
A Method for the Variational Calculation of Hyperfine-Resolved
Rovibronic Spectra of Diatomic Molecules
Qianwei Qu, Sergei N. Yurchenko, and Jonathan Tennyson*

Cite This: J. Chem. Theory Comput. 2022, 18, 1808−1820 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: An algorithm for the calculation of hyperfine
structure and spectra of diatomic molecules based on the
variational nuclear motion is presented. The hyperfine coupling
terms considered are Fermi-contact, nuclear spin-electron spin
dipole−dipole, nuclear spin−orbit, nuclear spin-rotation, and
nuclear electric quadrupole interactions. Initial hyperfine-unre-
solved wave functions are obtained for a given set of potential
energy curves and associated couplings by a variation solution of
the nuclear-motion Schrödinger equation. Fully hyperfine-resolved
parity-conserved rovibronic Hamiltonian matrices for a given final
angular momentum, F, are constructed and then diagonalized to give hyperfine-resolved energies and wave functions. Electric
transition dipole moment curves can then be used to generate a hyperfine-resolved line list by applying rigorous selection rules. The
algorithm is implemented in DUO, which is a general program for calculating spectra of diatomic molecules. This approach is tested
for NO and MgH, and the results are compared to experiment and shown to be consistent with those given by the well-used effective
Hamiltonian code PGOPHER.

1. INTRODUCTION
The hyperfine structure of molecules lays the foundation for
the studies of many important areas. The most immediate
application is to reveal the properties of the molecules.1−3

Other examples include laser cooling experiments,4,5 astro-
nomical observations,6 and, of course, nuclear magnetic
resonance which has many applications including ones in
medicine.
In the absence of external fields, the rotational hyperfine

structure results from interactions between the electric and
magnetic multipole moments of the nuclei and their molecular
environments.7 Due to parity conservation inside the nuclei,
only even electric and odd magnetic multipoles are non-
vanishing. Although higher multipole effects are observed in
some experiments, the dominant contributions to the hyperfine
structure arise from magnetic dipole and electric quadrupole
interactions.
Frosch and Foley8 performed a pioneering theoretical study

of the magnetic interactions between nuclei and electron spins
in diatomic molecules based on the Dirac equation, see
discussion by Brown and Carrington.9 Bardeen and Townes10

provided the first extensive discussion of the electric
quadrupole interactions.
The application of irreducible spherical tensor operators

facilitates the evaluation of effective hyperfine Hamiltonian
matrix elements,7,9,11−13 although one must still pay attention
to anomalous commutation relationships when coupling
angular momenta.14,15 Standard practice is to use these matrix
elements to solve problems for which hyperfine structure is

important using effective Hamiltonians which implicitly use a
perturbation-theory-based representation of the problem.3,6

The effective Hamiltonian of a fine or hyperfine problem is
usually constructed within a particular vibrational state, and the
rotational coupling terms are treated as perturbations. The
assumptions implicit in this approach are usually valid because
the splitting of the (rotational) energy levels due to hyperfine
effects are generally small compared to the separation between
electronic or vibrational states. However, this assumption can
fail, such as for example, for Rydberg states of molecules.16,17

The B 2Π−C 2Π avoided crossing structure in NO is another
example of strong electronic state interaction. The perturbative
treatment of this vibronic coupling is difficult: it requires a lot
of parameters,18 and is not very accurate. The interaction
between different states leads to significant complications
which are difficult to model using the standard effective
Hamiltonian approach.
In contrast, our recent work on a spectroscopic model for

the four lowest electronic states of NO19 proposed a compact
solution for the problem based on the use of a variational
method to treat the nuclear motion. In our approach, which is
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based on the use of potential energy curves and appropriate
couplings, it was only necessary to introduce one potential
energy coupling curve between the coupled B 2Π and C 2Π
electronic states; this gave an accurate rovibronic line list for
NO.20 These calculations used a general program for the
calculation of spectra of diatomic molecules, DUO.21

DUO is a variational nuclear motion program developed for
the calculation of rovibronic spectra of diatomic molecules as

part of the ExoMol project.22 It provides explicit treatment of
spin−orbit and other coupling terms and can generate high-
accuracy fine-structure diatomic line lists. DUO has been used
to generate many line lists including those for AlO,23 CaO,24

VO,25 TiO,26 YO,27 and SiO,28 which are provided via the
ExoMol database.29 DUO was also recently employed to
calculate temperature-dependent photodissociation cross
sections and rates.30 DUO has also been adapted to treat

Figure 1. Flowchart showing the structure of a DUO hyperfine calculation. Existing modules are given by black rectangles while new modules are
denoted by red rectangles. PEC is short for potential energy curve and TDM is short for transition dipole moment.
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ultralow energy collisions as the inner region in an R-matrix
formalism;31 hyperfine effects are very important in such
collisions. Recently, a new module treating electric quadrupole
transitions has been added to DUO,32 which makes it capable of
predicting spectra for diatomic molecules with no electric
dipole moment, for example O2 and N2. However, up until
now DUO had not treated hyperfine effects. In this context we
note that hyperfine coupling is particularly strong for VO,33,34

meaning that the current ExoMol VO line list, VOMYT25

which is not hyperfine resolved, is unsuitable for high
resolution work, such as the study of exoplanets using high-
resolution Doppler-shift spectroscopy.35

Here we present a variational procedure for calculating
hyperfine-resolved spectra of diatomic molecules. The new
algorithm we design is implemented as new modules in DUO.
In general, the most challenging part of solving quantum
mechanical problems using a variational method is finding
good variational basis sets. We show below that DUO gives
appropriate basis sets thanks to its well-designed calculation
hierarchy and algorithm. Numerical tests indicates that the
algorithm proposed here can achieve high accuracy for the
calculation of hyperfine structure.

2. OVERVIEW

In this section, we outline our algorithm so that the readers can
easily follow the details given in the following sections. Figure
1 gives a graphical representation of the algorithm.
We write the Hamiltonian for the problem as

(0)
hfs= + (1)

where (0) is the rovibronic Hamiltonian which DUO

originally used to give fine structure resolved solutions for
diatomic molecules, and hfs gives the nuclear hyperfine
interaction terms introduced in this work. We emphasize that
although this structure is the standard one used in perturbation
theory, here we aim for a full variational solution of the whole
Hamiltonian .
2.1. Rovibronic Fine Structure. DUO has well-developed

modules, surrounded by black rectangles in Figure 1, for the
calculation of rovibronic energies and wave functions.
The computational procedure used by DUO to obtain

solutions for (0) is divided into two steps. First, the
rotationless Schrödinger equation is solved independently for
each uncoupled potential energy curve, Vstate(R), to give
vibrational energy levels, Estate,v, and wave functions, ψstate,v:

R
R V R R E R

2
d

d
( ) ( ) ( ) ( )v v v v

2 2

2 state, state state, state, state,μ
ψ ψ ψ− ℏ + =

(2)

where R is the internuclear distance, μ is the reduced mass of
the molecule, “state ” and v indicate the electronic state and
vibrational quantum numbers. DUO employs contracted
vibrational basis sets given by ψstate,v = |state, v⟩ to define a
finite-dimension space.
In the second step, a rovibronic Hamiltonian matrix,

corresponding to (0), for each specific total angular
momentum exclusive of nuclear spin, J, and parity, τ, is
constructed using a Hund’s case (a) basis set:36

v S J

S v J M

state, , , , , ,

state, , , state, , , J

| Λ Σ Ω⟩

= | Λ Σ⟩| ⟩| Ω ⟩ (3)

which is decoupled into three parts: (i) the electronic
eigenfunction, (ii) the vibrational eigenfunction of eq 2, and
(iii) the rotational eigenfunction of a symmetric top. The
quantum numbers in eq 3, state, v, Λ, S, Σ, J, Ω, and MJ,
correspond to the electronic state, the vibrational eigenstate,
the projection of the electron orbital angular momentum L on
the molecular axis, the projection of the electron spin angular
momentum S on the molecular axis, the projection of J on the
molecular axis, and the projection of J on the space-fixed Z-
axis, respectively. Note that, DUO calculates the spectra of
diatomic molecules in field-free environments. Thus, we do not
really use MJ to construct the basis set, as the left-hand side of
eq 3 indicates. All the angular momenta are quantized to the
body-fixed axes.
When evaluating the matrix elements using the basis

functions of eq 3, the necessary coupling curves are integrated
over pairs of vibrational basis functions:

C v C R vstate, ( ) state ,vv state ,state, state state= ⟨ | | ′ ′⟩′ ′ ′ (4)

where C(R) can be either a diagonal coupling curve for a
particular electronic state or an off-diagonal coupling curve
between two states. Supported couplings include electron
spin−orbit, electron spin−spin, electron spin−rotation etc.21,36

The basis functions of eq 3 do not have definite parities.
DUO uses linear combinations of them to define parity-
conserved basis functions:

v S J

v S J

v S J

v S J

:
1
2

state, , , , , ,

1
2

( 1) state, , , , , ,

:
1
2

state, , , , , ,

1
2

( 1) state, , , , , ,

s S J

s S J

+ | Λ Σ Ω⟩

+ − | −Λ −Σ −Ω⟩

− | Λ Σ Ω⟩

− − | −Λ −Σ −Ω⟩

−Λ+ −Σ+ −Ω

−Λ+ −Σ+ −Ω

(5)

where s = 1 for Σ− states and s = 0 for all other states. Note

that, the parity is independent of MJ. Each matrix of (0)

constructed using these basis functions can be diagonalized to
give rovibronic energy levels and wave functions of a definite J
and parity τ. Let |ϕm

τ,J⟩ be the mth eigenfunction corresponding
to a given J and parity τ, we have

Em
J

m
J

m m m
J, (0) ,

,
,ϕ ϕ δ⟨ | | ⟩ =τ τ τ

′ ′ (6)

where Em
τ,J is the mth eigenvalue.

Thanks to the use of complete angular basis sets and the
variational method, the final energies are independent of the
coupling scheme used. If there is enough vibrational basis
(determined by the users’ setup), the choice of Hund’s case (a)
will give correct results even for cases for which other coupling
schemes provide a better zeroth-order approximation.

2.2. Nuclear Hyperfine Structure. We program new DUO

modules to accomplish the functions denoted by the red
rectangles in Figure 1 for nuclear hyperfine structure
calculations. We only consider heteronuclear diatomic
molecules with one nucleus possessing nonzero spin in this
paper. In this case, nuclear spin, I, is coupled with J to give
total angular momentum, F, that is,

F I J= + (7)

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.1c01244
J. Chem. Theory Comput. 2022, 18, 1808−1820

1810

pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.1c01244?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


To evaluate the matrix elements of hfs, we introduce the
following primitive basis functions

v S J I F M

S v J M J I F M

state, , , , , , , , ,

state, , , state, , , , , ,
F

J F

| Λ Σ Ω ⟩

= | Λ Σ⟩| ⟩| Ω ⟩| ⟩ (8)

where the angular momenta I and F are quantized to the space-
fixed axes; J is quantized to both the space-fixed and the body-
fixed axes; L and S are quantized to the body-fixed axes.
Without an external field, MF can be omitted:

v S J I Fstate, , , , , , , ,| Λ Σ Ω ⟩ (9)

The basis functions are countable in DUO and thus, can be
simply denoted as

k J I F k J J I F, , , , , ,| ⟩ = | ⟩| ⟩ (10)

where k is a counting number for the basis functions associated
with a given J. It is an equivalent representation of eq 9 and |k,
J⟩ is short for eq 3.
The quantum numbers, J, I, and F, satisfy the triangle

inequality:

F I J F I| − | ≤ ≤ + (11)

The coupling scheme used is known as Hund’s case (aβ),
8 and

is illustrated in Figure 2. We emphasize that because we use

complete angular basis sets, our results are independent of the
coupling scheme used and its choice largely becomes one of
algorithmic convenience.
To obtain a parity-conserved basis set, we rely on the

symmetrization procedure given in eq 5 by making use of the

eigenfunctions obtained as solutions of (0), |ϕm
τ,J⟩, to define

the basis functions:

I F J I F, , , ,m
J

m
J, ,ϕ ϕ| ⟩ = | ⟩| ⟩τ τ

(12)

The parity conserved rovibronic basis functions, eq 12, can be
represented by the primitive basis functions, eq 9 or eq 10

i

k

jjjjjjjj

y

{

zzzzzzzz
J I F k J I F k J I F J I F

k J k J I F

, , , , , , , , , , , ,

, , , ,

m
J

k J
m

J

k
m

J

,

,
1 1

,

,

1

∑

∑

ϕ ϕ

ϕ

| ⟩ = | ⟩⟨ | | ⟩

= ⟨ | ⟩| ⟩

τ τ

τ

(13)

where the coefficients, ⟨k, J|ϕm
τ,J⟩, have been obtained when

calculating rovibronic fine structure by solving for (0). The

matrix elements of (0) in this basis functions are
straightforward

I F I F E, , , ,m
J

m
J

m m J J m
J, (0) ,

, ,
,ϕ ϕ δ δ⟨ | | ⟩ =τ τ τ

′
′

′ ′ (14)

Therefore, constructing the hyperfine-resolved matrix elements

I F I F, , , ,m
J

m
J, (0)

hfs
,ϕ ϕ⟨ | + | ⟩τ τ
′

′

j u s t r e q u i r e s t h e m a t r i x e l em e n t s o f hfs,

I F I F, , , ,m
J

m
J,

hfs
,ϕ ϕ⟨ | | ⟩τ τ
′

′ .
In practice, we first construct the matrix elements of hfs

using the primitive basis functions of eq 9 and then transform

to the representation of (0) of eq 12 using a basis
transformation. The mathematical and physical details are
discussed in the next two sections. Before that, we outline the
algorithm used to calculate hyperfine-resolved spectra.
As a first step, the hyperfine coupling curves, such as the

Fermi contact interaction curves,37 are integrated over the
vibrational wave functions. DUO uses these vibrational matrix
elements to compute the hyperfine matrix elements within a
Hund’s case (aβ) basis set, eq 9, and constructs a Hamiltonian
matrix for each specific total angular momentum, F. Next, the
matrix, corresponding to hfs is constructed in the
representation of eq 12. After this step, the hyperfine matrix
elements are parity conserved. Combining the rovibronic
energies and hyperfine matrix elements, DUO constructs the
complete Hamiltonian matrix, corresponding to , for each
given value of F and τ. Diagonalizing this matrix gives the
hyperfine-resolved energy levels and corresponding wave
functions in the representation of eq 12. Finally, the
eigenfunctions are transformed back to Hund’s case (aβ)
representation of eq 9 as this representation is more
convenient to use for hyperfine-resolved intensity calculations,
for analysis of wave functions, and to assign quantum numbers
to hyperfine states.

3. THE HYPERFINE STRUCTURE HAMILTONIAN
We investigate the field-free hyperfine structure of diatomic
molecules in which only one of the nuclei possesses nuclear
spin, and consider five nuclear hyperfine terms in this work:

hfs FC IL dip IJ EQ= + + + + (15)

They are, respectively, the Hamiltonians of the Fermi contact
interaction, the nuclear spin−orbit interaction, the nuclear
spin−electron spin dipole−dipole interaction, the nuclear
spin−rotation interaction, and the nuclear electric quadrupole
interaction. These Hamiltonians have the following defini-
tions:9,13

r I Sg g
8
3 4

( )
i

S N N i iFC B
0

1∑ π μ μ
μ
π

δ= ·
(16)

I L
g

r
2

4i
N N

i

i
IL B

0

1
3∑ μ μ

μ
π

=
·

(17)

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑ
S I S r I r

g g
r r4

3( )( )

i
S N N

i

i

i i i

i
dip B

0

1
3

1 1

1
5∑ μ μ

μ
π

=
·

−
· ·

(18)

I Jc R( )IIJ = · (19)

e r
r

C C
4

( 1) ( , ) ( , )
i n

n

i p

p
p i i p n nEQ

,

2

0

2

3
(2) (2)∑ ∑

π
θ ϕ θ ϕ= −

ϵ
− −

(20)

Figure 2. Hund’s case (aβ) angular momenta coupling scheme. R is
the rotational angular momentum of bare nuclei.
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The constants, e, gS, μB, gN, μN, and μ0, are the elementary
charge, the free electron spin g-factor, the electron Bohr
magneton, the nuclear spin g-factor, the nuclear magneton, and
the vacuum permeability, respectively. I is the spin of the
nucleus of interest (defined as nucleus 1), r1i is the relative
position between the ith electron and nucleus 1, Si is the spin
of the ith electron, Li is the orbit angular momentum of the ith
electron, and δ(·) is the Dirac delta function. In eq 19, we
introduce the nuclear spin-rotation interaction constant, cI(R),
which is a function of internuclear distance. Section 8.2.2(d) of
Brown and Carrington9 and Miani and Tennyson38 define the
nuclear spin-rotation tensor and how it can be reduced to a
constant for a diatomic molecule. In eq 20, Cp

(2) is the modified
rank-2 spherical harmonic:

C Y( , )
4
5

( , )p p
(2) (2)θ ϕ π θ ϕ=

(21)

where Yp
(2)(θ, ϕ) is the standard spherical harmonic; (ri, θi, ϕi)

and (rn, θn, ϕn) are the positions of the ith electron and the nth
proton, respectively.
The first four hyperfine Hamiltonians, given by eqs 16−19,

are nuclear magnetic dipole terms resulting from the
interactions between the magnetic dipole moment given by
nuclear spin and magnetic fields due to the motion of nuclei or
electrons. The nuclear electric quadrupole Hamiltonian arises
from the interaction between the nuclear electric quadrupole
moment and the electric field inside a molecule. The nuclear
spin-rotation interaction is usually much weaker than the other
four hyperfine terms (if nonzero). See Table 1 of Broyer et
al.12 for the order of magnitude of the hyperfine terms.
To aid the evaluation of matrix elements, the hyperfine

Hamiltonians can be written as scalar products of irreducible
tensor operators:9

r I Sg g
8
3 4

( )T ( ) T ( )
i

S N N i iFC B
0

1
1 1∑ π μ μ

μ
π

δ= ·
(22)

I Lg
r

2
4

1
T ( ) T ( )

i
N N

i
iIL B

0

1
3

1 1∑ μ μ
μ
π

= ·
(23)

I S Cg g10
4

T ( ) T ( , )
i

S N N idip B
0 1 1 (2)∑ μ μ

μ
π

= − ·
(24)

I Jc R( )T ( ) T ( )IIJ
1 1= · (25)

E QeT ( ) T ( )EQ
2 2∇= − · (26)

where Tk(·) indicates a rank-k tensor. All the tensors here are
defined in space-fixed frame. The two tensors in eq 26 defining
the gradient of electric field and the nuclear quadrupole
moment are, respectively:

E C
e
r

T ( )
1

4
( , )

i i
i i

2

0
3

(2)∑
πε

θ ϕ∇ = −
(27)

Q Ce e rT ( ) ( , )
n

n n n
2 2 (2)∑ θ ϕ=

(28)

4. MATRIX ELEMENTS OF THE HYPERFINE
STRUCTURE
4.1. Primitive Matrix Elements of the Hyperfine

Structure. In this section, primitive matrix elements of the

hyperfine structure are initially evaluated in the representation
of eq 9. In this work, we do not consider hyperfine couplings
between different electronic states when evaluating primitive
matrix elements, which are, thus, diagonal in the electronic
state and electron spin, that is,

S Sstate state ,= ′ = ′

in the bra-ket notation, and immediately we have

|Λ| = |Λ′|

As F = J + I, we can initially decouple the representation of |
J, I, F, MF⟩ in eq 8 to uncoupled ones; see Edmonds39 for a
formal definition and irreducible spherical tensor operators.
Taking the Fermi contact term as an example, the non-
vanishing matrix element on the primitive basis functions for
MF = M′F is

l
moo
n
oo

|
}oo
~
oo I

r S

v S J I F v S J I F

I J F

J I
I I g g

v S J v S J

state, , , , , , , , state, , , , , , , ,

( 1)
1

T ( )
8
3 4

state, , , , , , ( )T ( ) state, , , , , ,

J F I
S N N

i
i i

FC

1
B

0

1
1∑

π μ μ
μ
π

δ

⟨ Λ Σ Ω | | ′ Λ′ Σ′ ′ Ω′ ⟩

= −
′

⟨ ⟩ ×

× ⟨ Λ Σ Ω∥ ∥ ′ Λ′ Σ′ ′ Ω′⟩

′+ +

(29)

where
l
mo
no

|
}o
~o

j j j
j j j
1 2 3

4 5 6
is the Wigner-6j symbol.

The nuclear spin is quantized to the space-fixed axes, and
thus, the reduced matrix element of T1(I) is

II I I I IT ( ) ( 1)(2 1)1⟨ ⟩ = + + (30)

The electron spin is quantized to the body-fixed axes. To
evaluate the second reduced matrix element in eq 29, the
electron spin spherical tensor is rotated from the space-fixed
frame to the body-fixed frame in which the components of the
tensors are denoted by q:

i

k
jjjjjj

y

{
zzzzzz

r S

r s

r s

v S J v S J

v S J v

S J

J J

q
J J

v S S v

state, , , , , , ( )T ( ) state, , , , , ,

state, , , , , , ( ) ( ) T ( ) state, ,

, , , ,

( 1)
1

(2 1)(2 1)

state, state, , , ( )T ( ) state, , , state,

i
i i

i
i

q
q q i

q

J

i
i q i

1
1

1
1 1

,

1
1

∑

∑ ∑

∑

∑

ω

δ

δ

δ

δ

⟨ Λ Σ Ω∥ ∥ ′ Λ′ Σ′ ′ Ω′⟩

= ⟨ Λ Σ Ω∥ * ∥ ′ Λ′
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where si is the spin of the ith electron in body-fixed system,

( )m m
k

,
( ) ω′ is a Wigner rotation matrix and( )j j j

m m m1 2 3
1 2 3

is a

Wigner-3j symbol. The electron tensor operators, Tq
1(si), do

not directly act on the electronic part of Hund’s case (a) basis.
We may replace the electron spin operators with an effective
one:
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where S is the total spin. Requiring Σ = Σ′, the Fermi contact
interaction curve can be defined as37
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where T0
1(si)/Σ represents the projection operator for each

electron i (see eq (7.152) of Brown and Carrington9). On the
basis of eqs 29 to 33, we finally get
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Other hyperfine matrix elements can be evaluated analogously.
For the nuclear spin−orbit term, we are only interested in

the diagonal matrix elements of Λ
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The nondiagonal couplings between different electronic states
via T±1

1 (L) are not considered here. The diagonal nuclear
spin−orbit interaction curve is defined as37
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where li is the orbital angular momentum of the ith electron
defined in the body-fixed frame.
The nuclear spin-electron spin dipole−dipole interaction is

somewhat complicated. With the definition (see Appendix 8.2
of Brown and Carrington9)
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where (r1i, θ1,i, ϕ1,i) are the spherical polar coordinates of
electron i relative to nucleus 1, we shall give two kinds of
matrix elements. For the term diagonal in Λ, that is, q2 = 0 and
q = q1:
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The diagonal nuclear spin-electron spin dipole−dipole
interaction constant curve is defined as,37
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For the off-diagonal terms of dip in Λ and Λ′ which satisfy q2
= ∓2, that is, q1 = ±1 and q = ∓1, we have
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The off-diagonal nuclear spin-electron spin dipole−dipole
interaction constant curve is defined as,37
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The case of the nuclear spin-rotation interaction is much
simpler, as it is not necessary to rotate T1(J) to the body-fixed
axis system:
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To evaluate the matrix elements for the electric quadrupole
interaction, we decouple the inner product of second rank
irreducible tensors:
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The electric quadrupole reduced matrix element is nonzero
only if I ≥ 1; it can be evaluated as
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where eQ is the nuclear electric quadrupole moment; see Cook
and De Lucia7 or Appendix 8.4 of Brown and Carrington.9 The
values of Q for various atoms were collected by Pyykkö.40 The
reduced matrix element of the gradient of electric field is
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The diagonal and off-diagonal R-dependent constants of the

gradient of electric field are respectively defined as (see eqs

(7.159) and (7.163) of Brown and Carrington9):

Eq R S S( ) 2 state, , , T ( ) state, , ,0 0
2 ∇= − ⟨ Λ Σ| | Λ Σ⟩ (46)

Eq R S S( ) 2 6 state, , , T ( ) state, , ,2 2
2 ∇= − ⟨ Λ Σ| | Λ′ Σ⟩±

(47)

Note that sometimes q0 is denoted as q1, see for example, eq

(2.3.76a) of Hirota.41 We follow the convention of Brown and

Carrington9 and preserve the variable q1 for the nuclear electric

quadrupole coupling constant between different electronic

states arising from T±1
2 (∇E) which will be the subject of future

work. Finally, the diagonal matrix elements of nuclear electric

quadrupole coupling are
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while the off-diagonal ones are
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As we only consider the hyperfine interactions within a

particular electronic state in this paper, the off-diagonal matrix

elements arising from d(R) in eq 41 and q2(R) in eq 47 only

contribute to the Λ-doubling terms of Π states. In the electron

spin resonance spectroscopy literature, the Fermi-contact and

nuclear spin−electron spin dipole−dipole terms are, respec-

tively, the first-order isotropic and dipolar contributions to the

hyperfine coupling A-tensor.42 When the second-order

contributions of paramagnetic spin orbit (PSO) interaction

are considered, the hyperfine coupling constants defined in this

paper can be further revised by the PSO terms and determined

by the matrix elements of the total hyperfine A-tensor.43

4.2. Parity Conserved Matrix Elements under the

Rovibronic Wave Functions. Recall the short notation of

Hund’s case (aβ) basis in eq 10, |k, J, I, F⟩ and the basis

functions we defined in eq 12, |ϕm
τ,J, I, F⟩; the hyperfine matrix

elements under the basis set can be expanded as
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We can rewrite the basis transformation into the matrix format:

H H( )F F F F
hfs
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,Φ Φ=τ τ τ†
(51)
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J′, I, F|ϕm′

τ,J′, I, F⟩ are the matrix elements of Hhfs
τ,F, Hhfs

F , andΦτ, F,
respectively, and,

k J I F I F k J, , , , , ,m
J

m
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4.3. Solution for the Hyperfine Structure. The final
Hamiltonian which is constructed from summation of the
rovibronic and hyperfine matrices

H H HF F F, (0), ,
hfs

,= +τ τ τ
(52)

where H(0),τ,F is the matrix of (0) (see eq 14 for the matrix
elements). Diagonalizing the parity-conserved matrix of each F
results in the energies and wave functions of the hyperfine
structure:

E U H U( )F F F F, , , ,=τ τ τ τ† (53)

The eigenfunction matrix Uτ,F is represented in the parity-
conserved rovibronic basis set defined in eq 12, which is,
however, not very useful for quantum number assignments and
wave function analysis. For these purposes, the wave functions
can be transformed back in the representation of Hund’s case
(a) basis set and the final wave function matrix is

UF F F, , ,Ψ Φ=τ τ τ (54)

Here, we denote the countable rovibronic wave functions
considering nuclear hyperfine interaction as

m
F,ψ| ⟩τ

(55)

such that

Em
F

m
F

m m m
F, ,

,
,ψ ψ δ⟨ | | ⟩ =τ τ τ

′ ′ (56)

where Em
τ,F is the corresponding eigenvalue of |ψm

τ,F⟩.
The basis transformation procedures from eq 50 to eq 54

reveal the key feature of our variational method which involves
accounting for the contribution of every basis function to the
final eigenstates. Finally, only F, τ, and counting number m are
good quantum numbers.
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5. LINE STRENGTH OF THE HYPERFINE TRANSITIONS
In the absence of an external field, the line strength of a nuclear
spin resolved rovibronic transition is defined by7
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We initially evaluate the reduced matrix elements of the
electric dipole moment in the representation of eq 9 and then
calculate the reduced line strength matrix elements by matrix
multiplication:

D D( )FF F FF F,, , ,Ψ Ψ=ττ τ τ′ ′ † ′ ′ ′ (58)

where FDF′ and τ, FDτ′, F′ are the reduced transition dipole
moment matrices in the representation of eq 9 and eq 55,
respectively. The following equations give the elements of
FDF′, that is, ⟨k, J, I, F∥T1(μ)∥k′, J′, I, F⟩.
As F = J + I and T1(μ) commutes with I,
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Rotating the spherical tensor to the body-fixed frame gives
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The matrix element ⟨state, v, Λ, S, Σ|Tq
1(μ)|state′, v′, Λ′, S′,

Σ′⟩ is the same as the one used for the calculation of
rovibronic transition intensities excluding nuclear spin in
DUO,21

v S v S
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1 μ
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⟨ Λ Σ| | ′ ′ Λ′ ′ Σ′⟩
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where μq(R) is the electric dipole moment curve represented in
the body-fixed frame which can be obtained from ab initio
calculation.
For dipole moment transitions, parity has to be changed and

thus follows the selection rule:

:τ + ⇔ − (62)

The selection rules on F comes from the Wigner-6j symbol of
eq 59:

F F F1, 0, 1; and 0 if 0Δ = − ≠ Δ = (63)

The hyperfine Hamiltonian mixes wave functions with different
J; as a result, electric dipole transition “forbidden” lines with
|ΔJ| > 1 are observable. For example, when I = 1/2, we can
observe electric dipole transitions of O and S branches (ΔJ =
±2), even if they might be much weaker than the transitions of
P, Q, and R branches.

6. NUMERICAL VERIFICATION
To illustrate and validate our new hyperfine modules, we
calculate hyperfine-resolved rotational spectra for electronic
and vibrational ground state of 14N16O and 24Mg1H. While
both 16O and 24Mg have nuclear spin zero; 14N has I = 1 and
1H has I = 1/2 which allows us to test different coupling
mechanisms. For this purpose we compare the results of our
DUO calculations with that of PGOPHER44 using the same
model for each calculation. PGOPHER obtains the energy
levels and spectra from effective Hamiltonians given
appropriate spectral constants. In contrast, DUO takes in
coupling curves and performs variational calculations. To get
consistent inputs between the two codes it was necessary to
simplify the treatment used by DUO.
For 14N16O we approximate the DUO solution by using only

one contracted vibrational basis function, that is; |X 2Π, v = 0⟩
which ensures that we avoid any hyperfine-induced interaction
between different vibrational states. In PGOPHER, we used
values for the rotational constant, B0, and spin−orbit coupling
constant matrix, A0, computed using DUO:

B v
R

vX , 0
2

X , 00
2

2

2
2

μ
= ⟨ Π = | ℏ | Π = ⟩

(64)

A v C R v2 X , 0 ( ) X , 00
2

SO
2= ⟨ Π = | | Π = ⟩ (65)

where μ is the reduced mass of 14N16O and CSO(R) is the
spin−orbit coupling curve. Note that, for spin−orbit
interaction, the coupling curve, CSO(R), describes the coupling
energies, while the constant, A, is defined by the splitting
energies. Thus, A is defined by twice the matrix element. The
NO X 2Π potential energy curve used by DUO was taken from
Wong et al.45 CSO(R) was assigned an artificial constant
CSO(R) = 60 cm−1 and the transition dipole moment curve was
set to 1 D. Our adopted values for B0 and A0 are given in Table
1.

For this analysis, the hyperfine coupling was chosen using
artificial curves much greater than experimental values. By
including only one hyperfine constant at a time, we test the
affects of a particular hyperfine interaction. The results are
compared in Table 2. Note that, PGOPHER uses nuclear spin-
electron spin constants, b, defined by Frosch and Foley,8 rather
than bF. They are related by the dipole−dipole constant, c,

b b
c
3F = +

(66)

DUO achieves excellent agreement with PGOPHER for the
calculation of both the line positions ν and line strengths S.

Table 1. Spectroscopic Constants for 14N16O Used in This
Paper

constants values [cm−1]

B0 1.696 084 011 913 95
A0 120
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The slight differences are due to rounding error. As we did not
include Λ-doubling terms in our calculation the wavenumbers
corresponding to bF, a, eQq0, and cI in the first and second
columns of the same F = 0.5 (or in the third and fourth
columns, F = 1.5) of Table 2 are the same. Hyperfine
interactions only split the transitions of different F in the first
and third columns (or in the second and fourth columns). In
contrast, the wavenumbers obtained with eQq2 or d included
are different from each other even for the same values of F due
to the hyperfine contribution to both Λ-doubling and
hyperfine splitting.
We also tested the code for an I = 1/2 case by calculating

pure rotational transitions within the v = 0, X 2Σ+ state of
24MgH, again using a unit electric dipole moment curve. This
is a rather realistic case, as the input spectral constants to
PGOPHER listed in Table 3 were determined by the observed

transitions.46 As for the input to DUO, the potential energy
curve was shifted from an empirically determined one47,48 to
reproduce the B0 constant given in Table 3, that is;

B v
R

vX , 0
2

X , 00
2

2

2
2

μ
= Σ = ℏ Σ =+ +

(67)

The curves of spin-rotation and hyperfine couplings were
defined as

R( ) 0γ γ= (68)

b R b
c

( )
3F 0
0= +

(69)

c R c( ) 0= (70)

Note that the contribution of D0 is not allowed for when only
one contracted basis function is used in DUO. Just like the Bv
constant, DUO does not use rotational constants, Dv, Hv, etc.,
either, and introduction of these centrifugal distortion would
require manipulation of the potential energy curves which are
beyond the scope of this work. Nevertheless, DUO still gives
hyperfine splittings which are consistent with PGOPHER, see
the comparison in Table 4, because D0 uniformly shifts the
hyperfine energy levels within the same N rotational levels,
where N is the quantum number corresponding to N which is
defined as

Table 2. Comparison of 14N16O Line Positions and Line Strengths for Calculated Results from DUO and PGOPHERa

Number 1 2 3 4

upper F′ 0.5 0.5 1.5 1.5
τ″ − + − +
J″ 1.5 1.5 1.5 1.5

lower F″ 0.5 0.5 0.5 0.5
τ″ + − + −
J″ 0.5 0.5 0.5 0.5

b = 0.1 c = 0.3 νDUO 148343.21846 148343.21846 147225.55589 147225.55589
νPG 148343.21850 148343.21850 147225.55590 147225.55590
SDUO 0.60757296 0.60757296 0.77125182 0.77125182
SPG 0.60757300 0.60757300 0.77125180 0.77125180

a = 0.1 νDUO 151349.03162 151349.03162 151956.77196 151956.77196
νPG 151349.03160 151349.03160 151956.77200 151956.77200
SDUO 0.58421238 0.58421238 0.72433238 0.72433238
SPG 0.58421240 0.58421240 0.72433240 0.72433240

eQq0 = 0.1 νDUO 149591.09156 149591.09156 150930.88155 150930.88155
νPG 149591.09160 149591.09160 150930.88160 150930.88160
SDUO 0.59805081 0.59805081 0.73432902 0.73432902
SPG 0.59805080 0.59805080 0.73432900 0.73432900

cI = 0.1 νDUO 145827.72503 145827.72503 150324.61190 150324.61190
νPG 145827.72500 145827.72500 150324.61190 150324.61190
SDUO 0.59221720 0.59221720 0.74027149 0.74027149
SPG 0.59221720 0.59221720 0.74027150 0.74027150

eQq2 = 0.1 νDUO 150346.43930 150302.88914 150307.21201 150342.05212
νPG 150346.43930 150302.88910 150307.21200 150342.05210
SDUO 0.59221687 0.59221668 0.74027121 0.74027140
SPG 0.59221690 0.59221670 0.74027120 0.74027140

d = 0.1 νDUO 150329.98859 150332.52077 149133.39987 151532.62042
νPG 150329.98860 150332.52080 149133.39990 151532.62040
SDUO 0.59210956 0.59211520 0.75214574 0.72851989
SPG 0.59210960 0.59211520 0.75214570 0.72851990

aHyperfine constants are in cm−1 and line positions are given in MHz. The line strength, S [Debye2], has the same definition as that in PGOPHER
when the intensity unit option of PGOPHER, IntensityUnit, is chosen as HonlLondon and the transition dipole moment is set to 1 D.

Table 3. X 2Σ+, v = 0 Spectral Constants of 24Mg1H
Determined by Ziurys et al.46 These Values Were Used as
the Input to PGOPHER

constants values [MHz]

B0 171976.1782
D0 10.6212
γ0 790.809
b0 306.277
c0 4.792
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N J S= − (71)

We then allowed for the effect of vibrational coupling in
DUO by increasing the contracted vibration bases to five
functions, that is, |X 2Σ+, v = 0, 1, 2, 3, 4⟩. As shown in Table 5,
vibrational coupling from higher vibrational states automati-

cally introduces centrifugal distortion to the v = 0 state and
improves the accuracy of the calculation, compared with the
lower rotational levels in Table 4. We did not use a very
accurate model here, and thus for higher rotational levels, we
still got obvious energy differences in Table 5, and frequency
differences in Table 6. The best way to achieve experimental
accuracy is to refine the curves by fitting calculated energies or
frequencies to measured ones.
Finally, we list two calculated S branch (ΔJ = 2) transitions

in the second and fourth rows of Table 7. These hyperfine-
induced transitions are much weaker than the two R branch
(ΔJ = 1) transitions in the first and third rows.

7. CONCLUSION

We demonstrate an algorithm for the calculation of the
hyperfine structure of diatomic molecules based on a
variational treatment of nuclear motion. Nuclear magnetic
dipole coupling terms including Fermi-contact, nuclear spin-
electron spin dipole−dipole interaction, nuclear spin−orbit,

Table 4. Comparison of 24Mg1H X 2Σ+, v = 0 Hyperfine
Energies Calculated by DUO and PGOPHERa

no. F τ J N EDUO EPG difference

1 0 + 0.5 0 −230.9057 −230.9057 0.0000
2 1 + 0.5 0 76.9686 76.9686 0.0000
3 1 − 0.5 1 343117.2196 343074.7347 42.4849
4 0 − 0.5 1 343236.9188 343194.4339 42.4849
5 1 − 1.5 1 344238.9505 344196.4655 42.4850
6 2 − 1.5 1 344424.5699 344382.0849 42.4850

aOnly one vibrational contracted basis function |X 2Σ+, v = 0⟩ was
used in this case. All energies are given in MHz.

Table 5. Comparison of 24Mg1H X 2Σ+, v = 0 Hyperfine Energies Calculated by DUO and PGOPHERa

no. F τ J N EDUO EPG difference

1 0 + 0.5 0 −230.9058 −230.9057 −0.0001
2 1 + 0.5 0 76.9686 76.9686 0.0000
3 1 − 0.5 1 343074.6047 343074.7347 −0.1300
4 0 − 0.5 1 343194.3039 343194.4339 −0.1300
5 1 − 1.5 1 344196.3356 344196.4655 −0.1299
6 2 − 1.5 1 344381.9550 344382.0849 −0.1299
7 2 + 1.5 2 1030229.8178 1030230.9249 −1.1071
8 1 + 1.5 2 1030363.5553 1030364.6624 −1.1071
9 2 + 2.5 2 1032168.8370 1032169.9441 −1.1071
10 3 + 2.5 2 1032341.1483 1032342.2554 −1.1071
11 3 − 2.5 3 2060535.9577 2060540.0064 −4.0487
12 2 − 2.5 3 2060675.3485 2060679.3973 −4.0488
13 3 − 3.5 3 2063276.7730 2063280.8218 −4.0488
14 4 − 3.5 3 2063443.5527 2063447.6015 −4.0488
15 4 + 3.5 4 3433222.1380 3433231.9781 −9.8401
16 3 + 3.5 4 3433364.6194 3433374.4596 −9.8402
17 4 + 4.5 4 3436759.8067 3436769.6469 −9.8402
18 5 + 4.5 4 3436923.5400 3436933.3802 −9.8402
19 5 − 4.5 5 5147267.6517 5147285.8407 −18.1890
20 4 − 4.5 5 5147412.0861 5147430.2751 −18.1890
21 5 − 5.5 5 5151599.9592 5151618.1483 −18.1891
22 6 − 5.5 5 5151761.7609 5151779.9499 −18.1890
23 6 + 5.5 6 7201400.1636 7201426.5351 −26.3715
24 5 + 5.5 6 7201545.9449 7201572.3164 −26.3715
25 6 + 6.5 6 7206525.9256 7206552.2971 −26.3715
26 7 + 6.5 6 7206686.3922 7206712.7637 −26.3715
27 7 - 6.5 7 9594096.6941 9594124.3704 −27.6763
28 6 - 6.5 7 9594243.4608 9594271.1371 −27.6763
29 7 - 7.5 7 9600015.2023 9600042.8786 −27.6763
30 8 - 7.5 7 9600174.6909 9600202.3672 −27.6763
31 8 + 7.5 8 12323585.3054 12323594.8594 −9.5540
32 7 + 7.5 8 12323732.8245 12323742.3785 −9.5540
33 8 + 8.5 8 12330296.1028 12330305.6568 −9.5540
34 9 + 8.5 8 12330454.8439 12330464.3979 −9.5540
35 9 - 8.5 9 15387847.1770 15387798.6594 48.5176
36 8 - 8.5 9 15387995.2894 15387946.7718 48.5176
37 9 - 9.5 9 15395349.9512 15395301.4336 48.5176
38 10 - 9.5 9 15395508.1024 15395459.5848 48.5176

aFive vibrational contracted basis functions |X 2Σ+, v = 0, 1, 2, 3, 4⟩ were used in this case. All energies are given in MHz.
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nuclear spin−rotation, and nuclear electric quadrupole
interaction terms are considered in our calculation. New
modules for the hyperfine structure calculation are added to
the flexible variational nuclear-motion package DUO.21

On the basis of the eigenfunctions and eigenvalues of J, a
parity-conserved rovibronic Hamiltonian matrix of particular
total angular momentum, F, is constructed and diagonalized.
The hyperfine wave functions are finally represented using a
Hund’s case (aβ) basis set. Hyperfine-resolved line lists for
diatomic molecules can be computed depending on the
hyperfine energy levels and wave functions. To test the new
module, we calculate the hyperfine structure of the v = 0, X 2Σ+

state of 24 MgH. The results of DUO and PGOPHER show
excellent agreement for both line positions and line strengths.
The DUO code and the input file used for 14N16O and 24MgH
are available at https://github.com/ExoMol/Duo.
Our newly developed methodology builds a bridge between

calculations of electronic motion and nucleus motion of
diatomic molecules which makes it possible to calculate
nuclear magnetic dipole and electric quadruple hyperfine
structure effects from first principles. Some hyperfine coupling
constants considered in this work may be calculated by

quantum chemistry programs, for example, DALTON50 and
CFOUR.51 It is also possible to evaluate them manually after
obtaining electronic wavefunctions.37 We will discuss the ab
initio calculation of hyperfine coupling constants in future
work.
The current implementation only allows for nuclear spin

effects on one atom and neglects coupling between electronic
states. The hyperfine coupling between two electronic states is
known to be important for some molecules. For instance, to
analyze the spectrum of I35Cl, Slotterback et al. also included
the hyperfine coupling terms between X 1Σ+ and A 3Π states.52

Implementing this effect in DUO would require some further
work on the matrix elements but should not be a major
undertaking. Treating the case where both atoms possess a
nuclear spin introduces another source of angular momentum,
and the interaction between the two nuclei also introduces new
matrix elements.12 Here there are two possibilities, homo-
nuclear systems, such as 1H2 or 14N2, can be treated by
generalizing the scheme given in this paper. Heteronuclear
systems, such as 1H14N, are a little more complicated as they
give rise to different possible coupling schemes.13 Our plan is

Table 6. Comparison of 24Mg1H X 2Σ+, v = 0 Hyperfine Line Positionsa

no. N′ J′ F′ N″ J″ F″ νDUO measured (a)46 measured (b)49

1 1 0.5 1 0 0.5 1 342997.636 342997.763(050)
2 1 0.5 0 0 0.5 1 343117.335 343117.463(050)
3 1 0.5 1 0 0.5 0 343305.510 343305.646(050)
4 1 1.5 1 0 0.5 1 344119.367 344119.497(050)
5 1 1.5 2 0 0.5 1 344304.986 344305.125(050) 344305.3(20)
6 1 1.5 1 0 0.5 0 344427.241 344427.362(050)
7 2 1.5 2 1 0.5 1 687155.213 687157.17(17)
8 2 1.5 1 1 0.5 0 687169.251 687171.00(17)
9 2 2.5 3 1 1.5 2 687959.193 687959.54(19)
10 2 2.5 2 1 1.5 1 687972.501 687972.66(17)
11 3 2.5 3 2 2.5 3 1028194.809 1028202.5(10)
12 3 2.5 2 2 2.5 2 1028506.511 1028514.2(10)
13 3 3.5 4 2 2.5 3 1031102.404 1031104.29(21)
14 3 3.5 3 2 2.5 2 1031107.936 1031104.29(21)
15 4 3.5 4 3 3.5 4 1369778.585 1369797.0(10)
16 4 3.5 3 3 3.5 3 1370087.846 1370107.5(10)
17 4 3.5 4 3 2.5 3 1372686.180 1372700.06(98)
18 4 3.5 3 3 2.5 2 1372689.271 1372700.06(98)
19 4 4.5 5 3 3.5 4 1373479.987 1373485.81(55)
20 4 4.5 4 3 3.5 3 1373483.034 1373485.81(55)
21 6 5.5 6 5 4.5 5 2054132.512 2054170.48(71)
22 6 5.5 5 5 4.5 4 2054133.859 2054170.48(71)
23 6 6.5 7 5 5.5 6 2054924.631 2054944.05(82)
24 6 6.5 6 5 5.5 5 2054925.966 2054944.05(82)

aFive vibrational contracted basis functions |X 2Σ+, v = 0, 1, 2, 3, 4⟩ were used in this case. All frequencies are given in MHz.

Table 7. Comparison of the Line Positions and Strengths in the R and S Branches of 24Mg1H X 2Σ+, v = 0 Hyperfine
Transitionsa

no. F′ τ′ J′ F″ τ″ J″ νDUO νPG SDUO SPG

1 2 + 2.5 1 − 1.5 687972.5015 687973.4786 1.7558441 1.7558510
2 2 + 2.5 1 − 0.5 689094.2323 689095.2094 0.0053314 0.0053315
3 3 − 3.5 2 + 2.5 1031107.9360 1031110.8777 2.8371019 2.8371270
4 3 − 3.5 2 + 1.5 1033046.9552 1033049.8969 0.0014804 0.0014805

aLine positions are given in MHz. Five vibrational contracted basis functions |X 2Σ+, v = 0, 1, 2, 3, 4⟩ were used in this case. The line strength, S
[Debye2], has the same definition as that in PGOPHER when the intensity unit option of PGOPHER, IntensityUnit, is chosen as
HonlLondon, and the transition dipole moment is set to 1 D.
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to gradually update DUO for each of these cases as the need
arises.
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