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Abstract
Neuronal homeostasis requires the transport of various or-
ganelles to distal compartments and defects in this process
lead to neurological disorders. Although several mechanisms
for the delivery of organelles to axons and dendrites have been
elucidated, exactly how this process is orchestrated is not well-
understood. In this review, we discuss the recent literature
supporting a novel paradigm – the co-shuttling of mRNAs with
different membrane-bound organelles. This model postulates
that the tethering of ribonucleoprotein complexes to endoly-
sosomes and mitochondria allows for the spatiotemporal
coupling of organelle transport and the delivery of transcripts to
axons. Subcellular translation of these “hitchhiking” transcripts
may thus provide a proximal source of proteins required for the
maintenance and function of organelles in axons.
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Introduction
The morphological complexity of neurons requires
precise spatiotemporal compartmentalization of gene
expression and protein localization. In humans, motor
neuron axons can extend beyond one meter, whereas
basal forebrain cholinergic neurons, due to their com-

plex axonal branching, possess compounded axon
www.sciencedirect.com
lengths of around a hundred meters [1]. Furthermore,
organelles are transported to distal neuronal compart-
ments away from the soma, and thus away from the main
supply of mRNAs and proteins required to replenish
protein complexes. Indeed, organelles, such as mito-

chondria and endolysosomes, require myriad protein
complexes to maintain their optimal function. Thus, a
critical aspect of organelle homeostasis within axons is
the availability of a steady pool of mRNAs that can be
locally translated to replenish each organelle’s steady-
state protein composition or adapt to local environ-
mental conditions. An emerging paradigm is the teth-
ering of mRNA-containing ribonucleoprotein (mRNP)
granules directly on organelles allowing for on-demand
local translation. Furthermore, translation of these
organelle-tethered mRNAs in response to diverse elec-

trophysiological and/or molecular needs within axons
and dendrites may contribute to the fine-tuning of
organelle function box 1.

mRNA transport in axons – multiple levels
of regulation
It is estimated that z2500 mRNAs localize to distal
compartments of neurons [2]. RNAs destined for such
long-range delivery rely on cis- and trans-acting factors,
which dictate their subcellular destination [3,4]. For
instance, some mRNAs have 30 untranslated region
(UTR) motifs, termed ‘zipcodes’, that direct these
mRNAs to axons [4e6]. In addition, UTR motifs may
affect the half-life of mRNAs [7], whereas the secondary
structures of RNA may contribute to their axonal
localization [6]. mRNAs associate with putative RNA-
binding proteins (RBPs) that control their subcellular
transport, as well as stability [4,8]. For instance, TDP-43

and FUS, which are both mutated in amyotrophic lateral
sclerosis (ALS), control the axonal localization of
mRNAs [9]. These RBP-mRNA complexes can phase-
separate into membraneless foci [10] and are capable
of associating with motor proteins for transport in axons
and dendrites [11,12]. Two distinct classes of
microtubule-dependent motor proteins control the
plus-end directed (anterograde) and minus-end
directed (retrograde) axonal transport of RNA granules
- the kinesins and cytoplasmic dynein, respectively
[5,13,14]. Recently, reconstituted dynein motility assays

revealed that the full activation of dynein, when
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Box 1. Outstanding questions

1. Specificity of mRNP tethering on organelles.
a. Are there specific stimuli that affect the loading rate, recruitment kinetics and composition of mRNPs on mitochondria and endosomes?
b. Is there a RBP code for the specific recruitment of certain RNAs and RBPs on a given type of organelle relative to others?
c. Are there other, yet to be discovered, adaptor proteins for specific RBPs/mRNAs and organelle membranes that further enable the sorting

and co-shuttling of mRNAs with organelles?
2. Effects of organelle transport dynamics on subcellular translation and axonal health.

a. Do changes in transport dynamics of organelles that tether multi-functional mRNAs, have broader effects on neuronal health due to the
reduction of these transcripts in distal compartments?

b. To what extent does impaired transport of a specific organelle affect the function of another, if the mRNAs shuttled on one organelle are
required for the maintenance of the other (e.g., nuclear-encoded mitochondrial genes shuttling on endolysosomes).

3. Contributions of specific RNA transport mechanisms to axonal transcriptome.
a. Are there distinct RNA ensembles that are transported through organelle-tethered vs motor-bound axonal transport mechanisms?
b. Is organelle-tethering the main mechanism to localize RNA in axons en masse?
c. Can organelle-tethered mRNPs transfer onto motor proteins for further redistribution in axons? Conversely, can motor-bound RNPs

transfer and dock onto organelles in axons?
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associated with an RBP, requires the presence of RNA
[12], suggesting that some distally enriched mRNAs
could direct their transport back to the soma by acti-

vating dynein. Similarly, an anterograde-directed mRNP
complex composed of APC bound to b-actin and b-tubulin
mRNAs, along with kinesin adaptor KAP3 and KIF3 was
recently reconstituted [15]. Thus, the trafficking of
mRNAs to axons is modulated by motor-dependent and
combinatorial processes.

Membrane-tethered mRNP granules
Apart from the mechanisms discussed above, recent
studies indicate that the spatial localization of mRNPs
within axons may be directly linked to organelle trans-
port. Similar to results in a pioneering work showing
cellular shuttling of mRNPs with endosomes in the
fungus Ustilago maydis [16,17], it was recently established
that mRNPs are also able to “hitchhike” on organelles in
mammalian cell lines, as well as in neurons [18e23],
demonstrating the spatiotemporal coupling of organelle
and mRNA transport. Moreover, various regulatory non-
coding RNAs, such as precursor microRNAs, are
enriched on endosomes and on mitochondria [24,25],

suggesting that the expression of mRNAs tethered to
organelles can be fine-tuned in situ. Local protein syn-
thesis of these hitchhiking mRNAs may therefore
contribute to the maintenance of the organelle to which
they are tethered [19e22,26]. A schematic summarising
the studies discussed below and detailing the coupling of
axonal mRNA transport and local translation to organelle
maintenance and function is illustrated in Figure 1.

Endolysosomes as hubs for mRNPs and
sites of local translation within axons
One of the best examples of this emerging concept is
provided by endolysosomal compartments. Endosomes
are paramount for the internalization, transport, and
recycling/degradation of myriad external signalling
molecules and nutrients [27]. In neurons, signalling
endosomes relay pro-survival signals by transporting
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receptor-bound neurotrophins and associated kinases
from distal compartments to the soma [28]. Thus,
endosomes may be an ideal platform for distributing

RNAs in axons due to their bidirectional motility. A
recent study utilizing image-based transcriptomics and
organelle-specific RNA sequencing demonstrated the
localization of various mRNAs on early endosomes [22].
Interestingly, this study also found that some mRNAs
localize to early endosomes in a translation-dependent
manner, as indicated by the dissociation of a pool of
mRNAs from endosomes in the presence of puromycin.
Furthermore, the authors found that EEA1 mRNA,
which encodes a component of early endosomes, is
tethered to Rab5-positive endosomes [22]. The coding

sequence of EEA1, rather than its 30UTR region, is
required for endosomal association, suggesting that non-
coding regions of mRNAs are not strictly required for
organelle tethering [22].

Another important study identified a novel Rab5
effector complex, termed FERRY, which binds mRNAs
directly, associates with various ribosomal proteins, and
tethers mRNAs to the surface of early endosomes. Thus,
this complex connects early endosomes with mRNA
localization and translation [23]. The FERRY complex,

which is composed of five protein subunits named Fy1 to
Fy5, selectively interacts with a subset of mRNAs
enriched for nuclear-encoded mitochondrial genes [23].
Importantly, FERRY is present in axons of hippocampal
neurons and colocalizes with both mitochondria and
nuclear-encoded mitochondrial mRNAs [23]. A recent
cryo-EM study showed that FERRY has a clamp-like
structure, wherein Fy2 and Fy5 dimerize to form two
arm-like appendages attached to a Fy4 dimer [29]. The
C- and N-terminus coiled-coil domains of Fy2 contain
multiple RNA-binding sites, whereas the C-terminal

coiled-coil domain directly binds Fy1/3 and Rab5.
Therefore, Fy2 serves as the core for other FERRY
subunits, mediates mRNA binding, and tethers this
complex to early endosomes [29].
www.sciencedirect.com
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Figure 1

Tethering of mRNA and ribonucleoprotein granules to organelles. Motor proteins actively transport Rab5-positive early endosomes and Rab7- and
LAMP1-positive late endosomes in axons. mRNP granules tethered to these organelles by various adaptor proteins transport mRNAs to distal com-
partments of neurons, facilitating in situ translation. Specifically, mRNPs that hitchhike on Rab5 vesicles are enriched in endosomal mRNAs, suggesting
that local translation of these transcripts aids in the maintenance of endosomes in axons and dendrites. The FERRY complex is a specific adaptor protein
tethering mRNAs to Rab5 containing early endosomes. It is composed of five subunits Fy1-Fy5; Fy2 holds this complex together by binding all other
subunits. The coiled-coil domains of Fy2 contain various mRNA-interacting regions, which allows the FERRY complex to associate with mRNAs. Fy2 also
associates directly with Rab5 to localize the FERRY complex specifically to early endosomes. Rab7-positive late endosomes, on the other hand, traffic
mRNP granules via ANXA11. ANXA11 possess a membrane-binding domain that allows it to associate with LAMP1-positive vesicles, as well as an
intrinsically-disordered domain that can bind mRNPs. Late endosomes also serve as hubs for precursor microRNAs. These unprocessed microRNAs can
provide a pool of mature microRNAs to control the expression of mRNAs in distal compartments, and perhaps mRNAs that are tethered on late
endosomes. In this manner, the transcripts, as well as their regulatory elements are co-transported on the same organelle. Moreover, the mTORC1
complex is localized and activated on the surface of late endosomes and lysosomes. Upon activation, mTORC1 initiates the translation of various
mRNAs. Both Rab5-and Rab7-positive endosomes shuttle nuclear-encoded mitochondrial mRNAs, indicating that both these organelles are involved in
the maintenance of mitochondria in distal neuronal compartments. Mitochondria also tether various mRNAs and mRNPs enriched for nuclear-encoded
mitochondrial mRNAs. CLUH was identified to bind the outer mitochondrial membrane protein Tom20 and nuclear-encoded mitochondrial mRNAs. PINK1
kinase was also shown to bind mRNAs, linking these transcripts to mitochondria. Recently, SYNJ2BP was demonstrated to localize PINK1 mRNA to
mitochondria. The local translation of PINK1 mRNA provides a steady pool of this protein, which is critical for mitophagy.
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Congruent with the model that endosomes shuttle
mRNA along axons, it was also demonstrated that Rab7-
and LAMP1-positive endosomes in axons also transport
mRNPs [18,19]. In Xenopus retinal ganglion axons, RNA
granules containing nuclear-encoded mitochondrial
mRNAs were found tethered on the surface of motile
Rab7-positive endolysosomes and translated on-site [19].

Strikingly, the expression of a dominant-negative Rab7
with a mutation that causes Charcot-Marie-Tooth disease
type 2B (CMT2B) results in defects in endosomal traf-
ficking, perturbs the translation of mitochondrial pro-
teins, and diminishes mitochondrial membrane potential
[19]. Interestingly, mTORC1, a kinase complex that ac-
tivates translation and various catabolic processes during
energy-replete states, utilizes endolysosomes as a plat-
form for activation through specific Rag GTPases
enriched on their surface [30,31]. mTORC1-dependent
translation has profound effects on axonal maintenance
and repair [32,33], and acts as a modifier of ALS pro-

gression [34]. These studies raise the interesting model
www.sciencedirect.com
that endolysosomes operate as supply hubs for nuclear-
encoded mitochondrial mRNAs, which are then trans-
lated in situ to replace subunits of the electron transport
chain (ETC).

Another important recent study found that RNA gran-
ules hitchhike on LAMP1-positive endosomes in axons

[18]. Through proximity-based proteomics using
LAMP1-APEX (ascorbate peroxidase), annexin 11
(ANXA11) was identified as an adaptor that links RNA
granules to late endosomes [18]. On the one hand,
ANXA11 possesses an N-terminus low complexity
domain facilitating its phase-separation and association
with RNA granules. On the other, its C-terminus
domain binds to membranes, allowing the protein to
simultaneously associate with endosomes and RNA
granules [18]. ANXA11 has previously been linked to
ALS [35] and ALS-causing mutations in ANXA11 were
found to disrupt its membrane-binding capacity and

thus its ability to transport RNA granules in an
Current Opinion in Cell Biology 2022, 74:97–103
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endosomal-dependent fashion [18]. Taken together,
these studies suggest an intimate link between endo-
somal transport, local translation, and preservation of
organelle function in axons.

It is worth noting that RNA granules docked onto
endosomes also carry mRNAs directly related to endo-
somal function, such as regulators of endocytic recy-

cling, endocytosis, and several Rab proteins [22]. It is
therefore alluring to hypothesize that the axonal main-
tenance of endosomes and/or their maturation require in
situ translation of mRNAs coding for endosomal com-
ponents tethered directly on the organelle. Such a
mechanism augments the canonical maturation program
of endosomes involving membrane remodelling and Rab
conversions [36,37] by providing a source of endosomal
protein synthesis in distal compartments.

Mitochondrial maintenance in axons require
co-shuttling of mRNPs and local translation
ATP synthesis, a critical function of mitochondria, re-
quires the assembly of large multi-subunit complexes
involved in the ETC. Most of the genes coding for these
proteins are nuclear-encoded. Many nuclear-encoded
mitochondrial mRNAs are enriched in axons and are
locally translated [38,39]. The spatiotemporal coordi-
nation of both nuclear- and mitochondrial-encoded
genes is intricate, especially in neurons where individ-

ual mitochondria can be meters away from the soma.
One way that neurons may overcome this issue is by
directly tethering mitochondrial mRNAs and RNA
granules onto the organelle itself [20,21,25,26]. In this
manner, the anterograde shuttling of mitochondria into
axons is concurrent with the transport of mRNAs
required for their repair and/or modulation of their
function. Indeed, ribosomes were found to be docked on
the surface of mitochondria, indicating these organelles
are sites for translation [40]. In line with this, a study
using proximity-specific ribosome profiling revealed that

ribosomes associated with the mitochondrial outer
membrane contain nuclear-encoded mitochondrial
genes [41]. mRNA targeting motifs, such as 30UTRs and
mitochondrial targeting sequences, have been shown to
affect not only mitochondrial localization of mRNAs, but
also their translational efficiency [42]. Recent work
using MS2-tagging to image Cox7c along live motor
neuron axons demonstrated that mRNA of this essential
ETC component is co-transported with mitochon-
dria [21].

Mitochondrial maintenance involves not just replace-
ment of organelle protein complexes, but also requires
the wholesale clearance of damaged mitochondria by
autophagy, a process known as mitophagy [43,44].
Mitophagy is mediated by a mitochondrion-localized
kinase, PINK1 and an E3 ubiquitin ligase, Parkin [44].
Failure to induce mitophagy is a hallmark of Parkinson’s
disease [45]. Work in Drosophila showed that PINK1 also
Current Opinion in Cell Biology 2022, 74:97–103
acts as a mitochondrial tether for nuclear-encoded
mRNAs [26]. Furthermore, PINK1/Parkin activation
dislodges translation repressors whilst activating eIF4G,
a translation initiation factor [26]. Another outer mito-
chondrial membrane protein in flies, MDI, recruits Larp,
a protein that stimulates translation of ETC subunits on
the outer mitochondrial membrane [46]. Indeed,
AKAP1, the human homologue of MDI, has been shown

to recruit mRNAs on the surface of mitochondria [48]
and was found to confer neuroprotection [47].

CLUH, a highly conserved RBP, has been shown to
stabilize and foster the translation of various nuclear-
encoded mitochondrial genes to regulate mitochon-
drial function and biogenesis [48,49]. Although CLUH
is mainly cytosolic, it has also been found to tether ri-
bosomes on the outer mitochondrial membrane through
its interaction with Tom20, likely leading to co-
translational import of mitochondrial proteins [50].

Recent work demonstrated that CLUH can be incor-
porated into G3BP-positive granules and that this pro-
cess modulated mitophagy [51]. Strikingly, loss-of-
function of clueless, the Drosophila homolog of CLUH,
has been shown to alter neuromuscular specificity,
suggesting a role in motor neuron development [52].
However, the function of CLUH in axonal biology has
not been fully elucidated. Nevertheless, due to its role
in localized mitochondrial maintenance by tethering
mRNAs to the organelle, it is likely that CLUH plays a
critical role in the upkeep of mitochondria within axons.

PINK1 has a very short half-life, in the order of minutes,
and is constitutively degraded via the N-degron
pathway, unless the mitochondria are damaged, which
leads to PINK1 stabilization [53]. Pertinently, mitoph-
agy occurs in axons and requires both PINK1 and Parkin
[54]. However, due to the constitutive and rapid
proteasomal degradation of PINK1, it was unclear how a
constant supply of newly synthesized PINK1 is main-
tained in axons. A recent study has shed light on this
issue by demonstrating that Pink1 mRNA is tethered to
mitochondria for axonal co-transport [20]. Furthermore,

SYNJ2BP, a protein which has a tail-anchor domain to
facilitate its mitochondrial localization, along with
SYNJ2, tethers PINK1 mRNA on mitochondria in axons
[20]. Indeed, SYNJ2BP was previously identified in an
unbiased screen as a putative RBP [55]. Consistently,
APEX proximity labelling in tandem with protein-RNA
complexes crosslinking revealed that SYNJ2BP is
indeed an outer mitochondrial membrane protein
capable of tethering various nuclear-encoded mito-
chondrial mRNAs in situ [56]. Consistently, loss of
SYNJ2BP function inhibits mitophagy in axons and re-

distributes PINK1 mRNA away from mitochondria [20].
Taken together, these studies suggest an important role
for the docking of various mRNAs onto mitochondria in
providing a steady supply of locally synthesized protein
to maintain mitochondrial function in axons.
www.sciencedirect.com
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Putative sorting mechanism for organelle-
tethered RNAs
There are many unanswered questions regarding the
packaging of mRNAs in mRNP complexes for axonal
transport. It is likely that various RBPs and their
numerous RNA clients form a vast overlapping network
of complex interactions. Consensus binding sites of
RBPs are short and degenerate [8]. Although there are
many RBP motifs that were identified within tran-
scripts, only a small subset of these is available in vivo
due to secondary structures of mRNAs that affect RBP
accessibility [57]. Moreover, several RBPs have been
observed to associate with the same mRNA to control its

localization. For instance, one of the most studied
mRNAs within axons, b-actin, is bound by ZBP1,
hnRNP-R, SMN, and HuD, which co-regulate its axonal
and dendritic localization [58e61]. FMRP granules
have also been shown to colocalize with cytosolic FUS in
motor neuron axons, suggesting overlap between FUS
and FMRP in the mRNAs that they regulate [62].
Indeed, a large-scale yeast-two-hybrid screen for
RBPeRBP interactions revealed a vast network of direct
associations [63]. Importantly, by overlapping the RBP
interactome with eCLIP data, it was shown that binary

RBPeRBP interactions can predict combinatorial RNA
binding, as well as proximal binding of interacting RBPs
with mRNAs at the transcriptome scale [63]. These
data suggest that the packaging of mRNPs is heteroge-
neous and perhaps this complexity allows RBPs to act in
a cooperative manner to regulate mRNA transport in
axons. On the other hand, non-classical RBPs, such as
the FERRY complex, may associate with a less heter-
ogenous set of mRNAs, since its binding does not rely on
granule formation. However, as mentioned above,
CLUH has been recently shown to form granules with

G3BPs [51], and thus some non-classical RBPs are also
able to phase-separate and incorporate with other clas-
sical RBPs.

Organelle-coupled RNA transport – an
experimental Pandora’s box?
In and of themselves, organelle transport and mainte-

nance, mRNA localization, and subcellular translation
in axons, are complex biological processes [3,5]. Recent
studies highlighting the interconnectedness of these
processes raise the question of whether experimentally
altering one perturbs the others. As an example, aber-
rant transport of Rab7-positive endosomes led to de-
fects in local translation of mitochondrial genes, and in
turn resulted in mitochondrial depolarization within
axons [19]. One may also reasonably expect that mito-
chondrial transport defects could lead to a metabolic
shift that alters local translation and organelle transport

in axons, since both processes require ATP. Future
studies are needed to demonstrate the precise links
between organelle transport and subcellular translation.
The emergence of proximity-based transcriptomics
www.sciencedirect.com
and proteomics [18,22,41,56] will aid in unravelling
coordinated mechanisms of organelle-based mRNA
transport and local translation within axons. Indeed,
various neurodegenerative diseases are associated with
aberrant axonal transport of organelles, as well as mu-
tations in RBPs, and translation defects [3,9,62,64].
Thus, uncovering the interplay between these inter-
twined processes may yield novel therapeutic targets

for ameliorating neurodegenerative disorders.
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