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Abstract

Recent progress in the disruption event characterization and forecasting framework has shown
that machine learning guided by physics theory can be easily implemented as a supporting tool
for fast computations of ideal stability properties of spherical tokamak plasmas. In order to
extend that idea, a customized random forest (RF) classifier that takes into account imbalances
in the training data is hereby employed to predict resistive wall mode (RWM) stability for a set

of high beta discharges from the NSTX spherical tokamak. More specifically, with this
approach each tree in the forest is trained on samples that are balanced via a user-defined
over/under-sampler. The proposed approach outperforms classical cost-sensitive methods for
the problem at hand, in particular when used in conjunction with a random under-sampler,
while also resulting in a threefold reduction in the training time. In order to further understand
the model’s decisions, a diverse set of counterfactual explanations based on determinantal
point processes (DPP) is generated and evaluated. Via the use of DPP, the underlying RF
model infers that the presence of hypothetical magnetohydrodynamic activity would have
prevented the RWM from concurrently going unstable, which is a counterfactual that is indeed
expected by prior physics knowledge. Given that this result emerges from the data-driven RF
classifier and the use of counterfactuals without hand-crafted embedding of prior physics
intuition, it motivates the usage of counterfactuals to simulate real-time control by generating
the By levels that would have kept the RWM stable for a set of unstable discharges.

Keywords: machine learning, resistive wall mode, counterfactuals, random forest

(Some figures may appear in colour only in the online journal)

1. Introduction

The resistive wall mode (RWM) is a global mode of instability
of high pressure tokamak fusion plasmas that can lead to dis-
ruption of the plasma current and termination of the discharge
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[1, 2]. Since these disruptions can lead to physical damage
to the machines, a method of early detection and forecasting
of RWM stability is desired. In past post-discharge analysis
efforts [3, 4], an exponential rise in an n = 1 toroidal mode
number poloidal magnetic field measurement (known as the
RWM sensor) on the time scale of magnetic flux penetration
through conducting surfaces surrounding the plasma, 7,,, was
used as the primary indicator of RWM instability. However,
while this signal defines the existence of the RWM it requires
that the mode be unstable. It is highly preferred to give an ear-

© 2022 The Author(s). Published on behalf of IAEA by IOP Publishing Ltd
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lier warning of the mode potentially becoming unstable, there-
fore other predictors such as the normalized beta, 3, level and
the lack of indication of a locked tearing mode (LTM) were
also examined. A tearing mode is another mode of instability
of tokamak plasmas that is more localized to rational magnetic
surfaces rather than having a more global eigenfunction such
as the RWM [5, 6]. The presence of low frequency rotating
magnetohydrodynamic (MHD) activity, which can lead to an
LTM, has been seen to almost always preclude an RWM from
going unstable at the same time [3].

Analysis of the physics of RWM instabilities identified
other important plasma characteristics such as plasma rota-
tion and collisionality [4, 7], although the dependencies
were too complex to handle via manual identification efforts.
For example, a trained specialist could not simply look at
a plasma rotation profile and use it as an indication of
RWM stability or instability; what mattered were resonances
between those rotation profiles and certain particle motions
[8]. Complex physics software tools that analysed these kinetic
resonances, such as MISK [9] and MARS-K [10] were devel-
oped and benchmarked [11, 12]. However, while these tools
were useful to understand the physics of RWM stability, they
were too complex to execute in real-time to predict instabil-
ities in a manner such that they could be avoided. An alter-
native approach was then developed, where the physics of
RWM instability uncovered by these codes was distilled into
a reduced model that maintained the major physics, albeit in
a more tractable form that could potentially be executed in
real-time [13]. This reduced kinetic model was included in
the disruption event characterization and forecasting (DECAF)
code [13-16], which includes many other models of physi-
cal events that can predict potential disruptions in addition to
RWM destabilization.

Recently, machine learning (ML) algorithms have been
explored for disruption prediction and avoidance as well
[17-21]. In one extreme, these could be completely ‘black
box’ approaches where available data is indiscriminately fed
in and used to train a disruption predictor. In other cases the
models have been built in order to produce results that are
less difficult to interpret and allow the gain of physics insight
(i.e. feature contribution, stability maps etc) [22, 23]. An alter-
native is to use a physics-guided ML approach [24, 25]. In
such cases, the known physics of the problem (i.e. domain-
specific knowledge) is used to pre-process input data, to con-
strain the learning objective as well as to interpret the output.
ML techniques have now been used for one piece of the kinetic
RWM stability problem—determining the ideal stability [26],
including a physics-guided framework [27], and this piece has
been incorporated into DECAF.

This paper extends this work to use ML to predict whether
the RWM will go unstable in NSTX. Specifically, a random
forest (RF) based algorithm is tested on discharges where
human analysis has determined the time of RWM instability,
or lack thereof. Inputs to the algorithm include the previous
physics-guided neural network (PGNN) determination of the
ideal no-wall 8y limit [27], an expression for the with-wall
limit, the measured 3, two measured quantities related to the
rotation and collisionality, and finally a signal indicating the

presence of a rotating MHD mode. The latter signal is expected
to provide a better compromise between true and false pos-
itives in the proposed approach and is also used in DECAF
as part of an MHD/LTM warning module [15]. In DECAF the
absence of an MHD warning is used in conjunction with a sim-
ple threshold test on the RWM sensor signal to indicate the
possible presence of a growing RWM.
The method presented here serves four main purposes:

(a) To propose a different approach than the reduced kinetic
model (RKM) [13] for RWM stability forecasting, which
uses experimental data inspired by the full and reduced
kinetic models without requiring the computation of
kinetic and potential energies,

(b) To show that the RKM and the ML approach have the
potential to cooperate towards a more reliable RWM
stability forecaster since the latter extends the former’s
domain of applicability,

(c) To prove that the combination of sampling approaches
with tree-based classifiers helps in tackling strong imbal-
ances in the dataset, an aspect of crucial importance since
some events leading to disruptions occur with very low
prevalence [28], and

(d) To propose a model-agnostic tool to interpret ML-based
disruption predictions via counterfactual explanations and
determinantal point processes (DPP) [29]. The explo-
ration of what if conditions and how they affect the
outcome has a twofold benefit. Firstly, it can assess the
reliability of an ML algorithm by verifying that its coun-
terfactual predictions agree with the known underlying
physics. Secondly, one can use the counterfactual gener-
ation process to explore situations that are actionable in a
real control system, such as lowering the Sy level slightly
above the computed no-wall limit.

2. The reduced kinetic RWM model

Tokamak fusion plasmas are theoretically stable to global,
ideal MHD instabilities up to the so-called no-wall beta limit,
Bro—wan- Specifically, if no electrically conducting wall is
present, the plasma is theoretically unstable above this limit
to external kink-ballooning modes driven by the free energy
of current or pressure gradients. Successful wall stabiliza-
tion of kink/ballooning instabilities uncovered the reduced
growth rate, yet still disruptive, RWM [2]. The RWM exists
between the no-wall and the higher with-wall limit, S35y s
at which point not even wall effects can stabilize the ideal
kink/ballooning modes. Stabilizing the RWM is of paramount
importance since it grows on a timescale (7, ~ ms) that is
still fast compared to the duration of the plasma shot. Since
magnetically confined plasma fusion devices need to operate
at high g in order to improve plasma confinement efficiency,
it is strongly desirable to operate above the no-wall limit. Past
tokamak experiments found the fortuitous result that plasmas
could be stably operated above the no-wall limit [6, 30] with
either passive stabilization or active mode control [31]. Under-
standing the physics of passive stabilization is key to relying on
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it and projecting it to the operation of future devices, and theo-
retical attention turned to kinetic modifications of ideal MHD
theory [32].

In the DECAF code, the RKM was implemented and per-
formed well on a limited number of discharges from the NSTX
tokamak [13]. In the RKM, the growth rate of the RWM was
calculated using an energy principle approach [33], converting
the force balance into an equation to determine mode stabil-
ity based on a potential energy functional §W. The resulting
dispersion relation for the complex mode frequency is:

SWi=l o+ 0Wk
(7 = dwp)ry = — el : M
! OWiriin—wan T Wk

Three terms needed to complete the RKM calculation are:
the no-wall ideal term, SW"=! = the with-wall ideal term,
swr=l . and finally the more complex kinetic term dW.
Rather than replicate the calculation of the RKM, the approach
taken here is to use signals inspired by the physics model as
inputs to an ML algorithm which will then return an RWM
warning level. This can be considered an alternative to the

growth rate from the RKM calculation.

2.1. No-wall and with-wall beta limits

The evaluation of the change in plasma potential energy due to
a perturbation of the confining magnetic field without the pres-
ence of a conducting wall, SW"=! = was covered extensively
in previous work [27]. More specifically, a RF regressor and a
PGNN were tested on a large database of equilibria from the
NSTX tokamak and used to reproduce the output of the DCON
stability code [34] and to get an improved closed form equation
for the no-wall limit. The physics guidance of the ideal MHD
model in its extension outside the domain of the NSTX experi-
mental data helped in carrying cross-device calculations to the
MAST tokamak as well. Therefore, for the no-wall part of the
equation, the quantity B}(,j},_wan from the previous PGNN [27]
is used (see appendix).

Similarly to the no-wall limit, there is a higher with-
wall beta limit used in the calculation of SW"5;! . in the
RKM. However, unlike the no-wall case, there does not
presently exist a large database of calculations of sW":l
or [y ih—wan tO train a neural network on. Rather, a somewhat
simple expression dependent on the ‘pressure peaking factor’,
i.e. the ratio of central to average pressure, was found to be
adequate for NSTX [13]. The same expression will be used in
this work (see appendix), although it should be possible in the
future to train an ML model to give Sy Ly . based on more

plasma parameters.

2.2. Kinetic effects

The term d Wk results from a volume integration of the plasma
displacement eigenfunction dotted with the divergence of the
perturbed kinetic pressure tensor. The perturbed kinetic pres-
sure tensor is found by taking a moment of the perturbed distri-
bution function of the particles. In the end, the expression for
0Wk is an integral over particle’s energy, pitch angle, and mag-
netic surface of a fraction which includes the frequencies of
the particle’s motion including bounce, precession drift, E X B

Table 1. List of NSTX signals used as an input to the RF model.
Left column provides the DECAF aliases as they appear in the
database, while in the right column are the corresponding labels
used throughout this paper.

DECAF alias Symbol
Normalized beta By
betaN no-wall limit e wall
betaN with-wall limit e th—wall
Average E cross B frequency inside pedestal (wE)
Average ion collision frequency inside pedestal (vii)
Low frequency, odd » MHD Odd-n MHD

frequency (or plasma rotation), and collisionality [35]. When
these frequencies match with opposite sign in the denomina-
tor, a resonance between particle motions is expected, which
leads to a large fraction, a large W, and a stabilizing effect.
Physically, the stabilizing effect can be thought of as a match
between particle motions and the mode, which then allows
efficient transfer of energy from the potential growth of the
mode to the particle motions, thus damping the growth. Con-
sideration of the effect of collisions showed that reduction
of collisionality will reduce the collisional dissipation that is
important when plasma rotational resonances are not present,
but conversely can also reduce the damping of resonant kinetic
stabilizing effects, allowing them to be more powerful [7].

In order to reduce the complexity of this calculation for
potential use as a real-time disruption warning, the RKM
model implemented in DECAF [13] dispensed with the inte-
gration and instead used Gaussian functional forms for dWg
resonances with particle precession and bounce frequencies.
These functional forms depend on the measured values of
the E x B frequency and collisionality, (wg) and (v;), both
averaged inside the plasma pressure pedestal. These quanti-
ties are calculable in real-time if measurements such as plasma
rotation, ion and electron density and temperature profiles
are available. These profiles are also available in the DECAF
database of analysed discharges and will be used in the present
work as inputs to the described ML approach. The full expres-
sion for 6 W, and the RKM can be found, for reference, in the
appendix. However, neither of these expressions are used in
the present work. Instead, the ML approach essentially creates
its own use of the (wg) and (v;;) input features for predicting
RWM stability.

3. The DECAF RWM database

3.1. Data considerations

In order to develop an ML-based RWM predictor, we have
gathered a set of 134 NSTX discharges where a human vali-
dation step had been carried out to assess whether the primary
DECAF indicator of RWM stability was in agreement with an
expert’s judgement. For 44 shots, the coupled analysis iden-
tified the time at which the RWM went unstable, while the
remaining are experimentally RWM stable. Listed in table 1
are the aforementioned plasma parameters with the DECAF
aliases and the corresponding symbols used later in this paper.
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Figure 1. Features selected to train the RWM stability predictor in DECAF for NSTX shot 126967. The (wg) and (v;;) quantities have been
causally smoothed for visualization purposes. Human analysis has identified an unstable RWM at t = 0.537 s, marked as a red vertical
dashed line in the bottom frame. The shaded grey area represents the cutting window determined by the preprocessing step.

Table 2. Sub-categories identified in the NSTX database after performing the preprocessing step.
The ones in which the no-wall limit is never crossed are kept in order to let the model be able to
discern these cases from the more common ones.

Category Description Count

1 Above the no-wall limit 58 (stable) + 42 (unstable)
11 Never above the no-wall limit or crossed after disruption 27 (stable) + 1 (unstable)
111 No-wall limit crossed outside the cutting window 5 (stable) + 1 (unstable)

For this dataset, rotation profiles were available as a func-
tion of normalized poloidal magnetic flux (¥y). However, we
have decided to deploy a model based only on OD signals
since the required radial profiles might not be fully available
in a future real-time system [13, 36]. Moreover, the usage
of averaged quantities allows us to run ML tools in DECAF
in parallel with the RKM without having to interact with a
completely different set of plasma parameters. Additionally,
two more features are obtained by processing a low frequency
odd-n MHD signal currently used in DECAF to assess the
presence of a rotating MHD mode, as shown later. Finally,
another substantial difference between the RKM and the model
developed here is that the latter uses 3y along with the no-
wall and with-wall limits Without combining them into the
well-known Cs = (By — no wall)/( w1th wall ﬁ no wall)

parameter [13]. In fact, since CB is normally only computed in
the range of Sy < By < By in_wans We are in practice

extending the domain of applicability of the DECAF RWM
stability module.

3.2. Data preprocessing

A typical discharge in NSTX lasts up to 1.0—1.3 s and most
of the measurements are available with a time resolution of
5 ms or less, hence the dataset is comprised of roughly 2 x 10*
individual time slices. In this work, we have decided to not
restrict our analysis to the flat-top phase or to the time win-
dow in which f is above the no-wall limit, but rather we cut
the data to the range of times during which all the signals are
available, followed by an interpolation on a common time scale
of 5 ms. The resampling process never uses future informa-
tion and it is done by looking at the previous and closest time
point in the original timebase [19]. It is important to highlight
that all the signals but (wg) and (v;;) are always available for
the entire duration of the shot. In a few unstable cases (see
figure 1), the latter are absent at the very end of the discharge
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Figure 2. Low frequency odd-n MHD spectrum for (a) shot 127756, which ended in an LTM and for (b) the RWM-unstable shot 140120.
The two different events are indicated by vertical white dashed lines. The colour coding shows how the peak frequency traces evolve

differently in the two scenarios.

leading to cutting out the /3, collapse, which is a non-trivial
indicator of a possible RWM instability. To address this issue,
we initially considered to forward-fill the last valid point, how-
ever assuming that the collisionality and the E x B frequency
do not change towards the end of the shot is not physically
plausible. Fortunately, these few cases did not undermine the
performance of our model.

Table 2 lists the three different types of discharges uncov-
ered by our preliminary analysis. It is worth noticing that in
34 shots the no-wall limit is either never reached during the
discharge, crossed after the disruption, or crossed before the
disruption but outside the cutting window. Moreover, in just
2 of those 34 has the human analysis identified an unstable
RWM. The choice of not ruling out low beta discharges is key
from the physics side as well as from the ML point of view.
In fact, although an unstable RWM below the computed no-
wall limit is a rare event, a properly trained model should have
access to all the possible cases.

With regards to the odd-n MHD signal, we have applied
a short-time fourier transform to find mode peak frequency
within the previous 5 ms. The root-mean-square (RMS) ampli-
tude for the same time frame is also extracted using the librosa
package. The usefulness of these two signals will be shown in
detail in section 6.

Figure 2 displays the magnetic spectrogram for (a) an
RWM-stable discharge in which the mode rotation slowly
decreases and locks at t = 0.96 s, and for (b) a shot in which
the RWM went unstable at # = 0.79 s. One can notice the sub-
stantial difference in the time evolution of the peak frequency,
as well as in the amplitude level (in logjo-scale) towards the
end of the discharges.

4. Combination of RFs and balancing techniques
ML approaches have been widely used recently in the fusion

context given their ability to learn complex patterns in prob-
lems where events evolve over multi spatio-temporal scales.

They proved themselves useful tools in order to support first-
principles physics models in the prediction of electron density
and pressure profile shapes in tokamaks [37] and in disrup-
tion forecasting [19, 38, 39]. The latter are normally trained
to predict with sufficient warning the likelihood that an insta-
bility will occur in the near future by treating the problem as
a time-wise binary classification task. That is, individual time
slices from a stable shot are labelled as negative (stable phase
or far from instability), whereas an unstable discharge is split
into two regions labelled as negative and positive (or close to
instability), respectively. Although there is no ubiquitous way
of defining the class label separation time in the unstable cases,
it is quite common to choose 300 ms in advance of the insta-
bility, especially for disruption forecasting. In our case, such
a choice would lead to an abundance of false positive warn-
ings. In fact, previous analyses of the RKM revealed that while
the collisionality drops in all the discharges due to increasing
temperature, a pronounced turn towards higher (wg) is gen-
erally observed at the end of the shot in the unstable cases
[13]. Given the length of a typical NSTX discharge and that
the RWM grows on a fast time scale (normally milliseconds),
we have found that the optimal choice for the transition from
negative to positive class is at t* = frwy — ¢ = 100 ms.

One of the main consequences of this common setup is that
the training data will be inevitably imbalanced with the risk of
increasing the bias towards the majority class and jeopardizing
the final performance; an effect that is further exacerbated by
the fact that the minority class is often the one of interest. The
simplest way of fixing this issue could be training the model
via cost-sensitive learning (i.e. misclassified positive samples
are heavily weighted), but we have found this approach lead-
ing to worse performance, as shown later. The use of random
under/over-sampling [38] is an effective alternative to solely
weighting the objective function but comes with some compli-
cations that must be taken into account. In fact, down-sampling
by randomly deleting elements from the majority class might
result in loss of valuable information, which means that its
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Figure 3. Architecture of the BRF-based RWM predictor’s pipeline, in which the final output Y is the probability of being close to
instability. The first five features in table 1 are directly fed into the model, whereas the odd-n MHD signal undergoes a preprocessing step to
extract mode peak frequency and RMS amplitude. Each tree in the forest analyzes a different subset in which the training data has been
balanced using a sampler chosen from the imbalanced-learn library. Note that the class ratio is roughly 16 : 1 for the best performing class

label separation time of 100 ms.

Table 3. Performance of the proposed BUSRF classifier on
individual time slices from the holdout test set compared to the
classical WRF and other BRFs. The last column gives a sense of the
time needed to train each model on an 8-core CPU for a budget of
1000 trials without early stopping.

Predictor TPR FPR AUC  Cutoff Training time
(min)
WRF 76.8% 16.8%  0.895 0.410 156.5
BUSRF 92.4%  21.4% 0918 0.450 61.3
BOSRF 87.0% 24.7% 0.889 0.275 178.4
SMOTERF 84.4% 222% 0901  0.200 235.6
ADASYNRF  85.7% 22.9% 0.890 0.275 592.7

usage would be more suited for large datasets. On the other
hand, up-sampling may increase the likelihood of overfitting
since the model might learn rules that are tailored on replicas
of the minority class.

Previous work [40] has focussed on the possibility of com-
bining ensemble learning with random sampling in order
to better learn from strongly imbalanced datasets. Ensem-
ble learning is the combination of multiple machine learn-
ing methods to obtain a model that is more stable and less
prone to overfitting. RFs ensure the required diversity and
robustness and have been extensively used in several applica-
tions—including plasma physics and fusion energy—by prov-
ing to be robust tools for real-time disruption prediction on the
DIII-D [23] and EAST [41] tokamaks, as well as in a cross-
device fashion [20]. In the case of RFs, the imbalanced-learn
package [42] provides an implementation of the balanced ran-
dom forest (BRF) in which for each tree a bootstrapped sam-
ple from the minority class is drawn and then a random set
of equal size is selected with replacement from the majority
class. This process is different from classical sampling tech-
niques because it involves reducing the number of samples at
a tree-level rather than as a preprocessing step over the entire
training set. Therefore, with a sufficient amount of estimators

the ensemble will explore the dataset in its entirety regardless
of the sampling strategy. Here we propose a customization of
the original implementation of the BRF that allows plugging-
in any sampling technique and choosing the one that performs
best.

The learning phase has been performed via a stratified-
by-shot cross-validator that not only splits the data in order
to have non-overlapping sets of discharges in the different
folds, but also takes into account the distribution of nega-
tive over positive time slices to stabilize the subsequent sam-
pling step. Figure 3 illustrates the general pipeline followed
during the training routine. The analysis carried out in the
following section aims at showing the impact of several
sampling techniques in terms of predictive performance
as well as computational requirements. In particular, we
have compared the classical RF using cost-sensitive learning
(often referred to as weighted random forest, WRF [43])
with the ones that are regarded as being the most effective
approaches, namely random under/over-sampling, SMOTE
[44] and ADASYN [45].

5. BRFs performance

5.1. Results on individual time slices

The dataset has been split into training and testing sets com-
prised of 106 and 28 discharges, respectively. For each pre-
dictor, the best hyperparameters are chosen to be the ones that
return the operating point on the cross-validation ROC curve
which is closest to a perfect true positive rate (TPR = 1) and
false positive rate (FPR = 0), with the hope that such parame-
ters will perform well on the unseen test data. We have found
the choice of this objective function to be the most reliable
since its minimum represents the best compromise between a
high TPR and a low FPR. In order to speed up the training pro-
cess, we have employed a multivariate tree Parzen estimator
(TPE) [46], which sequentially constructs a model to identify
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Figure 4. (a) Close-up look at the upper-left region of the test set ROC curves for the 5 trained classifiers. The optimal threshold is found via
cross-validation and reported with a circle on the corresponding curve. (b) Learning curves for the WRF classifier and the proposed BUSRF
approach. Although the absolute difference in the training time over 1000 trials is as reported in table 3, a post-hoc analysis has revealed that
the objective converges to a minimum ~6 times faster in the case of the BUSRF.

Table 4. Performance comparison of the tested predictors on a per-shot basis on the
holdout test set, with the BUSRF highlighted in bold. Note that the BUSRF has the
best detection capabilities without raising any early or late warnings.

Unstable (/11) Stable (/17) Hyperparameters

Predict
redictor Detected Missed Early False positive — k ko At,, (ms)

WRF 6 5 — 4 0.24 0.56 45
BUSRF 10 1 — 2 0.36 0.71 60
BOSRF 8 2 1 3 0.32 0.54 40
SMOTERF 8 3 — 2 0.36  0.42 35
ADASYNRF 7 3 1 2 0.26 0.58 60

promising new configurations based on the interdependencies
between hyperparameters.

Table 3 summarizes the classification results obtained for
prediction of stable or unstable individual time slices in the
holdout test set using the different predictors. It is worth notic-
ing that, although the WREF gives the lowest FPR, the BRF with
random under-sampling (BUSRF) appears to have an edge
over all the other approaches employed in terms of generaliza-
tion performance and training time. As expected, the explored
sampling techniques tend to improve the classification perfor-
mance on the minority class, although the objective function
gives the same weight to TPR and FPR. Fortunately, in all the
cases the improvement in the TPR outweighs the worsening
of the FPR, with a particularly favorable compromise for the
BUSREF. This is an important aspect since in a fusion reac-
tor we want no disruptions at the expense of a lower capacity
factor. Although a false positive is undesirable, a wrongly trig-
gered alarm would let active control steer the plasma back to
a safe operational region.

In order to find the best operating point on the ROC curve,
since the classifiers’ predictions are continuous, we need to
determine the best cutoff that maps the output to discrete
values and allows for minimization of our chosen metric.

Figure 4(a) displays a comparison of the ROC curves from the
test set for all the trained classifiers.

On each curve, the optimal threshold chosen via cross-
validation is indicated by a circle, which again shows that
the BUSRF’s estimate of the best threshold is the closest
to the northwest corner. In this regard, it is also found that
for the over-sampling techniques the optimal cutoff value is
in the range 0.2—0.275, which tells us that these models are
somewhat under-confident on their positive class predictions.
This could be a consequence of the artificially generated data
that might make these predictors more sensitive to boundary
effects.

Finally, not only the searching method, but also the time
required to train the underlying predictor strongly affects the
optimization routine. A representative comparison between
the learning curves for the WRF and BUSREF classifiers with
a budget of 1000 trials is shown in figure 4(b). Rather than
plotting the objective value for every single iteration, only
those that have improved upon previous ones are marked. Evi-
dently, the BUSRF converges to a minimum much faster than
the WREF, with the latter also being generally more prone to
noise [43], an effect that is visible by looking at the large stan-
dard deviation (blue shaded area) among the K folds. This
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Figure 5. Predicted warning level for the 11 unstable discharges in the test set vs time to the human identified RWM instability. The
superposed black dash-dotted line, although successfully identified by the RKM, is the only instability missed by the BUSRF in test phase.

issue is far less pronounced for the BUSRF even though the
two predictors use exactly the same splitting. Although in our
case the size of the dataset does not make the computational
requirements of paramount importance, the potential advan-
tage is the possibility of obtaining improved performance on
large databases without having to deal with very long training
times.

5.2. Results on a per-shot basis

The process of training the model on individual time slices
would certainly give a sense of how suitable the method is to
the problem at hand. However, while it is important to have
a warning level for each time step in order to track the evo-
lution of a discharge, the intuition is that a predictor should
either trigger an alarm or not during the entire duration of a
shot. The usage of a hard threshold has been observed to be
highly sensitive to noise in the input signals as well as to ran-
dom spikes in the predicted output. For this reason, previous
works [38, 47] have proposed a ‘softer’ approach in which the
model is re-trained with the addition of three new hyperpa-
rameters following the criterion that the alarm of impending
instability is triggered only if the predictions stay above a low
threshold (k1) for a minimum amount of time (At,,) after hav-
ing crossed a high threshold (k). An ideal warning criterion
should counteract the issue of having alarms highly separated
in time from the time of the actual instability as well as giving
enough time for the plasma control system to act and avoid the
instability. Although we could consider a warning raised any
time during the shot as a success, we have decided to follow the
DECAF RKM rule, in which if an alert is triggered more than
400 ms in advance without any related minor disruption, then
it is considered too early. Moreover, in some of the tested pre-
dictors the alarm is raised too late (i.e. less than 10 ms before
the RWM instability, regarded as missed).

Again, the algorithm that gave the lowest cross-validation
objective was the BUSRF, with the model also resulting in
the best test set performance by capturing 10 out 11 unsta-
ble RWMs (no late or early warnings) and just 2 out of 17
wrongly triggered stable discharges, as listed in table 4. We

must point out that for the BUSRF one of the two false posi-
tives is a borderline case in which the alarm is triggered very
early and then the warning level remains stable until the end
of the shot, although it is unclear why this happened.

It is also interesting to notice that the best hyperparameters
for the chosen predictor (BUSRF) slightly differ from the typ-
ical combinations in an RF-based disruption predictor, which
further confirms that not only the machine but also the tem-
poral evolution of plasma quantities associated with a specific
instability affects the warning criterion. For example, in ref-
erence [47] the authors found that an ideal alarm should be
triggered as soon as the output crosses the high threshold, with
the low threshold at the lowest end of their search grid. On the
other hand, Churchill ef al [38] have partially confirmed this
behaviour as their deep neural network triggers the alarm just
1 ms after exceeding a high threshold (0.96) which is quite
large and also coincides with the low threshold. In our case
the situation is somewhat in between, with k; being in the low-
to-mid range, k; in the upper range, while Ar,, tells us that the
predictor should wait at least 60 ms before triggering the alarm.

5.3. Comparison with the RKM and limitations

In addition to analyzing performance on the holdout test set,
we are also interested in examining what we should expect
from this new model and whether its predictions agree or not
with the RKM. Although the warning times are slightly dif-
ferent, we have found the two models in general agreement
apart from some peculiar cases. First of all, the RKM correctly
identifies the unstable RWM missed by the BUSRF and pre-
dicts stability for one of the two discharges that are wrongly
triggered by the ML model. On the other hand, the BUSRF
appears to benefit from the usage of the absolute values of 5y,
no-wall and with-wall limits rather than condensed into the C
parameter, as well as from the addition of the odd-n MHD sig-
nal. In fact, in two unstable cases (curves in cyan and olive in
figure 5) the BUSREF triggers an instability at the very end of
the discharge with warning times of roughly 50 ms before the
human identified RWM. Interestingly, both cases are not trig-
gered by the RKM, possibly because of the low Cjp or the high
collisionality. In one unstable case (green curve) missed by the
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Figure 6. Comparison between a true negative discharge (Left) and a false positive one (Right). Both discharges are characterized by rising
(wg), decreasing (v;;) and [y crossing the no-wall limit. However, the very high /3 and low collisionality for shot 140102 seem to mislead
our classifier, which wrongly triggers an early warning at r = 0.441 s.

RKM, the discharge evolved in the (v;) vs (wg) space in what
appears to be a stable range, but it is triggered 30 ms before
the disruption by our model. Conversely, neither the BUSRF
nor the RKM seem to identify stable discharges that evolve in
what should be a highly unstable (v;;), (wg), By region.

The single test set shot belonging to this category is dis-
played on the right in figure 6 and compared to another stable
discharge. By looking at the two plots, it is possible to highlight
some of the limitations of the proposed model. The stable dis-
charge on the left is characterized by steadily rising (wg) along
with gy reaching roughly 5.2 at t = 0.67 s. No MHD activity
is observed in the [0.4-0.7] s range, followed by increasing
RMS amplitude and decreasing mode frequency that led to an
LTM during the plasma current rampdown at t = 0.851 s. In
contrast, shot 140102 had a broader rotation profile, we, and
remained RWM stable as wg was reduced by n = 3 magnetic
braking [48]. For this specific shot, the proximity to marginal
stability as rotation is reduced was evaluated by active MHD
spectroscopy. Activen = 1 RWM feedback control was turned
off at around 0.6 s, followed by the application of an n = 1,
40 Hz co-NBI propagating tracer field to evaluate the resonant
field amplification (RFA) due to the high 3, level. Although
during this time the plasma remained at a high and relatively
constant 3, of roughly 6.2, the RFA amplitude peaks at around

0.82 s and then decreases as wg is reduced. This denotes that
the plasma first approaches, then departs from RWM marginal
stability [49]. Evidently, these early signs of possible RWM
instability led the BUSRF to trigger an early false alarm despite
the presence of rotating MHD activity at the beginning of the
shot. Interestingly, the BUSRF is then picking up in advance
that something is changing in the plasma evolution, with the
warning level monotonically decreasing as the plasma rotation
is reduced. Unfortunately, the model raises another warning
right at the end of the shot, corresponding to a steep rise in
(wg). This analysis further shows that ML models should be
used in conjunction with plasma diagnostics and existing con-
trol systems to define paths for improvement, especially when
it comes to marginal cases such as the one presented here.
Although just one of these cases is observed in the testing set,
4 other similar discharges are also wrongly triggered during
the cross-validation process. Presumably, both models are also
not capturing other stabilizing aspects such as the effect of
energetic particles (i.e. temperature and pressure of the ther-
mal ions). One possibility in the future could be using fast
ion pressure profiles produced by the NUBEAM module of
the TRANSP code [50], or reconstructed by a neural network
[51], and then injecting this additional data into a larger RWM
stability module.
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Figure 7. Generation of odd-n MHD counterfactuals for NSTX shot 140134, which was experimentally RWM unstable. In the top and
middle panels are displayed the original and simulated odd-n activities in black and colour, respectively. Each colour represents one of the
ten possible levels of MHD activity. The bottom panel shows the original BUSRF predictions as coloured dots, while the blue shaded area
represents the range of counterfactual predictions if strong MHD activity was present. Note that, for the sake of visualization, only the
frequencies where the RMS amplitude is at least 2 G are displayed in black in the top panel.

Table 5. Equations for the lower and upper bounds used to constrain the DiCE
algorithm for NSTX shot 140134. The exponential starting points are separated
by 20 ms in order to avoid convergence of the bounds and the eventual breaking
of the required diversity among counterfactuals.

Frequency (kHz)

RMS amplitude (G)

Range
Lower Upper Lower Upper
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6. Interpretation of the warning level via diverse
counterfactuals

Post-hoc interpretation of complex models are key for physi-
cists to understand algorithmic predictions and judge whether
they agree with the underlying physics or not. In the RKM,
it is possible to follow plasma trajectories over time in the
(vii), (wg) space by drawing contours of 7, [13]. In our case,
the model’s decision boundary lies on a sevev-dimensional
manifold, making us unable to visualize it unless we per-
formed a scan of two features at a time while keeping the
others at a constant or highly representative value. Other works
[23, 47] have explained the decisions made by multi-

dimensional RF classifiers by decomposing the predictions
into feature contributions. Here we propose the use of an alter-
native and model-agnostic method of interpreting the outcome
based on counterfactuals, or what-if explanations. The con-
cept of counterfactuals relies on the generation of hypothetical
combinations of the input features that would return a specified
output. In our case, the most obvious choice would be the gen-
eration of plasma parameters that produce predictions on the
stable side of the decision boundary. Such a framework should
ideally respect three conditions, which are: the ability to sug-
gest a diverse set of combinations, the possibility of practically
performing these changes (i.e. proximity to the original input
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space), and the consideration of the causal links in a real case
scenario.

The diverse counterfactual explanations (DiCE) algorithm
has proved to satisfy all three requirements and provides the
right flexibility to take into account user-defined constraints
and experts’ knowledge. For the sake of brevity, we will not
report its complete formulation [29],? but rather highlight the
main points and show how to customize it to the problem at
hand. For non-gradient based ML methods, DiCE uses genetic
programing to minimize an objective function over the entire
set of potential candidates as follows:

Ci(x)

Diversity

Hinge loss Proximity

@)

where ¢y, .. ., ¢ is a set of k counterfactual examples, L is the
hinge loss between the desired output y and the ML model’s
predictions (f(c;)) associated with the set of proposed counter-
factuals, D, is a measure of perturbation defined as the normal-
ized average feature-wise /;-distances from the original input
(x), D, is a diversity metric based on DPP (see appendix) that
avoids repetition of the same ¢; in a set of given size k, and
Aj and A, can be considered as regularization coefficients that
are used to balance the impact of diversity and proximity. The
hinge loss guarantees a smaller perturbation of the original set
of features x since in a single-threshold model a counterfactual
only needs to be on the other side of the decision boundary in
order to be valid.

As a starting point, we have customized the DiCE algorithm
in several ways. First, physics-informed counterfactuals are
generated in order to gain understanding into the model’s deci-
sions. For example, based on physics knowledge we expect
that the usage of the odd-n MHD signal should improve the
model’s capabilities, but we do not know a priori how it is
actually helping. Second, this approach can be modified and
potentially used in a real-time control algorithm by stepping
down the most influential parameters, such as (3, in order to
see which levels keep the plasma RWM stable. Additionally,
in order to speed up the counterfactual generation process, a
TPE-based optimizer was added to the DiCE framework.

6.1. Usage of counterfactuals to generate hypothetical
odd-n MHD activity

Altogether, the extracted mode frequency and RMS amplitude
cover roughly 20% of the relative feature importance, hence
we can assume that these features definitely influence the deci-
sions made by our classifier, as expected. Notwithstanding the
fact that only some of the RWM-stable discharges had strong

3 An easy-to-use implementation can be found at https:/github.com/
microsoft/DiCE

1

MHD activity, we can still explore the ability of the BUSRF
in understanding how RWM stability is affected by the pres-
ence of low order MHD modes, in particular slowing ones.
As shown previously in figure 2(b), the MHD mode spectrum
from a toroidal array of magnetic pickup loops for an unsta-
ble RWM shows no mode activity, indicative of stable rotat-
ing MHD. As an additional example, figure 7 displays one of
the analysed RWM unstable shots, correctly identified by the
BUSREF at #yjgeer = 0.376 s. By looking at the black points in
the top and middle panels, one can notice that the absence of
MHD activity towards the end of the shot is followed by the
warning level (bottom panel) rising above the high threshold
for the first time at #p = 0.316 s, indicated by a change to a
grey background.

Starting from this point, we have asked the algorithm to
produce a set of 10 possible combinations of MHD frequen-
cies and amplitudes per time step that would have prevented
the BUSRF from triggering an RWM warning. Since the orig-
inal main loss only ensures that a counterfactual lies below or
above a fixed threshold of 0.5, we chose to replace the hinge
loss in equation (2) with a custom step function that penal-
izes counterfactual predictions above the high threshold, as
follows:

1 k
Lu(f(e) = > H(f(e) where

i=1

0 3)

if 0 < fla) <k
H(f(e) =

Ao if fe) = ke
hence the optimization will tend to prioritize DPP-diversity
while keeping counterfactuals below the high threshold.

Previous DECAF characterization of LTMs in NSTX dis-
charges has found that before the disruption the frequency
decreases and linearly halves, then it bifurcates and abruptly
drops towards zero [14]. An opposite trend is generally
observed with the RMS amplitude. In order to make these
hypothetical situations as realistic as possible, in this applica-
tion the algorithm has been constrained within the red curves,
which follow these considerations and whose expressions can
be found in table 5. Specifically, for this shot the bounds
change from linear trends to exponential decays (or growths)
att; = 0.416 s and t, = 0.436 s, respectively. Moreover, we
have found that the choice of \;j = 1 and A\, = 4 was the best
in order to generate a diverse set of opposite MHD scenarios
while keeping counterfactuals inside the bounds. For this spe-
cific application, proximity is not a requirement, hence \; was
set to 0.

The generated MHD activity in the top and middle panels
of figure 7, when applied to the RWM unstable discharge, pro-
duces the counterfactual BUSRF warning level shown in the
bottom panel, which is now stable. The choice of setting the
initial bounds to 7.5 and 15 kHz is just an example of such
application. In fact, we have also tested the same approach on
other 5 unstable discharges by narrowing or widening the ini-
tial gap between 5 and 20 kHz, which are values that come
from experimental observation of MHD activity in NSTX dis-
charges [14]. On the other hand, the RMS amplitude bounds
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Figure 8. Safe normalized beta regions suggested by the algorithm for shots 134836 (Left) and 140123 (Right). The background changes to
grey as soon as the BUSRF warning level rises above the low threshold, corresponding to the time at which the algorithm starts generating

the blue shaded counterfactuals.

have been left unchanged in all the combinations as well as
the halving times, which are set to 100 and 120 ms, respec-
tively. In all the experiments DiCE was able to find a set of
counterfactuals that would have kept the warning level below
k> until the end of the discharge. Therefore, the counterfac-
tual approach is confirming the physics understanding that the
global RWM mode cannot grow to instability while local MHD
activity is present, growing in amplitude and slowing to poten-
tially disrupt the plasma itself. The same technique might be
used to simulate MHD scenarios in which both the bounds and
the time scales can vary based on NSTX experience as well as
to evaluate the reliability of our model if run in parallel with
the DECAF LTM warning module. It must be stated that such
alternative scenarios might still lead to a disruption, which
however should not be caused by an unstable RWM and we
expect our model to not trigger any alarm. However, other pos-
sible causes of disruptions forecast by the DECAF code could
be evaluated separately given the parameter space spanned by
the counterfactual analysis for RWM.

6.2. ML-informed safe scenarios for potential real-time
control

The second application of this approach lays the basis for a
potential usage of counterfactuals for real-time control of the
main RWM instability drivers, which are 5, and rotation. Nor-
malized beta control has already been accomplished in NSTX
[52] by means of a proportional-integral-derivative gain con-
troller that changes the injected power in order to achieve a

user-defined /3 level. In NSTX, all the beams are pointed in
the same direction, hence in addition to more heating, more
beam power necessarily means more plasma rotation. More-
over, because of the different angles at which the different
beam sources were injected, an increase or decrease in power
in one beam or the other would also influence pressure peaking
and internal inductance (the two are correlated). For example,
the beam that penetrated farther into the plasma core would
tend to increase pressure peaking whereas one that was more
towards the edge would tend to decrease it. Therefore, such a
modulation would also modify the no-wall and with-wall beta
limits, which would in turn play a role in the global RWM
stability. For example, a less peaked pressure profile gener-
ally increases the with-wall limit allowing access to higher
By- Although other parameters could change simultaneously
as (B is stepped down, an ML-informed safe 3, level repre-
sents a valuable piece of information that could be input to
a more sophisticated control method [53] already tested and
planned for future NSTX-U operation. Alternatively, an all-
encompassing counterfactual generation algorithm for RWM
stability control can be built, but this is mostly future work.
For the present purpose, we will generate the time-wise /3
levels that would have kept the plasma RWM stable for a set
of NSTX discharges for which the BUSRF had triggered an
alarm, and we will do so by replacing equation (2) with an
objective function that constrains counterfactuals in the prob-
ability domain rather than in the input space. Since a high 8y
is desirable to achieve good fusion performance, we will find
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Figure 9. The region in which DiCE operates (grey in figure 8) is analysed in terms of the most relevant feature contributions while S, is
reduced. Each error bar represents the contribution associated with the two levels ,BA(,), B found by minimizing equation (4). The
collisionality dropping below 1 kHz for shot 140123 allows access to higher rotation, but also results in a heavier impact of the latter towards

the final prediction.

the 5 region that keeps the warning level between 0.5 and the
high threshold, &, as follows:

Co(By. By) = arg min [|f(By) — 0.5
BB

+ (B — ka|] with 0.5 < £(BY) < ko
4)

Apart from speeding up the counterfactual generation pro-
cess, this objective function also maintains the diversity and
proximity properties. In fact, given the desired probability
range we expect the two 3, values to not coincide as well as
to lie in the high beta region.

Figure 8 shows the application of such a method to two
similar high beta discharges in which the RWM became unsta-
ble in the chain of events leading to a disruption. The main
characteristic that one can notice is that the blue shaded safe
By region lies around/slightly above the NN-modeled no-wall
limit. The behaviour is not surprising, as the goal was to
find a safe operating region and the counterfactual approach
is confirming that, to first order, increasing beta above the
no-wall limit increases the disruption probability. Two other
things emerge from the analysis of the two discharges as
well. First of all, the slightly higher with-wall limit for shot
134836—indicative of a less peaked pressure profile—seems
to partially justify the maximum safe 3, of roughly 4.8, some-
what above the no-wall limit, in the grey counterfactual region.

On the same grounds, one can notice that the blue area moves
upwards between 0.55-0.6 s for shot 140123, corresponding
to the times at which the with-wall limit is almost 7. Second,
while both discharges are characterized by decreasing colli-
sionality, the rise in (wg) is more pronounced for shot 140123,
in which it crosses 6 kHz at around 0.62 s. This may further
explain the much narrower safe (3 operating space towards
the end of this discharge.

All these considerations can be confirmed by producing the
time-wise feature contributions [23] for the BUSRF classi-
fier. As a reminder, this analysis essentially decomposes the
prediction into a bias term plus the sum of each feature’s
contribution®. The bias term in this case is 0.5 since trees in
the BUSRF are trained on a perfectly balanced dataset. We
have found that the contributions of both Sy .., and the
MHD activity are roughly the same between these two specific
discharges since the evolution in time of these two features is
almost identical between the two shots. Therefore, the corre-
sponding contributions do not inform us about why the coun-
terfactual /3, region is different between the two discharges.
Conversely, we compare the effect of Syt (we) and
(v;) towards the warning level in the following figure 9.

Since the counterfactual generated (, is a region that
changes in time, the individual contributions are generated as
error bars as well. By looking at the top panel, one can notice

4 For a dataset of N features the warning level breakdown would be prediction
= bias + S, contrib
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that the higher with-wall limit for shot 134836 is effectively
damping the warning level, in particular around 0.57 s when
the counterfactual 3y reaches its maximum. This effect is less
pronounced in the red shaded area, related to a ﬁlr\l/,:wlith—wall that
barely reaches 7. Moreover, it is worth noticing the contribu-
tions of (v;) and (wg). Physics expectation based on MISK
calculations has shown that RWM instability is possible at very
low rotation and also at a higher rotation level between stabi-
lizing resonances. This higher rotation level at which the RWM
becomes unstable tends to increase as collisionality decreases
[49]. This appears to be consistent with the behaviour of shot
140123. As (v;;) drops below 1 kHz access to higher rota-
tion is allowed, so (wg) steeply rises. Meanwhile collisionality
starts to oscillate. One can see that the contribution of (v;;)
first decreases and then increases again, which confirms that
it is not possible to assume that stability decreases monoton-
ically with collisionality [7]. The joint effect of these three
contributions is an increase in the warning level that, in the
counterfactual scenario, can only be damped by a reduction
in the Sy level below the no-wall limit, as seen on the top
right panel in figure 8. Overall, the warning level is 0.05 to
0.15 higher for this discharge, hence the lower and narrower
counterfactual region suggested by the DiCE algorithm.

As was previously mentioned, /5, modulation also influ-
ences rotation in a device like NSTX. Therefore, in the future
this approach can be applied in a way that takes into account,
for example, the simultaneous variation of 8y and (wg). In
addition, the reliability of any counterfactual scenario relies on
the accuracy of the underlying model. Therefore, it is really
important building a robust counterfactual generator as well
as perfecting the RWM stability forecaster. The implemen-
tation of ML-based controllers has been gaining attention in
recent years with through the usage of reinforcement learn-
ing, for example to determine the optimal control scenario to
obtain a constant user-defined /3, level in the KSTAR toka-
mak [54]. The direction we have taken in the present work
follows the observation that the disruptive 3, is not constant
when it comes to RWM stability and the usage of counter-
factuals might lay the basis for a control algorithm that takes
this variability into account. Moreover, recent research [55]
has shown that contribution-based explanations can be jointly
used with counterfactual generation algorithms and disclose
which features are necessary or sufficient towards the model’s
decisions.

7. Discussion and conclusions

The prediction of impending instabilities is crucial for the
safe operation of future commercial fusion devices. The com-
bination of physics knowledge and the capabilities of ML
algorithms is arguably one of the best solutions to this grand
challenge. Recently, particular attention has been given to
interpretable ML models, such as RFs, which can easily give
an insight into the underlying causes of instabilities by provid-
ing the importance of each input feature as well as their con-
tribution to the final output. A new RWM stability forecaster
based on the RF approach has been developed here to predict
whether the RWM will go unstable or not for a set of human-

labelled NSTX discharges. The present approach outperforms
classical weighted RFs by including a random per-tree under-
sampler to balance individual time slices. The algorithm is a
valuable addition to DECAF and can be regarded as a support-
ing tool for the existing RKM model, since a processed signal
indicative of the presence of low frequency MHD activity has
been added to the input features.

Additionally, a model-agnostic tool based on counterfactu-
als has been tested for the first time to explain the effect of
the hypothetical presence of MHD activity as well as to sim-
ulate 3 levels that would have kept the plasma RWM stable.
Regarding the first usage, it has been observed that the underly-
ing model is understanding that strong MHD activity is gener-
ally unobserved when the RWM goes unstable, as expected by
prior experimental evidence. On the other, suggested counter-
factuals have interestingly shown that in discharges where the
RWM warning level rises above 70%, the first line of defense is
to reduce /3 in a range that is slightly above the no-wall limit.

Both the BRF and the counterfactual approaches are appli-
cable to other tokamaks as well. While it may be necessary to
retrain the underlying ML model on data from each machine,
it should be noted that the PGNN-determined B}(,jé_wa“ from
NSTX data was applied with some initial success to the MAST
tokamak [27]. Although more research is needed to deter-
mine the reliability of cross-device applications, the physics
in the kinetic stability terms, (wg) and (v;;), are applicable
to other devices as well [12]. For example, comparisons of
the theory to dedicated DIII-D experiments were successful.
Other terms, like the no-wall and with-wall limits, are based
on physics parameters, such as the aspect ratio, that can scale
to other machines. Finally, recent calculations [56] for the
MAST-U tokamak show potential high beta stability regions
that could provide valuable information to better characterize
RWM stability across multiple devices.

There are various elements in this approach that may be
improved. First of all, the underlying RF model might be
refined with the inclusion of the effect of energetic particles
from TRANSP NUBEAM runs, which would likely help in
reducing the FPR. Secondly, although the current usage of
counterfactuals is encouraging, it still needs to include inter-
dependencies between the main plasma parameters. Work in
the near future will cover the implementation of counterfac-
tual explanations to further gain understanding of RWM sta-
bility, exploring actionable scenarios and implementing a more
sophisticated 3y/rotation ML-based controller.
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Appendix A

A.1. Details about the reduced physics models and the
input features to the BRF classifiers

A.1.1. PGNN-informed no-wall and heuristic with-wall limits.
The equation for the no-wall beta limit used in this work (see
table 1) is from reference [27]:

ﬁn:l _ 3 )
'N.no—wall — gy x; Wy x; —do
X X

where ag, \;, wgy,y;, and ap are optimized coefficients that can
be found in table 6 of reference [27]. Whereas the By p,q(x:)
terms are the three decision boundaries found by the PGNN
trained on DCON calculations as follows:

~1
agy x;Way
BN i 3N~,X’:| , (5)

Byona(Xi)?

L—1.17\°
BN’bnd(li) = 491 exp <— (W) )
I —027\°

Byond(A) = —4.14A% + 13.47A% — 14.95A + 10

2
B.ona(Fp) = 2.56 exp <_< ) )
( (F,, - 0.43>2>
+310exp | - £—=— ’ )

4.29
where /; is the internal inductance, A is the aspect ratio, and
F, = py/({p) is the pressure peaking factor. For the with-wall
limit:

(M

F,—4.06
2.59

n=1

N with_wal = 0-75 +12.5/F, C))

which comes from a fit to the DCON projected with-wall limit
found for NSTX-U [57] and adapted to the operational limit
seen in NSTX [13].
A.12. The kinetic term 6Wy. The full equation and the
reduced model for §Wg from reference [13] are repro-
duced here, for reference, although they are not used in the
present work. Rather the important parameters (wg) and (v;;)
were identified and included as inputs to the ML algorithm
(see table 1):

832 7E de,

-
(10)

where ¢ is the particle energy normalized by temperature,
w.y and w,r are the density and temperature gradient com-
ponents of the ion diamagnetic drift frequency, wg is the
E x B frequency, wp the precession drift frequency, [ the
bounce harmonic, w;, the bounce frequency, and w, and ~y the
real frequency and growth rate of the mode. This complex
form was reduced, through various assumptions, to functional

win + (€ = 3/2wir + wg —w, — iy
M_Dé =+ l@,él/z — l.l7é73/2 + wg —w, — i’y

expressions for the real and imaginary, precession and bounce
oW, terms, as follows:
] b

where a, b and ¢ are functions of (v;)/w, with w being the
normalizing frequency wp = 2 kHz or w;, = 10 kHz for each
respective piece of Wy, and () represents an average value
inside the profile pedestal.

In the above equations as well as in the present work, the
E x B profile is related to plasma rotation through wg = we
— wyN — wyr [49], with the diamagnetic drift frequency terms
obtained as follows:

 ((wg)/w — by
2¢?

Wy = a@ exp [ (11)
w

T; dn;

W*N:_e_nid_\lf (12)
1dT;

==, 13

Wsr e dU (13)

where the above gradients are taken with respect to the equi-
librium poloidal magnetic flux, ¥, in units of Wb.

A.2. Definition of the diversity term for the counterfactual
generator

The counterfactual generation process is a compromise
between actionability, proximity and diversity. As men-
tioned previously, proximity is not a necessary require-
ment in the case of alternative MHD activity generation,
hence we will focus here on showing how diversity has
been derived. In reference [29], counterfactual diversity is
achieved by computing the DPP of the pairwise inverse dis-
tance matrix, M, between the proposed counterfactuals. In
our case, we have found that the exponential of the dis-
tance works best. Hence each term of M is obtained as
follows:

lei — ¢
MAD, ’

d
.. . . . 1
M(i, j) = exp (—dist(ci,¢))  with  dist(ci, ¢j) = 3;

(14)

where d is the number of continuous features (7 in the present
work) and MAD is the feature-wise median absolute deviation
to take into account that features span over different ranges.
The DPP provides a fast and efficient way to capture nega-
tive correlation with respect to a similarity measure, which
can in turn be used to quantify the diversity within a set of
feature instances. It is clear that the more diverse two counter-
factuals are, the smaller the corresponding inverse exponential
distance would be. As an example, we have reported in table 6
the output of the algorithm after minimizing equation (2) for
shot 140134 (see figure 7) at t = 0.366 s. In the top row, the
original features are highlighted in bold. In this case, M was
a 10 x 10 matrix in which the non-diagonal elements were
essentially determined by the features that we chose to change,
corresponding to the last two columns. Conversely, since dist
(¢i, ¢j) = O for i = j, the entries on the leading diagonal are all
ones. The first three columns of the kernel M associated to the
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Table 6. Example of the counterfactuals generated by DiCE for shot 140134 at t = 0.366 s. The last two columns are the suggested set of
alternative scenarios that would have prevented the warning level from rising above 0.7 and triggering an RWM alarm.

Unchanged features

Features to change

t By e wall o wal (wE) ) Odd-n MHD freq. Odd-n MHD RMS
0.366 s 4.29 4.03 5.54 4.05 2.89 0.20 0.46
B - — - — — 6.54 3.50
§ — — — — — 6.74 3.34
5 — — — — — 6.88 3.24
g - — - — — 7.62 3.03
E — — — — — 7.78 2.85
S — — — — — 7.84 2.78
3 — — — — — 8.88 2.46
2 - — - — — 11.42 2.25
£ - — - — — 11.62 2.18
- — - — — 11.80 1.41
counterfactuals in table 6 are reported below: [12] Berkery J.W., Wang Z.R., Sabbagh S.A., Liu Y.Q., Betti R. and
Guazzotto L. 2017 Phys. Plasmas 24 112511
10 251000 L0-107h L] [13] Berkery J.W., Sabbagh S.A., Bell R.E., Gerhardt S.P. and
25-107" 1o 39-10" LeBlanc B.P. 2017 Phys. Plasmas 24 056103
1.0-107" 39-107" 1.0 [14] Sabbagh S.A. et al 2018 Disruption event characterization
L5- 1072 5.8 107? L5- lofj and forecasting in tokamaks 2018 IAEA Fusion Energy
Mo—orse) = 4.3- 1074 L7 107’3 4.3- 107; (15) Conf. [EX/P6-26] (Gandhinagar) (https:/conferences.iaea
- 2.8-107°  1.1-100°  28-10~ .org/event/151/contributions/5924/attachments/7284/8850/
70-107  28-10° 7.0-10° Sabbagh.S-EX-P6-26-Paper-rev2.pdf)
13-107% 51-107” 13-107" [15] Kaye S.M. et al 2019 Nucl. Fusion 59 112007
40-10°" 1.6-107" 4.0-10"? [16] Strait E.J. et al 2019 Nucl. Fusion 59 112012
[2.6-107" 1.0-10°" 26-10°" J [17] Moreno R., Vega J., Dormido-Canto S., Pereira A. and Murari

in which one can notice that the per-column similarity metric
decreases the farther we move from the i = j entry, indicative
of increasing diversity.
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