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Abstract

The field of astronomy is currently experiencing a period of unprecedented expan-

sion, predominantly brought about by the vast amounts of data being produced by

the latest telescopes and surveys. New methods will be required to have any hope of

being able to analyse the data collected, the most widespread of which is machine

learning. Machine learning has evolved rapidly over the past decade in an attempt

to match the rate of increasing data, and aided by advancements in computer hard-

ware, analyses that would have been impossible in the past are now common place

on astronomers’ laptops. However, despite machine learning becoming a favourite

tool for many, there is often little consideration for which algorithms are best suited

for the job.

In this thesis, machine learning is implemented in a variety of different prob-

lems ranging from Solar System science and searching for Trans-Neptunian Objects

(TNOs), to the cosmological problem of obtaining accurate photometric redshift

(photo-z) estimations for distant galaxies. In chapter 2 I implement many differ-

ent machine learning classifiers to aid the Dark Energy Survey’s search for TNOs,

comparing the classifiers to find the most suitable, and demonstrating how machine

learning can provide significant increases in efficiency. In chapter 3 I implement

machine learning algorithms to provide photo-z estimations for a million galaxies,

using the method as an example for how it is possible to benchmark machine learn-

ing algorithms to provide information about the scalibility of different methods.

In chapter 4 I expand upon the benchmarking of methods developed for obtaining

photo-z estimates, applying them instead to deep learning algorithms which directly

use image data, before discussing future work and concluding in chapter 5.
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The work presented in this thesis describes applying machine learning methods in

novel ways for different problems in astronomy. In the approaching era of enormous

datasets produced by sky surveys such as the Vera C. Rubin Observatory’s Legacy

Survey of Space and Time (LSST), the Square Kilometre Array (SKA), and the

Roman Space Telescope, machine learning will be vital in addressing many of the

challenges which will come with the wealth of data being produced.

The work discussed in chapter 2 has immediate impact on the ability to detect

Trans-Neptunian Objects (TNOs) using the Dark Energy Survey (DES), with the

extra machine learning preprocessing stage allowing the detection pipeline to be run

five times faster. Extensions of this work could allow for even greater performance

boosts when applied to closer populations of TNOs or other even closer objects,

such as asteroids. Furthermore, the work could be applied to surveys other than

DES and the general problem of searching for rare events is widespread in many

different disciplines with the machine learning process being easily transferable.

Benchmarking, such as is presented in chapter 3, is yet to be commonplace

in research settings. While the benefits of having efficient and scalable models is

obvious, they are often overlooked for small increases in accuracies, sometimes

resulting in models which are hundreds of times slower and require far more com-

putational resources for only the tiniest improvement in error. By encouraging more

benchmarking to be carried out as part of the research, many of these computational

resources could be freed-up, allowing for more research to be conducted and low-

ering the impact (both cost and environmental) of running computer clusters.

Finally, the deep learning models implemented in chapter 4 are state of the
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art convolutional neural networks (CNNs) and include never-before used mixed-

input models which are applied to the problem of photometric redshift (photo-z)

estimation. Photo-z estimates are a precursor of many cosmological experiments

and providing a new, fast, and accurate model which could be used directly with

images from surveys is invaluable. Indeed, from the comparisons we present, we

found that the mixed-input inception CNN was able to perform between 30−50%

better than a traditional random forest, and was among the best performance found

of any photo-z code in the literature.
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“Many things that seem threatening in the dark become welcoming when

we shine a light on them.”

– Uncle Iroh





Chapter 1

Introduction

Throughout human history, as a species we have tried to better understand our place

in the universe. From our earliest ancestors, who would have looked at the sky with

wonder, the fascination with the heavens has been embedded in all of us. While

there may have been those who began to formulate models of the solar system in

ancient Greece, it was only in the 17th century when we gathered more significant

evidence that the Earth was not at the centre of the universe.

With the invention of the telescope and advent of observational astronomy,

we were finally able to see further and gather more information to begin to un-

derstand the structure of the solar system. However, it took over a hundred years

before William Herschel and other astronomers began to understand that the Sun

also couldn’t be at the centre of the universe, but rather was part of a larger struc-

ture, our Milky Way galaxy. It took hundreds more years before advances in optics

allowed for Edwin Hubble to definitively classify Andromeda as a galaxy and prove

that the universe was much larger than initially conceived (Hubble, 1929), with the

Milky Way and Andromeda being but two of billions of galaxies in the universe.

Now, with the help of modern telescopes, we have finally started to gain a

greater insight into the scale of the universe, and recent observations have suggested

that there are likely around 200 billion galaxies in the observable universe (Lauer

et al., 2021). Similar to how advances in technologies have allowed for larger,

more advanced telescopes to be built (and launched into space) which have pushed

forward our knowledge of the universe, modern astronomy has relied on parallel
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advancements in computing.

Analyses which would have been inconceivable just a few decades ago have

been made possible thanks to the progress made in building faster processing units

and larger memory stores. In particular, this allowed for the emergence of machine

learning as one of the most powerful tools available in astronomical research. Ma-

chine learning methods are especially exciting in the current era of astronomy where

the vast amount of data produced by large sky surveys and space telescopes would

be impossible to analyse without specialist algorithms.

In this thesis I aim to contribute to the field of astronomy by making use of

machine learning, testing and implementing different algorithms for a variety of

problems to show their potential. The layout is as follows: In this chapter I introduce

and provide background material to the various topics explored in the later chapters.

Chapter 2 details the work completed in using machine learning to search for trans-

Neptunian objects (TNOs) using the Dark Energy Survey (DES). In chapter 3 I

focus on the benchmarking and scalability of machine learning algorithms applied

to the problem of obtaining photometric redshift (photo-z) estimations of galaxies,

and chapter 4 expands on this problem of obtaining photo-z estimates by using deep

learning algorithms directly with image data.

Finally, I summarise and conclude the work in chapter 5, as well as providing

appendices with additional details of the work completed as part of University Col-

lege London’s (UCL) centre for doctoral training in data intensive science (CDT-

DIS) which did not directly relate to astronomy. This included a group project

carried out over three months, and a placement completed in six months with the

company ASOS, as well as a project related to the Covid-19 pandemic. In this final

research project I investigated the correlations between natural UV radiation and

Covid-19 cases in the UK.
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1.1 Solar System Science
Despite the Solar System being our closest corner of the Universe, we still know

very little about our ‘cosmic backyard’. While much progress has been made since

Galileo fathered observational astronomy at the beginning of the 17th century, it’s

only very recently that we have begun to build a more complete picture of the Solar

System.

1.1.1 Formation and Evolution

One of the most fundamental questions asked about the Solar System is how it

formed, and what dynamical processes have lead to the Solar System we observe

today. The most widely accepted model of Solar System formation is the nebular

hypothesis which was initially discussed in the 18th century by the philosophers

Emanuel Swedenborg and Immanuel Kant (1755) before being refined by Laplace

(1799). In the nebular hypothesis the Sun formed from a collapsing giant cloud of

molecular gas. As the gas cloud begins with some angular momentum, the infall

of gas results in the acceleration of the rotation of gas through the conservation of

angular momentum. This forces the gas to spread out and form a protoplanetary

disk around the core, with more gas then accreting onto the core from the disk.

The much more recent model for Solar System evolution is the Nice model

(Tsiganis et al., 2005, Morbidelli et al., 2005, Gomes et al., 2005). The Nice model

and its subsequent modifications describe how the the giant planets formed much

nearer the Sun in the protoplanetary disk before migrating and settling into their cur-

rent orbits. In this model the scattering of smaller planetesimals inwards (towards

the Sun) by the giant planets resulted in angular momentum being transferred which

caused the three outer planets, Saturn, Neptune and Uranus, to migrate outwards.

In contrast, when planetesimals interacted with Jupiter they were sent into highly

elliptical orbits or even ejected from the Solar System which then resulted in Jupiter

migrating inwards.

A period of instability was caused when Jupiter and Saturn crossed their 2:1

mean motion resonance (MMR) - when Saturn would orbit the Sun twice for every

one of Jupiter’s orbits. As well as being a likely cause of the so called Late Heavy
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Bombardment of the inner Solar System, this also resulted in Jupiter and Saturn

shifting into their current orbits which in turn propelled Neptune and Uranus into

more distant, eccentric orbits as well as swapping their order. Eventually the orbits

of Uranus and Neptune stabilised through dynamical friction, where the remaining

planetesimals in the disk were accelerated and as a result damped the eccentricity

of the outer planets’ orbits.

While the Nice model has done incredibly well to explain the evolution of the

Solar System there is still much which has been left unanswered. The Nice model

is especially prone to misrepresenting the outer Solar System, failing to predict the

observed population of trans-Neptunian objects (TNOs). In particular there are now

many of these observed objects orbiting further than Neptune with orbits too distant

to have previously interacted with the outer planets, and a possible clustering of

objects in their arguments of perihelia and longitude of ascending node cannot be

explained.

Even with various modifications to the Nice model and experiments which

have tried to more accurately replicate the population of the observed Solar System

(Nesvornỳ & Morbidelli, 2012), questions remain over the origins of the observed

populations of the minor bodies of the Solar System. By observing more of these

objects and learning more about the various populations we hope to discover more

about their formation in the protoplanetary disk and what processes in their evolu-

tion have led to their current situations in the Solar System.

1.1.2 The Kuiper Belt

The Kuiper belt is the region of the Solar System past Neptune’s orbit at around

30 AU where many minor bodies can be found. First theorised to exist following

the discovery of Pluto, it was Edgeworth who began to try to quantify the number

of planetesimals contained in the belt (Edgeworth, 1943) rather than Kuiper (who

later suggested that a belt likely existed in the early Solar System but would have

been cleared by Pluto which he believed to be far more massive) (Kuiper, 1951). It

took almost half a century before telescopes became powerful enough to begin to

discover more objects and confirm the existence of the belt.
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Similar to the asteroid belt, the Kuiper belt (or Edgeworth-Kuiper belt) is

mainly formed of small planetesimals which remained after the Solar System

formed, however, it is far larger and about 100× more massive (Krasinsky et al.,

2002, Pitjeva & Pitjev, 2018). The objects contained in the Kuiper belt also differ

greatly in composition to those found in the asteroid belt, with most Kuiper belt

objects (KBOs) being predominantly made of frozen volatiles (ice) rather than the

rock and metal of asteroids.

As it is not possible to know the exact conditions during the formation of the

Solar System, the KBOs act as fossils, preserving information and allowing us to

probe earlier and learn more about the formation and evolution of the Solar Sys-

tem. Through studying the outer Solar System we can understand more about the

dynamical processes that have led to what we observe now, and similarly learn how

other extrasolar systems may have developed.

1.1.3 Trans-Neptunian Objects

A trans-Neptunian object (TNO) is defined as being any astronomical object in the

Solar System that is orbiting the Sun at a distance greater than that of Neptune’s

average orbital distance of 30 AU. The first, and most famous, TNO discovered

was the dwarf planet Pluto which was observed by Clyde William Tombaugh at

the Lowell Observatory in 1930 (Tombaugh, 1946). For almost half a century Pluto

remained the only known TNO, and it wasn’t until 1978 that Charon (Pluto’s largest

satellite) was discovered (Christy & Harrington, 1978).

It took a further decade before additional TNOs began to be identified and

it wasn’t until the 21st century when the number of TNO discoveries reached the

milestone of 100. Recently, helped by wide field telescopic surveys such as the Dark

Energy Survey (DES) (DES Collaboration, 2016), the Panoramic Survey Telescope

and Rapid Response System (Pan-STARRS) (Kaiser et al., 2002), and the Outer So-

lar System Origins Survey (OSSOS) (Bannister et al., 2018), the number of known

TNOs has been rapidly increasing and as of 2021 there have been around 3500

TNOs discovered.

There is plenty of motivation for continuing to search for additional TNOs;
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Figure 1.1: A histogram showing the distribution of TNOs discovered by year, with data
provided by the International Astronomical Union’s Minor Planet Center. The
spike in detections from 2013-2015 was the result of observational runs of sur-
veys such as DES, Pan-STARRS, and OSSOS.

in particular the orbital distribution of TNOs give a direct constraint on Neptune’s

evolution and migration. There have been many different models for how Neptune

may have migrated (Ida et al., 2000, Tsiganis et al., 2005), however, it is still uncer-

tain exactly what processes occurred. Objects in MMRs with Neptune provide the

best evidence of whether Neptune’s migration was ‘jumpy’ (Nesvornỳ & Vokrouh-

lickỳ, 2016), or ‘smooth’ (Nesvornỳ, 2015) as the number of TNOs found in each

MMR depend on the model of migration. There have also been studies showing how

some objects which were initially thought to have been scattered by Neptune could

actually be in higher order MMRs (Hahn & Malhotra, 2005). This indicates that

Neptune could have in fact migrated through a Kuiper belt which already contained

objects with highly eccentric orbits.

With the discovery of more and more TNOs, various subclasses have emerged

as a way of differentiating between the different populations based on their shared
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Figure 1.2: Figure showing the orbital elements, adapted from the image found at https:
//commons.wikimedia.org/wiki/File:Orbit1.svg

orbital characteristics. The orbits of Solar System bodies can be described by the

following six parameters which are also shown in figure 1.2. The semi-major axis, a,

and eccentricity, e, which describe the size and shape of the orbit. The inclination,

i, gives the tilt of the orbit relative to the ecliptic plane (the average plane of the

Solar System), and along with the longitude of ascending node, Ω, and argument of

perihelion, ω , describes the full orientation of the system. Finally, the true anomaly,

ν , is an angle that describes the position of the object along its orbit.

The true anomaly can also be related to two other angles: the mean anomaly,

M, and the eccentric anomaly, E, which help to describe the orbit and are shown in

figure 1.3. The mean anomaly represents the angle from perihelion of a fictitious

body moving with a perfectly circular orbit, and hence constant speed, with the

https://commons.wikimedia.org/wiki/File:Orbit1.svg
https://commons.wikimedia.org/wiki/File:Orbit1.svg
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same period as the actual body in its real, elliptical orbit. This is particularly useful

for describing orbits as if the mean anomaly is known at any given moment, it can

then be calculated for any other epoch. The mean anomaly can be calculated from

the eccentricity and eccentric anomaly using Kepler’s equation:

M = E − esin(E), (1.1)

which makes the eccentric anomaly a necessary prerequisite. The eccentric anomaly

is defined as the angle between the perihelion, the centre of the elliptical orbit, and

a fictitious point on the auxiliary circle encompassing the ellipse and perpendicular

to the orbiting body. This allows it to be written in terms of the eccentricity and the

true anomaly as

E = cos−1(
e+ cos(ν)

1+ ecos(ν)
). (1.2)

There are also additional parameters which can be helpful when discussing

TNOs such as the longitude of perihelion, ω̄ , given by

ω̄ = Ω+ω, (1.3)

which is simply the sum of the longitude of ascending node and argument of perihe-

lion and gives the orientation of the direction of perihelion. The perihelion distance,

q, is another useful measure and can be easily obtained following Kepler’s first law

which allows q to be written in terms of the semi-major axis and eccentricity:

q = a(1− e). (1.4)

This distance is regularly used to describe TNOs as while the semi-major axis

can be very large, if the TNOs also have highly eccentric orbits, q can be very close

to Neptune’s orbital distance and so it can be used to help quickly identify how close

their approach is.

TNOs are generally grouped into the following subcategories. Kuiper belt ob-

jects (KBOs), as previously mentioned, include all objects within the Kuiper belt.
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Figure 1.3: Figure showing the three anomalies used to describe orbits. The true anomaly,
ν , gives the angle which describes where an object, O, is in its orbit (red)
about the Sun, S. The mean anomaly, M, gives the angle from perihelion of a
fictitious object, O’, moving in a circular orbit (yellow) with the same period
as the original object (here the circular and elliptical orbits are not to scale).
Finally, the eccentric anomaly, E, is shown to be defined as the angle between
the Sun, the centre of the ellipse, C, and a fictitious point, P’, on an auxiliary
circle (green) perpendicular to the object.

These KBOs are often further classed as being either resonant TNOs, or classical

KBOs. Resonant TNOs have orbital periods of an integer ratio to that of Neptune

and include the group of ‘plutinos’ which share a 2:3 MMR with Neptune and are

named after Pluto as the largest member. Classical KBOs instead have no resonance

with Neptune and as such have less eccentric orbits and move on near circular orbits.

Scattered disk objects (SDOs) are another major group of TNOs which are

classified by having highly eccentric, inclined orbits (Gomes et al., 2008). Unlike

KBOs, SDOs are at risk of being disrupted by Neptune as their perihelia distances

can be close to Neptune at around 30 AU. Indeed there have been investigations into
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whether the centaurs (minor bodies orbiting between the orbits of the giant planets)

could in fact be SDOs which were forced further into the Solar System through

interactions with Neptune (Horner et al., 2003).

‘Extreme-TNOs’ (ETNOs) are another way of separating the most distant

TNOs, including any objects which have a semi-major axis a > 150 AU, and a peri-

helion distance q > 30 AU. As such they have a large overlap with SDOs, however,

ETNOs also include detached objects which have larger perihelia distances and as

such are unaffected by the gravitational forces from the giant planets. Finally, the

most distant group of objects are the Sednoids, of which there are currently only

three observed, with q > 50 AU keeping them completely outside of the Kuiper belt

throughout their orbits (Sheppard et al., 2019).

1.1.4 Planet 9

Astronomers have been obsessed with searching for additional planets ever since

the first planets were observed, and this zeal was only emphasised with the predic-

tion and observation of Neptune due to perturbations in Uranus’ orbit (Le Verrier,

1839, Adams, 1846, Galle, 1846). Many thought it would be possible to use the

same technique of examining the perturbations seen in Neptune’s orbit to discover

additional planets (that would cause the perturbations through gravitational effects).

Although Pluto was eventually discovered, it was only coincidental and not through

any gravitational effects. Indeed, we now know that Pluto is so small that it can only

be considered a minor planet, having not cleared its orbit and being one of many

objects in the Kuiper belt.

While discovering any further large planets in the Solar System seemed un-

likely, the recent detection of many TNOs has resulted in a renewed excitement in

searching for a ‘Planet 9’. This revived effort was caused by an observed grouping

of orbital parameters in some ETNOs, shown in figure 1.4, which was first described

by Trujillo & Sheppard (2014) with their detection of the TNO 2012V P113. It was

noted that the ETNOs seemed to group in arguments of perihelia with, ω ≈ 0◦, and

this could be caused by interactions with a large, distant planet. The similarity in or-

bital elements could be caused by the Kozai mechanism (or the Lidov-Kozai effect)
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(Kozai, 1962, Lidov, 1961).

In the Kozai mechanism the TNOs act as a test particle, with negligible mass

compared with the primary object - the Sun, and the more distant perturbing body

- Planet 9. They would then have a conserved component of orbital angular mo-

mentum parallel to that of the Sun’s and Planet 9’s angular momentum. As the

conserved angular momentum, L, can be expressed in terms of the eccentricity and

inclination as

L =
√

1− e2 cos(i) = constant, (1.5)

an exchange between the eccentricity and inclination results in an oscillating argu-

ment of perihelia of the objects about a value of either ω = 0◦ or ω = 180◦.

However, this couldn’t explain the observed orbits of all ETNOs, and a lack

of objects with ω = 180◦ resulted in alternative explanations being presented (de

la Fuente Marcos & de la Fuente Marcos, 2014). It was Batygin & Brown (2016a)

who first suggested that a Planet 9 could also cause similarities in the longitude of

ascending node, Ω, through secular effects which could also then account for other

highly inclined TNOs (Batygin & Morbidelli, 2017).

Despite the suggestions of how Planet 9 could help explain the observed TNO

population as well as other properties such as the solar obliquity (Bailey et al., 2016)

and the tilt of the invariable plane of the planets (Gomes et al., 2016), there is still no

consensus on whether a planet is likely to exist at all. Instead, it has been suggested

that the grouping of TNOs could be due to an observational bias (Bernardinelli et al.,

2020a), and more observations are required to be able to sufficiently determine the

significance of the observed grouping (Sheppard et al., 2019).

The Planet 9 hypothesis provided additional motivation for the work completed

in chapter 2, where I implemented various machine learning algorithms to demon-

strate how we could improve the efficiency of searching for TNOs and the hypo-

thetical planet in DES (which, as described in section 1.3.2, is perfectly placed to

detect these distant objects), with the possibility of discovering new objects to either

strengthen the hypothesis or disprove it.
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Figure 1.4: Figure showing the orbits of the initial ETNOs (including 2013RF98,
discovered by DES) which showed a clear grouping in their or-
bital parameters that was used to predict the existence of a ‘Planet
9’. Image from https://en.wikipedia.org/wiki/File:Planet_
Nine_-_black_background.png

https://en.wikipedia.org/wiki/File:Planet_Nine_-_black_background.png
https://en.wikipedia.org/wiki/File:Planet_Nine_-_black_background.png
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Figure 1.5: Figure showing the updated orbits of the additionally discovered ETNOs where
a grouping in the longitude of ascending node is still visible, but less well
defined. Image from https://en.wikipedia.org/wiki/Planet_
Nine#/media/File:Planet_nine-etnos_now-new3.png

https://en.wikipedia.org/wiki/Planet_Nine#/media/File:Planet_nine-etnos_now-new3.png
https://en.wikipedia.org/wiki/Planet_Nine#/media/File:Planet_nine-etnos_now-new3.png
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1.2 Cosmology

There have been many theories over the years trying to explain the universe we ob-

serve. This area of study, investigating the origin and evolution of the universe is

the field of cosmology, and is one of the broadest areas of science. Here, I focus

only on the area of physical cosmology relating to redshifts. The redshift is one

of the most important properties in physical cosmology, describing the change in

the wavelength of observed electromagnetic radiation, and is used in many different

analyses. In this section I first give a very brief background about some of the main

probes of cosmology: the cosmic microwave background, standard candles, large

scale structure, and weak lensing, all of which provide motivation for finding red-

shifts, before I then describe the redshifts themselves and the methods for obtaining

them.

1.2.1 Cosmological probes

1.2.1.1 Cosmic Microwave Background

The cosmic microwave background (CMB) discovered by Penzias & Wilson (1965)

has been one of the most powerful probes for cosmology and gave direct evidence

for the hot Big Bang model (Dicke et al., 1965). In the early universe, photons

were tightly coupled to baryons; it was only as the universe expanded and cooled

that the temperature dropped below a critical level and allowed neutral hydrogen

to form during a period of recombination. This decoupled the photons which were

no longer scattered by the free electrons, allowing them to travel freely through the

universe and giving rise to the CMB observed today.

While the CMB is incredibly uniform, with a black body spectrum at tempera-

ture, T ≈ 2.7255 K (Fixsen, 2009), the anisotropies provide key information about

the conditions at recombination. By measuring these tiny anisotropies we can there-

fore learn a huge amount about various cosmological parameters. The latest data

release from the Planck satellite (Planck Collaboration, 2020) provides the most

detailed results to date about the CMB’s angular power spectra and their measure-

ments have shown consistency with the standard ΛCDM model of cosmology.
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1.2.1.2 Standard Candles

Standard candles are astronomical objects for which the intrinsic luminosity is

known. By measuring the observed luminosity one can then estimate the distance to

the object. The first standard candles used were cepheid variables (Leavitt, 1908).

These stars have oscillating luminosities which are directly correlated to the star’s

pulsation period. This allows astonomers to determine the intrinsic luminosity of

the cepheid simply by measuring its pulsation period and hence find the distance

to the cepheid. However, even with the latest telescopes, these objects can only be

resolved for relatively close galaxies in the local universe, and for greater distances

different candles are required.

Type Ia supernovae are supernovae thought to be caused by white dwarfs cap-

turing material from a companion star. As the white dwarf accumulates enough

matter for carbon fusion to occur, a runaway reaction results in the star going su-

pernova. As the process is virtually the same in all type Ia supernovae, they have an

observed peak luminosity that can then be related to the luminosity-distance (Be-

toule et al., 2014). Although this requires corrections in the shape of the light-curve

and colour (lending them the name ‘standardisable candles’ rather than being a per-

fect standard candle), it still allows them to be used to infer distances to their host

galaxies and makes them an invaluable rung on the cosmic distance ladder.

The distance ladder joins the different measurements of distances and allows

for their calibration, connecting local geometric measurements (from parallax) to

the more distant cepheid variables and type Ia suprnovae. The analysis of type Ia

supernovae also famously led to the discovery of the acceleration of the expansion

of the universe by Riess et al. (1998) and Perlmutter et al. (1999) which was awarded

the Nobel prize in physics in 2011.

Finally, the detection of gravitational waves at the Laser Interferometer

Gravitational-Wave Observatory (LIGO) (Abbott et al., 2016) has led to an ex-

tension of the distance ladder. The gravitational waves provide a new method to

directly measure the luminosity distance from ‘standard sirens’, binary mergers of

neutron stars or black holes (Schutz, 1986, Holz & Hughes, 2005). Binary neutron
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star mergers, such as the event GW170817, have optical counterparts lending them

the name ‘bright sirens’ and can be used to determine the exact host galaxy (Abbott

et al., 2017). Black hole mergers with no optical counterpart are instead labelled as

‘dark sirens’.

With a distance measured, the distance-redshift relation can then be used to

infer cosmological parameters. This provides a great deal of motivation to measure

accurate redshifts. For supernovae and bright sirens the host galaxies can be iden-

tified and the redshifts can be more easily obtained, however, it is also possible to

use dark sirens as with a sufficient catalog of potential host galaxies the redshift

distribution can be used instead (Soares-Santos et al., 2019).

1.2.1.3 Large Scale Structure

Large scale structure (LSS) refers to the structure of matter and galaxies in the uni-

verse on very large scales (from Mpc to Gpc). The observed distribution of galaxies

in the universe is a natural probe of the universe’s matter distribution, and the red-

shifts of galaxies are required to map this distribution in three-dimensions. How-

ever, while the distribution of galaxies does trace the underlying matter distribution,

it acts as a biased tracer of dark matter, not a direct measurement. Despite this, the

observations of LSS allow for many cosmological measurements including redshift

space distortions (RSD) and baryon acoustic oscillations (BAO).

Redshift space distortions arise due to a Doppler shift caused by the peculiar

velocities of galaxies. Two distinct effects have been observed. The first, known as

the ’Fingers of God’ effect, is the result of the random motions of galaxies in clusters

and acts to elongate the redshift distribution (Jackson, 1972). The second, called

the Kaiser effect, is caused by the infall of galaxies in an assembling cluster which

instead acts to flatten the structure (Kaiser, 1987). As well as probing the structure

and underlying matter distribution, measuring these effects in redshift surveys is

also vital as the RSD distort the measured redshifts of galaxies and therefore change

the inferred distances.

Baryon acoustic oscillations are periodic fluctuations of the baryonic matter

density resulting from the conditions in the early universe. Prior to the period of re-
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combination, when photons were still coupled to the baryonic matter, overdensities

attracted matter gravitationally which resulted in an outward pressure due to Thom-

son scattering. These opposite forces created oscillating waves in the primordial

plasma, until the universe cooled sufficiently for the decoupling of photons from

the baryonic matter. This stopped the waves from propagating and caused the shells

of baryons to be ‘frozen’ in place, with the maximum distance travelled of around

150 Mpc called the sound horizon.

As the matter in shells goes on to form galaxies, one therefore expects

more galaxies to form with a separation distance equal to that of the sound hori-

zon. This signal was detected by both the Sloan Digital Sky Survey (SDSS)

(Eisenstein et al., 2005) and the Two-degree-Field Galaxy Redshift Survey (2dF)

(Cole et al., 2005). Furthermore, the BAO can act as a ‘standard ruler’ allowing

for a comparison of the sound horizon today, to that at the period of recombination

(by observing the CMB). This allows it to provide a method independent to that of

supernovae to measure the acceleration of the expansion of the universe.

1.2.1.4 Weak Lensing

Gravitational lensing has been a known effect since introduced by Einstein (1936).

The effect of gravity of a mass in the line of sight of observation can distort images

of background objects, with deep gravitational potential wells caused by objects

such as galaxy clusters resulting in ‘strong lensing’, and more subtle effects caused

by moderate perturbations resulting in ‘weak lensing’ (Bartelmann & Schneider,

2001). Weak lensing can then be used to measure the intervening matter, and un-

like the distribution of galaxies in the universe which act as a trace of the matter

distribution, weak lensing gives a direct measurement. However, one of the main

prerequisites for weak lensing analyses is the redshift distribution of the galaxies

whose light is being distorted, and hence one requires very accurate redshifts.

Uncertainties in the photometric redshifts of galaxies used in weak lensing

analyses therefore have a great impact on the accuracies of the inferred cosmolog-

ical parameters (Ma et al., 2006). More specifically, a positive photo-z bias results

in a lower weak lensing signal due to underestimating the surface mass density;
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however, the effect of the bias is more complex, not only being in its mean, but also

being a function of the redshift. Typically the photo-z bias will be opposite for low

and high redshift galaxies which can result in a smaller (or zero) mean bias, and

while the biases may cancel out, their effects on the lensing signal does not. Sim-

ilarly, the other major metrics of photo-z methods (the scatter and outlier fraction)

may indicate a calibration bias, however, they are not sufficient to determine the

efficacy of the photo-z measurements for lensing and custom metrics may be more

optimised (Mandelbaum et al., 2008).

1.2.2 Redshifts

A redshift is defined as an increase in wavelength, or decrease in frequency and

energy, of electromagnetic radiation. The redshift, z, can be written as the ratio

between the relative change in wavelengths:

z =
λo −λe

λe
=

∆λ

λe
, (1.6)

where λo is the observed, redshifted wavelength and λe is the emitted wavelength.

The scale factor, a, is another commonly used term in cosmology which de-

scribes how distances between points in the universe change as the universe expands

and by definition has a value equal to one today. It can then be used to relate the

emitted wavelength to the observed wavelength as

λe = aλo, (1.7)

which allows us to write the relation between the redshift and the scale factor,

a =
1

1+ z
. (1.8)

This suggests that redshift can be used as an alternative way of quantifying

the relative size of the universe. As an example, at z = 1, equation 1.8 shows that

a = 1
2 , so the universe would have been half its current size. As the scale factor by

definition is also linked to time, the redshift can then also be used to describe when
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events happened.

Locally, for z << 1, the redshift of galaxies can be equated to the Doppler shift

caused by the galaxies’ recession velocities. The relativistic Doppler effect can also

be written as

λo

λe
=

1+ v
c√

1− v2

c2

, (1.9)

where v is the velocity of the emitting source which is moving away from the ob-

server, and c is the speed of light. As the motion of the source is generally much

less than the speed of light, with v << c, equation 1.9 can be approximated to

λo

λe
≈ 1+

v
c
, (1.10)

which allows the redshift to be written as

z ≈ v
c
. (1.11)

1.2.3 Spectroscopic Redshifts

The redshift is a directly observable quantity as it is possible to measure the ob-

served wavelength of light through spectroscopy, and by comparing this to the

wavelength of light at which it was known to be emitted, the redshift can be ob-

tained using equation 1.6. The process of spectroscopy is much the same as when

Newton first used a prism to demonstrate that sunlight was in fact a ‘spectrum’ of

light which when passed through the prism produced a rainbow (Newton, 1672).

Modern spectrographs use fiber-optic cables with many fibres to pass light

through a slit. The light is split using dichroics before being spread with a volume

phase holographic (VPH) grating and imaged using high resolution cameras. This

allows for the spectra to be measured with very high precision, and by comparing

features of the redshifted spectra with known rest-frame spectra taken of various

atoms and molecules on Earth, the redshift can be calculated.

Many surveys were designed to perform spectroscopy with the aim of obtain-
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ing spectroscopic redshifts of galaxies including the Baryon Oscillation Spectro-

scopic Survey (BOSS) (Dawson et al., 2012) and extended-BOSS (eBOSS) (Daw-

son et al., 2016). New surveys such as the Dark Energy Spectroscopic Instrument

(DESI) (Martini et al., 2018) and the Roman space telescope (Spergel et al., 2015)

aim to obtain millions more spectroscopic redshifts. However, wide field photo-

metric surveys such as DES have observed hundreds of millions of galaxies (DES

Collaboration, 2005), and with even larger suveys such as the Vera C Rubin Ob-

servatory’s Legacy Survey of Space and Time (LSST) aiming to observe billions of

galaxies (Tyson et al., 2003), it is simply not feasible to perform spectroscopy for

every galaxy.

1.2.4 Photometric Redshift Estimation

Instead of performing spectroscopy, it is possible to estimate the redshift of galaxies

by using photometry. The different wavelength bands of the filters used to image

the galaxies can be thought of as a very sparse spectra which can then be used to

obtain photometric redshift (photo-z) estimates. There are two methods widely used

in photo-z estimation: template fitting (Benitez, 2000, Bolzonella et al., 2000), and

machine learning (Collister & Lahav, 2004, Abdalla et al., 2011).

1.2.4.1 Template Fitting

Template fitting is the process of using a set of predefined galaxy spectra (the tem-

plates) and fitting the photometry of the galaxy to the templates, where the photo-z

is then inferred from finding the best fitting template. It was first implemented by

Puschell et al. (1982) who obtained photo-z estimates of faint radio galaxies using

spectral energy distribution (SED) templates. The method was quickly improved

by Loh & Spillar (1986) who were able to obtain photo-z estimates for thousands

of galaxies and adapted the method into the template fitting used to this day.

The method can be visualised using figure 1.6, taken from the original Loh &

Spillar (1986) paper. It shows the SED template, in this case an elliptical galaxy

template from Bruzual et al. (1983), and how the flux of the galaxy is expected to

change at varying redshifts. The measured flux of a different galaxy is shown as
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Figure 1.6: Figure showing the process of template fitting taken from Loh & Spillar (1986).
The SED template of an elliptical galaxy shows how the flux is expected to
change at varying labelled redshifts. The measured flux of the observed galaxy
is shown as open circles and by matching it to the template, in this case close
to the z = 0.4 line, one can obtain the photo-z estimate.

open circles and acts as an approximate measure of the underlying SED. As they

are seen to lie close to the line at z = 0.4, it resulted in a photo-z estimate of z =

0.398±0.018 for this galaxy (which had a spectroscopic redshift of zspec = 0.390).
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Template fitting is a very intuitive model and more recent implementations

have been able to incorporate physical information such as dust extinction, however,

including these physical constraints also requires very careful calibration as well as

an accurate model (Benitez, 2000).

1.2.4.2 Machine Learning

Machine learning has become the leading empirical method of photo-z estimation

since Firth et al. (2003) first used neural networks to obtain photo-z estimates. There

are many different supervised machine learning algorithms which can be applied to

the problem of obtaining photo-z estimates (and I describe the most commonly used

algorithms in section 1.4), but all of them follow the same principle. The algorithms

require a large, representative training set, with the ‘true’ values of the redshift (in

this case the spectroscopic redshift) already labelled. They then learn to create a

mapping from selected input features of the data to the output redshift.

For traditional machine learning algorithms, such as Decision Trees, Random

Forests, or k-Nearest Neighbours, the features are obtained from photometry, where

the predominant features are the magnitudes measured using different filters which

can also be combined into colours. However, deep learning methods which are

increasingly being used take the image itself as the input, where the pixel values

are akin to features (Hoyle, 2016). Exploring these methods forms the basis of

chapter 3 where I use different traditional machine learning methods to demonstrate

the merits of benchmarking applied to photo-z estimation, as well as chapter 4 where

I use deep learning methods to obtain photo-z estimates directly from image data.

There are many benefits to using machine learning, but in general they are able

to produce better overall photo-z estimates when compared with template fitting

methods (Hildebrandt et al., 2010). When plotting the photo-z against spectroscopic

redshift, machine learning methods usually produce plots with less scatter and a

smaller outlier fraction, however, template fitting methods do perform better at the

extremes, with better estimates near the upper and lower redshift limits (Abdalla

et al., 2011).

Although machine learning methods can outperform template fitting methods,
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Table 1.1: List of popular template fitting and machine learning photo-z codes.

Code Authors Type
BPZ Benitez (2000) Template Fitting
hyperz Bolzonella et al. (2000) Template Fitting
ANNz Collister & Lahav (2004) Machine Learning
Le Phare Arnouts et al. (1999), Ilbert et al. (2006) Template Fitting
ZEBRA Feldmann et al. (2006) Template Fitting
EAZY Brammer et al. (2008) Template Fitting
ArborZ Gerdes et al. (2010) Machine Learning
TPZ Carrasco Kind & Brunner (2013) Machine Learning
SkyNet Graff et al. (2014) Machine Learning
ANNz2 Sadeh et al. (2016) Machine Learning
GPz Almosallam et al. (2016) Machine Learning
Delight Leistedt & Hogg (2017) Hybrid
Metaphor Cavuoti et al. (2016) Machine Learning
CMNN Graham et al. (2018) Machine Learning

they are limited by the training set. As the training set must be representative,

machine learning models cannot be easily extrapolated, and as most galaxies with

spectroscopic redshifts measured are brighter and at lower redshifts, the machine

learning methods often struggle at higher redshift. Template fitting photo-z estima-

tion is also limited by the templates available and it is assumed that the templates

are well calibrated and representative. They are also less flexible when it comes

to adding additional information, whereas machine learning models can easily ac-

cept additional features. However, when the number of features is significantly

increased, the algorithms become more prone to overfitting. As such it could be

beneficial to use template fitting and machine learning methods together (Leistedt

& Hogg, 2017).

As machine learning has become more widely used for the problem of pho-

tometric redshift estimation, there have been many different codes created for the

purpose of producing accurate photo-z estimates. Table 1.1 lists some of the most

widely used codes including both machine learning and template fitting methods,

and the comparisons conducted by Abdalla et al. (2011), Sánchez et al. (2014), and

Schmidt et al. (2020) provide an overview of the current photo-z landscape.
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1.3 Sky Surveys

Sky surveys have the general purpose of building a catalog of astronomical objects

which can then be used for many different analyses. The first attempt of creating a

survey was the Astrographic Chart (Turner, 1912) which used observatories around

the world to map the stars. Beginning towards the end of the 19th century, the

positions of around 5 million stars were measured over several decades to create the

largest catalog of the time. However, it wasn’t until the first space mission designed

specifically for astrometry, Hipparcos, when the measurements of the Astrographic

Chart were most useful to derive the proper motions for all 2.5 million stars in the

Tycho-2 catalog (Urban & Corbin, 1998).

In this thesis I worked with data from two different surveys. In chapter 2 I used

Dark Energy Survey (DES) data to help aid the search for TNOs, and in chapters 3

and 4 I used Sloan Digital Sky Survey (SDSS) data to obtain photo-z estimates for

over a million galaxies; where chapter 3 used magnitude features to benchmark

different classical machine learning algorithms and chapter 4 used deep learning

methods directly with image data.

Galaxy surveys such as SDSS and DES have the aim to measure as many galax-

ies as possible to calculate the cosmological parameters and allow for the large scale

structure of the universe to be observed. Table 1.2 compares different galaxy sur-

veys as well as surveys which are planned for the future. As can be seen from this

table, the number of objects has rapidly increased from the first galaxy survey, the

CfA Redshift Survey, which measured the spectra of galaxies one-by-one to obtain

a catalog of around 18000 objects (Huchra et al., 1983). The 2dF Galaxy Redshfit

Survey was able to use 400 optical fibres to measure 400 spectra simultaneously

and obtained around a quarter of a million spectra (Colless et al., 2001), and SDSS

similarly used 640 fibres originally (and has since upgraded to 1000 fibres) to ob-

tain spectra for over 2 million galaxies (Alam et al., 2015). Furthermore, the Dark

Energy Spectroscopic Instrument (DESI) has 5000 fibres to allow for millions more

galaxy spectra to be collected (Martini et al., 2018).

However, despite this increase in the capability to measure galaxy spectra, the
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Table 1.2: A table comparing different galaxy surveys which have been completed or
planned, with notes on the number of total objects (including stars) observed
and whether they are spectroscopic surveys, photometric surveys, or both.

Survey Dates of Observations Number of Ob-
jects Observed
(or Planned)

Notes

CfA Redshift Survey 1977 - 1982 (CfA1),
1985 - 1995 (CfA2)

0.018 M All with spectra

2dF Galaxy Redshift Survey 1997 - 2002 0.4 M Including around 0.25 M
galaxy spectra

Sloan Digital Sky Survey
(SDSS)

2000 - 500 M Inluding over 2 M galaxy
spectra.

Dark Energy Survey
(DES)

2013 - 2019 700 M Only photometry

Dark Energy Spectroscopic
Intrument (DESI)

2019 - 40 M All with spectra

Vera C Rubin Observatory’s
LSST

2022 - 2000 M Only photometry

Euclid 2022 - 1000 M Will include 50 M galaxy
spectra

Roman (previously WFIRST) 2025 - 1000 M Will include photometry
and spectra

next generation of surveys such as the Vera C Rubin Observatory’s Legacy Survey

of Space and Time (LSST) (Tyson et al., 2003), and the Euclid (Laureijs et al., 2011)

and Roman (Spergel et al., 2015) space telescopes will observe billions of galaxies.

As such spectroscopy cannot be relied on as the sole source of redshifts, and instead

photometric redshifts will continue to be an area of great importance.

1.3.1 The Sloan Digital Sky Survey

SDSS (York et al., 2000) is one of the largest sky surveys with publicly available

data. With a dedicated 2.5 m telescope located in the Sacramento mountains, New

Mexico, at the Apache Point Observatory (Gunn et al., 2006) SDSS has observed

over 200 million galaxies to date (Ahumada et al., 2020). As well as performing

photometry for 200 million galaxies, the spectroscopic surveys completed as part of

SDSS, the Baryon Oscillation Spectroscopic Survey (BOSS) (Dawson et al., 2012)

and extended-BOSS (eBOSS) (Dawson et al., 2016) have measured around 2 mil-

lion galaxy spectra in the area of the sky shown in figure 1.7.
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Figure 1.7: Figure showing the SDSS-DR16 eBOSS coverage in equatorial coordinates
which was originally shown in the DR16 paper by Ahumada et al. (2020).

For the work completed in chapter 3 I downloaded the photometric magnitudes

and spectroscopic redshifts of 1639348 galaxies. Using the five magnitudes from

the five different optical filters (u, g, r, i, and z) as features, it was possible to

obtain photo-z estimates which were then compared to the spectroscopic redshift to

determine the performance of different machine learning algorithms. In chapter 4

I downloaded images for 1059678 galaxies (also in all five filters), as well as their

corresponding magnitudes and spectroscopic redshifts. These images were then

used to create a novel deep learning method for photo-z estimation.

1.3.2 The Dark Energy Survey

DES (DES Collaboration, 2005) is a wide field optical to near infrared survey which

over the course of six years imaged 5000 square degrees of the southern sky, as

shown in figure 1.8. Using the Dark Energy Camera (DECam) (Flaugher et al.,

2015) on the 4 m Blanco telescope at the Cerro Tololo Inter-American Observatory

(CTIO), Chile, DES observed hundreds of millions of galaxies with the primary

goal of better constraining the dark energy equation of state (DES Collaboration,

2016).

While DES was designed as a cosmological survey, its repeat observations

over a wide area of the sky made it an excellent source of data for studying So-

lar System objects as well (DES Collaboration, 2016). Indeed, DES and DECam

have been used to discover many minor planets (Trujillo & Sheppard, 2014, Gerdes
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Figure 1.8: Figure of the DES survey area in celestial coordinates with the 5000 square
degree footprint shown in red, taken from Abbott et al. (2018). The circles
show supernova fields, and the plane of the Milky Way is given as the solid
line.

et al., 2017), and in chapter 2 I use machine learning to show how the efficiency of

searching for TNOs in DES data can be improved.
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1.4 Machine Learning

Machine learning (ML) can be described as the general method of using computer

programs which learn from example datasets how best to perform various tasks

without explicit programming. This makes it an example of artificial intelligence

(AI) which is generally thought of as being the broader topic, covering any in-

telligent, artificial system. While many tasks and analyses can be completed by

programming algorithms with the exact steps required, and can still be deemed

AI where an intelligent system is made by encoding domain knowledge, there are

increasing areas where it can be too complex (or indeed impossible) to manually

code an algorithm. Instead, effective algorithms can be made by implementing ML,

where the ML algorithms are fine-tuned to each problem through the datasets used

and the optimisation process.

The first recorded use of ML came from Samuel (1959) who used a neural

network to learn how to play checkers better than a human. Initially the field of

ML was seen as a useful form of pattern recognition and was deeply connected to

the hopes of creating more powerful AI. It wasn’t until later in the 20th century

when ML methods began to thrive having shifted away from the goal of creating

an AI and instead moved towards applying the methods to problems across many

different disciplines. Now, ML is used for almost any problem, with the largest

areas including clustering for pattern recognition (Jain et al., 2000), classifications

(Storrie-Lombardi et al., 1992), anomaly detection (Chandola et al., 2009), and re-

gression analyses (Pasquet et al., 2019).

There are four main categories of ML which are dependent on how the algo-

rithm learns and the data used as an input. The first is supervised learning which

uses a labelled dataset where the desired output is already known. The algorithms

then learn how to map features of the input data to the known output. Second is

unsupervised learning which doesn’t have labelled data. Instead, it learns to find

structure and recognise patterns in the input data, and in some cases when com-

bined with supervised methods in the third method of ‘semi-supervised’ learning,

the combination of labelled data with additional unlabelled examples can result in
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an improved final model. Finally, there is reinforcement learning which uses algo-

rithms that attempt to perform a task, and by providing feedback to the algorithms

(rewarding when correct and penalising when wrong), they learn to maximise the

rewards and thus improve accuracy.

In this thesis I describe in detail the supervised ML algorithms most commonly

used in research, and which I applied to problems addressed in the following three

chapters of classifying possible TNOs and providing effective photo-z estimates.

As I was implementing ML for both classification and regression problems, the

methods below discuss both with any differences highlighted.

1.4.1 Supervised Machine Learning Methods

1.4.1.1 Linear methods

Possibly the most simple example of a ML algorithm, linear regression aims to fit

a linear model to the input data. This is done by making the target output a linear

combination of the input features as described by

ŷ(w,x) = w0 +w1x1 + ...+wNxN . (1.12)

For the target ŷ, and features xi, the coefficients, wi, are set which aim to minimise

the squared residuals between the observations and the predictions akin to least

squares regression. This means the loss function is simply (ŷ(w,x)− y)2 and the

objective which is minimised is just the average for all N samples:

1
N ∑

i=1...N
(ŷi(w,x)− yi)

2. (1.13)

The squared residuals are chosen as the loss function rather than the absolute

values to be able to have a smooth derivative. This is important for finding the opti-

mal values for the coefficients which require a closed form solution for the deriva-

tive, and by setting the gradient = 0, the solution to the system of equations will

then give the best values of wi. An additional benefit to using the squared residuals

is that it emphasises the differences between predictions and true values.

For classification rather than regression, despite its name, logistic regression is
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used. The misleading name comes from the fact that it uses the logistic function,

f (x) =
1

1+ e−x . (1.14)

As during classification there are only a set number of possible targets, ŷ, and

in the case of binary classification only two possibilities, 0 (for a negative result) or

1 (for a positive result), the logistic function is used as it has a codomain of

(0, 1). This is useful as when the model returns a value closer to 0, it classifies as

being negative, and similarly if the model returns a value closer to 1, it classifies as

positive.

Using the logistic function, the equation for the predictions becomes

ŷ(w,x) =
1

1+ e−(w0+w1x1+...+wNxN)
. (1.15)

However, instead of attempting to minimise the loss function (the mean squared

error (MSE)), in logistic regression the likelihood function is maximised. A like-

lihood function defines the probability of observing an example according to the

model. This means that for a labelled example (xi,yi) in the training data, applying

the model will give an output 0 < p < 1. For a positive class yi, the likelihood of yi

being classified as positive by the model is p, whereas if yi is a negatively classed

example then the likelihood of it being classed negative is 1− p. The likehood

function is given by

L = ∏
i...N

ŷyi
(w,x)(1− ŷ(w,x))

1−yi. (1.16)

But as the logistic function uses exponentials, it is more practical to maximize

the log-likelihood which is given by

logL =
N

∑
i=1

yiln(ŷ(w,x))+(1− yi)ln(1− ŷ(w,x)). (1.17)

As there is not a closed form solution to the log-likelihood, a numerical op-

timisation procedure is required. There are many possible ‘solvers’ such as gradi-
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ent descent, but all work by using iterative optimisers which aim to locate a local

minimum of the function. They start at a random point and take steps which are

proportional to the gradient at that point.

In both regression and classification the estimates of the coefficients rely on

the assumption that the input data features are independent. If the features are cor-

related the output predictions become very sensitive to any errors present in the

observations, and as the outputs can vary wildly, the resulting model has a large

variance and can be prone to overfitting1 (Hastie et al., 2009).

1.4.1.2 k-Nearest Neighbours

k-Nearest Neighbours (kNN) is an example of an instance-based (non-parametric)

ML algorithm. This means that unlike other algorithms which, once trained, are

able to make predictions on new data without using the training data, kNN retains

all the training data in memory. It does this as to make a prediction for a previously

unseen point, kNN finds a predefined number of points, k, in the training data that

are closest to the unseen point and returns the majority classification (in the case

of a classification problem) or average (in the case of a regression problem) as its

prediction (Altman, 1992).

The measure of how close two points are is given by a distance function which

could in theory be any metric measure, but the Euclidean distance is the standard

choice. The Euclidean distance is given by

d(x,x′) =
√

∑
i...N

(xi − x′i)2, (1.18)

which is simply the square root of the sum of the squared difference between points

x and x′.

As there are many other measures of distance which could be chosen (such as

Minkowski distance, Chebyshev distance, and Manhattan distance which are also

commonly used), the distance measure is one of the ‘hyperparameters’ of the algo-

1ML models are said to be ‘overfitting’ when they perform very well during training and testing
but fail to generalise to new datasets. This is a common issue in ML and efforts must be taken during
the optimisation stages to ensure the models will give valid predictions for new data.
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rithm. Hyperparameters are parameters which are set prior to the learning process

in ML and dictate how the algorithms are built. In the case of kNN the value for k is

another vital hyperparameter which dictates how many nearest neighbours are used

to make the predictions for new points. I give more details about how hyperparam-

eters are selected during the optimisation stage in section 1.4.3.

Although kNN is a relatively simple model, it has a highly successful track

record and performs very well at various classification and regression problems in-

cluding obtaining photo-z estimates (Ball et al., 2007). The instance-based kNN

can often be more successful for problems with complex decision boundaries as

decreasing the value of k makes the classification boundary more distinct and hence

allows for classification of highly irregular data. However, by decreasing the value

of k, one risks making the decision boundary too specific to the training data which

results in overfitting. A larger value for k will suppress noise and make the classifi-

cation more general, but could also result in the boundary not being distinct enough

(this is displayed in figure 1.9 which gives an example of how changing the value

of k effects the decision boundary). The optimisation process is vital to ensure an

effective model is generated which also generalises well to new data.

1.4.1.3 Naive Bayes

Naive Bayes is a supervised machine learning algorithm that applies Bayes

theorem with the ‘naive’ assumption that each pair of features is independent

(Hand & Yu, 2001). For the class variable y, and a dependent feature vector xi,

Bayes theorem can be applied, where maximum a posteriori estimation is used to

obtain an estimate for P(xi|y) and P(y), where P(y) is simply the relative frequency

of class y in the training set.

Typically, a ’Gaussian Naive Bayes’ algorithm is used where the likelihood is

taken to be Gaussian and the parameters µy and σy are estimated using maximum

likelihood estimation. Then, using the probabilities given by

P(xi | y) =
1√

2πσ2
y

exp

(
−
(xi −µy)

2

2σ2
y

)
, (1.19)
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Figure 1.9: Figure taken from Hastie et al. (2009) showing how a k-Nearest Neighbours al-
gorithm changes depending on the value of k. For smaller k values the decision
boundary between the two different classes, shown here in orange and blue, is
seen to be very specific to the training data, whereas for the higher value of k
the boundary is smoother and more likely to generalise to new data.

Bayes theorem is applied to obtain the final probability of obtaining the class y given

the features X which gives the classification result:

P(y | X) = P(x1 | y)×P(x2 | y)×·· ·×P(xi | y)×P(y). (1.20)

1.4.1.4 Decision Trees

Decision Trees are another example of non-parametric algorithms which use

branching graphs built from simple decision rules to make predictions. At each

branching node, a feature of the input data is inspected and a basic if-then-else

statement is used to split the data depending on whether the value is above or be-

low a certain threshold (Breiman et al., 1984). After some number of splits set by

the depth of the tree, a leaf node is the reached which gives the final decision or

prediction.

There are many different decision tree algorithms which change the ways in
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which the trees learn and grow. In this thesis I focus on Iterative Dichotomiser 3

(ID3) which was created by Quinlan (1986) and subsequent models which have be-

come the most widely used. ID3 works by starting with the first ‘root’ node at the

top of the tree and working down, and at each node it searches for the feature which

results in the largest information gain (the biggest difference) for each split. Mathe-

matically it does this using the following average log-likelihood as the optimisation

criterion

1
N

N

∑
i=1

yiln fID3(xi)+(1− yi)ln(1− fID3(xi)), (1.21)

where there are N labelled examples with feature values xi and label yi, and fID3 is

the decision tree.

If we call S the set of labelled training data, then for the first root node which

still contains all the data we have S = {(xi,yi)}N
i=1. The model can then be thought

of as being constant where it would always give the same output, y, for the single

node with

f S
ID3 =

1
|S| ∑

(x,y)∈S
y. (1.22)

As there are multiple features, j, which make up the feature matrix, x j
i , the

different features are searched at set thresholds, t, to split the set S into two subsets:

S− = {(x,y)|(x,y) ∈ S,x( j) < t}, and S+ = {(x,y)|(x,y) ∈ S,x( j) ≥ t}. For all possi-

ble combinations of ( j, t) the splits of (S−,S+) are evaluated to find the split which

results in the largest information gain and minimises the entropy. The entropy, H,

measures uncertainty, being highest when all variables have an equal probably and

being minimised when the variables can only have a single value, and for a set S,

the entropy has a value

H(S) =− f S
ID3ln f S

ID3 − (1− f S
ID3)ln(1− f S

ID3). (1.23)

The entropy of the split, H(S−,S+), is then simply the weighted sum of the

two entropies given by
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H(S−,S+) =
|S−|
|S|

H(S−)+
|S+|
|S|

H(S+), (1.24)

and at each stage of ID3, to split the data, the splits are found which minimise the

entropy.

The algorithm ends at leaf nodes where no more splits happen for the following

reasons. First, if all examples in the node are correctly classified then there is no

change from splitting the data. Second, if there is no feature which will helpfully

split the data or if the split would only reduce the entropy by a value less than

a set threshold (which is set during optimisation). Finally, if the tree reaches its

maximum depth (a hyperparameter which is also set prior to the learning process)

then the tree stops branching and the last nodes are taken as leaf nodes.

Other tree algorithms have been made which aim to improve upon ID3 in var-

ious ways. C4.5 was introduced by Quinlan (1993) as ID3’s successor and allowed

for continuous variables to be used instead of requiring features to be categorical.

This was done by using bins which partitioned the continuous variable into discrete

sets of intervals. C4.5’s other major improvement was the ability to order the splits.

ID3 was limited by only considering the best split at each local node, and as it

works from top to bottom, by not considering the future splits the algorithm doesn’t

necessarily find the optimal solution. C4.5 uses backtracking whereby the trained

tree is converted into if-then-else statements and by evaluating the accuracy of each

statement, the order in which they should be applied can be determined.

Another successful algorithm is Classification and Regression Trees (CART)

(Breiman et al., 1984). CART performs very similarly to C4.5, also growing the

trees by using the feature splits with thresholds that give the largest information

gain and recursively selecting the best splits, but CART also supports numerical

results allowing it to be used for regression problems as well as classification. As

such CART was the algorithm used in the following chapters.

Decision trees can be very effective ML algorithms for a variety of problems

and often yield high accuracies, however, they can also quickly become complex

and are prone to being overfitted to the training data. There are ways that decision
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trees can be made more robust to better generalise, such as ‘pruning’ where less

relevant nodes are replaced with leaf nodes to reduce the tree size and model com-

plexity, but perhaps the most common solution is to use ensemble methods (such

as boosted decision trees, random forests, and extremely randomised trees) which

combine multiple decision trees.

1.4.1.5 Boosted Decision Trees

Boosted decision trees are an example of a ML algorithm which makes use of

‘boosting’. Boosting methods sequentially combine multiple weaker learners into a

single strong learner with the aim of creating an ensemble method with reduced bias

(and an improved accuracy) (Kearns & Valiant, 1994). There are different types of

boosted trees with the most popular algorithms being Adaboost (Freund & Schapire,

1997), and the more general gradient boosted decision trees (Friedman, 2002).

Both methods work by starting at the same point as ID3, with a single model

defined by

f =
1
N

N

∑
i=1

yi. (1.25)

The training data is then modified, and instead of using the label, yi, the resid-

uals, ŷi = yi − f (xi), can be calculated and used to train a new tree, f1. The boosted

model is then defined as

f = f0 +α f1, (1.26)

where α is the learning rate (which is a hyperparameter that gets set during optimi-

sation). The residuals of this model can be recalculated and used to train the next

tree, f2, and so on until a maximum number of trees, n, is reached. The residuals

suggest how good the predictions made by the model are, hence by training a new

model to reduce the residuals and adding it to the existing model, each tree in the

ensemble acts to reduce the errors of the previous trees.

As the boosted trees are built forward they can also be written as



1.4. Machine Learning 67

Fm(x) = Fm−1(x)+hm(x), (1.27)

where the model Fm(x) is given in terms of the previous model, F(m−1), and the

newest added tree hm(x). This is useful as it allows us to also write the crucial stage

in the machine learning process, where the tree hm(x) is fitted to minimise the loss

function, l.

hm = argmin
h

Lm = argmin
h

n

∑
i=1

l(yi,Fm−1(xi)+h(xi)), (1.28)

and using the Taylor expansion, the value of the loss, l, is approximated as:

l(yi,Fm−1(xi)+hm(xi))≈ l(yi,Fm−1(xi))+hm(xi)

[
∂ l(yi,F(xi))

∂F(xi)

]
F=Fm−1

. (1.29)

Setting gi equal to the derivative of the loss (the gradient),

gi =

[
∂ l(yi,F(xi))

∂F(xi)

]
F=Fm−1

, (1.30)

then allows the tree to be written as

hm ≈ argmin
h

n

∑
i=1

h(xi)gi. (1.31)

This then minimises when, h(xi) is proportional to −gi. So each tree is fitted

to estimate the negative gradient of the data, hence the name gradient boosting. Ad-

aboost is a specific case of a gradient boosted decision tree, where the loss function

is the exponential loss.

1.4.1.6 Random Forests

Random forests were first introduced by Ho (1995) as an example of applying ‘bag-

ging’ (a shortening of bootstrap aggregating) to decision trees. Rather than building

an ensemble from many sequential estimators like in boosting, bagging uses many

independently built estimators and averages their outputs to give a final prediction
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(Breiman, 1996). By taking the average, these methods typically improve upon

the single weak learners by drastically lowering the variance, and hence also act to

reduce the chance of overfitting.

A random forest, similar to a boosted decision tree, also uses many single

trees, however, it differs greatly in how the trees are grown and combined. The

process begins by using random samples of the training data to train each individual

tree. These samples are made by taking the overall training set and sampling with

replacement (allowing repeat observations to occur in the sample); this means that

the random samples made are independent. If n total decision trees are grown then

the prediction is simply the average of the n predictions:

f̂ (x) =
1
n

n

∑
i=1

fi(x). (1.32)

There is an additional step of randomness which separates random forests from

simply being standard bagging. Rather than using normal decision trees which

branch based of taking the best possible split and results in the largest information

gain, the trees in the random forest take the best split from a random subset of the

features. While this yields trees which don’t always have the best splits, it ensures

that the trees are less correlated. In the event of only a few features having the

greatest importance, they would always be more likely to be chosen to split the

data, and hence without this extra step of using a random subset of features to split

the data the trees would all be correlated and their averaged prediction wouldn’t be

as great an improvement.

As mentioned, the overall effect of averaging the predictions of the different

trees in the forest is an ensemble with a significantly reduced variance. Furthermore,

the errors of the individually worse performing trees in the forest in effect cancel

out and result in random forest algorithms usually outperforming single decision

trees in accuracy as well as being a more robust, and therefore useful, model.
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Figure 1.10: Figure from Henghes et al. (2020) showing the construction of a random for-
est classifier. The data is sampled with replacement resulting in many decision
trees being trained on random subsets of the data. A second element of ran-
domness is then added where the feature splits performed in each tree are no
longer the splits resulting in the highest information gain, but rather the best
splits are taken from a random subset of the features. The class outputs of
all the individual trees in the forest are averaged to give the final prediction,
which has a much reduced variance and isn’t as prone to overfitting as a single
decision tree.

1.4.1.7 Extremely Randomised Trees

Extremely randomised trees (Geurts et al., 2006) is another ensemble variation of

decision trees. They are very similar to random forests, but with a difference which

adds an additional stage of randomness to try to further reduce the variance.

This extra random step works by using random thresholds for the feature splits.

By selecting the best threshold out of a set of random thresholds instead of the

threshold which results in the highest information gain, the resulting trees have a

third random aspect (on top of the random subsets of data and random features that

splits are performed on). This acts to further reduce the correlation between trees

that make up the forest and ensures that the performance of the ensemble improves.

The predominant reason for the improved performance is that the predictions of
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Figure 1.11: Figure showing the layout of a simple multi-layer perceptron with one hidden
layer with four nodes. Each node is shown as a circle and is fully connected
to each node in the previous and following layers.

more accurate trees will likely agree whereas worse trees will disagree, however, if

the trees are correlated then the bad tree are more likely to also agree which adds

bias. Hence by ensuring that the trees in the forest are independent and not corre-

lated, the averaging of the trees to give the final prediction will yield an improved

model.

1.4.1.8 Multi-layer Perceptrons

A multi-layer perceptron is an example of a fully connected neural network made

with at least three layers of nodes. Consisting of an input node, an output node,

and a minimum of one hidden layer, multi-layer perceptrons are the most simple

examples of deep neural networks and can be visualised in figure 1.11. Each node

is shown as a circle with the arrows showing the connections and inputs / outputs of

the nodes. In fully connected networks such as this, each of the layers receive the

output of the previous layer as their input.

The input layer contains nodes which represent each individual feature, then
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in each node of the hidden layers the process is as follows. First, the inputs of each

node in the previous layer are joined to give the input vector fed into the node. Each

node can then be thought of as a linear transformation, acting similarly to logistic

regression to transform the input. However, the network differs from logistic re-

gression as the combination of many nodes with different weighted transformations

allows it to approximate any continuous function. The linear transformation is fol-

lowed by applying an activation function to obtain the output. At the end of the

network, an output layer is used which typically has a single node (unless multi-

class outputs are required). If this final node uses a linear activation function, the

final output is continuous (e.g. for regression problems); alternatively a logistic

activation function can be used for classifications.

Mathematically we can write the overall function of the network, fMLP, as a

combination of the individual layers. So for a three layer network it could be written

y = fMLP(x) = f3( f2( f1(x))), (1.33)

where fl are vector functions with the form

fl(x) = gl(Wix+bi). (1.34)

In the above equation, gl is the activation function which is a fixed function

chosen beforehand, and the parameters Wi (a matrix) and bi (a vector) are learned

during the training through gradient descent with a chosen cost function (typically

the mean squared error). These parameters can therefore change between nodes in

the same layer and are updated using backpropagation which is an efficient method

for computing the gradient (Rumelhart et al., 1986). In backpropagation the gra-

dients are calculated from the final layer backwards, reusing the previous layers’

computations to speed up the calculation of the gradient for the earlier layers.

Gradient descent updates the parameters at each iteration of the training where

their change is proportional to the derivative of the cost function. A common prob-

lem which can occur with gradient descent is vanishing gradients, which slows
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down training and in extreme cases can stop neural networks from training alto-

gether. Many activation functions (e.g. the hyperbolic tangent) have gradients in the

range (0,1). As backpropagation multiplies these gradients using the chain rule, the

multiplying of the small gradients decreases exponentially. This has the effect of

massively slowing the training of the earlier layers, however, there have been mod-

ern implementations which aim to fix this issue with the rectified linear unit (ReLU)

activation function given below being the most popular (Nair & Hinton, 2010).

f (x) =

 0 for x < 0

x for x ≥ 0
(1.35)

1.4.1.9 Convolutional Neural Networks

Deep neural networks such as multi-layer perceptrons with many hidden layers very

quickly grow in size. To be exact, adding an additional hidden layer of size Sl

results in a further Sl(Sl−1 + 1) parameters (where Sl−1 is the number of nodes in

the previous layer). This quickly leads to models with billions of parameters which

can make optimisation too computationally intensive to allow for a useful model.

This problem is especially evident for tasks where the input has many dimensions

such as when the training data is made up of images.

Convolutional neural networks (CNNs) are specially designed neural networks

which were made with the purpose of reducing the number of parameters and hence

allow deeper networks to be trained. Similar to other artificial neural networks such

as the multi-layer perceptron, CNNs aim to mimic the processes in the human brain

(McCulloch & Pitts, 1943). They are made of many interconnected nodes (or neu-

rons) which are used to process information similar to the biological counterparts

that inspired them. CNNs were inspired by the visual cortex where the neurons only

respond to stimuli in specific regions called receptive fields. The receptive fields of

neurons overlap to cover the entire field of view (Hubel & Wiesel, 1968). CNNs, as

their name suggests, use convolutional layers which act to convolve the inputs in a

way that mimics the visual cortex.

CNNs are the leading ML algorithm when it comes to using images as an input.
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They work particularly well for images as the pixels which are close together in an

image usually include similar information. The exception comes at edges, where

parts of an image with different objects (such as galaxies and the background sky)

meet. If a network can be trained to recognise these edges and similar regions then

they can make informed predictions about the images. As the most vital information

is therefore local within the images, the images are inspected in patches with a

moving window to cover the entire region. Many smaller regression models can

then be trained for each patch with the goal of learning specific patterns within the

small region.

This is done using filters (also called kernels) which are matrices with the same

dimensions as the patches of the image. The filters of each layer (of which there

can be many, similar to nodes in standard networks) are applied in a sliding motion

across the volume of the input data, left to right and top to bottom, as shown in

figure 1.12. The model computes the dot product between the filter values and input

values, as well as adding a bias, to give the convolved features which then get passed

through an activation function to produce an activation map (also called a feature

map).

The values of the filters and bias are initially random and get updated during the

training as the model learns which parameters produce more relevant values. This

is done in the exact same way as other networks, through gradient descent with

backpropagation to minimise a given cost function. The activation function used on

the convolved features allows for nonlinearity to be added, with the most popular

function being ReLU (which was defined in equation 1.35). Finally, the feature

maps from all filters are stacked to give the output of the convolutional layer.

CNNs typically have multiple convolutional layers following one another, with

the subsequent layers taking the output of the previous layer (the stacked feature

maps) as their input. These collections of matrices (called volumes) then have the

filters of the new layer applied, where the convolution of a volume is simply a sum

over each filter as shown in figure 1.13. As CNNs take images as the original input,

these are often volumes too as the images are typically represented by multiple
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Figure 1.12: Figure from Burkov (2019) displaying how CNN convolutional layers work
by applying a filter to the image in a sliding motion (here with a stride equal
to one).

channels (e.g. RGB for colour, or ugriz filters as in chapter 4). The additional layers

further convolve the original input, reducing the number of overall parameters and

allowing for deeper networks to be constructed.

Two important hyperparameters of CNNs are the stride and padding of the fil-

ters. The stride dictates how the filter moves across the image, so with a stride equal

to one, the filter moves across one pixel at a time. By increasing the stride one can

reduce the spatial dimensions of the output volumes and hence it is another method

of reducing the computational resources required by the model. The padding dic-

tates how the model treats the edges of the convolution where, if the stride is such

that the filter doesn’t fit perfectly inside the image, the image will be padded with

zeros or the strip of the image where the filter doesn’t fit is ignored.

There are two more types of layers which along with the convolutional layers

make up a CNN. First, pooling layers are layers which quickly reduce the volumes
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Figure 1.13: Figure also from Burkov (2019) displaying how filters are applied to volumes
in convolutional layers.

and number of parameters in the network. There are three different types of pooling:

max pooling, average pooling, and sum pooling. Each works in the same way and

an example is given in figure 1.14. A ‘filter’ of a set size (although different to

convolutional filters as they don’t contain any values themselves) is applied to the

input volume in the same vein as the convolution layer, in a moving window with a

set stride. As the names suggest, in max pooling the operation is simply taking the

maximum value, average pooling takes the average, and sum pooling takes the sum

of the elements in the filter.

The other type of layers used in CNNs are fully-connected layers. These work

by first flattening the output volume of the convolutional network into a single fea-

ture vector. This can then be used as the input to the fully connected layers which

when put together are the same as a standard fully connected neural network as de-

scribed in section 1.4.1.8. These fully connected layers act to take the transformed

input, where the convolutional layers have acted to extract the features of the im-

ages, and process the features before using a final layer with an activation function

to give the desired output.
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Figure 1.14: Figure showing how pooling layers are applied to reduce the size of the input
volume. In this example average pooling is used with a filter size of (2× 2)
and a stride equal to two.

1.4.1.10 Inception module networks

Inception module CNNs are a specific type of CNN which make use of inception

modules. These modules have the structure shown in figure 1.15 and were first used

by Szegedy et al. (2015) to allow for deeper network architectures in the making

of ‘GoogLeNet’. They work in exactly the same way as normal CNNs, with the

addition of these inception modules instead of a single convolutional layer.

The inception module works using sets of convolutional layers which are ap-

plied in parallel instead of the sequential convolutions of standard CNNs. The con-

volutional layers begin with a kernel size of (1×1) before then using convolutional

layers with larger kernel sizes to allow for more efficient computations of the matrix

dot product. This allows for deeper networks to be constructed without requiring

as many computational resources, and which have been shown to improve perfor-

mance (Szegedy et al., 2016).

1.4.2 Metrics

The metrics one uses are vital not just in evaluating the performance of machine

learning models but also while building the models. Before any decision can be

made for which hyperparameters to set in the models, one first needs to decide

which metric to optimise for. There are different metrics for regression problems,
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Figure 1.15: Figure from Szegedy et al. (2015) showing the structure of a typical inception
module.

which can simply use errors based on the residuals of the predictions, compared to

classification problems, where generally the metrics will be derived from a confu-

sion matrix.

1.4.2.1 Regression metrics

There are three main error metrics used for regression problems. The most widely

used is the mean squared error (MSE), defined as

MSE(y, ŷ) =
1
n

n

∑
i=1

(yi − ŷi)
2, (1.36)

which could also be square rooted to give the root-mean squared error (RMSE);

second is the mean absolute error (MAE) given by

MAE(y, ŷ) =
1
n

n

∑
i=1

|yi − ŷi| ; (1.37)

and lastly is the R squared score (R2) defined as

R2(y, ŷ) = 1− ∑
n
i=1(yi − ŷi)

2

∑
n
i=1(yi − ȳ)2 . (1.38)
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The equations for each of these metrics is given above where for the i-th ex-

ample within a total of n examples, ŷi is the predicted value, yi is the true value, and

ȳ is the mean of yi.

While these general error metrics are widely used for various problems, any

error metric could be used and typically more problem-specific metrics will also be

calculated depending on the application of the machine learning model.

1.4.2.2 Classification metrics

As mentioned, classification metrics are typically derived from the confusion ma-

trix. This is a matrix of values that summarises the performance of the machine

learning models by showing the number of examples in each of the different classes

for both the predicted and true datasets. In table 1.3 I give an example of a confu-

sion matrix for a binary classification, where there are only two classes, however,

for multi-label classifications there could be any number of different classes.

For this binary example there are four values given by the confusion matrix:

True positives (TP), which are the number of examples correctly classified as posi-

tive; false positives (FP), which are the number of examples incorrectly classified as

positive (so the true value would have been negative); true negatives (TN), which are

the number of examples correctly classified as negative; and false negatives (FN),

which are the number of examples incorrectly classified as negative (and which

should have been positive).

The simplest metric for classification is the accuracy. The accuracy is just the

fraction of the time that the classification is correct, and is given by the number of

true examples over the total number of examples:

Accuracy =
T P+T N

T P+T N +FP+FN
. (1.39)

While this is a very powerful metric which can be useful to quickly determine

model performance, it can also be deceptive for classifications where there is a class

imbalance. As explained in chapter 2 when searching for TNOs there were far fewer

positive examples of true detections and the dataset was heavily imbalanced with
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Table 1.3: An example confusion matrix for a binary classification problem where there
are only two possible classes. This results in four values: The number of exam-
ples correctly classified as positive, true positives (TP); the number of examples
incorrectly classified as positive (so the true value would have been negative),
false positives (FP); the number of examples correctly classified as negative,
true negatives (TN); and the number of examples incorrectly classified as neg-
ative (which should have been positive), false negatives (FN). These values can
then be used to calculate various classification metrics.

Predicted Class
Positive Negative

True Class Positive TP FN
Negative FP TN

many more negative examples of false detections due to noise. This meant that a

classifier could have a null accuracy (accuracy of predicting all examples to be the

same class) which was still very high.

The accuracy is also only useful when used for problems where the errors of

the predictions are equally important (i.e. we care equally about FP and FN values).

Again using the example of chapter 2, it was far more important to minimise the

number of missed detections (so the number of false negatives). This was because

the model was being used to reduce the amount of detections due to noise being

passed through the pipeline, but a model which also reduced the number of possible

real objects wouldn’t have been useful in a detection pipeline. As such there are

other metrics which can be more informative about the numbers of FN or FP.

The recall (also known as sensitivity) and precision are two of most commonly

used metrics for classifications. The recall gives the ratio of the TP to the total

number of positive examples in the dataset, and the precision gives the ratio of the

TP to the total number of positive predictions:

Recall =
T P

T P+FN
, (1.40)

Precision =
T P

T P+FP
. (1.41)

These metrics give more specific information than the accuracy with the recall
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describing how sensitive the model is (or how many positive examples are being

missed by the classifier), and the precision describing the purity of the model and

how much noise there is in the predictions (how many negative examples were

classified as positive). An additional metric, the F1 score, can be made which is a

combination the recall and precision and is defined as

F1 = 2× Precision×Recall
Precision+Recall

. (1.42)

Finally, it can often be helpful to use plots to visualise the machine learn-

ing algorithms’ performances. The receiver operating characteristic (ROC) curve is

commonly used which plots the true positive rate against the false positive rate. The

true positive rate is defined as the proportion of correctly predicted positive exam-

ples (making it the same as the recall) and the false positive rate is the proportion of

incorrectly predicted negative examples:

T PR =
T P

T P+FN
= Recall, (1.43)

FPR =
FP

FP+T N
. (1.44)

By plotting the TPR against the FPR for many different decision thresholds

(the threshold at which the model predictions change from negative to positive e.g.

for a binary classification of (0, 1) the default threshold would be 0.5), one obtains a

graph where the area under the curve (AUC) gives another good measure of model

performance with the ideal model having an AUC = 1.

1.4.3 Optimisation

Optimisation is the process of fine-tuning the hyperparameters of machine learn-

ing algorithms which dictate how the algorithms are constructed and learn. Before

performing optimisation a metric is chosen to optimise for (aiming to minimise or

maximise the metric). For traditional algorithms there are three optimisation meth-

ods which can be used to select the optimal hyperparameters. The first and most
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complete method is brute force optimisation. In brute force optimisation every pos-

sible combination of a specified grid of hyperparameters is tested. This exhaustive

method is guaranteed to give the best possible algorithm (the algorithm which min-

imises/maximises the chosen metric), however, it is very computational intensive

and for large models and datasets can be impractical.

Instead, one of the other two optimisation methods can be used. Random opti-

misation takes the same grid of hyperparameters, and instead of testing every possi-

ble combination, it tests a set number of random combinations. With a high enough

number of random sets of hyperparameters, random optimisation finds a good ap-

proximation of the best possible hyperparameters and is much faster than the brute

force method. The final method is Bayesian optimisation. Bayesian optimisation

(which is fully described by Snoek et al. (2012)) aims to iteratively test combina-

tions of hyperparameters until it converges on the best result. In theory this method

can give the best combination of hyperparameters, although in practice they are

typically not an exact match to the brute force method. Bayesian optimisation does

however remove the element of luck from random optimisation (which could yield

both good or bad results), and is a good middle ground still being faster than brute

force optimisation.

Deep learning algorithms such as CNNs cannot be optimised in the same way.

While different numbers of layers and neurons can easily be specified, in practice

it is very difficult to iteratively test all the different hyperparameters of the network

(such as the kernel sizes, stride, padding) at the same time. Indeed, even when it is

possible, the algorithms are much slower to train and it isn’t feasible to carry out the

same kind of optimisation. Instead, the process of finding the best network architec-

ture is often more of a process of trial and error. By using domain knowledge and

previous examples, the standard practice is to adapt previously existing networks

and test different architectures to find a suitable model.

While optimising, another important process is cross-validation. Cross-

validation works by taking the training data and splitting it into k-folds, which are

different subsets of the same size. Using the example of 5-fold cross-validation, the
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training data is split into five folds, where each subset would contain 20% of the

training data. When training the model, four of the five folds are used to train the

algorithm which allows for the fifth fold to be used as a validation set. By itera-

tively varying the folds used in the training set, one obtains five different outputs,

and these can be averaged to give the final value of the metric. This is far more

robust than taking a single value as it helps prevent against overfitting a model to

the training data (where it could perform brilliantly for one set of folds but not the

others).
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1.5 Benchmarking
Benchmarking is the practice of studying how specific models perform. This perfor-

mance is described not just by the results of the various metrics described above, but

also by the computational performance and efficiency. Conventionally benchmark-

ing has been used to detail how a single architecture performs for a set problem,

such as the LINKPACK challenge (Dongarra et al., 1979), however, in this the-

sis I was interested in a broader application to understand how various algorithms

compared.

While machine learning has become an incredibly popular tool and is now

used in almost all aspects of research, few investigations have been done to study

the efficiency of the methods implemented. In chapters 3 & 4 I compare algorithms

using various error metrics as well as investigating their scaling and speeds. This

was done by recording the system information, which is described by the time,

CPU usage, memory usage, and disk I/O, throughout the training and testing of the

machine learning algorithms.

One of the main challenges of benchmarking is determining which metrics or

figures are best used to outline the performance. This will be dependent on the

type of problem being investigated as well as the purpose of the benchmarking.

In chapters 3 & 4 I was predominantly interested in showing the scaling of the

algorithms with different numbers of galaxies included in the training sets, and the

effect on the error. As such, the plots comparing the number of points in the training

set with the times taken during training or testing, and also comparing these with

the MSE, were the plots chosen to highlight the performance.
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In this chapter we investigate how implementing machine learning could im-

prove the efficiency of the search for Trans-Neptunian Objects (TNOs) within Dark

Energy Survey (DES) data when used alongside orbit fitting. The discovery of mul-

tiple TNOs that appear to show a similarity in their orbital parameters has led to the

suggestion that one or more undetected planets, an as yet undiscovered ‘Planet 9’,

may be present in the outer Solar System. DES is well placed to detect such a planet

and has already been used to discover many other TNOs. Here, we perform tests

on eight different supervised machine learning algorithms, using a dataset consist-

ing of simulated TNOs buried within real DES noise data. We found that the best

performing classifier was the Random Forest which, when optimised, performed

well at detecting the rare objects. We achieve an area under the receiver operating

characteristic (ROC) curve, (AUC) = 0.996±0.001. After optimizing the decision

threshold of the Random Forest, we achieve a recall of 0.96 while maintaining a

precision of 0.80. Finally, by using the optimized classifier to pre-select objects, we

are able to run the orbit-fitting stage of our detection pipeline five times faster.
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2.1 Introduction

The idea that additional planets may be present in the outer solar system has existed

in astronomers’ minds since the successful prediction and subsequent discovery

of Neptune in 1846 (Le Verrier, 1839, Galle, 1846). Indeed, the discovery of the

once major planet Pluto came as a direct result of a rush to find further planets

(Tombaugh, 1946). After finding many other minor bodies in the outer solar system,

the possibility of there still being a large planet left to discover seemed unlikely.

However, recent detections of more Trans-Neptunian Objects (TNOs) have led to a

resurgence in hunting for the elusive ‘Planet 9’.

This rekindled excitement was caused by an observed similarity of orbital pa-

rameters of certain TNOs, and was first noted by Trujillo & Sheppard (2014) in

their detection of 2012V P113. Objects like 2012V P113 have higher eccentricities, in-

clinations, and orbit further from the sun than the majority of TNOs, giving them the

name ‘Extreme-TNOs’(ETNOs). ETNOs typically have a semi-major axis, a > 150

AU, and a perihelion distance, q > 30 AU, and it was shown that these objects

displayed a grouping with similar arguments of perihelia, ω ≈ 0◦, that could be

explained by a large distant planet. The initial theory was that this planet caused

the similar orbital elements via the Kozai mechanism (Kozai, 1962) whereby the

oscillating argument of perihelia of the objects, about a value of either ω = 0◦ or

ω = 180◦, would cause an exchange between the eccentricity and inclination of the

body. However, this seemed improbable due to the lack of observations of TNOs

with ω = 180◦ (de la Fuente Marcos & de la Fuente Marcos, 2014). Instead it was

suggested by Batygin & Brown (2016a) that the planet would cause similarities in

both the argument of perihelia, ω , and the longitude of ascending node, Ω, through

secular effects (Batygin & Morbidelli, 2017), which could then also account for

other features seen in the Kuiper Belt (Batygin & Brown, 2016b).

Having another major planet in the outer Solar System would result in other

observable effects. Both Gomes et al. (2016) and Bailey et al. (2016) suggested that

the six-degree Solar obliquity could be explained as a natural result of the additional

planet. And, as discussed by Fienga et al. (2016), a Planet 9 with a true anomaly of
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v ≈ 120◦ would significantly reduce the observed Cassini residuals. There have also

been further studies which have reexamined the likeliness of an additional planet,

with Cáceres & Gomes (2018) having suggested that in fact smaller perihelion dis-

tances provide better confinements.

However, there is still no consensus on whether the resonant perturbation

mechanism is sufficient to describe the observed clustering of TNOs, what the most

likely parameters of the planet are, or if it is in fact likely for there to be a planet

at all (Batygin et al., 2019). There have been several alternative proposals for how

such a clustering of TNOs could be explained, ranging from regular secular dy-

namics being sufficient (Beust, 2016), to the possibility of a primordial Black Hole

(Scholtz & Unwin, 2020) which could have been captured instead of a free-floating

planet. Furthermore, there are other difficulties of explaining such a Planet 9 as

it’s thought to be unlikely to have migrated into its current orbit, or to have been a

captured free-floating planet (Parker et al., 2017).

Finally, it is also uncertain if the grouping of TNOs that the entire Planet 9

hypothesis was based on is actually due to observational bias (Bernardinelli et al.,

2020a). Using the Outer Solar System Origins Survey (OSSOS) (Bannister et al.,

2016), Shankman et al. (2017) discovered eight ETNOs which they claim have or-

bital parameter distributions consistent with what they would expect to detect and

not grouped by a ninth Planet. Whereas Brown (2017) argues that the observed ET-

NOs must be grouped by external perturbations (Brown & Batygin, 2019). Shep-

pard et al. (2019) also suggest that an additional planet is still favoured, but concede

that more studies would need to be done which fully take into account the selec-

tion functions of the various surveys used to observe the ETNOs. It’s essential to

enhance the current search and discover more ETNOs to place further constraints

on the Planet 9 hypothesis. However, regardless of the existence of Planet 9, more

TNOs need to be discovered to better understand the structure of the outer Solar

System.

The Dark Energy Survey (DES), while constructed as a cosmological survey, is

perfectly situated to discover faint objects in the outer Solar System with its repeat
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observations in a 5,000 square degree footprint, and its ability to identify very dim

objects with a 10σ limiting magnitude of 23.2 in the r-band (Neilsen et al., 2016)

using its powerful camera, DECam (Flaugher et al., 2015). Because a Planet 9

with a mass in the range 5 < M < 10Me would have an aphelion magnitude of

between 21.2 <Vmag < 24 (Batygin et al., 2019), it should be detectable within the

DES footprint. Indeed, DES and DECam have already been used to discover many

TNOs, including two of the ETNOs first used to hypothesise the presence of Planet

9 (Trujillo & Sheppard, 2014, DES Collaboration, 2016, Gerdes et al., 2016, 2017,

Becker et al., 2018, Khain et al., 2018, 2020, Lin et al., 2019, Bernardinelli et al.,

2020b).

Our current process of detecting ETNOs and other distant objects in DES is

to first combine observations of objects across different images. This is done by

linking pairs of objects moving across images where the observed motion is con-

sistent with Earth’s parallax motion (Khain et al., 2020). These pairs can then be

joined to give sets of three points in three different images taken on three separate

nights. With these sets of three points, (which we call triplets), it’s then possible

to fit them to an orbit to determine if there can be a bounded orbit well defined by

the 6 parameters: Semi-major axis, a; Eccentricity, e; Inclination, i, Longitude of

ascending node Ω; Argument of perihelia, ω; and the Mean Anomaly, M (Bernstein

& Khushalani, 2000).

Currently this process of orbit fitting is the slowest stage in our detection

pipeline, and as the vast majority of triplets formed were from linking pixel-level

fluctuations and artifacts that remained after difference imaging (Kessler et al.,

2015) (which we refer to as noise), a lot of time is spent identifying this noise.

In this paper we suggest an alternative method by implementing machine learning

(ML), which is separate from the work done by Bernardinelli et al. (2020b), and

Holman et al. (2018) who aimed to reduce the number of erroneous triplets that

were initially linked. The machine learning classifier acts as an extra preprocessing

stage to filter through the sets of triplets, identify and eliminate the majority of the

triplets that result from noise in the data, and hence speed up the orbit fitting stage.
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The first step of this process is to train the ML algorithms on simulations of ETNO

triplets created using a survey simulator. Simulations are necessary as there simply

aren’t enough real observations of these distant objects to form a sufficient train-

ing set; however, it is possible to combine these simulations with real noise data to

ensure the training data is representative.

Eight different supervised ML algorithms are trained and tested, each con-

tained in the Scikit-Learn python package (Pedregosa et al., 2011), and we find that

for this task of classifying rare events, the Random Forest classifier (RF) is the best

performing algorithm. Once optimised and implemented in the detection pipeline,

the RF allows for 80% of the noise triplets to be removed before performing orbit

fitting which, as a result, runs five times faster.

In the following Sec 2.2 we describe the process of creating the simulated

datasets that are used, and then summarise how to extract useful features. In Sec

2.3. we describe the ML algorithms tested and how the final classifier is optimised

before giving the results in Sec 2.4. We then implement the classifier into the full

search pipeline in Sec 2.5, and finally conclude our work in Sec 2.7.

2.2 Data Simulations and Feature Extraction

To be able to implement a supervised ML system, the ML algorithms first had to

be trained and tested on data where the classifications were already known. As our

problem focuses on finding rare events, there was not sufficient real data to form

a large enough, and effective, training set to determine the algorithms’ usefulness.

Thus, synthetic objects were created and used to make simulated detections of ET-

NOs and possible Planet 9s within DES.

The simulations of detected ETNOs, and possible Planet 9s, were made using

a survey simulator (Hamilton, 2019) which took an array of orbital parameters of

objects given in Table 2.1, and by using these fake orbits, calculated whether or

not each object could ever be visible in DES. This was done by calculating the

limiting magnitude of each exposure within 7◦ of the position of the fake object at

the beginning of DES operations (as even the fastest moving TNO couldn’t have
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moved that far since the start of DES operations), and then project the position of

each object into these nearby exposures to determine whether the object fell on a

CCD during that exposure (Hamilton et al., 2021).

For the objects which could be detected, the simulator gave their positions

in each DES image which could then be linked across multiple images. As the

simulated objects were so distant, their motion across images was dominated by

Earth’s parallax motion, so pairs of objects could be found by linking the objects

with motion consistent with the parallax motion. Pairs with common points were

then combined to form triplets, sets of three points linked across three different

images, as three points was the minimum requirement to perform an orbit fit to

determine whether the observed points corresponded to an object or arose from

noise in the images (see Sec 2.5 for a more complete description of the detection

pipeline).

The majority of the dataset used was made up of real data which contained

around 250000 triplets that had previously been linked but shown to result from

noise after using the original method of performing a full orbit fit on every triplet

detected. Although these real triplets could contain some small number of detec-

tions of objects which were misclassified, the vast majority were confidently due

to noise, and the machine learning algorithms used shouldn’t have been noticeably

impacted. The real data acted as the sea of negatives, in which we searched for

the much rarer positive triplets, of which around 10000 were made from the simu-

lated objects. However, even with far more noise triplets compared to the triplets

from simulated objects, this imbalance in the dataset was still less than would be

observed in real data where over 99.9% of triplets result from noise.

With the data prepared the next important step was feature extraction, whereby

the features which were used by the ML algorithms were selected. In the case of

having many raw parameters, one of the main aims of feature extraction is to lower

the dimensionality of the data. There are several ways to reduce the dimensionality

but perhaps the common way this can be done is by using the coefficients of princi-

pal component analysis (PCA) (Pearson, 1901) as features instead of features taken
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Table 2.1: Range of the 4 orbital parameters which were required by the Survey Simulator
to create fake ETNOs and Planet 9s. In addition to these parameters the three
further orbital parameters required to fully describe an orbit - Mean anomaly
(M), argument of perihelion (ω), and longitude of ascending node (Ω), were
also taken to have a uniform distribution. With these parameters the Simulator
generated fake observations which could then be linked to generate the fake
triplets used for the training data.

Parameter Range
Semi-major axis, a 150 AU < a < 1000 AU

Eccentricity, e 0.1 < e < 1
Inclination, i 0◦ < i < 90◦

Absolute Magnitude, H 1 < H < 10

directly from the raw data. However, our specific problem had a very low dimen-

sionality to begin with, and as such the process of feature extraction became more

of a task to see what transformations could be made to the data to give the features

which resulted in the best classifications.

The raw data output by DES and the simulator contained the positions on the

sky of each possible object in the image along with the time of observation. The

most basic features which could be used were therefore the positions of the object in

each image and the times of observation, giving a total of nine features. However,

the link-map which was used to link the observations and generate triplets that could

arise due to TNOs only output the change in velocities of the object between the

different observations (as this is what was used to determine if the object’s motion

was consistent with Earth’s parallax motion). This meant that instead of using the

ecliptic coordinates of the object in each image, the change in longitudinal and

latitudinal velocities were used as features where the velocities were combined as

dvlon =
vlon12 − vlon23

vlon12 + vlon23
, (2.1)

dvlat =
vlat12 − vlat23

vlat12 + vlat23
. (2.2)

This reduced the initial nine features from the coordinates down to just two, but

to include all the information about the trajectory of the object, the cosines of the
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Figure 2.1: A triplet (displayed here to lie on a flat plane) was made by combining three
points which had been linked across three different images taken on different
nights. By transforming into ecliptic coordinates we were left with three sets
of longitude and latitude as well as the times of the observations, resulting in
9 features. We then reduced the number of features by calculating the longi-
tudinal and latitudinal velocities between each point, and further reduced these
to simply the change in each velocity. By also using the two cosines between
the two pairs of observations as features, we included all information needed
about the trajectory of the object to be used by the machine learning algorithms
to infer if the object could have a real orbit.

angles between points in the triplet were also included as features, giving the final

four features used by the ML algorithms: the change in longitudinal and latitudinal

velocities (dvlon, and dvlat), and the cosine of the angles between points (cos12,

and cos23), which are displayed in Figure 2.1 of a triplet.

While these four features of the data were found to be sufficient to train ML al-

gorithms to provide a significant increase in efficiency, we also investigated whether

an even greater performance boost could be obtained using a dataset containing ad-

ditional features. In section 2.6 we present the results from testing the exact same

eight ML algorithms using a different dataset containing 80000 triplets from simu-

lated objects. These simulations were made to also preserve the four longitudinal

and latitudinal velocities to use as features rather than only using the two changes

in velocities as in the original dataset.
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2.3 Machine Learning Methodology
Having extracted the useful features, the next stage was to test various ML al-

gorithms to determine which algorithm would give the best classification results.

Here we perform tests on the following eight supervised ML algorithms with the

aim of implementing a new ML stage to increase the efficiency of our TNO detec-

tion pipeline. The algorithms tested were: Logisitic Regression (LR), Naive Bayes

(NB), Multi-layer Perceptrons (MLP), k-Nearest Neighbours (kNN), Decision Trees

(DT), Boosted Decision Trees (BDT), Random Forests (RF), and Extremely Ran-

domised Trees (ERT). Each of the classifiers, described in detail in section 1.4, were

then tested using the method described below.

2.3.1 Methodology

To test each of these supervised ML algorithms, the data first had to be split into

training, testing, and validation sets. We also performed cross-validation (Kohavi,

1995) across the train/test set to select the best combination of hyperparameters, the

parameters which are used to build the ML algorithms (see Sec 2.3.2), and to be able

to identify and minimise the impact of any possible overfitting. We used a random

split taking 70% of the data to be used to train the algorithms, giving a healthy

training set size with over 200000 triplets, and leaving the remaining 30% for tests

and validation. However, due to the nature of the problem of looking for rare events,

the datasets were incredibly imbalanced which could cause problems when trying to

perform the classifications. Rather than forcibly making balanced datasets, which

then wouldn’t be representative of the true data, certain algorithms (LR, DT, RF,

ERT) could take into account the class imbalance by applying a weighting to the

data during the training.

Another common step taken before training any algorithm is to scale the data,

making all the features have a range 0 < |feature| < 1. This can be useful if the

ML algorithm uses gradient descent, as convergence will occur much faster on nor-

malised data (Johnson & Zhang, 2013). It can also be necessary if the data features

have different units and varying ranges of values, as some models are sensitive to

magnitude or use the euclidean distance between points such as kNN. However,
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scaling could also remove useful information if the difference in ranges of the fea-

tures is important or resulting from some physical effect. Furthermore, scaling may

not even be possible if the full range of data isn’t known. In these tests, although

scaling was also applied, it was found to make very little difference to the perfor-

mance of the majority of the classifiers and was ignored when implementing the

final RF classifier.

2.3.2 Hyperparameter Optimisation

The final step of creating the ML algorithms to be tested was to state the hyperpa-

rameters. Hyperparameters are the parameters of ML algorithms that get set prior

to the learning process, and are used to create the algorithms, allowing all other

parameters of the model to be learned from the training data. As an example, in

random forests these hyperparameters include the number of estimators, which is

the number of trees that make up the forest.

We tested the three different methods of optimisation: brute force optimisation,

random optimisation, and Bayesian optimisation, (which are described in section

1.4.3) each of which required a grid of hyperparameters to be defined. This grid

defines the hyperparameters and the range of values to be tested. The final thing

needed to perform optimisation is the metric that is being optimised for. As de-

scribed in the following section, the recall was the most informative metric for this

problem of searching for rare objects and therefore we optimised the algorithms to

give the best possible recall scores.

For the initial tests of all of the ML algorithms a simple brute force search was

completed on the grids defined in Table 2.2. These values of hyperparameters were

chosen to provide a wide enough range and ensure sufficient variation for each

algorithm by changing the values of the hyperparameters which had the greatest

effect. Although some hyperparameters could have continued to increased past

the chosen upper limits, such as the number of estimators used in the ensembles

of decision trees, we used a maximum which would provide a good estimate of

performance without taking days to compute. Similarly, rather than testing every

hyperparameter, to save time we only selected the ones with the greatest impact on
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the algorithm and the remaining hyperparameters not listed in Table 2.2 were kept at

their default Scikit-Learn values. For a complete analysis benchmarking would be

required to fully understand the trade off between the training and inference times

and the other metrics obtained, however, this was beyond the scope of this work.

After the results of these tests were obtained (which are shown in Table 2.5 in

Sec 2.4), and the Random Forest was selected as the best performing classifier, a

more complete optimisation was performed. All three optimisation methods were

tested on the larger grid given in Table 2.3 and the results are given in Table 2.4.

While all three optimisation techniques were successful in improving the perfor-

mance, the Brute force method did give the largest improvements. However, the dif-

ferences were minimal, and the factor of 10 difference in the time taken compared

to the other methods makes using one of the alternative methods more appealing

for future implementations. Furthermore, while changing the hyperparameters does

fine-tune the algorithm and improve classification results, the effect is far less than

changing the data itself and to improve the results any further one would need to

add features in the data processing stages.

2.3.3 Metrics

Once the classifiers had been trained and tested their performance had to be deter-

mined. There are various metrics that can be used for analysing ML algorithms,

as described in section 1.4.2, the simplest of which is the classification accuracy.

Although using the accuracy gave a quick way to determine how well a classifier

performed, it wasn’t particularly useful in the information it provided. As accuracy

is simply the number of true predictions / total predictions, and in this case the ma-

jority of the data should be easily identified as a true negative, the null accuracy

(predicting everything to be a negative result) was very high at 95%. This means

that quoting an accuracy which sounds incredibly good can in fact still be a very

poor classifier, as seen in some of our tests. Instead of using the accuracy, far more

useful metrics can be obtained from the confusion matrix, a matrix of the true values

against the predicted values (Manning et al., 2008).

The confusion matrix, such as the binary example in Table 1.3, allows for the
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Table 2.2: Grids of hyperparameters that were searched when constructing each classifier
for the initial tests to be able to compare each of the machine learning algorithms.
Hyperparameters not mentioned in the table were kept at the default Scikit-Learn
values. The hyperparameters that were selected to be used for each classifier
are shown in bold, with the exception of NB in which the only hyperparameter
which can be set are the prior probabilities which were left to be automatically
adjusted according to the data.

Classifier Hyperparameter Array of Values
LR “dual” [False, True]

“tol” [1e-7, 1e-6, 1e-5, 1e-4]
“C” [1.0, 2.0, 3.0, 4.0, 5.0]

kNN “no. neighbors” [1, 5, 10, 50, 100]
“weights” [“uniform”, “distance”]
“leaf size” [1, 5, 10, 50]

DT “min. samples split” [2, 5, 10, 50]
“criterion” [“gini”, “entropy”]
“splitter” [“best”, “random”]

BDT “loss” [“exponential”, “deviance”]
“no. estimators” [50, 100, 150, 200]

RF “no. estimators” [10, 50, 100, 200]
“max. features” [“auto”, 0.1, 0.4]

“min. samples leaf” [1, 5, 10, 20]
ERT “no. estimators” [10, 50, 100, 200]

“max. features” [“auto”, 0.1, 0.4]
“min. samples leaf” [1, 5, 10, 20]

MLP “hidden layer sizes” [1, 10, 50, 100]
“tol” (1e-3, 1e-4, 1e-5)
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Table 2.3: Grid of hyperparameters used by the three different techniques in the optimisa-
tion process for the Random Forest. For the Random and Bayesian optimisations
only the upper and lower values were used to obtain a random value between the
two limits, whereas for Brute force optimisation the specific values within the
range also had to be stated. Additional hyperparameters not listed in the table
were kept at the default Scikit-Learn values. The final hyperparameter values
which gave the highest recall score are given in bold.

Hyperparameter Array of Values
“no. estimators” [1, 10, 50, 100, 200]

“criterion” [‘gini’, ‘entropy’]
“max. features” [0.1, 0.4, 0.9]

“min. samples split” [2, 5, 10, 20]
“min. samples leaf” [1, 5, 10, 20]

“min. weight fraction leaf” [0, 0.4]
“bootstrap” [True, False]

Table 2.4: Results from using the random forest classifier when optimised using the three
different methods as compared to the default classifier given by Scikit-Learn.

Optimisation
technique

None Brute Force Random Bayesian

Time Taken
(s)

0.00 43437.40 4654.01 7272.07

Accuracy 0.9891
±0.0004

0.9912
±0.0004

0.9907
±0.0003

0.9903
±0.0004

Recall 0.8588
±0.0061

0.9000
±0.0062

0.8976
±0.0057

0.8965
±0.0060

Precision 0.9129
±0.0096

0.9265
±0.0063

0.9139
±0.0083

0.9085
±0.0085

F1 score 0.8847
±0.0023

0.9122
±0.0042

0.9055
±0.0014

0.9034
±0.0037

AUC 0.9877
±0.0026

0.9963
±0.0011

0.9947
±0.0009

0.9930
±0.0011
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other important metrics to be calculated from the number of true positives (TP),

true negatives (TN), false positives (FP), and false negatives (FN). The most useful

metric in this case was the recall (or completeness / sensitivity). The recall gives

the best measure of how many possible observations would be missed. For this

problem we didn’t want to have any FN which could have actually occurred due

to a real object, and focused on optimising for the recall. However, improving the

recall score came at the cost of decreasing the precision (or purity). And although

we allowed for more FP, the precision had to also be kept as high as possible to not

have too many FP which would make the machine learning method inefficient.

A combination of these two metrics, the F1 score, was used to show the balance

between the recall and precision. The F1 score is the harmonic average of the recall

and precision, and as such also has its best value at 1 and worst at 0, allowing us

to quickly determine the classifiers’ performances. Another very useful metric is

the area under the curve (AUC) of the receiver operating characteristic curve (ROC

curve) (Fawcett, 2006). The ROC curve was plotted with the True positive rate

(TPR) against the false positive rate (FPR), resulting in a curve where the ideal

result with AUC = 1 would be a straight line up and across. A ROC curve with each

of the tested algorithms is shown in Figure 2.2.

2.4 Classification Results

The full results of the tests are given in Table 2.5 and all of the quoted results were

obtained using 5-fold cross-validation to obtain a value which was unaffected by

overfitting, and allowed for the standard deviation to be calculated. The relative

usefulness is displayed in Figure 2.2, a single plot overlaying the ROC curves for

each of the classifiers, as well as using box and whisker plots in Figure 2.3.

From these it’s clear that some of the ML algorithms have completely failed

to identify the triplets resulting from the fake objects. MLP found no TPs, and

achieved the same as the null result of classifying everything as negative (triplets

resulting from noise). LR performed similarly, classifying almost all triplets as

negatives, and by falsely classifying some noise as positives (triplets resulting from
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Figure 2.2: ROC curves for each machine learning classifier tested overlaid to be able to
compare their effectiveness. The algorithms compared are: Logistic Regres-
sion (LR), k-Nearest Neighbours (kNN), Decision Trees (DT), Boosted Deci-
sion Trees (BDT), Random Forests (RF), Extremely-Randomised Trees (ERT),
Multi-layer Perceptron (MLP), and Naive Bayes (NB). The tree-based classi-
fiers outperformed all others, with the Random Forest (RF) and Extremely-
Randomised Trees (ERT) being the best. The decision tree classifier (DT) pro-
duced a three-point curve as it outputs only the label rather than a predicted
probability, giving only a single point of interest to plot.
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Table 2.5: Results from testing the eight different machine learning algorithms described in
section 1.4, the metrics were obtained using 5-fold cross-validation which also
allowed for the standard deviation to be calculated and is given as the error.

Classifier Logistic
Regres-
sion
(LR)

k-
Nearest
Neigh-
bours
(kNN)

Naive
Bayes
(NB)

Decision
Tree
(DT)

Boosted
Decision
Tree
(BDT)

Random
Forest
(RF)

Extremely
Ran-
domised
Trees
(ERT)

Multi-
layer
Per-
ceptron
(MLP)

Accuracy 0.946
±0.002

0.968
±0.001

0.503
±0.066

0.985
±0.001

0.976
±0.001

0.990
±0.001

0.990
±0.001

0.949
±0.001

Recall 0.001
±0.001

0.738
±0.009

0.926
±0.007

0.866
±0.008

0.694
±0.007

0.892
±0.006

0.880
±0.005

0.000
±0.000

Precision 0.018
±0.009

0.664
±0.005

0.088
±0.011

0.838
±0.005

0.811
±0.012

0.914
±0.007

0.924
±0.006

0.000
±0.000

F1 score 0.002
±0.001

0.690
±0.004

0.160
±0.019

0.852
±0.005

0.747
±0.007

0.902
±0.002

0.902
±0.004

0.000
±0.000

AUC 0.900
±0.006

0.934
±0.004

0.892
±0.007

0.938
±0.003

0.983
±0.001

0.996
±0.001

0.994
±0.001

0.881
±0.006

Figure 2.3: Box and Whisker plots comparing the accuracy and recall of the various differ-
ent machine learning classifiers tested. The NB classifier is excluded from the
accuracy graph as its value was so low (≈ 0.5), and similarly both LR and MLP
are removed from the recall plot as their recalls were essentially 0 having recov-
ered the null result of predicting all triplets to result from noise. The interquar-
tile range (making up the box) was obtained by performing cross-validation in
the tests of every algorithm, which also provided a standard deviation to be
used as the uncertainty. The range of the results was shown by the extended
‘whiskers’, and the median is shown in red.
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simulated objects), it had an accuracy lower than that of the null accuracy. While it’s

possible that spending more time optimising these algorithms could have resulted

in improving them to no longer give the null classification, they also would have

continued to classify too many FPs and had a precision too low to improve the

efficiency of the search pipeline. Furthermore, compared with the other algorithms

which were able to provide much better results with only the quick optimisation

which was carried out on all the algorithms, they were not worth considering for

this task.

The remaining classifiers all did much better, not having recall and precision

scores close to 0, however, the tree-based classifiers seemed to be the best per-

forming algorithms. Although kNN was somewhat successful, it had both a lower

accuracy and precision/recall than most of the tree based methods, and didn’t seem

to be an optimal classifier for this problem. NB performed better than all other

classifiers for the recall, but while this was the most important metric, it was only

able to achieve this high a value by classifying almost half the data as positives, and

as such it had a very low precision and by far the worst accuracy. The accuracy

and precision being so low meant that it wasn’t a useful classifier on its own, as it

wouldn’t be at all efficient when searching for objects; however, it could have been

used if combined with other algorithms in a voting system, but this possibility is left

for future work where we would consider more complex algorithms.

The tree-based classifiers were strong performers, but with some crucial dif-

ferences between them. The basic DT classifier, although did well classifying the

training set, was slightly overfitting despite the cross-validation and had lower met-

ric scores which meant that it wouldn’t be useful when applied to new data. The

ensembles methods were much better at addressing this overfitting, but the BDT

was consistently worse than the randomised methods due it not being able to handle

the huge imbalance between classes. As a result, in all metrics, the boosted trees

did worse than both the DT and forest classifiers, making it more similar to kNN

in performance and also not useful for this problem. There was less to distinguish

between the RF and ERT classifiers which had very similar metrics and performed
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very well at classifying the rare events; however, the RF was the faster method tak-

ing almost half the time to train and complete the classifications. On top of this the

RF had a higher recall, suggesting that the additional stage of randomness in ERT

was unnecessary for this problem.

Having selected the Random Forest as the most successful classifier, we then

produced pair plots shown in figure 2.4 to examine the distributions of the features

and suggest how the algorithm was able to produce its classifications. The majority

of the simulated objects had quite sharp peaks due the fact that TNOs were more

likely to have very small changes in longitudinal and latitudinal velocities and have

cosines close to 1. Although one could have therefore used simple cuts to select the

object closest to the peaks, by doing so far more triplets resulting from simulated

objects would have been misclassified resulting in more possible detections getting

missed. Instead, by implementing a machine learning algorithm such as the Ran-

dom Forest it was possible to achieve far better classifications, and the tree-based

algorithms might have performed better than others due to their nature of using

many decision rules to be able to ‘pick out’ the majority of the simulated objects

without also misclassifying much of the noise.

The final step taken to improve the performance of the Random Forest classifier

was to change the decision threshold. In making classifications the RF calculated a

predicted probability for each triplet to determine the probability of it resulting from

noise or a real object. The decision threshold is the value at which the threshold is

set so that for probabilities above this threshold the classification is taken to be

positive (and the triplet results from a real object), and for probabilities below this

threshold the classification is negative (and the triplet results from noise).

The default threshold was set = 0.5, however, as can be seen in Figure 2.5,

which shows how the recall and precision change with the decision threshold, we

were able to obtain a better result for the recall by lowering this threshold. Although

lowering the threshold to our chosen value ≈ 0.2 resulted in a lower accuracy and

precision, the recall improved sufficiently so that we were far less likely to miss a

possible detection of a real object. Before changing the decision threshold the RF
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Figure 2.4: Pair plots showing the 4 features: dvlon, dvlat, cos12, and cos23, which were
used by the Random Forest classifier plotted against each other with the label of
their classification shown by the colour - blue for true negatives, yellow for false
negatives, green for true positives, and red for false positives. Machine learning
was especially beneficial given the overlap of the classes in each feature space
meaning that there were no simple cuts able to separate the classes.
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Figure 2.5: Graph showing the precision and recall scores of the Random Forest classifier
as a function of the decision threshold. The default value of the threshold was
set = 0.5, however, by changing to the chosen value ≈ 0.2 we were able to
achieve a better recall without reducing the precision (and hence efficiency) by
too much.

was missing 163 out of the 4600 (3.5%) triplets from simulated objects that were in

the test set. Having changed the threshold, this was lowered to only 73/4600 (1.5%)

of the triplets resulting from simulated objects being misclassified as noise, and al-

though this does mean missing these triplets, in the full pipeline multiple triplets

from the same object are almost always required to actually result in a confirmed

detection. As such, although some triplets were missed, enough triplets were cor-

rectly classified that the vast majority of real objects would still be recovered.

2.5 Detection Pipeline
After the Random Forest had been found to be the best classifier, optimised, and had

the decision threshold changed to further improve its performance, it was possible

to implement the RF into the full search pipeline.

Our pipeline to identify TNOs can be described in three main stages which

we summarise here, and a complete description of the entire process was done by
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Bernardinelli et al. (2020b). First, the observational data had to be linked to give

the sets of observations that could be of the same object. For each point in the data

a linkmap was used to produce an array of all possible points that could be linked to

it, determined by whether or not the motion between points seemed to be consistent

with Earth’s parallax motion. For TNOs the motion needs to be consistent with

Earth’s parallax as they are such distant objects that their proper motion is much

less apparent than the motion of the Earth. The output of the linkmap results in

pairs of points that could possibly be the same object, and the next step was to take

the linked pairs and form triplets, the sets of three points that could all be from the

same object. This was done in the same way that the pairs were formed, checking

to see if the motion from one set of pairs to the next was consistent.

Once the triplet was formed it needed to be checked to see if it could have

actually arisen from an object or if it was an artifact of noise in the data (Kessler

et al., 2015). This was where the ML classifier was implemented as an extra prepro-

cessing step to quickly discard the majority of the triplets which result from noise

in the data. After the majority of the noisy triplets had been removed (over 80%),

the remaining triplets were fitted to an orbit to see if they could be described by

a real orbit of an object, or if they were still due to noise. This orbit fitting stage

determined whether there could be a bounded orbit well described by the six orbital

parameters: Semi-major axis, a; Eccentricity, e; Inclination, i, Longitude of ascend-

ing node Ω; Argument of perihelia, ω; and the Mean Anomaly, M (Bernstein &

Khushalani, 2000), and was the slowest stage of the pipeline. By removing most of

the noise using the ML classifier rather than orbit fitting every triplet generated dur-

ing linking, most of this computationally expensive step was saved, and the search

was sped up significantly.

The increase in efficiency by implementing ML was evident and the pipeline

was run five times faster when using the classifier. This was achieved as, out of the

dataset containing around a quarter of a million triplets, only around 10% were kept

to be fitted to an orbit, but even after keeping so few of the initial triplets, the clas-

sifier only misclassified 73/4600 (1.5%) triplets from simulated objects. Although
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this is still missing 1.5% of the triplets arising from objects, real objects will be

almost always be discovered by multiple triplets. As such having a recall ≈ 0.96

which was achieved by the Random Forest is likely to recover the vast majority of

the real objects. This would allow for the edited pipeline which includes the clas-

sifier to be run as a quick preliminary search and still be able to detect most of the

objects before completing a full analysis.

2.6 Additional Features
An additional dataset was created to test the effects on the various ML algorithms

of using different features. The new data created contained the longitudinal and lat-

itudinal velocities (vlon12, vlon23, vlat12, vlat23) as well as the cosines of the angles

between the pairs of points in the triplet (cos12, and cos23) which had previously

been used as features. Using these six features instead of the original four, the same

methodology was followed and the results are given in table 2.6, along with the

results when using the original features (dvlon, dvlat, cos12, and cos23) on the new

data for a fair comparison. To visualise the new feature space, pair plots were also

produced for the best performing random forest which are shown in figure 2.6.

As can be seen from the results in table 2.6, in general the algorithms were able

to achieve slightly improved metrics from the addition of the extra features. This

improvement suggested that it would be worthwhile to include further features to

provide as much information as possible to the machine learning methods. How-

ever, as can be seen from figure 2.6, the pair plots showed that there were still no

distinct decision boundaries and the classification problem of extracting the objects

from noise remained complex. Furthermore, to be able to include additional fea-

tures such as the raw coordinates of the observations, the link-map used to generate

the triplets would need to be changed to preserve this information.

2.7 Summary
The classification of rare events, such as this example of searching for ETNOs and

a possible ninth Planet, has become an even more important venture in light of the

vast datasets becoming available. In the wake of future surveys such as the Vera
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Table 2.6: Results from testing the eight machine learning algorithms on a new dataset
using the six features (vlon12, vlon23, vlat12, vlat23, cos12, and cos23). The results
of using the original 4 features (dvlon, dvlat, cos12, and cos23) on the same
data are also presented to compare the effects of using the different velocities as
features.
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Figure 2.6: Pair plots showing the classifications made by the Random Forest on the new
data using the six features: vlon12, vlon23, vlat12, vlat23, cos12, and cos23. The
label of the classification was shown by the colour - blue for true negatives
(noise correctly predicted as noise), yellow for false negatives (objects incor-
rectly predicted as noise), green for true positives (objects correctly predicted
as objects), and red for false positives (noise incorrectly predicted as objects).
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C. Rubin Observatory (or Large Synoptic Survey Telescope (LSST)), which will

produce 10 million transient events every night, being able to utilise ML methods

will be vital to improve efficiencies and allow further analysis to be undertaken.

In this work we’ve shown that implementing ML classifiers using the very

user friendly package scikit-learn could be used as a preprocessing step, remov-

ing the vast majority of erroneous detections, which helped speed up our discovery

pipeline. Having tested eight of the most used algorithms we discovered that the

Random Forest classifier was the best performing overall, and had the best function-

ality of being less prone to overfitting and taking into account imbalanced datasets.

Our results showed that the optimised Random Forest used could perform in-

credibly well, and achieved an AUC = 0.996. Furthermore, by changing the deci-

sion boundary we maximised the recall, giving a recall = 0.96 to ensure that the

vast majority of the triplets resulting from real objects could be recovered. We also

maintained a high accuracy and precision at 0.99 and 0.80 respectively. This meant

that our method was far more efficient, preventing the vast majority of the triplets

resulting from noise from advancing to the orbit fitting stage, and greatly speeding

up the pipeline.

If used in parallel with the existing pipeline which fits all triplets to an orbit to

ensure it’s 100% complete, implementing machine learning could allow for a useful

preliminary search to identify objects more quickly and provide a cross check for

the objects passing the orbit fitting.

The work presented here opens the door for analyses on searching for other

populations of TNOs in DES data. This method of using machine learning to filter

noise could be especially useful to help identify closer objects where the faster

motion results in even more noise. It would be desirable to investigate whether the

RF classifier would be as effective when applied to these different populations of

objects, and implement a ML method at a similar stage in the detection pipeline.

Further investigation could also be done to implement new algorithms which

have the potential to speed-up the pipeline even more, as well as using machine

learning in other areas, such as changing the way that points can be linked through
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images and allowing additional features to be used, which will make it possible to

further improve the current search. Improvements such as these will aid the discov-

ery of far more of the TNO population which is crucial information for constraining

Planet 9 and learning more about our Solar System.
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Obtaining accurate photometric redshift (photo-z) estimations is an important

aspect of cosmology, remaining a prerequisite of many analyses. In creating novel

methods to produce photo-z estimations, there has been a shift towards using ma-

chine learning techniques. However, there has not been as much of a focus on how

well different machine learning methods scale or perform with the ever-increasing

amounts of data being produced. Here, we introduce a benchmark designed to anal-

yse the performance and scalability of different supervised machine learning meth-

ods for photo-z estimation. Making use of the Sloan Digital Sky Survey (SDSS

- DR12) dataset, we analysed a variety of the most used machine learning algo-

rithms. By scaling the number of galaxies used to train and test the algorithms up

to one million, we obtained several metrics demonstrating the algorithms’ perfor-

mance and scalability for this task. Furthermore, by introducing a new optimisation

method, time-considered optimisation, we were able to demonstrate how a small

concession of error can allow for a great improvement in efficiency. From the algo-

rithms tested we found that the Random Forest performed best with a mean squared

error, MSE = 0.0042; however, as other algorithms such as Boosted Decision Trees

and k-Nearest Neighbours performed very similarly, we used our benchmarks to

demonstrate how different algorithms could be superior in different scenarios. We

believe benchmarks like this will become essential with upcoming surveys, such as

the Vera C. Rubin Observatory’s Legacy Survey of Space and Time (LSST), which

will capture billions of galaxies requiring photometric redshifts.
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3.1 Introduction

Calculating distances to cosmological objects remains one of the most important

steps required for probing cosmology. These distances are given by the distance-

redshift relation, and hence one needs very accurate measures of redshift to be confi-

dent in the inferred distances. Ideally, high resolution spectra would be obtained for

every object enabling for a precise measurement of the redshift. However, with cur-

rent and future surveys such as the Dark Energy Survey (DES) (DES Collaboration,

2005, 2016), Euclid (Amendola et al., 2018), and the Vera C. Rubin Observatory’s

Legacy Survey of Space and Time (LSST) (Tyson et al., 2003, Ivezić et al., 2019),

even with large spectroscopic surveys such as the Dark Energy Spectroscopic In-

strument (DESI) (Martini et al., 2018), only tens of millions of the galaxies will

have spectroscopy performed, despite hundreds of millions of galaxies being ob-

served.

In the absence of real spectroscopic measurements, obtaining photometric red-

shifts (photo-z) estimations is the only viable route available for scientists. There

are two major techniques used for photometric redshift estimation, template flitting

(e.g. Benitez (2000)) and machine learning (ML) (e.g. Collister & Lahav (2004)).

Both methods rely on the photometric information produced by the survey, usually

given as magnitudes in different colour bands. These magnitudes act as approxi-

mate measures of the underlying spectral energy distribution (SED) of the observed

object, and by appropriately reconstructing the SED, a corresponding redshift can

be inferred (Bolzonella et al., 2000).

Template fitting methods use a small and fixed set of template spectra for the

estimations, and inherently relies on the assumption that the best fitting SED tem-

plate provides the true representation of the observed SED. There are benefits of

template methods, including the ability to incorporate physical information, such

as dust extinction, into the model. However, embedding such physical constraints

requires very precise calibration and an accurate model (Benitez, 2000).

Machine learning techniques, on the other hand, do not have any explicit model

for capturing the physical information of the objects or of the estimation process.
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Instead, ML techniques rely on a training dataset with spectroscopic redshifts from

observed or simulated (or a combination of both) data for inferring an estimation

model. More specifically, supervised learning models rely on a guided principle,

that with sufficient examples of input-output pairs an estimation model can be in-

ferred by understanding the latent variables of the process. In other words, ML

methods derive a suitable functional mapping between the photometric observa-

tions and the corresponding redshifts.

The learning process relies on a labelled dataset consisting of a set of mag-

nitudes in each wavelength band (the inputs) and corresponding true values of the

spectroscopic redshifts (the output labels or ground-truth). The learning model,

such as a random forest or neural network, learns the mappings which can be non-

linear. It has been shown that the functional mapping learned through the supervised

learning can for some science goals outperform the template-based methods (Ab-

dalla et al., 2011).

Although the usage of ML in handling this problem has become very common

(Pasquet et al., 2019, D’Isanto & Polsterer, 2018, Hoyle, 2016), and some studies

are beginning to investigate the efficiency of different models (Schmidt et al., 2020,

Euclid Collaboration et al., 2020), there is still no comprehensive study outlining

the benchmarking process and how it changes our overall understanding of how

different ML methods handle the photo-z problem. In fact, this is a common prob-

lem across all domains of sciences, and as such, the notion of artificial intelligence

(AI) benchmarking is an upcoming challenge for the AI and scientific community.

This is particularly true in light of recent developments in the ML and AI domains,

such as the deep learning revolution (Sejnowski, 2018), technological development

on surveys (Dewdney et al., 2009), the ability to generate or simulate synthetic

data (Springel, 2005), and finally the progress in computer architecture space, such

as the emergence of GPUs (Kirk, 2007).

The notion of benchmarking (Dongarra et al., 2003) has conventionally been

about how a given architecture (or an aspect of a given architecture) performs for

a given problem, such as the LINPACK challenge (Dongarra et al., 1979). How-
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ever, in our case, the focus is broader than just performance. Our motivation here is

many-fold, including understanding how different ML models compare when esti-

mating the redshifts, how these techniques perform when the available training data

is scaled, and finally how these techniques scale for inference. Furthermore, one

of the key challenges here is the identification of appropriate metrics or figures of

merit for comparing these models across different cases.

We intend to answer some of these questions by introducing this as a repre-

sentative AI benchmarking problem from the astronomical community. The bench-

marks will include several baseline reference implementations covering different

ML models and address the challenges outlined above. The rest of this chapter is

organised as follows: In Section 3.2, we describe the the dataset used and include

discussions on the features selected. In Section 3.3, we briefly describe the ma-

chine learning models that were evaluated in the study, followed by the descriptions

of the optimisation and benchmarking processes and the different metrics that are

part of our analyses. The results are then presented in Section 3.4 along with our

observations, and we conclude the paper in Section 3.5 with directions for further

work.

3.2 Data

The data used in our analysis comes entirely from the Sloan Digital Sky Survey

(SDSS) (York et al., 2000). Using its dedicated 2.5 meter telescope at Apache Point

Observatory (Gunn et al., 2006), SDSS is one of the largest public surveys with

over 200 million photometric galaxies and 2 million useful galaxy spectra as of

data release 12 (DR12) (Alam et al., 2015).

In this work we downloaded 1,639,348 of these galaxies with spectroscopic

data available to be used by the machine learning algorithms. The spectroscopic

redshift was required as it was taken to be the ground truth for the redshift that

the algorithms were trying to predict using the magnitudes of each galaxy. SDSS

took images using five different optical filters (u, g, r, i, z), and as a result of these

different wavelength bands, there were five magnitudes for each observed galaxy
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(Eisenstein et al., 2011).

The 1.6 million galaxies used in this investigation were from a cleaned dataset

where it was a requirement for all five magnitudes to have been measured. In many

cases for observations of galaxies there could be a missing value in one of the filters

which would negatively impact its redshift estimation. By only using galaxies with

complete photometry we ensured that our comparison of methods wasn’t also being

affected by the kind of galaxies within the different sized datasets.

Furthermore, the redshift range of the galaxies used was constrained to only

have galaxies with a redshift, z < 1. While this greatly simplified the task of obtain-

ing photo-z estimations and meant that the specific models tested wouldn’t be useful

outside of this range, there are far fewer galaxies with measured spectroscopic red-

shifts greater than 1, and we kept within this range to ensure that the training set

would be representative of the SDSS spectroscopic sample. While this allowed for

reliable estimates to be generated for SDSS galaxies inside this sample, it is not rep-

resentative of the overall survey as there are far more galaxies without spectroscopy,

and to allow for reliable estimates outside of this region, further steps would have

to be taken to generalise the dataset. However, using this cleaned spectroscopic

sample meant that the benchmarking performed could be carried out without also

having to take into account the effects that an unclean dataset might have had on the

different machine learning algorithms.

The main features of the data used by machine learning algorithms were the

five magnitudes which could also be combined to give the four colours that are

simply the difference in magnitudes between neighbouring wavelength bands (u-

g, g-r, r-i, and i-z). There were additional feature columns contained in the SDSS

data which could have been added such as the subclass of galaxy or the Petrosian

radius (Petrosian, 1976, Soo et al., 2017). However; adding these additional features

wouldn’t have had a large impact on the results and could have added more issues

due to incompleteness if the feature wasn’t recorded for every galaxy. Instead it was

decided to use only the information from the five magnitudes as features which we

knew to be complete.
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Finally, we also scaled the features by subtracting its mean and dividing by

its standard deviation to give unit variance. This ensured that the machine learning

algorithms used weren’t being influenced by the absolute size of the values, where

a difference in a feature’s variance could result in it being seen as more important

than other features. And by randomly splitting the full dataset to form the training

and testing sets, the subsets created kept the same distribution of redshift and were

representative of the overall dataframe.

3.3 Methodology

With the data prepared, the first step of the machine learning process was to split the

entire dataset to create a training set, testing set, and validation set, whereby the test

and validation sets were kept unseen by the machine learning algorithms until after

it had been trained using the training data. As part of the benchmarking process the

machine learning algorithms (listed in Sec 3.3.1) were trained and tested on many

different sizes of datasets, and to do this the data was split randomly for each size

of training and testing set required.

During training, the algorithms were also optimised by changing the hyper-

parameters (which are the parameters of the models that control how the ma-

chine learning algorithms create their mappings from the features to the redshift).

The most complete way of optimising would be to perform brute force optimi-

sation where every combination of a defined grid of hyperparameters would be

tested. However, this is far more computationally intensive than random optimi-

sation which instead tests a random subset of the hyperparameter grid and provides

a good estimate of the best hyperparameters. The grids of hyperparameters tested

for each algorithm is given in Table 3.1 along with the selected parameters.

To be able to optimise the algorithms the decision first had to be made of which

metric would be optimised for. There are three main metrics used for regression

problems such as this: mean squared error (MSE), mean absolute error (MAE), and

R squared score (R2), where the formulae for calculating each of these metrics is

given in section 1.4.2.
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Table 3.1: Grids of hyperparameters that were searched to test and compare each machine
learning algorithm, along with the hyperparameters that were selected by the
random optimisation. The arrays of hyperparameters were chosen to give a good
overview of different possible configurations of the algorithms, and by changing
the parameters which had the greatest impact on the algorithms, we ensured
finding a good representation of the ‘best’ performing algorithms.

Classifier Hyperparameter Array of Values Searched Selected Value
LR “fit intercept” [True, False] True

“normalize” [True, False] True
kNN “no. neighbors” [1, 200] 21

“weights” [“uniform”, “distance”] “distance”
“leaf size” [10, 100] 27

“p” [1, 4] 2
DT ‘max. features” [1, 5, “auto”] “auto”

“min. samples split” [2, 100] 38
“min. samples leaf” [1, 100] 64

“min. weight fraction leaf” [0, 0.4] 0
“criterion” [“mse”, “mae”] mse

BDT “no. estimators” [1, 200] 88
“loss” [“ls”, “lad”, “huber”, “quantile”] “lad”

“max. features” [1, 5] 4
“max. depth” [1, 20] 17

“min. samples split” [2, 100] 46
“min weight fraction leaf” [0, 0.4] 0

RF “no. estimators” [1, 200] 94
“max. features” [1, 5] 4

“min. samples leaf” [1, 100] 8
“min. samples split” [2, 100] 13

“min weight fraction leaf” [0, 0.4] 0
“criterion” [“mse”, “mae”] mae

ERT “no. estimators” [1, 200] 147
“max. features” [1, 5] 4

“min. samples leaf” [1, 100] 3
“min. samples split” [2, 100] 87

“min weight fraction leaf” [0, 0.4] 0
“criterion” [“mse”, “mae”] mse

MLP “hidden layer sizes” [(100, 100, 100), (100, 100), 100] (100, 100, 100)
“activation” [“tanh”, “relu”] “tanh”

“solver” [“sgd”, “adam”] “adam”
“alpha” [0.00001, 0.0001, 0.001, 0.01] 0.01

“tol” [0.00001, 0.0001, 0.001, 0.01] 0.00001
“learning rate” [“constant”,“adaptive”] “constant”
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However; there are three additional metrics that are commonly used to deter-

mine the performance of photometric redshift estimations. These metrics are the

bias, precision, and outlier fraction, which are all calculated from the residuals, ∆z,

defined as

∆z =
zpred − zspec

1+ zspec
. (3.1)

The bias is simply defined as the mean of these residuals, given by

Bias =< ∆z > . (3.2)

The precision (also 1.48× median absolute deviation (MAD) as defined

by Ilbert et al. (2006)) gives the expected scatter and is defined as

Precision = 1.48×median(|∆z|). (3.3)

Finally, the outlier fraction is the fraction of predictions where the residuals are

greater than a set threshold (here chosen to be > 0.10), and is given by

Outlier Fraction =
N(|∆z|)> 0.10

Ntotal
. (3.4)

Each of these metrics were also calculated and the results are given in Table 3.2.

As well as deciding which metric to optimise for, we introduced an extra stage

included in the optimisation which allowed for a time-considered optimisation (see

section 3.3.2). We optimised the machine learning algorithms for MSE (aiming

to minimise the MSE) and used a random optimisation with 1000 iterations to en-

sure a good estimate of the best hyperparameters for each algorithm. Furthermore,

we used a 3-fold cross validation (Breiman & Spector, 1992) to ensure that the al-

gorithms weren’t overfitting (which could mean that the algorithms were able to

perform well for the training data used but then fail to generalise), and that the

results would be valid for any given dataset. Once optimised each algorithm was

then retrained and tested to give the final results given in Sec 3.4, along with the

benchmarking results, where the benchmarking process used is described in 3.3.3.
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3.3.1 Machine Learning Algorithms Tested

The algorithms selected were: Linear Regression, k-Nearest Neighbours, Decision

Trees, Boosted Decision Trees, Random Forests, Extremely Randomised Trees, and

a Multi-layer Perceptron. These algorithms are described in detail in section 1.4 and

were chosen for testing as they are some of the most widely used machine learn-

ing algorithms which were all available through the python package Scikit-Learn

(Pedregosa et al., 2011). While a simple neural network (Multi-layer Perceptron)

was included, we didn’t include any other examples of deep learning. This decision

was made as deep learning algorithms perform best with many features (often thou-

sands) and there’s only so much information that the photometry could provide with

the five magnitude features. Furthermore, it’s been shown by Hoyle (2016) that ‘tra-

ditional’ algorithms can perform equally well as deep learning methods, and that it

might only be beneficial to use more computationally expensive deep learning mod-

els when directly using images as the training data (Pasquet et al., 2019).

3.3.2 Time-Considered Optimisation

In the normal process of optimising machine learning algorithms, a single metric is

chosen to minimise. If brute force optimisation is used, this produces an algorithm

configured with the hyperparameters from the defined grid which gives the best

result for the metric (e.g. the lowest MSE). Although this algorithm by definition

would have the best result, it doesn’t necessarily result in the most useful or suitable

algorithm. The hyperparameters selected to minimise the error likely also act to

increase the computational time required both in training and inference, resulting in

a much slower model.

Rather than minimising a single metric, in time-considered optimisation we

also consider the time taken by the models both in training and inference. By setting

an error tolerance we allow for the model selection to suggest an alternative to the

‘best’ model (the model which minimises the error metric), instead providing a

model which will have a higher error, while kept below the tolerance, but in return

will also have faster training and inference times. This was done by optimising for

a combination of MSE and time, taking the model which ran the fastest and that
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Table 3.2: Results of testing the seven machine learning algorithms described in Sec 3.3.1.
Each algorithm was trained using 10000 galaxies and tested using 5-fold cross
validation to obtain the quoted standard deviation.

Linear
Regression

(LR)

k-Nearest
Neighbours

(kNN)

Decision
Tree
(DT) Boosted

Decision Tree
(BDT)

Random
Forest
(RF) Extremely

Randomised
Trees (ERT)

Multi-layer
Perceptron

(MLP)

MSE 0.005714
±0.000577

0.004438
±0.000417

0.004631
±0.000407

0.004277
±0.000394

0.004221
±0.000423

0.004327
±0.000419

0.004701
±0.000499

MAE 0.050931
±0.001679

0.040881
±0.001626

0.041827
±0.001452

0.038757
±0.001514

0.038504
±0.001484

0.040459
±0.001537

0.051260
±0.008874

R2 0.865198
±0.009009

0.895208
±0.007215

0.890677
±0.006415

0.899017
±0.006822

0.900366
±0.007373

0.897861
±0.007198

0.871507
±0.014329

Bias 0.003132
±0.000067

0.001498
±0.000118

0.002543
±0.000174

0.001731
±0.000152

0.002310
±0.000103

0.002343
±0.000138

−0.00416
±0.005911

Precision 0.043421
±0.000578

0.031836
±0.000845

0.032895
±0.001137

0.028986
±0.000264

0.029279
±0.000766

0.031945
±0.000609

0.040837
±0.003310

Outlier
Fraction

0.060500
±0.005187

0.034800
±0.007033

0.033400
±0.007439

0.029300
±0.005183

0.029700
±0.004389

0.033400
±0.006304

0.037600
±0.002709

had an error below the set tolerance level. In certain cases, such as training the

Decision Tree, it was possible to achieve a two magnitude increase in efficiency

while increasing the error by < 10%.

For the purpose of benchmarking the machine learning algorithms in this paper,

we set the error tolerance to machine precision (which is usually 10−16) resulting

in the ‘best’ model in terms of error. This decision was made as these optimised

algorithms would result in the algorithms most commonly used in other machine

learning studies where time-considered optimisation hasn’t be implemented.

3.3.3 Benchmarking

The benchmarking performed was achieved by recording the system state (de-

scribed by the time, CPU usage, memory usage, and disk I/O) throughout the pro-
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cess of running the machine learning algorithms. This allowed us to compare the

efficiency of both training and predicting performance of the machine learning mod-

els, and when combined with the regression errors obtained, allowed for a complete

description of the performance of the different methods.

Our main focus of the benchmark was to investigate how training and testing

times varied with different sizes of dataframes, and how the final redshift estima-

tions would be affected. As such we incrementally changed both the training and

testing datasets and recorded the times taken which allowed us to produce the plots

shown in figures 3.1 - 3.5.
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Figure 3.1: Graph of the training time plotted against the number of galaxies used in the
training set to show how each algorithm scales with different sizes of training
datasets. We saw that the simpler LR, kNN, and DT algorithms all begin as
the fastest to train, however, the DT had terrible scaling and for large training
sets became one of the slowest algorithms. Conversely the ERT and MLP al-
gorithms began as two of the slowest algorithm to train, but scaled much better
than the rest and could be more useful for massive training datasets.
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Figure 3.2: Graph of the inference time plotted against the number of galaxies used in the
training set to show how each algorithm scaled with different sizes of training
datasets (and a constant test set of 327870 galaxies). We saw all algorithms
other than LR and MLP exhibit a training bloat, whereby the inference time
increased with the number of galaxies included in the training set; however, the
algorithms inference times generally increased by only a factor of 10 despite
the training dataset increasing by a factor of 104.



3.3. Methodology 127

Figure 3.3: Graphs of the inference time plotted against the number of galaxies used in the
testing set to show how each algorithm will scale with different sizes of testing
datasets (and a constant training set of 983608 galaxies). In inference we saw
all algorithms scaling very similarly with the main difference being the RF and
ERT where, during the period between 102 to 105 galaxies used in the test set,
the inference time didn’t increase despite the number of galaxies to provide
an estimate for increasing by a factor of 103. This meant that both algorithms
ended up being faster to provide redshift estimations for larger test sets.
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Figure 3.4: Graphs of the Mean Squared Error (MSE) plotted against the number of galax-
ies used in the training set to show how each algorithm’s performance will scale
with different sizes of training datasets (and a constant test set of 327870 galax-
ies). As expected, in general we saw all algorithms (other than LR) achieving
lower MSE as the number of galaxies included in the training set was increased.
However, we saw this increased error performance quickly plateau, and past
104 galaxies in the training set there was relatively little reduction in error.
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Figure 3.5: Graphs of the Mean Squared Error (MSE) plotted against the training times for
each algorithm tested. For the ideal algorithm one would see a curve down to
the bottom left corner, thereby achieving the best possible result for the error
in the shortest amount of time. In general the algorithms do improve their
errors as the training time (and number of galaxies included in the training set)
increased; however, as shown, the improvement and time taken varies greatly
for each algorithm. The RF achieved the lowest error but with the longest
training time, whereas the ERT can be seen to reach a very similar error much
faster.
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3.4 Results

The results given in Table 3.2 show how the seven machine learning algorithms

performed at producing photometric redshift estimations. Furthermore figure 3.6

displays the true spectroscopic redshifts plotted against the photometric redshift

estimates for each machine learning algorithm. We also plotted the distributions of

the redshift estimations for each of the algorithms as well as the true spectroscopic

redshift in a violin plot in figure 3.7 to quickly see which algorithms were able to

capture the correct distribution.

From these results we saw that all algorithms were able to successfully provide

photometric redshift estimations. Using the violin plots from figure 3.7 we could see

that the rough distribution was recovered by each algorithm, with the Multi-layer

Perceptron (MLP) producing a slightly more similar shape to the true redshifts.

However, from simply looking at the outputs shown in figures 3.6 & 3.7 it would

be very difficult to determine which algorithm would be best to use. While the

Decision Tree (DT) might be excluded due to its estimates being put into bands at

set redshifts, its errors were still found to be quite low and it outperformed both the

Linear Regression (LR) and MLP algorithms which had the worst metrics, with LR

generally overestimating the redshift and MLP underestimating it.

Looking at the metrics in Table 3.2 alone, the Random Forest (RF) performed

best having the lowest errors with a mean absolute error (MAE)= 0.0385 and mean

squared error (MSE)= 0.0042, however, the other algorithms k-Nearest Neighbours

(kNN), Boosted Decision Tree (BDT), and Extremely Randomised Trees (ERT)

all performed incredibly similarly with MAE< 0.042 and MSE< 0.0046. Indeed,

kNN had the lowest bias of all algorithms, although, this seemed to be due its over

predictions and under predictions balancing as it also had a higher scatter and outlier

fraction than the other algorithms. However; with such close performances of all

these algorithms, it was impossible to sufficiently determine which algorithm would

be the most useful. To be able to further differentiate between them and determine

which would be the best algorithm to use, it was therefore necessary to use the

benchmarking results.



3.4. Results 131

Figure 3.6: Graphs of photometric redshift estimates against the true spectroscopic redshift
where the lighter shaded contours display the more densely populated regions.
From top left to bottom right - Linear Regression (LR), k-Nearest Neighbours
(kNN), Multi-layer Perceptron (MLP), Decision Tree (DT), Boosted Decision
Tree (BDT), Random Forest (RF), and Extremely Randomised Trees (ERT).
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Figure 3.7: Violin plots showing the kernel density estimation of the underlying distribu-
tions of photometric redshift estimates of each algorithm along with the true
spectroscopic redshift. From left to right - True spectroscopic redshift (zspec),
Linear Regression (LR), k-Nearest Neighbours (kNN), Decision Tree (DT),
Boosted Decision Tree (BDT), Random Forest (RF), Extremely Randomised
Trees (ERT), and Multi-layer Perceptron (MLP).

The results of the benchmarking performed for each algorithm are plotted in

figure 3.1 (that shows the speed of training with varying sizes of training datasets),

figures 3.2 & 3.3 (that show the inference speeds with varying sizes of either training

or testing datasets), figure 3.4 (that shows how the MSE varies as the number of

galaxies in the training set increases), and figure 3.5 (that shows how the MSE

varies with the time taken during training).

From these figures it was clear that increasing the number of galaxies in the

training set resulted in a near linear increase in the training times (as would be ex-

pected), and there was a similar linear relationship between the numbers of galaxies

in the test set and the inference times. The exception was the kNN, RF and ERT

algorithms which began with a constant inference time irrespective of the number

of galaxies in the test set. This was presumably due to the nature of the algorithms

storing data to make their inferences, which also resulted in much slower inference

times to begin with.
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The scaling of the inference time with the number of galaxies in the training

set shown in figure 3.2 also displayed how parametric algorithms (with a fixed num-

ber of parameters e.g. LR and MLP) had constant inference times regardless of the

number of galaxies in the training set, whereas the remaining algorithms all expe-

rienced a ‘training bloat’ whereby the inference time increased as the number of

galaxies in the training set was increased.

As shown by these benchmarking figures, the fastest algorithm overall was LR

which remained the fastest both in training and inference with increasing sizes of

training and testing datasets. This was perhaps not surprising as out of the algo-

rithms tested it was the most simple model and as such required less computational

resources both to train the model and to make its predictions. However, as LR also

had by far the worst errors out of the algorithms tested (with errors around 30%

higher than those of the better performing algorithms), it seemed unlikely that it

would ever be implemented for the problem of photometric redshift estimation.

Out of the other algorithms the DT and MLP were the poorer performing in

terms of error. The DT was the second fastest behind LR in terms of inference, using

its simple decision rules to quickly obtain the redshift estimations; however, as it

also resulted in only estimating certain redshift bands, the final estimates weren’t

as useful as other algorithms. Furthermore, the DT was the worst scaling algorithm

for training and became the second slowest algorithm to train on a million galaxies.

The MLP was also one of the slowest algorithms tested, starting as the slowest

to train with small training sets and also being one of the slowest in inference.

Although it’s the simplest example of deep learning, it suffered from being one

of the more complex algorithms tested, and would perform better on even larger

datasets with far more features, where it would have more chance to catch up to the

other algorithms in both speed and error performance.

The remaining kNN, BDT, RF, and ERT algorithms all performed well in terms

of error and were the hardest to differentiate between, however, using the bench-

marking results it was possible to see how differently they scaled. kNN was the

simplest of the four better performing algorithms, and using the nearest neighbours
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to produce its estimates resulted in the second fastest training times, only being

beaten by LR. Although kNN was very fast to train, it was the slowest in infer-

ence and exhibited a bad training bloat. While most other algorithms also displayed

some level of this training bloat, it was worst for kNN due to the nature of its nearest

neighbour search which became more and more computationally expensive as more

training points were added, and as such it wouldn’t be as useful an algorithm for

giving estimates for incredibly large datasets.

Out of the three ensemble tree-based methods, the RF scaled the worst in

terms of training, becoming the slowest algorithm to train on the 1 million galaxies.

Whereas, the ERT scaled surprisingly well and became the third fastest algorithm in

training and similar to kNN. In training the BDT was quite fast, scaling much better

than the RF but worse than the ERT; however, when it came to inference the BDT

scaled worse than both the ERT and RF and was the second slowest algorithm for

large datasets. The RF and ERT scaled almost identically in inference, which made

sense being such similar algorithms, both only being beaten by the much simpler

LR and DT.

As a result it seemed that there was no clear best performing algorithm, but

rather each algorithm could be useful in different situations. While the RF had

the best error metrics, its terrible scaling with increasing training data meant that

it would only be the best algorithm for problems where it could be trained once

and it would be inefficient to use for problems which required the algorithm to be

regularly retrained on large amounts of data. In that case the BDT which had similar

errors but was faster to train could be a more useful alternative, and similarly if both

the training and inference times were required to be lower the ERT would be a good

compromise.

3.5 Conclusions

Producing reliable photometric redshift estimations will continue to be an incredibly

important area of cosmology, and with future surveys producing more data than ever

before it will be vital to ensure that the methods chosen to produce the redshifts can
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be run efficiently.

Here we showed how benchmarking can be used to provide a more complete

view of how various machine learning algorithms scale with differing sizes of train-

ing and testing datasets. By combining the benchmarking results and regression

metrics, we were able to demonstrate how it’s possible to distinguish between al-

gorithms which appear to perform almost identically and suggest which could be

better to implement in different scenarios. Furthermore, by suggesting a novel time-

considered optimisation process which takes into account the benchmarking results

during model selection, it was possible to provide additional insight into how ma-

chine learning algorithms can be fine-tuned to provide more appropriate models.

From our tests we determined that while the kNN, BDT, RF, and ERT methods

all seemed to perform very similarly, obtaining a good result for the MSE < 0.0046,

it was the RF which achieved the best metrics, and was also one of the faster algo-

rithms in inference. However, depending on which area of the pipeline an exper-

iment requires to be faster, the RF method could also be inefficient as it scaled

worse than all other algorithms in training. Hence for problems which require reg-

ular retraining of models on large datasets one of the other algorithms such as the

BDT or ERT could allow for a greater improvement. As large sky surveys produc-

ing enormous datasets will require the most efficient methods possible it could also

be necessary to investigate the use of deep learning neural networks which could

benefit the most when using even larger amounts of data with more features.

Further work could be done to include a wider range of machine learning al-

gorithms, including deep learning networks, and to test them on larger simulated

datasets to confirm their scaling. By making use of time-considered optimisation it

would also be possible to further examine the trade-offs between minimising errors

and the training/inference times in each individual algorithm. We could also run

the benchmarks on a variety of computer architectures, making use of GPUs which

have the potential to speed up the algorithms that are most parallisable, as well as

allowing us to examine the environmental impact of running such computationally

expensive tasks.





Chapter 4

Deep learning for photometric

redshift estimation using image data

This chapter is based on work which at the time of writing was being prepared for

publication in the Monthly Notices of the Royal Astronomical Society (MNRAS).
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Knowing the redshift of galaxies is one of the first requirements of many cos-

mological experiments, and as it’s impossible to perform spectroscopy for every

galaxy being observed, photometric redshift (photo-z) estimations are still of par-

ticular interest. Here, we investigate different deep learning methods for obtaining

photo-z estimates from images, comparing these with ‘traditional’ machine learning

algorithms which make use of magnitudes retrieved through photometry. As well

as testing a convolutional neural network (CNN) and inception-module CNN, we

introduce a novel mixed-input model which allows for both images and photomet-

ric data to be used in the same model as a way of further improving the estimated

redshifts. We also perform benchmarking as a way of demonstrating the perfor-

mance and scalability of the different algorithms. The data used in the study comes

entirely from the Sloan Digital Sky Survey (SDSS) from which 1 million galax-

ies were used, each having 5-filter (ugriz) images with complete photometry and a

spectroscopic redshift which was taken as the ground truth. The mixed-input incep-

tion CNN achieved a mean squared error (MSE) = 0.009, which was a significant

improvement (30%) over the traditional Random Forest (RF), and the model per-

formed even better at lower redshifts achieving a MSE = 0.0007 (a 50% improve-

ment over the RF) in the range of z< 0.3. This method could be hugely beneficial to

upcoming surveys such as the Vera C. Rubin Observatory’s Legacy Survey of Space

and Time (LSST) which will require vast numbers of photo-z estimates produced as

quickly and accurately as possible.
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4.1 Introduction

In the past decade the number of galaxies observed by large sky surveys has been

rapidly increasing with hundreds of millions of galaxies being imaged (Alam et al.,

2015, Drlica-Wagner et al., 2018, De Jong et al., 2015). This ever growing num-

ber is set to rise even faster with upcoming surveys such as the Vera C. Rubin

Observatory’s Legacy Survey of Space and Time (LSST) (Tyson et al., 2003) and

the Roman Space Telescope (formerly WFIRST - the Wide-Field Infrared Survey

Telescope) (Spergel et al., 2015) which will observe many billions of objects. For

most cosmological studies in which galaxies are used the redshift is a key property

that is required; however, despite spectroscopic surveys such as the Dark Energy

Spectroscopic Instrument (DESI) (Martini et al., 2018), only a very small fraction

of galaxies have an associated spectroscopic redshift. Instead, photometric redshift

(photo-z) estimations are necessary.

These photo-z estimates can be obtained using two different methods (or a

combination of both): template fitting, or machine learning (ML). The template

fitting method uses templates of the spectral energy distribution (SED), and by fit-

ting the observed SED of the galaxy to the template, its redshift can be inferred

(Bolzonella et al., 2000). ML methods instead use a large training set of galaxies

with labelled, ‘true’ values for the redshift (the spectroscopic redshift) and learn a

mapping from the features of the galaxy data to their redshifts (Collister & Lahav,

2004). For traditional ML techniques, such as Random Forests (RF) or k-Nearest

Neighbours (kNN), these features are taken from the photometry, giving magnitudes

in different filters which can be combined into colours. However, for deep learning

methods the image itself can be used as the input, with the pixel values being akin

to features (Hoyle, 2016).

There are benefits to each method with template fitting being an inherently

physical model, and by making use of SED templates which are full spectra, they

can be shifted to any redshift and allow for redshift estimates to be obtained in

ranges without large spectroscopic datasets (Benitez, 2000). ML methods on the

other hand require a representative training sample in the same redshift distribution
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as the targets and as a result are only valid in that range. Despite this limitation, ML

has been increasingly implemented as a faster method which is able to produce very

accurate photo-z estimates where there is a sufficiently large training set (Abdalla

et al., 2011).

Recently great strides have been made in the field of deep learning, aided

by improving computer architectures and faster graphics processing units (GPUs),

far more difficult tasks can now be performed using much larger datasets (Kirk,

2007). In industry many companies have been taking advantage of these methods

for tasks which range from creating outfits for fast-fashion (Bettaney et al., 2019),

to self driving vehicles (Bojarski et al., 2016). In astronomy surveys such as the

Dark Energy Survey (DES) (DES Collaboration, 2016), the Kilo-Degree Survey

(KiDS) (de Jong et al., 2013), Euclid (Amendola et al., 2018), Hyper Suprime-Cam

(HSC) (Aihara et al., 2018), LSST (Ivezić et al., 2019), the Roman Space Telescope

(Spergel et al., 2015), and the Square Kilometer Array (SKA) (Dewdney et al.,

2009), will be producing petabytes of data and machine learning provides a viable

solution to the otherwise unimaginable task of data analysis on such a scale.

In addition to the difficult task of processing data on these scales, the photomet-

ric redshifts produced must also be highly accurate. Many cosmological analyses,

such as weak lensing driven cosmology (Heymans et al., 2021, DES Collabora-

tion, 2021), rely on having extremely low errors in the redshift estimates to allow

for more confident predictions of the cosmological parameters (Hildebrandt et al.,

2021, Myles et al., 2021). Indeed, LSST have stated in their science requirements

that the error on the mean redshift must be below 0.003(1+ z) (Mandelbaum et al.,

2018). Greater accuracy may naturally be achieved through larger, or novel deep

learning methods, but also through increased emphasis on model interpretability

and robustness to input error.

There are many other benefits to being able to directly use images rather than

photometric features for photo-z estimation, predominantly that the deep learning

algorithms could extract far more information than from the magnitudes alone (Pas-

quet et al., 2019, Schuldt et al., 2020). Indeed previous studies such as Soo et al.
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(2017) worked hard to include morphological parameters which are implicitly con-

tained in the images and that the deep learning algorithms could extract. Further-

more, other work has been done which found that deep learning methods have been

able to produce photo-z estimates which outperform the previously best performing

traditional methods based on kNN or RFs (D’Isanto & Polsterer, 2018). However,

the deep learning algorithms are often much slower and more computationally ex-

pensive to run, and there has been little investigation into whether the benefits of

these methods is worthwhile in the long term.

Other studies have also demonstrated methods for estimating probability

density functions (PDFs) which can be desirable for cosmological analyses.

Cavuoti et al. (2017) introduced a binned method where the input data-point is

modulated, and the relative frequencies of binned output estimates converted to

probability densities. Pasquet et al. (2019) showed that a classifier can be used in

a similar manner where each output ”class” is treated as part of a binned redshift

distribution, while the softmax of the output is taken to represent a probability den-

sity. We treated this problem of photo-z estimation as a regression problem, where

the models produced a point estimate for the redshift. This allowed us to demon-

strate how the novel mixed-input methods performed and act as a proof of concept,

as well as simplifying the comparison between the deep learning algorithms and

traditional methods.

Here we investigate if it is worth using deep learning on images compared to

traditional ML using only the magnitudes as features, applying different types of

convolutional neural networks (CNNs) as well as mixed-input models which use

both images and magnitudes as inputs. In Sec. 4.2 we describe the data collected

and used to train and test the machine learning algorithms which are outlined in

Sec. 4.3 along with the metrics and optimisation process. We then present the results

in Sec. 4.4 with discussions about how the mixed-input inception CNN was able to

achieve such low errors and outperform all the other algorithms, before concluding

in Sec. 4.5.
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4.2 Data

The data used to train and test the different machine learning algorithms came en-

tirely from the Sloan Digital Sky Survey data release 12 (SDSS DR-12) (York et al.,

2000, Alam et al., 2015). In this work, we compiled 1059678 data-points each rep-

resenting a galaxy. We downloaded the Petrosian magnitudes and spectroscopic

redshifts, then acquired their corresponding images, each one comprising the five

wavelength bands (u, g, r, i, z). It was a requirement to have spectroscopy per-

formed to be able to use the spectroscopic redshift as the ground-truth, and in order

to directly compare methods, the photometric magnitudes were also required to use

as features for both the traditional ML algorithms and mixed-input models.

While the total number of galaxies which met the requirement of having an

associated spectroscopic redshift was closer to 2 million (Beck et al., 2016), we

decided that a training set of 1 million galaxies was sufficient. This decision was

made as there wouldn’t be a large difference in error performance going from 1 to 2

million galaxies. Furthermore, the scaling of the algorithms would only be visibly

different with changing orders of magnitude of the training set (as we display later

in figures 4.7 - 4.9), and therefore simulations would have then been required to be

able to include more galaxies and reach the next order of magnitude.

The dataset used was also kept clean by requiring complete photometry where

there were no missing values of any magnitudes which could have negatively im-

pacted the redshift estimations and biased the results. Furthermore, the redshift

range was kept to only include galaxies with z < 1, with the final distribution of

galaxies used shown in figure 4.1. Although this simplified the problem rather

than having a larger redshift range, this distribution matched that of the overall

SDSS spectroscopic sample as shown by Beck et al. (2016), and therefore allowed

for valid estimates to be made for SDSS galaxies in this range. However, as there

were far more galaxies without spectroscopic data, the dataset used wouldn’t be rep-

resentative of the entire SDSS survey and further generalisation would be needed to

provide reliable estimates for other datasets.

To generate the images used by the deep learning algorithms we first down-
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Figure 4.1: Plot showing the redshift distribution of the 1 million galaxies used in the study.
The histogram was plotted with 50 redshift bins between z = 0 and z = 1 and
displays the overall redshift distribution of galaxies in the SDSS spectroscopic
sample with the two peaks caused by the difference between the galaxies ob-
served during the main galaxy survey and BOSS as described by Beck et al.
(2016).

loaded the full frames made available by SDSS which each comprised of five flex-

ible image transport system (fits) files for the five different filters. For each galaxy

within the frame we then generated 32× 32 pixel images by centering the frame

on the galaxy and cropping. We chose 32×32 pixel images as they were found

to be sufficiently large to contain the full galaxy and surrounding sky for even the

closer galaxies. When compared with 64×64 pixel images which other studies had

previously used, the smaller galaxy images allowed for much smaller file sizes and

more efficient computations as well as decreasing the incidence of image contam-

ination by other galaxies. Tests were conducted using even smaller 20×20 pixel

images, however, they resulted in worse performances by the CNNs, and as a result

the 32×32 images were used throughout.

The final result was a set of five 32×32 pixel images for each galaxy which we

saved in a numpy array (Harris et al., 2020) with shape (32×32×5) which could

then be used with the deep learning python package Keras (Chollet et al., 2015), our

chosen interface for TensorFlow (Abadi et al., 2015).
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4.3 Methods
With the magnitude data and images downloaded and in a usable format we were

then able to apply the machine learning algorithms. The algorithms tested were

as follows. A convolutional neural network (CNN) and an inception module CNN

which both used the image data as the input. A random forest (RF) and extremely

randomised trees (ERT) that had previously been found to be the best performing

traditional methods (Henghes et al., 2021) and which only used magnitude features.

And two experimental mixed-input models, which combined a CNN or inception

module CNN with a multi-layer perceptron to use both the image data and magni-

tude features as inputs. Each of the individual algorithms is described in general in

section 1.4 with further information about the specific models tested given below.

The algorithms were trained multiple times while varying the size of the train-

ing set used (up to 1 million galaxies), and tested on a fixed test set of 59678 galax-

ies. By doing this we were able to benchmark the different algorithms to determine

their scalability as described in Sec. 4.3.7. The optimisation process is also de-

scribed in Sec. 4.3.6 and the metrics used to evaluate the models’ performances are

given in Sec. 4.3.5.

4.3.1 Convolutional Neural Network

The full CNN architecture used in this study is shown in figure 4.2 and made use

of two convolutional layers, each followed by an average pooling layer, to extract

the information from the images. It then fed the flattened 4096 long array into two

dense layers, with 1024 followed by 32 neurons, before a final dense layer was

used to give the single value output for the predicted redshift. Rather than using

the standard ReLU activation function (as defined in equation 1.35), an adapted

parametric ReLU (PReLU) activation function, defined as

f (x) =

 ax for x < 0

x for x ≥ 0,
(4.1)

was used where an additional parameter - the coefficient of leakage, a, was also

learned during the training.



4.3. Methods 145

This resulted in the architecture that was found to be the most effective, simple

CNN, and while deeper models were also tested, we found that the best performance

occurred with only a few layers.

4.3.2 Inception Module CNN

Many variations of CNNs are possible, one example is the inception module CNN

which makes use of inception modules as described in section 1.4.1.10. In the in-

ception module CNN implemented here (shown in figure 4.4), we used two different

sets of inception modules. The first had the same architecture as displayed in fig-

ure 1.15, however, after four sets of these inception modules the resulting output

was too small to usefully apply a (5×5) kernel to, and instead we simply removed

this layer from the inception module. Following this smaller inception module,

the flattened 192 long array was fed into two further dense layers each with 1096

neurons before the final dense layer gave the predicted redshift.

Unlike the simple CNNs tested, when testing different configurations of in-

ception module CNNs we found that the deeper models performed best. As well

as changing the depth of the network we also tested different inception modules,

changing the size of the kernels and swapping the max pooling layer for an average

pooling layer. This resulted in a somewhat different model to that used by Pasquet

et al. (2019) while still resembling the original GoogLeNet network.

4.3.3 Mixed-input Models

It is also possible to include multiple inputs in a CNN. This works by defining

separate input data and running through networks in parallel before then combining

the networks by concatenating similar to how the inception modules are built. In

this work we experimented with two mixed-input models which took both SDSS

images with shape (32×32×5) used by the CNNs, as well as the 5 magnitudes (u,

g, r, i, z) which were used as the sole features for the random forests. To handle the

magnitude features a simple multi-layer perceptron (MLP) was used which included

five fully connected layers each with 1024 neurons (for full network architectures

used see figures 4.3 & 4.5).
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Figure 4.2: Network architecture of the
base CNN tested. The CNN was
constructed with two convolu-
tional layers, each followed by
an average pooling layer to re-
duce the dimensionality, before
the feature map was flattened to
give a 1D feature vector. This
could then be handed to the two
dense layers (which are the fully
connected layers) that process
the features before the final, sin-
gle neuron layer is used to give
the value of the predicted red-
shift.

Figure 4.3: Network architecture of the
mixed-input CNN. This model
used the same CNN as 4.2 to
handle the images, and added
a MLP with 5 fully connected
layers each of 1024 neurons to
handle the magnitude data. The
outputs of both were then con-
catenated before being handed
to a fully connected layer and
finally the single neuron layer
which gave the value of the pre-
dicted redshift.
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Figure 4.4: Network architecture of the inception module CNN. This model used a sin-
gle convolutional layer and average pooling layer before applying 5 inception
modules, where the fifth inception module was a modified version to be smaller
and not include a (5× 5) kernel. Following the inception modules the output
was flattened to give the feature vector which was processed by two fully con-
nected layers with 1096 neurons, and finally the single neuron layer to give the
predicted redshift.
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Figure 4.5: Network architecture of the mixed-input inception CNN. This model used the
same inception module CNN as 4.4 to handle the images, and added the same 5
layer MLP which was used in 4.3 to handle the magnitude features. The outputs
of both were concatenated and handed to a single fully connected layer before
the final single neuron layer gave the predicted redshift.
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A perfect CNN would theoretically be able to extract all useful information

from the galaxy images (including the magnitudes which are obtained from per-

forming photometry on the same images), and hence render the mixed-input models

superfluous. However, as we saw from the results, the mixed-input inception CNN

was able to outperform the inception CNN it was based off where the only differ-

ence was the magnitude features also being included. This suggested that the CNN

wasn’t able to perfectly extract the magnitudes from the images and by explicitly

providing them as additional features to be handled by a MLP we were able to boost

the performance.

In other cases of machine learning it can be ill-advised to use features which

are highly correlated. This is due to the chance that the model will output results

which vary drastically and wouldn’t generalise to other datasets (Goldstein, 1993).

However, due to the difference in extracting information from the images through

convolutional layers which result in more abstract features than the magnitudes, and

the fact that the results we saw suggested the explicit inclusion of magnitude fea-

tures helped rather than hurt the model performance, we concluded that this wasn’t

a multicollinearity issue (Garg & Tai, 2013).

There are two additional reasons for avoiding using correlated features. First,

is an increase in model complexity which results in slower models than if fewer,

independent features were used. However, in this case the inclusion of a MLP to

handle the additional magnitude features had a minimal effect on the overall speed

of the model (as can been seen in figures 4.7&4.8). The second reason is that using

correlated features often makes models less interpretative. This point was also less

of an issue in this case as the addition of the magnitudes as features was physically

motivated and the MLP that handled these features was kept separate to the rest of

the CNN.

This allows the mixed-input models to be thought of as a combination of two

separate models. This process of taking a combination of different models to give

the final prediction is more widely used, and when using neural networks one has

the option to implement subnetworks (as we have done here). Subnetworks, such
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Table 4.1: Grids of hyperparameters that were used in the RF and ERT, selected by the
random optimisation.

Classifier Hyperparameter Selected Value
RF “no. estimators” 200

“max. features” 2
“min. samples leaf” 7
“min. samples split” 3

“min weight fraction leaf” 0
“criterion” mse

ERT “no. estimators” 147
“max. features” 4

“min. samples leaf” 3
“min. samples split” 87

“min weight fraction leaf” 0
“criterion” mse

as the CNN and MLP we used, handle the different inputs separately before their

outputs are concatenated into a single feature vector which can then be used to give

the final output prediction (Burkov, 2019).

4.3.4 Traditional Algorithms

As well as the deep learning models discussed above, two traditional machine learn-

ing algorithms were tested to compare the neural networks with machine learning

methods which only used magnitude features. The two methods chosen were a

Random Forest (RF) and Extremely Random Trees (ERT) algorithm which had

previously been found to be the best performing traditional methods for the prob-

lem of photo-z estimation (Henghes et al., 2021). For details of these tree based

algorithms implemented in this study (and described in section 1.4) we provide the

hyperparameters used in table 4.1.

4.3.5 Metrics

One of the most important steps of any machine learning problem is defining sensi-

ble metrics which can be used to evaluate model performance. As we treated this as

a regression problem, where we found a single value for the photometric redshift,

the natural choice was to calculate the three most commonly used regression met-

rics: mean squared error (MSE), mean absolute error (MAE), and R squared score
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(R2).

As well as these standard regression metrics, there are three additional metrics

which are most commonly used in photometric redshift estimation: bias - the mean

of the residuals (defined in equation 3.2), precision (also 1.48× median absolute

deviation (MAD) as defined in equation 3.3) - which gave the expected scatter, and

catastrophic outlier fraction - the fraction of predictions with an error greater than

a set threshold, here set > 0.10 (as defined in equation 3.4). The results of our

tests are given in table 4.2 with each of the metrics quoted for the various different

algorithms.

4.3.6 Optimisation

Optimisation is the process of fine-tuning the hyperparameters of machine learning

algorithms to give the best possible predictions. These hyperparameters are param-

eters that are set previous to the learning process and dictate how the algorithms

create the mapping from input data to answer. For traditional methods, such as the

RF and ERT, this optimisation can be done by specifying a grid of hyperparameters

and iteratively testing which combination of parameters gives the best predictions.

This process of testing every combination of the specified grid (brute-force opti-

misation) is very slow, and instead we tested 200 random combinations within the

hyperparameter grid (in our random optimisation) which gave a good estimate of

the best possible parameters in much less time.

Neural networks such as the CNN, inception module CNN, and mixed-input

models cannot be optimised in the same way. As well as being far more computa-

tionally expensive which would make any brute-force optimisation impossibly slow,

each network has a unique architecture which changes the hyperparameters that

need optimising. In this study we tested various architectures, instead of defining

grids of hyperparameters to test we simply went through the hyperparameters which

have the greatest impact on the models (such as the number of layers, the number

of neurons in each layer, and the kernel size, stride, and padding of convolutional

layers) and tested different combinations to find the best preforming models.
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4.3.7 Benchmarking

Benchmarking is the process of running a set of standardised tests to determine

the relative performance of an object, in this case iteratively running the training

and testing of different machine learning algorithms. Here, benchmarking was per-

formed in a similar vein to chapter 3. We recorded the time taken throughout the

machine learning process and varied the size of the training dataset to be able to

compare the efficiency of the various models. By combining these measurements

with the error results for the photometric redshifts we were able to better understand

the performance of the different algorithms and give more discussions along with

plots in section 4.4.

Generally the hardware used to test each algorithm should be kept the same,

however, in this case as we were comparing CNNs with traditional ML methods,

the CNNs were trained using a graphics processing unit (GPU) whereas the RF and

ERT were trained using the central processing unit (CPU). While this did change

the nature of the comparison, it was still a valid test as both the GPU and CPU

used were simply standard laptop components (an Nvidia GTX1050Ti and intel i9-

8950hk). Additionally this highlights one of the key differences between deep learn-

ing methods, which are highly parallelisable, and traditional ML methods, which

often aren’t. Even in the case of RFs which are also parallelisable, and indeed were

run over multiple CPU cores, they don’t benefit to the same extent as CNNs can

when run using thousands of cuda cores (Kirk, 2007).

4.4 Results

The results of our investigation are presented in multiple ways. Table 4.2 details the

error metrics achieved by each of the machine learning algorithms when using the

full 1 million galaxies in the training set. We plotted density-scatter graphs of the

predicted photo-z estimates against the true spectroscopic redshift in figure 4.6, as

well as plotting the results of the benchmarks in figures 4.7-4.10 to show how the

different algorithms scaled. Finally, the results of running the same algorithms on a

smaller redshift range of z < 0.3 are discussed in section 4.4.1.
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Table 4.2: Results of testing the different machine learning algorithms, where each algo-
rithm was trained using 1000000 galaxies. The RF and ERT both used photo-
metric data, whereas the CNN and Inception module CNN used images data,
and the mixed-input CNNs used both images and photometry.

Random
Forest
(RF)

Extremely
Randomised
Trees (ERT) Convolutional

Neural
Network (CNN)

Inception
Module CNN

Mixed-input
CNN

Mixed-input
Inception

CNN

MSE 0.01253 0.01261 0.01009 0.00956 0.00997 0.00916

MAE 0.05003 0.05067 0.04388 0.04310 0.04154 0.03966

R2 0.76154 0.76002 0.80809 0.81810 0.81030 0.82567

Bias 0.00498 0.00538 0.00122 −0.00094 0.00292 0.00878

Precision 0.03076 0.03170 0.02985 0.02987 0.02764 0.02588

Catastrophic
Outlier
Fraction

0.04722 0.04866 0.03619 0.03309 0.03048 0.03075

From these results we saw that the mixed-input inception module CNN was the

best performing algorithm in terms of errors with a mean squared error (MSE) =

0.009. It also had the best performance in every other metric other than catastropic

outlier fraction and bias, where the mixed-input (standard) CNN had a slightly better

outlier fraction with both algorithms having just over 3% outliers, and the inception

module CNN had a lower bias due to its remarkably symmetric predictions as shown

in figure 4.6.

Figure 4.6 also displays a potential downfall in the majority of the CNN-based

methods, with all but the standard CNN having an initial redshift cut below which

they failed to predict any redshifts at all. While this was a result of both the ar-

chitectures selected and the smaller number of galaxies included in the training set

with a redshift z < 0.05, one would need to be careful to ensure that any algorithm

implemented in a photo-z pipeline could predict redshifts in the full range.

While the mixed-input inception module CNN showed impressive perfor-
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Figure 4.6: Density-scatter plots of the predicted photometric redshift estimates against the
true spectroscopic redshift for each of the algorithms tested.

mance it did come at the cost of being the slowest algorithm tested, which made

sense being the most complex model tested. As seen from figures 4.7 & 4.8 the two

inception module based CNNs were the slowest algorithms, with the mixed-input

model being only slightly slower in both training and inference than the image only

model. Similarly the mixed-input CNN was only slightly slower compared with the

CNN, showing that the addition of the magnitude features to the image based CNNs

means only a small increase in computational requirements.

We also saw that the traditional machine learning methods, RF and ERT, were

significantly faster but also worse in terms of their error performance. While these

methods could still be very useful in the absence of image data, the improvements

seen by making use of CNNs make them an exciting option. Furthermore, by di-
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Figure 4.7: Plot showing how the training time changes with the number of galaxies used
in the training set to display how each algorithm scaled.

Figure 4.8: Plot showing how the inference time changes with the number of galaxies used
in the training set to display how each algorithm scaled.
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Figure 4.9: Graphs of the Mean Squared Error (MSE) plotted against the number of galax-
ies in the training set to show how each algorithm’s performance scaled.

Figure 4.10: Graphs of the Mean Squared Error (MSE) plotted against the time taken to
train the algorithms.
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rectly using the image data rather than the magnitude features, one could offset

the increased time required to train the algorithms with the time saved due to not

needing to previously extract features.

What’s more, the RF and ERT also showed the worst scaling of all the algo-

rithms, slowing down at a faster rate as the number of galaxies included in the train-

ing set was increased. This was due to the fact that the tree-based algorithms are

non-parametric and the complexity increases with the increasing dataset, whereas

the neural networks have a fixed size. Past 1 million galaxies in the training set the

RF was already slower in inference than the CNN, and with large enough datasets

it’s possible that they could become almost as slow during training. If for the largest

datasets CNNs become faster than traditional methods then their main setback of

being slower and more computationally expensive would no longer be of concern.

The performance of the RF and ERT highlighted the improvements possible

when including image data rather than using magnitudes alone, with a reduction

in errors of around 25%. The experimental mixed-input models also showed good

potential to further improve performance, however, as the inception module CNN

performed better than the mixed-input CNN, it was clear that the CNN network

architecture had a greater impact than the addition of the magnitudes as extra fea-

tures. The improvement from inception module CNN to the mixed-input inception

CNN was also much less than the improvement from RF or ERT to the CNNs (the

improvement from including images), with a further error reduction at just over 4%.

4.4.1 Lower redshift range

Although the algorithms performed well over the entire dataset we wanted to also

test the performance for a smaller region to be able to more directly compare with

other studies (such as Pasquet et al. (2019)) and see how much better the perfor-

mance could be when the problem of estimating redshifts was made easier by only

considering the range z < 0.3.

The exact same process was carried out using the same six algorithms algo-

rithms and the results from the retrained machine learning algorithms are given in

table 4.3. We also plotted the redshift estimations against the true spectroscopic
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Table 4.3: Results of testing the different machine learning algorithms for the redshift range
z < 0.3. Each algorithm was retrained using 400000 galaxies with the RF and
ERT both using photometric data, whereas the CNN and Inception module CNN
used images, and the mixed-input CNNs used both images and photometry.

Random
Forest
(RF)

Extremely
Randomised
Trees (ERT) Convolutional

Neural
Network (CNN)

Inception
Module CNN

Mixed-input
CNN

Mixed-input
Inception

CNN

MSE 0.00140 0.00162 0.00072 0.00070 0.00169 0.00069

MAE 0.02472 0.02855 0.01851 0.01773 0.02785 0.01693

R2 0.76004 0.72196 0.87732 0.88074 0.71023 0.88230

Bias 0.00292 0.00128 0.00713 0.00447 −0.00670 0.00070

Precision 0.02218 0.02803 0.01875 0.01691 0.02631 0.01543

Catastrophic
Outlier
Fraction

0.02245 0.02393 0.00557 0.00659 0.02338 0.00816

redshift in figure 4.11.

From these we saw that in general the algorithms performed much better, reaf-

firming the fact that photometric redshift estimation becomes an easier problem

over a shorter range. The mixed-input inception CNN continued to be the best per-

forming algorithm with a MSE = 0.0007, however, there was far less separating the

CNN and inception module CNN in the smaller redshift range. In fact, the CNN

performed better than every other algorithm when it came to the catastrophic out-

lier fraction with only 0.56% outliers and one of the best constrained scatter plots

(second only to the mixed-input inception module CNN).

Figure 4.11 shows how well constrained the redshift estimates of the mixed-

input inception module CNN were, with a denser region along the zpred = zspec line.

Furthermore, the algorithm no longer exhibited its previous issue of not predicting

redshifts across the full redshift range. Indeed the algorithms which had a redshift

cut in the smaller redshift range were the RF, ERT, and mixed input CNN, however,
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Figure 4.11: Graphs of the predicted photometric redshift estimates against the true spec-
troscopic redshift for the same machine learning algorithms retrained on
galaxies within the range z < 0.3.

in this case they failed to predict redshifts above a certain value.

The only algorithm which didn’t show the same improvements was the mixed-

input (standard) CNN, which, when it came to the smaller redshift range, performed

more similarly to the RF and ERT. As we saw the mixed-input inception model

perform very well it seemed that there was still potential to make use of both images

and photometry, however, by not optimising the algorithms for the new dataset and

using the exact same network that was used for the entire redshift range, the mixed-

input CNN clearly didn’t transfer as well to the new data.

There was also a greater disparity between the other CNN based methods and

traditional methods for this smaller redshift range. While there was around a 30%
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improvement going from the RF and ERT to CNNs over the entire dataset, this in-

creased to 50% for the smaller redshift range. The image based CNNs were there-

fore able to provide even more advantage in this range, suggesting that the addi-

tional information extracted from the images is even more beneficial in the smaller

range, possible due to the fact that the galaxies would generally occupy a larger

region of the image.

However, this boost in performance for the redshift range of z < 0.3 also high-

lighted a key failing of the algorithms, in that an ideal model would generalise well

enough to perform just as well across the entire redshift range. This might not be re-

alistic as by removing a large section of the data there was far less chance of having

catastrophic outliers, and the overall problem was made easier.

4.5 Summary

Processing accurate photometric redshift estimations will remain a vital task of cos-

mological analyses. Future surveys such as LSST aim to observe more galaxies

than ever before, and it is of utmost importance that the methods developed and

implemented are both effective and efficient.

Here we have shown how image-based CNN methods compare to traditional

tree-based methods which make use of magnitude features from photometry. We

found that the additional information the CNNs were able to extract directly from

the images of galaxies allowed for a significant reduction in errors. However, as the

CNNs were more complex than the RF and ERT algorithms, they were also much

slower to run and required far more computational resources.

Our results showed that the experimental mixed-input models in particular had

great potential for photo-z estimation. Using 1 million images of galaxies to train

the algorithm the mixed-input inception CNN was able to achieve a MSE = 0.009.

Furthermore, when the problem was simplified to only include galaxies in the range

z< 0.3, the model achieved an even more impressive MSE = 0.0007, outperforming

the traditional RF by > 50%.

Further work would include using even more data with tens or hundreds of mil-
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lions of galaxies and images (which would require the use of large scale simulations

and more powerful computer architectures). The use of more powerful CPUs and

GPUs in high perfomance computing systems could allow for better practices in

benchmarking and set a standard system. Additionally, by stretching the amount of

data further we could then determine with certainty at what point the CNNs would

become faster than the RF and ERT, as well as discover whether increasing the

amount of data used in the training set would eventually have no effect on model

performance. Finally, the models tested here could also be extended to produce

PDFs for the estimated redshifts, and through further optimisation (including using

custom loss functions) the errors could be reduced even more.





Chapter 5

Conclusions and Future Work

In this chapter I summarise the main results of the work described in chapters 2 -

4. I also outline some future work, which following on from the research of the

previous chapters, could provide several more research projects for the future.

5.1 Thesis Summary and Future Work

5.1.1 Searching for TNOs in DES using Machine Learning

In chapter 2, I used machine learning to develop an additional step of a detection

pipeline to help improve the efficiency of the search for distant Solar System ob-

jects in DES. I first tested eight different machine learning algorithms to determine

which could make an effective classifier for the problem of detecting the rare ob-

jects in a very imbalanced dataset. Having determined the random forest classifier

to perform best, I then further fine-tuned the algorithm to maximise the recall while

still keeping the precision high enough to remove the majority of the noise.

Once fully optimised, the random forest was able to perform very well and

achieved an AUC = 0.996, with a recall = 0.96 and precision = 0.80. This meant

that when implemented in the DES TNO detection pipeline the random forest was

able to remove 80% of the noise and run the orbit fitting stage over 5× faster,

while keeping the vast majority of the possible detections. While a small number

of possible detections would be missed by the algorithm (around 3.5%), as multiple

detections are required to claim a discovery of a new object, there would be an even

smaller chance of missing an object.
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A natural extension to the work completed in section chapter 2 would be to test

applying the same pre-processing stage to other objects to see if machine learning

could as effectively be used to aid their detection. Closer TNOs would be the first

starting point and instead of generating more extreme examples with possible planet

9s using the survey simulator, a wider population of TNOs could be generated to be

used as the positive examples in the training set. As the rest of the detection pipeline

is identical (where triplets are fitted to orbits to determine if they could result from

real objects) the exact same analysis could be performed. The next step could then

be to apply similar machine learning methods to help separate asteroid detections

from noise.

As mentioned by the DES Collaboration (2016), DES is expected to have ob-

served hundreds of thousands of asteroids, many of which are ‘new’ (not being

listed by the minor planet centre). The difficulty arises in linking observations from

the same night, as the asteroids are so close that their apparent motion is very high.

One possibility could be to use deep learning methods which could inspect the en-

tire difference-imaged field, or a section of the field, to classify objects which could

be asteroids. This also raises the chance of using a similar method for TNOs, and

instead of using the linked triplets, images could be used as the input.

5.1.2 Benchmarking ML methods for photo-z estimation

In chapter 3, I compared various machine learning algorithms for the task of ob-

taining photo-z estimates, and used this as an example of how benchmarking can

be performed. In a similar vein to chapter 2, I tested the different algorithms to

get an idea of how each performed, however, as a regression problem rather than

classification the metrics and performance analysis was completely different, and

the benchmarking allowed for more information about the scaling of the algorithms

(up to a million galaxies) to determine which could be the most effective overall.

Furthermore, during the optimisation process a new time considered optimisation

was introduced which allowed for a compromise between the error and efficiency

that could drastically speed up some methods with only a very small increase in

error.
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The random forest was again found to be the best performing algorithm in

terms of the error metrics and achieved a MSE = 0.0042. Although the random

forest gave the lowest errors, it was also one of the slowest methods and took much

longer to train than other algorithms such as extremely randomised trees which also

had very similar errors. This suggested that the best algorithm couldn’t be deter-

mined by a single error metric and instead, depending on the situation where the

algorithm was being implemented, the best algorithm to use would change. For in-

stance, if regularly retraining the algorithm on new data, the extremely randomised

trees algorithm would have been a better choice with much faster training times.

An extension of using deep learning methods directly with images is exactly

what I did in chapter 4, however, there are several additional areas that could be

explored in the future. First, when performing benchmarking of machine learning

methods it would help to have a range of computer hardware which could be used

to run the algorithms. By running the algorithms on both CPUs and GPUs, it could

have been possible to determine the effects of the different computer architectures

and quantify the improvement of using GPUs when implementing highly parallis-

able algorithms. What’s more, a standard set-up could have been defined by which

other experiments could measure themselves to, and by having an array of different

machines, it would be easier for more experiments to directly compare their results.

Another natural augmentation to the work completed would be to undertake

the same analysis using more data. Instead of showing the scaling of the algorithms

up to 1 million galaxies, it would be valuable to be able to show the scaling for addi-

tional orders of magnitude (and reach the number of galaxies that large sky surveys

will be able to observe). However, this raises the issue for supervised learning that

we simply don’t have real spectroscopic observations for that many galaxies. As an

alternative to using real observations it could be possible to augment the existing

dataset or use large simulations where the true redshift would be a known value set

in the simulation.
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5.1.3 Deep learning for photo-z estimation

In chapter 4, I expanded on the methods used in chapter 3 for photo-z estimation,

this time including deep learning methods which could directly estimate the redshift

from the galaxy images. As well as testing different CNN architectures, I compared

these deep learning methods with the traditional random forest and extremely ran-

domised trees algorithms which only took the magnitudes as features. Furthermore,

I experimented with building mixed-input CNNs which could utilise both the image

and magnitude data to see if a combination of methods would allow for an improved

performance.

The deep learning algorithms, and specifically the inception module CNNs,

were found to perform much better than traditional methods with errors 30% lower

over the entire redshift range and 50% lower when only using galaxies with a red-

shift, z < 0.3. This suggested that the CNNs were able to extract more useful infor-

mation by directly using the images compared with the traditional methods which

only had the magnitudes as features. The tests of the mixed-input models suggested

that it was possible to further boost performance, and the mixed-input inception

module CNN was the algorithm with the best overall metrics, achieving a MSE =

0.009 over the full redshift range and MSE = 0.0007 for the range z < 0.3. By using

the magnitudes as additional features on top of the images, the mixed-input incep-

tion CNN was able to estimate redshifts with a 4% lower error than the inception

module CNN.

When using CNNs the process of optimising the networks is still quite ad hoc.

Ideally this optimisation process would be formalised in a more similar way to op-

timisation processes of traditional machine learning algorithms. Future work could

include designing a package to do this, where the optimisation would run through

set network architectures depending on the type of problem and input data, before

then testing a grid of hyperparameters such as the number of layers, the number of

neurons in each layer, the kernel sizes, stride, and padding. This could be incredibly

helpful for researchers across disciplines where CNNs have been implemented and

allow for a more robust and explainable method of deciding what architecture to
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use.

In addition to this package, the time considered optimisation step which was

introduced in chapter 3 could be formalised and expanded to also include CNNs.

This could allow for an easier implementation of algorithms which are optimised

not only to minimise error (or other metrics), but which also take into account the

efficiency of the model. One of the major issues facing research making use of AI

and machine learning is the ever increasing computational costs. These result in

more and more computer clusters being required, increasing not just the monetary

cost but also the environmental impact, and in many cases by using an optimisation

which also takes time and efficiency into account, many computational (and hence

environmental) resources could be saved.

5.2 Final words
Machine learning is one of the greatest tools at the disposal of astronomers, and

while this thesis has focused on applying machine learning methods to different

problems in astronomy, machine learning is also indispensable to researchers across

various disciplines (with a few additional areas presented in the following appen-

dices). However, it is also the responsibility of the researchers to ensure that they

aren’t reckless in their applications. Explainable models which are physically moti-

vated must continue to be sought over any ‘black-box’ equivalent, and vital for the

sustainability of the research, the models must also aim to be efficient. Following

these stipulations, machine learning offers endless possibilities to the research com-

munity and will continue to be at the forefront of groundbreaking experiments for

the foreseeable future.
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Appendices: Machine Learning Be-
yond Astronomy

In the following three appendices I outline some additional work completed dur-

ing my PhD which also helps highlight the interdisciplinarity of different machine

learning methods and the benefits of applying them across different fields. As

one of the inaugural students of University College London’s (UCL’s) Centre for

Doctoral Training (CDT) in data intensive science, group projects were carried out

in the first year with industry partners, and appendix A details the group project

I completed at ASOS to create recommender systems. Another of the CDT’s re-

quirements was the completion of a six-month full time placement with one of the

industry partners, and in appendix B I discuss the projects undertaken at ASOS

during my placement. Finally, appendix C outlines a separate research project car-

ried out during the Covid-19 pandemic in which I collaborated on an investigation

into the effects of natural ultra-violet radiation on the rate of infections in the UK.

More specifically, I performed the statistical analysis to find correlations between

UV index and Covid-19 cases over different time periods.



Appendix A

An Investigation into Recommender

Systems at ASOS

This appendix details the work completed for ASOS during the CDT’s group project

in the first year of the PhD. The aim of the group project was to develop a recom-

mender system that could be used by ASOS to provide customised size recommen-

dations. Simple models were tested to provide recommendations first for shoes, and

later dresses, which were compared to a baseline model. It was found that a random

forest classifier was able to slightly outperform the modal baseline reaching accu-

racies of around 75%; however, the improvements in recommendations were found

to come more from strategic data management than the model implemented. Vi-

tally, the purchases made by a single account first needed to be split into individual

customers, as each account could represent multiple customers.

A.1 Introduction
Online fashion retailers have increasingly been taking a greater market share, in

part due to their convenience which often includes a free returns policy. ASOS has

been a champion of the hassle-free returns policy and it remains a key feature of

their platform. The ability to try products with the knowledge of easily being able

to return them without incurring a cost is a feature that drives sales, however, this

results in a large percentage of purchases being returned. These returns are in part

due to the buying habit of customers to purchase the same item in multiple sizes
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with the intention to return the worse fitting size. By providing customers with the

best possible prediction of what correct size they should buy (the size which is most

likely not to be returned), there could therefore be significant savings from reducing

the fraction of items returned.

Recommender systems are a type of information filtering which take an in-

put and aim to predict either a ranking or preference for a given user. They are

commonly used in various areas including online video services, music streaming,

advertising, and retail (Resnick & Varian, 1997). While there are many different

ways of building a recommender system, typically two kinds of filters are used:

collaborative filtering, and content-based filtering. Collaborative filtering works by

examining the user’s previous data (in this case shoe or dress sizes), and by also

taking other users’ data that are similar (have previously bought in the same sizes) a

model learns to predict relevant items for the user. Content-based filtering uses the

characteristics of the items themselves (e.g. the shoe/dress sizes and other proper-

ties such as the brand) and uses these to recommend items that are similar.

In this investigation we used both of these filtering methods by testing a ran-

dom forest which used the sizes and brand information of items previously pur-

chased to make predictions; as well as matrix factorisation which used both cus-

tomer and item information mapped onto a joint space of latent features which

could then be used to obtain recommendations. However, the models themselves

were only one aspect of the investigation, and first the data had to be very carefully

prepared. Difficulties could arise from the fact that many products which are la-

belled with the same size may actually vary in measurement. This is because there

is no standard sizing system across different brands.

Another issue is vanity sizing, where manufacturers have a tendency to in-

crease the measured size of their products compared to the label with the aim of en-

couraging sales (but which also acts to further vary the size disparity across brands).

Furthermore, there are often simply errors in the manufacturing process which re-

sult in the measured size of the products being different to the stated measurement.

Finally, the customers themselves add to the issue of finding a ‘correct’ size. Differ-
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ent people with identical measurements could have different preferences in terms of

how their clothes should fit, and might not necessarily keep the same sized items.

For the purpose of this initial investigation, we began by considering only

footwear since the size of a shoe corresponds more directly to a simple measurement

of said shoe. Later tests were also conducted using dress data as a way of confirming

the methods’ validity and finding out how they performed on more complex data. In

the following section I introduce the different methods implemented, starting with

a simple modal baseline before testing a random forest and matrix factorisation.

I then present the results in section A.3 and finally give a summary of the group

project in A.4.

A.2 Recommeder Systems Tested

The first system tested was the simple modal method where the mode of the size of

previous purchases was used as the prediction for future purchases. To begin, the

most commonly purchased size for every male/female customer in 2016 was used to

predict the size for every male/female customer in 2017. This gave a quick baseline

for the minimum performance expected (as it tested the null model of predicting a

single size for everyone on the platform). This baseline model was then improved

in stages to start becoming a more intelligent recommender system. First, the data

was filtered to only include customers who purchased items in both 2016 and 2017.

This allowed for the second system to use the mode of sizes of each individual

customer’s purchases in 2016 to predict the size they purchased in 2017. However,

while this is a vastly improved recommendation for the customers with previous

purchases, it can’t be applied to new customers.

The data was further filtered to use periods of 3 months instead of a year,

using the mode of the size purchased in the previous 3 month period to predict the

purchases made in the next months. This allowed for more data to be included

as customers typically bought multiple items in shorter time periods. We further

extended this by using random time periods, where any previous purchases could

be used to predict future purchases. Other changes to the baseline then included
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rounding the sizes of shoes (as the half sizes were far less common), and finally,

introducing account splitting.

Account splitting was the process of identifying accounts where their purchase

history indicated multiple personas using the same account. We first identified the

accounts with the most purchases, these weren’t necessary being used by many peo-

ple but rather could also be reselling items, either way the size recommendations

were less relevant and allowed us to discount them. The easiest way to separate

multiple customers in one account was by gender (where male products were pur-

chased on a female account and vice versa). While some customers would purchase

items designed for the opposite gender, for simplicity we assumed that we could

split the account into two separate male and female customers (and this assumption

seemed to be correct in the vast majority of cases). Finally, a clustering algorithm

was applied to distinguish up to two customers for each gender, allowing for four

possible customers in each account.

To build a smarter recommendation system, the first investigation was into

using a supervised machine learning algorithm. The random forest was chosen over

other algorithms on the basis that they can generally outperform other classifiers

and are good for handling multiple classes. The features used by the random forest

were simply the mode of the size previously purchased by a customer and the brand

of the item purchased, and the label was taken as the size of the item the customer

purchased and kept (assuming this to be their true size). This meant that the only

real difference between the random forest and the baseline model was the extra

brand information being used as a feature.

It was hoped that this extra information would allow the random forest to learn

some relation between the brands and sizes and hence give improved predictions,

and the initial tests were promising with slight increases in accuracy (of about 1%).

When investigating the feature importance of the random forest, we found that the

sizes had a much greater importance than the brand, with around a 90% importance

for the mode size. This explained why the difference between the random forest

and baseline was so little, as the predictions were being made from predominantly
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the same data and the model was able to learn that the modal method was a sensible

solution.

The final method tested was matrix factorisation. We first constructed the train-

ing matrix with rows for each customer and columns representing the sizes. Each

entry in the matrix then represented a count of the number of purchase of a size by

a particular customer. Most entries were therefore 0, where they were either never

bought or had been returned. The customer and product factors then allow for the

recommendations to be made by taking the dot product of the customers matrix with

the product matrix. The results of each method’s performance for both shoes and

dresses is given in the following section with discussions of our observations.

A.3 Results

The results found for the different models’ performances at predicting shoe sizes is

given in table A.1, and table A.2 gives the results for predicting dress sizes.

As can be seen in the tables the random forest generally performed the best,

with very slightly improved accuracies when compared with the modal baseline.

Matrix factorisation seemed to struggle to recommend relevant sizes and lagged

behind the other two systems. For predicting shoe sizes the biggest boosts to the

performance were seen when including all previous purchases (regardless of how

long ago the customer bought other shoes), and when the accounts were split to

allow for multiple customers and recommendations per account. While there was

some improvement from rounding the half sizes, generally it wasn’t as important

as making sure that the initial dataset was clean and that the accounts had been

correctly separated into individual customers.

For predicting the dress sizes we saw very similar results. The random forest

again performed slightly better than modal baseline. The surprise was that adding

keywords to the features used by the random forest (such as petite / tall etc.) actually

worsened the accuracy of the predicted sizes. This suggested that adding in the extra

information about the fit or type of dress was acting to increase the complexity of

the model, and resulted in more branches in the random forest which split on these
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Table A.1: Results of the different recommender systems at predicting shoe sizes.

Modal Baseline Random Forest Matrix factorisation
Women Men Women Men Women Men

Mode of all customers 0.219 0.189
Customer’s previous years purchases 0.555 0.502 0.566 0.507

Customer’s previous 3 months purchases 0.540 0.482 0.566 0.488
Rounded sizes 0.561 0.557 0.581 0.554

Randomly split previous purchases 0.627 0.616 0.628 0.601 0.583 0.556
Account splitting 0.755 0.749 0.756 0.740 0.661 0.691

Table A.2: Results of the different recommender systems at predicting dress sizes.

Modal Baseline Random Forest Matrix factorisation
Mode of all customers 0.223

Customer’s previous 3 months purchases 0.525 0.510 0.508
Using keywords 0.525 0.498 0.508
Account splitting 0.636 0.639 0.554

features, but these splits weren’t helpful when compared with the size features.

A.4 Summary
ASOS returns incur a significant cost for the company which leads to lost revenue.

Many products are returned due to them being the wrong size, and implementing an

accurate recommender system could help inform customers of the best size to buy,

hence also helping to lower the number of returns.

Overall the methods tested here performed very well for an initial investigation

into recommender systems for size prediction. While matrix factorisation didn’t

perform as well as the other methods, the random forest and simple modal baseline

both did well to correctly predict the shoe size that a customer should buy, getting

it right 75% of the time. Furthermore, by extending the problem to dress sizes,

we showed that the methods could continue to work (albeit with a slightly reduced

accuracy) for more complex products with different size conventions.

While the methods themselves worked well, the most vital stage was to ensure

that the data was prepared in the most sensible way. This meant proving the models

with the most useful features such as brand information and extra keywords, as well

as splitting accounts which contained multiple customers to be able to give multiple
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recommendations depending on the customers and product.

Finally, even with a perfect recommender system, additional work would be

required to build trust in the recommendations. Customers would need to be con-

vinced that the recommendation provided would in fact be the correct size to prevent

them from continuing to purchase multiple sizes, and due to personal preferences,

no system would ever be able to perfectly predict what every customer would deem

fit them best.





Appendix B

Forecasting ASOS Sales using

Machine Learning

This appendix details the work completed at ASOS during a six-month full time in-

dustry placement undertaken at the end of the third year of the CDT’s PhD program.

As the placement began at the onset of the Covid-19 pandemic, the initial project

was to create reliable financial forecasts which could take into account the effects

of the pandemic. Initially we constructed basic forecasts to benchmark the perfor-

mance of our models, before testing different types of machine learning forecasts

and finally settling on a model built using the Facebook Prophet python package.

Not only did the forecasts produced result in more accurate sales predictions across

almost all regions where ASOS operates, but they were built with explainability as

a key focus and allowed for an in-depth analysis of what contributed to the forecast

which could help inform on business decisions (such as when to have promotions).

A second project was also started to investigate the related problem of predict-

ing how much stock of each product should initially be bought. Using attributes of

every item sold by ASOS, we created models to predict the number of units of each

product which would be sold and therefore how much stock should be purchased.

While working on this project the baselines and first models created showed great

promise and acted as the proof of concept needed to display how useful the models

could be. Although the placement ended before a final dashboard could be created

which would have been the end business product used by ASOS buyers when mak-
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ing the stock purchases, the groundwork completed left the project in a good state

to be continued to produce a helpful stock prediction tool.

B.1 An introduction to forecasting

Forecasting is a form of time-series analysis whereby past data is used to make

predictions about the future. As such it is often central to many business activities

where planning about the future is paramount to be able to effectively allocate re-

sources, set goals, and measure performance. At ASOS, forecasting the number of

sales made in each region is an incredibly important task, and is not only required

for the planning of many aspects of the business, but it also allows us to determine

the company’s growth.

At the beginning of 2020, the Covid-19 pandemic was beginning to impact all

facets of life. In the United Kingdom the first ‘lockdown’ began in March (just after

the start of the placement) and the shopping habits of millions was forced to change.

On top of this, social distancing measures limited the number of workers who were

able to work in ASOS’s fulfillment centres. With so much uncertainty and events

rapidly changing, there was high demand for forecasts which were able to take into

account some of the effects of Covid-19. These forecasts could help ASOS stay

ontop of the situation, knowing how many sales they were likely to make which

would give an indication to the financial situation as well as provide information

about how large the backlog of orders could become and hence how delayed the

fulfillment could be.

There are many possible way to create forecasts. At ASOS, the finance team

works to create forecasts using their domain knowledge. Roughly speaking they

can examine the previous weeks data and by knowing about promotional events

and holidays, as well as comparing with the same period from the previous year, a

forecast can be hand made to predict the number of sales they expect in the coming

week(s). The aim of this project was to replicate the finance team’s forecast with an

automated machine learning model that could also take into account new features,

such as the effects of Covid-19. In the next section I describe the methods we used
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to create forecasts, before presenting the results of the forecasts in section B.3, and

summarising the project in section B.4.

B.2 Forecasting Methods
Before attempting to create an intelligent machine learning model to generate the

forecasts, it was first necessary to gather the data which was used by the models,

and understand how we could measure their performance.

B.2.1 Data

The data was predominantly made from the historical sales data of ASOS. Every

sale is recorded with details about time and region where the purchase was made,

and this data is collated into daily sales figures for each region. These daily inputs

were then used as the historic data which the models learnt from.

While a forecast could be made with only the daily sales data, we wanted to

capture additional information about what else affected sales. As the focus was dur-

ing the start of the Covid-19 lockdown, the first additional dataset included was the

daily Covid-19 case numbers taken from Dong et al. (2020). Although this gave in-

formation about the number of people getting sick, it didn’t explicitly inform about

the lockdown which is what had the greatest overall effect (with people not leaving

their homes and physical clothes stores being closed). As such, an additional ‘day

zero’ was defined which was taken to be when lockdown began. By including this

information as a one-hot encoded feature (with a 0 before day zero and 1 after) the

models could then attribute the effect on the sales from that day specifically to the

lockdown.

One of the most important features which impacted sales at ASOS was the

promotions calendar. This detailed the sales promotions which regularly ran and

offered customers discounts such as x% off everything, or free delivery on spends

over £X . As expected, on days with large discounts there would be an increase in

sales, and these appeared as spikes in the time-series. Similar to the day zero feature,

the promotions were one-hot encoded to show if there was a promotion, and if so,

what kind of discount was being offered. Other features were tested later in the
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investigation, including the weather which was assumed would have the greatest

impact out of these additional features. To include weather data, we obtained daily

historic temperatures, precipitation, humidity, wind speeds, and cloud cover for

each of the regions where we were producing sales forecasts.

However, simply including the historic data of the features wasn’t enough to

produce a forecast for the sales. To predict the sales in the future, the future values

of the included features were also needed. This meant that we needed forecasts for

all features before we could begin forecasting the sales. For the features such as

the promotions, this was trivial (in theory) as the calendar when promotions would

be applied was controlled by ASOS and as such the calendar for the future months

was available to input. Unfortunately ASOS doesn’t have the same control over

the other features such as weather and covid cases, and instead forecasts of these

features were used.

The weather forecasts could be obtained from the same source that provided

the historic data, and allowed for reasonably accurate predictions to be made (at

least for the short term forecasts of a week), and for long range forecasts of months

in the future average temperatures etc. could be used from previous years. Forecast-

ing covid cases was something which many research groups worked on, but to save

time for the purpose of the sales forecast we assumed that covid cases remained

roughly constant in the short term forecasts. This allowed for the forecasts to use

the full range of features which we also estimated for the future.

B.2.2 Metrics

To measure the performance of the forecasts produced we calculated various metrics

which compared the true sales to the sales predicted by the forecast. By also com-

paring with the performance of the finance department’s forecast, we had a good

indication of how our models performed. As a regression problem (where a con-

tinuous value was being predicted from the features) we could have used any error

metric such as the mean absolute error (MAE), or mean squared error (MSE). How-

ever, the most commonly used metric for forecasts is the mean absolute percentage

error (MAPE) which is defined as:
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MAPE =
100
N

N

∑
i=1

|yi − ŷi

yi
|, (B.1)

where yi is the true value and ŷi is the forecast value.

To stay consistent with the finance department and give an easily understand-

able single value, the MAPE was used as a quick indication of how the forecasts

performed.

We tested several different types of forecasts, starting with a very basic model

which simply took the previous weeks sales to use as a baseline, we then moved

onto using machine learning algorithms to attempt to include more features. A

random forest was implemented which managed to perform slightly better than the

simple baseline, however, the method settled on was built using Facebook Prophet

(Taylor & Letham, 2018).

B.2.3 Facebook Prophet

Facebook Prophet (FBProphet) is a forecasting package developed by data scien-

tists from Facebook who aimed to create a flexible forecasting package capable of

providing useful forecasts for a range of time-series datasets. It was designed to use

intuitive parameters which could be adjusted by scientists with domain knowledge

without having to create a new underlying model.

The model is a structural time-series model (Harvey & Peters, 1990) where the

model can be decomposed into three main components: the trend, seasonality, and

holidays, which are combined as follows.

y(t) = g(t)+ s(t)+h(t)+ εt . (B.2)

In this equation the trend, g(t), models the non-periodic changes in the data;

the seasonality, s(t), models the periodic changes which can be daily / weekly /

yearly or any other set time period; the holidays, h(t), represent the effect of spe-

cial holidays which can occur on irregular time frames over a set number of days.

Finally, εt gives an error term for any additional changes not accounted for in the

model (and is assumed to be normally distributed).



182 Appendix B. Forecasting ASOS Sales using Machine Learning

The trend can be modelled in two ways using FBProphet, it can either be a

saturating growth model, or a linear model. For growth forecasting the trend is

typically modelled using a logistic model which has the form:

g(t) =
C

1+ exp(−k(t −m))
, (B.3)

where C is the carrying capacity, k is the growth rate, and m is an offset parameter.

However, there are two important differences made in this model. First, the

carry capacity is not constant (as the total number of people who use ASOS is not

constant) and thus the constant term C is replaced with the time dependant capacity

C(t). Second, the growth rate is not a constant as a company’s growth will change

depending on many factors and the growth rate needs to be adaptable to fit to the

historic data. To incorporate the changes to the trend, FBProphet uses explicitly

defined ‘changepoints’. These changepoints are points of time where the growth

rate is allowed to change.

For S changepoints at times s j, a vector of adjustment rates, δ , is defined where

each δ j represents the change in growth rate at time s j. This allows the new growth

rate to be written as the base rate, k, plus any adjustment made up to that time:

k+∑ j δ j. We can also define the vector, a(t) as

a j(t) =

1, if t ≥ s j

0, otherwise
, (B.4)

which allows the rate to be written as: k+a(t)δ . The offset parameter, m, must also

be adjusted to then connect the endpoints and can be calculated as follows

γ j = (s j −m−∑
l< j

γl)(1−
k+∑l< j δl

k+∑l≤ j δl
), (B.5)

and the trend model can then be written as:

g(t) =
C(t)

1+ exp(−(k+a(t)δ )(t − (m+a(t)γ)))
. (B.6)
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Instead for the linear trend model we use:

g(t) = (k+a(t)δ )t +(m+a(t)γ), (B.7)

where the only difference in terms is that the adjustment γ j is instead set to −s jδ j.

The seasonality is modelled using the following equation:

s(t) =
N

∑
n=1

(ancos(
2πnt

P
)+bnsin(

2πnt
P

), (B.8)

where P is the period of the seasonality (e.g. P = 365.25 for a yearly seasonality, 7

for weekly etc.), and the parameters βββ = [a1,b1, ...,aN ,bN ] are estimated by taking

βββ to be normally distributed. For a given N, eg N = 3, we can then write the

seasonality in terms of matrix of seasonality vectors, X(t) where

X(t) = [cos(
2π(1)t

P
), ...,sin(

2π(3)t
P

], (B.9)

thus making the seasonality

s(t) = X(t)βββ . (B.10)

Finally, the holidays can be modelled in a similar vein, where for each holiday,

i, we define Di to be the set of dates (past and future) for that holiday. An indicator

function is used which represents whether the time, t, falls on a holiday where

Z(t) = [1(t ∈ D1), ...,1(t ∈ DN)], (B.11)

and each holiday is assigned a parameter κi which represents the corresponding

change to the forecast and is also taken to be normally distributed. This allows the

holidays effects to be written as

h(t) = Z(t)κκκ. (B.12)
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B.3 Results

To prevent revealing any potentially sensitive information, only a brief description

of the results found during the forecasting project is given with any sales figures

omitted.

The FBProphet models were very successful at producing forecasts, often out-

performing the hand made finance team’s forecasts in terms of MAPE. Figure B.1

shows an example of a typical set of weekly forecasts compared with a longer term

monthly forecast. It also shows the finance team’s weekly forecasts during the same

periods and true value for the sales. It is clear from this figure that the FBProphet

models were working well, outperforming the finance team in weeks 1&4 and not

being too far off during weeks 2&3. Indeed, the shape of the weekly FBProphet

model was often more similar to the true sales, however, its sensitivity to the ini-

tial sales meant that it was prone to then consistently over (or under) predicting the

sales.

The results from this random month period are also given in table B.1 which

combined the MAPEs of the weekly forecasts to give a single MAPE for the month

long period. The table highlights how similar the forecasts were, and shows that the

FBProphet models were performing well, with both the weekly models and monthly

model able to give good results. While taking the combined MAPEs over the month

is slightly unfair for the weekly models (as they performed much better for a couple

of the weeks and had the overall MAPE lowered by the worse performance in the

other months), it allowed them to be compared with the longer FBProphet model.

While the FBProphet model was able to match the finance team’s forecasts, the

major benefit of using FBProphet was the explainability of the model’s predictions.

Using FBProphet it was possible to obtain the feature importances for each aspect

of the model and hence determine what the model believed would affect the sales.

This also allowed waterfall plot such as the one displayed in figure B.2 to be made

which gave a visual breakdown of how the model came to its prediction of sales for

a given day.
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Figure B.1: Figure showing a random set of forecasts comparing a weekly FBProphet
model to a monthly model, along with the weekly finance department’s fore-
casts and the true sales.

Table B.1: Results of the MAPE achieved by the different forecasts generated over a ran-
dom month.

FBProphet 4x1 weeks FBProphet month finance 4x1 weeks
APAC 0.316531 0.423905 0.282204
Australia 0.168922 0.150393 0.235513
Benelux 0.228464 0.231321 0.208171
France 0.419565 0.331926 0.254686
Germany 0.185199 0.211124 0.145718
Ireland 0.225047 0.23762
Italy 0.213963 0.301651 0.236378
MENA 0.204605 0.158024 0.331063
ROE 0.177394 0.170619 0.164534
ROW 0.255996 0.158361 0.511075
Russia 0.461566 0.299544 0.254753
Scandinavia 0.17258 0.185033 0.207391
Spain 0.198549 0.184263 0.316124
United Kingdom 0.168453 0.193857 0.153485
United States 0.205302 0.233086 0.167667
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Figure B.2: An example waterfall plot for a random day which shows how the FBProphet
model weighted the features and came to its prediction.
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B.4 Summary
The main goal of the project to create explainable forecasts which could take into

account a wide range of features was definitely achieved. The FBProphet models

were able to use the Covid-19 case data to determine the impact on sales, and by also

including other features such as the trading calendar, which detailed the promotions,

as well as the delivery proposition and later the weather, the model was able to

provide useful insights into the impacts on sales.

The FBProphet forecasts created were able to perform well and when com-

pared with the finance department’s forecasts they were able to match their perfor-

mance. The added flexibility of being able to quickly add extra features as well as

being able to show the feature importance made the model very capable of being

used to help inform on a variety of aspects of ASOS’s business.

B.5 An introduction to stock prediction
Predicting the amount of stock to initially purchase for each product is another cru-

cial area of ASOS’s business. If too much stock is purchased the excess products

can end up costing the company more than they make back in sales, and on top of

the cost, they take up room in warehouses and can end up having a greater environ-

mental impact. If too little stock is purchased then there is a missed opportunity for

additional sales of the product and a greater profit would have been possible. The

consequences and impacts of both scenarios make it such an important area that

only highly trained expert buyers are able to make the decisions about purchasing

the initial stock.

These buyers use their domain knowledge of how previously listed, similar

products have sold, and use these similar products to predict how much stock they

think the new products could sell and therefore how much initial stock to buy. This

is a process which could be replicated using machine learning. The model would

first find the most similar products to the new product of interest, and could then use

the sales of those similar products to make a prediction about how much the new

product will sell. As such we set about creating a model which could then be used
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by the expert buyers to help inform them on how much stock to buy.

B.6 Methodology
The problem was split into two parts, an information retrieval task whereby the

most similar products for a given product of interest would be returned, and the

prediction stage where a machine learning algorithm would predict the stock to be

purchased.

To begin, a baseline model was made which used basic filters to find the most

similar products and simply predicted the initial stock to be the same as for the most

similar product. The filters worked by taking the product attributes and finding the

items where there was the greatest overlap of attributes. Initially the attributes used

were simply the product’s division, category, brand, colour, range, price (both cost

price and sale price), and date, and as seen in the results these were able to provide

quite sensible suggestions for the most similar products.

An extension which was being tested was using a more advanced system of

obtaining product attributes directly from images of the items. This could allow for

a deep learning algorithm to provide more details about the products and find more

relevant items, or even directly give the most visually similar products.

With the most similar product(s) identified, a model could then be used to

predict the initial stock to purchase. For our baseline we simply took the same

initial stock as the most similar item, however, this would obviously not be the

best prediction for many different products and instead it was hoped that a machine

learning algorithm could improve upon the baseline. By providing the initial stock,

sales, and attributes of the most similar products as features to the algorithm we

then tried to predict the sales in the first month of the product of interest being sold

which could then be taken as the recommendation for the initial stock.

B.7 Results
Similar to the forecasting project, to not give away any potentially sensitive infor-

mation I present only a brief summary of the results found during the investigation

of stock prediction.
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baseline (average sales of filtered products) Boosted decision tree
MAE 326.30 131.85

Table B.2: Results of the first baseline (using the average sales of the most similar filtered
products) and the boosted decision tree when predicting the number of sales of
dresses.

As an example of the filters used to obtain similar products, figure B.3 shows

a sample of products and the retrieved most similar product. In general the filtering

process worked very well, and as seen for a typical pair of trainers the most similar

item returned was a variation of the trainers from the same brand. The filters worked

similarly for the hair care product, with the most similar product returned being a

smaller bottle of the same product. However, for the belt, the most similar product

by the filters was a set of face masks. This highlighted a key failing of the filters

which treated everything in the category of accessories as being similar, and so to

get better results for the similar products further sub categories would be required.

Using dresses as an example product dataset we then used the filters to obtain

the most similar dresses for each product. To give a baseline error we then took the

average sales of the most similar dresses to predict the number of sales of the dress

of interest and calculated the mean absolute error (MAE), and the results are given

in table B.2.

This allowed us to compare a simple boosted decision tree which was used as

the first machine learning model tested. The boosted decision tree took the various

attributes of the dresses (the division, sub-category, colour, brand, range, dress type,

fabric type, length, sleeve length, body type, sale price and cost price) as the fea-

tures, and use these to create a mapping to the number of units sold. As seen in table

B.2 the boosted decision tree was able to massively improve the prediction of the

number of dresses sold, having a MAE 2.5× lower. Although the MAE remained

fairly high at over 100 units, this isn’t too bad a result as many dresses in the dataset

had thousands of sales.

An additional benefit of using the boosted decision tree was the ability to eas-

ily examine the feature importances. In our investigation we found that the most

useful attributes were the prices and the brand. This suggested that the most useful
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Figure B.3: Figure showing examples of the filtering process to obtain similar products.
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information which would inform about the number of sales that could be expected

was the cost and sale prices as well as the brand of the dress.

B.8 Summary
While the project was still in its early days, the initial results from the baseline and

boosted decision tree were very encouraging. The fact that simple filters were able

to extract similar products from their attributes, and that the machine learning model

was able to produce a reasonable estimate for the number of sales from the same

attributes meant that already the proof of concept had been achieved.

The next stages were to add other features to the model, and use the informa-

tion about the similar products in the machine learning model. By adding in this

extra information (such as the number of units the similar items sold) we could ex-

pect another decent improvement in the error. By continuing with the work and

improving the models used, this would lead to a very helpful tool which could be

used by the expert buyers to make more quantifiable decisions about the initial stock

to buy.





Appendix C

Correlations between UV-index and

Covid-19 Cases in the UK

This appendix is based on work completed in collaboration with A. Blum, C. Nico-

laou, and O. Lahav, in which we investigated the correlation between UV index and

Covid-19 cases in the United Kingdom (UK) (Blum et al., 2020). During this col-

laboration I worked predominantly on the statistical analysis of the Covid-19 cases

and UV index. It was well established early on in the pandemic that the rate of

Covid-19 infections could be suppressed with social distancing measures, however,

there wasn’t anywhere near as much investigation into what environmental effects

could impact the spread of Covid-19. Here I discuss our study into the correlation

between natural ultra-violet (UV) radiation from the Sun and Covid-19 cases in the

UK. By examining the daily case rates of Covid-19 infections (F) and the UV-index

(UVI) between January 2020 to March 2021, we found a strong anti-correlation

between log10(F) and log10(UVI) of −0.934 in the period from the end of the first

lockdown in the UK on the 11th of May 2020 to the 10th of March 2021. This anti-

correlation could reflect a causation (along with other factors correlated to UVI)

with the reduction seen in Covid-19 infections and highlight the need to include as

many additional factors as possible when modelling Covid-19 infections and deaths.
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C.1 Introduction

Our hypothesis is that natural UV light suppresses the spread of Covid-19 virus in

at least two ways: the effect on the virus itself, and on the human skin. We note that

while natural UV has the potential to cause skin cancer, it also generates vitamin-D

which supports the immune system. There are three types of solar UV radiation

classified according to their wavelength. UVC is a short wavelength (100 - 280 nm)

radiation and it is the most damaging to the human body. However, it is completely

filtered by the atmosphere and does not reach the Earth’s surface, so while it is well

known that UVC produced in the lab is used to inhibit viruses, it cannot have the

same effect in nature. UVB is a medium wavelength (280 - 315 nm) radiation, and

similar to UVC, most of it is filtered by the atmosphere. UVA is a long wavelength

(315 - 400 nm) radiation and accounts for about 95% of the UV radiation reaching

the Earth’s surface. The UV Index (UVI) is a measure of the strength of sunburn-

producing UV radiation at a particular place and time, with typical values of UVI

in the UK ranging between 0 and 8.

The possible correlation between UV light and Covid-19 has been discussed

in the literature, with contradictory conclusions. One study by Yao et al. (2020)

found no association of Covid-19 transmission with UV radiation in Chinese cities.

Others found modest impact of UV light and other environmental effects on the

reduction of Covid-19 transmission (Xu et al., 2020). Another study by Yudistira

et al. (2020) pointed out that UV radiation will not be effective in places with high

air pollution, where UV light turns into heat. On the other hand, other studies have

found that UV light is associated with decreased Covid-19 growth rate. Given the

disagreement on the impact of UV light on Covid-19 transmission we take a fresh

look at data for the UK. Our study was also strongly motivated by the second wave

of Covid-19 in many Northern hemisphere countries during the winter.

Most viral respiratory infections have a seasonal pattern that may be related

to climate changes, humidity, UV irradiation from the sun, latitude, air pollution,

height, and the human nature (genetic and epigenetic factors and behavioural char-

acteristics). Enveloped viruses have a cold temperature preference (such as in-
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fluenza A and B). A study that examined the climate of 50 cities affected by Covid-

19 found that 8 cities had particularly high mortality rates. All 8 of these cities were

located between latitudes 30◦N and 50◦N, with a temperature between 5◦C to 11◦C,

and low humidity. Countries located below latitude 35◦N had lower Covid-19 mor-

tality rates. This could be due to the fact that countries located above 35◦N have

insufficient sunlight necessary for vitamin D activation.

Vitamin D deficiency was found to correlate with hypertension, diabetes melli-

tus, obesity, and is associated with increased mortality rates. Countries that suffered

the highest mortality are known to have a high prevalence of vitamin D deficiency

(Italy, Spain, UK, France). In Nordic countries, where sunlight is limited, vitamin

D food fortification is mandatory, and the mortality rate was lower in the recent pan-

demic. Looking at specific Italian cities, Milan’s latitude is 45◦N, and Naples is lo-

cated at 40◦N. This means that Naples gets 58 more sunny days annually compared

with Milan, and in Naples the death toll from Covid-19 was 403/million compared

with 15,729/million in Milan (a > 39 fold increase).

Sunlight activates Nitric Oxide (NO) in the skin. NO is a potent modulator of

the cardiovascular system, reducing blood pressure and peripheral resistance. NO

is a signalling molecule responsible for the hoemostasis of blood vessels. It af-

fects cellular proliferation, inflammatory processes, and has an anti-bacterial and

anti-viral activity. Usually NO is produced in endothelial cells by oxidation of L-

arginine to NO and citrulline. Inducible NOS (i-NOS) is calcium-independent, and

is activated during stress conditions like acute or chronic inflammation or infection.

NO helped prevent the replication of SARS-CoV by inhibiting fusion between the

S protein and its receptor and stopping the viral RNA replication. UVA penetrates

into the dermal layer through the keratinocytes to the fibroblasts and themicrovas-

cular endothelial cells. Keratinocytes, Langerhans cells, dermal fibroblasts, and

melanocytes are all cells that have the ability to induce i-NOS once activated by

cytokines.

In our study we focus on highlighting the link between UV and Covid-19 in-

fections in the UK, using Covid-19 data from Dong et al. (2020), and UVI data for
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London from Van Geffen et al. (2017). Although the UVI used was for London, the

variations in different places in the UK were within 0.8 UVI. The stringency index

represented the lockdown measures taken in the UK and were defined in Hale et al.

(2021).

C.2 Results
Figure C.1 shows the daily infections and deaths for the UK along with the UVI and

stringency index for the period 22nd January 2020 to 10th March 2021. As expected

from January to July 2020 the UVI increased to a peak before falling. We can see

that during the summer when the UVI was high the infections were at a minimum.

However, in the initial increase in UVI the number of daily infections was seen to

also rise until April. The UK introduced the first lockdown on the 23rd March which

is what resulted in a decrease in the number of infections due to social distancing.

While the UVI might have also helped lower the number of infections, it was clear

that the main factor in controlling the spread of Covid-19 was social distancing.

The lockdown was relaxed on 11th May, and while cases remained low for

much of the summer, over the period 2nd July to October the increase in infections

was strongly anti-correlated with UVI. In November there was a decrease in the

number of cases due to another national lockdown being imposed, but then the

cases increased again once the lockdown was lifted. During this period the UVI

was also low and therefore wouldn’t have had an impact in reducing cases.

To quantify the correlation seen in Figure C.1, we consider the correlation

coefficient between X and Y, defined as

ρ =
⟨(X −µX)(Y −µY )⟩

σX σY
, (C.1)

where µ represents the mean and σ the standard deviation. We applied this to

X = log10(UVI) and Y = log10(F), and found the correlation coefficient averaged

over the ranges given in table C.1. We also investigated the correlation coefficient

for different time lags of 7 and 14 days (in case the effect of UV was more obvious

after a set amount of time). However, we saw that the time lag made very little
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Figure C.1: Figure showing the daily number of Covid-19 infections and deaths along with
the UV index and stringency index for the UK in the period 22nd January 2020
to 10th March 2021.

Date Range
Corr. Coefficient of log10(UVI) & log10(F)
No lag 7 day lag 14 day lag

23 Mar 20 - 10 Mar 21 -0.917 -0.910 -0.886
11 May 20 - 10 Mar 21 -0.934 -0.922 -0.896
02 Jul 20 - 10 Mar 21 -0.927 -0.910 -0.879
02 Jul 20 - 28 Oct 20 -0.964 -0.958 -0.943
28 Oct 20 - 10 Mar 21 -0.751 -0.738 -0.611

Table C.1: Table of correlation coefficients for different date ranges and with different time
lags between Covid-19 cases and UVI

difference to the correlation coefficients, probably as competing effects washed out

any particular time lag.

We also plotted the daily infections and UVI with the rolling correlation co-

efficient between log10(UVI) and log10(F) with a window size of 50 days in figure

C.2. This plot highlights the overall negative correlation between the infections and

UVI from mid-April onwards. However, it also clearly displays that in November

and December, there was a positive correlation due to the fact that lockdowns were

imposed which led to a reduction in number of cases.

Finally, we plotted the log-log scatter of F against UVI in figure C.3, display-
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Figure C.2: In this figure the top panel shows the daily infections (blue) and UVI (red)
for the UK from the 23rd February until the 10th March 2021, and the bottom
panel gives the rolling correlation coefficient of log10(F) and log10(UVI) with
a window size of 50 days.

ing the time intervals with different colour codings. The near linear correlation is

remarkable, and we fit the data to

log10(F) = mlog10(UV I)+ c, (C.2)

using standard least squares regression. For the period between the 23rd March

2020 to the 10th March 2021 we found m =−1.292±0.029 and c = 4.199±0.017

with the 68% confidence level derived using bootstrapping. The three fits given in

figure C.3 were within 10% of the slope and 1% of the intercept.

C.3 Summary

In this study of finding correlations between the UVI and Covid-19 infections we

saw a significant negative correlation of −0.934 between the 11th May 2020 and

10th March 2021. It is important to note the well known fact that a correlation be-

tween two observables does not necessarily mean causation. We emphasise that the
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Figure C.3: Figure showing log-log scatter plots of F against UVI with colour-coded time
intervals, where the lines give the fits by linear regression for different time
periods.

Covid-19 infection rate is a multi-parameter problem, and there is strong empirical

evidence that social distancing, wearing masks, and vaccination programs are the

most significant factors in reducing transmission.

However, the strength of the correlation observed in our study cannot be ig-

nored. When the UVI increased above a certain level, there was a decrease in the

rate of infection, and when the UVI decreased below a certain level, the rate of

infection increased. While the lockdown was the most important factor in reduc-

ing the infection rate, the much lower rate during the summer months (when the

lockdown had ended) may suggest that environmental factors had an effect on the

infections, and UVI in particular was a dominant factor in those summer months.

The negative correlation detected between UVI and infection rate could also

suggest that the rate of change of UVI may trigger the viral infectivity mechanism.

If the UV light does directly affect the level of infections it would be by either re-

ducing the survival of the virus itself, or by improving the immunity of subjects (via

the production of Vitamin D and activation of the NO pathway), or a combination

of the two. Future work would include adding other environmental variables that

may have an effect on the rate of infections such as humidity, and air pollution.
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Graham M. L., Connolly A. J., Ivezić Ž., Schmidt S. J., Jones R. L., Jurić M., Daniel

S. F., Yoachim P., 2018, The Astronomical Journal, 155, 1

Gunn J. E., et al., 2006, The Astronomical Journal, 131, 2332

Hahn J. M., Malhotra R., 2005, The Astronomical Journal, 130, 2392

Hale T., et al., 2021, Nature Human Behaviour, 5, 529

Hamilton S., 2019, PhD thesis, University of Michigan

Hamilton S. J., et al., 2021, in prep

Hand D. J., Yu K., 2001, International Statistical Review, 69, 385

Harris C. R., et al., 2020, Nature, 585, 357

Harvey A., Peters S., 1990, Journal of Forecasting, 9, 89

Hastie T., Tibshirani R., Friedman J., 2009, in , The elements of statistical learning.

Springer

http://dx.doi.org/10.3847/2041-8213/aa64d8
http://dx.doi.org/10.1007/s10994-006-6226-1
http://dx.doi.org/https://doi.org/10.1038/nature03676
http://dx.doi.org/10.3847/1538-3881/153/1/27
http://dx.doi.org/10.1093/mnras/stu642
http://dx.doi.org/10.1093/mnras/stu642
http://dx.doi.org/10.3847/1538-3881/aa99d4
http://dx.doi.org/10.1086/500975
http://dx.doi.org/https://doi.org/10.1086/452638
http://dx.doi.org/https://doi.org/10.1038/s41562-021-01079-8
http://dx.doi.org/https://doi.org/10.2307/1403452
http://dx.doi.org/10.1038/s41586-020-2649-2
http://dx.doi.org/https://doi.org/10.1002/for.3980090203


BIBLIOGRAPHY 207

Henghes B., et al., 2020, Publications of the Astronomical Society of the Pacific,

133, 014501

Henghes B., Pettitt C., Thiyagalingam J., Hey T., Lahav O., 2021, Monthly Notices

of the Royal Astronomical Society, 505, 4847

Heymans C., et al., 2021, Astronomy & Astrophysics, 646, A140

Hildebrandt H., et al., 2010, Astronomy & Astrophysics, 523, A31

Hildebrandt H., et al., 2021, Astronomy & Astrophysics, 647, A124

Ho T. K., 1995, in Proceedings of 3rd International Conference on Document Anal-

ysis and Recognition. pp 278–282 vol.1

Holman M. J., et al., 2018, The Astrophysical Journal Letters, 855, L6

Holz D. E., Hughes S. A., 2005, The Astrophysical Journal, 629, 15

Horner J., Evans N. W., Bailey M. E., Asher D. J., 2003, Monthly Notices of the

Royal Astronomical Society, 343, 1057

Hoyle B., 2016, Astronomy and Computing, 16, 34

Hubble E. P., 1929, The Astrophysical Journal, 69, 103

Hubel D. H., Wiesel T. N., 1968, The Journal of physiology, 195, 215

Huchra J., Davis M., Latham D., Tonry J., 1983, The Astrophysical Journal Supple-

ment Series, 52, 89

Ida S., Bryden G., Lin D., Tanaka H., 2000, The Astrophysical Journal, 534, 428

Ilbert O., et al., 2006, Astronomy & Astrophysics, 457, 841
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