) 3.3 (2.0 - 16.7)
Gestational age
(weeks)

40 (36.3 - 40) - -

Postnatal age (days) 26 (0 - 2023) 41 (0 - 1419) 4 (0 - 2023)
Postmenstrual age
(weeks)

43.6 (36.3 - 371.9) 45.9 (36.7 - 242.7) 40.1 (36.3 - 371.9)

Sex (M/F) 14/14 9/6 5/8
surgery (yes/no) 18/10 7/8 11/2
bridging propofol
(yes/no)

16/12 10/15 6/7

5.3.2 Primary endpoint of the CloSed trial

The result of the primary endpoint of the trial are summarised in Table 22. Although

there were sedation failures in both arms, the table shows that there was a higher

number of sedation failure in the clonidine group.

Table 22: Results of the primary endpoint of the CloSed trial.
Endpoint Clonidine Midazolam
Success 8 11
Failure 4 2
Non assessable 3 0
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The logistic regression analysis of the primary endpoint between treatment groups

adjusted by centre and age was not significant therefore the null hypothesis H0 was

rejected at 2.5% significance level. However due to the limited number of patients, these

results have to be interpreted carefully.

5.3.3 Pharmacokinetic modelling

5.3.3.1 Clonidine

In total, 36 samples were used to develop the clonidine PK model. The 15 patients

who received clonidine were included in the model. The observed concentration of

clonidine plotted against time are presented in Figure 60. The graph shows that the

PK data were limited with a number of samples between 2 and 4 by patient. Only one

child received clonidine before starting the IMP treatment. The concentration recorded

before the first dose was included as baseline in the model. The values corresponding

to BLOQ were below 5%.

Figure 60: Observed concentration of clonidine plotted against the time after dose adminis-
tration (TAD). Each line represents a patient.

The PK data were best described by a one-compartment model with IIV on clearance

and central volume of distribution. The final residual model was a proportional error

model. The model was not able to estimate the parameters of the maturation function,
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therefore they were fixed to values estimated by a previous clonidine model published

by Larsson et al. (148). No other covariates had a significant influence on the PK

parameters.

The parameter estimates from the final clonidine PK model and the RSE corre-

sponding are presented Table 23.

Table 23: Estimates from the final clonidine PK model.

Parameter Estimate RSE (%) Bootstrap

Median(5-95)

CL (L/h/70kg) 28.0 20 28.1 (19.2 - 37.1)

V (L/70kg) 202.4 24 202.2 (122.8 -

289.3)
IIV CL (%) 49.6 47 46.9 (20.7 - 65.6)

IIV V1 (%) 87.7 32 85.0 (57.4 - 106.8)

Err prop (%) 43.6 7 43.6 (20.7 - 56.6)

PMA_50 61.6 FIX - -

Hill 2.42 FIX - -

CL is the clearance, V1 is the central volume of distribution, RSE is the relative

standard error (from NONMEM covariance step), IIV is the interindividual variability.

PMA_50 is the PMA (weeks) when the maturation has reach 50%, and Hill is the

shape parameter. FIX means that the value of the parameter was fixed a priori in the

model. Err prop correspond to the proportional error estimate.

Basic goodness-of-fit plots are shown in Figure 61.
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Figure 61: Goodness-of-fit plots of the final clonidine PK model. Plots of the observed
concentration vs population predicted concentration (top left) and vs individual predicted
concentration (top right), the CWRES versus time after dose (bottom left) and plot of the
IWRES vs time after dose (bottom right) from the final fentanyl population PK model. The
red line is the lowess line and the black line is the line of unity.

The VPC used to evaluate the final clonidine model are presented in Figure 62.
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Figure 62: Visual Predictive Check produced using the parameters estimated by the final
clonidine PK model. The shaded grey area is the 95 percent prediction interval. The black
solid line is the median of the observed data; the black dashed lines are the 5 th and 95 th
percentiles of the observed data.

5.3.3.2 Midazolam

Thirty-seven samples were used to build the midazolam PK model, each sample

given a concentrations of midazolam and its main metabolite 1-OH-midazolam. No

patient was excluded from the analysis, therefore the data from all 13 patients receiving

midazolam were used to develop the model. The observed concentrations of midazolam

and 1-OH-midazolam are presented in Figure 63. The number of samples by patient

was between 2 and 4. Four patients had baseline concentrations of midazolam and its

metabolite before starting the IMP treatment. These concentrations were included in

the model.
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Figure 63: Observed concentration of midazolam and its main metabolite 1-OH-midazolam
plotted against the time after dose administration (TAD). Each line represents a patient.

The model that best fitted the data was a one-compartment model for midazolam

and its metabolite with IIV on the central volume of distribution (V1) and the formation

clearance of 1-OH-midazolam (CLm). The best residual model was a combined error

model for both midazolam and metabolite compartments. The model was not able to

estimate the parent clearance, therefore it was assumed in the model that midazolam

was entirely metabolised in 1-OH-midazolam. The compartmental structure of the final

model is presented in Figure 64.

Figure 64: Representation of the final midazolam model

The model was not able to estimate the parameters of the maturation function

(non plausible values of clearance estimated), therefore they were fixed using values
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estimated by a maturation model for midazolam clearance published by Anderson et

al. (134). The same values were used for the maturation function of the metabolite

formation clearance (CLm) and the metabolite elimination clearance (Clom). Age and

weight were the only covariates that had a significant effect on the PK parameters.

The estimates of the final PK parameters and the RSE corresponding are presented

in Table 24.

Table 24: Estimates from the final midazolam PK model.

Parameter Estimate RSE (%) Bootstrap

Median(5-95)

V1 (L/70kg) 85.8 30 75.6 (37.7 - 124.5)

CLm (L/h/70kg) 33.4 32 35.3 (22.3 - 61.7)

Vm (L/70kg) 90.8 67 87.3 (39.0 - 222.9)

CLom (L/h/70kg) 211.6 12 214.7 (178.5 -

295.5)
IIV CLm (%) 91.7 41 84.9 (42.4 - 113.1)

IIV V1 (%) 133.4 54 131.1 (66.3 - 236.2)

Err prop parent

(%)

46.9 39 45.8 (22.4 - 58.3)

Err add parent

(ng/mL)

1.24 69 1.25 (0.24 - 1.79)

Err prop metab

(%)

57.4 31 57.4 (42.4 - 72.8)

Err add metab

(ng/mL)

0.023 23 0.023 (0.014 -

0.037)

PMA_50 73.6 FIX - -

Hill 3 FIX - -

V1 is the central volume of distribution, CLm the metabolite formation clearance,
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Vm the volume of the metabolic compartment and CLom the clearance out of the

metabolic compartment. RSE is the relative standard error (from NONMEM covariance

step), IIV is the interindividual variability. PMA_50 is the PMA (weeks) when the

maturation has reach 50%, and Hill is the shape parameter. FIX means that the value

of the parameter was fixed a priori in the model.Err prop and Err add correspond to

the error proportional and additive, respectively.

Basic goodness-of-fit plots evaluating the model for both midazolam and 1-OH-

midazolam are presented in Figure 65.

Figure 65: Goodness-of-fit plots of the final midazolam PK model. Plots of the observed
concentration vs population predicted concentration (top left) and vs individual predicted
concentration (top right), the CWRES versus time after dose (bottom left) and plot of the
IWRES vs time after dose (bottom right) from the final midazolam population PK model.
The red line is the lowess line and the black line is the line of unity.

The VPC for the final model are presented in Figure 66. Figure 67 shows the VPC

stratified by compounds (midazolam and its metabolite).
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Figure 66: Visual Predictive Check produced using the parameters estimated by the final
midazolam PK model. The shaded grey area is the 95 percent prediction interval. The black
solid line is the median of the observed data; the black dashed lines are the 5 th and 95 th
percentiles of the observed data.

Figure 67: VPC produced using the parameters estimated by the final midazolam PK model.
The VPC are stratified by compounds: midazolam (left) and 1-OH-Midazolam (right). The
shaded grey area is the 95 percent prediction interval. The black solid line is the median of
the observed data; the black dashed lines are the 5 th and 95 th percentiles of the observed
data.

5.3.3.3 Morphine
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In total, 65 samples were used to developed the morphine PK model. Each sample

provided a concentration of morphine and the two main metabolites M3G and M6G.

One patient was excluded of the PK analysis because a dose was missing. Hence,

27 children were included to build the final model. The observed concentration of

morphine, M3G and M6G are shown in Figure 68. The number of samples by patient

was between 2 and 5. Three children had positive concentration of morphine and

metabolites before starting the IMP treatment. These data were used in the model as

baseline concentrations.

Figure 68: Observed concentration of morphine and its main metabolites M3G and M6G
plotted against the time after dose administration (TAD). Each line represents a patient.

The PK data were best described by a one-compartment model for morphine and

one-compartment model for each metabolite (M3G and M6G). IIV was added on central
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volume of distribution (V1), formation clearance of M3G (CL3M) and M6G (CL6M),

M3G volume of distribution (V3) and the metabolite clearance of M3G (CLom3). A

combined error model for each compartment was used to describe the residual error.

The model was not able to estimate the morphine clearance (parameter estimated to non

plausible values), therefore the model assumed that morphine was entirely metabolised

to M3G and M6G. The compartmental structure of the final model is presented in

Figure 69.

Figure 69: Representation of the final morphine compartmental model

The parameter estimates from the final morphine PK model and the RSE corre-

sponding are presented in Table 25.
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Table 25: Estimates from the final morphine PK model.

Parameter Estimate (RSE

(%))

IIV (RSE (%)) Bootstrap

median(5-95)

V1 (L/70kg) 103.6 (34) 116.6 (47) 110.3 (61.2 - 172.2)

CL3M (L/h/70kg) 81.8 (31) 117.4 (31) 83.8 (54.6 - 117.6)

V3 (L/70kg) 38.4 (26) 134.5 (46) 42.1 (24.3 - 67.8)

CLom3

(L/h/70kg)

16.3 (23) 99.4 (35) 15.7 (10.4 - 20.7)

CL6M (L/h/70kg) 6.5 (21) 48.9 (45) 6.8 (5.0 - 9.3)

V6 (L/70kg) 30 FIX (-) - -

CLom6

(L/h/70kg)

5.5 (23) - 5.5 (3.9 - 9.6)

Crea CL3M -1.3 (15) - -1.3 (-2.0 - 0.9)

Crea CLom6 2.0 (25) - 1.9 (0.5 - 3.0)

Err prop parent

(%)

54.7 (35) - 52.0 (33.2 - 65.6)

Err add parent

(ng/mL)

0.025 (6) - 0.025 (0.024 -

0.025)
Err prop M3G (%) 54.7 (32) - 50.9 (36.1 - 61.6)

Err add M3G

(ng/mL)

0.30 (59) - 0.24 (0.020 - 0.47)

Err prop M6G (%) 76.8 (90) - 68.6 (34.6 - 183.3)

Err add M6G

(ng/mL)

0.062 (60) - 0.057 (0.018 -

0.092)

V1 is the central volume of distribution, CL3M and CL6M are the formation

clearances of M3G and M6G, respectively. V3 and V6 correspond to the volume of the

metabolic compartments. CLom3 and CLom6 are the clearance out of the metabolic
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compartment of M3G and M6G, respectively. Crea CL3M and Crea CLom6 are the index

corresponding to the effect of creatinine level on CL3M and Clom6, respectively. RSE is

the relative standard error (from NONMEM covariance step), IIV is the interindividual

variability. Err prop and Err add correspond to the error proportional and additive,

respectively.

The estimation of the M6G volume of distribution induced an instability of the

model leading an estimation to non plausible values for all parameters. Hence this

parameter was fixed to a value published previously in a morphine model developed in

children by Knibbe et al. (200).

The parameters of the sigmoidal maturation function used to describe the formation

clearances of both metabolites (CL3M and CL6M) were fixed to values published by

Anand et al. (190). Those used to estimate the metabolite clearances (CLom3 and

CLom6) and central volume of distribution (V1) were fixed to values estimated by the

morphine model developed by Bouwmeester et al. (191).

In addition to weight and age, the model also found a significant influence of

creatinine level on CL3M and CLom6.

Basic goodness-of-fit plots evaluating the model for morphine and both metabolites

together are shown in Figure 70.
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Figure 70: Goodness-of-fit plots of the final morphine PK model. Plots of the observed
concentration vs population predicted concentration (top left) and vs individual predicted
concentration (top right), the CWRES versus time after dose from the final morphine
population PK model. The red line is the lowess line and the black line is the line of unity.

The VPC used to evaluate the final model are shown in Figure 71. Figure 72 presents

the VPC stratified by compounds (morphine, M3G, M6G).
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Figure 71: Visual Predictive Check produced using the parameters estimated by the final
morphine PK model. The shaded grey area is the 95 percent prediction interval. The black
solid line is the median of the observed data; the black dashed lines are the 5 th and 95 th
percentiles of the observed data.

Figure 72: VPC produced using the parameters estimated by the final morphine PK model.
The VPC are stratified by compounds: morphine (top left), M3G (top right) and M6G
(bottom left). The shaded grey area is the 95 percent prediction interval. The black solid line
is the median of the observed data; the black dashed lines are the 5 th and 95 th percentiles
of the observed data.
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5.3.4 Pharmacokinetic/pharmacogenetic modelling

No significant association between genetic variants and individual clearances was

found during the screening process. Therefore no gene was tested in the PK model

with NONMEM.

5.3.5 Pharmacokinetic/pharmacodynamic modelling of the efficacy

variables

5.3.5.1 Data

All the patients who received the IMP treatment were included in the PK/PD models

(13 for midazolam and 15 for clonidine). The characteristics of the COMFORT-B score

by patient used in the PK/PD model to evaluate the sedation effect of the drugs are

summarised in Table 26.

Table 26: Table summarising the characteristics of the COMFORT-B data by patient and by
drug.

Clonidine Median (Range) Midazolam Median (Range)
Score 13 (6 - 27) 12 (6 - 26)
Number of data point 25 (9 - 47) 23 (18 - 38)
Assessment time (h) 62.5 (13.5 - 107.3) 62.7 (33.2 - 91.6)

In total, 317 observed scores were used to build the midazolam PK/PD model and

306 were used to develop the clonidine PK/PD model. The observed COMFORT-B

scores plotted against midazolam and clonidine concentrations are presented in Figure

73 and Figure 74, respectively. The plots do not show any obvious relationship between

score and concentration.
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Figure 73: COMFORT-B score plotted against midazolam concentration. Each line represents
a patient.

Figure 74: COMFORT-B score plotted against clonidine concentration. Each line represents
a patient.

Individual plots regrouping drug concentration, COMFORT-B score, IMP dose

and doses of the different co-drug administered (morphine, propofol) for clonidine and

midazolam are shown in Figure 75 and 76, respectively.
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Figure 75: Individual plots of the patients receiving clonidine regrouping drug concentration
(red line), COMFORT-B score (black line), clonidine loading dose (vertical dark blue line),
clonidine infusion rate (blue shaded area), morphine infusion rate (green shaded area) and
propofol infusion rate (yellow shaded area)

The individual plots presented in Figure 75 show a clear relationship between

clonidine concentration and COMFORT-B score for the patients 201, 161, 521 and 641.

However, there is no clear concentration-effect relationship that can be observed for

the other patients. Additional clonidine loading doses seem to induce a drop of the

COMFORT-B score as it can be seen for patients 121 and 141.
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Figure 76: Individual plots of the patients receiving midazolam regrouping drug concentration
(red line), COMFORT-B score (black line), midazolam loading dose (vertical dark blue line),
midazolam infusion rate (blue shaded area), morphine infusion rate (green shaded area) and
propofol infusion rate (yellow shaded area)

The midazolam individual plots presented in Figure 76 show that for most patients

the scores seems to decrease when the concentrations increase (e.g. patient 121,181).

However, no relationship between midazolam concentration and score can be observed

for few patients (e.g. 501, 581, 622).

Eleven of the 13 patients in the midazolam arm underwent surgery before starting

the IMP treatment whereas only 7 of the 15 patients of the clonidine group had surgery

before receiving clonidine.

5.3.5.2 Continuous model
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5.3.5.2.1 Midazolam

The inhibitory sigmoid Emax model with no post-anesthesia effect estimated the

midazolam EC50 parameter to a non plausible value. Although the inclusion of an effect

compartment induced a significant decreased of the OFV (68.5 points), the model did

not improve the estimation of the EC50 parameter. The inclusion of the post-anesthesia

effect in the model for the patients who underwent major surgery increased the stability

of the model that was able to estimate with precision the parameters. In addition, it

induced a significant decreased of the OFV corresponding to 28.1 points. The final

model included an IIV on EC50 and the best residual model was a proportional error

model.

The model was not able to estimate the maximal effect of midazolam (EMAX),

therefore this parameter was fixed to the value 6, as it has been previously done in the

PK/PD model developed by Peeters et al. (103).

The model could not estimate the baseline score before administration of the IMP

treatment (B0), hence the baseline scores were set to the observed values in the database

for each individual in a separate column in order to simplify the model.

A significant effect of propofol included using an Emax K-PD model was found on

the COMFORT-B score (∆OFV = 21.1). The propofol maximal effect (Emax) and

EC50 were fixed to values published in the propofol PK/PD model developed in children

by Peeters et al. (201). The propofol KDE parameter was estimated by the model.

No significant effect of other co-medication (morphine or ketamine) was found.

The parameter estimates from the final midazolam PK/PD model and the RSE

corresponding are presented in Table 27.
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Table 27: Estimates from the final midazolam PK/PD model.

Parameter Estimate RSE (%) Bootstrap

Median(range)

EC50 (ng/mL) 186.0 61 258.9 (33.8 -

1692.8)
PAEMAX 9.3 11 9.3 (7.0 - 10.9)

TPS50 (h) 0.11 43 0.11 (0.03 - 0.60)

BASE 6 FIX - -

EMAX 6 FIX - -

KDE 9.6 19 9.2 (5.4 - 12.1)

IIV EC50 (%) 246.6 55 252.4 (161.2 -

446.1)
Err prop (%) 24.9 15 24.3 (21.1 - 28.1)

BASE is the score at the end of the surgery, PAEMAX is the maximal postanesthesia

effect from BASE and TPS50 is the time post-surgery at half maximum postanesthesia

effect in hours. EMAX is the maximal effect, EC50 is the concentration to reach 50%

of the maximal effect and IIV is the interindividual variability.

Basic goodness-of-fit plots are presented in Figure 77.
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Figure 77: Goodness-of-fit plots of the final midazolam PK/PD model. Plots of the observed
score vs population predicted score (top left) and vs individual predicted score (top right)
CWRES versus time after dose (bottom left) and plot of the IWRES vs time after dose
(bottom right). The red line is the lowess line and the black line is the line of unity.

The VPC evaluating the final model are shown in Figure 78.
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Figure 78: VPC produced using the parameters estimated by the final midazolam PK/PD
model. The shaded grey area is the 95 percent prediction interval. The black solid line is the
median of the observed data; the black dashed lines are the 5 th and 95 th percentiles of the
observed data.

5.3.5.2.2 Clonidine

The inhibitory sigmoid Emax model withour post-surgery effect estimated a non

plausible value of EC50, therefore the model was not able to adequately describe the

data. The inclusion of an effect compartment was not significant and did not improve

the estimation of the clonidine EC50. The inclusion of a post-anesthesia effect in the

inhibitory sigmoid Emax model for the patients who underwent surgery during which

they received complete anesthesia improved the model fit by estimating with precision

the parameters and decreasing the OFV by 361 points. An IIV was added on the EC50.

The model that best described the residual error was a proportional error model.

The estimation of the maximal effect of clonidine (EMAX) induced an instability of

the model leading to non plausible parameter estimates. Hence this parameter was fixed

to 6, as it has been done in the midazolam PK/PD model. The same issue occurred with

PAEMAX that could not be estimated by the model, therefore a sensitivity analysis

was done in order to fix the parameter to a rational value that improved the stability

of the model.
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No significant effect of co-medications (morphine, ketamine and propofol) was found.

The estimates of the clonidine PK/PD parameters and the RSE corresponding are

presented in Table 28.

Table 28: Estimates from the final clonidine PK/PD model.

Parameter Estimate RSE (%)

EC50 (ng/mL) 2.73 7

PAEMAX 11.8 FIX -

TPS50 (h) 0.069 228

BASE 6 FIX -

EMAX 6 FIX -

B0 15.6 4

IIV EC50 (%) 525 56

Err prop (%) 28 26

BASE is the score at the end of the surgery, PAEMAX is the maximal postanesthesia

effect from BASE and TPS50 is the time post-surgery at half maximum postanesthesia

effect in hours. EMAX is the maximal effect, EC50 is the concentration to reach 50%

of the maximal effect and IIV is the interindividual variability.

5.3.5.2.3 Joint model

In order to improve both models, a joint PK/PD model combining the data of both

midazolam and clonidine was built. This model was similar to the ones developed for

the individual drugs. Apart from the parameter TPS50 which was common for both

drugs, the other parameters were specific to each drug.

Since the model was not stable enough to estimate all parameters, the midazolam

parameters (except TPS50) were fixed to the values estimated by the midazolam PK/PD

model developed in this chapter.

The parameter estimates from the final joint PK/PD model and the RSE corre-
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sponding are presented Table 29.

Table 29: Estimates from the final joint PK/PD model.

Drugs Parameter Estimate RSE (%) Bootstrap Me-

dian(range)

EC50 (ng/mL) 186.0 FIX - -

PAEMAX 9.3 FIX - -

MIDAZOLAM KDE 9.6 FIX - -

IIV EC50 (%) 246.6 FIX - -

Err prop (%) 24.9 FIX - -

TPS50 (h) 0.11 68 0.13 (0.03 -

0.36)
BOTH

DRUGS

BASE 6 FIX - -

EMAX 6 FIX - -

EC50 (ng/mL) 2.73 9 5.23 (0.41 -

31.8)
PAEMAX 11.8 FIX - -

CLONIDINE B0 15.6 4 15.6 (14.3 -

16.6)
IIV EC50 (%) 525 52 473 (225 -

1355)
Err prop (%) 28.2 14 28.1 (23.6 -

31.6)

BASE is the score at the end of the surgery, PAEMAX is the maximal postanesthesia

effect from BASE and TPS50 is the time post-surgery at half maximum postanesthesia

effect in hours. EMAX is the maximal effect, EC50 is the concentration to reach 50%

of the maximal effect and IIV is the interindividual variability.
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Because the joint model improved the precision of the clonidine parameter estimates,

this model was chosen as final PK/PD model for clonidine.

The basic goodness-of-fit plots used to evaluate the clonidine data from the joint

model are presented in Figure 79.

Figure 79: Goodness-of-fit plots of clonidine using the final joint PK/PD model. Plots of the
observed score vs population predicted score (top left) and vs individual predicted score (top
right), CWRES versus time after dose (bottom left) and plot of the IWRES vs time after
dose (bottom right). The red line is the lowess line and the black line is the line of unity.

The VPC of clonidine from the final joint PK/PD model are shown in Figure 80.
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Figure 80: VPC of clonidine produced using the parameters estimated by the final joint
PK/PD model. The shaded grey area is the 95 percent prediction interval. The black
solid line is the median of the observed data; the black dashed lines are the 5 th and 95 th
percentiles of the observed data.

5.3.5.2.4 Categorical model

5.3.5.2.5 Proportional odds model

In the proportional odds model developed for clonidine, non of the predictors had a

significant effect on the COMFORT-B score.

In the proportional odds model developed for midazolam, the predictor corresponding

to the drug effect did not induce a significant decrease of the OFV. However, the post-

surgery effect was a significant predictor inducing an OFV decrease of 5.6 points.

5.3.5.2.6 Bounded integer model

The BI models developed for both drugs were not able to adequately describe the

relationship between drug concentrations and COMFORT-B score. The parameters

corresponding to Emax and EC50 of each drug were estimated by the model to non

plausible values. For both drugs, the Markov effect was not found significant in the BI

models developed.
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5.3.6 Pharmacokinetic/pharmacodynamic modelling of safety vari-

ables

All patients who received clonidine were included in the safety analysis in order to

develop PK/PD models describing the relationship between clonidine concentration

and adverse effects using HR and MAP data.

In total, 963 measures of HR and 801 measure of MAP were used to build the

PK/PD models.

The observed HR and MAP data plotted against clonidine concentration are pre-

sented in Figure 81 and Figure 82, respectively. The plots show that the vital signs

(HR or MAP) seems to decrease with the clonidine concentration.

Figure 81: Heart rate plotted against clonidine concentration. Each line represents a patient.
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Figure 82: MAP plotted against clonidine concentration. Each line represents a patient.

No significant relationship between clonidine PK and both HR and MAP was found

using a continuous Emax model. The models were unstable and estimated the EC50

parameters to non plausible values.

5.3.7 Simulations

The graphs generated using the simulated midazolam concentration in neonates

younger than 28 days old for a loading dose of 100 µg/kg following by an infusion

of 100 µg/kg/h are presented in Figure 83. Figure 84 shows the simulation plots of

midazolam in children older than 28 days old for a loading dose of 200 µg/kg following

by an infusion of 200 µg/kg/h.
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Figure 83: Plots generated using the simulated midazolam concentration in neonates younger
than 28 days old for a loading dose of 100 mcg/kg followed by an infusion of 100 mcg/kg/h.
Both graphs on the top present the simulated concentration of midazolam where the red line
represents the EC50 defined using the PK/PD model. The graph on the bottom left shows
the change in COMFORT-B score following the simulated concentration produced using the
final PK/PD model. The red lines are the scores between which the level of sedation was
considered as adequate. A zoom of this graph is presented on the bottom right. For all the
graphs, the black line is the predicted median concentration and the dotted line represents
the 95 percent prediction interval.
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Figure 84: Plots produced using the simulated midazolam concentration in children older
than 28 days old for a loading dose of 200 mcg/kg followed by an infusion of 200 mcg/kg/h

The simulated midazolam concentration plot presented in Figure 84 shows that the

predicted median for the children older than 28 days old reaches the EC50 estimated

by the PK/PD model 3h after receiving a loading dose of 200 µg/kg followed by 200

µg/kg/h. Figure 83 shows that this dose should be divided by two in order to obtain

the same results in neonates younger than 28 days old.

Figure 85 shows the graphs produced using the simulated clonidine concentrations in

children younger than 28 days old for a loading dose of 2 µg/kg followed by an infusion

of 1.5 µg/kg/h. The simulated clonidine concentrations in children older than 28 days

old for a loading dose of 4 µg/kg followed by an infusion of 3 µg/kg/h are presented in

Figure 86.
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Figure 85: Plots produced using the simulated clonidine concentration in children younger
than 28 days old for a loading dose of 2 mcg/kg following by an infusion of 1.5 mcg/kg/h.
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Figure 86: Plots produced using the simulated clonidine concentration in children older than
28 days old for a loading dose of 4 mcg/kg following by an infusion of 3 mcg/kg/h.

Figure 86 shows that the predicted median concentration for children older then

28 days reaches the EC50 3h after receiving a loading dose of 4 µg/kg followed by a

continuous infusion of 3 µg/kg/h. When this dose is divided by 2 for the neonates

younger that 28 days (Figure 85), the same results are obtained after 6h.

A high variability in term of concentration and COMFORT-B score is predicted for

both age groups and both drugs (Figure 83, 84, 85 and 86). All figures show that a

decrease of 3 points in the COMFORT-B score is reached by 50% of the patients 3h

after the dose administration (6h for neonates receiving clonidine).

The probability of achieving the midazolam EC50 is shown in Figure 87. The dose

simulated was 200 µg/kg followed by 200 µg/kg/h. This dose was halved in newborn

younger than 28 days old as it was designed in the trial.
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Figure 87: Simulated probability of achieving the midazolam EC50. Each line represents a
different dose depending on PNA range.

Figure 87 shows that more than 75% of the newborns younger than a month reaches

the EC50 12h post-administration of 100 µg/kg followed by100 µg/kg/h whereas only

65% of the older children reaches the same value 12h after receiving a dose of 200 µg/kg

followed by an infusion of 200 µg/kg/h. For both age groups, 50% of the patients

reaches the EC50 2.5h after the drug administration.

Figure 88 presents the simulated probability of achieving clonidine EC50. The dose

simulated was 4 µg/kg followed by 3 µg/kg/h. This dose was halved in neonates with

a PNA<28 days.
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Figure 88: Simulated probability of achieving the clonidine EC50. Each line represents a
different dose depending on PNA range.

Figure 88 shows that 80% of the infants older than 28 days receiving a clonidine dose

of 4 µg/kg followed by 3 µg/kg/h reaches the EC50 after 12h and 70% of the neonates

who receive half this dose reaches the target after 12h. 2.5h post-administration, only

25% of the newborns younger than 28 days reaches this target whereas this percentage

corresponds to 50% for the older infants.

5.4 Discussion

The CloSed trial was stopped early by the data safety monitoring committee because

the recruitment rate was too slow and there was no prospect of meeting the primary

endpoint. However, double blind data were collected in 28 patients and PK as well as

PK/PD models were developed accounting for clonidine, midazolam and morphine.
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5.4.1 Pharmacokinetic models

Three PK models have been developed to describe the concentration of clonidine,

midazolam and morphine and their metabolites (1-OH-midazolam, M3G and M6G).

For each drug, the PK data were best described by a one-compartment model for the

parent and each metabolite. The influence of weight and organ maturation on the drug

clearances were included as covariates in all PK models.

Based on the different techniques of model evaluation, the final clonidine PK model

seemed to adequately describe the data. The RSE presented in Table 23 were all

below 40% and the medians produced by the bootstrap analysis were close to the

parameter estimates. The goodness-of-fit plots presented in Figure 61 show that the

model adequately predicted the observations. In addition, the clonidine PK model was

successfully evaluated by the VPC presented in Figure 62.

The RSE and bootstrap presented in Table 24 successfully evaluated the precision

of the parameter estimated by the final midazolam PK model. The goodness-of-fit plots

presented in Figure 65 show that the model underpredicted the observed concentrations

of midazolam and its metabolite. However, the inclusion of IIV seemed to improve

the model since the individual predictions are close to the observed concentrations.

Although a large majority of the values of CWRES are between -2 and 2, the lowess

line is not completely flat around 0. The VPC (Figure 66 and 67) shows that more

than 90% of the observed data are captured by the prediction interval 95%, indicating

that the model fit well the data.

The RSE and bootstrap evaluating the morphine PK model presented in Table 25

shows that the model was able to estimate with precision most of the model parameters

even though the estimates corresponding to the M6G error model have RSE superior

or equal to 60%. The goodness-of-fit plots show that the model underpredicted the

observed concentrations of morphine and metabolites. Although the inclusion of IIV

improves the model, the plot of individual prediction vs concentration shows that

the model still underpredicted some concentrations. The final model was evaluated

successfully by the VPC even if some points seem to be outside the prediction interval.
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The parameters estimated by the morphine PK model built in this chapter are

compared to values estimated by previous models found in the literature in Table

30. These parameter estimates are close to those published in the morphine model

developed by Bouwmeester et al. (191). When added together, the formation clearance

of both metabolites is similar across the previous published studies (80 L/h/70kg).

The morphine model developed in this chapter was not able to estimate the volume of

distribution of M6G which was fixed to a value estimated by Bouwmeester et al. (191) in

order to simplify and improve the stability of the model. Additional concentration data

of M6G are necessary for the model to be able to adequately estimate the parameters

of the M6G compartment.
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Table 30: Comparison of morphine PK parameter estimates.

Parameter Our model Bouwmeester et al. Anand et al.

V1 (L/70kg) 104.0 136.0 122

CL3M + CL6M

(L/h/70kg)

88.2 67.9 84.2

V3 (L/kg) 38.4 23 FIX -

CLom3 (L/h/kg) 16.3 17.4 -

V6 (L/kg) 30 FIX 30 FIX -

CLom6 (L/h/kg) 5.5 5.8 -

V1 is the central volume of distribution and CL3M and CL6M the formation

clearance of M3G and M6G, respectively. V3 and V6 correspond to the volume of the

metabolic compartments. CLom3 and CLom6 are the clearance out of the metabolic

compartment of M3G and M6G, respectively.

Creatinine is a marker of the glomerular filtration rate and therefore it can be

used to evaluate the kidney function. Serum creatinine was a significant covariate of

CL3M and CLom6 in the morphine model. These findings suggest that impaired kidney

function affects the metabolite clearances, which was expected since the majority of

morphine metabolites is eliminated in the urine.

Since the trial was terminated early, the number of patients and data available to

develop the PK models was limited. Hence, the model was not able to estimate the

parameters corresponding to the parent clearance for the midazolam and morphine

models. For this reason, it was assumed that both midazolam and morphine were

entirely metabolised in the liver in order to simplify the models.

5.4.2 Pharmacokinetic/pharmacodynamic models

Two PK/PD models (one for clonidine and one for midazolam) were developed in

order to characterise the relationship between drug concentration and analgesic/sedative

224



effect assessed using COMFORT-B score. For each drug, the model that provided

the best fit was an inhibitory sigmoid model including a postanesthesia effect for the

patients who underwent major surgery before the treatment. The clonidine model was

improved using a joint model fixing the midazolam parameters to the estimates obtained

with the midazolam PK/PD model developed in this chapter. To our knowledge, this

is the first blinded study establishing a relationship between clonidine concentration

and sedative effect and therefore the first model suggesting a target concentration for

clonidine.

The RSE for the midazolam model presented in Table 27 are all below 65% indicating

that the model adequately estimated the parameters. The clonidine model was not

able to estimate with precision TPS50 parameter as shown in Table 28 (RSE = 228%).

However, this parameter was well estimated by the joint model presented in Table 29

(RSE = 68%), indicating that the joint model improved the fit of the clonidine data.

Although the parameters estimated by the midazolam and the joint PK/PD models are

all between the prediction interval produced by the bootstrap, the estimates of EC50

for both drugs is lower than the median generated by the bootstrap.

The goodness-of-fit plots of both models presented in Figure 77 and 79 show that

the models underpredicted the observed scores below 14 and overpredicted the observed

scores over 14. However, the correlation between observed and predicted concentrations

is considerably improved for the individual predictions which suggests that the inclusion

of IIV on the EC50 improved both models. Although the lowess line of the CWRES is

not completely flat around the value 0, the vast majority of the CWRES values are

between -2 and 2 and the points seem to be distributed homogeneously around 0.

The midazolam and joint models were both successfully evaluated by the PC-VPC

(Figure 78 and 80).

The midazolam model published by Peeters et al. in 2006 (103) was used as reference

to develop both clonidine and midazolam PK/PD models in this chapter. In their model,

the authors also included a postanethesia effect in order to describe the relationship

between drug concentration and COMFORT-B score in non ventilated children after
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craniofacial surgery. As in the model developed here, they used an Emax model to

describe the midazolam effect and the parameter corresponding to the maximal effect

(EMAX) was also fixed to 6 (the lowest possible score). Unlike the model built by

Peeter et al. (103), the model developed in this chapter was not able to estimate the

baseline score during the surgery which was therefore fixed to the minimal COMFORT-B

score.

The main limit of the PK/PD models is that some parameters had to be fixed

to the previously published. The data could not be treated as categorical since the

proportional odds and the BI models were not able to describe the data. The lack of

stability of the models could be explained by the numerous adverse events (non related

to clonidine or midazolam) experienced by most patients as well as the co-medications

frequently needed in both arms. Therefore, the drugs investigated were not the only

factors affecting the COMFORT-B score. Unfortunately, the instability of the models

made it impossible to use a logit function in the Emax model in order to limit the

prediction in the COMFORT-B scale range. The adverse events that occurred in both

arms might explain the large IIV estimated on the EC50 of both drugs. Further studies

should be done in order to determine the covariates that can explain a part of this

variability. Adverse events affecting the scores occurred more frequently in the clonidine

group, which can be the reason why the model was not able to estimate the clonidine

PAEMAX unlike midazolam.

In the clonidine arm, 8 patients did not have surgery whereas only 2 patients did

not undergo major surgery in the midazolam group. Therefore more data defining the

baseline score for patients without surgery were available in the clonidine group. For

this reason, the clonidine model was able to estimate B0 with precision which was not

the case for the midazolam model.

Propofol had a significant effect on the COMFORT-B score in the midazolam model

but not in the clonidine model. This result was surprising considering that more patients

in the clondine group received propofol. This might be the consequence of the instability

of the clonidine model making it unable to estimate with precision the parameter KDE.
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This can be explained by the fact that more adverse events not drug related occurred

in the clonidine group inducing an important noise in the model.

Furthermore, a significant effect of morphine and its metabolites would have been

expected on the sedation score. However, it was not the case. Several reasons can

explain this result: the dose of morphine might be too low to have a significant effect,

the morphine effect might be less important for patients who used morphine for a long

period of time, finally the COMFORT-B score might not be the ideal score to assess

the analgesic effect of morphine.

The PK/PD model with a maximal effect (EMAX) fixed to 6 provided the best fit

for both drugs. Hence, they both induced a light sedation with a modest decrease of

the COMFORT-B score. For this reason, midazolam and clonidine might need to be

given in combination with other sedatives when a higher sedation level is required.

The safety models developed in this chapter were not able to establish a relationship

between clonidine concentrations and adverse effects using heart rate and blood pressure

as PD safety endpoints. This result could be explained by the dose regimen used in the

CloSed trial that might be too low to induce severe adverse effects. One limitation of

the model tested is that it did not take into account the influence of age on both heart

rate and blood pressure. Alternative models such as an indirect response model could

be explored to describe the effect of clonidine and fentanyl on both safety endpoints.

5.4.3 Simulations

The simulation results suggest that a dose of 4 µg/kg followed by a continuous

infusion of 3 µg/kg/h for clonidine and a dose of 200 µg/kg followed by 200 µg/kg/h

for midazolam should be used in children in order to have at least 70% of the patients

achieving the EC50 12h post-administration (Figure 87 and 88). These dose should be

halved in newborn younger than one month old. Even at these doses, only 50% of the

patient would reach the EC50 in less than 3h. This percentage is decrease to 25% for

the neonates younger than 28 days receiving clonidine.
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6 Discussion

Although pain and sedation management in children has improved over the years,

the optimal doses of most analgesics and sedatives routinely prescribed have not yet

been determined in the paediatric population. These drugs (such as the ones studied in

this thesis) are therefore prescribed in an “off label” fashion in the intensive care. The

work done in this thesis used PK and PK/PD modelling to inform on the appropriate

use of fentanyl, clonidine and midazolam in specific paediatric populations.

6.1 Clonidine models

The clonidine PK in children has been well described by models published in the

literature by Potts et al. (156) and Larsson et al. (148). The clearance estimated by

the clonidine model developed in the SANNI chapter (14.3 L/h/70kg) is close to the

one estimated by the models developed by Larsson et al. (148) and the one published

by Potts et al. (156) corresponding to 14.6 L/h/70kg and 17.9 L/h/70kg, respectively.

Although the clonidine clearance estimated in the CloSed chapter (28 L/h/70kg) is

higher, the 95% confidence interval produced by the bootstrap used to evaluate the

clearance estimate [19.2-37.1] overlaps the one evaluating the clearance estimated by

Larsson et al. (148) [16.0-20.3], therefore the clonidine clearance estimated in the

CloSed chapter is also in line with the literature.

Although the PK of clonidine is well known, the target concentration and dose

regimens that should be administered in children have not yet been defined. A variety

of doses are routinely used in research as well as in clinical practice (155). The PK/PD

models developed for clonidine in Chapter 4 and 5 are the first one describing the

relationship between clonidine concentration and sedative effect using pain scales.

These models inform on the target concentration which differs for each scale. For the

COMFORT score, both PK/PD models developed in Chapter 4 and 5 estimated a

similar EC50 (2.78 for the SANNI chapter and 2.73 for the CloSed chapter) using a

continuous Emax model.
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The simulations performed using the final PK/PD models presented in both chapters

show that a loading dose of clonidine higher than the ones routinely prescribed should

be administered in order to provide an adequate sedation during the first hours post-

administration. This finding confirms the necessity of increasing the clonidine dose in

children that was suggested in the PK simulation study published by Hayden et al.

(155). Since the doses suggested for clonidine are considerably higher than the ones

routinely administered in the PICU, additional safety studies are needed. The work

in this thesis highlight the inconvenient of clonidine due to its long elimination half

life. The clonidine models developed suggest that the drug might need to be given in

combination with other sedatives in order to provide an adequate pain and sedation

management in children.

6.2 Fentanyl models

Few models published in the literature have described fentanyl PK in children (Table

2). In their previously published study, Norman et al. (124) analysed the PK data from

14 of the 25 patients included in the model built for the NEOFENT chapter to conduct

a non-compartmental analysis. The values of clearance and volume at steady state

estimated by the compartmental model (Clss=0.20 L/h/kg, Vss=2.74 L/h) are close

to those found with the non-compartmental analysis (Clss=0.23 L/h/kg, Vss=3 L/h),

suggesting that the model adequately described the data for this specific population. In

their model, Norman et al. excluded infants with two or less concentration samples which

explains why only 14 of the 25 newborns were included in their study. A compartmental

approach was preferred for the analysis in the NEOFENT chapter because it allows the

inclusion of patients with limited blood samples (two or less) and the identification of

covariates explaining the IIV.

The CLss estimated by the model published by Völler et al. (123) in preterm

infants was 0.42 L/h. This value is twice as high as the one estimated by the model

developed in the NEOFENT chapter (0.20 L/h). This difference might be explained

by the demographic characteristics of the two populations. The clearance was thus
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calculated using the Völler model with the NEOFENT demographic data, resulting in

a clearance of 0.38 L/h which is close to the value estimated by Voller et al. The value

estimated in preterm infants is reduced compared to the clearances estimated in full

term newborns (1.7-4 L/h). This difference of factor 10 suggests that the immaturity

of the elimination pathways plays a major role in the drug elimination.

The clearance at steady state estimated by the final fentanyl model in the SANNI

chapter corresponds to 2.05 L/h. This value is in line with the values of clearance

estimated by previous published models in term neonates presented in Table 2.

The PK modelling undertaken in chapter 3 and 4 improves our knowledge on

the adequate use of fentanyl by identifying covariates that affect the fentanyl PK

(e.g. genetic variants, hypothermic treatment). The results from the NEOFENT chapter

highlight the importance of genetic variants to explain a part of the variability on the

PK parameters. Even though the genetic variants explained a part of the IIV estimated

on the clearance (15%) for the NEOFENT cohort, this variability remains high in

preterm infants (82%). Therefore, further research should be done in order to identify

the other covariates that could explain this variability. The effect of genetic variants

on fentanyl PK will also be explored in the SANNI cohort after the recruitment of all

patients.

The PK/PD models developed in Chapter 3 and 4 are the first ones describing the

relationship between fentanyl concentration and analgesic effect. These models were

used to optimise the dose of fentanyl by defining target concentrations and dose regimens

in specific peadiatric populations. The target concentration defined in the NEOFENT

chapter (0.3 ng/mL) is lower than the one defined in the SANNI chapter (2.6 for the

ALPS-neo score). This difference might be explained by the demographic differences

between the two populations (preterm infants vs term asphyxiated newborns) and the

scales used to assess the analgesic effect (EDIN scale for NEOFENT vs ALPS-neo

for SANNI). Studies have shown that preterm infants have a lower expression level of

opioid transporters such as P-gp. As a result, a larger concentration of fentanyl is able

to cross the BBB (202). In addition, preterm babies have an increased expression rate
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of opioid receptors during the three first weeks of life, therefore the fentanyl potency

is higher compared to older children or adults (203). These physiological differences

might explain why the target concentration is lower in preterm infants since they have

higher potency and fentanyl concentration in their developing brain.

The simulations performed in both chapters show that a higher dose of fentanyl

than the ones prescribed in the trials are necessary in order to have at least 80% of

the patients reaching the target concentration. Because fentanyl can cause numerous

severe adverse effects, increasing the dose in children should be closely monitored.

6.3 Midazolam model

Midazolam PK and PK/PD have been described by few previous published models in

the literature. The estimation of the midazolam clearance (0.14 L/h/kg) is similar to the

one estimated in the maturation model for midazolam clearance developed by Anderson

et al. (134) (0.13 L/h/kg). Since Anderson et al. (134) used published clearance

estimates to construct their maturation model, only the parameter corresponding to

the clearance was estimated in the paper.

In the literature, it has been shown that critical illness has a significant impact on

midazolam PK (185, 61). Therefore, it would be relevant to test the influence of critical

illness marker such as CRP level in the PK model as covariate. However the CRP level

data were limited in the CloSed study making it challenging to test it as covariate in

the PK model.

A comparison of the PK/PD parameters estimated by the midazolam PK/PD model

built in the CloSed chapter and the one developed by Peeters et al. (103) is presented

in Table 31. The EC50 and PAEMAX estimates are close in both analyses. The IIV

on the EC50 is considerably higher in the IMP model, which might be explained by

the smaller number of patients included in the model (13 compared to 24). TPS50 is

higher in the model developed by Peeters et al. (103), which reflects the difference of

design between both studies; the time post-surgery before midazolam administration

was longer in their study.
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Table 31: Comparison of midazolam PK/PD parameter esti-

mates.

Our model Peeters et al.

EC50 (ng/mL) 186.0 188.9

PAEMAX 9.3 9.8

TPS50 (h) 0.11 8.9

BASE 6 FIX 10.2

EMAX 6 FIX 6 FIX

IIV EC50 (%) 246.6 89

BASE is the score at the end of the surgery, PAEMAX is the maximal postanesthesia

effect from BASE and TPS50 is the time post-surgery at half maximum postanesthesia

effect in hours. EMAX is the maximal effect, EC50 is the concentration to reach 50%

of the maximal effect and IIV is the interindividual variability.

The simulations performed in the CloSed chapter suggest doses higher than the

ones administered in the CloSed trial. However, these doses are still within the range of

those used in clinical practice. When increasing the dose, the adverse effects of the drug

should be considered particularly in neonates and young infants for which studies have

reported a higher incidence of midazolam adverse effects. When considering the EC90

as target concentration, the simulations suggest that the dose should be considerably

increased (> factor 5) which may not be feasible in the PICU because of the risk of

adverse events.

6.4 Effect of hypothermic treatment on the drug studied

To our knowledge, the models developed in the SANNI chapter are the first ones to

study the effect of hypothermia on both PK and PD parameters in asphyxiated newborns

after administration of clonidine and fentanyl. Both models show that the hypothermic
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treatment has a significant impact on clonidine and fentanyl clearances. These results

were expected since previous studies have shown that the PK of other opioids (e.g

morphine) and alpha-2-adrenergic receptor agonists such as dexmedetomidine are also

affected by hypothermia (168, 171).

6.5 Pain and sedation scales

The lack of specificity and sensitivity of the available assessment tools make it

challenging to objectively evaluate the drug sedative and analgesic effect. There is no

consensus on which tool should be used to best assess the drug efficacy. In this thesis,

different scales have been used as PD endpoints (EDIN, COMFORT-B, COMFORT-neo

and ALPS-neo) making it challenging to compare the target concentration obtained for

the same drug across studies and scales. For instance, in the SANNI chapter different

target concentrations were defined for fentanyl and clonidine depending on which scale

was used to build the model: APLS-neo or COMFORT-neo scales. Although some

items included in both scales are similar (e.g. body activity, facial expression/tension),

both scales are different as described in section 1.3.2. In addition, the ALPS-neo scale

has been developed in order to assess pain and stress whereas COMFORT-neo assesses

pain and sedation. Since the scales have not be designed to assess the same effect, it is

expected for the target concentration of the drugs to be different.

In addition, scales such as ALPS-neo and EDIN are not able to assess oversedation

unlike the COMFORT scales since the lowest score possible (0) corresponds to “no pain

at all”. Hence, using such scales as PD endpoint could lead to a misinterpretation of

pain and sedation levels and therefore incorrect dose optimisation.

6.6 Maturation model on drug clearance

The PK models developed in this thesis present some limits; due to the limited

number of patients, the models were not able to estimate the parameters of the

maturation function. For fentanyl, these parameters were fixed using a maturation
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model for midazolam clearance. Both fentanyl and midazolam are mainly metabolised

by CYP3A4 which explains why the midazolam maturation function provided a good

estimation of the fentanyl clearance maturation. However, a part of the fentanyl

metabolism involves other enzymes of which the maturation is not taken into account

in the midazolam maturation function.

For clonidine and midazolam, published maturation models developed to describe

the clearance of these drugs in young infants and children have been used. However,

although the effect of ontogeny for clonidine and midazolam has been well described in

the literature, additional data are needed for the model to be able to estimate these

parameters in the specific population studied in this thesis. The PK model developed

in the SANNI chapter will be updated once all the 50 patients will be included in the

study and the maturation parameters will be re-estimated.

6.7 Probability of target achievement

To determine the optimal dose, the probability of target achievement is commonly

used in PK/PD modelling because it allows a comparison between the doses of the

number of patients reaching the target. For instance, most antibiotic models published

in the literature include a probability of target achievement using the MIC. Such graphs

are not presented in papers describing PK/PD models developed for analgesics and

sedatives. Due to the high interindividual variability observed when using pain scores

as PD endpoints, a large prediction interval of simulated concentrations is generated

by the simulations. For this reason, the probability of target achievement has to be

interpreted carefully because it does not take into account the risk of adverse effects

that can occurred when the concentration increase. It is also challenging to simulate

the risk of oversedation since it would depend on the level of pain assessed before the

drug administration which is highly variable between patients. In addition, most of the

scales such as ALPS-neo are not able to assess the oversedation.
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6.8 Limitation of the modelling performed in this thesis

The modelling work performed in this thesis presents several limitations. First, the

modeller was not involved in the data collection nor the study design planning which

might have helped for the understanding of the data used in the models and therefore

the modelling work. Secondly, due to recruitment issues the data available to perform

the modelling work were limited making it challenging to use advanced modelling

techniques or estimate with precision all parameters. This aspect can lead to model

misspecification and impact the simulations results. Finally, the drug toxicity was not

modelled successfully, making it challenging to recommend a dose increase in clinical

practice as suggested by the simulations. In the CloSed and SANNI trial, toxicity

measures were available which was not the case for the NEOFENT trial. However,

the safety profiles were not explored in the SANNI chapter and the safety PK/PD

modelling done in the CloSed chapter was not able to describe the data which might

be due to the fact that the model tested was not appropriate and/or that age was not

taken into account in the model.

6.9 Strengths and limitations of the trials

As mention in section 1.1.4, running a clinical trial in children can be challenging.

Except for the SANNI trial, the two other trials presented in this thesis (NEOFENT

and CloSed) had to be stopped early. This is mainly due to patient recruitment issues

resulting in a limited sample size and therefore limited data.

Moreover, it is challenging to run a comparison trial in children. In the CloSed

study, most patients needed rescue medications such as propofol and ketamine and

numerous adverse events non related to the drugs were observed. For ethical reasons,

providing rescue medications in children is essential, however it can highly affect the

scores used to assess pain and sedation. In addition, the frequency and severity of

adverse events as well as rescue medications needed being different in both arms, it is

challenging to compare the efficacy of both drugs.
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Although the three trials presented in this thesis had planned to study the influence

of genetic variants on the drug PK, developing PK/PG models with a limited number

of patients can be challenging because in most cases the model does not have enough

data to establish a relationship between drug PK and genetic variants. This can explain

why no SNPs had a significant effect on clonidine and fentanyl clearances in the CloSed

chapter. Therefore further analyses including more patients should be done in order to

find a significant effect of SNPs on the PK parameters in the CloSed chapter and to

confirm the genetic results found in the NEOFENT chapter.

The design of the CloSed trial presented an important strength compared to the

other trials of this thesis. Since it was double blinded and randomised, the risk of bias in

the results was minimized. In addition, the fact that the trial was double blind allowed

the clinicians to objectively compare the doses and frequency of rescue medications

such as propofol needed in both arms.

Finally one of the main strength of the three trials was that the pain and sedation

scores were assessed regularly providing rich PD data by patient to build the PK/PD

models.

6.10 Safety considerations

The simulations performed in all chapters suggest that the doses of clonidine, fentanyl

and midazolam should be increased in the specific population studied in order to provide

adequate pain and sedation management. However when contemplating increasing the

dose of analgesics and sedatives, it is necessary to consider dose-related adverse effects.

Increasing the clonidine dose would increase the risk of adverse effects including

severe bradycardia and hyotension. A low incidence of side effects has been observed in

the majority of the published studies conducted in children. However, these studies did

not use a loading dose over 3 µg/kg nor an infusion dose over 3 µg/kg/h. In addition,

since the doses suggested in the SANNI and CloSed chapter are considerably higher

than the one used in the actual clinical practice, the clinicians might be reluctant to

prescribe it.
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With regard to fentanyl, based on the simulation results of the NEOFENT chapter

and the fact that fentanyl is known to cause numerous adverse reactions in preterm in-

fants even at low doses, the dose of 2 µg/kg instead of 3 µg/kg seemed more appropriate.

Even though the dose of 2 µg/kg is within the range of fentanyl dose routinely prescribed

in the NICU for preterm infants (0.5 µg/kg - 2 µg/kg), further research is needed in

order to establish the relationship between drug adverse effect and concentration.

6.11 Further work

Further modelling work is needed on a larger sample size of patients in order to

improve the robustness of the models and therefore obtain models that would be

able to estimate both PK and PK/PD parameters with high precision. Since patient

recruitment is challenging for clinical peadiatric studies, data from separate trials (e.g

CloSed combined with SANNI) could be combined in order to increase the sample size.

Building robust PK and PK/PD models for fentanyl and clonidine would be necessary

in order to use the TCI technique in the PICU for these drugs and therefore facilitate

the dosing in clinical practice.

This thesis highlights that using observational scales as PD endpoints to assess pain

and sedation might not be ideal since most scales are not able to measure oversedation

and the target concentration defined using PK/PD modelling differs depending on the

scales. Therefore further analysis could be done using more objective PD endpoints

such as EEG. Developing PK/PD models to characterise the relationship between

fentanyl/clonidine concentration and pain/sedation effect using EEG is part of the

future work expected in the SANNI study.

In addition, all models developed in this thesis estimated a large IIV on the param-

eters. A part of this variability is explained by the hypothermic treatment and genetic

variants for SANNI and NEOFENT chapter, respectively. Even though the large IIV

estimated could be explained by the limited number of patients included in the analyses,

further research should be done with additional covariates (such as marker of critical

illness) that could be tested to explain a part of this variability.
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The results of the NEOFENT chapter show that three genetic variants coding for

ABCC1 and ABCC3 have a significant influence on fentanyl clearance. However, the

role of both transporters in the fentanyl mechanism of action is unknown. Therefore

further studies should be done (in vitro or in vivo) to investigate their roles in fentanyl

elimination in order to better understand the impact of such genetic variants on the

clearance.

The optimal doses of fentanyl and clonidine suggested in this thesis are considerably

higher than the ones routinely prescribed in clinical practice. However, there is limited

information regarding the safety of both drugs in the literature and the safety models

developed in this thesis were not able to describe the relationship between drug concen-

trations and safety endpoints. Therefore, further investigations are needed to improve

our knowledge on the safety of clonidine and fentanyl. One of the first step to achieve

this goal could be to use the data provided by the CloSed and SANNI studies to try an

indirect response model instead of an Emax model and include the influence of age as

covariate in order to describe the relationship between clonidine concentration and heart

rate as well as blood pressure. In addition, safety studies including higher doses than

the ones routinely prescribed for clonidine ad fentanyl need to be conducted in order to

characterise the drug adverse effects. The design of these studies could include a gradual

increase of the doses as well as a close monitoring of the safety endpoints and adverse

events. These studies should include enough patients to be able to develop robust safety

PK/PD models that could be used to establish a clear relationship between doses and

side effects.

6.12 Summary

In summary, the modelling done in this thesis has been used to improve the pain

and sedation management in children. Different PK/PD models have been developed to

optimise the dose regimens of analgesics and sedatives needed to provide an adequate

effect in specific paediatric populations.
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APPENDIX A

Figure 89: Appendix A: CloSed dosing algorithm
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APPENDIX B

Figure 90: Appendix B: Goodness-of-fit plots of midazolam (parent) used to evaluate the
midazolam PK model for CloSed trial

APPENDIX C

Figure 91: Appendix C: Goodness-of-fit plots of midazolam metabolite used to evaluate the
midazolam PK model for CloSed trial
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APPENDIX D

Figure 92: Appendix D: Goodness-of-fit plots of morphine (parent) used to evaluate the
morphine PK model for CloSed trial

APPENDIX E

Figure 93: Appendix E: Goodness-of-fit plots of M3G used to evaluate the morphine PK
model for CloSed trial
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APPENDIX F

Figure 94: Appendix F: Goodness-of-fit plots of M6G used to evaluate the morphine PK
model for CloSed trial

242



Bibliography

1. Classification of chronic pain: Descriptions of chronic pain syndromes and

definitions of pain, part iii: Pain terms, a current list with definitions and notes on

usage. (IASP Press, 1994).

2. The recognition and assessment of acute pain in children: Update of full guideline.

(Royal College of Nursing, 2009).

3. Walker, S. M. Neonatal pain. Paediatr Anaesth 24, 39–48 (2014).

4. Walker, T. & Kudchadkar, S. R. Pain and Sedation Management: 2018 Update

for the Rogers’ Textbook of Pediatric Intensive Care. Pediatr Crit Care Med 20, 54–61

(2019).

5. Walker, S. M. Long-term effects of neonatal pain. Semin Fetal Neonatal Med 24,

101005 (2019).

6. Duerden, E. G. et al. Early Procedural Pain Is Associated with Regionally-

Specific Alterations in Thalamic Development in Preterm Neonates. J. Neurosci. 38,

878–886 (2018).

7. McGrath, P., Stevens, B., Walker, S. & Zempsky, W. Oxford textbook of paediatric

pain: (Oxford Univ. Press, 2014).

8. Moultrie, F., Slater, R. & Hartley, C. Improving the treatment of infant pain.

Curr Opin Support Palliat Care 11, 112–117 (2017).

9. Taddio, A., Katz, J., Ilersich, A. L. & Koren, G. Effect of neonatal circumcision

on pain response during subsequent routine vaccination. Lancet 349, 599–603 (1997).

10. Grunau, R. V., Whitfield, M. F., Petrie, J. H. & Fryer, E. L. Early pain

experience, child and family factors, as precursors of somatization: a prospective study

of extremely premature and fullterm children. Pain 56, 353–359 (1994).

11. Barnes, S., Yaster, M. & Kudchadkar, S. R. Pediatric Sedation Management.

Pediatr Rev 37, 203–212 (2016).

12. Meredith, J. R., O’Keefe, K. P. & Galwankar, S. Pediatric procedural sedation

243



and analgesia. J Emerg Trauma Shock 1, 88–96 (2008).

13. Cravero, J. P. & Havidich, J. E. Pediatric sedation–evolution and revolution.

Paediatr Anaesth 21, 800–809 (2011).

14. Sheta, S. A. Procedural sedation analgesia. Saudi J Anaesth 4, 11–16 (2010).

15. Vet, N. J. et al. Optimal sedation in pediatric intensive care patients: a

systematic review. Intensive Care Med 39, 1524–1534 (2013).

16. Walker, S. M. Translational studies identify long-term impact of prior neonatal

pain experience. Pain 158 Suppl 1, S29–S42 (2017).

17. Yuki, K. et al. Pediatric Perioperative Stress Responses and Anesthesia. Transl

Perioper Pain Med 2, 1–12 (2017).

18. Ancora, G. et al. Evidence-based clinical guidelines on analgesia and sedation

in newborn infants undergoing assisted ventilation and endotracheal intubation. Acta

Paediatr. 108, 208–217 (2019).

19. Harris, J. et al. Clinical recommendations for pain, sedation, withdrawal and

delirium assessment in critically ill infants and children: an ESPNIC position statement

for healthcare professionals. Intensive Care Med 42, 972–986 (2016).

20. Schiller, R. M. et al. Analgesics and Sedatives in Critically Ill Newborns and

Infants: The Impact on Long-Term Neurodevelopment. J Clin Pharmacol 58 Suppl

10, S140–S150 (2018).

21. Donato, J., Rao, K. & Lewis, T. Pharmacology of Common Analgesic and

Sedative Drugs Used in the Neonatal Intensive Care Unit. Clin Perinatol 46, 673–692

(2019).

22. Ceci, A. et al. Medicines for children licensed by the European Medicines

Agency (EMEA): the balance after 10 years. Eur. J. Clin. Pharmacol. 62, 947–952

(2006).

23. Barker, C. I. S. et al. Pharmacokinetic studies in children: recommendations

for practice and research. Arch. Dis. Child. 103, 695–702 (2018).

24. Costa, H. T. M. L., Costa, T. X., Martins, R. R. & Oliveira, A. G. Use of

off-label and unlicensed medicines in neonatal intensive care. PLoS ONE 13, e0204427

244



(2018).

25. De Cock, R. F. et al. The role of population PK-PD modelling in paediatric

clinical research. Eur. J. Clin. Pharmacol. 67 Suppl 1, 5–16 (2011).

26. Mason, K. P. & Seth, N. Future of paediatric sedation: towards a unified goal

of improving practice. Br J Anaesth 122, 652–661 (2019).

27. Hakim, M. et al. Acetaminophen pharmacokinetics in severely obese adolescents

and young adults. Pediatric Anesthesia 29, 20–26 (2018).

28. Playne, R., Anderson, B. J., Frampton, C., Stanescu, I. & Atkinson, H. C.

Analgesic effectiveness, pharmacokinetics, and safety of a paracetamol/ibuprofen fixed-

dose combination in children undergoing adenotonsillectomy: A randomized, single-blind,

parallel group trial. Paediatr Anaesth 28, 1087–1095 (2018).

29. Hannam, J. A., Anderson, B. J. & Potts, A. Acetaminophen, ibuprofen, and

tramadol analgesic interactions after adenotonsillectomy. Paediatr Anaesth 28, 841–851

(2018).

30. Ismail, A. et al. Pain management interventions in the Paediatric Intensive

Care Unit: A scoping review. Intensive Crit Care Nurs 54, 96–105 (2019).

31. Marzuillo, P., Calligaris, L., Amoroso, S. & Barbi, E. Narrative review shows

that the short-term use of ketorolac is safe and effective in the management of moderate-

to-severe pain in children. Acta Paediatr. 107, 560–567 (2018).

32. Rodieux, F. et al. When the Safe Alternative Is Not That Safe: Tramadol

Prescribing in Children. Front Pharmacol 9, 148 (2018).

33. Anderson, B. J., Thomas, J., Ottaway, K. & Chalkiadis, G. A. Tramadol: keep

calm and carry on. Paediatr Anaesth 27, 785–788 (2017).

34. Baarslag, M. A., Allegaert, K., Knibbe, C. A., Dijk, M. van & Tibboel, D.

Pharmacological sedation management in the paediatric intensive care unit. J. Pharm.

Pharmacol. 69, 498–513 (2017).

35. Ng, E., Taddio, A. & Ohlsson, A. Intravenous midazolam infusion for sedation

of infants in the neonatal intensive care unit. Cochrane Database Syst Rev 1, CD002052

245



(2017).

36. Giovannitti, J. A., Thoms, S. M. & Crawford, J. J. Alpha-2 adrenergic receptor

agonists: a review of current clinical applications. Anesth Prog 62, 31–39 (2015).

37. Schug, S., Palmer, G., Scott, D., Halliwell, R. & Trinca, J. Acute pain manage-

ment: Scientific evidence. (ANZCA & FPM, 2015).

38. Choi, B. M. et al. Population pharmacokinetic and pharmacodynamic model of

propofol externally validated in children. J Pharmacokinet Pharmacodyn 42, 163–177

(2015).

39. Rigouzzo, A. et al. The relationship between bispectral index and propofol

during target-controlled infusion anesthesia: a comparative study between children and

young adults. Anesth. Analg. 106, 1109–1116 (2008).

40. Khosravi, S., Hahn, J. O., Dumont, G. A. & Ansermino, J. M. A monitor-

decoupled pharmacodynamic model of propofol in children using state entropy as clinical

endpoint. IEEE Trans Biomed Eng 59, 736–743 (2012).

41. Hahn, J. O., Dumont, G. A. & Ansermino, J. M. A direct dynamic dose-response

model of propofol for individualized anesthesia care. IEEE Trans Biomed Eng 59,

571–578 (2012).

42. Lamond, D. W. Review article: Safety profile of propofol for paediatric procedural

sedation in the emergency department. Emerg Med Australas 22, 265–286 (2010).

43. Davidson, A. & Flick, R. P. Neurodevelopmental implications of the use of

sedation and analgesia in neonates. Clin Perinatol 40, 559–573 (2013).

44. Ing Lorenzini, K., Daali, Y., Dayer, P. & Desmeules, J. Pharmacokinetic-

pharmacodynamic modelling of opioids in healthy human volunteers. a minireview.

Basic Clin. Pharmacol. Toxicol. 110, 219–226 (2012).

45. Martini, C., Olofsen, E., Yassen, A., Aarts, L. & Dahan, A. Pharmacokinetic-

pharmacodynamic modeling in acute and chronic pain: an overview of the recent

literature. Expert Rev Clin Pharmacol 4, 719–728 (2011).

46. Yang, H., Feng, Y. & Xu, X. S. Pharmacokinetic and pharmacodynamic

modeling for acute and chronic pain drug assessment. Expert Opin Drug Metab Toxicol

246



10, 229–248 (2014).

47. Morse, J. D., Hannam, J. & Anderson, B. J. Pharmacokinetic-pharmacodynamic

population modelling in paediatric anaesthesia and its clinical translation. Curr Opin

Anaesthesiol 32, 353–362 (2019).

48. Kern, S. E. Challenges in conducting clinical trials in children: approaches for

improving performance. Expert Rev Clin Pharmacol 2, 609–617 (2009).

49. Haslund-Krog, S. S. et al. Challenges in conducting paediatric trials with

off-patent drugs. Contemp Clin Trials Commun 23, 100783 (2021).

50. Guarracino, F. et al. Target controlled infusion: TCI. Minerva Anestesiol 71,

335–337 (2005).

51. Anderson, B. J. & Hodkinson, B. Are there still limitations for the use of

target-controlled infusion in children? Curr Opin Anaesthesiol 23, 356–362 (2010).

52. Johnson, T. N. Modelling approaches to dose estimation in children. Br J Clin

Pharmacol 59, 663–669 (2005).

53. Germovsek, E., Barker, C. I. S., Sharland, M. & Standing, J. F. Correction to:

Pharmacokinetic-Pharmacodynamic Modeling in Pediatric Drug Development, and the

Importance of Standardized Scaling of Clearance. Clin Pharmacokinet 58, 139 (2019).

54. Strolin Benedetti, M., Whomsley, R. & Baltes, E. L. Differences in absorption,

distribution, metabolism and excretion of xenobiotics between the paediatric and adult

populations. Expert Opin Drug Metab Toxicol 1, 447–471 (2005).

55. Vetterly, C. & Howrie, D. A Pharmacokinetic and Pharmacodynamic Review.

In: Munoz R, Morell V, Cruz E, Vetterly C, editors. Critical Care of Children with

Heart Disease 9, 83–7 (2010).

56. Lu, H. & Rosenbaum, S. Developmental pharmacokinetics in pediatric popula-

tions. J Pediatr Pharmacol Ther 19, 262–276 (2014).

57. Alcorn, J. & McNamara, P. J. Pharmacokinetics in the newborn. Adv. Drug

Deliv. Rev. 55, 667–686 (2003).

58. Allegaert, K., Mian, P. & Anker, J. N. van den Developmental Pharmacokinetics

in Neonates: Maturational Changes and Beyond. Curr Pharm Des 23, 5769–5778

247



(2017).

59. Anker, J. van den, Reed, M. D., Allegaert, K. & Kearns, G. L. Developmental

Changes in Pharmacokinetics and Pharmacodynamics. J Clin Pharmacol 58 Suppl

10, S10–S25 (2018).

60. Rhodin, M. M. et al. Human renal function maturation: a quantitative

description using weight and postmenstrual age. Pediatr. Nephrol. 24, 67–76 (2009).

61. Brussee, J. M. et al. Children in clinical trials: towards evidence-based pediatric

pharmacotherapy using pharmacokinetic-pharmacodynamic modeling. Expert Rev Clin

Pharmacol 9, 1235–1244 (2016).

62. Stephenson, T. How children’s responses to drugs differ from adults. Br J Clin

Pharmacol 59, 670–673 (2005).

63. Mulla, H. Understanding developmental pharmacodynamics: importance for

drug development and clinical practice. Paediatr Drugs 12, 223–233 (2010).

64. Conklin, L. S., Hoffman, E. P. & Anker, J. van den Developmental Pharmaco-

dynamics and Modeling in Pediatric Drug Development. J Clin Pharmacol 59 Suppl

1, S87–S94 (2019).

65. Disma, N. & Hansen, T. G. Pediatric anesthesia and neurotoxicity: can findings

be translated from animals to humans? Minerva Anestesiol 82, 791–796 (2016).

66. Paediatric Anaesthetists of Great Britain, A. of & Ireland Good practice in

postoperative and procedural pain management, 2nd edition. (Paediatr Anaesth, 2012).

67. Moor, R. Pain assessment in a children’s A&E: a critical analysis. Paediatr

Nurs 13, 20–24 (2001).

68. Stinson, J. N., Kavanagh, T., Yamada, J., Gill, N. & Stevens, B. Systematic

review of the psychometric properties, interpretability and feasibility of self-report

pain intensity measures for use in clinical trials in children and adolescents. Pain 125,

143–157 (2006).

69. Baeyer, C. L. von Children’s self-report of pain intensity: what we know, where

we are headed. Pain Res Manag 14, 39–45 (2009).

70. Wong, C., Lau, E., Palozzi, L. & Campbell, F. Pain management in children: Part

248



1 - Pain assessment tools and a brief review of nonpharmacological and pharmacological

treatment options. Can Pharm J (Ott) 145, 222–225 (2012).

71. Dijk, M. van, Ceelie, I. & Tibboel, D. Endpoints in pediatric pain studies. Eur.

J. Clin. Pharmacol. 67 Suppl 1, 61–66 (2011).

72. Hicks, C. L., Baeyer, C. L. von, Spafford, P. A., Korlaar, I. van & Goodenough, B.

The Faces Pain Scale-Revised: toward a common metric in pediatric pain measurement.

Pain 93, 173–183 (2001).

73. Tsze, D. S., Baeyer, C. L. von, Bulloch, B. & Dayan, P. S. Validation of

self-report pain scales in children. Pediatrics 132, e971–979 (2013).

74. Ambuel, B., Hamlett, K. W., Marx, C. M. & Blumer, J. L. Assessing distress

in pediatric intensive care environments: the COMFORT scale. J Pediatr Psychol 17,

95–109 (1992).

75. Carnevale, F. A. & Razack, S. An item analysis of the COMFORT scale in a

pediatric intensive care unit. Pediatr Crit Care Med 3, 177–180 (2002).

76. Johansson, M. & Kokinsky, E. The COMFORT behavioural scale and the

modified FLACC scale in paediatric intensive care. Nurs Crit Care 14, 122–130 (2009).

77. Dijk, M. van et al. The association between physiological and behavioral pain

measures in 0- to 3-year-old infants after major surgery. J Pain Symptom Manage 22,

600–609 (2001).

78. Ista, E., Dijk, M. van, Tibboel, D. & Hoog, M. de Assessment of sedation levels

in pediatric intensive care patients can be improved by using the COMFORT ‘behavior’

scale. Pediatr Crit Care Med 6, 58–63 (2005).

79. Boerlage, A. A. et al. The COMFORT behaviour scale detects clinically

meaningful effects of analgesic and sedative treatment. Eur J Pain 19, 473–479 (2015).

80. Dijk, M. van et al. Taking up the challenge of measuring prolonged pain in

(premature) neonates: the COMFORTneo scale seems promising. Clin J Pain 25,

607–616 (2009).

81. Bai, J., Hsu, L., Tang, Y. & Dijk, M. van Validation of the COMFORT Behavior

scale and the FLACC scale for pain assessment in Chinese children after cardiac surgery.

249



Pain Manag Nurs 13, 18–26 (2012).

82. Lundqvist, P. et al. Development and psychometric properties of the Swedish

ALPS-Neo pain and stress assessment scale for newborn infants. Acta Paediatr. 103,

833–839 (2014).

83. Holsti, L. & Grunau, R. E. Initial validation of the Behavioral Indicators of

Infant Pain (BIIP). Pain 132, 264–272 (2007).

84. Debillon, T., Zupan, V., Ravault, N., Magny, J. F. & Dehan, M. Development

and initial validation of the EDIN scale, a new tool for assessing prolonged pain in

preterm infants. Arch. Dis. Child. Fetal Neonatal Ed. 85, 36–41 (2001).

85. Cowen, R., Stasiowska, M. K., Laycock, H. & Bantel, C. Assessing pain

objectively: the use of physiological markers. Anaesthesia 70, 828–847 (2015).

86. McPherson, C., Ortinau, C. M. & Vesoulis, Z. Practical approaches to sedation

and analgesia in the newborn. J Perinatol (2020).

87. Raeside, L. Physiological measures of assessing infant pain: a literature review.

Br J Nurs 20, 1370–1376 (2011).

88. Morton, D. L., Sandhu, J. S. & Jones, A. K. Brain imaging of pain: state of the

art. J Pain Res 9, 613–624 (2016).

89. Sciusco, A. et al. Effect of age on the performance of bispectral and entropy

indices during sevoflurane pediatric anesthesia: A pharmacometric study. Paediatr

Anaesth 399–408

90. Paisansathan, C., Ozcan, M. D., Khan, Q. S., Baughman, V. L. & Ozcan, M.

S. Signal persistence of bispectral index and state entropy during surgical procedure

under sedation. ScientificWorldJournal 2012, 272815 (2012).

91. Ranger, M., Johnston, C. C., Limperopoulos, C., Rennick, J. E. & Plessis, A. J.

du Cerebral near-infrared spectroscopy as a measure of nociceptive evoked activity in

critically ill infants. Pain Res Manag 16, 331–336 (2011).

92. Ette, E. I., Williams, P. J. & Lane, J. R. Population pharmacokinetics III: design,

analysis, and application of population pharmacokinetic Studies. Ann Pharmacother

250



38, 2136–2144 (2004).

93. Ette, E. I. & Williams, P. J. Population pharmacokinetics II: estimation methods.

Ann Pharmacother 38, 1907–1915 (2004).

94. Standing, J. F. Understanding and applying pharmacometric modelling and

simulation in clinical practice and research. Br J Clin Pharmacol 83, 247–254 (2017).

95. Holford, N., Heo, Y. A. & Anderson, B. A pharmacokinetic standard for babies

and adults. J Pharm Sci 102, 2941–2952 (2013).

96. Lanao, J. M. et al. Pharmacokinetic basis for the use of extended interval dosage

regimens of gentamicin in neonates. J. Antimicrob. Chemother. 54, 193–198 (2004).

97. Kimura, T. et al. Population pharmacokinetics of arbekacin, vancomycin, and

panipenem in neonates. Antimicrob. Agents Chemother. 48, 1159–1167 (2004).

98. Anderson, B. J., Allegaert, K., Van den Anker, J. N., Cossey, V. & Holford,

N. H. Vancomycin pharmacokinetics in preterm neonates and the prediction of adult

clearance. Br J Clin Pharmacol 63, 75–84 (2007).

99. Germovsek, E., Barker, C. I., Sharland, M. & Standing, J. F. Scaling clearance

in paediatric pharmacokinetics: All models are wrong, which are useful? Br J Clin

Pharmacol 83, 777–790 (2017).

100. Zhang, L., Beal, S. L. & Sheiner, L. B. Simultaneous vs. sequential analysis

for population PK/PD data I: best-case performance. J Pharmacokinet Pharmacodyn

30, 387–404 (2003).

101. Anderson, B. J., Holford, N. H., Woollard, G. A., Kanagasundaram, S. &

Mahadevan, M. Perioperative pharmacodynamics of acetaminophen analgesia in children.

Anesthesiology 90, 411–421 (1999).

102. Ene, I. & William, J. Pharmacometrics: The science of quantitative pharma-

cology. (John Wiley & Sons Inc, 2015).

103. Peeters, M. Y. et al. Pharmacokinetics and pharmacodynamics of midazolam

and metabolites in nonventilated infants after craniofacial surgery. Anesthesiology 105,

1135–1146 (2006).

104. Krause, A. & Lowe, P. J. Visualization and communication of pharmacometric

251



models with berkeley madonna. CPT Pharmacometrics Syst Pharmacol 3, e116 (2014).

105. Louizos, C., Yanez, J. A., Forrest, M. L. & Davies, N. M. Understanding

the hysteresis loop conundrum in pharmacokinetic/pharmacodynamic relationships. J

Pharm Pharm Sci 17, 34–91 (2014).

106. Kjellsson, M. C., Zingmark, P. H., Jonsson, E. N. & Karlsson, M. O. Comparison

of proportional and differential odds models for mixed-effects analysis of categorical

data. J Pharmacokinet Pharmacodyn 35, 483–501 (2008).

107. Sheiner, L. B. A new approach to the analysis of analgesic drug trials, illustrated

with bromfenac data. Clin Pharmacol Ther 56, 309–322 (1994).

108. Colin, P. J. et al. Dexmedetomidine pharmacokinetic-pharmacodynamic

modelling in healthy volunteers: 1. Influence of arousal on bispectral index and

sedation. Br J Anaesth 119, 200–210 (2017).

109. Schindler, E. & Karlsson, M. O. A Minimal Continuous-Time Markov Pharma-

cometric Model. AAPS J 19, 1424–1435 (2017).

110. Wellhagen, G. J., Kjellsson, M. C. & Karlsson, M. O. A Bounded Integer

Model for Rating and Composite Scale Data. AAPS J 21, 74 (2019).

111. Bergstrand, M., Hooker, A. C., Wallin, J. E. & Karlsson, M. O. Prediction-

corrected visual predictive checks for diagnosing nonlinear mixed-effects models. AAPS

J 13, 143–151 (2011).

112. Thigpen, J. C., Odle, B. L. & Harirforoosh, S. Opioids: A Review of Phar-

macokinetics and Pharmacodynamics in Neonates, Infants, and Children. Eur J Drug

Metab Pharmacokinet (2019).

113. Anand, K. J. & Hall, R. W. Pharmacological therapy for analgesia and sedation

in the newborn. Arch. Dis. Child. Fetal Neonatal Ed. 91, F448–453 (2006).

114. Stanley, T. H. The fentanyl story. J Pain 15, 1215–1226 (2014).

115. Ziesenitz, V. C., Vaughns, J. D., Koch, G., Mikus, G. & Anker, J. N. van

den Pharmacokinetics of Fentanyl and Its Derivatives in Children: A Comprehensive

Review. Clin Pharmacokinet 57, 125–149 (2018).

116. Lee, B., Park, J. D., Choi, Y. H., Han, Y. J. & Suh, D. I. Efficacy and Safety

252



of Fentanyl in Combination with Midazolam in Children on Mechanical Ventilation. J.

Korean Med. Sci. 34, e21 (2019).

117. Pacifici, G. M. Clinical pharmacology of fentanyl in preterm infants. A review.

Pediatr Neonatol 56, 143–148 (2015).

118. Lammers, E. M. et al. Association of fentanyl with neurodevelopmental

outcomes in very-low-birth-weight infants. Ann Pharmacother 48, 335–342 (2014).

119. McPherson, C. et al. Brain Injury and Development in Preterm Infants

Exposed to Fentanyl. Ann Pharmacother 49, 1291–1297 (2015).

120. Drewes, A. M. et al. Differences between opioids: pharmacological, experimen-

tal, clinical and economical perspectives. Br J Clin Pharmacol 75, 60–78 (2013).

121. Saarenmaa, E., Neuvonen, P. J. & Fellman, V. Gestational age and birth

weight effects on plasma clearance of fentanyl in newborn infants. J. Pediatr. 136,

767–770 (2000).

122. Thigpen, J. C., Odle, B. L. & Harirforoosh, S. Opioids: A Review of Phar-

macokinetics and Pharmacodynamics in Neonates, Infants, and Children. Eur J Drug

Metab Pharmacokinet 44, 591–609 (2019).

123. Völler, S. et al. Rapidly maturing fentanyl clearance in preterm neonates. Arch

Dis Child Fetal Neonatal Ed 104, F598–F603 (2019).

124. Norman, E. et al. Individual variations in fentanyl pharmacokinetics and

pharmacodynamics in preterm infants. Acta Paediatr. (2019).

125. Gauntlett, I. S. et al. Pharmacokinetics of fentanyl in neonatal humans and

lambs: effects of age. Anesthesiology 69, 683–687 (1988).

126. Ziesenitz, V. C., Vaughns, J. D., Koch, G., Mikus, G. & Anker, J. N. van

den Correction to: Pharmacokinetics of Fentanyl and Its Derivatives in Children: A

Comprehensive Review. Clin Pharmacokinet 57, 393–417 (2018).

127. Hagos, F. T. et al. Factors Contributing to Fentanyl Pharmacokinetic Vari-

ability Among Diagnostically Diverse Critically Ill Children. Clin Pharmacokinet 58,

1567–1576 (2019).

128. Choi, B. M. et al. Population pharmacokinetic and pharmacodynamic model of

253



propofol externally validated in children. J Pharmacokinet Pharmacodyn 42, 163–177

(2015).

129. Encinas, E. et al. A predictive pharmacokinetic/pharmacodynamic model

of fentanyl for analgesia/sedation in neonates based on a semi-physiologic approach.

Paediatr Drugs 15, 247–257 (2013).

130. McPherson, C., Miller, S. P., El-Dib, M., Massaro, A. N. & Inder, T. E. The

influence of pain, agitation, and their management on the immature brain. Pediatr Res

88, 168–175 (2020).

131. Norman, E. et al. Rapid sequence induction is superior to morphine for

intubation of preterm infants: a randomized controlled trial. J. Pediatr. 159, 893–899

(2011).

132. Norman, E., Wikstrom, S., Rosen, I., Fellman, V. & Hellstrom-Westas, L. Pre-

medication for intubation with morphine causes prolonged depression of electrocortical

background activity in preterm infants. Pediatr. Res. 73, 87–94 (2013).

133. Matic, M., Wildt, S. N. de, Tibboel, D. & Schaik, R. H. N. van Analgesia and

Opioids: A Pharmacogenetics Shortlist for Implementation in Clinical Practice. Clin

Chem 63, 1204–1213 (2017).

134. Anderson, B. J. & Larsson, P. A maturation model for midazolam clearance.

Paediatr Anaesth 21, 302–308 (2011).

135. Bergstrand, M. & Karlsson, M. O. Handling data below the limit of quantifica-

tion in mixed effect models. AAPS J 11, 371–380 (2009).

136. Sumpter, A. L. & Holford, N. H. Predicting weight using postmenstrual

age–neonates to adults. Paediatr Anaesth 21, 309–315 (2011).

137. Su, W. & Pasternak, G. W. The role of multidrug resistance-associated protein

in the blood-brain barrier and opioid analgesia. Synapse 67, 609–619 (2013).

138. Chaves, C., Remiao, F., Cisternino, S. & Decleves, X. Opioids and the Blood-

Brain Barrier: A Dynamic Interaction with Consequences on Drug Disposition in Brain.

Curr Neuropharmacol 15, 1156–1173 (2017).

139. Chidambaran, V. et al. ABCC3 genetic variants are associated with postop-

254



erative morphine-induced respiratory depression and morphine pharmacokinetics in

children. Pharmacogenomics J 17, 162–169 (2017).

140. Venkatasubramanian, R. et al. ABCC3 and OCT1 genotypes influence

pharmacokinetics of morphine in children. Pharmacogenomics 15, 1297–1309 (2014).

141. Ek, C. J. et al. Efflux mechanisms at the developing brain barriers: ABC-

transporters in the fetal and postnatal rat. Toxicol Lett 197, 51–59 (2010).

142. Brouwer, K. L. et al. Human Ontogeny of Drug Transporters: Review and

Recommendations of the Pediatric Transporter Working Group. Clin Pharmacol Ther

98, 266–287 (2015).

143. Neil, M. J. Clonidine: clinical pharmacology and therapeutic use in pain

management. Curr Clin Pharmacol 6, 280–287 (2011).

144. Johr, M. Clonidine in paediatric anaesthesia. Eur J Anaesthesiol 28, 325–326

(2011).

145. Romantsik, O., Calevo, M. G., Norman, E. & Bruschettini, M. Clonidine for

pain in non-ventilated infants. Cochrane Database Syst Rev 4, CD013104 (2020).

146. Capino, A. C., Miller, J. L. & Johnson, P. N. Clonidine for Sedation and

Analgesia and Withdrawal in Critically Ill Infants and Children. Pharmacotherapy 36,

1290–1299 (2016).

147. Khan, Z. P., Ferguson, C. N. & Jones, R. M. alpha-2 and imidazoline receptor

agonists. Their pharmacology and therapeutic role. Anaesthesia 54, 146–165 (1999).

148. Larsson, P. et al. Oral bioavailability of clonidine in children. Paediatr Anaesth

21, 335–340 (2011).

149. Burch, M. et al. Influence of cardiopulmonary bypass on water balance

hormones in children. Br Heart J 68, 309–312 (1992).

150. Dorman, T. et al. Effects of clonidine on prolonged postoperative sympathetic

response. Crit. Care Med. 25, 1147–1152 (1997).

151. Kulka, P. J., Tryba, M. & Zenz, M. Preoperative alpha2-adrenergic receptor

agonists prevent the deterioration of renal function after cardiac surgery: results of a

255



randomized, controlled trial. Crit. Care Med. 24, 947–952 (1996).

152. Laudenbach, V. et al. Effects of alpha(2)-adrenoceptor agonists on perinatal

excitotoxic brain injury: comparison of clonidine and dexmedetomidine. Anesthesiology

96, 134–141 (2002).

153. Hayden, J. C. et al. Efficacy of Î±2-Agonists for Sedation in Pediatric Critical

Care: A Systematic Review. Pediatr Crit Care Med 17, 66–75 (2016).

154. Eberl, S., Ahne, G., Toni, I., Standing, J. & Neubert, A. Safety of clonidine

used for long-term sedation in paediatric intensive care: A systematic review. Br J

Clin Pharmacol (2020).

155. Hayden, J. C. et al. Optimizing clonidine dosage for sedation in mechanically

ventilated children: A pharmacokinetic simulation study. Paediatr Anaesth 29, 1002–

1010 (2019).

156. Potts, A. L. et al. Clonidine disposition in children; a population analysis.

Paediatr Anaesth 17, 924–933 (2007).

157. Hall, J. E., Uhrich, T. D. & Ebert, T. J. Sedative, analgesic and cognitive

effects of clonidine infusions in humans. Br J Anaesth 86, 5–11 (2001).

158. Kleiber, N., Rosmalen, J. van, Tibboel, D. & Wildt, S. N. de Hemodynamic

Tolerance to IV Clonidine Infusion in the PICU. Pediatr Crit Care Med 19, e409–e416

(2018).

159. Jacobs, S. E. et al. Cooling for newborns with hypoxic ischaemic encephalopathy.

Cochrane Database Syst Rev CD003311 (2013).

160. Sarnat, H. B. & Sarnat, M. S. Neonatal encephalopathy following fetal distress.

A clinical and electroencephalographic study. Arch. Neurol. 33, 696–705 (1976).

161. Smits, A., Annaert, P., Van Cruchten, S. & Allegaert, K. A Physiology-Based

Pharmacokinetic Framework to Support Drug Development and Dose Precision During

Therapeutic Hypothermia in Neonates. Front Pharmacol 11, 587 (2020).

162. Broek, M. P. van den, Groenendaal, F., Egberts, A. C. & Rademaker, C.

M. Effects of hypothermia on pharmacokinetics and pharmacodynamics: a systematic

256



review of preclinical and clinical studies. Clin Pharmacokinet 49, 277–294 (2010).

163. Zanelli, S., Buck, M. & Fairchild, K. Physiologic and pharmacologic considera-

tions for hypothermia therapy in neonates. J Perinatol 31, 377–386 (2011).

164. Fritz, H. G. et al. Anesth AnalgThe effect of mild hypothermia on plasma

fentanyl concentration and biotransformation in juvenile pigs. Anesth Analg 100,

996–1002 (2005).

165. Haan, T. R. de et al. Pharmacokinetics and pharmacodynamics of medication

in asphyxiated newborns during controlled hypothermia. The PharmaCool multicenter

study. BMC Pediatr 12, 45 (2012).

166. Favié, L. M. A. et al. Pharmacokinetics of morphine in encephalopathic

neonates treated with therapeutic hypothermia. PLoS One 14, e0211910 (2019).

167. Favié, L. M. A. et al. Phenobarbital, Midazolam Pharmacokinetics, Effective-

ness, and Drug-Drug Interaction in Asphyxiated Neonates Undergoing Therapeutic

Hypothermia. Neonatology 116, 154–162 (2019).

168. Frymoyer, A. et al. Decreased Morphine Clearance in Neonates With Hypoxic

Ischemic Encephalopathy Receiving Hypothermia. J Clin Pharmacol 57, 64–76 (2017).

169. Shellhaas, R. A., Ng, C. M., Dillon, C. H., Barks, J. D. & Bhatt-Mehta, V.

Population pharmacokinetics of phenobarbital in infants with neonatal encephalopathy

treated with therapeutic hypothermia. Pediatr Crit Care Med 14, 194–202 (2013).

170. Welzing, L. et al. Disposition of midazolam in asphyxiated neonates receiving

therapeutic hypothermia–a pilot study. Klin Padiatr 225, 398–404 (2013).

171. McAdams, R. M., Pak, D., Lalovic, B., Phillips, B. & Shen, D. D. Dexmedeto-

midine Pharmacokinetics in Neonates with Hypoxic-Ischemic Encephalopathy Receiving

Hypothermia. Anesthesiol Res Pract 2020, 2582965 (2020).

172. Ameringer, S., Serlin, R. C. & Ward, S. Simpson’s paradox and experimental

research. Nurs Res 58, 123–127 (2009).

173. Plan, E. L., Elshoff, J. P., Stockis, A., Sargentini-Maier, M. L. & Karlsson, M.

O. Likert pain score modeling: a Markov integer model and an autoregressive continuous

257



model. Clin Pharmacol Ther 91, 820–828 (2012).

174. Kleiber, N. et al. Population pharmacokinetics of intravenous clonidine

for sedation during paediatric extracorporeal membrane oxygenation and continuous

venovenous hemofiltration. Br J Clin Pharmacol 83, 1227–1239 (2017).

175. Blumer, J. L. Clinical pharmacology of midazolam in infants and children.

Clin Pharmacokinet 35, 37–47 (1998).

176. Pacifici, G. M. Clinical pharmacology of midazolam in neonates and children:

effect of disease-a review. Int J Pediatr 2014, 309342 (2014).

177. Conway, A., Rolley, J. & Sutherland, J. R. Midazolam for sedation before

procedures. Cochrane Database Syst Rev CD009491 (2016).

178. Ng, E., Taddio, A. & Ohlsson, A. Intravenous midazolam infusion for sedation

of infants in the neonatal intensive care unit. Cochrane Database Syst Rev 1, CD002052

(2017).

179. Barends, C. R., Absalom, A., Minnen, B. van, Vissink, A. & Visser, A.

Dexmedetomidine versus Midazolam in Procedural Sedation. A Systematic Review of

Efficacy and Safety. PLoS One 12, e0169525 (2017).

180. Olkkola, K. T. & Ahonen, J. Midazolam and other benzodiazepines. Handb

Exp Pharmacol 335–360 (2008).

181. Carter, B. S. & Brunkhorst, J. Neonatal pain management. Semin Perinatol

41, 111–116 (2017).

182. Altamimi, M. I., Sammons, H. & Choonara, I. Inter-individual variation in

midazolam clearance in children. Arch Dis Child 100, 95–100 (2015).

183. Kos, M. K. et al. Maturation of midazolam clearance in critically ill children

with severe bronchiolitis: A population pharmacokinetic analysis. Eur J Pharm Sci

141, 105095 (2020).

184. Brussee, J. M. et al. Predicting CYP3A-mediated midazolam metabolism in

critically ill neonates, infants, children and adults with inflammation and organ failure.

Br J Clin Pharmacol 84, 358–368 (2018).

185. Ince, I. et al. Critical illness is a major determinant of midazolam clearance in

258



children aged 1 month to 17 years. Ther Drug Monit 34, 381–389 (2012).

186. Johnson, T. N., Rostami-Hodjegan, A., Goddard, J. M., Tanner, M. S. &

Tucker, G. T. Contribution of midazolam and its 1-hydroxy metabolite to preoperative

sedation in children: a pharmacokinetic-pharmacodynamic analysis. Br J Anaesth 89,

428–437 (2002).

187. Valkenburg, A. J. et al. Sedation With Midazolam After Cardiac Surgery in

Children With and Without Down Syndrome: A Pharmacokinetic-Pharmacodynamic

Study. Pediatr Crit Care Med (2020).

188. Lugo, R. A. & Kern, S. E. Clinical pharmacokinetics of morphine. J Pain

Palliat Care Pharmacother 16, 5–18 (2002).

189. Altamimi, M. I., Choonara, I. & Sammons, H. Inter-individual variation in

morphine clearance in children. Eur J Clin Pharmacol 71, 649–655 (2015).

190. Anand, K. J. et al. Morphine pharmacokinetics and pharmacodynamics in

preterm and term neonates: secondary results from the NEOPAIN trial. Br J Anaesth

101, 680–689 (2008).

191. Bouwmeester, N. J., Anderson, B. J., Tibboel, D. & Holford, N. H. Devel-

opmental pharmacokinetics of morphine and its metabolites in neonates, infants and

young children. Br J Anaesth 92, 208–217 (2004).

192. Knøsgaard, K. R. et al. Pharmacokinetic models of morphine and its metabo-

lites in neonates:: Systematic comparisons of models from the literature, and develop-

ment of a new meta-model. Eur J Pharm Sci 92, 117–130 (2016).

193. Valkenburg, A. J. et al. Exploring the Relationship Between Morphine

Concentration and Oversedation in Children After Cardiac Surgery. J Clin Pharmacol

60, 1231–1236 (2020).

194. Wolf, A. et al. Prospective multicentre randomised, double-blind, equivalence

study comparing clonidine and midazolam as intravenous sedative agents in critically ill

children: the SLEEPS (Safety profiLe, Efficacy and Equivalence in Paediatric intensive

care Sedation) study. Health Technol Assess 18, 1–212 (2014).

195. Duffett, M. et al. Clonidine in the sedation of mechanically ventilated children:

259



a pilot randomized trial. J Crit Care 29, 758–763 (2014).

196. Ambrose, C. et al. Intravenous clonidine infusion in critically ill children:

dose-dependent sedative effects and cardiovascular stability. Br J Anaesth 84, 794–796

(2000).

197. Arenas-López, S. et al. Use of oral clonidine for sedation in ventilated paediatric

intensive care patients. Intensive Care Med 30, 1625–1629 (2004).

198. Hünseler, C. et al. Continuous infusion of clonidine in ventilated newborns

and infants: a randomized controlled trial. Pediatr Crit Care Med 15, 511–522 (2014).

199. Bouwmeester, N. J., Anderson, B. J., Tibboel, D. & Holford, N. H. Br J

AnaesthDevelopmental pharmacokinetics of morphine and its metabolites in neonates,

infants and young children. Br J Anaesth 92, 208–217 (2004).

200. Knibbe, C. A. et al. Morphine glucuronidation in preterm neonates, infants

and children younger than 3 years. Clin Pharmacokinet 48, 371–385 (2009).

201. Peeters, M. Y. et al. Propofol pharmacokinetics and pharmacodynamics for

depth of sedation in nonventilated infants after major craniofacial surgery. Anesthesiol-

ogy 104, 466–474 (2006).

202. Lam, J. et al. The ontogeny of P-glycoprotein in the developing human

blood-brain barrier: implication for opioid toxicity in neonates. Pediatr Res 78, 417–421

(2015).

203. Mulla, H. Understanding developmental pharmacodynamics: importance for

drug development and clinical practice. Paediatr Drugs 12, 223–233 (2010).

260


	Introduction
	Pain and sedation in children
	Developmental pathophysiology
	Pharmacological treatments
	Role of Pharmacokinetic/Pharmacodymamic modelling
	Challenge of paediatric clinical trials
	Clinical challenge in drug dosing

	Developmental pharmacology
	Developmental differences in pharmacokinetics
	Developmental differences in pharmacodynamics

	Pharmacokinetic/pharmacodymic modelling in pain and sedation
	Pharmacodynamic tools in pain and sedation
	Evaluating pain and sedation
	Monitoring physiological effects of pain and sedation

	Aim of the thesis

	Parameter estimation
	Modelling approaches
	Statistical modelling
	Pharmacokinetic models in children
	Pharmacokinetic/pharmacodynamic models
	Models for continuous response variables
	Models for categorical PD variables

	Model evaluation
	Systematic verification and validation of the models

	Pharmacokinetic/pharmacodynamic modelling of the results of the NEOFENT trial
	Introduction
	Fentanyl pharmacology
	Previously published models
	Rationale
	Aim

	Methods
	Data
	Fentanyl pharmacokinetic modelling
	Fentanyl pharmacokinetic/pharmacogenetic modelling
	Fentanyl pharmacokinetic/pharmacodynamic modelling
	Simulations
	Model evaluation

	Results
	Data
	Fentanyl pharmacokinetic modelling
	Fentanyl pharmacokinetic/pharmacogenetic modelling
	Fentanyl pharmacokinetic/pharmacodynamic modelling
	Simulation
	Model evaluation

	Discussion

	Pharmacokinetic/pharmacodynamic modelling of the results of the SANNI1 trial
	Introduction
	Clonidine
	Hypothermic treatment for perinatal asphyxia
	Effect of perinatal asphyxia and hypothermic treatment on ADME
	Rationale
	Aim

	Methods
	Study population
	Pharmacokinetic model building
	Pharmacokinetic/pharmacodynamic model building
	Simulations
	Model evaluation

	Results
	Study population
	Pharmacokinetic models
	Pharmacokinetic/pharmacodymamic models
	Simulations

	Discussion
	Pharmacokinetic models
	Pharmacokinetic/pharmacodynamic models
	Simulations


	Pharmacokinetic/pharmacodynamic modelling of the results of the CloSed trial
	Introduction
	Drugs studied
	Rationale for the CloSed trial
	Aim

	Methods
	Study population
	Primary endpoint of the CloSed trial
	Pharmacokinetic model building
	Pharmacokinetic/pharmacogenetic model building
	Pharmacokinetic/pharmacodynamic model building of the efficacy variables
	Pharmacokinetic/pharmacodynamic model building of the safety variables
	Simulations
	Model evaluation

	Results
	Study population
	Primary endpoint of the CloSed trial
	Pharmacokinetic modelling
	Pharmacokinetic/pharmacogenetic modelling
	Pharmacokinetic/pharmacodynamic modelling of the efficacy variables
	Pharmacokinetic/pharmacodynamic modelling of safety variables
	Simulations

	Discussion
	Pharmacokinetic models
	Pharmacokinetic/pharmacodynamic models
	Simulations


	Discussion
	Clonidine models
	Fentanyl models
	Midazolam model
	Effect of hypothermic treatment on the drug studied
	Pain and sedation scales
	Maturation model on drug clearance
	Probability of target achievement
	Limitation of the modelling performed in this thesis
	Strengths and limitations of the trials
	Safety considerations
	Further work
	Summary

	Bibliography

