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Abstract
Purpose Laparoscopic sacrocolpopexy is the gold standard procedure for themanagement of vaginal vault prolapse. Studying
surgical skills and different approaches to this procedure requires an analysis at the level of each of its individual phases, thus
motivating investigation of automated surgical workflow for expediting this research. Phase durations in this procedure are
significantly larger andmore variable than commonly available benchmarks such as Cholec80, andwe assess these differences.
Methodology We introduce sequence-to-sequence (seq2seq) models for coarse-level phase segmentation in order to deal
with highly variable phase durations in Sacrocolpopexy. Multiple architectures (LSTM and transformer), configurations
(time-shifted, time-synchronous), and training strategies are tested with this novel framework to explore its flexibility.
Results We perform 7-fold cross-validation on a dataset with 14 complete videos of sacrocolpopexy. We perform both a
frame-based (accuracy, F1-score) and an event-based (Ward metric) evaluation of our algorithms and show that different
architectures present a trade-off between higher number of accurate frames (LSTM, Mode average) or more consistent
ordering of phase transitions (Transformer). We compare the implementations on the widely used Cholec80 dataset and verify
that relative performances are different to those in Sacrocolpopexy.
Conclusions We show that workflow segmentation of Sacrocolpopexy videos has specific challenges that are different to the
widely used benchmark Cholec80 and require dedicated approaches to deal with the significantly larger phase durations. We
demonstrate the feasibility of seq2seq models in Sacrocolpopexy, a broad framework that can be further explored with new
configurations. We show that an event-based evaluation metric is useful to evaluate workflow segmentation algorithms and
provides complementary insight to the more commonly used metrics such as accuracy or F1-score.

Keywords Surgical workflow segmentation · Machine learning · Laparoscopic sacrocolpopexy · Long short-term memory
networks · Transformer networks

Introduction

Half of the women above 50 years of age suffer from pelvic
organ prolapse, with a lifetime prevalence of 30± 50% [24],
and in particular, vaginal vault prolapse is a frequent occur-
rence after hysterectomy [10]. This condition occurs when
the vaginal vault sags down from its position, causing dis-
comfort and urinary problems to the patient. Sacrocolpopexy
has been regarded as the gold standard procedure for its treat-
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ment [21], and while it can be performed with either open or
minimally invasive laparoscopic approach, the latter is asso-
ciated with lower morbidity rates and recovery periods [12].

Laparoscopic sacrocolpopexy aims at fixating the vagi-
nal vault using a mesh implant that is permanently sutured
or stapled to the sacral promontory. The workflow of this
procedure can be divided into 5 phases (Fig. 1): 1) dissec-
tion of the promontory; 2) dissection of vaginal vault and
gutter; 3) implant fixation to the vault; 4) implant fixation to
the promontory; 5) peritonealisation. This procedure requires
a significant amount of training [10]. Claerhout et al. [6]
show that the operation time declines rapidly after the first
30 procedures and at a slower rate until 90 procedures are
attained. The learning rate for each particular phase is also
different, and the dissection of the promontory is regarded
as the most difficult to master [7]. Additionally, the different
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(a) Phase 1 (b) Phase 2 (c) Phase 3 (d) Phase 4 (e) Phase 5

Fig. 1 Surgical phases of laparoscopic sacrocolpopexy with average duration in seconds: 1) promontory preparation (633± 365); 2) dissection of
vault and gutter (3097±1212); 3) mesh fixation to vault (3888±879); 4) mesh fixation to promontory (211±157); 5) peritonealisation (1073±548)

approaches for attaching the mesh implant mean that some
surgical phases can bemodified and need to be analysed indi-
vidually to investigate surgical skills.As different approaches
to sacrocolpopexy are introduced, larger studies become nec-
essary to understand how they affect surgical learning rates
at the level of each phase. However, going through large vol-
umes of surgical video to annotate the duration of each phase
is significantly time-consuming and requires extensive dedi-
cated time from clinically trained staff. Automating this task
would greatly assist in the investigation of surgical skills and
the impact of procedural changes in sacrocolpopexy, and this
can be accomplished with surgical workflow segmentation.

In most image-guided surgeries, the main source of infor-
mation for workflow segmentation is video. However, this
can be complemented with additional data, such as instru-
ment trajectories from robot joint kinematics [1,20] or
activity signals from surgical instruments [29]. In the case
of Sacrocolpopexy, the only available source of informa-
tion is the laparoscopic video, and therefore, we will review
approaches under this constraint. A few works rely on tool
detection as a prior to surgical phase recognition. While this
has shown to be a successful strategy in cholecystectomy
[4,17,26] and cataracts [33], it relies on the availability of
groundtruth tool labels and therefore requires either time-
consuming tool annotation or additional measurements in
the operating room. In many circumstances, such as with
our Sacrocolpopexy data, we are limited to temporal phase
annotations alone.

The state-of-the-art in this domain is based on supervised
deep learning. Given the temporal nature of this problem, it is
typically approached using a fine-level convolution network
that estimates surgical phases from a single frame (CNN)
or a short sequence of frames (3D-CNN), followed by a
coarse-level temporal model that refines phase segmentation
using constraints at a larger timescale (e.g. Long Short-Term
Memory (LSTM) networks [4,17], HMM [26], Temporal
Convolutional Networks [8]). Defining the scope of fine and
coarse features in Sacrocolpopexy is a challenge due to the
extreme variations in procedural time, ranging from around 2
to 5 hours in total. Similarly, phase duration can vary from 1
minute (mesh fixation to promontory) to 4 hours (dissection

of vault and gutter). This highly contrasts with popular public
datasets in cholecystectomy and cataracts that havemore sta-
ble workflow patterns [26,33]. Therefore, we are interested
in a scalable solution that can capture temporal details with
highly varying coarse intervals.

In this paper,we introduce sequence-to-sequence (seq2seq)
learning as a flexible framework for modelling coarse tem-
poral workflow features. Seq2seq was popularised in natural
language processing for text-to-text conversions such as lan-
guage translation [13,15], but has also been recently used to
model temporal features in video analysis [30,31]. Unlike
previous approaches to coarse workflow modelling with
LSTM, seq2seq allows for input-output sequences with inde-
pendent and arbitrary dimensions that could, e.g., be utilised
in forecasting future workflow events [5,32]. To the best of
our knowledge, this formulation has not been applied before
toworkflowsegmentation, and therefore,weperformanabla-
tion study on multiple seq2seq configurations and learning
strategies to explore its potential in this domain.Additionally,
we introduce event-based accuracy metrics [28] to surgical
workflow segmentation. While algorithms in this domain
are typically evaluated in terms of aggregate classification
outcomes (precision, recall, etc), this is not completely infor-
mative if we aim at estimating timestamps for certain events
during the procedure, such as a phase transition, from noisy
segmentation results. Other considerations related to the
number of erroneous classification transitions need to be
analysed.

Our main contributions can be summarised as following:

– Introducing workflow segmentation in the context of
laparoscopic sacrocolpopexy, with its significant chal-
lenges in terms of large and highly varying phase
duration. These differences are also highlighted in com-
parison with the widely used benchmark Cholec80.

– A general seq2seq formulation of the surgical workflow
segmentation problem and several implementations with
different configurations (time-synchronous and time-
shifted), architectures (LSTM [14] and transformer [27])
and learning strategies. The time-shifted configuration
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(a) (b)

Fig. 2 Network architectures for coarse-level sequential models. The
main differences from the sequence-to-sequence to the many-to-many
model are: 1) the presence of an encoder-decoder structure, allow-
ing input/output sequences to have different sizes; 2) In addition to

a sequence of feature vectors (input sequence), the input to this model
also includes a sequence of label classifications (target sequence). The
colour legend can be referred to Fig. 2

has the advantage of not requiring a fine-level initialisa-
tion beyond the first few frames of a video.

– An event-based evaluation methodology for surgical
workflow that complements standard classification met-
rics to inform on potential workflow applications such as
automated time-stamping of events.

– The code in this work can be downloaded at:
https://github.com/yitongzh/Sacrocolpopexy-workflow-
analysis

Sequence-to-sequence (seq2seq) models

Surgical workflow segmentation is a sequential multi-label
classification problem with inherent temporal constraints.
Considering the most recent state-of-the-art deep learning
approaches, these temporal constraints can be modelled at
a fine-level with 3D convolutional neural networks (3D
CNN’s), and at a coarse level with a recurrent model, such as
LSTM. In this section,we assume that a fine-levelmodel esti-
mates a sequence of feature vectors (input sequence) and an
initial workflow segmentation from them (target sequence).
We will now explore different ways of processing these
sequences at a coarse level to produce an output sequence
that represents our final workflow segmentation.

We refer to conventional recurrent models in this domain
as many-to-many models, since both their input and output
are sequences with the same dimension, with a one-to-one
correspondence. In contrast, a seq2seq model can have input
and output sequenceswith different sizes that are linked by an
encoder-decoder architecture. Additionally, a seq2seq model
uses the fine-level predictions (target sequence) to guide fea-
ture selection at the the decoder level. These differences are
summarised in Fig. 2. Recent works have also used related
strategies for feature selection though attention mechanisms
in the context of cholecystectomy workflow segmentation
[9,11].

We investigate two potential configurations of the seq2seq
model: time-synchronous and time-shifted (Fig. 3). With the

time-synchronous configuration, the sequence of input labels
(target sequence), input feature vectors (input sequence), and
final classifications (output sequence) all correspond to the
same time interval. This usage works as a global refinement
of a sequence that was previously estimated with a fine-level
method (e. g. CNN, 3D-CNN). This is most similar to the
conventional many-to-many recurrent models, but it explic-
itly requires a fine-level model to provide both a sequence
of features and its segmentation results (many-to-many only
requires features). On the other hand, the time-shifted con-
figuration does not require fine-level segmentation results
beyond the first sequence in the video. This is achieved
by having the target sequence shifted (to the past) relative
to input/output sequences (in the present) by a fixed num-
ber of time-steps. Therefore, if a workflow segmentation is
obtained by sliding a sequence along an entire video, the
target sequence can be obtained exclusively at coarse-level
using past seq2seq predictions, instead of relying on fine-
level predictions like the time-synchronous configuration.
We also note that this is different frompredicting future labels
from present information, given that the input and output
sequences still correspond to the same time interval.

Proposed network architectures

Our proposed network (Fig. 3) has two main components:
a 3D convolutional neural network (Conv3D) for fine level
phase classification and a seq2seq model for coarse level
refinement. Conv3D takes clips of 16 RGB consecutive
images with 112×112 pixel resolution. The 3D convolution
layers follows the EndoNet architecture [4] which is based
on Alexnet [19]. A final fully connected layer is added to
output 5 classifications (phases in sacrocolpopexy). Both the
final classification and the 1200 dimensional feature vector
from the previous fc8 layer is fed into the seq2seq model.

The seq2seq model analyses a larger video segment, con-
sisting of 100 Conv3D clips. The base unit of seq2seq
sequences are clips, not frames. Therefore, at a coarse level,
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Fig. 3 Seq2seq Network Architecture with a sequential input of 100
clips. The length of the target and output sequence depends on the con-
figuration of the network: a in the time-synchronous configuration, the
target, input and output sequences correspond to the same time interval
of 100 clips; b in the time-shifted configuration, the target and output
sequences have a length of 90 time steps with a shift of 10 between

them. Together they span a length of 100 clips, which corresponds to
the size of the input sequence that is obtained from the Conv3D fea-
ture extractor. To obtain segmentations for consecutive sequences in a
video, the seq2seq predictions become the target sequence of the next
prediction iteration

we refer to the label of an entire clip as the most frequent
label in its 16 frames. During network training, the target
sequence can be defined differently, e.g. as the groundtruth
labels. We implement seq2seq with two base architectures,
LSTM [14] and transformer [27]. Note that LSTM has been
already used for surgical phase segmentation [16,22,33], but
only as a conventional many-to-many sequential model. In
this paper,we refer toLSTMadapted to the seq2seq structure.

We additionally consider two configurations: time-
synchronous and time-shifted. The time-synchronous config-
uration (Fig. 3a) takes as the target sequence the 100 labels
corresponding to the same clips as the fc8 feature vectors.
Hence, these networks are named as LSTM100(L100) and
Transformer100(T100) for simplicity. The time-shifted con-
figuration (Fig. 3b) takes as the target sequence only the first
90 labels corresponding to the 100 fc8 feature vectors to
predict the last 90 labels of that sequence. Hence, there are
10 labels in the prediction that act as ’future’ labels rela-
tive to the target sequence with only 80 overlapping labels.
By having this shift between target sequence and predic-
tion, the detection can have the first 90 target sequence to be

initialized by the Conv3D network and the prediction of all
following labels in the video relies completely on the seq2seq
model by treating the previous predictions as the current tar-
get sequence recursively. These types of networks are named
as LSTM90(L90) and Transformer90(T90) for simplicity.

Network parameters

The detailed network parameters of Conv3D are presented in
the supplementary document. The fc8 layer that is extracted
for sequential model input has a dimension of 1200. This
dimension is used as the hidden dimensions of the LSTM
model for convenience, and each separate LSTM model
(many-to-many, LSTM encoder and LSTM decoder) has 3
hidden layers.
The transformer setup is analogue to the originally proposed
default settings [27] with 6 layers of the 8 head encoder-
decoder pairs. The input dimensions are adjusted to fit our
input sequence with a sequence length of 100 and the dmodel

of 1200. The inner layer dimension for the feed forward net-
work is reduced to 1000 to decrease the model size. And the
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sine and cosine functions of different frequencies are used
for positional encoding, as in [27].

Network training strategies

Conv3D and Seq2seq are trained separately. The Conv3D
model was fine-tuned based on the parameters that have
been pre-trained on the Cholec80 dataset, as Cholec80 and
our dataset have roughly similar tool usages and the tissue
shares some spatial features. For seq2seq, we defined differ-
ent training strategies in terms of sampling policy and usage
of the target sequence. All strategies are independently mod-
ified from a baseline so that an ablation study can evaluate
them independently. These training strategies are defined as
following:

– Standardmethod (baseline): During training, the input
to the target sequence is the groundtruth labels. When
deployed, the network uses Conv3D (time-synchronous)
or past Seq2Seq (time-shifted) predictions instead. This
is the standard approach for training seq2seq models in
previous works [25]. The entire video is sampled for
training in sequence. For balancing the training data, a
fixed number of sliding windows (200) is sampled from
each video, with their interval changing depending on
total video time. During training, the sliding windows
with the same indices will be extracted from each video
and assembled into a batch. Hence, each batch contains
the samples that are at the same relative positions in all
videos.

– Target Sequence with injected noise (noised): We
inject noise into the groundtruth target sequence to
simulate prior classification errors during training and
enabling seq2seq to learn a filtering action. Noise is
injected by randomly replacing 40% of correct labels.

– Target Sequence with Predicted Labels (pred): Simi-
larly to the previous strategy, we introduce classification
errors by using Conv3D predicted labels as the target
sequence. Thismethodmay preserve some internal struc-
tures between the predicted labels.

Loss function

Cross entropy loss is utilized in training the network. The
general form of the loss function for the Conv3D network is:

LConv(y, x) = 1

d

d∑

j=1

n∑

i=1

wi yi, j log(xi, j ), (1)

where x is the softmax output from the network and y is the
one-hot label for that particular clip. There are n classes of
labels that represent the phases, and each label has a cor-

responding weight wi in evaluation. Multiple samples are
trained together with a batch size d, and the average loss for
all samples is considered as the general loss for that batch.
The loss function for the sequential model is similar, but with
an extra time dimension t for the sequence length:

Lsequential(y, x) = 1

td

t∑

k=1

d∑

j=1

n∑

i=1

wi yi, j,klog(xi, j,k). (2)

Experimental setup

Dataset

The dataset contains 14 videos of laparoscopic sacro-
colpopexy surgery performed by the same group of surgeons.
The videos are acquired at 24 fps resolution with a display
resolution of 1920×1080 pixels. Each video captured a com-
plete procedure, where the average duration was 3 hours 13
minutes, with the shortest video of 1 hours and 47 minutes
and the longest video of 4 hours 56 minutes. Each video was
annotated by an expert Gynaecologist to indicate the start, the
end and any pausing and resuming of each phase as times-
tamps.

Besides the five phases of the procedure, some frames are
labelled as transition and non-phase. The transition phase
is defined as the moment when the previous phase finishes,
but the next phase has not begun yet. These are relatively few
and short but could potentially aid in classifying previous and
subsequent phases within a temporal window. In the training
loss function, we attribute the transition phase a weight that
is 10 times smaller than the other phases to avoid its over-
estimation. The non-phase refers to the moment before the
first phase and after the last phase, and we exclude it from
the analysis. The five phases shown in Fig. 1 are the major
phases that are needed for the surgical workflow analysis and
skills assessment.

Post-processing

Both the time-synchronous configuration and the time-
shifted configurations have fixed-length input and output
sequences. The length is designed to be short enough
for extracting sufficient amount of sliding windows from
the videos. Hence, it is necessary for composing the out-
put sequence together for a final predicted sequence. For
the time-shifted configuration, there are overlaps existing
between the sliding windows. A single time step in the video
can have multiple predictions throughout the sliding win-
dows. A mode filter is applied to each time step for the final
prediction. For the time-synchronous configuration, the slid-
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ing windows can be assembled in sequence as there are no
overlaps between them.

Comparison with the state-of-the-art

With the sacrocolpopexy dataset, we compare our seq2seq
results against raw predictions from [4] (C3D), a filtered
version with mode averaging, and the many-to-many mod-
els LSTM and TCN. C3D+LSTM can take sequences of
arbitrary length, and thus, it is normal to perform predic-
tions based on all past frames. However, our seq2seq models
require a fixed sized sequence and perform predictions using
a sliding window. To understand how this affects the perfor-
mance, we test C3D+LSTM with both all past frames and
with a sliding window. All above methods are also tested on
the Cholec80 public dataset [26] to which we add for com-
pleteness the state-of-the-art results as reported in [4], [17],
[8]. The major difference between our dataset and Cholec80
is the overall duration of each phase, which can be signifi-
cantly larger in Sacrocolpopexy. Notably, this significantly
changes the relative performance between different algo-
rithms, as we show in Results and discussion section.

Training details

The captured videos are downsampled to 2.4 fps, centre
cropped, and resized into a square of resolution 300 × 300
pixels. Then, 16 consecutive frames are assembled into a
clip as the basic unit of input for the Conv3D network. The
most common label (mode value) for all the frames in a clip
is assigned as the label for that clip. The sequential model
takes a continuous sequence of 100 clips (1600 frames) as
input, where the clips are processed by the Conv3D network
first and its last fully connected layer of 1200 neurons for
those 100 clips are assembled into a tensor as one training
sample.

Data augmentation is applied to each clip along with
sampling [3] by performing horizontal and/or vertical flip,
rotation in the range of 0 to 360 degrees, crop with a mini-
mum factor of 1

9 of the original image and then resizing, blur
with a Gaussian filter of 5×5 kernel with 1.5 standard devia-
tion and luminance variation in the range of 0.6 to 1.4. These
augmentations are selected randomly with a uniform distri-
bution within the indicated ranges. The same augmentation
is applied to all the frames in a single clip for consistency.
Finally, all frames are resized to 112×112 pixels tomatch the
input requirement of the network. The proposed network is
implemented in PyTorch using a single Tesla V100-DGXS-
32GB GPU of an NVIDIA DGX station.

The training is performed using 7-fold cross-validation.
The 14 videos that constitute our dataset are divided into
seven pairs where five of them are used for training, 1 pair
is used for validation and 1 pair is used for testing. Adam

[18] optimiser with a learning rate (lr ) of 1e−5 and a decay
set to 0.93 × lr for every fifth epoch is used for the Conv3D
network training. Each epoch contains 600 samples of batch
size 10 with each phase sampled to a same number. The aver-
age accuracy without the transition phase and non-phase is
calculated on the validation set 4 times per epoch, and net-
work parameters with the best accuracy in history are saved
as the final parameters. The output (fc8 and prediction) of the
trained Conv3D is then used as input for sequential models.

Evaluationmetrics

Two evaluation are performed. The first one is the frame-
based macro-averaged precision and recall that gives the
overall performance. The transition phase is excluded for
its unimportance in the calculation of averaging over phases.
F1-score is also calculated through the macro-averaged pre-
cision and recall. As the evaluation metrics used in most of
other works, the accuracy here is calculated based on the
whole videos rather than a per phase macro-average. The
second evaluation is done with the Ward metric [28] which
provides in-depth analysis of the error by further breaking it
down into sub-categories. The Ward metric is shown to be
effective for evaluating sequential predictions, e.g. video or
sensor-based activity recognition [2,28]. There are two types
of Ward metrics: frame-based and event-based. We focus on
the event-based in this paper, which evaluates the event as a
continuous positive label with a start time and a stop time.
It defines 5 sub-categories of error by comparing the pre-
dicted sequence to the ground truth sequence as: deletion(D),
insertion(I′), merge(M, M′), fragmentation(F, F′), and Frag-
mented and Merged(FM, FM′), where the prime symbol
indicates the segment in the predicted sequence. The Ward
metric counts each type of error individually and summarizes
them in an event analysis diagram (EAD). In our research,
as a multi-class classification problem, we implemented the
ward metric phase-by-phase and added them up to obtain
the final evaluation of a single sequence. We also define an
event ratio calculated by the event number of the groundtruth
over the event number of the prediction sequence. An event
ratio close to 0 suggests the worst performance, while a value
close to 1 suggests that the event number in groundtruth and
predictions are the same.

Results and discussion

Table 1 shows an ablation study of our different seq2seq
implementations, and Fig. 5 shows its results on a partic-
ular video sequence. The noised training strategy overall
performed best for both time-synchronous and time-shifted
configurations, with, respectively, LSTM100 (L100) and
Transformer90 (T90) being the best performing in terms
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Table 1 Ablative phase recognition results(%) over different proposed architectures on Sacrocolpolpexy dataset the best among each configuration
are shown as italic for 100 series and bolditalic for 90 series

Architectures Precision (Macro) Recall (Macro) F1-Score Accuracy (Micro)

LSTM(L) 100 Baseline 61.6±6.7 74.8±9.7 0.68 70.7±9.0

Pred 72.8±12.8 69.6±17.6 0.71 80.4±13.0

Noised 74.6±11.8 78.8±11.5 0.77 82.8±9.8

90 Baseline 53.7±24.1 54.4±17.5 0.54 67.2±22.3

Pred 57.7±16.0 59.0±15.1 0.58 75.5±20.2

Noised 53.5±16.3 58.8±11.7 0.56 76.5±16.0

Transformer(T) 100 Baseline 64.6±13.7 63.2±14.7 0.64 73.1±13.4

Pred 75.4±14.3 69.4±14.2 0.72 80.6±16.1

Noised 72.9±14.2 68.6±15.7 0.71 82.7±13.5

90 Baseline 76.4±12.6 71.7±15.5 0.74 81.1±15.5

Pred 71.7±14.2 65.1±13.1 0.68 80.4±14.1

Noised 74.9±13.6 71.2±15.5 0.73 81.9±14.1

Bold values indicate the best performance

(a) (b) (c)

Fig. 4 Sacrocolpopexy per phase results: averaged confusion matrices(%) over all cross-validation folds normalized by the sample number of each
phase with the two best methods in sequential models. (Note: transition phase is eliminated from the graph)

of accuracy. The baseline strategy using groundtruth labels
for the target sequence is generally the worst, with a single
exception (T90). In this case, the network suffers from the
exposure bias [23] as there is a strong dependency between
the groundtruth and the predictions.

Figure 4b, c provide the confusionmatrices of the selected
methods. Most of the misclassifications for this type of
surgery happens between the twoconsecutive phases as phase
1-2, phase 3-4 and phase 3-5. Themesh is introduced in phase
3which separates the followingphases from thefirst 2 phases.
The same tools are also used in phase 3, 4 and 5 but applied to
different positions with phase 3 (promontory) and 4 (vault).
Phase 5 can be started from either phase 3 or 4 but in most
cases is phase 3, hence it has more misclassifications with
phase 3 rather than phase 4.

Our best performing seq2seq time-synchronous and time-
shifted models (T90, L100 noised) are also compared with
previously proposed approaches on our Sacrocolpopexy
dataset (Table 2). First, we can observe that performing pre-
dictions on a sliding window does not affect the general
performance of C3D+LSTM, slightly increasing its accu-

racy. This suggests that the loss of input information from
using a fixed sliding window is not negatively affecting per-
formance, and therefore, this should not be a limiting factor
in our seq2seq architectures that always operate on a slid-
ing window. Both seq2seq models (T100,L90) outperform
themany-to-many approach (C3D+LSTM). Surprisingly, the
best performance in terms of F1-score is the simple mode
average on C3D results, which narrowly beats the seq2seq
L100 noised.However, an analysis purely based onF1-scores
disregards how accurately are we capturing a time ordered
sequence of events. To further interpret these results, we also
perform an event-based evaluation.

Table 3 shows the sum of the Ward metric results over
the 7 cross validation folds. The event ratio, number of cor-
rect (C) events and number of the fragmentation errors (F,
F′) are presented in the table. A higher event ratio means
that the temporal order of phase transitions is better pre-
served. Filtering very noisy predictions generally leads to
better results in this evaluation due to eliminating a signifi-
cant number of false phase transitions (e.g. comparing C3D
with its mode average). Seq2seq models can further increase

123



International Journal of Computer Assisted Radiology and Surgery

Ta
bl
e
2

C
om

pa
ri
so
n
of

th
e
ph
as
e
re
co
gn
iti
on

re
su
lts
(%

)
w
ith

ot
he
r
m
et
ho
ds

on
th
e
Sa
cr
oc
ol
po
pe
xy

an
d
C
ho
le
c8
0
da
ta
se
ts

Sa
cr
oc
ol
po
pe
xy

(a
ve
ra
ge

of
13
89

cl
ip
s
pe
r
vi
de
o)

C
ho
le
c8
0
(a
ve
ra
ge

of
36
0
cl
ip
s
pe
r
vi
de
o)

M
et
ho
d

Pr
e.
(M

ac
ro
)

R
ec
.(
M
ac
ro
)

F1
-S
co
re

A
cc
.(
M
ic
ro
)

Pr
e.
(M

ac
ro
)

R
ec
.(
M
ac
ro
)

A
cc
.(
M
ic
ro
)

C
3D

+
L
ST

M
+
To

ol
(E
nd

o3
D
)*
[4
]

81
.3

87
.7

91
.2

R
es
N
et
-5
0+

L
ST

M
+
PK

I
(S
V
-R
C
N
et
)*
[1
7]

90
.6

±8
.1

86
.2

±1
5.
3

92
.4

±5
.2

R
es
N
et
-5
0+

L
ST

M
*[
17

]
80
.7

±7
.0

83
.5

±7
.5

85
.3

±7
.3

R
es
N
et
-5
0+

T
C
N
(T
eC

N
O
St
ag
e
I)
*[
8]

82
.4
4
±0

.4
6

84
.7
1
±0

.7
1

88
.3
5
±0

.3

C
3D

58
.5

±6
.8

68
.6

±1
0.
1

0.
63

69
.2

±8
.8

67
.5

±8
.1

74
.7

±7
.4

71
.0

±8
.5

C
3D

+
M
od
e
av
er
ag
e

78
.1

±9
.5

79
.7

±1
2.
6

0.
79

82
.8

±9
.5

73
.9

±1
0.
6

81
.2

±9
.9

79
.5

±8
.1

C
3D

+
T
C
N

76
.6

±
12
.6

74
.3

±
15
.3

0.
72

82
.6

±1
2.
4

81
.3

±5
.9

82
.0

±8
.4

83
.8

±7
.8

C
3D

+
L
ST

M
71
.6

±2
2.
6

64
.8

±1
9

0.
68

77
.1

±1
8.
8

80
.1

±1
0.
0

82
.0

±8
.3

85
.9

±7
.9

C
3D

+
L
ST

M
+
Sl
id
in
g
W
in
do
w

71
.2

±1
7.
5

65
.8

±1
5.
7

0.
68

79
.2

±1
4.
7

C
3D

+
T
90

no
is
ed
(P
ro
po
se
d)

74
.9

±1
3.
6

71
.2

±1
5.
5

0.
73

81
.9

±1
4.
1

43
.7

±1
8.
7

48
.1

±1
6.
0

71
.1

±1
3.
9

C
3D

+
L
10
0
no
is
ed
(P
ro
po
se
d)

74
.6

±1
1.
8

78
.8

±1
1.
5

0.
77

82
.8

±9
.8

64
.9

±9
.6

73
.5

±1
0.
6

81
.1

±5
.3

B
ol
d
an
d
B
ol
d
ita

lic
va
lu
es

in
di
ca
te
th
e
be
st
pe
rf
or
m
an
ce

A
st
er
is
k
(*
)
de
no

te
s
ch
ol
ec
80

re
su
lts

w
er
e
di
re
ct
ly

ex
tr
ac
te
d
fr
om

re
sp
ec
tiv

e
pu

bl
ic
at
io
ns
,
w
hi
le

th
e
ot
he
rs

ar
e
ou

r
ow

n
im

pl
em

en
ta
tio

ns
.
T
hi
s
ta
bl
e
is
gr
ou
pe
d
by

(r
ow

1–
2)

m
et
ho
ds

th
at

us
e

m
od

el
s
sp
ec
ifi
c
to

ch
ol
ec
ys
te
ct
om

y
(t
oo

ls
or

pr
io
rs
),
as

re
po

rt
ed

in
pr
ev
io
us

lit
er
at
ur
e;

(r
ow

3–
4)

m
od

el
s
w
ith

R
es
N
et
-5
0
ba
ck
bo

ne
,a
s
re
po

rt
ed

in
pr
ev
io
us

lit
er
at
ur
e;

(r
ow

5–
11

)
m
od

el
s
w
ith

a
C
3D

ba
ck
bo
ne
,a
s
pr
op
os
ed

in
th
is
pa
pe
r

123



International Journal of Computer Assisted Radiology and Surgery

Table 3 Ward Metric results summed over all Sacrocolpopexy cross-
validation folds

Method F C F’ event ratio

C3D 79 4 2299 0.015

C3D+Mode Average 49 33 218 0.172

C3D+TCN 66 15 578 0.072

C3D+LSTM(no-tool) 30 41 123 0.287

C3D+LSTM+sliding window 39 35 150 0.237

L100 noised(Proposed) 63 19 415 0.098

T90 noised(Proposed) 28 42 98 0.342

LSTM avg. 40 24 347 0.217

Trans avg. 36 34 188 0.215

100 series avg. 54 22 427 0.123

90 series avg. 22 36 107 0.309

Bold values indicate the best performance in each category
F and F′ represents the fragmentation label where an event F in the
groundtruth is fragmented into multiple F′ events in the predictions.
C represents the correct labels for the events in predictions that are
matched with the corresponding events in ground truth. This table is
grouped by (row 1-7) theWardmetric of our testedmethods and (row 8-
11) the averageWardmetric over each categoryof our proposedmethods

the event ratio in most cases. T90 noised has a slightly worse
F1-score and accuracy than the mode average, but it has a
significantly better Ward metric, specifically in terms of its
event ratio and low fragmentation number. This effect can
be visualised in the example results in Fig. 5, where even
if overall accurate, mode average tends to have many incor-

rect transitions, while T90 performs all transitions in correct
order but accumulates errors near the phase transitions. This
may be a desirable outcome, since phase transitions are by
definitionmore subject to annotation ambiguity than themid-
dle of the phases. The trade-off between F1-score and event
ratio can also be observed by comparing the overall perfor-
mance of time-synchronous configurations (100 series) with
the time-shifted configurations (90 series). The first one tends
to perform better in terms of F1-score, while second better
preserves number and order of transitions.

Table 2 also compares the performance of networks on the
Cholec80 dataset. We focus our comparisons on the tempo-
ral models for a common backbone (C3D). We also display
results based on ResNet-50 as reported in original publica-
tions for reference. C3D+LSTM achieves a close result to
the original C3D+LSTM+Tool, where the slight decrease in
performance is explained by not using tool signal informa-
tion. The average number of clips per video in Cholec80 is
360 which is much smaller than in Sacrocolpopexy (1389).
Furthermore, the relative proportions of each phase are also
generally different. Taking these factors into consideration,
it is worth noting that the relative performances between
our implemented methods are almost reverted in Cholec80,
with C3D+LSTM performing the best and mode average
the second worst. This shows that the specific characteris-
tics of a given surgery greatly affect algorithm performance.
More specifically, we verify that our seq2seq models out-
perform LSTM and TCN on Sacrocoplopexy but this is not

(a) (b)

(c) (d)

(e) (f)

Fig. 5 Phase diagrams for six different configurations, showing output sequences from the best Sacrocolpopexy fold. Groundtruth (blue) and
predicted (orange) labels are shown
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the case on Cholec80. When we compare the same tem-
poral models (LSTM, TCN) either using C3D or ResNet,
the results do not differ significantly, reinforcing again that
the main differences are observed when applying the same
methods to the different datasets. We should also high-
light ResNet+LSTM+PKI, despite having the best results on
cholec80, uses priors specific to cholecyestctomy surgery as
a pre-processing step, and therefore cannot off-the-shelf be
applied to our Sacrocolpopexy dataset.

Conclusion

In this paper, we introduce seq2seq models as a novel
coarse-level sequential model for surgical workflow segmen-
tation. We validated the approach on a challenging dataset of
Sacrocolpopexy surgery, where phase duration has a very
high variability. We experimentally highlight the differences
between this dataset and the widely studied benchmark
Cholec80, showing that the same set of algorithms have dif-
ferent relative performances on each dataset. We observed
that the for the statistical results on Sacrocolpopexy, unlike
the results of Cholec80, the standard deviations are large
and numerous results are not significantly different from
each other. Especially for our proposed method (T90 noised)
and the mode average result. Thus, we introduced an event-
based analysis (Ward metric) to complement more standard
accuracy metrics (F1-score,accuracy). The method evaluates
the sequences on consistent temporal events. Our purposed
method detected the highest number of correct events and
has the highest event ratio, whereas themode averagemethod
predicted fewer corrected events but with amuch lower event
ratio. The event ratio revealed the consistency of the detected
events as more fragmentations and insertions will yield a
lower event ratio. This observation suggests that despite some
methods performed well in standard accuracy metrics, the
quality of the output sequence is still limited. How each
criterion should be weighted will invariably be application
specific. Nonetheless, accurate time-stamping of phase tran-
sitions requires both standard and event metrics to perform
well

There are several improvements that can be pursued
in future research. The convolution neural network and
the sequential model are trained separately, but could be
fine-tuned in an end-to-end fashion. Many seq2seq config-
urations remain unexplored, for example input and output
sequences with different sizes could produce even more
coarse segmentations from dense input sequences, and could
potentially further address scalability issues. Modelling
surgery-specific priors can improve predictions on Cholec80
(SV-RCNet+PKI [17]) and similar strategies could be devel-
oped for Sacrocolpopexy. Temporal convolutional networks
[8] have also shown promising results in surgical workflow

segmentation and can be potentially considered within the
seq2seq framework.

As for the currently available data, all video recordings
were successful operations by the same surgeon, and thus,
we expect that the challenges due to high variability in phase
duration will only increase if more heterogeneous data are
included. This further justifies exploring the flexibility of
seq2seq models in this context.
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