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Abstract 53 

Visual processing is strongly influenced by the recent stimulus history – a phenomenon termed 54 

adaptation. Prominent theories cast adaptation as a consequence of optimized encoding of visual 55 

information, by exploiting the temporal statistics of the world. However, this would require the visual 56 

system to track the history of individual briefly experienced events, within a stream of visual input, to 57 

build up statistical representations over longer timescales. Here, using an openly available dataset 58 

from the Allen Brain Observatory, we show that neurons in the early visual cortex of the mouse 59 

indeed maintain long-term traces of individual past stimuli that persist despite the presentation of 60 

several intervening stimuli, leading to long-term and stimulus-specific adaptation over dozens of 61 

seconds. Long-term adaptation was selectively expressed in cortical, but not in thalamic neurons, 62 

which only showed short-term adaptation. Early visual cortex thus maintains concurrent stimulus-63 

specific memory traces of past input, enabling the visual system to build up a statistical representation 64 

of the world to optimize the encoding of new information in a changing environment. 65 

 66 

Significance Statement 67 

In the natural world, previous sensory input is predictive of current input over multi-second timescales. 68 

The visual system could exploit these predictabilities by adapting current visual processing to the 69 

long-term history of visual input. However, it is unclear whether the visual system can track the history 70 

of individual briefly experienced images, within a stream of input, to build up statistical representations 71 

over such long timescales. Here, we show that neurons in early visual cortex of the mouse brain 72 

exhibit remarkably long-term adaptation to brief stimuli, persisting over dozens of seconds, and 73 

despite the presentation of several intervening stimuli. The visual cortex thus maintains long-term 74 

traces of individual briefly experienced past images, enabling the formation of statistical 75 

representations over extended timescales. 76 

 77 

Introduction 78 

Sensory processing not only depends on the current sensory input, but is influenced by the recent 79 

stimulus history. For instance, neurons in visual cortex change their responsivity and stimulus 80 

preferences following the exposure to previous visual stimuli, commonly referred to as neural 81 

adaptation (Müller et al., 1999; Dragoi et al., 2000, 2001; Kohn and Movshon, 2003, 2004). Prominent 82 
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theories of adaptation posit that changes in neural responsivity can be explained by optimally efficient 83 

encoding of visual information, given temporal regularities in the recent input (Barlow, 1961; Barlow 84 

and Földiák, 1989; Weber et al., 2019). Indeed, the visual world exhibits strong temporal regularities 85 

(Dong and Atick, 1995; Simoncelli and Olshausen, 2001; Schwartz et al., 2007); for example, in 86 

natural viewing behavior, orientation information tends to be preserved across successive time points 87 

and thus stable over extended timescales (Felsen et al., 2005; van Bergen and Jehee, 2019). These 88 

temporal correlations in natural visual input can therefore be exploited by the visual system by 89 

adapting the encoding of new sensory information to the history of recent visual input. Crucially 90 

however, it is unclear over which timescales the visual system can track the history of previous input 91 

to exploit natural temporal correlations during sensory encoding. 92 

 93 

In the natural world, previous sensory input is predictive of current input over extended timescales of 94 

multiple seconds (van Bergen and Jehee, 2019) and the visual system could exploit these 95 

predictabilities by adapting current visual processing to the long-term history of visual input. While 96 

several previous studies have indeed found evidence for long-term adaptation in early sensory 97 

cortical areas, lasting up to minutes, these studies measured neural adaptation following long 98 

stimulus presentations of dozens of seconds (Dragoi et al., 2000; Patterson et al., 2013), or in 99 

response to many brief presentations of the same stimulus (Ulanovsky, 2004; Kuravi and Vogels, 100 

2017; Peter et al., 2020) – both reflecting very untypical sensory input under natural conditions. In 101 

contrast, neural adaptation in response to individual briefly presented stimuli has been found to be 102 

short-lived, rarely observable beyond time lags of a few hundred milliseconds in primary visual cortex 103 

of macaque monkeys and mice (Patterson et al., 2013; Jin et al., 2019; Kim et al., 2019; Jin and 104 

Glickfeld, 2020). This begs the question of whether the visual system can track the history of briefly 105 

experienced images over extended timescales, to exploit the temporal correlations present in natural 106 

input. Furthermore, it is unclear whether the visual system can maintain memory traces of the long-107 

term history of previously experienced stimuli in the face of intervening input, or whether traces of 108 

temporally remote stimuli are eradicated by new visual inputs. Persistent memory traces, surviving the 109 

encoding of intervening visual input, would be crucial to build up robust statistical representations of 110 

the world over longer timescales. 111 

 112 
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In order to test whether neurons in early visual areas maintain long-term traces of briefly presented 113 

past stimuli, which are robust intervening visual input, we leveraged a large and unique dataset of 114 

electrophysiological recordings in the mouse visual system (Allen Brain Observatory – Neuropixels 115 

Visual Coding; Siegle et al., 2021). We characterized the recovery time course of neural adaptation in 116 

response to brief drifting and static grating stimuli across the visual system of awake mice. Neurons in 117 

the mouse primary visual cortex exhibit selectivity for orientation (Niell and Stryker, 2008; Liu et al., 118 

2011; Tan et al., 2011), and undergo orientation-specific adaptation, tuned to the orientation 119 

difference between previous and current stimulus (Jin et al., 2019). This makes the mouse visual 120 

system suitable for probing the timescales of orientation-specific adaptation. The use of high density 121 

extracellular electrophysiology probes (Jun et al., 2017) further enabled us to study the temporal 122 

dynamics of adaptation across multiple brain areas across the visual hierarchy, in the thalamus, 123 

primary and extrastriate visual cortex. It has been previously proposed that temporal integration 124 

timescales increase along the cortical hierarchy (Hasson et al., 2008; Lerner et al., 2011; Honey et al., 125 

2012; Murray et al., 2014). Beyond testing whether neurons in early visual areas exhibit long-term 126 

adaptation, we therefore further investigated whether a similar hierarchy of temporal dynamics may 127 

exist for stimulus-specific adaptation in the mouse visual system. Importantly, while long-term 128 

adaptation, also in the face of intervening input, has been observed in higher-order visual areas in 129 

infero-temporal cortex (McMahon and Olson, 2007), this form of adaptation appears to be task-130 

dependent (Henson et al., 2002; Henson, 2016) and related to memory recall (Meyer and Rust, 131 

2018). Here, we focus on the early and automatic sensory encoding of the environment, taking place 132 

in both primary and higher-order visual areas while mice viewed the stimuli passively, without an 133 

explicit task. 134 

 135 

To preview, we found remarkably long timescales of stimulus-specific adaptation in response to brief 136 

visual stimuli in cortical visual areas, persisting over dozens of seconds, despite the presentation of 137 

several intervening stimuli. While decay of adaptation was long-lived across primary and extrastriate 138 

visual cortex, neurons in the thalamus only showed short-lived adaptation to drifting gratings, limited 139 

to the processing of temporally adjacent stimuli. Long-term adaptation in visual cortex is thus not 140 

inherited from the thalamus, and likely relies on cortical plasticity. This long-term adaptation was also 141 

evident after the exposure to more rapidly presented brief static gratings, albeit with a less clear 142 
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difference in temporal decay between cortex and thalamus. This replication of long-term adaptation to 143 

briefer, more rapidly presented stimuli underlines the robustness and ecological validity of the long-144 

term temporal dependencies. Our results indicate that early visual cortex maintains concurrent 145 

stimulus-specific memory traces of past briefly experienced input that are robust to intervening visual 146 

input. This dependence on the broader temporal context may enable the visual system to efficiently 147 

represent information in a slowly changing environment (Schwartz et al., 2007; Weber et al., 2019). 148 

 149 

Materials & Methods 150 

Dataset 151 

All analyses were conducted on the openly available Neuropixels Visual Coding dataset of the Allen 152 

Brain Observatory (Siegle et al., 2021). This dataset surveys spiking activity from a large number of 153 

neurons across a wide variety of regions in the mouse brain, using high-density extracellular 154 

electrophysiology probes (Neuropixels silicon probes; Jun et al., 2017). Experiments were designed to 155 

study the activity of the visual cortex and thalamus in the context of passive visual stimulation. Here, 156 

we focused on a subset of experiments, termed the Brain Observatory 1.1 dataset. The Brain 157 

Observatory 1.1 dataset comprises recordings in 32 mice (16 C57BL/6J wild type mice and three 158 

transgenic lines: 6 Sst-IRES-Cre x Ai32, 5 Pvalb-IRES-Cre x Ai32 and 5 Vip-IRES-Cre x Ai32; of 159 

either sex). The three transgenic lines were included to facilitate the identification of inhibitory inter-160 

neuron sub-classes using opto-tagging. For the purpose of the current research question, we 161 

analyzed the data of all 32 mice, irrespective of transgenic lines. Mice were maintained in the Allen 162 

Institute for Brain Science animal facility and used in accordance with protocols approved by the Allen 163 

Institute’s Institutional Animal Care and Use Committee. For a detailed description of the entire 164 

Neuropixels Visual Coding protocol see Siegle et al. (2021). All data are openly available through the 165 

AllenSDK (https://allensdk.readthedocs.io/en/latest/visual_coding_neuropixels.html). 166 

 167 

Stimuli 168 

During Brain Observatory 1.1 experiments, mice passively viewed a variety of different stimulus types. 169 

Here, we focused on a subset of stimuli: full-field drifting and static grating stimuli (Figures 1B and 170 

6A). Visual stimuli were generated using custom scripts based on PsychoPy (Peirce, 2007) and were 171 

displayed using an ASUS PA248Q LCD monitor, with 1920 x 1200 pixels (21.93 in wide, 60 Hz 172 
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refresh rate). Stimuli were presented monocularly, and the monitor was positioned 15 cm from the 173 

mouse’s right eye and spanned 120° x 95° of visual space prior to stimulus warping. Each monitor 174 

was gamma corrected and had a mean luminance of 50 cd/m2. To account for the close viewing  175 

angle of the mouse, a spherical warping was applied to all stimuli to ensure that the apparent size, 176 

speed, and spatial frequency were constant across the monitor as seen from the mouse’s 177 

perspective. For more details see Siegle et al. (2021). 178 

 179 

Full-field drifting gratings were shown with a spatial frequency of 0.04 cycles/deg, 80% contrast, 8 180 

directions (0°, 45°, 90°, 135°, 180°, 225°, 270°, 315°, clockwise from 0° = right-to-left) and 5 temporal 181 

frequencies (1, 2, 4, 8, and 15 Hz), with 15 repeats per condition, resulting in a total number of 600 182 

drifting grating presentations, divided across three blocks. Drifting gratings were presented for 2 183 

seconds, followed by a 1 second inter-stimulus interval (grey screen). Gratings of different directions 184 

and temporal frequencies were presented in random order and were interleaved by the presentation 185 

of 30 blank trials, in which only a grey screen was shown. 186 

 187 

Static gratings were shown at 6 different orientations (0°, 30°, 60°, 90°, 120°, 150°, clockwise from 0° 188 

= vertical), 5 spatial frequencies (0.02, 0.04, 0.08, 0.16, 0.32 cycles/degree), and 4 phases (0, 0.25, 189 

0.5, 0.75). They were presented for 0.25 seconds, with no intervening grey period. Gratings with each 190 

combination of orientation, spatial frequency, and phase were presented ~50 times in a random order, 191 

resulting in a total of 6000 grating presentations, divided across three blocks. There were blank 192 

sweeps (i.e. mean luminance grey instead of grating) presented roughly once every 25 gratings.  193 

 194 

Data analyses 195 

All data analyses were performed using custom code written in Python, Matlab and R. All code will be 196 

made openly available on the Donders Institute for Brain, Cognition and Behavior repository at 197 

https://data.donders.ru.nl. 198 

 199 

Unit exclusion 200 

To filter out units (i.e. putative neurons) that were likely to be highly contaminated or missing lots of 201 

spikes, we applied the default quality metrics of the AllenSDK. This entailed excluding units with ISI 202 
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violations larger than 0.5 (Hill et al., 2011), an amplitude cutoff larger than 0.1 and a presence ratio 203 

smaller than 0.9 (for more details see https://allensdk.readthedocs.io/en/latest/_static/examples/nb/ 204 

ecephys_quality_metrics.html). For the analysis of drifting gratings, we defined visually responsive 205 

units as those units whose average firing rate during the first 100 ms of stimulus presentation of the 206 

unit’s preferred orientation (eliciting the highest firing rate) was larger than 5 Hz and larger than 1 SD 207 

of the firing rate during the first 100 ms of grey screen presentations. For the analyses of static 208 

gratings, we applied the same inclusion criteria, but computed firing rates over the whole stimulus 209 

duration (i.e. 250 ms). We chose to use a longer time window for analyzing static grating adaptation, 210 

since due to the back-to-back presentation of the static gratings, visual responses to the previous 211 

stimulus overlapped with the initial time window of the current stimulus, thereby increasing response 212 

variability in this early time window. However, largely similar results were obtained when performing 213 

the analyses on the same time window used in the drifting grating experiment (0 to 100 ms). In order 214 

to assess whether the choice of the minimum firing rate threshold of 5 Hz had a substantial impact on 215 

our results, we repeated the analyses with a more conservative (10 Hz) and less conservative (2.5 216 

Hz) threshold, but obtained qualitatively similar results. In our further investigation of sensory 217 

adaptation, we focused on those regions that contained a minimum of 50 visually responsive units (for 218 

an overview of included regions and unit counts per region see Figures 1D and 6C). All subsequent 219 

analyses were performed on visually responsive units only. 220 

 221 

 222 

Orientation-specific adaptation to drifting gratings 223 

To investigate orientation-specific adaptation, for each unit we compared firing rates in response to a 224 

current grating when this grating was preceded by a grating with the same orientation (repeat) or by 225 

its orthogonal orientation (orthogonal), irrespective of the temporal frequencies of current and 226 

previous gratings. Note that repeat trial pairs could consist of gratings with opposite drifting directions, 227 

but with the same orientation. Investigating orientation- rather than direction-specific adaptation had 228 

the advantage of maximizing the number of repeat and orthogonal trial pairs occurring across the 229 

random trialsequence. Adaptation was quantified in the form of an adaptation ratio: 230 

 231 

𝑎𝑑𝑎𝑝𝑡𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑖𝑜 =  
𝑓𝑟𝑟𝑒𝑝𝑒𝑎𝑡

𝑓𝑟𝑜𝑟𝑡ℎ𝑜𝑔𝑜𝑛𝑎𝑙
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 232 

where frrepeat and frorthogonal, are the firing rates in response to a repeated and orthogonal stimulus, 233 

respectively. The adaptation ratio expresses the response magnitude to a repeated stimulus 234 

orientation relative to that elicited by the same stimulus orientation, but preceded by a grating with the 235 

orthogonal orientation. Adaptation ratios smaller than 1 indicate a relative response reduction for 236 

orientation repetitions. Importantly, this analysis quantifies orientation-specific adaptation, as the 237 

stimulus features between repeat and orthogonal condition are the same (on average), with the only 238 

difference being the relative orientation of the adaptor stimulus. An initial exploratory analysis in one 239 

mouse suggested strongest adaptation effects for the early transient response (0-100 ms from 240 

stimulus onset). Therefore, we limited our analysis to this time window. This analysis choice was 241 

made while blind to adaptation effects beyond the 1-back grating, which were of main interest to the 242 

current study. Adaptation induced by n-back gratings was quantified in a similar manner as described 243 

above, by conditioning the data on the orientation difference (repeat or orthogonal) between the 244 

current and n-back gratings. For each region, we statistically compared log-transformed adaptation 245 

ratios of 1- to 10-back gratings to zero (indicating no adaptation) using two-tailed t-tests, while 246 

controlling the false discovery rate at an alpha-level of 0.05 using the Benjamini-Hochberg procedure. 247 

 248 

In order to quantify the recovery time course of adaptation, we fitted exponential decay models to the 249 

1- to 50-back adaptation ratios of each region. The recovery of adaptation in cortical areas was 250 

significantly better fit by a double exponential, compared to a single-exponential decay model, with a 251 

fast and slow decay component, of the form: 252 

 253 

𝑟(𝑛) =  1 − 𝑎𝑓𝑎𝑠𝑡 ∗ 𝑒−(𝑛−1)/𝜏𝑓𝑎𝑠𝑡 + 𝑎𝑠𝑙𝑜𝑤 ∗ 𝑒−(𝑛−1)/𝜏𝑠𝑙𝑜𝑤 

 254 

where r(n) denotes the adaptation ratio conditioned on the n-back stimulus orientation, afast, 𝜏𝑓𝑎𝑠𝑡, aslow 255 

and 𝜏𝑠𝑙𝑜𝑤 determine the magnitude and recovery time of the fast and slow adaptation component, 256 

respectively. Adaptation in thalamic regions was more parsimoniously explained by a single-257 

exponential decay model of the form: 258 

 259 

𝑟(𝑛) =  1 − 𝑎 ∗ 𝑒−(𝑛−1)/𝜏 
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 260 

For each region, we statistically compared single- and double exponential decay models with an F-261 

test. We used an F-test as the two decay models are nested – the single-exponential decay model is 262 

a restricted version of the double-exponential decay model. Since adaptation ratios were not normally 263 

distributed, all models were fit to log-transformed adaptation ratios by analogously log-transforming 264 

model predictions. We obtained the 95% confidence intervals of the parameter estimates with a 265 

bootstrapping procedure. In particular, for each region we resampled units with replacement and 266 

refitted the exponential decay model. We repeated this procedure 1,000 times and recorded the 267 

resulting parameter estimates of the bootstrapped sample. The 95% confidence interval was taken as 268 

the 2.5 and 97.5 percentile of the bootstrapped parameter distribution. We restricted parameter 269 

values to a wide range of plausible values (afast = aslow = [-Inf, 0.5], 𝜏𝑓𝑎𝑠𝑡 = 𝜏𝑠𝑙𝑜𝑤= [-50, 50]), and 270 

discarded bootstrapped estimates which lay on the boundary of the parameter range, indicating 271 

implausible fits (0.3% of bootstrapped fits). 272 

 273 

Additionally, we investigated to which degree 1-back adaptation was dependent on the relationship 274 

between a unit’s orientation preference and the adaptor/test orientation. For instance, one may expect 275 

strongest adaptation when the repeated stimuli match the unit’s preferred orientation, due to the 276 

strong response during the adaptation period. To shed light on this question, we first binned units into 277 

three equally sized subgroups per region, based on their orientation selectivity. Orientation selectivity 278 

was quantified as 279 

 280 

𝑂𝑆𝐼 =  
𝑓𝑟𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑 − 𝑓𝑟

𝑛𝑜𝑛−𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑

𝑓𝑟𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑 + 𝑓𝑟𝑛𝑜𝑛−𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑
 

 281 

where frpreferred  and frnon-preferred refer to the unit’s firing rates to its preferred orientation (eliciting the 282 

highest average firing rate) and the orthogonal orientation, respectively. The OSI ranges from 0 to 1, 283 

where 0 indicates no selectivity (identical firing rates to preferred and non-preferred orientations) and 284 

1 indicates maximal selectivity (zero firing rate to non-preferred orientation). Subsequently, for each 285 

subgroup of units we computed adaptation ratios as a function of the previous (adaptor) and current 286 

(test) stimulus orientation relative to the unit’s preferred orientation (see Figure 2). To statistically test 287 

the influence of the relative adaptor/test stimulus orientation on adaptation ratios, and to test whether 288 
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this influence depended on the degree of orientation selectivity of the units, we conducted a 3 x 3 289 

mixed ANOVA, with repeated measures factor “relative adaptor/test orientation” (0, 45 and 90º) and 290 

between-unit factor “orientation selectivity” (low, medium and high OSI). 291 

 292 

Since we found that adaptation was indeed strongest when the repeated orientations matched the 293 

unit’s preferred orientation, we repeated our analysis of the recovery time course of adaptation for 294 

these trial types. That is, we computed adaptation ratios on a subset of trials, for which the current 295 

orientation matched the unit’s preferred orientation and the previous orientation either matched 296 

(repeat) or was orthogonal (orthogonal) to the preferred orientation. While this approach had the 297 

advantage of quantifying adaptation to the most effective adaptor stimulus, it had the disadvantage of 298 

limiting the analysis to a much smaller set of trials compared to computing adaptation for all 299 

orientations. We did not observe qualitative differences between the two analysis approaches. 300 

 301 

Dissociating adaptation to repeated and orthogonal drifting gratings 302 

Thus far, we have quantified adaptation as the ratio between responses to repeated and orthogonal 303 

stimulus orientations. This analysis does not reveal whether adaptation effects are due to suppression 304 

of response when the current orientation matches that of past orientations, facilitation of response 305 

when the current orientation is orthogonal to past orientations, or a mixture of the two. The stimulus 306 

set included randomly interspersed trials during which no stimulus was presented, so we repeated the 307 

analysis described above, but quantified adaptation by comparing responses when a stimulus 308 

preceded the current trial, with responses when no stimulus was presented in the preceding trial. We 309 

computed two sets of adaptation ratios: (1) the ratio between visual responses when the n-back 310 

stimulus had the same orientation as the current stimulus (n-back repeat) and trials in which no 311 

stimulus was presented at the same n-back position (n-back blank trial). (2) the ratio between visual 312 

responses when the n-back stimulus was orthogonal to the current stimulus (n-back orthogonal) and 313 

n-back blank trials. Since blank trials were much less frequent than repeat and orthogonal trials (30 314 

blank trials vs ~150 repeat/orthogonal trials), for these analyses we randomly subsampled repeat and 315 

orthogonal trials to match them to the lower number of blank trials. 316 

 317 

Orientation-specific adaptation to static gratings 318 
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Analyses of adaptation to static gratings were similar to the analysis of the drifting grating data, with 319 

two exceptions. First, we quantified adaptation based on neural responses during the entire stimulus 320 

presentation period (0-250 ms). As discussed above, we chose to use a longer time window for 321 

analyzing static grating adaptation, since due to the back-to-back presentation of the static gratings, 322 

visual responses to the previous stimulus overlapped with the initial time window of the current 323 

stimulus, thereby increasing response variability in this early time window. However, largely similar 324 

results were obtained when performing the analyses on the same time window used in the drifting 325 

grating experiment (0 to 100 ms). Second, we only analyzed adaptation to all orientations, regardless 326 

of the units’ orientation preferences. This analysis was similar to the main analysis of drifting grating 327 

adaptation described above. Due to the rapid presentation of the static gratings, without intervening 328 

grey periods, responses persisted into the presentation period of the next grating. Since sub-selecting 329 

data according the units’ preferred orientation led to response differences in the adaptation period (i.e. 330 

larger response to preferred than orthogonal adaptor), the bleeding of the previous response into the 331 

current stimulus time window strongly biased the response to the current grating, thereby confounding 332 

genuine adaptation-induced changes in the response to the current grating. Conversely, when 333 

analyzing adaptation for all orientations, regardless of the units’ orientation tuning, the relationship 334 

between the adaptor orientations and the units’ preferred orientations were balanced across repeat 335 

and orthogonal trials, and therefore did not bias the analysis of the current response. 336 

 337 

Results 338 

Orientation-specific adaptation in visual cortex and thalamus 339 

To investigate orientation-specific adaptation in the mouse visual system, we analyzed responses 340 

from a total of 2,365 visually responsive neurons in the visual cortex and thalamus of 32 mice (Figure 341 

1A), while they were presented with sequences of drifting gratings (Figure 1B). We separately 342 

analyzed visual responses to gratings that were preceded by a grating of the same orientation 343 

(repeat) or orthogonal orientation (orthogonal). We found that the immediate repetition of stimulus 344 

orientation led to a marked, orientation-specific reduction in spiking activity in primary visual cortex 345 

(V1), predominantly during the early visual response (0 – 100 ms from stimulus onset, n = 562; 346 

Figure 1C, green shaded area). We quantified this orientation-specific adaptation of the transient 347 

visual response by calculating the response to a repeated orientation, relative to that following the 348 
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orthogonal orientation (1-back adaptation ratio, see Materials & Methods). Adaptation reduced the 349 

response by 17% in V1 (1-back adaptation ratio: 0.83, p = 4e-57, 95% CI [0.81, 0.84]), and had 350 

similar impact in higher-level extrastriate visual areas (Figure 1D; 1-back adaptation ratios between 351 

0.80 and 0.88, all p < 2e-21, two-sided t-tests, corrected for multiple comparisons). We also found 352 

orientation-specific adaptation in the dorsolateral geniculate nucleus of the thalamus (LGN, n = 140; 353 

1-back adaptation ratio: 0.93, p = 8e-7, 95% CI [0.91, 0.96]), and the lateral posterior nucleus of the 354 

thalamus (LP, n = 90; 1-back adaptation ratio: 0.83, p = 3e-10, 95% CI [0.79, 0.88]). Of note, in this 355 

analysis, we focus on stimulus-specific adaptation, sensitive to the orientation difference between 356 

previous and current stimulus (repeat versus orthogonal). This analysis is not sensitive to additional 357 

untuned adaptation effects, which occur in response to previous stimuli of any orientation and thus do 358 

not track the history of previous orientations (see Figure 5 for a complementary analysis quantifying 359 

adaptation to repeat and orthogonal stimuli, separately, versus adaptation in response to a blank grey 360 

screen). This may explain why the current response reductions are slightly smaller than previous 361 

reports of adaptation that comprise both orientation-specific and unspecific adaptation (Patterson et 362 

al., 2013; Jin et al., 2019; Jin and Glickfeld, 2020). The orientation-specific response reductions for 363 

immediate stimulus repetition were highly consistent across mice (Figure 1E). While 1-back 364 

adaptation was generally strongest when neurons were tested with their preferred orientation, 365 

neurons also showed robust orientation selective adaptation when probed at non-preferred 366 

orientations (Figure 2). In our subsequent analyses of long-term adaptation, we therefore averaged 367 

adaptation across all stimulus orientations, regardless of the neurons’ orientation preference, but 368 

qualitatively similar results were obtained when only considering trials in which stimuli matched a 369 

neurons’ preferred orientation. Overall, these findings indicate robust orientation-specific adaptation of 370 

neurons in visual cortex and thalamus to gratings presented in the immediate past. 371 

 372 
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 373 

Figure 1. Visual cortex and thalamus exhibit orientation-specific adaptation to the immediately 374 

preceding (1-back) grating. (A) Schematic of Neuropixels probe insertion trajectories through visual 375 

cortical and thalamic areas (adapted from Siegle et al. (2021). (B) Presentation sequence of drifting 376 

grating stimuli. Mice were shown drifting gratings with a duration of 2 seconds, separated by a 1-377 

second grey screen. Gratings were drifting in one of 8 different directions (0°, 45°, 90°, 135°, 180°, 378 

225°, 270°, 315°) and were presented in random order. For the analysis of orientation-specific 379 

adaptation, we contrasted activity to gratings preceded by gratings of the same orientation (repeat, 380 

blue) with that elicited by gratings preceded by a grating of the orthogonal orientation (orthogonal, 381 

red). (C) Population peristimulus time histograms of neurons in V1 for repeat and orthogonal 382 

conditions. The transient response is reduced when the same orientation is successively repeated, 383 

indicating orientation-specific adaptation. Subsequent analyses focused on this transient response (0 384 

– 100 ms, green shaded area). Vertical dashed lines denote stimulus onset and offset, respectively. 385 

Binwidth = 25 ms. Error bars show SEMs. (D) 1-back adaptation ratios of transient responses across 386 

visual areas. Adaptation ratios were computed by dividing each neuron’s firing rate for repeat by that 387 

for orthogonal stimulus presentations and therefore express the response magnitude to a repeated 388 

stimulus orientation relative to that elicited by the same stimulus orientation, but preceded by a grating 389 

with the orthogonal orientation. Adaptation ratios smaller than 1 indicate adaptation. All visual areas 390 

show significant 1-back adaptation. Error bars denote bootstrapped 95% confidence intervals. White 391 

numbers indicate the number of neurons in each area. (E) The average firing rate to a stimulus 392 
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preceded by a stimulus with the same orientation (x-axis) is consistently smaller than the firing rate to 393 

a stimulus preceded by a stimulus with the orthogonal orientation (y-axis) across mice (grey dots 394 

denote different mice; size scaled by the number of neurons of each mouse) in both thalamus (left) 395 

and cortex (right), as indicated by datapoints positioned above the diagonal. (F) Histograms of single-396 

neuron adaptation ratios (log-transformed) in thalamus (left) and cortex (right). Negative x-values 397 

indicate adaptation and the red dashed line marks zero adaptation (i.e., equal firing rates for repeat 398 

and orthogonal conditions). The triangle shape indicates the mean adaptation across the population 399 

of neurons with p-value indicating the significance of the population mean. List of acronyms: Dorso-400 

lateral geniculate nucleus of the thalamus (LGN), latero-posterior nucleus of the thalamus (LP), 401 

primary visual cortex (V1), antero-lateral area (AL), antero-medial area (AM), latero-medial area (LM), 402 

postero-medial area (PM), rostro-lateral area (RL). 403 

 404 

 405 

 406 

Figure 2. Adaptation depends on orientation tuning and adaptor/test orientation. (A, B, C) 407 

Orientation tuning curves in V1 for units of low (A), medium (B) or high (C) orientation selectivity 408 

(tertile split, see Materials & Methods), following adaptation to different 1-back grating orientations 409 

(colored arrows). Stimulus and adaptor orientations are expressed relative to each neuron’s preferred 410 
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orientation. Tuning curves show local response reductions to the adapted orientation. (D, E, F) 411 

Adaptation ratios as a function of the adaptor and test orientation relative to the neuron’s preferred 412 

orientation. For instance, the adaptation ratio for a relative stimulus orientation of 0° compares the 413 

visual response to a test grating with the neuron’s preferred orientation, when it is preceded by an 414 

adaptor grating with the same (preferred) orientation, versus when it is preceded by the orthogonal 415 

(non-preferred) adaptor orientation (see illustration in panel A). In V1 (panels D, E and F, leftmost 416 

columns), adaptation was strongest when adaptor and test stimuli corresponded to the preferred 417 

orientation of the neuron, and decreased when adapting and testing with less preferred orientations 418 

(significant main effect of relative orientation, p = 4e-11). This relationship was particularly strong in 419 

neurons exhibiting high orientation selectivity (significant interaction between relative adaptor/test 420 

orientation and orientation selectivity, p = 0.005; for definition of orientation selectivity see Materials 421 

& Methods). Nevertheless, there was clear adaptation for all adaptor orientations as indicated by 1-422 

back adaptation ratios consistently smaller than 1 (all p < 0.004, corrected for multiple comparisons), 423 

except for non-preferred (90°) adaptor and test stimuli of highly selective units (panel F, leftmost 424 

column, 90°, p = 0.88). This overall pattern of adaptation effects was qualitatively similar across 425 

cortical visual areas (panels D, E and F, columns 2 to 5). In thalamic areas (panels D, E and F, two 426 

rightmost columns), there was no evidence for a dependence of adaptation on orientation preference 427 

(no significant main effects of relative adaptor/test orientation: LGN, p = 0.28; LP, p = 0.91; no 428 

significant interactions between relative adaptor/test orientation and orientation selectivity: LGN, p = 429 

0.24; LP, p = 0.92), likely due to the overall lower degree of orientation selectivity of thalamic neurons. 430 

 431 

Long-term adaptation in visual cortex but not in thalamus 432 

In order to investigate the timescale over which adaptation influences subsequent visual processing, 433 

we computed adaptation ratios based on the orientation difference (i.e., repeat versus orthogonal) 434 

between the current grating, and gratings at different n-back timepoints. Surprisingly, we found that 435 

neurons in V1 exhibited significant adaptation effects to stimuli seen up to 8 presentations (or 22 436 

seconds) in the past, despite the presentation of multiple intervening stimuli (Figure 3A). It is worth 437 

noting that although individual past stimuli had subtle effects on the current response, cumulative 438 

adaptation to the remote stimulus history outweighed the immediate adaptation effect (17% response 439 

reduction to 1-back stimulus vs. 19% cumulative response reduction to 2- to 8-back stimuli; Figure 4). 440 
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In natural temporally correlated environments, long-term adaptation may thus have even greater 441 

weight than immediate adaptation effects. Therefore, the joint long-term stimulus history exerts a 442 

considerable influence on current sensory processing. 443 

 444 

In contrast to adaptation in cortex, adaptation in the thalamus appeared to be limited to the 1-back 445 

(LGN) or 2-back trial (LP; Figure 3B). Indeed, adaptation to temporally remote stimuli was 446 

significantly stronger in V1 compared to LGN (2-, 4- and 9-back stimulus, two-sided Welch's unequal 447 

variances t-test, all p = 0.02) and LP (3-back stimulus, p = 0.001, corrected for multiple comparisons), 448 

even after accounting for differences in the initial strength of adaptation between thalamus and V1 449 

(i.e. normalizing to the 1-back adaptation ratio). The temporal decay of adaptation in higher-level 450 

extrastriate areas was similar to the decay in V1 (Figure 3B) and long-term adaptation in cortical 451 

areas was very consistent across mice (Figure 3C, right). 452 

 453 

Figure 3. Visual cortex, but not thalamus, exhibits long-term adaptation. (A) Adaptation ratios of 454 

neurons in V1 as a function of the n-back trial. Strongest adaptation occurred in response to the 1-455 

back stimulus, but stimuli encountered up to 8 presentations in the past (seen 22 seconds ago) still 456 

exerted significant adaptation effect on the current visual response, despite the presentation of 457 

intervening stimuli (red bars, p < 0.05, corrected for multiple comparisons). The decay of adaptation 458 

over n-back trials was well captured by a double-exponential decay model with a fast- and slow-459 

decaying adaptation component (black dashed line; afast = 13.99%, τfast = 0.85 trials, aslow = 3.45%, 460 
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τslow = 6.82 trials). Error bars denote bootstrapped 95% confidence intervals. (B) Adaptation ratio as 461 

function of n-back trial for different visual areas (color-coded). While adaptation decays similarly and 462 

slowly across cortical visual areas (square symbols), and is generally significant for up to 6-8 trials 463 

back (symbols with black border, p < 0.05, corrected for multiple comparisons per area), it decays 464 

more rapidly in thalamic areas LGN and LP (circle symbols). Black and lilac-green lines illustrate the 465 

best fitting exponential decay models for cortex and thalamus. Error bars denote standard errors of 466 

the mean. (C) Average firing rates per mouse when the 4- to 8-back orientation was repeated (x-axis) 467 

or orthogonal (y-axis) relative to the current orientation. Mice exhibit consistent long-term adaptation 468 

in cortex (right) but not in thalamus (left). (D) Histograms of single-neuron adaptation ratios (log-469 

transformed) in thalamus (left) and cortex (right). 470 

 471 

 472 

 473 

Figure 4. Cumulative adaptation effects in V1. Random sequences of grating orientations, as the 474 

ones used in the current experiment, prevent any systematic accumulation of adaptation across 475 

multiple stimulus presentations. While this allows us to study the influence of individual n-back stimuli 476 

on the current visual response, it underestimates the influence of long-term adaptation in natural 477 

environments, in which orientations tend to remain stable over prolonged time periods (van Bergen & 478 

Jehee, 2019), therefore leading to an accumulation of adaptation. Panel (A) serves to illustrate that 479 

the adaptation effects of 2- to 8-back stimuli (red bars), albeit small when taken individually, together 480 

may lead to a considerable reduction of the current response (19% reduction; red-striped bar) that 481 

even outweighs the adaptation effect of the 1-back stimulus (17% reduction; light red bar). 482 

Importantly, the cumulative influence of repeating 2- to 8-back grating orientations could not be 483 

estimated empirically in the current dataset, since such streaks of orientation repetitions are 484 

exceedingly rare for random sequences (probability of ~0.006%). Here, we inferred the cumulative 485 
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response reduction by assuming that the adaptation effects of previous stimuli accumulate 486 

approximately linearly. The inferred cumulative adaptation ratio was then calculated as 𝑎𝑟2−8 =487 

 ∏ 𝑎𝑟𝑛
8
𝑛=2 , where ar2-8 is the cumulative adaptation ratio of 2- to 8-back stimuli, and arn denotes the 488 

empirically estimated adaptation ratio of an individual n-back stimulus. (B) To evaluate whether the 489 

assumption of a linear accumulation of adaptation approximately holds, we compared the empirically 490 

observed adaptation effect when two previous adjacent stimuli had the same orientation as the 491 

current stimulus (dark grey bars; ~6.25% of all trials), to the cumulative adaptation effect inferred from 492 

individual n-back adaptation estimates (light grey bars). The empirically observed adaptation effect of 493 

two successive stimuli roughly matched the predicted adaptation effect, suggesting that adaptation 494 

accumulates approximately linearly in the current setting. All error bars denote 95% CIs. 495 

 496 

 497 

We further characterized the timescale of recovery from adaptation in visual cortex and thalamus by 498 

fitting exponential decay models to the n-back adaptation ratios in the respective areas. Recovery in 499 

cortical visual areas was better explained by double-exponential decay models, with a fast and a 500 

slow-decaying adaptation component, compared to a single-exponential decay (F-tests, all p < 0.006, 501 

except VISrl: p = 0.072). Recovery from adaptation was slowest in V1 with an exponential time 502 

constant τslow of 6.82 trials (bootstrapped 95% CI [3.39, 13.50]; Figure 3A, black dashed line), but 503 

was relatively similar for extrastriate areas (τslow ranging from 3.12 to 5.52 trials, all 95% CI intervals 504 

overlapping, see Table 1 for all parameter estimates). In contrast, the recovery of adaptation in the 505 

thalamus was most parsimoniously captured by a single-exponential decay model (F-tests, p = 1 for 506 

both LGN and LP), and the time constants of the single-exponential decays were very short (LGN: τfast 507 

= 0.02 trials, 95% CI [0.004, 0.63]; LP: τfast = 0.71 trials, 95% CI [0.03, 0.93]). Together, these results 508 

indicate that adaptation in response to relatively brief 2-second stimuli decays surprisingly slowly in 509 

cortical visual areas, over the course of dozens of seconds, and survives the presentation of multiple 510 

intervening stimuli. Conversely, while adapting to the immediate stimulus history, neurons in the 511 

thalamus exhibit a fast recovery from adaptation, in line with a shorter temporal integration timescale 512 

for low- compared to high-level visual areas. 513 

 514 

 515 
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ROI afast τfast aslow τslow 

V1 13.99 [10.73, 16.14] 0.85 [0.59, 1.13] 3.45 [1.71, 6.64] 6.82 [3.39, 13.50] 
AL 10.19 [8.14, 12.71] 0.01 [1e-3, 0.47] 6.84 [4.90, 8.54] 4.08 [3.10, 5.94] 
AM 9.96 [6.88, 14.30] 0.39 [5e-3, 0.87] 8.03 [3.83, 11.04] 3.39 [2.37, 6.50] 
LM 13.35 [10.37, 16.07] 0.46 [0.02, 0.72] 3.71 [1.89, 5.84] 5.52 [3.42, 10.60] 
PM 13.20 [10.43, 16.32] 0.02 [2e-3, 0.45] 6.50 [3.91, 9.26] 4.43 [2.75, 9.28] 
RL 4.58 [1.97, 12.00] 0.26 [5e-3, 1.83] 7.40 [0.7, 9.82] 3.12 [2.19, 34.41] 

LGN 6.51 [4.04, 8.85] 0.02 [4e-3, 0.63] - - 
LP 16.76 [12.68, 21.02] 0.71 [0.03, 0.93] - - 

 516 

Table 1. Best fitting parameters of exponential decay models fitted to adaptation ratios 517 

(drifting gratings). Amplitude parameters a are expressed in %-response reduction of repeat with 518 

respect to orthogonal trials. Exponential time constants τ are expressed in units of trials. The decay of 519 

adaptation in thalamic areas LGN and LP was significantly better fit by single-exponential decay 520 

models. Therefore, no parameters for the second exponential component are provided for these 521 

areas. Values in parentheses indicate bootstrapped 95% confidence intervals. 522 

 523 

 524 

Cortical long-term adaptation is due to suppression following stimulus repetitions 525 

Thus far we have quantified adaptation as the ratio of neural responses following repeated versus 526 

orthogonal stimuli. While this quantification revealed orientation-specific long-term traces of past 527 

stimuli in visual cortex, they do not reveal the relative contribution of response suppression (when a 528 

past orientation is repeated), and response enhancement (when the current and past orientations are 529 

orthogonal). To assess this, we leveraged the presentation of randomly interspersed blank trials 530 

during which no stimulus was presented. In particular, we used trials for which the past n-back 531 

stimulus was a blank trial to establish a baseline adaptation effect against which to compare trials for 532 

which the n-back stimulus was repeated or orthogonal. We found that 1-back repeated and 533 

orthogonal stimulus presentations both suppressed neural response (Fig. 5). Importantly, the 534 

suppressive effect of orthogonal orientations decayed quickly, and was limited to the 1-back trial, 535 

whereas the suppressive effect of repeated stimuli decayed more slowly, and remained significant for 536 

up to 8 trials back (Fig. 5). This suggests that long-term adaptation effects are mainly driven by 537 

response suppression to repeated stimulus orientations. 538 

 539 
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 540 

Figure 5. Cortical long-term adaptation is driven by repeated stimulus orientations. We 541 

expressed the response modulation of neurons across all cortical areas by n-back repeated and 542 

orthogonal trials relative to a neutral baseline, in which no stimulus was presented on the n-back trial. 543 

To this end, we computed adaptation ratios by dividing each neuron’s firing rate for repeat stimulus 544 

presentations by that of blank stimulus presentations (blue data points), or orthogonal divided by 545 

blank stimulus presentations (red data points). While the suppressive effects of orthogonal stimuli 546 

decays quickly, repeated stimuli exert long-term suppression for up to 8 trials. Error bars denote 547 

bootstrapped 95% confidence intervals. 548 

 549 

 550 

Long-term adaptation following exposure to brief static gratings 551 

So far, we have shown that neurons in mouse visual cortex exhibit long-lived adaptation to 2-second 552 

presentations of drifting gratings, influencing subsequent visual processing over the time course of 553 

dozens of seconds and multiple intervening stimuli. However, it is unclear to which degree the 554 

existence of such long-term adaptation effects depends on the particular stimulus type (drifting 555 

gratings) and duration (2 seconds). We therefore tested whether similar long-lived adaptation effects 556 

can be elicited by the presentation of brief, static gratings. Mice were presented with a rapid stream of 557 

static gratings, presented back-to-back for 250 milliseconds each (Figure 6A). Similar to our previous 558 

analyses, we probed orientation-specific adaptation by contrasting visual responses to gratings that 559 

were preceded by a grating of the same or orthogonal orientation. In V1, the repetition of stimulus 560 

orientation led to a clear reduction of the visual response to the current grating (Figure 6B, green 561 

shaded area; n = 530; adaptation ratio: 0.90, p = 2e-81, 95% CI [0.89, 0.91]). Very similar adaptation 562 

effects were found for extrastriate areas (Figure 6C, 1-back adaptation ratios between 0.89 and 0.93, 563 

all p < 8e-9, two-sided t-tests, corrected for multiple comparisons) and adaptation was consistent 564 

across mice (Figure 6D). Although there were only relatively few responsive neurons in the thalamus 565 



 

 21 

(LGN: n = 60; LP: n = 16), both LGN and LP exhibited significant adaptation effects (LGN - adaptation 566 

ratio: 0.93, p = 0.004, 95% CI [0.93, 0.98]; LP – adaptation ratio: 0.85, p = 0.01, 95% CI [0.85, 0.96]). 567 

Overall, these findings of orientation-specific adaptation, exerted by the immediately preceding static 568 

grating stimulus, parallel those found for adaptation to drifting gratings. 569 

 570 

Figure 6. Visual cortex exhibits adaptation in response to immediately preceding briefly 571 

presented static gratings. (A) Presentation sequence of static grating stimuli. Mice were shown 572 

static gratings with a duration of 250 ms with no intervening grey period. Gratings had one of six 573 

orientations (0°, 30°, 60°, 90°, 120°, 150°), five spatial frequencies (0.02, 0.04, 0.08, 0.16, 0.32 574 

cycles/°), and four phases (0, 0.25, 0.5, 0.75). The order of grating presentations was randomized. 575 

Similar to the analysis of drifting gratings, we contrasted activity to gratings preceded by gratings of 576 

the same orientation (repeat, blue) with that elicited by gratings preceded by a grating of the 577 

orthogonal orientation (orthogonal, red). (B) Population peristimulus time histograms of neurons in V1 578 

for repeat and orthogonal conditions. The visual response to the current stimulus (green shaded area) 579 

was reduced when the previous stimulus had the same orientation as the current stimulus (repeat), 580 

indicating orientation-specific adaptation. Vertical dashed lines denote onset and offset of the current 581 

stimulus, respectively. Binwidth = 25 ms. Error bars show SEMs. (C) 1-back adaptation ratios across 582 

visual areas. All areas show significant 1-back adaptation. Error bars denote bootstrapped 95% 583 

confidence intervals. White numbers indicate the number of neurons in each area. (D) Mice show 584 

consistently reduced firing rates after a repeated versus orthogonal orientation, as indicated by 585 
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datapoints falling above the diagonal. Same conventions as in Fig. 1E. (E) Histograms of single-586 

neuron adaptation ratios (log-transformed) in thalamus (left) and cortex (right). 587 

 588 

 589 

Next, we investigated the timescale over which adaptation to briefly presented static gratings affected 590 

subsequent visual processing. Neurons in V1 showed significant adaptation effects to stimuli 591 

presented as far as 20 presentations (5 seconds) in the past (Figure 7A and 7C showing consistent 592 

adaptation across mice). Again, the decay of adaptation was well described by a double exponential 593 

decay model with a long time constant τslow = 9.12 trials (95% CI [6.09, 14.82]; Figure 7A, black 594 

dashed line). Higher-level extrastriate cortical areas showed similar decay dynamics (Figure 7B), with 595 

decay time constants ranging from 6.54 (VISam) to 21.78 trials (VISpm; all 95% CI intervals 596 

overlapping; see Table 2 for all parameter estimates). While all cortical areas were significantly better 597 

fit by a double exponential decay model (F-tests, all p < 1e-5), neurons in LGN were more 598 

parsimoniously described (p = 0.22) by a single exponential decay with a shorter time constant (τfast = 599 

2.93 trials, 95% CI [1.36, 7.32]), replicating the experiment using drifting gratings. However, in this 600 

experiment, the difference in long-term adaptation of cortex and thalamus was less pronounced than 601 

in the experiment using drifting gratings. We did not include thalamic nucleus LP in this analysis due 602 

to the low number of visually response neurons in this area (16 neurons across 32 mice). These 603 

findings demonstrate that even briefly presented static grating stimuli, which are embedded in a rapid 604 

stream of stimulus presentations, still elicit robust long-term cortical adaptation effects that persist 605 

despite the encoding of many intervening stimuli. 606 
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 607 

Figure 7. Visual cortex exhibits long-term adaptation following briefly presented gratings. (A) 608 

Adaptation ratios of V1 as a function of the n-back trial. While adaptation was most strongly driven by 609 

the previous stimulus (1-back), stimuli encountered up to 20 presentations in the past (5 seconds ago) 610 

still exerted significant adaptation effects on the current visual response (red bars, p < 0.05, FDR-611 

corrected). Similar to drifting grating adaptation, the decay of adaptation over n-back trials was well 612 

captured by a double-exponential decay model with a fast- and slow-decaying adaptation component 613 

(black dashed line; afast = 8.17%, τfast = 0.54 trials, aslow = 2.04%, τslow = 9.12 trials). Error bars denote 614 

bootstrapped 95% confidence intervals. (B) Adaptation ratios as function of n-back trial for different 615 

visual areas (color-coded). In cortical areas (square symbols) there is significant adaptation to 616 

stimulus orientations presented up to 20 trials back (symbols with black border, p < 0.05, FDR-617 

corrected per area), while in thalamic areas (circle symbols) long-term adaptation is less evident. 618 

Error bars denote standard errors of the mean. Black and orange-green lines denote the best fitting 619 

exponential decay models for cortex and thalamus, respectively. Adaptation was computed over the 620 

whole stimulus interval (0 to 250 ms), since due to the back-to-back presentation of static gratings, 621 

visual responses to the previous stimulus overlapped with the initial time window of the current 622 

stimulus, thereby increasing response variability in this early time window. However, largely similar 623 

results were obtained when performing the analyses on the same time window used in the drifting 624 

grating experiment (0 to 100 ms), except for a less clear difference of the decay of adaptation 625 

between cortex and thalamus. (C) Average firing rates per mouse when the 5- to 20-back orientation 626 
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was repeated (x-axis) or orthogonal (y-axis) relative to the current orientation, in the thalamus (left) 627 

and cortex (right). (D) Histograms of single-neuron long-term (avg. 5- to 20-back) adaptation ratios 628 

(log-transformed) in thalamus (left) and cortex (right). 629 

 630 
ROI afast τfast aslow τslow 

V1 8.17 [7.11, 9.23] 0.54 [0.37, 0.71] 2.04 [1.33, 2.91] 9.12 [6.09, 14.82] 
AL 7.38 [5.27, 8.64] 0.68 [0.02, 1.05] 1.49 [0.77, 3.25] 14.79 [5.24, 39.75] 
AM 6.24 [4.46, 8.05] 0.48 [8e-3, 0.96] 2.77 [1.13, 4.43] 6.54 [3.82, 19.11] 
LM 7.93 [6.14, 9.80] 0.40 [0.02, 0.61] 2.91 [1.89, 4.00] 7.74 [5.42, 13.36] 
PM 8.46 [6.74, 10.30] 0.64 [0.36, 0.87] 1.57 [1.10, 2.25] 21.78 [13.07, 37.00] 
RL 5.39 [3.50, 7.56] 0.66 [0.02, 1.09] 1.39 [0.87, 2.07] 19.58 [10.99, 37.51] 

LGN 3.91 [1.80, 6.59] 2.93 [1.36, 7.32] - - 

 631 

Table 2. Best fitting parameters of exponential decay models fitted to adaptation ratios (static 632 

gratings). Amplitude parameters a are expressed in %-response reduction of repeat with respect to 633 

orthogonal trials. Exponential time constants τ are expressed in units of trials (250 ms duration). The 634 

decay of adaptation in LGN was significantly better fit by single-exponential decay model. Therefore, 635 

no parameters for the second exponential component are provided for LGN. Values in parentheses 636 

indicate bootstrapped 95% confidence intervals. 637 

 638 

Short-term adaptation does not introduce spurious long-term adaptation effects 639 

Our analysis approach of quantifying adaptation to the n-back stimulus by conditioning the current 640 

visual response on the orientation difference between current and previous n-back stimulus 641 

(repeat/orthogonal) relies on the assumption that the stimulus sequence is uncorrelated. If the 642 

presentations stimulus orientations were correlated across trials, these correlations may introduce 643 

spurious adaptation effects, potentially causing short-term adaptation to masquerade as long-term 644 

adaptation (Maus et al., 2013). While the presentation order of stimuli of the current experiments was 645 

randomized, making such spurious adaptation effects unlikely, we nevertheless assessed this 646 

potential confound via the simulation of an artificial neuron that only exhibited short-term (1-back) 647 

adaptation. We observed no spurious long-term adaptation effects for this artificial neuron when 648 

presented with the drifting grating sequences (Figure 8A), nor when presented with the static grating 649 

sequences (Figure 8B), markedly different from the long-term adaptation effects we observed in the 650 

empirical data. 651 

 652 

 653 
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 654 

Figure 8. Short-term (1-back) adaptation does not introduce spurious long-term adaptation 655 

effects for the particular stimulus sequences used in the experiments. We simulated responses 656 

of a artificial neuron to the particular stimulus sequences used in the drifting grating experiment 657 

(panel A) and static grating experiment (panel B). The artificial neuron responded equally to all 658 

stimulus orientations, but selectively reduced its responses to a successive repeated orientation to 659 

mimic orientation-specific 1-back adaptation. We chose the strength of this 1-back adaptation effect to 660 

match the empirically observed 1-back adaptation of V1. We subsequently analyzed the simulated 661 

responses with the same procedure used for the empirical data. The analysis of the simulated 662 

responses recovered the ground truth 1-back adaptation effect (black data points). There were no 663 

spurious adaptation effects for stimuli further in the past, as indicated by the black data points being 664 

centered on an adaptation ratio of 1, markedly different from the empirically observed long-term 665 

adaptation effects (red data points - adaptation in V1). Black error bars denote 95% CIs of adaptation 666 

across the simulations of the 32 stimulus sequences. Red error bars denote 95% CIs of empirical 667 

adaptation across neurons in V1. 668 

 669 

Discussion 670 

We observed that neurons in mouse visual cortex exhibit remarkably long timescales of adaptation 671 

effects after brief visual stimulation, influencing the processing of subsequent input over dozens of 672 

seconds and outliving the presentation of several intervening stimuli. The long-term adaptation effect 673 

was stimulus-specific - tuned to the orientation differences between past and current stimuli - 674 

indicating that the visual cortex maintains a lasting memory trace of individual briefly experienced 675 

stimuli. Although adaptation to individual past stimuli was subtle, the expected cumulative adaptation 676 

effect of the long-term stimulus history outweighed short-term adaptation to the immediately 677 
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preceding stimulus. This suggests that long-term adaptation can have a profound influence on 678 

sensory processing, especially when visual input is temporally correlated, as is the case for natural 679 

environments (van Bergen and Jehee, 2019). While adaptation to drifting gratings decayed at a 680 

similar rate in primary and extrastriate visual cortex, and was still observable for stimuli seen 8 trials 681 

(or 22 seconds) in the past, adaptation in the thalamus decayed more quickly, limited to the 1- or 2-682 

back stimulus (experienced 1-4 seconds prior). This demonstrates that the long-term component of 683 

adaptation observed in the visual cortex is not inherited from the thalamus, but is maintained in 684 

cortical circuits. Finally, we replicated our findings of cortical long-term adaptation to drifting gratings 685 

with a different stimulus set of rapidly presented static gratings, underlining the robustness and 686 

ecological validity of the long-term temporal dependencies. However, in this experiment, the 687 

difference in long-term adaptation of cortex and thalamus was less pronounced than in the 688 

experiment using drifting gratings. The back-to-back presentation of static gratings may interfere with 689 

our measurement of adaptation effects, because responses during stimulus presentation is likely to 690 

include both responses to the onset of that stimulus, and responses to the offset of the previous 691 

stimulus. Together, our findings show that visual cortex maintains concurrent stimulus-specific 692 

memory traces of briefly presented input, which allow the visual system to build up a statistical 693 

representation of the world over longer timescales. We speculate that this may enable the visual 694 

system to exploit temporal input regularities over extended timescales to efficiently encode new visual 695 

stimuli under natural conditions (Barlow and Földiák, 1989; Müller et al., 1999; Wainwright, 1999; 696 

Clifford et al., 2000; for reviews see Schwartz et al., 2007; Weber et al., 2019). 697 

 698 

There is ample evidence that sensory cortex can exhibit long-term adaptation following long exposure 699 

to a stimulus.  For instance, long stimulus presentations lasting from dozens of seconds to several 700 

minutes can alter visual responses of neurons in monkey and cat primary visual cortex over similarly 701 

long timescales, persisting for several minutes (Dragoi et al., 2000; Patterson et al., 2013). 702 

Furthermore, stimulus-specific adaptation effects can accumulate over many brief intermittent 703 

presentations of the same stimulus (Kuravi and Vogels, 2017), and subsequently show a persistence 704 

of several seconds (Ulanovsky, 2004; Peter et al., 2020). Crucially, in contrast to these previous 705 

studies, here we tested the adaptation effects elicited by individual, briefly presented stimuli. In the 706 

stimulus sequences of the current experiments, all stimulus orientations occurred equally often and in 707 
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random order, precluding systematic accumulation of adaptation to any particular orientation of higher 708 

prevalence. Despite the absence of such accumulation effects, we find that the presentation of brief 709 

individual stimuli alters subsequent visual processing over time spans of at least 22 seconds and 710 

affects the processing of many subsequent stimuli. This demonstrates that long-term adaptation 711 

effects are not contingent on long adaptor durations or many repeated presentations of the same 712 

adaptor stimulus, but can occur in much more naturalistic settings that are also frequently employed 713 

in experimental designs, i.e. in response to brief individual visual experiences. 714 

 715 

The observation of long-term adaptation effects to brief stimuli is particularly surprising, as previous 716 

studies investigating the recovery of adaptation following brief visual stimulation reported only very 717 

fleeting adaptation effects. In V1 of anesthetized monkeys, adaptation to 4-seconds long drifting 718 

gratings decayed with a half-life of ~1 second, in the absence of any intervening visual input 719 

(Patterson et al., 2013). This half-life is much shorter than the ~14 seconds we observed in the 720 

current study. We speculate that this difference could be, at least partly, related to the anesthetized 721 

versus awake state of the animals in the respective experiments, and that long-term adaptation might 722 

be facilitated by deeper, recurrent stimulus processing in awake animals. Nevertheless, recent studies 723 

in awake mice point towards similar short-lived adaptation effects in V1. For instance, adaptation to 724 

100 ms gratings has resulted in decay time constants of 0.5 to 1 second (Jin et al., 2019; Jin and 725 

Glickfeld, 2020), and other studies have found no detectible effects of adaptation to 2-seconds drifting 726 

gratings after a 6-seconds delay (King and Crowder, 2018), and no history dependencies beyond 1 727 

second in response to 250 milliseconds orientation patterns (Kim et al., 2019). Notably, most of these 728 

previous studies have investigated adaptation in the absence of any intervening visual input, making 729 

the current observation of stimulus specific long-term adaptation despite intervening input even more 730 

astounding. One major advantage of the current study is the large number of recorded neurons 731 

(2,365), which vastly increased our power to reveal subtle but reliable long-term adaptation effects 732 

that may have gone unnoticed in previous studies. 733 

 734 

It should be noted that long-term adaptation, also in the face of intervening visual input, has been 735 

observed in higher-order visual areas in infero-temporal cortex of primates and humans, when 736 

observers performed a task on repeated stimuli (Henson et al., 2000, 2004; McMahon and Olson, 737 
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2007). Importantly, these long-term adaptation effects, also known as repetition suppression (Grill-738 

Spector et al., 2006; Barron et al., 2016), appear to be highly dependent on attention (Murray and 739 

Wojciulik, 2004; Henson and Mouchlianitis, 2007; Larsson and Smith, 2012) and task (Henson et al., 740 

2002; Henson, 2016) and have been related to processes of memory recall (Meyer and Rust, 2018). 741 

While phenomenologically similar to the current adaptation effects (reduction of neural activity), it is 742 

likely that these task-dependent higher-level repetition suppression effects are distinct from the 743 

automatic and early adaptation effects on sensory encoding measured in the current experiments, 744 

which take place in both primary and higher-order visual areas in the absence of an explicit task. In 745 

support of this view, previous studies measuring long-term repetition suppression effects in infero-746 

temporal cortex in the presence of a task did not observe concomitant long-term effects in early visual 747 

cortex (Sayres and Grill-Spector, 2006; Weiner et al., 2010), suggesting that these high-level 748 

repetition suppression effects are at least partially distinct from automatic and early adaptation effects 749 

on sensory encoding. In contrast, here we show that even in the absence of an explicit task, the 750 

earliest stages of cortical visual processing automatically adapt to the long-term history of individual 751 

briefly presented stimuli. 752 

 753 

It has been previously proposed that temporal integration timescales increase along the cortical 754 

hierarchy (Hasson et al., 2008; Lerner et al., 2011; Honey et al., 2012; Murray et al., 2014). Here, we 755 

show that the integration window of temporal context, in the form of adaptation, increases from the 756 

thalamus to cortex, broadly in line with these proposals. However, we did not find different integration 757 

times between lower-level primary and higher-level extrastriate visual cortex, congruent with a recent 758 

study in humans (Fritsche et al., 2020a; but see Zhou et al., 2018). Since we measured adaptation in 759 

the early feedforward response (0 to 100 milliseconds), it appears unlikely that long-term adaptation in 760 

V1 was inherited from higher-level visual areas through feedback connections, but rather suggests 761 

that long-term temporal context already influences the earliest stages of cortical processing. The 762 

similar decay of adaptation across cortical areas could either be due to the comparatively flat 763 

hierarchical structure of mouse visual cortex (for a review see Glickfeld and Olsen, 2017) or may 764 

reflect an important difference between the temporal tuning of adaptation and previously reported 765 

temporal integration timescales.  766 

 767 
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Importantly, while the current study focused on the early feedforward response (first 100 ms for 768 

drifting gratings, 250 ms for static gratings), adaptation has been found to alter neural responses 769 

beyond the early response epoch, further interacting with factors such as stimulus size and adaptation 770 

duration (Patterson et al., 2013), pointing towards more complex inhibitory and excitatory population-771 

level coordination (Solomon and Kohn, 2014). In order to obtain a full understanding of the sources 772 

and the long-term consequences of adaptation, future studies will therefore need to investigate further 773 

properties of the long-term adaptation effects reported here, such as their dependence on stimulus 774 

parameters and response epoch. 775 

 776 

Recent psychophysical studies in humans have revealed long-lived repulsive perceptual biases 777 

following briefly presented gratings, biasing subsequent orientation perception over dozens of 778 

seconds (Chopin and Mamassian, 2012; Suárez-Pinilla et al., 2018; Gekas et al., 2019; Fritsche et al., 779 

2020b). Our current findings of long-term orientation-specific adaptation in early visual cortex 780 

suggests a potential neural mechanism underlying these perceptual biases. Interestingly, a recent 781 

behavioral study in rats revealed similar long-term dependencies in a vibrissal vibration judgment task 782 

(Hachen et al., 2020), suggesting potential parallels of long-term perceptual adaptation between 783 

rodents and humans. An important future goal will be to quantitatively relate such behavioral 784 

adaptation biases to the present long-term history dependencies at the neural level. 785 

 786 

To conclude, our findings highlight the ubiquitous influence of the short- and long-term stimulus 787 

history on current sensory processing in visual cortex. This dependence on the broader temporal 788 

context may enable the visual system to efficiently represent information in a slowly changing 789 

environment (Schwartz et al., 2007; Weber et al., 2019).790 
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Figure Legends 916 

 917 

Figure 1. Visual cortex and thalamus exhibit orientation-specific adaptation to the immediately 918 

preceding (1-back) grating. (A) Schematic of Neuropixels probe insertion trajectories through visual 919 

cortical and thalamic areas (adapted from Siegle et al. (2021). (B) Presentation sequence of drifting 920 

grating stimuli. Mice were shown drifting gratings with a duration of 2 seconds, separated by a 1-921 

second grey screen. Gratings were drifting in one of 8 different directions (0°, 45°, 90°, 135°, 180°, 922 

225°, 270°, 315°) and were presented in random order. For the analysis of orientation-specific 923 

adaptation, we contrasted activity to gratings preceded by gratings of the same orientation (repeat, 924 

blue) with that elicited by gratings preceded by a grating of the orthogonal orientation (orthogonal, 925 

red). (C) Population peristimulus time histograms of neurons in V1 for repeat and orthogonal 926 

conditions. The transient response is reduced when the same orientation is successively repeated, 927 

indicating orientation-specific adaptation. Subsequent analyses focused on this transient response (0 928 

– 100 ms, green shaded area). Vertical dashed lines denote stimulus onset and offset, respectively. 929 

Binwidth = 25 ms. Error bars show SEMs. (D) 1-back adaptation ratios of transient responses across 930 

visual areas. Adaptation ratios were computed by dividing each neuron’s firing rate for repeat by that 931 

for orthogonal stimulus presentations and therefore express the response magnitude to a repeated 932 

stimulus orientation relative to that elicited by the same stimulus orientation, but preceded by a grating 933 

with the orthogonal orientation. Adaptation ratios smaller than 1 indicate adaptation. All visual areas 934 

show significant 1-back adaptation. Error bars denote bootstrapped 95% confidence intervals. White 935 

numbers indicate the number of neurons in each area. (E) The average firing rate to a stimulus 936 

preceded by a stimulus with the same orientation (x-axis) is consistently smaller than the firing rate to 937 

a stimulus preceded by a stimulus with the orthogonal orientation (y-axis) across mice (grey dots 938 

denote different mice; size scaled by the number of neurons of each mouse) in both thalamus (left) 939 

and cortex (right), as indicated by datapoints positioned above the diagonal. (F) Histograms of single-940 

neuron adaptation ratios (log-transformed) in thalamus (left) and cortex (right). Negative x-values 941 

indicate adaptation and the red dashed line marks zero adaptation (i.e., equal firing rates for repeat 942 

and orthogonal conditions). The triangle shape indicates the mean adaptation across the population 943 

of neurons with p-value indicating the significance of the population mean. List of acronyms: Dorso-944 

lateral geniculate nucleus of the thalamus (LGN), latero-posterior nucleus of the thalamus (LP), 945 
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primary visual cortex (V1), antero-lateral area (AL), antero-medial area (AM), latero-medial area (LM), 946 

postero-medial area (PM), rostro-lateral area (RL). 947 

 948 

Figure 2. Adaptation depends on orientation tuning and adaptor/test orientation. (A, B, C) 949 

Orientation tuning curves in V1 for units of low (A), medium (B) or high (C) orientation selectivity 950 

(tertile split, see Materials & Methods), following adaptation to different 1-back grating orientations 951 

(colored arrows). Stimulus and adaptor orientations are expressed relative to each neuron’s preferred 952 

orientation. Tuning curves show local response reductions to the adapted orientation. (D, E, F) 953 

Adaptation ratios as a function of the adaptor and test orientation relative to the neuron’s preferred 954 

orientation. For instance, the adaptation ratio for a relative stimulus orientation of 0° compares the 955 

visual response to a test grating with the neuron’s preferred orientation, when it is preceded by an 956 

adaptor grating with the same (preferred) orientation, versus when it is preceded by the orthogonal 957 

(non-preferred) adaptor orientation (see illustration in panel A). In V1 (panels D, E and F, leftmost 958 

columns), adaptation was strongest when adaptor and test stimuli corresponded to the preferred 959 

orientation of the neuron, and decreased when adapting and testing with less preferred orientations 960 

(significant main effect of relative orientation, p = 4e-11). This relationship was particularly strong in 961 

neurons exhibiting high orientation selectivity (significant interaction between relative adaptor/test 962 

orientation and orientation selectivity, p = 0.005; for definition of orientation selectivity see Materials 963 

& Methods). Nevertheless, there was clear adaptation for all adaptor orientations as indicated by 1-964 

back adaptation ratios consistently smaller than 1 (all p < 0.004, corrected for multiple comparisons), 965 

except for non-preferred (90°) adaptor and test stimuli of highly selective units (panel F, leftmost 966 

column, 90°, p = 0.88). This overall pattern of adaptation effects was qualitatively similar across 967 

cortical visual areas (panels D, E and F, columns 2 to 5). In thalamic areas (panels D, E and F, two 968 

rightmost columns), there was no evidence for a dependence of adaptation on orientation preference 969 

(no significant main effects of relative adaptor/test orientation: LGN, p = 0.28; LP, p = 0.91; no 970 

significant interactions between relative adaptor/test orientation and orientation selectivity: LGN, p = 971 

0.24; LP, p = 0.92), likely due to the overall lower degree of orientation selectivity of thalamic neurons. 972 

 973 

Figure 3. Visual cortex, but not thalamus, exhibits long-term adaptation. (A) Adaptation ratios of 974 

neurons in V1 as a function of the n-back trial. Strongest adaptation occurred in response to the 1-975 
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back stimulus, but stimuli encountered up to 8 presentations in the past (seen 22 seconds ago) still 976 

exerted significant adaptation effect on the current visual response, despite the presentation of 977 

intervening stimuli (red bars, p < 0.05, corrected for multiple comparisons). The decay of adaptation 978 

over n-back trials was well captured by a double-exponential decay model with a fast- and slow-979 

decaying adaptation component (black dashed line; afast = 13.99%, τfast = 0.85 trials, aslow = 3.45%, 980 

τslow = 6.82 trials). Error bars denote bootstrapped 95% confidence intervals. (B) Adaptation ratio as 981 

function of n-back trial for different visual areas (color-coded). While adaptation decays similarly and 982 

slowly across cortical visual areas (square symbols), and is generally significant for up to 6-8 trials 983 

back (symbols with black border, p < 0.05, corrected for multiple comparisons per area), it decays 984 

more rapidly in thalamic areas LGN and LP (circle symbols). Black and lilac-green lines illustrate the 985 

best fitting exponential decay models for cortex and thalamus. Error bars denote standard errors of 986 

the mean. (C) Average firing rates per mouse when the 4- to 8-back orientation was repeated (x-axis) 987 

or orthogonal (y-axis) relative to the current orientation. Mice exhibit consistent long-term adaptation 988 

in cortex (right) but not in thalamus (left). (D) Histograms of single-neuron adaptation ratios (log-989 

transformed) in thalamus (left) and cortex (right). 990 

 991 

Figure 4. Cumulative adaptation effects in V1. Random sequences of grating orientations, as the 992 

ones used in the current experiment, prevent any systematic accumulation of adaptation across 993 

multiple stimulus presentations. While this allows us to study the influence of individual n-back stimuli 994 

on the current visual response, it underestimates the influence of long-term adaptation in natural 995 

environments, in which orientations tend to remain stable over prolonged time periods (van Bergen & 996 

Jehee, 2019), therefore leading to an accumulation of adaptation. Panel (A) serves to illustrate that 997 

the adaptation effects of 2- to 8-back stimuli (red bars), albeit small when taken individually, together 998 

may lead to a considerable reduction of the current response (19% reduction; red-striped bar) that 999 

even outweighs the adaptation effect of the 1-back stimulus (17% reduction; light red bar). 1000 

Importantly, the cumulative influence of repeating 2- to 8-back grating orientations could not be 1001 

estimated empirically in the current dataset, since such streaks of orientation repetitions are 1002 

exceedingly rare for random sequences (probability of ~0.006%). Here, we inferred the cumulative 1003 

response reduction by assuming that the adaptation effects of previous stimuli accumulate 1004 

approximately linearly. The inferred cumulative adaptation ratio was then calculated as 𝑎𝑟2−8 =1005 
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 ∏ 𝑎𝑟𝑛
8
𝑛=2 , where ar2-8 is the cumulative adaptation ratio of 2- to 8-back stimuli, and arn denotes the 1006 

empirically estimated adaptation ratio of an individual n-back stimulus. (B) To evaluate whether the 1007 

assumption of a linear accumulation of adaptation approximately holds, we compared the empirically 1008 

observed adaptation effect when two previous adjacent stimuli had the same orientation as the 1009 

current stimulus (dark grey bars; ~6.25% of all trials), to the cumulative adaptation effect inferred from 1010 

individual n-back adaptation estimates (light grey bars). The empirically observed adaptation effect of 1011 

two successive stimuli roughly matched the predicted adaptation effect, suggesting that adaptation 1012 

accumulates approximately linearly in the current setting. All error bars denote 95% CIs. 1013 

 1014 

Figure 5. Cortical long-term adaptation is driven by repeated stimulus orientations. We 1015 

expressed the response modulation of neurons across all cortical areas by n-back repeated and 1016 

orthogonal trials relative to a neutral baseline, in which no stimulus was presented on the n-back trial. 1017 

To this end, we computed adaptation ratios by dividing each neuron’s firing rate for repeat stimulus 1018 

presentations by that of blank stimulus presentations (blue data points), or orthogonal divided by 1019 

blank stimulus presentations (red data points). While the suppressive effects of orthogonal stimuli 1020 

decays quickly, repeated stimuli exert long-term suppression for up to 8 trials. Error bars denote 1021 

bootstrapped 95% confidence intervals. 1022 

 1023 

Figure 6. Visual cortex exhibits adaptation in response to immediately preceding briefly 1024 

presented static gratings. (A) Presentation sequence of static grating stimuli. Mice were shown 1025 

static gratings with a duration of 250 ms with no intervening grey period. Gratings had one of six 1026 

orientations (0°, 30°, 60°, 90°, 120°, 150°), five spatial frequencies (0.02, 0.04, 0.08, 0.16, 0.32 1027 

cycles/°), and four phases (0, 0.25, 0.5, 0.75). The order of grating presentations was randomized. 1028 

Similar to the analysis of drifting gratings, we contrasted activity to gratings preceded by gratings of 1029 

the same orientation (repeat, blue) with that elicited by gratings preceded by a grating of the 1030 

orthogonal orientation (orthogonal, red). (B) Population peristimulus time histograms of neurons in V1 1031 

for repeat and orthogonal conditions. The visual response to the current stimulus (green shaded area) 1032 

was reduced when the previous stimulus had the same orientation as the current stimulus (repeat), 1033 

indicating orientation-specific adaptation. Vertical dashed lines denote onset and offset of the current 1034 

stimulus, respectively. Binwidth = 25 ms. Error bars show SEMs. (C) 1-back adaptation ratios across 1035 
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visual areas. All areas show significant 1-back adaptation. Error bars denote bootstrapped 95% 1036 

confidence intervals. White numbers indicate the number of neurons in each area. (D) Mice show 1037 

consistently reduced firing rates after a repeated versus orthogonal orientation, as indicated by 1038 

datapoints falling above the diagonal. Same conventions as in Fig. 1E. (E) Histograms of single-1039 

neuron adaptation ratios (log-transformed) in thalamus (left) and cortex (right). 1040 

 1041 

Figure 7. Visual cortex exhibits long-term adaptation following briefly presented gratings. (A) 1042 

Adaptation ratios of V1 as a function of the n-back trial. While adaptation was most strongly driven by 1043 

the previous stimulus (1-back), stimuli encountered up to 20 presentations in the past (5 seconds ago) 1044 

still exerted significant adaptation effects on the current visual response (red bars, p < 0.05, FDR-1045 

corrected). Similar to drifting grating adaptation, the decay of adaptation over n-back trials was well 1046 

captured by a double-exponential decay model with a fast- and slow-decaying adaptation component 1047 

(black dashed line; afast = 8.17%, τfast = 0.54 trials, aslow = 2.04%, τslow = 9.12 trials). Error bars denote 1048 

bootstrapped 95% confidence intervals. (B) Adaptation ratios as function of n-back trial for different 1049 

visual areas (color-coded). In cortical areas (square symbols) there is significant adaptation to 1050 

stimulus orientations presented up to 20 trials back (symbols with black border, p < 0.05, FDR-1051 

corrected per area), while in thalamic areas (circle symbols) long-term adaptation is less evident. 1052 

Error bars denote standard errors of the mean. Black and orange-green lines denote the best fitting 1053 

exponential decay models for cortex and thalamus, respectively. Adaptation was computed over the 1054 

whole stimulus interval (0 to 250 ms), since due to the back-to-back presentation of static gratings, 1055 

visual responses to the previous stimulus overlapped with the initial time window of the current 1056 

stimulus, thereby increasing response variability in this early time window. However, largely similar 1057 

results were obtained when performing the analyses on the same time window used in the drifting 1058 

grating experiment (0 to 100 ms), except for a less clear difference of the decay of adaptation 1059 

between cortex and thalamus. (C) Average firing rates per mouse when the 5- to 20-back orientation 1060 

was repeated (x-axis) or orthogonal (y-axis) relative to the current orientation, in the thalamus (left) 1061 

and cortex (right). (D) Histograms of single-neuron long-term (avg. 5- to 20-back) adaptation ratios 1062 

(log-transformed) in thalamus (left) and cortex (right). 1063 

 1064 
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Figure 8. Short-term (1-back) adaptation does not introduce spurious long-term adaptation 1065 

effects for the particular stimulus sequences used in the experiments. We simulated responses 1066 

of a artificial neuron to the particular stimulus sequences used in the drifting grating experiment 1067 

(panel A) and static grating experiment (panel B). The artificial neuron responded equally to all 1068 

stimulus orientations, but selectively reduced its responses to a successive repeated orientation to 1069 

mimic orientation-specific 1-back adaptation. We chose the strength of this 1-back adaptation effect to 1070 

match the empirically observed 1-back adaptation of V1. We subsequently analyzed the simulated 1071 

responses with the same procedure used for the empirical data. The analysis of the simulated 1072 

responses recovered the ground truth 1-back adaptation effect (black data points). There were no 1073 

spurious adaptation effects for stimuli further in the past, as indicated by the black data points being 1074 

centered on an adaptation ratio of 1, markedly different from the empirically observed long-term 1075 

adaptation effects (red data points - adaptation in V1). Black error bars denote 95% CIs of adaptation 1076 

across the simulations of the 32 stimulus sequences. Red error bars denote 95% CIs of empirical 1077 

adaptation across neurons in V1. 1078 

 1079 

Table Legends 1080 

Table 1. Best fitting parameters of exponential decay models fitted to adaptation ratios 1081 

(drifting gratings). Amplitude parameters a are expressed in %-response reduction of repeat with 1082 

respect to orthogonal trials. Exponential time constants τ are expressed in units of trials. The decay of 1083 

adaptation in thalamic areas LGN and LP was significantly better fit by single-exponential decay 1084 

models. Therefore, no parameters for the second exponential component are provided for these 1085 

areas. Values in parentheses indicate bootstrapped 95% confidence intervals. 1086 

 1087 

Table 2. Best fitting parameters of exponential decay models fitted to adaptation ratios (static 1088 

gratings). Amplitude parameters a are expressed in %-response reduction of repeat with respect to 1089 

orthogonal trials. Exponential time constants τ are expressed in units of trials (250 ms duration). The 1090 

decay of adaptation in LGN was significantly better fit by single-exponential decay model. Therefore, 1091 

no parameters for the second exponential component are provided for LGN. Values in parentheses 1092 

indicate bootstrapped 95% confidence intervals. 1093 

 1094 


