
Deep Learning of the Order Flow
for Modelling Price Formation

Ye-Sheen Lim

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

of

University College London.

Department of Computer Science

University College London

January 24, 2022

2

3

I, Ye-Sheen Lim, confirm that the work presented in this thesis is my own.

Where information has been derived from other sources, I confirm that this has

been indicated in the work.

Abstract

The objective of this thesis is to apply deep learning to order flow data in novel

ways, in order to improve price prediction models, and thus improve on current

deep price formation models. A survey of previous work in the deep modelling

of price formation revealed the importance of utilising the order flow for the deep

learning of price formation had previously been over looked. Previous work in

the statistical modelling of the price formation process in contrast has always

focused on order flow data. To demonstrate the advantage of utilising order

flow data for learning deep price formation models, the thesis first benchmarks

order flow trained Recurrent Neural Networks (RNNs), against methods used in

previous work for predicting directional mid-price movements. To further improve

the price modelling capability of the RNN, a novel deep mixture model extension

to the model architecture is then proposed. This extension provides a more

realistically uncertain prediction of the mid-price, and also jointly models the

direction and size of the mid-price movements. Experiments conducted showed

that this novel architecture resulted in an improved model compared to common

benchmarks. Lastly, a novel application of Generative Adversarial Networks

(GANs) was introduced for generative modelling of the order flow sequences

that induce the mid-price movements. Experiments are presented that show

the GAN model is able to generate more realistic sequences than a well-known

benchmark model. Also, the mid-price time-series resulting from the SeqGAN

generated order flow is able to better reproduce the statistical behaviour of the

real mid-price time-series.

Impact Statement

The modern financial securities market is a complex system comprising of net-

works of dependencies, competitions, relationships, and other types of interac-

tions. The complexity of such systems make price prediction challenging since

the emerging price formation processes are intrinsically difficult to model.

Though deep learning has been applied to learn price prediction, the first

work in this thesis demonstrates predictions are improved when the deep price

formation models are trained on order flow data. The improved predictions,

would provide practitioners with a more reliable model for trading. Also, a

method for interrogating the black-box model to study the price formation pro-

cess is introduced here, providing researchers with an alternative data-driven

view of the inner-working of the market microstructure.

The second work of the thesis further improves the price prediction capabil-

ity of the deep order flow model. By introducing a novel architecture, the model

is given the ability to produce probabilistic forecasts and jointly model the di-

rection and size of price movements. Such probabilistic forecasts are a more

realistic representation of uncertain risky markets, in addition to being neces-

sary for the important aspect of risk management in trading strategies. The joint

modelling of direction and size improves the prediction of both target variables.

As opposed to previous work that only predicts the direction, the novel archi-

tecture here provides practitioners with an improved indicator of how to place

trades.

The final work of the thesis opens up a new avenue of research by in-

troducing the concept of deep generative modelling of order flow sequences.

8 Impact Statement

Order flow sequences generated by the models can be used to predict prices

in a bottom-up approach. However, generative models of the order flow are not

limited to just price predictions. Practitioners can use the generated sequences

as predictions of how the order flow will evolve, allowing the anticipation of or-

der intensities, which can be used to compute market making or order execution

policies. Other possible applications for the generated order flow include, though

are not limited to, evaluating trading strategies, or as synthetic data for training

models. In addition, such generative modelling of the order flow using deep

learning is a new problem area to be explored by academic researchers.

Acknowledgements

First and foremost I would like to express my sincere gratitude to my supervisor,

Dr. Denise Gorse, for her invaluable supervision, continuous support, and pa-

tience during my PhD study. Additionally, I would like to express gratitude to UCL

Computer Science for the generous funding and an opportunity to undertake my

PhD study with the Financial Computing and Analytics research group.

On the personal side, I am deeply grateful to my parents for their endless

support in my studies, and for setting the early foundations for my intellectual

pursuits. And finally to Ana, for whom have been a source of tremendous love,

understanding and encouragement in the writing of this thesis.

Contents

1 Introduction 21

1.1 Motivations from the Literature and Industry 21

1.2 Research Objectives . 24

1.3 Major Contributions . 26

1.4 Thesis Outline . 26

2 Background and Related Work 29

2.1 Order-Driven Markets . 29

2.1.1 The Limit Order Book . 30

2.1.2 Matching Engine . 32

2.1.3 Limit Order Book Implementation 33

2.1.4 Order Flow and Mid-Price Movements 34

2.2 Deep Learning . 36

2.2.1 Feedforward Layer . 37

2.2.2 Recurrent Layer . 39

2.2.3 Optimisation . 42

2.2.4 Performance Metrics . 43

2.3 Related Work . 43

2.3.1 Theory-Driven Models . 44

2.3.2 Multiple Poisson Models 47

2.3.3 Data-Driven Models . 50

3 Deep Modelling of Price Formation Using the Order Flow 53

3.1 Introduction . 53

12 Contents

3.2 Deep Order Flow Model . 55

3.3 Benchmark Models . 58

3.4 Data Source . 61

3.5 Dataset . 62

3.6 Results . 64

3.6.1 Comparison of Model Performance 64

3.6.2 Analysis of Stationarity 65

3.6.3 Brief Investigation of Universality in the Order Flow Model 69

3.7 Impact of Order Flow Features on Price Formation 71

3.7.1 Inter-Arrival Time Between Order 74

3.7.2 Order Buy/Sell Direction 75

3.7.3 Order Price . 76

3.7.4 Order Type . 76

3.7.5 Other Features . 77

3.8 Summary . 77

4 Deep Probabilistic Modelling of Price Movements 81

4.1 Introduction . 82

4.2 Method . 85

4.2.1 Problem Formulation . 85

4.2.2 Network Architecture for Probabilistic Modelling 86

4.2.3 Covariates and Target Variable 88

4.3 Mixture Likelihoods . 89

4.4 Benchmark Models . 91

4.4.1 Benchmark 1: Poisson Mixture GLM 91

4.4.2 Benchmark 2: Multiple Poisson Process 92

4.5 Dataset . 92

4.6 Main Experimental Results . 94

4.6.1 Results 1: Directional Risk 96

4.6.2 Results 2: Size Risk . 98

4.7 Comparing Against Two Separate Models 100

Contents 13

4.7.1 Results . 101

4.8 Application to a Simulated Trading Scenario 102

4.8.1 Trading Strategy . 102

4.8.2 Experimental Method . 104

4.8.3 Results . 104

4.9 Summary . 107

5 Deep Generative Modelling of Order Flow Sequences 109

5.1 Introduction . 109

5.2 Technical Background . 113

5.2.1 Deep Generative Models 113

5.2.2 The SeqGAN Framework 114

5.2.3 Convolutional Neural Network 117

5.3 Method . 118

5.3.1 Problem Formulation . 118

5.3.2 SeqGAN Modelling of Order Flow Sequences 121

5.4 Benchmark Model . 123

5.5 Dataset . 124

5.6 Sequence Similarity . 125

5.6.1 Results . 127

5.7 Macro-Behaviour Analyses . 128

5.7.1 Macro-Behaviour 1: Mid-Price Returns Distribution 132

5.7.2 Macro-Behaviour 2: Mid-Price Returns Tail-Exponent . . . 134

5.7.3 Macro-Behaviour 3: Mid-Price Volatility 136

5.8 Summary . 138

6 Conclusion 141

6.1 Discussion and Summary of Contributions 141

6.2 Future Work . 144

6.2.1 Universality Property of the Order Flow Models 145

6.2.2 Representation Learning of Order Flow Features 145

14 Contents

6.2.3 Generative Modelling of Full Order Flow 146

6.2.4 Generating Synthetic Data for Training Models 146

6.2.5 Concluding Remarks . 147

Bibliography 147

List of Figures

2.1 A visualisation of the bid-side and ask-side depth profiles in a LOB 31

3.1 Plot of: i) Bitcoin against US Dollar daily prices (Price), ii) 1-day

lagged difference prices (Price Diff), iii) volume of trading activity

(Trade Volume), where the shaded area is the test period 21 Nov

2017 - 29 Jan 2018 . 67

3.2 The plot of average MCC for each day in the holdout period for

models that are: i) trained and tested on BTC-USD, ii) trained and

tested on BTC-EUR, iii) trained and tested on BTC-GBP 68

4.1 Probabilistic architecture. 86

4.2 Empirical distribution of the final capital held by each model after

500 iterations of trading across 10000 trading scenarios, scaled

to a hypothetical perfect prediction baseline model. 105

4.3 A single sample of the simulated trading scenario showing the

change in capital due to the trading decisions made by the models

at each iteration. 106

List of Tables

3.1 The start and end dates of the warm-up, training, validation and

holdout sets . 64

3.2 Overall average MCC measured for each model on BTC-USD,

BTC-GBP and BTC-EUR datasets, rounded to three decimal places 64

3.3 Results of one-tailed Welch t-test on the null hypothesis that the

mean of the performance of the order flow model is less than

or equal to the mean of the benchmark models, rounded to two

decimal places . 65

3.4 Slope coefficients and p-values of simple linear model fitted on

the order flow model MCC performance over time for each hold-

out set, with p-values rounded to two decimal places 69

3.5 Slope coefficients and p-values of MCC regressed on dates in the

test period for the benchmark models, with p-values rounded to

two decimal places . 70

3.6 For each model, tables show the mean percentage drop in test

MCC between: i) training and testing on the dataset of a single

currency pair, and ii) training on a given currency pair training set

and testing on the holdout sets of the remaining currency pairs . 71

3.7 Average percentage drop in the mean MCC across the holdout

set of each currency pair, after multiple rounds of permutating a

given feature, compared to the performance in Table 3.2. The

notation j is the index of the feature in the vectorised order event

in Equation 3.6 for reference. 73

18 List of Tables

4.1 The start and end dates of the training, validation and holdout sets 94

4.2 Average MCC of the deep learning model and benchmarks for

τ = 15 in the bubble and pre-bubble holdout periods. 96

4.3 Results for one-tailed Welch t-tests on the null hypothesis that the

means of the MCCs for the models in each row are less than or

equal to the means of the models in each column, rounded to two

decimal places. 97

4.4 0.5 and 0.9 quantile loss of the deep learning models and bench-

marks in the bubble and pre-bubble test periods, scaled to base-

line model . 98

4.5 For quantiles 0.5 and 0.9, the results for one-tailed Welch t-tests

on the null hypothesis that the means of the quantile loss for the

model in each row are less than or equal to the means of the

models in each column, rounded to two decimal places. 100

4.6 Mean MCC comparison between best of the novel architecture

and non-mixture benchmark the bubble and pre-bubble holdout

periods. 101

4.7 0.5 and 0.9 quantile loss of the novel architecture, scaled to those

of the non-mixture benchmark (as a baseline), in the bubble and

pre-bubble holdout periods. 102

4.8 The p-values of paired Student t-tests on the null hypotheses that

the profit distribution for a given benchmark model is no different

to the those of a deep mixture model, rounded up to two decimal

places. 106

5.1 Average Levenshtein distance and Jaccard index across multiple

samples of simulated order flow, and across the whole test set,

rounded to two decimal places. 127

5.2 Average Levenshtein distance and Jaccard index across multiple

samples of simulated order flow, and across the whole test set,

after binning rounded to two decimal places. 128

List of Tables 19

5.3 Number of Kolmogorov-Smirnov test hypotheses (out of 100 sam-

ples each) that are rejected in the Hochberg’s step-up procedure.

The time-series length column refers to the first 1, 6 and 48 hours

for each of the 100 samples. 133

5.4 The kurtosis and p-values from the Jarque-Bera test, and the

computed tail-exponents, for the real mid-price time-series abso-

lute log-returns in the test period. The time-series length column

refers to the first 1, 6 and 48 hours of the real mid-price time series.135

5.5 The mean kurtosis from the Jarque-Bera test, and the number of

Jarque-Bera tests rejected by the Hochberg Step-Up proceduure,

across the 100 mid-price time-series samples generated by the

SeqGAN model and benchmark model respectively. The length

column refers to the first 1, 6 and 48 hours for each of the 100

samples. 135

5.6 Results of one-sample two-tailed Student t-test for the tail-

exponent distributions of each model against the real tail-

exponents computed in the test period, rounded to two decimal

places. The time-series length column refers to the first 1, 6 and

48 hours for each of the 100 samples. 136

5.7 The different volatility measures computed from the real mid-price

time-series in the test period. vr refers to the realised volatility,

vp refers to the realised volatility per trade, and vd refers to the

intraday volatility. The time-series length column refers to the first

1, 6 and 48 hours for each of the 100 samples. 137

20 List of Tables

5.8 The p-value and t-statistics of the one-sample two tailed Stu-

dent t-test between different volatility distributions of the SeqGAN

model and the benchmark model, against the real volatility mea-

sures, rounded to two decimal places. vr refers to the realised

volatility, vp refers to the realised volatility per trade, and vd refers

to the intraday volatility. The length column refers to the first 1, 6

and 48 hours for each of the 100 samples. 138

Chapter 1

Introduction

This chapter provides an overview of this thesis by discussing the motiva-

tions behind the research, and stating the objectives and contributions of

the research, and the structure of this thesis. The chapter opens with an

introduction to order-driven markets and the order flow, and discusses the

importance of the order flow in modelling price formation. Then, it briefly

discusses previous work in modelling price formation using deep learning,

and why further research is needed. The chapter is concluded on the re-

search objectives and literature contributions of the work in this thesis, and

the structure of the thesis.

1.1 Motivations from the Literature and Industry

The modern financial securities market is a complex dynamical system [1] com-

prising of networks of dependencies, competitions, relationships, and other

types of interactions, between heterogeneous traders, and explicit rules, reg-

ulations and trading mechanisms. The complexity of such systems makes the

development of trading models challenging since emerging features of market

microstructure such as the price formation process from the collective behaviour

of these complex interactions, when sufficiently large, are intrinsically difficult to

model. The main motivation for the research in this thesis is to investigate the

modelling potential of the deep learning, using market data at the microstruc-

tural level, for potentially untangling this complexity and improve the learning of

22 Chapter 1. Introduction

the price formation process and other features of the market microstructure.

Financial securities markets are organised as one of two kinds of market

systems for facilitating trade, order-driven markets and quote-driven market. In

order-driven markets, all traders trade directly against one another. In quote-

driven markets, regular traders trade against designated market makers, deal-

ers, or specialists who quote their buy and sell prices. More than half of the eq-

uity and derivative markets in today’s high-speed digital world have converged

to a common system, which is the order-driven market. Some of the world’s

largest equity exchanges such as the Hong Kong, Shanghai, Shenzhen, Lon-

don and Toronto Stock Exchange, the Euronext, and also the exchanges of the

Japan Exchange Group, operate as pure order-driven markets. NASDAQ and

the NYSE, which are the largest equity exchanges globally, operate a hybrid

market system that incorporates the attributes of both order-driven and quote-

driven markets.

Traders in order-driven markets trade against one another by submitting

market orders and limit orders to the exchange. A limit order is a type of order

to buy or sell a specific quantity at a specified price or better. Although the

price is guaranteed, the filling of a limit order is not. If a submitted limit order

cannot be immediately executed against an existing order in the limit order book,

then the limit order joins the price queue in the order book until it is cancelled,

amended, or executed against subsequent orders. Market orders, on the other

hand, are immediately executed against limit orders queued at the best price in

the order book, as fully as possible, and hence cannot be cancelled. Any unfilled

portion may then be converted to limit orders at the same price, or executed

at the next best available prices until the market order is fully executed. The

dynamic placement and cancellation of limit orders and market orders by traders

assembles into a stream that forms the sequence of orders called a order flow,

which is the featured market data used for the work in this thesis.

Order flow data provides the most granular view of market activity, poten-

tially encoding information much needed to unravel the aforementioned com-

1.1. Motivations from the Literature and Industry 23

plex network of interactions that gives rise to different features of market mi-

crostructure. For these reasons, the study of order flow data has for many

years inspired a great deal of quantitative modelling research. These studies

[2, 3, 4, 5, 6, 7, 8, 9, 10, 11] assume that the arrival of events in the order flow

is governed by stochastic processes. From the point of view of the industry,

the study of order flow data would also lead to improved price forecasts and

trading costs estimation, and thus improve the profitability of trading models

[12, 13, 14, 15, 16, 17]. Though the use of stochastic processes to model the

arrival of the order flow data, to study price formation process, has shown im-

pressive results in practice, these approaches are not extensively data-driven,

and rely on fitting closed-form theory-driven models. This leads to major draw-

backs such as sensitivity to regime shifts, intractability, and lack of generalisation

power. The application of machine learning to order flow data, as carried out in

this thesis, can lead to improvements in modelling the different features of mar-

ket microstructure as machine learning models are generally more resistant to

these drawbacks.

Deep learning has in recent years been the prevailing class of machine

learning algorithm, and has displayed ground-breaking performance in applica-

tion domains such as computer vision [18, 19, 20, 21, 22] and natural language

processing [23, 24, 25, 26, 27]. However, there has been substantially less

work on econometric subjects, especially in the area of quantitative finance.

Deep learning has been applied to the learning of the price formation process

[28, 29, 30, 31, 30, 32, 33], though these previous works have not considered

utilising the order flow itself in the modelling of the price formation process.

However, much work in quantitative finance indicates that, by utilising the order

flow, deep learning could provide an important window into the price formation

process. Therefore, the main objective of the research in this thesis is to extend

the literature by introducing novel deep learning models that use order flow data

to improve price prediction models, and thus improve the current state of data-

driven modelling of the price formation process. This main objective is broken

24 Chapter 1. Introduction

down into three parts, as outlined in the following section.

1.2 Research Objectives

The first objective of the research in this thesis is to investigate the use of order

flow data as inputs to deep learning models for improving the ability to learn

the price formation process. This objective is motivated by the current absence

of any machine learning study utilising the informational potential of the order

flow for price predictions, even though order flow data is becoming very read-

ily available in many exchanges. As evident from many research studies, the

sequence of events in the order flow is one of the main driving factors of the

price formation process. To achieve this objective, first an experiment is per-

formed to evaluate the performance of a deep recurrent neural network, trained

on order flow data, for predicting directional mid-price movements, compared to

approaches in previous works that are not. Then, a study of the factors affect-

ing the price formation process is conducted by using a black-box interpretation

algorithm to discover effect of each feature of the order flow, such as the order

size, price, and type, on model performance

The second research objective is to improve the prediction capabilities of

deep recurrent neural networks by introducing a novel architecture that would

allow the network to produce probabilistic forecasts, and also jointly model the

direction and size of the price movements. The work here would fill a gap in

the applied deep learning literature where currently there is neither any pre-

vious work on the probabilistic modelling of price movements, nor any on the

joint modelling of direction and size of price movements, even for determinis-

tic models. Due to the inextricable uncertainties in financial markets, the price

formation process is never deterministic. Probabilistic price formation models

are more realistic representations of real financial markets that are full of risks

and uncertainties. In addition, non-deterministic models are also more useful

in trading strategies, as these usually depend on uncertainty estimations for

risk management. Also, joint modelling of the direction and size of price move-

1.2. Research Objectives 25

ments provides a more complete model of the price formation process. Three

experiments are carried out to evaluate the novel architecture proposed for this

objective. First, the performance of the prediction model implementing the novel

architecture is compared against the best available previous work to establish

the predictive capability of the new model. Then, the novel architecture is eval-

uated against an approach that uses two separate networks for forecasting the

probabilistic size and direction of price movements, the aim of this experiment

being to justify the joint modelling of these outputs in the proposed new archi-

tecture. The concluding experiment for the second objective demonstrates the

full potential of the novel architecture’s probabilistic output and the direction-size

joint modelling of the price by implementing a simulated trading scenario.

The third and final research objective is to investigate the deep genera-

tive modelling of order flow sequences, with the aim of learning a model that

is able to produce realistic sequences. Price changes can then be obtained in

a bottom-up way. This builds upon the typical approach in the statistical mod-

elling literature, which model order flow sequences, and study how prices are

formed by the arrival of order events. Such generative modelling of order flow

sequences is a currently completely novel application of machine learning, and

hence fills an important gap in the literature. Besides the use of the simulated

sequences to predict price movements, the generative model of the order flow

has other useful applications. For example, certain trading strategies can use

generated sequences to compute order intensities for estimating some ”proxy

prices”, such as the reservation price in [13], to determine the optimal buy-sell

quotes. Additionally, the interrogation of the generative model using a black-

box interpreter could provide an interesting data-driven window into the price

formation process, and possibly other features of market microstructure. Other

useful applications include using the order flow to substitute unavailable histori-

cal data for evaluating trading strategies. In order to achieve this final research

objective, a framework using deep generative adversarial networks (GANs) for

modelling order flow sequences is introduced. The fidelity of the simulated or-

26 Chapter 1. Introduction

der flow sequences generated by the deep GAN is first evaluated by measuring

the sequence similarity between the generated sequences and real sequences.

Then, the macro-behaviour of the mid-prices that are dynamically formed by the

generated order flow sequences are investigated to determine how well gen-

erated sequences reproduce the statistical behaviour and stylised facts in the

mid-price time-series that have been reported in existing empirical research.

1.3 Major Contributions
The focus of this thesis is on the development of improved deep learning al-

gorithms and models that utilise the order flow to model price formation, by

learning to predict price movements from the order flow sequences. The key

contributions of this thesis are as follows.

• Demonstrate the advantages of utilising order flow data to train deep

learning models for predicting directional mid-price movements.

• Introduce a novel deep mixture model for joint probabilistic modelling of

the direction and size of the mid-price movements.

• Introduce a novel approach using the SeqGAN model [34] for generative

modelling of the order flow sequences.

1.4 Thesis Outline
The chapters in this thesis are organised as follows.

Chapter 2 - This chapter presents necessary background for the thesis

and related previous work. First, relevant aspects of order-driven markets and

the price formation process are introduced. Then, technical background on the

relevant deep learning models and algorithms is given. The chapter ends with a

survey of previous work on topics related to the research problem of the thesis.

Chapter 3 - This chapter presents an investigation of the potential in utilis-

ing order flow data for training deep price formation models. The methodology

is first outlined, and then model performance is benchmarked and evaluated.

1.4. Thesis Outline 27

Finally, an investigation into the order flow factors that contribute to the price for-

mation process is performed using a black-box model interpretation algorithm.

Chapter 4 - This chapter introduces a novel extension to the architecture

of Chapter 3 in order to improve the prediction capability of the deep price for-

mation models. The novel architecture is first presented, and then evaluated

against suitable benchmark models. The chapter ends with a simulated trad-

ing scenario to further illustrate the prediction ability of the introduced model

architecture relative to the benchmarks.

Chapter 5 - This chapter introduces the deep generative modelling of order

flow sequences. The problem of generative modelling of order flow sequences is

defined, and the method for applying the SeqGAN framework to this problem is

described. Benchmarking against an order flow model from previous work, the

chapter then evaluates the sequence modelling ability of the SeqGAN model.

Finally, the chapter compares the statistical behaviour of the mid-price time-

series formed from the generated sequences against real data.

Chapter 6 - This is the concluding chapter of the thesis. First, a summary

and discussion of the key contributions of the thesis is presented. Afterwards,

possible extensions to the work are proposed.

Chapter 2

Background and Related Work

This chapter presents necessary background and a review of related work.

For the domain background, concepts related to order-driven markets will

be covered. Then, a technical background will be presented which pro-

vides descriptions of the deep learning models and algorithms that form

the core solutions to the research problems in this thesis. The chapter

concludes with a survey and review of previous work in both the machine

learning and non-machine-learning literature for modelling price formation

using the order flow.

2.1 Order-Driven Markets

In the past, quote-driven markets were the common system adopted by finan-

cial marketplaces, where a small number of market makers post the prices at

which they are each willing to buy or sell the traded asset. By quoting buy prices

lower than sell prices, the market makers profit from the spread between the

buy and sell prices, in exchange for taking on the risk of holding inventories of

the traded asset and providing liquidity to the market. In such quote-driven mar-

kets, buy and sell orders are centralised and are only posted by traders that are

designated as market makers. Other traders that wish to trade the asset would

have to buy or sell at the prices quoted by these market makers. Nowadays,

the largest exchanges in the modern financial market have adopted the order-

driven market system, which decentralises and democratises the determination

30 Chapter 2. Background and Related Work

of prices in the market by allowing each trader the option of posting buy or sell

limit orders which state their desired prices. The NYSE and NASDAQ imple-

ment a hybrid system where the prices of the limit orders placed by the traders

are shown alongside market maker quotes, but the work in this thesis will only

focus on markets that are purely order-driven.

Price formation in an order-driven market is driven by the flow of orders

posted to the exchange, the limit order book (LOB) and the matching engine

implemented by the exchange. In the following, various terms and concepts

related to orders and the LOB relevant to the work of this thesis will be defined,

followed by a description of the most common matching engine used which

sets the trading rules between orders in an order-driven market. For a more

comprehensive treatment of LOB, readers are directed to [35].

2.1.1 The Limit Order Book

A buy (or, sell) limit order x submitted to the exchange at time tx can be math-

ematically defined as the tuple x = (px,ωx, tx), where px > 0, and ωx > 0. The

order x represents the commitment of the trader to buy (or, sell) up to ωx units

of the traded asset at a price no greater than px (or, no less than px).

When a buy (or, sell) limit order x is received by the exchange, the matching-

engine of a LOB checks if there is a previously submitted sell (or, buy) limit order

resting in the LOB to execute x against. If so, the orders are matched and the

transaction registered. Otherwise, x will be added to the limit order book and

rests there until it is either executed against an incoming order, or cancelled. A

limit order book L (t) can then be defined as the set of all resting limit orders

at time t. The resting orders in L (t) can be further partitioned into the bid-side

B(t), which is the set of all buy orders, and the ask -side A (t), which is the set

of all sell orders.

Orders are grouped by their prices in a LOB. One can think of the LOB

as a set of queues for different prices, each containing resting orders sorted by

their arrival time tx. At a given time t, a price on the bid-side can be defined as

a pair (p,nb(p, t)), where nb(p, t) = ∑x ωx for all x ∈B(t) with px = p. A price

2.1. Order-Driven Markets 31

on the ask-side is similarly defined by (p,na(p, t)) using A (t). The bid-side (or,

ask-side) depth profile for time t is then defined as the set of all ordered pairs

(p,nb(p, t)) (or, (p,na(p, t))). An example of a LOB illustrating the depth profiles

for the bid-side and ask-side of the LOB is shown in Figure 2.1. This form of

depth profile is often how the LOB is evaluated by traders in practice.

Figure 2.1: A visualisation of the bid-side and ask-side depth profiles in a LOB

There exist both in practice and in the literature a number of common mea-

sures of the limit order book, which are also relevant to the work later in this

thesis. These can now be defined as follows:

• The best bid b(t) at time t is the highest price among the orders resting in

the limit order book b(t) = maxx∈B(t) px.

• The best ask b(t) at time t is the lowest price among the orders resting in

the limit order book a(t) = minx∈A (t) px.

• The bid-ask spread at time t is s(t) = a(t)−b(t).

• The mid-price at time t is m(t) = a(t)+b(t)
2

Now that the best bid and best ask have been defined, another type of order

a trader can place besides limit orders, the market order, can be described. A

buy (or, sell) market order x = (ωx, tx,dx) submitted at time t represents the

32 Chapter 2. Background and Related Work

commitment of a trader to immediately buy (or, sell) the stated unit of traded

asset at the best available prices in the LOB. Any buy (or, sell) market order

is always executed immediately against orders resting at b(t) (or, a(t)) as fully

as possible. If in the LOB nb(b(t), t) (or, nb(a(t), t)) is smaller than the size of

the market order, then, the best bid (or, best ask) is depleted and the remaining

portion is filled at the new best bid (or, best ask) until the order is fully executed.

Unlike limit orders, the execution price is not guaranteed when submitting market

orders, though some exchanges may implement rules to convert market orders

into resting limit orders before they are fully executed. Traders can also post

marketable buy (or, sell) limit orders, which are orders with px ≥ a(t) (or, px ≤

b(t)). In modelling, these are generally treated as market orders since they

consume liquidity from the LOB as market orders do.

The final concept to be covered in this section is the relative price. Since

the prices and depths in a LOB are constantly changing over time, it is very

rare to consider any specific prices in the modelling or analysis of the LOB and

the order flow. Therefore, it would be useful to determine some sort of relative

measure of the price. From a modelling perspective, this also helps to normalise

the price variable. Also, studies reported in the literature have concluded that the

order flow depends on the relative price rather than the actual price [36, 37, 38].

The ask-relative price for a given price p is defined as δ a(p) = a(t)− p, and the

bid-relative price is δ b(p) = p− b(t). The work in this thesis applies the ask-

relative price to buy orders, and the bid-relative price to sell orders. Also, the

term relative price will be used from now on, omitting the prefix. To determine if

it is bid-relative or ask-relative, it is necessary to consider the order side (buy or

sell).

2.1.2 Matching Engine

The matching engine is the mechanism behind the LOB which maintains and

updates the state of the LOB as orders are submitted and cancelled, as well as

registering all transactions as orders are matched and filled. The most common

matching algorithm that is implemented by LOB in practice is the price-time

2.1. Order-Driven Markets 33

priority algorithm.

When some marketable buy (or, sell) order y that is submitted immediately

after time t, the orders that are resting at the best ask a(t) (or, best bid b(t))

will be given the highest priority to be matched against y. If there are multiple

orders queued at the best bid or best ask, the First In, First Out (FIFO) rule is

applied where the oldest order x by timestamp tx has the highest priority to be

filled. If ωx <= ωy, the orders are matched and the transaction is completed and

registered. Otherwise if ωx >ωy, the next oldest order will be given the priority to

fill the remaining portion ωy−ωx, repeating until the order y is filled. However, if

ωy > na(a(t), t) (or, ωy > nb(b(t), t)), the queue at a(t) (or, b(t)) will be depleted.

As a consequence, the orders resting at the next lowest price minx∈A (ty) px (or,

highest price maxx∈B(ty) px) will be given the highest priority beginning from the

oldest resting order.

An alternative to price-time priority is the pro-rata matching algorithm, which

gives priority to resting orders at the best prices b(t) (or, a(t)), but fills the orders

in the queue proportionally to the relative size of each resting order. The work in

this thesis however only implements the price-time priority matching engine as

it is the most common system in practice.

2.1.3 Limit Order Book Implementation

The LOB is the central component of the work in this thesis as it is needed to

transform raw order flow messages into datasets, to compute the relative prices

for the events in the order flow, and to compute other metrics such as prices and

depth. Therefore, a limit order book needed to be implemented before any work

in this thesis could begin.

The implemented limit order book needs to be able to perform three main

operations: ”add”, ”cancel”, and ”execute”:

• An ”add” operation places a limit order x in the LOB, at the end of the

queue corresponding to its price px, as per the FIFO rule.

• A ”cancel” operation removes the corresponding order from the LOB.

34 Chapter 2. Background and Related Work

• An ”execute” operation removes the an order from the queue b(t) or a(t),

as per the price-time priority rule.

The limit order book needs to be organised into an efficient data structure

since the number of order messages can get very large. To illustrate this, the

average inter-arrival time between the events of the order flow data used for the

work in this thesis is 13 milliseconds. The implemented LOB needs to be able

to perform these three main operations efficiently, while also enabling the user

to query measures such as b(t), a(t), the depths and the relative prices.

Such efficiency can be achieved using a binary search tree of sorted Price

objects, where each Price object corresponds to a price queue in the LOB. Each

price object needs to be a doubly linked list of Order objects, where each Order

object corresponds to a unique order identified by an ID number. Each side of

the LOB needs a separate tree so that b(t) and a(t) would correspond to the

start and end of the bid-side tree and the ask-side tree respectively. Each Order

also needs to be an entry in a hash map keyed off its ID, so that it can be tracked

for the three operations above. In addition, each Price object also needs to be

in a hash map, keyed off its price. With this structure, theoretically O(1) can

be guaranteed for ”cancel”, ”execute”, computing b(t) and a(t), and computing

the depth at a given price. For the ”add” operation, O(logn) is guaranteed for

the first order at a given price, and O(1) for others. It is recommended that

a red-black tree be implemented for self-balancing as orders will be constantly

removed from one side of the tree and added to the other.

2.1.4 Order Flow and Mid-Price Movements

The order flow is the sequence of limit orders, market orders and cancellation

orders submitted by traders to the exchange. The evolution of the shape of

the LOB, and ultimately the dynamical movements of prices, are determined by

each order submitted by traders. Since the modelling of the order flow to predict

movements of the mid-price is the main focus of this thesis, the series of events

in which the mid-price changes as a result of an incoming order is examined

here in more detail. This is for the benefit of readers that are less familiar with

2.1. Order-Driven Markets 35

the workings of the limit order book.

Consider the effect, on the mid-price of the traded asset, of a buy (or, sell)

order x that is submitted to the LOB immediately after time t:

• If px ≤ b(t) (or, px ≥ a(t)), then x is a limit order that will be placed in the

corresponding price queue. It does not immediately or directly cause any

mid-price movements.

• If b(t) ≥ px ≥ a(t), then x is a limit order that creates a new price queue

within the spread. As a result, b(tx) = px (or, a(tx) = px) and hence the

mid-price has moved.

• If px ≥ a(t) (or, px ≤ b(t)), then x is a marketable order that can be im-

mediately executed against the oldest order resting in the queue at a(t)

(or, b(t)). Depending on the size of the order ωx, the mid-price may be af-

fected. As per the price-time priority algorithm described in Section 2.1.2,

an incoming order will affect the value of the mid-price m(tx) as follows. If

x is an incoming buy order, then the best ask will be shifted as:

a(tx) = max(px,q), where q = argmin
p′

p′

∑
p=a(t)

na(p, t)> ωx,

which may move the mid-price upwards. Meanwhile, an incoming sell or-

der x may move the mid-price downwards due to the possible movements

in the best bid:

b(tx) = max(px,q), where q = argmin
p′

b(t)

∑
p=p′

nb(p, t)> ωx.

The order x could also be a cancellation order, to immediately remove an exist-

ing limit order resting in the LOB. Consider an order timestamped tx,c submitted

immediately after time t to cancel a limit order x resting in the bid (or, ask) side

of the book:

• If px < b(t) (or, px > a(t)), then x is simply removed without immediately

36 Chapter 2. Background and Related Work

or directly affecting the mid-price.

• If px = b(t) (or, px = a(t)), then x is removed, and the new bid price due to

the cancelled order is b(tx,c) = maxx∈B(tx,c) px (or, new ask price a(tx,c) =

minx∈A (tx,c) px), and the mid-price will move correspondingly.

Although the placement and cancellation of limit orders at px 6= a(t) or px 6= b(t)

do not immediately affect the mid-price, these events will change the levels of

liquidity in the LOB at different prices, which can affect the arrival of future orders

as traders react to the changes.

Therefore, prices are driven by the arrival of events in the order flow as

limit orders add liquidity to the LOB, and market orders and cancellation orders

consume the liquidity in the LOB. Although it can be computed exactly how

the price of a traded asset will affected by a submitted order, it is unknown

what orders will arrive in the future. Models of price formation in the literature

are aimed towards predicting and understanding this arrival of orders, and the

subsequent change in the LOB and the price of the traded asset.

2.2 Deep Learning
Machine learning approaches can be broadly categorised into three groups:

supervised learning, unsupervised learning and reinforcement learning. This

thesis is only concerned with supervised learning approaches, and therefore

the remainder of this section considers only supervised learning. In supervised

learning, a model [39] estimates some function f : X → Y mapping an input

space X to an output space Y . More specifically, given an input x and an output

y, a model defines a mapping y = f (x;θ) and aims to find the parameters θ

that result in the best functional approximation of the output. Deep learning

approaches for supervised learning problems are no exception to this almost-

universal model definition.

The core theme of deep learning is multi-layer artificial neural networks

composed by chaining a number of such models. For example, the func-

tions f1, f2, and f3 can be connected into a chain structure of the form

2.2. Deep Learning 37

f (x) = f1(f2(f3(x))). The functions f1, f2, and f3 are called the first, second

and third layers respectively, and form a 3-layer multilayer neural network when

chained. The name deep learning comes from using this approach to modelling

to stack multiple layers to form a deep neural network. The parameters of these

layers are trained simultaneously using the same objective. In theory, as more

layers are stacked, each layer learns a more and more abstract representation

of the input data [40, 41], such that the generalisation ability of the whole net-

work for learning the given data is improved.

There exist many different types of layers, each implementing different func-

tional forms, and used for different purposes. The more commonly used layers

are the feedforward layer [42], the convolutional layer [43], the max-pooling layer

[43] and the recurrent layer [44], although other more exotic layers exist to ful-

fil niche purposes. Different kinds of layers can be combined depending on the

modelling problem at hand. For example, it is common to stack a feedforward as

an output layer after multiple recurrent layers, as a way to transform the output

of the recurrent layers into classification probabilities. The majority of the work

in this thesis employs feedforward layer and recurrent layers, which will now be

presented as follows.

Common notations used in this section, and also in later chapters, are as

follows. For variables, bold is used to indicate a non-scalar, while bold-capital

indicates matrix; for example x is a vector, X is a matrix and x is a scalar. A col-

lection of variables will often be shorthand using curly-brackets and a subscript,

for instance {xi}1:N indicates {x1,x2, . . . ,xN}. This could be a set or a sequence,

depending on the given context.

2.2.1 Feedforward Layer

The building block of a neural network layer is a neuron which also follows the

functional input-output mapping paradigm described above. Given an input vec-

tor x ∈ Rk, the model of a neuron can be described as follows:

f (x) = a(w ·x+b), (2.1)

38 Chapter 2. Background and Related Work

where w ∈ Rk and b are parameters to be estimated, a(.) is some non-linear

activation function [45, 46] and the output f (x) ∈R is scalar. The neuron model

in Equation 2.1 may slightly vary in different models, but with the same form,

where there is a non-linear activation function acting on a linear combination.

The neuron model in Equation 2.1 forms a logistic regression model [47] when

a sigmoid function is chosen as the activation function. A neuron is often re-

ferred to as a unit or hidden unit in the literature and these terms will be used

interchangeably in this thesis, unless referring to an output layer.

Multiple neurons can be assembled to form a feedforward layer. Given the

input vector x ∈ R j, a feedforward layer is the collection of neurons as follows:

f (x) = a(w ·x+b), (2.2)

where a(.) is some non-linear activation function, and the parameters to be fit-

ted, w ∈ Rk× j and b ∈ R j, now have larger dimensions. This kind of layer is

termed feedforward as all information flows in one direction and there are no

feedback loops. Feedforward layers can be used on their own by stacking mul-

tiple feedforward layers to implement a deep feedforward network. Feedforward

layers can also be used with other layers as an output layer or for embedding

non-ordinal inputs.

The most common role of a feedforward layer is as an output layer. Let the

penultimate layer of some deep neural network be denoted as fL−1 ∈ RL. Note

that fL−1 does not have to be a feedforward layer. Then, a feedforward layer can

be used to implement a final output layer with q hidden units with output o ∈ Rq

defined as follows:

fL(fL−1) = a(w · fL−1 +b), (2.3)

where a(.) is some non-linear activation function, and w ∈ Rq×L and b ∈ Rq are

parameters to be fitted. From Equation 2.3, a number of things can happen

depending on the application. In an M-label classification problem for example,

2.2. Deep Learning 39

q is set to M the number of labels, and a normalised exponential function ap-

plied to the output o to compute the probability of each class. For regression

problems, q can be set to the number of exogenous variables to be modelled.

In some applications, stacking at least one more layer fL+1(fL) could improve

the performance of the model by learning a more abstract representation of the

penultimate layer.

Feedforward layers are also commonly used as embedding layers. An em-

bedding layer transforms a given non-ordinal categorical variable, which is al-

ways one-hot encoded, into some continuous space. The reason why this is

needed is because in many datasets, categorical variable can have hundreds,

if not thousands of possible values, resulting in an extremely large one-hot en-

coded vector. By using an embedding layer, the dimension of a one-hot encoded

vector can be reduced to the number of neurons in the layer. In certain prob-

lems that have categorical variables representing small sets, a larger dimension

can be set to improve learning by mimicking the effect of kernel tricks in support

vector machines for learning non-linear data [48]. Since embedding layers are

part of a deep neural network and are trained simultaneously with other layers,

an embedding layer also acts as a mechanism for the representation learning

of abstract features of the categorical variable [49]. The feature space of these

abstract features can also be analysed using clustering algorithms to provide

some unsupervised learning insight into the categorical variable. An embedding

layer can be implemented as follows. Given a categorical variable encoded into

a one-hot vector x, the embedding layer simply follows Equation 2.2, with f (x)

mapping some abstract feature representation of the one-hot vector x. Though

embedding layers are powerful and contributes much to the performance a deep

neural network, they comes with a computational cost as the number of hidden

units in each embedding layer is a hyperparameter that needs to be tuned.

2.2.2 Recurrent Layer

Unlike feedforward layers, a recurrent layer has feedback connections, which

makes it specialised for processing sequence data of the form {xt}1:T . Given an

40 Chapter 2. Background and Related Work

input vector xt at timestep t, a recurrent layer produces an output, which is then

fed through a feedback connection back into the layer for processing xt+1. The

output of a recurrent layer is therefore a ht ∈ Rk (called a hidden state), which

is dependent on xt ∈ R j and the previous hidden state ht−1 ∈ Rk. This can be

expressed as the following:

ht = a(ht−1,xt), (2.4)

where a(.) is some non-linear activation function. Just as with feedforward lay-

ers, the recurrent layer in Equation 2.4 can be stacked to form a deep recur-

rent neural network that learns more abstract representation of the data in each

layer. For example, denoting the output first layer as h(1), the second layer can

be stacked and so on, as shown in the following:

h(2)
t = a(h(2)

t−1,h
(1)
t), (2.5)

A vanilla recurrent layer can be implemented simply using the linear com-

bination and non-linear activation function framework, similar to the architecture

in Equation 2.3:

ht = a(W · [ht−1,xt]+b), (2.6)

where W ∈ Rk×(k+ j) and b ∈ Rk are parameters to be estimated. However,

in practice this form of recurrent cell suffers from the vanishing gradient prob-

lem [50] during optimisation. The vanishing gradient problem occurs when the

layer is not able to learn any long-term dependency in the data between two

timesteps, as the gap between the timesteps gets larger. The work in [51]

presents a more in-depth study of this problem, and gives reasons why the

vanishing gradient problem persists in practice.

In the light of vital problem, the long short-term memory (LSTM) architec-

ture was proposed, to better handle long sequences and deal with the vanishing

gradient problem. The core idea of the LSTM architecture is a memory cell Ct ,

2.2. Deep Learning 41

which depends on the cell state at the previous time step Ct−1. Information

can be removed or added to this cell state, but this is regulated by structures

called gates. Gates protect and control the cell-state, partially letting information

through by having an output between zero and one, determining which informa-

tion in each component of the cell state is to be let through. The architecture of

LSTMs can be expressed as the following, given an input sequence {xt}1:T :

ft = σ(W f · [ht−1,xt]+b f),

it = σ(Wi · [ht−1,xt]+b)i),

C̃t = tanh(WC · [ht−1,xt]+bC),

Ct = ft ∗Ct−1 + it ∗ C̃t ,

ot = σ(Wo[ht−1,xt]+bo),

ht = ot ∗ tanh(Ct),

(2.7)

where σ(.) is the sigmoid function, W(.), b(.) are model parameters to be fitted,

and the symbol ∗ denotes the Hadamard product.

In Equation 2.7, ft is the forget gate which decides the information in the

previous cell state to let through, it is the input gate that decides which values

in the cell state is to be updated, and C̃t contains the candidate update values.

The resulting new cell state is Ct , which will be used in the next timestep. An

interesting note is that, compared to the standard RNN in Equation 2.6, a simple

activation function is here used to incorporate the relationship between the input

x, the previous hidden state ht−1 and the current hidden state ht , while the LSTM

architecture structures this relationship using the cell state Ct .

Other variants of the LSTM architecture in Equation 2.7 exist, such as the

LSTM with peephole connections [52], or the Gated Recurrent Unit [53]. How-

ever, an empirical study of different architecture variants shows that the dif-

ferences in modelling performance between the variants, and the basic LSTM

above, are negligible [54]. Also, in the preliminary work for this thesis, both

42 Chapter 2. Background and Related Work

GRUs and LTSMs were implemented with no performance differences between

them. Therefore, the work in this thesis exclusively implements the LSTM archi-

tecture.

2.2.3 Optimisation

To optimise the parameters of a deep learning model, typically a loss function

needs to be defined to measure how well the parameters of the model predict

the examples in the dataset. This section will only cover the cross-entropy loss

function for binary classification, which is used in multiple chapters in this thesis.

Other loss functions are also used in this thesis, but these are only relevant to

specific chapters, and will be covered in those chapters instead.

For a single data sample with true label y ∈ {0,1}, and an estimated prob-

ability ŷ = Pr(y = 1), the cross-entropy loss is computed as follows:

F(y, ŷ) =−y log ŷ− (1− y)log(1− ŷ), (2.8)

where ŷ is estimated by the output of a model, and is thus a function of the

network parameters θ . In practice, the total loss is taken by summing across

the dataset ∑
N
i=1 F(yi, ŷi).

The learning task in a deep learning model is an optimisation problem.

First, the model output and the loss function are computed using some initial pa-

rameters. Then, the parameters of the model are updated in each layer, within

a single step of the optimisation procedure, to decrease the value of the loss.

This process is repeated until the proper model is obtained. The most common

way to optimise the parameters of a deep learning model is by stochastic gra-

dient descent and its variants. Gradient descent algorithms minimise the loss

function by iteratively updating θ in the opposite direction of the loss function

gradient w.r.t to θ , following the direction of the loss function surface slope until

some minimum is reached. Stochastic gradient descent algorithms update the

parameters by a gap corresponding to the Jacobian matrix, which scales very

well when the size of the training set becomes large. Readers are directed to

2.3. Related Work 43

the excellent tutorial on gradient descent algorithms by [55] for further details.

For the work in this thesis, the stochastic gradient descent variants Adam [56]

and ADAGRAD [57] are deployed for training the implemented models.

2.2.4 Performance Metrics

To evaluate the performance of binary classifiers, the Matthews correlation coef-

ficient (MCC) [58] is used across multiple chapters in this thesis. Other metrics

are also employed but are only relevant to specific chapters, and will be cov-

ered in those chapters instead. The MCC is a measure of the quality of binary

classifications, calculated from the true and false positives and negatives in a

confusion matrix. By summarising the contents of a confusion matrix in a single

balanced and intuitive measure, it allows for concise and extensive performance

comparisons. The following equation computes the MCC:

MCC =
T P ·T N−FP ·FN√

(T P+FP)(T P+FN)(T N +FP)(T N +FN)
, (2.9)

where T P is the number of true positives, FP is the number of false positives,

T N is the number of true negatives, and FN is the number of false negatives.

The MCC is essentially a correlation coefficient between the predicted and true

binary classifications, with values in the range of (−1,1). An MCC of +1 in-

dicates a perfect classifier, −1 indicates a completely wrong classifier, while

0 indicates either that the classification model is doing no better than making

random predictions, or is categorising all examples as being of the same label.

2.3 Related Work

Existing studies relating to the modelling of the price formation process can

be broadly categorised into theory-driven and data-driven. Theory-driven mod-

els assume some theoretical view of the formation of prices, whether this is

based on economic models of rational trading behaviour, or assumes that some

stochastic process is the driving force behind price formation. These theories

are usually supported by evidence from empirical research on financial markets.

44 Chapter 2. Background and Related Work

The naming used here by no means implied that ”theory-driven” models do not

consume any data at all; these models are fitted on, and verified by, data. Data-

driven models, on the other hand, implement some kind of learning approach

to obtain a functional mapping or probabilistic model of the price movements,

based on the given data. These models may be parametric statistical models

of non-parametric machine learning approaches. This section reviews existing

studies of both theory-driven and data-driven modelling of the price formation,

beginning with a discussion of theory-driven models.

2.3.1 Theory-Driven Models

Theory driven-models of price formation are characterised by two extremes.

On one end are perfect-rationality approaches, while on the other are zero-

intelligence approaches [35]. Economists traditionally approach the problem of

LOB modelling using the perfect-rationality framework [59]. Perfect-rationality

approaches are trader-centric, addressing the strategic behaviour of rational

investors when submitting limit orders and market orders. However, the perfect-

rationality framework for modelling the dynamics of the LOB, and consequently

price movements, has significant drawbacks due to a consolidation of unobserv-

able parameters using a series of auxiliary assumptions including the rationality

of investors, inclusion of a designated market maker, and disallowing cancel-

lations of active orders. Such assumptions lead to inconsistency between the

models and observations of trader behaviour [60, 61, 62].

On the other hand, zero-intelligence (ZI) approaches, favoured by the new

generation of physicist-quants, do not assume assume any rational trading be-

haviour is driving the order flow. As implied by their name, zero-intelligence

models instead assume that the order flow is governed by stochastic processes.

The parameters of the processes are conditional on variables such as the state

of L (t), or past sequences of the order flow, therefore mapping the order flow

to the evolution of the LOB and the dynamics of price movements. The industry

and the literature have mostly converged to a preference of ZI approaches over

perfect-rationality approaches in modelling price formation. Although many ZI

2.3. Related Work 45

models also assume simplified models of the market, they are even so able to

produce quantifiable and falsifiable predictions. This is because the parame-

ters of the stochastic processes can be estimated from historical data, and the

outputs are directly comparable to real data. Zero-intelligence approaches ad-

ditionally treat order flow as dynamic rather than static, as in perfect-rationality.

Further discussion in this section will be focused on zero-intelligence models,

as this type of modelling approach is closer to work on the deep modelling of

price formation in this thesis.

The framework used in most zero-intelligence (ZI) models was inspired by

the work in [63], which studied the interplay between perfect-rationality traders

and ZI traders. In a market with only ZI traders, price movements were mapped

onto a model of diffusing and annihilating particles. Orders submitted by the ZI

traders were modelled as a reaction-diffusion system [64], where an order was

a particle on a one-dimensional price lattice. Sell orders were represented as

type A particles, while buy orders were represented as type B particles. The

model begins with all A particles to the right of all B particles, essentially the

bid and ask sides of the LOB. Each particle then moves along the lattice by a

random walk, which results in variation of prices over time. Although this diffu-

sion model is able to reproduce some empirical regularities reported in real LOB

data [63], it has been largely rejected due to the unrealistic premise of diffusion

of resting limit orders across different prices [4]. The study however demon-

strated that such a zero-intelligence framework, with all the computational and

practical advantages that come with it, is able to realistically model the LOB, and

consequently the price movements, without the need for modelling rational trad-

ing behaviour. By implication, the study also suggests that data-driven models

using statistical learning or machine learning will be able to realistically predict

price movements without needing to explicitly learn rational trader behaviour.

Using this ZI framework, subsequent work has mostly assumed stochastic

dynamics of L (t), and that consequently prices are driven by the random ar-

rivals of order submissions and cancellations, so that the price movements in a

46 Chapter 2. Background and Related Work

LOB can be modelled by one or more stochastic process governing the arrival

of order events. Early work was focused on the arrival of traders in discrete

time, where, on arrival, the trader submits a limit order or market order [65].

Extensions allowed for evaporation orders, which essentially model the cancel-

lation of a limit orders [66]. Though these discrete models in these early works

were able to reproduce some empirical regularities such as heavy tails in the

price returns, continuous time models, which model irregularly spaced sequen-

tial data, are necessary for high-resolution characterisation of the LOB and price

dynamics [67].

Continuous-time ZI models assume that the irregularly-spaced market, limit

and cancellation orders are each governed by independent counting processes.

Much of the work on continuous-time ZI models implements the multiple Poisson

process framework, first introduced in [2, 3], and refined in [68]. The Poisson

process has seen much application in this area due to its tractability and the

ease in obtaining an analytical closed-form solution to the state of the L (t), a(t),

b(t), m(t), and the depth-profiles. The utility of this framework is illustrated in

[69], where the authors applied a modified variant of multiple Poisson processes

to model the order flow, with the aim of investigating the possible causes of the

infamous 2010 Flash Crash [70].

Poisson processes are just one of many kinds of point processes that have

the potential for modelling the arrival rates of orders. Another notable process

that is often seen in the literature is the Hawkes point process [71]. The Hawkes

process is an excitable point process with a time-varying intensity kernel that

governs the surge and decay in arrival intensities. The authors in [5] showed that

by modelling market order arrivals with a process that can be excited by recent

orders, the statistical properties of order flow sequences are improved when

compared to actual data. Similarly, the authors in [6] revised the approach in [68]

and observed improvements in the empirical regularities of the output compared

to real data. Also, the work in [9] proposed a 4-variate Hawkes process to model

randomly timed price movements and the arrival of market orders.

2.3. Related Work 47

However, the parametric estimation of the Hawkes process requires a-priori

knowledge of the kernel shape, while the non-parametric estimation problem re-

quires a numerical solution that suffers from stability issues. The simplicity and

tractability of independent Poisson processes leads to straightforward imple-

mentation and allows for in-depth closed-form analysis. For this reason, there is

a wider use of multiple Poisson ZI models both in the industry and in the litera-

ture, and thus it will be of much use later in this thesis as a benchmark model.

The multiple Poisson models in [2, 3, 69, 68] can be generalised into a single

form, and the next subsection will describe this generalised form of the multiple

Poisson model.

2.3.2 Multiple Poisson Models

As discussed in previous sections, the stochastic dynamics of the LOB is driven

by the submission to, cancellation of, and execution of, limit orders in the LOB

over time. Thus, the LOB, and consequently the price movements, can be sim-

ulated by multiple stochastic processes modelling the random arrival of order

book events. The random arrival of a given type of order can be modelled by

an independent counting process such as the Poisson process. The method in

which Poisson processes model the order flow can take slightly different forms,

referring to the work in [69, 68, 3, 2]. However, a generalised formulation con-

sisting of multiple independent Poisson processes, can be derived as outlined

below.

Each Poisson process essentially models a type of order event such as the

limit order, market order or cancellation order as follows:

• Bid limit orders to buy at relative price q from the best ask arrive indepen-

dently in exponential time at the rate of λB(q).

• Ask limit orders to sell at relative price q from the best bid arrive indepen-

dently in exponential time at the rate of λA(q).

• Buy market orders arrive independently at an exponential rate of µB.

48 Chapter 2. Background and Related Work

• Sell market orders arrive independently at an exponential rate of µA.

• Cancellation of bid limit orders resting at relative price q from the best ask

are cancelled at the exponential rate of θB(q).

• Cancellation of ask limit orders resting at relative price q from the best bid

are cancelled at the exponential rate of θA(q).

In the above formulation, there are Q Poisson processes generating bid limit

orders, and Q processes generating ask limit orders, at relative prices of up to Q

ticks away from the opposite best price. Relative prices further than Q ticks away

from the best bid and best ask are not considered since market activity tends

to get less the further one gets from the best bid and best ask [72, 73]. Then,

a further two processes are used for generating buy and sell market orders

respectively. Finally, another 2Q processes are used to model the arrival of

cancellation orders for the limit orders resting at each relative price q in the limit

order book.

The models in [69, 68, 3, 2] make the simplification assumption that the or-

der sizes are equal, where ωx =ω unit for all orders x∈L (t). With this assump-

tion and with the independent arrival of orders dictated by the multiple Poisson

processes, the previously introduced LOB price depths nb(p, t) and na(p, t) can

be described as continuous-time Markov processes [68]:

• nb(q, t +∆t)→ nb(q, t)+ω , with rate λB(q), for all 1≤ i≤ Q

• na(q, t +∆t)→ na(q, t)+ω , with rate λA(q), for all 1≤ i≤ Q

• nb(k, t +∆t)→ nb(k, t)−ω , with rate µA where k = m(t)
π

• na(k, t +∆t)→ na(k, t)−ω , with rate µB where k = m(t)
π

• nb(q, t +∆t)→ nb(q, t)−ω , with rate θB(q), for all q≥ 1

• nb(q, t +∆t)→ nb(q, t)−ω , with rate θA(q), for all q≥ 1

2.3. Related Work 49

Enough pieces of the puzzle have now been assembled to show that the

ZI models in [69, 68, 3, 2] essentially describe a Poisson birth-death process.

The depth nb(b(t), t) at the best bid is a birth-death process where the quantity

available for trade at b(t) enters a ”plus one unit of order” state with probability

(with the converse true for na(a(t), t)):

λB(q)
λB(q)+µA +θB(q)

, (2.10)

and a ”minus one unit of order” state with probability

µA +θB(q)
λB(q)+µA +θB(q)

. (2.11)

At other bid-side price levels, the quantity available for trade at these price level

enters the ”plus one” state with probability (with the converse true for the ask-

side price levels):

λB(q)
λB(q)+θB(q)

, (2.12)

and the ”minus one” state with probability:

θB(q)
λB(q)+θB(q)

. (2.13)

To conclude this section, the procedure for fitting the rate parameter of each

of the Poisson processes in the formulation above is described. The average

size of limit orders is denoted as Sl , the average size of market orders as Sm, and

the average size of cancellation orders as Sc. These averages can be estimated

directly from the data. Then, the arrival rate λq of a limit order can be estimated

by a power-low function [38, 37] of the form:

λ
′(q) =

k
qα

, (2.14)

The parameters k and α can be obtained from the data by a least square fit [68]:

50 Chapter 2. Background and Related Work

min
k,α

Q

∑
q=1

(
Nl(q)

H
− k

iα

)2

, (2.15)

where Nl(q) is the number of limit orders arriving in time H with price q. In the

above, the subscripts A and B are omitted from the rate λ but the equations

apply for both bid and ask limit order processes. Next, the market order arrival

rate µ can be estimated by [68]:

µ̂ =
Nm

H
Sm

Sl
, (2.16)

where Nm is the number of market orders arriving within time H. Finally, the

cancellation rate θ(q) can be estimated by [68]:

θ̂(j) =
Nc(q)
H ·Vq

Sc

Sl
, (2.17)

where Nc(q) is the number of cancellation orders at price q within time H, and

Qq is the average number of orders at relative price q.

2.3.3 Data-Driven Models

Philosophically, there exists two cultures of statistical modelling when deriving

conclusions from data [74]. One assumes a data generating process, while the

latter uses algorithmic models that treat the data mechanism as unknown. The

former lends to the theory-driven models that have been examined in previous

sections, while the data-driven machine learning models falls into the class of al-

gorithmic models. Machine learning models are designed to provide predictions

in complex application domains where relations between input and output vari-

ables are nonlinear and input space is often high dimensional. Therefore, ma-

chine learning models could improve over existing theory-driven models due to

their potential to better generalise over a given dataset. In addition, the tractabil-

ity issues experienced when fitting more advanced ZI models are not a problem

due to how machine learning models are estimated. Interpretation issues, which

are one of the key advantages of theory-driven models, are also fast being re-

2.3. Related Work 51

solved by methods such as Shapley Additive Explanations [75].

However, the current state of the literature on the machine learning mod-

elling of the high-frequency price formation using LOB data is disappointingly

sparse. The authors in [76] propose a support vector machine approach for

predicting price spread and price movement using features engineered from the

limit order book. While, a GLM approach is implemented by the authors in [77]

to predict directional price movements using engineered features from the limit

order book, such as different variations of the order imbalance and the bid-ask

spread.

Turning to the application of deep learning, most of the existing models of

price formation implement the same standard RNN architecture with LSTM cells

to predict directional mid-price movements. The main differences between these

models are the features used as inputs rather than any significant advancements

in the models themselves. The most common feature used is the multivariate

time series of the depth profiles nb(p, t) and na(p, t) of the LOB at different prices

[28, 29]. The authors in [30] augment this time series with computed market

order intensities, with the argument that such a feature could potentially predict

price-flip events, since the arrival of market orders have a high probability of

causing a price movement. An exception to the general use of RNNs is in [78],

where the authors instead propose to use a bilinear network, and [31] which

introduced a deep feature extraction network with a fully connected layer in the

output. Both these models are similarly dependent on the time series of nb(p, t)

and na(p, t) as input features. It is also difficult to determine the true state of

the art, as most of the models in existing work do not have a unified dataset,

since the novelty in each work is the input features used to train the models. For

that work [78] that did introduce a novel deep learning architecture to tackle the

price formation problem a comparison was made between this model and those

in [76, 31, 29]. In addition, despite the promising results reported in the work

above, there were no attempts to apply black-box model interpretation methods

to provide insights into the price formation process. The closest to such analysis

52 Chapter 2. Background and Related Work

is in [31], in which the authors cluster their learned features to reveal insights

into the structure of the financial market.

Though the pervasive use of the order flow in high-impact theory-driven

models suggests that it is a very relevant predictor of price formation, at the

time of the writing of this thesis, there exist no methods in the literature which

explore the use of the order flow in data-driven models. In the next chapter, the

first research objective in this chapter will be to explore the use of order flow

data to predict directional price movements, and to investigate if the use of such

data would prove to be an improvement over existing methods.

Chapter 3

Deep Modelling of Price Formation

Using the Order Flow

This chapter presents a novel use of order flow data using a deep recurrent

neural network to model the directional movements of the mid-price. The

performance of this deep order flow model is benchmarked against previ-

ous work on forecasting high-frequency price movements that used deep

learning models but did not make use of order flow data. After training the

new and benchmark models on order flow data extracted from a Bitcoin ex-

change, evaluation of the models in the test period indicates that the deep

order flow model outperforms the benchmark models. Further analysis of

the results also shows that the deep order flow model exhibits strong sta-

tionarity: without any retraining, its performance was shown to be stable

even as the currency shifts into an extremely volatile regime. The chapter

is concluded by studying the aspects of the order flow that affect price for-

mation, using a black-box explainer algorithm, and examining the results in

contrast to previous work in the empirical study of market microstructure.

3.1 Introduction

Order flow data is essentially the most granular level quantitative data that can

be collected containing market activity information that could be used for building

prediction models. The fundamental premise of deep learning is the represen-

54 Chapter 3. Deep Modelling of Price Formation Using the Order Flow

tation learning of these kinds of raw data, without any feature engineering, to

achieve state-of-the-art results in some given machine learning task [79]. Data

that has been subjected to manual feature extraction carries the risk of acci-

dentally discarding important knowledge that can potentially be learned in a

deep layer. In key application areas of deep learning such as natural language

processing [80], visual recognition [81], and speech learning [82], there are no

instances of preprocessing in the dataset that produces state-of-the-art results.

However, deep learning of features from non-preprocessed data has not

made large incursions into the area of econometric and financial applications.

The reasons for this are unclear. It may be in large part due to the difficulty

of collecting large enough datasets, due to the cost involved. For instance, the

large cost of obtaining order flow data from main stock exchanges is out of the

reach of most investors. Other reasons may be that the underlying process of

the application is not understood sufficiently well for raw data collection or be-

cause data in its preprocessed form is simply inaccessible, such as for instance,

the browsing data of consumers in large e-commerce websites for prediction of

e-commerce demand. Whichever the real reason for this lack of use of raw data

may be, determining it is not the focus of this chapter, nor this thesis. As illus-

trated in Section 2.3.3, there is exists a clear void in the literature on the deep

learning of order flow data in any modelling problems. The main objective in this

chapter is to therefore fill this void, by investigating the potential of utilising order

flow data for training deep learning models to model price formation process.

To achieve this objective, Section 3.3 introduces the deep learning frame-

work that utilises order flow data to predict high-frequency mid-price move-

ments. Subsequently, Section 3.2 details the benchmark model comprising of

previous work selected the studies presented in Chapter 2.3.3 that applied deep

learning for predicting high-frequency price movements. The source of the or-

der flow data is described in Section 3.4, and the procedure for extracting the

datasets from the raw order messages to train and test the models is outlined in

Section 3.5.

3.2. Deep Order Flow Model 55

A number of experiments were performed to investigate the predictive ca-

pabilities of the deep order flow model. The performance of the deep order flow

model and the benchmark models are compared in Section 3.6.1. In brief, it is

possible to obtain significantly strong performance in predicting high-frequency

price movements using order flow trained models compared to the benchmarks.

Section 3.6.2 then presents one of the major findings of this chapter. The

deep order flow model exhibits remarkable stationarity property compared to

the benchmark model, and possible even on its own. A short analysis of the

universality property of the deep order flow model is then examined as well in

Section 3.6.3, though with a caveat due to the limitations of the datasets. Fi-

nally, Section 3.7 concluded the work in this chapter by investigating the factors

in the order flow that affect the price formation process. Though deep learning

is a completely black-box approach to modelling, a black-box interpretation al-

gorithm introduced to evaluate how each feature of the order flow data affects

the performance of the deep order flow model. The results are then compared

against existing empirical market microstructure research to provide an alterna-

tive data-driven insight into the possible factors for the price formation process.

3.2 Deep Order Flow Model
The order flow model is quite straightforward. An order flow Xi is defined to be

a length T sequence of order events xi,t as follows:

Xi = {xi,1, . . . ,xi,T}, (3.1)

where i denotes a point in the dataset. The model then predicts the direction of

the next price movement yi:

p(yi|Xi), (3.2)

Note here that the regular period indicator 1, . . . ,T associated with each

order does not imply that the input data is regularly spaced. The model takes as

input a sequence of irregularly spaced order events, as is natural for an order

56 Chapter 3. Deep Modelling of Price Formation Using the Order Flow

flow. Since this is essentially a binary classification problem, the probability

distribution of yi can be described by the softmax function

P(yi = j | hL
i,T ,W

D
j) =

ezD
j (h

L
i,T ,W

D
j)

∑
K−1
k=0 ezD

k (h
L
i,T ,W

D
k)
, (3.3)

where j ∈ {0,1} are K = 2 classes indicating the downward and upward price

movements respectively, hL
i,T is some learnt L-layer deep representation of a

length T order flow, and zD
k is the output layer of a D-layer fully-connected neural

network.

The representation hL
i,T is defined by

hl
i,T =

h(hl−1
i,T ,hl

i,T−1,Θ
l) if 1 < l ≤ L,

h(xi,T ,hl
i,T−1,Θ

l) if l = 1,
(3.4)

where h(.) is a function implementing an RNN with LSTM cells, Θl are LSTM

parameters to be fitted, and xi,T will be soon addressed. Section 2.3.3 can be

referred to for more details on RNNs and LSTMs.

The parameters of the model can fitted using any stochastic gradient de-

scent optimisation algorithm [55] by minimising the negative log-likelihood

L (y) =− 1
N

N

∑
i=1

K−1

∑
j=0

Iyi= j log p(j), (3.5)

where I is the identity function that is equal to one if yi = j and is zero otherwise,

K is the number of classes, and N is the size of the dataset. To fit the parameters

of the model, the Adam optimisation, as described in Section 2.2.3 is used to

minimise the above log-likelihood. Regularisation is achieved via a combination

of dropout and early-stopping. To obtain the optimal hyperparameters, Bayesian

hyperparameter tuning [83] is implemented.

Each order event xi,t is essentially the vectorised form of a row of order

messages and can be expressed as the tuple

xi,t = (x(1)i,t ,x
(2)
i,t ,x

(3)
i,t ,x

(4)
i,t ,x

(5)
i,t ,x

(6)
i,t), (3.6)

3.2. Deep Order Flow Model 57

where:

• x(1)i,t ∈N is the number of milliseconds between the arrival of xi,t−1 and xi,t ,

such that δi,t ≥ 0;

• x(2)i,t ∈ N is the hour of the arrival of xi,t according its timestamp, such that

hi,t ≥ 0;

• x(3)i,t ∈ R is the size of the order xi,t , such that ωi,t > 0;

• x(4)i,t ∈ {1,2,3} is the categorical variable for xi,t being a limit order, market

order or cancellation order;

• x(5)i,t ∈ {1,2} is the categorical variable for whether xi,t is a buy order or sell

order respectively;

• x(6)i,t ∈ N, such that πi,t ≥ 0, is the relative price of the order xi,t as defined

in Chapter 2.1.1;

For each order event, all the non-ordinal categorical features are embedded

into a multidimensional continuous space using a fully-connected layer between

the RNN and the feature input. Computation of such embeddings is described

in Section 2.2.1.

To preserve the order flow in its original form as much as possible, each of

the vectorised features above each represent a field in the order message, with

the exception of the timestamp. The timestamp is broken down into features x(1)i,t

and x(2)i,t due to the difficulty in representing a timestamp as a feature. Admittedly

this weakens the ”raw data” claim of this chapter but the choice of timestamp

representations is well supported in literature. The timing of order event arrivals

has been shown to be most relevant in the modelling of price formation by the

choice of stochastic process preferred in the literature[9, 6]. And also, there is

strong evidence for intraday volatility patterns [8], which implies change in order

flow activity at different times of the day.

58 Chapter 3. Deep Modelling of Price Formation Using the Order Flow

3.3 Benchmark Models

The order flow formulation above is benchmarked against models chosen from

amongst those previously described in Section 2.3.3. Some of the models pre-

sented in there were not chosen because they were shallow models, and are

therefore not comparable to the deep learning theme in this chapter. The objec-

tive of the experiments in this chapter is to benchmark the result of training deep

models using the order flow against previous work in the literature. To this end, it

is desirable that a simple common architecture is duplicated across the bench-

mark models and the order flow model. Therefore, a novel architecture such

as [31] and [78] will not be implemented. It can be argued that: if the experi-

ments to follow show improvements when training on order flow instead of the

LOB snapshot, the improvements should be applicable to these architectures

as well.

The benchmark models hence follow the same modelling approach as de-

scribed in 3.2 but with changes to the sequence (xi,1,xi,2, . . .xi,T). The sequence

is now regularly spaced (i.e. a time series), and each element xi,t no longer

represents an order book event but now represents a temporal feature vector

appropriate to the benchmark model considered. Descriptions of the models

implemented will now follow.

Benchmark 1: Limit Order Book Snapshot

Most commonly in the literature, models are trained on a multivariate time-series

of snapshots of the limit order book [76, 28, 29, 78, 31]. Each snapshot can be

described as

x(snap)
i,t = (b(1)i,t ,b

(2)
i,t , . . .b

(J)
i,t ,s

(1)
i,t ,s

(2)
i,t , . . .s

(J)
i,t), (3.7)

where b(j)
i,t = (π

(j)
i,t ,ω

(j)
i,t) is the tuple of price π and volume ω at the j’th highest

buy price, s(j)
i,t = (φ

(j)
i,t ,κ

(j)
i,t) is the tuple of price φ and volume κ at the j’th lowest

sell price, J is the number of highest buy or lowest sell prices levels considered

in the snapshot. In existing work using this approach, typically the number of

3.3. Benchmark Models 59

price levels is chosen as J = 10.

Benchmark 2: Limit Order Book Snapshot with Market Order

Rates

The authors in [30] augmented the LOB snapshot with the intensity of market

orders. Market orders are essentially aggressive orders depleting the volumes

at the best ask and best bid. It was observed empirically in [30] that an increase

in ratio between number of market orders and the volume resting at the top-of-

the-book will more likely deplete the best bid/ask, which would contribute to a

change in directional price movements later on. Each point in the multivariate

time series is in this benchmark described as follows:

x(agg)
i,t = (b(1)i,t ,b

(2)
i,t , . . .b

(J)
i,t ,s

(1)
i,t ,s

(2)
i,t , . . .s

(J)
i,t ,α

(b)
i,t ,α

(s)
i,t), (3.8)

α
(b)
i,t =

m(b)

ω
(1)
i , t

, (3.9)

α
(s)
i,t =

m(s)

κ
(1)
i , t

, (3.10)

In this, b j
i,t and s j

i,t are the same as described in 3.7 but without market order

rates, and mb (ms) are the total number of buy (sell) market orders arriving within

the span of the time series.

Volume Order Imbalance

The authors in [77] implemented a multivariate time-series of features engi-

neered from the limit order book as follows:

x(imba)
i,t = (vi,t ,ρi,t ,ri,t), (3.11)

vi,t =
v̂(B)i,t − v̂(S)i,t

σi,t
, (3.12)

60 Chapter 3. Deep Modelling of Price Formation Using the Order Flow

v̂(b)i,t =

0, if π

(1)
i,t > π

(1)
i,t−1,

ω
(1)
i,t −ω

(1)
i,t−1, if π

(1)
i,t = π

(1)
i,t−1,

ω
(1)
i,t , if π

(1)
i,t < π

(1)
i,t−1,

(3.13)

v̂(s)i,t =

κ
(1)
i,t , if φ

(1)
i,t > φ

(1)
i,t−1,

κ
(1)
i,t −κ

(1)
i,t−1, if φ

(1)
i,t = φ

(1)
i,t−1,

0, if φ
(1)
i,t < φ

(1)
i,t−1,

(3.14)

ρi,t =
1

σi,t

ω
(1)
i,t −κ

(1)
i,t

ω
(1)
i,t +κ(1)

, (3.15)

ri,t =
1

σi,t

(
p̂i,t−

ŷi,t− ŷi,t−1

2

)
, (3.16)

p̂i,t =

ŷi,1, if t = 1,

1
0.01

χi,t−χt−1
Vi,t−Vt−1

, if Vi,t 6=Vi,t−1,

p̂i,t−1, if Vi,t =Vi,t−1,

(3.17)

In the above equations: ŷi,t is the mid-price at time t; χi,t is the total value

transacted aggregated at time t; Vi,t is the total volume transacted aggregated

at time t; πi,t , ωi,t , phii,t , and κi,t are the price and volume as defined for the

LOB snapshot above; and σi,t is the bid-ask spread which can be computed as

the difference between the best bid and best ask φ
(1)
i,t −π

(1)
i,t .

Benchmark 3: Mid-Price Time Series

Lastly, it is always useful to include a ”naive” model as a benchmark. Since the

target variable is the directional price movements, the naive model is chosen

here to be simply a univariate time-series of the mid-price (with notation as

defined above):

x(mid)
i,t = ŷi,t (3.18)

3.4. Data Source 61

3.4 Data Source
Order flow data from most stock exchanges are usually very expensive or diffi-

cult to obtain for the typical trader. However, with the rise of cryptocurrencies,

cryptocurrency exchanges provide API libraries that would allow access to the

same kind of order flow data from regular stock exchanges at virtually no cost.

The data for our experiment is thus obtained from Coinbase, a digital currency

exchange. Using the Coinbase API, a websocket feed can be accessed, which

provides a real-time stream of market data updates for orders and trades. With

this, a bot was implemented to log all the messages in the real-time stream, for

currency pairs BTC-USD and BTC-EUR. The bot was operated between 4 Nov

2017 to 22 Dec 2017. The messages are in JSON format, where a snapshot

with select attributes are shown as follows:

{

” t ime ”:”2017−11−05T17:10:44.732000Z ” ,

” type ” : ” open ” ,

” rema in ing s ize ” : ”2 .51000000” ,

” o r d e r i d ” : ” acf8e954−0488−4db0−a0b0−f405812ba0ec ” ,

” p r i ce ” : ”7533.81000000” ,

” reason ” : n u l l ,

” s ide ” : ” s e l l ”

} ,

{

” t ime ”:”2017−11−05T17:10:44.739000Z ” ,

” type ” : ” rece ived ” ,

” rema in ing s ize ” : n u l l ,

” o r d e r i d ” : ” 3 dc23e38−36da−4c0d−99db−21e361b1cb44 ” ,

” p r i ce ” : ”7543.64000000” ,

” reason ” : n u l l ,

” s ide ” : ” s e l l ”

} ,

{

” t ime ”:”2017−11−05T17:10:44.739000Z ” ,

” type ” : ” open ” ,

” rema in ing s ize ” : ”0 .12000000” ,

” o r d e r i d ” : ” 3 dc23e38−36da−4c0d−99db−21e361b1cb44 ” ,

” p r i ce ” : ”7543.64000000” ,

” reason ” : n u l l ,

” s ide ” : ” s e l l ”

} ,

{

” t ime ”:”2017−11−05T17:10:44.747000Z ” ,

” type ” : ” done ” ,

” rema in ing s ize ” : ”0 .88000000” ,

” o r d e r i d ” : ” 7 bf7355e−3e24−4ab0−aab4−4b1771f4a73b ” ,

” p r i ce ” : ”7554.90000000” ,

” reason ” : ” canceled ” ,

” s ide ” : ” s e l l ”

} ,

{

” t ime ”:”2017−11−05T17:10:44.750000Z ” ,

” type ” : ” rece ived ” ,

” rema in ing s ize ” : n u l l ,

” o r d e r i d ” : ” c74781bb−79dd−417f−8517−64915f41bdf8 ” ,

” p r i ce ” : ”7533.80000000” ,

” reason ” : n u l l ,

” s ide ” : ” s e l l ”

} ,

{

” t ime ”:”2017−11−05T17:10:44.750000Z ” ,

” type ” : ” open ” ,

” rema in ing s ize ” : ”0 .53100000” ,

” o r d e r i d ” : ” c74781bb−79dd−417f−8517−64915f41bdf8 ” ,

” p r i ce ” : ”7533.80000000” ,

” reason ” : n u l l ,

” s ide ” : ” s e l l ”

}

From above, it can be seen that the raw JSON messages that were logged

from the real-time stream does not provide a coherent order flow since it is not

clear which messages pertains to the limit order, market order or cancellation or-

ders respectively. Instead, they specify the submission, cancellation and execu-

62 Chapter 3. Deep Modelling of Price Formation Using the Order Flow

tion of orders. However, is typical in literature to model the arrival of limit orders,

market orders and order cancellation instead of order submission, cancellation

and execution. Another clear issue here is that the JSON messages above is

not a machine learning dataset that is suitable for use with typical deep learn-

ing models. Therefore, a limit order book and matching engine as described

in Section 2.1.2 and Section 2.1.3 is implemented to process these messages

and output a sequence of vectorised order flow with clear labelling of limit order,

market order or cancellation orders.

An important note to make here is that the level of volume traded on Coin-

base is of billions of US dollar, which is quite small compared to the trillions of

US dollar. However, Coinbase is the second largest cryptocurrency exchange

globally and is therefore a very liquid market. Results extracted from this data

source should therefore generalise to other liquid markets such as other foreign

exchange and stock markets. Also, the results in this thesis are relative and an-

chored on baseline models. Therefore, the contributions and conclusions drawn

based on this dataset is valid regardless of the data source.

Similar to the final note in Chapter 3.8, the smaller scale of the trade volume

on Coinbase does not restrict the contributions of this chapter. The functional

capacity of the novel probabilistic architecture introduced in this chapter is inde-

pendent of the dataset source.

3.5 Dataset

To compare the performance of different training features, raw order flow data

versus the above benchmarks, a reliable procedure is needed to ensure both the

alignment of the feature set to the same target variable, and fairness in terms

of amount of information contained in the feature set. As mentioned in Section

3.4, the raw JSON message obtained from Coinbase needs to be fed through an

implemented limit order book and matching engine to obtain a coherent dataset

suitable for machine learning. During this procedure, the datasets for the order

flow model and benchmark models are constructed as follows:

3.5. Dataset 63

• Each arriving order event is vectorised as described in Equation 3.6, and

then appended into a fixed-size T FIFO container. At the same time, the

benchmark features are vectorised as described in Equations 3.18, 3.11,

3.8, and 3.7. Each benchmark feature vector is appended into an individ-

ual fixed-size T FIFO container.

• The mid-price is tracked at the arrival of each order event. When a change

in the mid-price is detected:

1. The direction of the price change is recorded as the target variable.

2. The container of vectorised order flow is recorded as the correspond-

ing order flow feature for the price change.

3. For each benchmark model, the respective container of feature vec-

tors is transformed into a regularly spaced time series by binning

each element of the vector at the given point in time.

In this way, the training rows for the order flow and benchmark models are

aligned to the same target variable. Also, the amount of information contained in

the features is equal; though the sequential length may be different, the physical

period of time from which the sequences are obtained is the same.

The datasets are then split into training, validation and holdout sets be-

tween dates set out in Table 3.1. A warm-up period is needed to set an initial

state for the limit order book before data collection begins. Though the hold-

out set may seem unnecessarily large, a long holdout set is a good alternative

to running multiple iterations of the experiment using a sliding window, which

would have added a lot of additional complexity to the overall implementation

pipeline. Though, implementing a sliding window or expanding window would

be an interesting future work to draw an even stronger conclusion, especially in

combination with a long holdout set.

64 Chapter 3. Deep Modelling of Price Formation Using the Order Flow

Set From To
Warm-Up 4 Nov 2017 5 Nov 2017
Training 6 Nov 2017 16 Nov 2017
Validation 17 Nov 2017 20 Nov 2017
Holdout 21 Nov 2017 29 Jan 2018

Table 3.1: The start and end dates of the warm-up, training, validation and holdout sets

3.6 Results
In this section, for readability, abbreviations are used for the names of the

features: i) order flow, ii) order book snapshot, iii) order book snapshot with

aggressors (market order rates), iv) bid-ask volume imbalance, v) past sequen-

tial mid-price changes.

3.6.1 Comparison of Model Performance

Table 3.2 provides an overview of the results, comparing the overall performance

of the order flow model against the benchmark models. The metric used here

is the Matthews Correlation Coefficient (MCC), which was described in Section

2.2.4. It is easy to see here that, for each dataset, the performance of model

trained on the order flow outperforms those of the benchmark models. It is

also observed that the performances of all models (with the exception of mid)

are very good, being able to predict much better than random (MCC=0). This

could potentially be attributed to the predictive and generalisation power of deep

learning models, though further experiments with non-deep models would be

needed for verification.

Dataset
Model

flow snap agg imba mid
BTC-USD 0.485 0.240 0.287 0.150 0.024
BTC-GBP 0.309 0.120 0.169 0.065 0.019
BTC-EUR 0.398 0.156 0.226 0.135 0.023

Table 3.2: Overall average MCC measured for each model on BTC-USD, BTC-GBP
and BTC-EUR datasets, rounded to three decimal places

Although Table 3.2 clearly shows the better performance of the order flow

model, for a more rigorous analysis, one-tailed Welch t-tests are performed be-

3.6. Results 65

tween the order flow model and each benchmark model. For each test, the null

hypothesis is stated as H0 : B <= A where B is the mean of the MCC mea-

sured on the order flow model across the holdout set, while A is the mean for a

given benchmark model. If the null hypothesis is rejected, then the alternative

hypothesis H1 : B > A is supported. The results of the statistical tests are pre-

sented in Table 3.3. It can be observed that for each test, the null hypothesis

is rejected at a very high confidence interval. This results imply that the order

flow model performs better than the benchmark models with very high statistical

significance.

Dataset
Model

snap agg imba mid snap agg imba mid
t-statistics p-value

BTC-USD 32.13 25.37 44.33 127.73 0.00 0.00 0.00 0.00
BTC-GBP 20.73 13.94 33.22 45.76 0.00 0.00 0.00 0.00
BTC-EUR 26.31 23.24 34.84 92.03 0.00 0.00 0.00 0.00

Table 3.3: Results of one-tailed Welch t-test on the null hypothesis that the mean of the
performance of the order flow model is less than or equal to the mean of the
benchmark models, rounded to two decimal places

3.6.2 Analysis of Stationarity

The stationarity of a model is its ability to maintain consistent prediction perfor-

mance not just out-of-sample, but across a range of periods where the underly-

ing process that generates the data undergoes drastic changes. The financial

market is subject to chaotic shift in regimes, and, as a consequence, a model

that is trained and tested in a particular period is not guaranteed to perform as

well if some unobservable underlying process of the financial market causes a

drastic shift in the statistical properties of the data. As many of these regime

shifting processes are subtle and not easily detected, particularly when trading

at high frequencies, stationary models are highly desirable, being more robust

and reliable as they do not need to be re-trained with recent data to ensure their

performance. Though one study [29] suggests that good stationarity may be

largely due to the modelling power of deep recurrent models, the order flow is

66 Chapter 3. Deep Modelling of Price Formation Using the Order Flow

benchmark against the aforementioned model to show that by using the order

flow, model stationarity can be greatly improved.

Other than its practical value, stationary modelling of the price formation

process is of interest to the literature as it is related to the universality property

of the financial markets as a complex dynamical system [1]. The universality of

stylised facts and other statistical properties is evident from empirical studies of

the financial market [84]. The existence of a stationary price formation model

implies the existence of a universal mapping from the model covariates to the

price movements across different regimes - a kind of temporal universality, to

put it in another way.

The range of dates in the holdout period overlaps with the Bitcoin bubble

where the price of Bitcoin climbed rapidly to an all-time-high and subsequently

burst [85]. From Figure 3.1 it can be seen that, compared to the training and val-

idation period, the holdout period for BTC-USD corresponds to a shift in regime

characterised by more volatile price changes and much higher trading activity.

The intraday volatility measured for the minute-interval log returns is 2.482 for

the training period and 2.776 for the test period. Similar behaviour is observed

for BTC-GBP and BTC-EUR. Therefore, it would be of interest here to investi-

gate the stationarity of the models by analysing the change in performance of

the models throughout the holdout period.

To perform this analysis, the prediction results on the holdout set for each

model are grouped by date and then the average MCC for each date is com-

puted. The resulting sequential change in the average MCC throughout the

holdout period is plotted in Figure 3.2.

Though visually from Figure 3.2, it can already be noted that the order flow

model performs better over time than the benchmark models, a simple test is

implemented for a more rigorous and scientific treatment of the model station-

arity comparison. Note here that the purpose is not to determine if a given

sequence of MCC throughout the holdout period comes from a stationarity pro-

cess, making the Dickey-Fuller test irrelevant in this case. The purpose here

3.6. Results 67

Figure 3.1: Plot of: i) Bitcoin against US Dollar daily prices (Price), ii) 1-day lagged
difference prices (Price Diff), iii) volume of trading activity (Trade Volume),
where the shaded area is the test period 21 Nov 2017 - 29 Jan 2018

is to determine if and by how much each of the performance of the benchmark

models degrade over time compared to the order flow model.

For this, a simple linear model is fitted for the sequential MCC result of each

model as follow:

MCC(m)(t) = α
(m)+β

(m)t, (3.19)

where m ∈ { f low,snap,agg, imba,mid} indicates the model from which the se-

quence of MCC values is produced from. The slope coefficient β (m) can then be

used to compare the performance change of the model over the holdout period.

For the order flow model, β (f low) is shown in Table 3.4. It can be seen

from the coefficients and p-values in Table 3.4 as if there is some decrease in

performance over time. It is also noted that the slope of the order flow model

trained on BTC-EUR is an order of magnitude smaller compared to the other

68 Chapter 3. Deep Modelling of Price Formation Using the Order Flow

(a) Models trained and tested on BTC-USD

(b) Models trained and tested on BTC-EUR

(c) Models trained and tested on BTC-GBP

Figure 3.2: The plot of average MCC for each day in the holdout period for models that
are: i) trained and tested on BTC-USD, ii) trained and tested on BTC-EUR,
iii) trained and tested on BTC-GBP

3.6. Results 69

two currency pairs. This can mainly be attributed to the sudden increase in

comparatively large outliers towards the middle and end of the holdout period.

However, from the observed p-values it can be concluded that the coefficients

are not statistically significant. Since the p-values are quite large, the null hy-

pothesis H0 : β (f low) = 0 cannot be rejected. This implies very high confidence

of there being little change in performance over time throughout the test period.

Dataset β (f low) p-value
BTC-USD -2.41e-4 0.06
BTC-EUR -5.67e-5 0.75
BTC-GBP -4.01e-4 0.17

Table 3.4: Slope coefficients and p-values of simple linear model fitted on the order
flow model MCC performance over time for each holdout set, with p-values
rounded to two decimal places

Next, the question is how do the resulting linear fits of the benchmark mod-

els compare to those of the order flow model in Table 3.4? Table 3.5 shows

the slope coefficients and the corresponding p-values for the benchmark mod-

els. For the benchmark models agg, snap, imba, and mid, the null hypotheses

H0 : β (m)= 0 is confidently rejected in favor of the alternative H0 : β (m)!= 0. This

means the negative coefficients in Table 3.5 can be used as strong evidence for

performance degradation over time. Comparing this to the results in Table 3.4,

it can be concluded that deep learning trained on the order flow exhibits much

stronger stationarity in performance compared to the benchmark models.

3.6.3 Brief Investigation of Universality in the Order Flow

Model

Although the main topic in this chapter is model stationary, it is in addition pos-

sible to show that the representations learnt from the order flow exhibit a hint of

the very valuable property of universality, the ability to learn market structures

which to some degree generalise across asset classes.

Table 3.6 shows the drop in performance on the out-of-sample test set,

when training on one currency pair and testing on the others, is considerably

70 Chapter 3. Deep Modelling of Price Formation Using the Order Flow

Dataset m β (m) p-value

BTC-USD

snap -1.34e-3 0.00
agg -1.70e-3 0.00
imba -1.46e-3 0.00
mid 1.76e-5 0.00

BTC-EUR

snap -1.75e-3 0.00
agg -1.25e-3 0.00
imba -1.44e-3 0.00
mid -4.90e-4 0.00

BTC-GBP

snap -1.35e-3 0.00
agg -2.36e-3 0.00
imba -8.57e-4 0.00
mid -3.59e-4 0.00

Table 3.5: Slope coefficients and p-values of MCC regressed on dates in the test period
for the benchmark models, with p-values rounded to two decimal places

less when using the order flow model than the benchmark models, demonstrat-

ing the above-mentioned hint of universality. The innate ability to generalise

across currency pairs is most evident when training on BTC-USD and least

when training on BTC-GBP. This is likely due to the volumes traded: the trad-

ing volumes of BTC-USD, BTC-EUR, and BTC-GBP between the start of the

training period (6 Nov 2017) and the end of the test period (29 Jan 2018) are,

respectively, 151.6e9, 20.7e9, and 1.5e9 – when an asset is heavily traded there

are more diverse activities at the order book level, resulting in a richer order flow

and hence a richer dataset that helps to avoid over-fitting.

The reason why this analysis will not be more in-depth is due to the caveat

that the only data available here are for three currency pairs that historically

have very highly correlated price movements. The reason for this correlated

price movement is that all three currency pairs are tied to Bitcoin by base cur-

rency, as well as the quoted-currency of all three pairs being the most highly

traded currency in the world. Any opportunities for arbitrage therefore disap-

pears quickly and hence one can observe highly correlated price movements

among these three currencies. That said, however, at high-frequency there can

still be some differences between the movements of the three currency pairs,

and justifying the reason for at least a short treatment of this topic.

3.7. Impact of Order Flow Features on Price Formation 71

Model BTC-EUR (%) BTC-GBP (%)
flow 9.299 20.306
agg 59.857 71.749
snap 91.017 81.869
imba 87.504 94.253

(a) Models trained on BTC-USD

Model BTC-USD(%) BTC-GBP (%)
flow 19.606 17.387
agg 74.368 80.000
snap 99.619 84.049
imba 83.776 100.162

(b) Models trained on BTC-EUR

Model BTC-USD(%) BTC-EUR (%)
flow 28.816 32.232
agg 67.157 67.642
snap 80.432 70.483
imba 93.359 72.855

(c) Models trained on BTC-GBP

Table 3.6: For each model, tables show the mean percentage drop in test MCC be-
tween: i) training and testing on the dataset of a single currency pair, and ii)
training on a given currency pair training set and testing on the holdout sets
of the remaining currency pairs

3.7 Impact of Order Flow Features on Price For-

mation

Due to the encouraging performance of the order flow price formation model

in Section 3.6 above, it would be of great interest for the study of market-

microstructure to apply model interpretation algorithms to provide an insight into

probable factors impacting the formation of prices. Such algorithms work to dis-

tinguish the order flow factors that contribute to the model making an upward

or downward high-frequency price movement, providing a data-driven view into

the price formation process.

Model interpretation is mostly simple in comparison, for shallow models. In

[77] a simple linear regression model is used, which makes explaining the model

straightforward since one can simply refer to the model coefficients. However,

deep learning models are inherently black box models. The inputs to a deep

72 Chapter 3. Deep Modelling of Price Formation Using the Order Flow

learning model typically pass through many layers of high-dimensional non-

linearity, making it difficult to discern the effects of perturbation to the inputs

on the model output. There are of course ways to approach this, especially

since the area of explainable deep learning is fast become an important area of

research [75]. Unfortunately, the state-of-the-art is still some way from explain-

ing multiple layers of sequential models, making this approach unfeasible within

this thesis.

Instead of studying how the model output varies with the input factors, it

is much easier to relax the requirements here and study how the model per-

formance changes with the input factors. To this end, the random feature per-

mutation approach from the model interpretation of Random Forest [86] is im-

plemented. This approach is highly suitable here for two reasons. First, unlike

many specialised black-box explainers, this approach is model agnostic. Sec-

ond, no model re-training is required, a quite considerable advantage as the

models take a long time to cross-validate and train. The reader might suggest

as an alternative to delete a feature, and re-run training and evaluation to de-

termine feature importance. This is unsuitable however as it creates a different

model each time a feature is deleted and the model is retrained.

The random feature permutation approach to model interpretation is

straightforward. The following steps summarise the procedure for computing

the effect of a given feature on the performance of a trained model:

1. Randomly shuffle the rows of the holdout set for only the given feature

2. Re-compute the output using the holdout set with the permutated feature

3. Compare the error of new output to the original output

Of course, for just a single feature, the change in error means nothing with-

out a baseline for comparison. However, if the change in error for a number of

features is computed, a comparative analysis can be performed to determine

the features that are most important in modelling the price formation process.

3.7. Impact of Order Flow Features on Price Formation 73

The feature importance of the deep order flow model that is soon to be pre-

sented can be related to relevant empirical studies of high-frequency market

behaviour, to open up a discussion of how this data-driven view of the price

formation process adheres to, or differs from, previous findings in the literature.

In the feature permutation for the interpretation of the deep order flow

model, each order event as defined in Equation 3.6 is modified to x̃(j)
i,t , where

j indicates that the feature x(j)
i,t is permutated across the whole holdout set,

for each given currency pair. In this way, any information from feature j is re-

moved from the input, and also decoupled from the other features. Then, the

unchanged trained model can be used to compute a new set of outputs that do

not make use of any information from feature j. In this way, any change in the

performance of the model can be attributed to the feature j.

For each feature, ten permutation-reforecast iterations are performed; in

each iteration, the performance is compared against the none-permutated orig-

inal forecast as presented in Table 3.2. Multiple iterations are performed to

ensure that chance results from performing just one random permutation are

avoided. Table 3.7 shows for each dataset the average change in performance

for the permutation of each feature compared to the initial performance in Table

3.2.

j Feature Permutated
Percentage Drop (%) in Average MCC
BTC-USD BTC-EUR BTC-GBP

1 Inter-arrival Time 1.78 7.83 9.13
2 Hour of Arrival 1.33 3.31 3.98
3 Size 7.57 3.92 4.16
4 Type 10.14 9.80 10.37
5 Direction 53.04 63.62 70.54
6 Price 36.14 49.01 51.90

Table 3.7: Average percentage drop in the mean MCC across the holdout set of each
currency pair, after multiple rounds of permutating a given feature, compared
to the performance in Table 3.2. The notation j is the index of the feature in
the vectorised order event in Equation 3.6 for reference.

From the table, it can be seen that two features of an order book event have

a large impact on the performance of the model. The feature that contributes

74 Chapter 3. Deep Modelling of Price Formation Using the Order Flow

most to the order flow model performance is the direction of the order, which

identifies an order event as either a buy or sell order. The second most im-

pactful feature is the relative price associated with the order event. Of middling

importance is the order type, which has considerable impact on model perfor-

mance but not at the scale of order direction or order price. At the lower end

of the feature importance are the inter-arrival time between each order, the size

of the order, and the hour of arrival. For these features, how they rank among

each other seems to be dependent on the holdout set. For BTC-USD, order

size seems to be a lot more important than the inter-arrival time or the arrival

hour, both of which have almost negligible effect on the model performance. For

BTC-EUR and BTC-GBP, the order size is less important compared to the inter-

arrival time. The drop in performance due to permutating the hour of arrival is

not that negligible though still very small for BTC-EUR and BTC-GBP. Among

the three datasets, the drop in performance from the permutation of any feature

seems to be the worst in BTC-GBP but the best in BTC-USD. This once again

points to the proposed interpretation that the BTC-USD training set is richer and

hence trains the models better, while the BTC-GBP dataset is the worst dataset

for this purpose among the three currency-pairs.

Since the role of the order flow in the price formation process is a well-

published field of study, it is of interest to compare the findings in Table 3.7 to

existing empirical studies in the literature.

3.7.1 Inter-Arrival Time Between Order

Let us first address the effect of feature j = 1 to the model performance, which is

the inter-arrival time between each order event in the order flow. The negligible

effect of the feature is quite surprising, given there is a wide use of temporal

point processes in the state-of-the-art for theory-driven price formation models.

The authors in [2, 3] were the first to propose a ”master” equation of the limit

order book consisting of multiple stationary point processes to model the arrival

rate of each order book event type for both sides of the book. The ”master” equa-

tion can then be used to estimate the price formation process in either closed-

3.7. Impact of Order Flow Features on Price Formation 75

form or by Monte Carlo simulation. These equations are extended by [68], re-

laxing many assumptions previously made, thereby improving the ability of the

model to better replicate the statistical behaviour of real-life markets. These

temporal point process models can then be further extended by replacing the

stationary Poisson processes with multivariate Hawkes processes [6, 10]. Mul-

tivariate Hawkes processes are both self-exciting and mutually exciting, which

is backed up by market theories on how the arrival of an order book event tends

to influence the future rate of arrival of the same event type or other events.

Admittedly here it may be like comparing apples with oranges since these

temporal point processes and the deep order flow model approach the price

formation process using very different frameworks. However, the importance

in the literature of modelling the irregular arrival rates of order book events for

computing the price diffusion would imply that the inter-arrival time between

the order events, as an input feature, should contain significant information for

predicting the directional price movement. However as seen in Table 3.7, the

deep order flow model does not seem to have learn much from it.

3.7.2 Order Buy/Sell Direction

Moving on to feature j = 5, the buy/sell direction of the orders in the order flow

seems to be the biggest contributor in predicting the next directional price move-

ment. There are related empirical findings in the literature regarding the price

impact of the direction of an order event. By analysing the kernels of a multi-

variate Hawkes model, the authors in [9] discovered that in their data buy orders

mostly trigger and upward movement in the mid-price. Conversely, sell orders

mostly trigger a downward movement in the mid-price. This relationship is later

confirmed using higher resolution data and in more detail in [11]. The authors

in both [9, 11] also found strong self-exciting behaviour of events of the same

type and direction. Since predicting the next directional price movement is tech-

nically trying to predict the arrival of a market order that is large enough to move

the ask or the bid, it may be that the deep order flow model is picking up signals

from the market order of the same direction as the directional price movements.

76 Chapter 3. Deep Modelling of Price Formation Using the Order Flow

Note here that a limit order placed inside the bid-ask spread may also move the

mid-price but this is very rarely the cause of a mid-price movement since the

currency pairs used as datasets are heavily traded and therefore almost always

have a tick-size spread.

Though the order direction plays such a role in the deep order flow model,

other than the papers above there exists few related studies in the literature. Us-

ing the feature permutation approach, unfortunately it is not possible to uncover

the exact causal relationship between the direction of each event in the order

flow, and the upward or downward mid-price movements themselves.

3.7.3 Order Price

Feature j = 6, the price associated with the order in the order flow event, is

another feature that has so far had little study done on its price impact. A re-

minder here that this price is the relative price, computed as the number of ticks

from the bid or ask price, depending on the direction of the order. The authors

in [87] found that for their dataset, the relative price of a limit order arriving at

the order book has a price impact with strength relative to the magnitude of the

relative price of the limit order. Limit orders with relative prices one or two ticks

away from the bid or ask prices affect the price about 20% less than limit orders

placed at bid or ask.

3.7.4 Order Type

The order type feature j = 4 is shown in Table 3.7 to have a significant, though

not the largest effect on the prediction of the next directional price movement.

Referring once again to the work of the authors in [11], the kernel of the fitted

multivariate Hawkes process reveals some relationship between the type of the

order and the mid-price movements in their datasets. In the dataset for one stock

exchange, buy limit orders are found to impact price movements in the upward

direction, and conversely for sell limit orders. For another exchange, it was

found that limit orders have instead an inhibiting effect on the price movements.

Cancellation orders were found to impact the price in similar ways to the limit

3.8. Summary 77

orders but in the opposite direction. Market orders were found to be self-exciting

in the same direction, which may lead to arrival of market orders that move the

mid-price. Buy market orders were found to directly result in higher frequency

of upward price movements and vice-versa.

3.7.5 Other Features

Moving finally to what were here determined to be the least significant features,

there are some studies empirically showing the existence of intraday seasonal-

ity [88] that may contribute to the predictions, but as seen in Table 3.7, feature

j = 2, the hour of arrival, seems to have very little effect on the model. However,

the size associated with the order, feature j = 3, has been shown in previous

work to impact the prices. In an older study, the authors in [89] found some rela-

tionship between the size of market orders and the eventual price movements in

their datasets. Other later authors found power-law [90, 91] and logarithmic [92]

relationships between the size of market orders and the price impact in their

respective datasets. Supporting these authors finding in the relationships be-

tween order size and price impact, the model in this chapter was found to have

some decrease in performance as the order size feature is permutated.

3.8 Summary

In this chapter, an approach the deep learning of the order flow for modelling

high-frequency price movements was introduced. To evaluate the significance

of the the deep order flow model performance, benchmark models from the lit-

erature were implemented and a methodology laid out for a fair and rigorous

comparison process. In Section 3.6.1, the results showed that the deep order

flow model outperforms the benchmark model with indisputable statistical sig-

nificance. A deeper dive into the results in Section 3.6.2 showed that the deep

order flow model is able to maintain performance throughout one of the most

volatile periods in Bitcoin trading history, suggesting that the learnt representa-

tion encodes some sort of temporally universal information about Bitcoin price

movements. In contrast, the benchmark models struggle to maintain perfor-

78 Chapter 3. Deep Modelling of Price Formation Using the Order Flow

mance in the non-volatile period. Significance testing was performed to sup-

port these conclusions. Then, in Section 3.6.3, the deep order flow model was

also shown to potentially exhibit the property of universality, though with some

caveats.

As an additional investigation, Section 3.7 looked at the impact of each

event feature in the order flow on the price formation model. A black-box model

interpretation technique was used to reveal the importance of each of the feature

in the performance of the model when predicting directional price movements.

The results are interesting as they invite both support and contradiction from the

literature on the price formation process. Some features that were in this past-

published work empirically found to have significant impact on price formation,

such as such as inter-arrival times and order size, are shown here to be not

too important. However, the importance discovered here of other features, such

as the direction or price of the order flow, is shown to correlate with findings

in the literature. Due to the encouraging performance of the deep order flow

model, the results here may be considered to be significant and to provide an

interesting data-driven view of market microstructure that, with better interpreter

techniques, could potentially open up new avenues for market microstructure

research.

Now that it has been established that the utilising the order flow to train

a recurrent neural network results in significant improvements in model perfor-

mance, the next step would naturally be to improve the use of such models

within an automated trading strategy. However it should be noted that in appli-

cations of machine learning to quantitative finance, standard deterministic clas-

sification or regression outputs are rarely useful in practice. Due to the uncertain

nature of the real-world and the high stakes involved, a predictive model should

rarely or never be used on its own but should be integrated within a strict work-

flow to ensure losses are kept in check. In the next chapter, an extension to the

architecture of the deep recurrent models described in this chapter that is able

to provide a more useful kind of predictions, one enabling a stricter control of

3.8. Summary 79

potential losses, will be introduced and tested.

Chapter 4

Deep Probabilistic Modelling of

Price Movements

This chapter introduces a deep recurrent architecture for the probabilistic

modelling of high-frequency market prices, which would provide a more re-

alistic representation of real markets than the model of the previous chap-

ter, and be more useful for automated trading strategies. The novel archi-

tecture incorporates probabilistic mixture models into deep recurrent neu-

ral networks, resulting in deep mixture models. The deep mixture models

introduced in this chapter simultaneously address several practical chal-

lenges in the learning of the price formation process that were previously

neglected in the literature: 1) probabilistic forecasting of the price move-

ments; 2) joint modelling of direction and size of price movements. Models

derived from the novel architecture are benchmarked against related mod-

els in previous work. The joint modelling of direction and size is justified by

benchmarking against an approach modelling these variables separately.

The chapter is concluded by examining the performance of the deep mix-

ture models when used within an automated trading strategy within a sim-

ulated trading scenario.

82 Chapter 4. Deep Probabilistic Modelling of Price Movements

4.1 Introduction

When designing and developing an automated trading strategy (ATS) in prac-

tice, risk management is arguably a more crucial part of the pipeline than the

predictive model. In a complex dynamical system such as a financial market, it is

sensible to expect that even the best trading algorithms, that incorporate state-

of-the-art models and are driven by the most expensive and exclusive datasets,

will suffer losses at some point. If risk is improperly managed, for example by

holding large positions in assets with high variance, the trader may rapidly lose

all their capital. When the forecasting component of an ATS has discovered a

trading opportunity, the information is passed on to the risk management com-

ponent to quantitatively determine (based on current trade positions and capital)

if the trading opportunity should be taken and, if so, how much capital should be

assigned to this opportunity. In order to make these decisions, uncertainties sur-

rounding the trading opportunities need to be known. These uncertainties can

either be extrinsically obtained through the forecast errors of historical backtest-

ing, or intrinsically obtained from probabilistic forecasts.

Previous work on the application of deep learning to predicting high-

frequecy price movements, described in Section 2.3.3, are focused on producing

deterministic forecasts, meaning that for risk management the trader has to rely

on the less useful measure of uncertainty that is extrinsically obtained from his-

torical backtesting. In the absence of probabilistic forecasts, the authors in [30]

introduced a method of using the backtesting false positives and false negatives

rates as predictive uncertainty estimates to compute profit risk. Though uncer-

tainties obtained from backtesting can be used for risks management in certain

trading strategies, such as the long-short strategy [93], probabilistic forecasts

have more flexible use in that they can directly be fed into a much greater vari-

ety of industry standards such as the computation of Value at Risk [94] and the

Kelly Criterion[95]. In the wider area of machine learning, only the authors in

[96] have studied at the probabilistic modelling of price movements using Gen-

eralised Linear Models, though not at high-frequency.

4.1. Introduction 83

Probabilistic forecasts can be obtained from deep learning models either

by exploiting dropout to compute uncertainty [97], or by adopting a probabilistic

network architecture. However, a probabilistic architecture approach is arguably

better as it allows for the specification of application-suitable probabilistic mod-

els and likelihood functions, and also reduces the time it takes to produce the

probabilistic forecast, which is a crucial factor in time-sensitive trading strate-

gies. Therefore in Section 4.2, a novel architecture that combines deep learning

and statistical modelling is introduce to address the main challenge of the prob-

abilistic forecasting of high-frequency price movements. In the novel architec-

ture, a deep recurrent neural network is used as functional approximator for the

parameters of mixture models. The selection of mixture models implemented

for the experiments in this chapter is presented in Section 4.3. Similar proba-

bilistic architectures [98] have been shown to be successful in the domains of

e-commerce [99, 100] and language-processing [101]. The novelty of the archi-

tecture introduced in this chapter compared to these related work is in its specific

design of the architecture for producing probabilistic forecasts suitable for use in

automated trading decision-making workflows. Also, the use of such an archi-

tecture provides a bridge between non-parametric approaches and parametric

approaches to the statistical modelling of price movements, and hence provides

the advantage of both types of modelling approaches.

When it comes to benchmarking the performance of the novel architecture,

it will be difficult to compare against the previous work implementing deep learn-

ing models described in Section 2.3.3 since all of the output of these models are

limited to the deterministic directional predictions. So in this chapter, different

benchmark to Section 3.3 of Chapter 3 are defined to enable the comparison of

deep mixture models to comparable methods in the literature. These benchmark

models are described in Section 4.4. The deep mixture models implementing

the novel architecture, and the benchmark models are trained and tested on an

order flow dataset described in Section 4.5. The main results comparing the

deep mixture models and the benchmark models are then presented in Section

84 Chapter 4. Deep Probabilistic Modelling of Price Movements

4.6. To briefly outline the results, the models implementing the novel archi-

tecture is shown to outperform the models from previous work with statistical

significance.

In the machine learning of price movements, it is more common to treat

price predictions as a classification problem than a regression problem. Know-

ing if the price will go up or down is vital as it provides the all-important infor-

mation as to which position (to buy or to sell) to take on a trading opportunity.

Treating price prediction as a regression problem does not tell the trader which

direction to bet against. However, along with this directional information, know-

ing also by how much the price will go up or down (i.e. the size of the move-

ments) will give the trader a much more complete picture of risk and therefore

enable better decision making. The attribute of the mixture models in the novel

architecture naturally enables the joint modelling of the direction and size of the

price movements, and addresses this issue as a secondary challenge. Almost

all previous deep learning papers on this topic in Section 2.3.3 are focused only

on the directional price movements and do not provide any output on the size of

the price movements. The only exception is [32], where the output of the model

proposed by them can be used to compute the size of the price movements.

The joint modelling of the direction and size could provide a more complete

prediction model, and improve model performance. Section 4.7 demonstrate

that the joint modelling of the direction and size using the deep mixture models

learns a better price formation model compared to modelling them separately.

To demonstrate this,

At the end of the chapter in Section 4.8, a simulated trading scenario is

implemented to examine the full potential of probabilistic joint directional-size

predictions of the deep mixture models. The same trading strategy but instead

using the output of the benchmark models in Section 4.4 are also examined

alongside. The trading strategy implements the Kelly Criterion, which is suitable

in this experiment since it relies on both the probabilistic component and the joint

directional-size component of the model to compute an optimal investment. The

4.2. Method 85

profitability of the trading strategy using each of the deep mixture model and the

benchmark models are investigated over multiple sample runs of the simulated

trading scenario. In brief, the trading strategy is shown to be significantly more

profitable when utilising the output of the deep mixture model, with statistical

significance over the multiple runs.

4.2 Method

4.2.1 Problem Formulation

The order flow is the microsecond stream of events arriving into an exchange.

Each event is essentially an action taken by a trader, such as placing and can-

celling orders. The order flow is the underpinning mechanism behind all the

changes we see on the price charts one would find on Google Finance, for in-

stance. Readers are referred to Section 2.1 for a more in-depth explanation of

the order flow.

An order flow of length m is denoted here as an irregularly spaced sequence

denoted as xi,1:m =< xi,t |t ∈ {1, . . . ,m}>. The aim is to predict the price change

after the last event of the order flow xi,m. The word ”after” is loosely defined here

such that the price change could be caused by the next event, or be the price

change τ seconds after the last event in the stream, and so on. Denoting the

price change as yi,m, the goal is to then model the conditional distribution of yi,m

P(yi,m|yi,1:m−1,xi,1:m,x
(s)
i), (4.1)

where x(s)i are static (non-temporal) covariates, xi,:m are the non autoregressive

temporal covariates and yi,1:m−1 =< yi,t |t ∈ {1, . . . ,m−1}> are the autoregres-

sive temporal covariates. Note here that since the temporal covariates xi,1:m

have irregularly spaced intervals, each of the auto-regressive covariates yi,1:m−1

may be computed relative to the timestamp of the temporal covariates. For ex-

ample, if yi,m is the price change τ seconds after xi,m, then yi,m−1 is the price

change τ seconds after xi,m−1.

High-frequency price movements are inherently discrete since the rules laid

86 Chapter 4. Deep Probabilistic Modelling of Price Movements

down by almost all asset exchanges typically define a tick size, which is the

minimum amount by which prices can change [35]. Therefore, yi,m ∈ Z and the

problem can be formulated as one of modelling count data (i.e. counting by how

many ticks the price has moved up or down).

4.2.2 Network Architecture for Probabilistic Modelling

The novel architecture in this chapter for modelling the conditional distribution in

Equation 4.1 is summarised in Figure 4.1.

Figure 4.1: Probabilistic architecture.

Let h(.) be a function implementing a deep recurrent neural network (RNN)

as described in Section 2.2.2. LSTM cells are implemented in the recurrent

layers here. First, the abstract representations of the temporal covariates xi,1:m

and yi,1:m−1 are learnt using an L-layer stacked recurrent neural network (RNN).

The output at each layer l can be described as follows

hl
i,m =

h(hl−1
i,m ,hl

i,m−1,Θ
l) if 1 < l ≤ L,

h(yi,:m−1,xi,m,hl
i,m−1,Θ

l) if l = 1,
(4.2)

where Θl are the neural network parameters associated with layer l. Any indi-

vidual covariates x j
i,m ∈ xi,m that are non-ordinal and categorical are embedded

4.2. Method 87

beforehand into a multidimensional continuous space before feeding them into

the inputs of the RNNs. This embedding, denoted x̃ j
i,m, is implemented as fol-

lows:

x̃ j
i,m = g

(
W jᵀo(x j

i,m)+b j
)
, (4.3)

where o(.) is a function mapping the categorical features to one-hot vectors,

g(.) is some non-linear activation function, and Wq and bq are parameters to be

fitted.

How the static covariates x(s)i are treated depends on their cardinality. If the

cardinality is small, the static covariates can then be appended at each point in

the sequence and then repeated over the whole sequence. On the other hand, if

the cardinality is large then the aforementioned method would be inefficient and

instead the static covariates would be fed as xi into a dense layer implemented

similarly to Equation 4.3, but without the one-hot mapping function.

Whether or not it is concatenated with h(s)i , hL
i,m is then fed into a D-layer

fully connected neural network for a final abstraction step. The outputs at each

layer d of this step are computed as follows

zd
i,m =

g
(

WdᵀhL
i,m +bd

)
if d = 1,

g
(

Wdᵀzd−1
i,m +bd

)
if 1 < d ≤ D,

(4.4)

where hL
i,m, g(.) is some non-linear activation function, and Wl and bl are param-

eters to be fitted.

Now setting aside the architecture preliminaries, to obtain a probabilistic

forecast suitable for use in an automated high-frequency trading strategy, a

novel integration of mixture models [102] to the output of the architecture is

introduced for describing the distribution of the price movements yi,m. The mix-

ture probabilities πi,m and the parameters θi,m of the probability distributions are

defined as functions of the dense layer output zD
i,m. The model is then fitted by

minimising the negative log-likelihood of yi,m given πi,m and θi,m using the Adam

88 Chapter 4. Deep Probabilistic Modelling of Price Movements

optimisation as described in Section 2.2.3. Regularisation is achieved via a com-

bination of dropout and early-stopping. To obtain the optimal hyperparameters,

Bayesian hyperparameter tuning [83] is implemented.

4.2.3 Covariates and Target Variable

The temporal covariates xi,:m used in the probabilistic architecture for the ex-

periments in this chapter are the order flow as described in Chapter 3, but

with some naturally static features removed. The temporal covariates x(j)
i,γ for

all γ ∈ {1,2, . . .m}, with j ∈ {1,2, . . .5}, are therefore defined as follows:

• x(1)i,t is the number of milliseconds between the arrival of xi,γ−1 and xi,γ ,

such that x(1)i,t ≥ 0;

• x(2)i,t is the size of the order, such that x(2)i,t > 0;

• x(3)i,t ∈ {1,2,3} is the categorical variable for the type of the order (i.e. limit

price orders, open price orders, or cancellation orders);

• x(4)i,t ∈ {1,2} is the categorical variable for the side of the order (whether it

is a buy order or sell order);

• x(5)i,t , such that x(5)i,t ≥ 0, is the price associated with the action described

by the order;

• x(s),(1)i ∈ N is the hour of the day in which our target variable the price

movement yi,m falls, which can help capture intra-day trading activity sea-

sonality.

The static covariates x(s)i are non-temporal features that would otherwise

be repeated inefficiently across the input temporal periods. For the experiments

in this chapter, the only static covariate used is a categorical variable denoting

the currency pair (note that unlike in Chapter 3, the currency pairs are combined

and used to train the model together, for reasons explained in Section 4.5.

Given a sequence of orders xi,:m, the target variable for prediction is the

price change yi,m at τ seconds after the arrival of the last order in the sequence

4.3. Mixture Likelihoods 89

xi,m. For the experiments in this chapter, τ = 15 seconds is chosen based on

domain knowledge. If τ is too small, there would be many null events and the

target variable will be bloated with zeroes which would add another layer of

complexity to the modelling problem. If τ is too large, predicting too far into the

future could be difficult when working with microsecond timestamped order flow

data, and might also render the model unworkable in a high-frequency trading

scenario.

4.3 Mixture Likelihoods

The choice of the type of mixture models, and consequently the likelihood func-

tion, can be adapted to the statistical properties of the data. Recall that the

problem of predicting prices is that of modelling count data, and therefore the

Poisson and other similar models will be suitable here. For the experiments in

this chapter, three different models will be considered at the output for mod-

elling of mixtures of count data: 1) the Poisson mixture model, 2) the Negative

Binomial mixture model, 3) the Zero-Truncated Poisson mixture model.

The most common and straightforward approach to modelling count data

is to use the standard Poisson distribution [103], where equal means and vari-

ances are assumed. Denoting the mixture probability for component k as πk
i,m,

the Poisson rate parameter for component k as λ k
i,m, and the number of mixture

components as K. Also, let k = 1 correspond to downward price movement and

k = 2 to upward price movement. Given the dense layer output of the recurrent

neural network zD
i,m, the log-likelihood `P of the 2-component Poisson mixture

model can then be defined as follows, with i,m labelling omitted for readability:

π
k =

eW(πk)
ᵀ
zD+b(πk)

∑
K eW(πk)

ᵀ
zD+b(πk)

, (4.5)

λ
k = log(1+ eW(λk)

ᵀ
zD+b(λk)

), (4.6)

90 Chapter 4. Deep Probabilistic Modelling of Price Movements

`P(y|π,λ) = log

(
K

∑
k

π
k λ k|y|e−λ k

|y|!
Ip(y)=k

)
, (4.7)

In the above equations, W (.) and b(.) are neural network parameters to be fitted,

p(.) is a function mapping the sign of yi,m to k, and I(.) is an indicator function

for the given statement.

However, the assumption of equal means and variances does not hold up

well on most-real world datasets. Much of the real-world data exhibits overdis-

persion, where the variance is higher than the mean; where the Poisson distribu-

tions hence become unsuitable since they do not specify a variance parameter.

In this case an alternative approach should be considered, such as to instead

use the standard Negative Binomial distribution [103]. Using a similar notationa;

style as in the Poisson mixture model definitions above, and letting µk
i,m and

αk
i,m be the mean and shape parameters respectively, the log-likelihood `NB of

the two-component Negative Binomial mixture model can be defined as follows

(with i,m once again omitted for readability):

µ
k = log(1+ eW(µk)

ᵀ
zD+b(µk)

), (4.8)

α
k = log(1+ eW(αk)

ᵀ
zD+b(αk)

), (4.9)

`NB(y|π,µ,α) = log

(
K

∑
k

πkη1η2Ip(y)=k

)
, (4.10)

η1 =
Γ(|y|+ 1

αk)

Γ(|y|+1)Γ(1
αk)

, (4.11)

η2 =

(
1

1+αkµk

) 1
αk
(

αkµk

1+αkµk

)|y|
, (4.12)

In the above equations, W (.), b(.) and p(.) are defined as in the Poisson mixture

model. The method of computation for the mixture probabilities πk is not defined

4.4. Benchmark Models 91

here since it is exactly the same as in Equation 4.5.

While both the Poisson and Negative Binomial mixture models implicitly

allow for the target variable to be zero (no price change), they do not explicitly

model yi,m = 0. Therefore, this chapter also proposes to experiment with a three-

component Zero-Truncated Poisson [104] mixture model to explicitly model zero

price changes with an additional component. With mixture component k = 3

representing yi,m = 0, the likelihood `ZP of this mixture model can be defined as

follows (omitting i,m once again):

`ZP(y|π,λ) = log

(
(π3Ip(y)=3

2

∑
k

π
k λ k|y|

(eλ k−1)|y|!
Ip(y)=k

)
, (4.13)

where the mixture probabilities πk and rate parameters λ k are as defined in

Equations 4.5 and 4.6.

4.4 Benchmark Models

As previously noted, since the benchmark models used in Chapter 3 are deter-

ministic they cannot be used for direct comparison here and hence the bench-

mark models used in this chapter have to be redefined. Currently there is no

appropriate deep learning model in the literature that can be directly used in this

chapter to produce probabilistic forecasts of asset price movements. Thus the

benchmarks will be chosen from the next best relevant approaches in the litera-

ture for probabilistic prediction of high-frequency price movements. Specifically,

the following two probabilistic approaches are implemented.

4.4.1 Benchmark 1: Poisson Mixture GLM

[96] is the only other work in the machine learning literature that produces prob-

abilistic outputs with the same form as the novel architecture. The authors de-

scribed a Poisson mixture regression approach for predicting the size and direc-

tion of price movements using a generalised linear model (GLM). In this paper,

the only covariate used as a predictor is the total order size occurring before a

92 Chapter 4. Deep Probabilistic Modelling of Price Movements

price movement. For the implementation in this chapter, a number of static co-

variates found through domain knowledge to be useful for predicting the prices

is included alongside the order size. Such features include the VWAP, number

of market orders, time features, moving averages, the average spread and the

bid-ask elasticity. The GLM is then trained with Elastic Net for regularisation and

feature selection.

4.4.2 Benchmark 2: Multiple Poisson Process

The work in [68] is an extremely well established approach for the stochastic

modelling of high-frequency price movements. This multiple Poisson process

approach has already been described in Section 2.3.2. An algorithm is imple-

mented in this chapter in order to use the multiple Poisson process to produce

a probabilistic forecast in a form suitable for direct comparison with the novel

architecture. In the algorithm, the multiple Poison process will be fitted for each

point in the dataset. Then, order flow samples will be drawn from the fitted

process and fed through the limit order book emulator to obtain a distribution

over paths of the price movements. Though the algorithm does not explicitly

output the order size of each order event, the empirical distribution of historical

order is modelled and sampled to obtain the distribution for each order event

independently.

4.5 Dataset

The order flow data used for the work in this Chapter is obtained from Coin-

base, as described in Section 3.4. Just as in Chapter 3, due to the different

data requirements of the model implementing the novel architecture, and each

benchmark model, a reliable procedure is needed to ensure both the alignment

of the feature set to the same target variable, and fairness in terms of amount of

information contained in the feature set. The datasets here are however gener-

ated differently compared to in Chapter 3. As mentioned in Section 3.4, for each

currency pair the dataset for the dataset has to be constructed by running the

raw JSON messages in the implemented limit order book and matching engine.

4.5. Dataset 93

During this procedure, the dataset is constructed as follows. After a warming-

up period, the mid-price is tracked at every 15 seconds starting from the end

of the warm-up period, corresponding to the chosen τ = 15, and pushed into a

sequence container. At every point the mid-price is tracked, and a length T of

the order flow before each current point in time is directly vectorised and pushed

into another sequence container. Then the mid-price and order flow sequence

containers are paired, and, finally to obtain the datasets for the model in this

chapter and the benchmark models, the following is performed for each element

in the paired containers:

• The tuple of mid-price directional and size movements are recorded as

the target variables. The mid-price size is converted into a count variable

representing the number of ticks. Note that half-ticks are possible, in which

case the count will be rounded to the nearest integer.

• For the models using the novel probabilistic architecture, the order events

are vectorised and then recorded as the temporal covariates. Then the

currency pair symbol is noted and converted into a categorical variable as

the static covariate.

• For Benchmark 1, GLM covariates are computed from the order events.

• For Benchmark 2, the order events are transformed into a form for easier

processing and stored.

In this way, the training rows for each of the order flow and Benchmark 1,

and the data for fitting Benchmark 2, are aligned to the same target variable.

Also, since the physical period of time from which the sequences are obtained

is the same, the amount of information contained in the features is equal, re-

moving any biases due to any model having more exogenous information than

the others.

Unlike in Chapter 3, here for each model the datasets for all the currency

pairs are concatenated into one large dataset. In Chapter 3, it was shown that

94 Chapter 4. Deep Probabilistic Modelling of Price Movements

for each currency pair, the results turn out to be quite similar. Therefore, here

they are combined to create a richer dataset with the model cross-learning be-

tween the information in all three currency pairs. The datasets is then portioned

into training, validation and holdout sets between dates as given in Table 4.1.

A warm-up period is needed to set an initial state for the limit order book be-

fore dataset collection begins. Though the holdout set may seem unnecessarily

large, as mentioned in Section 3.5, it is a better alternative to running multiple

iterations of the experiment using a sliding window.

Set From To
Training 6 Nov 2017 16 Nov 2017
Validation 17 Nov 2017 20 Nov 2017
Holdout 21 Nov 2017 29 Jan 2018

Table 4.1: The start and end dates of the training, validation and holdout sets

4.6 Main Experimental Results
The natural way to evaluate the accuracy of a probabilistic forecast would be to

compute the quantile loss [99, 100]. However, computation of the quantile loss

requires the quantile function of the random variable to be evaluated. Closed-

form derivation of the quantile function for mixture models is quite involved, and

out of the scope of this thesis. An alternative would be to use a Monte Carlo

approach where samples are obtained from the mixture models and the quan-

tile loss is evaluated on the empirical cumulative distribution function. But in this

case it would still be difficult to evaluate the performance of the models using the

quantile loss since the importance of predicting the correct direction of the price

movement is not accounted for. If the model assigns very low mixture probabili-

ties to the right direction, that means there would be a high risk of betting in the

wrong direction (e.g. buying instead of selling when asset price is going down).

Computation of the quantile loss for evaluation is therefore problematically com-

plex, however approached.

Instead, for the experiments in this chapter a two step evaluation proce-

dure is implemented to test the performance of the uncertainty estimates in the

4.6. Main Experimental Results 95

probabilistic forecasts:

1. First, the directional risk is defined as the performance measure describ-

ing how well the models predict the direction of the price change. The

directional risk is evaluated by taking the mixture component with the

highest probability to obtain directional point forecasts. The problem of

evaluating the directional risk has in this way been reduced to the stan-

dard machine learning problem of comparing classification performance.

The Matthews Correlation Coefficient (MCC), described in Section 2.2.4,

is used to evaluate the directional performance.

2. Next, the size risk is defined as as how well the models predicts by how

much the price changes. To compute the size risk, for every directional

point forecast that is correct, the quantile loss for the associated distribu-

tion is evaluated. In other words: if the model gets the direction of the price

movement right, how good is the subsequent prediction of the size of the

movement? The ”goodness” of the prediction at different quantiles of the

prediction distributions can be evaluated from the quantile loss. Since the

quantiles for Poisson and Negative Binomial distributions are well-known,

let ŷρ

i,m be the computed ρ quantile for the predicted size of the price move-

ments. Then, given the true value yi,m the ρ quantile loss is defined as the

following:

Lρ = (yi,m− ŷρ

i,m)(ρIŷρ

i,m>yi,m
− (1−ρ)Iŷρ

i,m≤yi,m
), (4.14)

where I(.) is an indicator function for the given statement. For the Zero-

Truncated Poisson mixture model, only the quantile loss using Equation

4.14 is evaluated if non-zero directional price movements are correctly

predicted.

It is noted here that although turning the probabilistic forecasts into point

forecasts in Step 1 appears to defeat the purpose of the probabilistic architec-

96 Chapter 4. Deep Probabilistic Modelling of Price Movements

ture, it is a temporary compromise that is needed in order to be able to bench-

mark the performance of the model using standard, well-established and under-

stood metrics. However, in Section 4.8, the models are put through a simulated

trading scenario to fully evaluate the probabilistic forecasts.

4.6.1 Results 1: Directional Risk

The directional risk for each model, in terms of the average MCC, is summarised

in Table 4.2. Here the results in the holdout period are split into groups, one for

the Pre-Bubble period and the other for the Bubble period. The Pre-Bubble pe-

riod in the first week of December 2017 has trading behaviour similar to the

training and validation period, while the Bubble period is from the second week

of December 2017 onward and exhibits an increase in trading volatility as de-

scribed in Chapter 3. The labels Poisson, Zero-Truncated Poisson (ZTP) and

Negative Binomial (NB) refer to the form of mixture model used in the architec-

ture of this chapter, while the benchmark models are as described in the previ-

ous section. For predicting the direction of the price change 15 seconds into the

future, it can be seen in the table that the probabilistic deep learning approach

outperforms the benchmark models in both the Pre-Bubble and Bubble period.

Also it can be observed that the deep learning model also greatly outperforms

the benchmarks by largely maintaining performance through the Bubble period,

as would be expected based on the results on the temporal stability of an order

flow trained model from Chapter 3.

Model Pre-Bubble Bubble
Poisson 0.12 0.10
Negative Binomial 0.14 0.14
Zero-Truncated Poisson 0.16 0.13
Benchmark 1 0.06 0.01
Benchmark 2 0.08 0.02

Table 4.2: Average MCC of the deep learning model and benchmarks for τ = 15 in the
bubble and pre-bubble holdout periods.

Comparing the different mixture models used in the output of the novel

probabilistic architecture, the standard Poisson output is seen to be the least

4.6. Main Experimental Results 97

effective in modelling the directional price movements, while the ZTP output is

best. Although only the performance on the directional forecast is compared

here, one might assume that Poisson, NB and ZTP would be comparable since

the directional forecast relies only on the mixture probabilities. However, the

mixture probabilities and the parameters of the distribution of each component

are jointly trained through the likelihood. There is then a complex interaction

between the estimated component distribution parameters and the estimated

mixture probabilities, which for the same datapoint can lead to very different

mixture probabilities being learned in individual models. Reasons why ZTP and

NB outputs outperform Poisson here may be because of the explicit modelling of

zero price changes in the mixture, for ZTP, and the ability to account for overdis-

persion in the component probability distributions for NB.

Although Table 4.2 clearly shows the better performance of the novel ar-

chitecture, for a more rigorous analysis, one-tailed Welch t-tests are performed

between each of the models using the novel architecture, and each of the bench-

mark models. For each test, the null hypothesis is stated as H0 : B <= A where

B is the mean of the MCC measured on one of the deep learning models across

the holdout set, while A is the mean for a given benchmark model. If the null

hypothesis is rejected, then the alternative hypothesis H1 : B > A is supported.

The results of the statistical tests are presented in Table 4.3. It can be observed

that for each test, the null hypothesis is rejected at a very high confidence inter-

val, confirming that each of the deep learning models performs better than the

benchmark models with very high statistical significance.

Models
p-values

Benchmark 1 Benchmark 2
Poisson 0.00 0.00
Negative Binomial 0.00 0.00
Zero-Truncated Poisson 0.00 0.00

Table 4.3: Results for one-tailed Welch t-tests on the null hypothesis that the means of
the MCCs for the models in each row are less than or equal to the means of
the models in each column, rounded to two decimal places.

98 Chapter 4. Deep Probabilistic Modelling of Price Movements

4.6.2 Results 2: Size Risk

Table 4.4 shows the average 0.5 and 0.9 quantile loss, across the holdout set

split into the Pre-Bubble and Bubble periods, of the size movement distribution

when the mixture components are correctly predicted. Since the quantile losses

have an arbitrary scale that is meaningless on their own, it is better to make

comparison by scaling the results in the table to a baseline model. For this

purpose, Benchmark 1 is chosen as the baseline model as, between the two

benchmarks, it has outputs most directly comparable with those of the deep

learning models. At a glance, it can be seen in Table 4.4 that that all the models

using the novel architecture outperform the benchmark models.

q=0.5
Model Pre-Bubble Bubble
Poisson 0.78 0.77
Negative Binomial 0.65 0.61
Zero-Truncated Poisson 0.70 0.68
Benchmark 1 (Baseline) (1.00) (1.00)
Benchmark 2 1.23 1.29

q=0.9
Model Pre-Bubble Bubble
Poisson (Baseline) 0.72 0.70
Negative Binomial 0.60 0.56
Zero-Truncated Poisson 0.72 0.71
Benchmark 1 (Baseline) (1.00) (1.00)
Benchmark 2 0.98 0.97

Table 4.4: 0.5 and 0.9 quantile loss of the deep learning models and benchmarks in the
bubble and pre-bubble test periods, scaled to baseline model

Comparing the different mixture models used in the output of the novel ar-

chitecture, it is noted that NB outperforms both ZTP and Poisson. The reason

for this may be the ability of the deep NB mixture model to model the overdisper-

sion in population of price movement sizes. To understand this, the performance

of each model between the Pre-Bubble and Bubble periods are compared. As

the market becomes volatile, the better performance of the deep learning mod-

els in relation to the baseline model increases. However, this increase in relative

performance is quite small for the Poisson mixture. The highly volatile behaviour

4.6. Main Experimental Results 99

of the market in the Bubble period may have caused a higher degree of overdis-

persion to arise from the clustering of the price changes. Hence this may have

caused the deep Poisson mixture model, which does not have a variance pa-

rameter, to underperform compared to the deep NB model, which specifically

models the variance parameter.

On the other hand, the ZTP mixture underperforms here even though di-

rectly modelling zeroes in the mixture probabilities in this model can reduce the

overdispersion in the data. Since it performed well previously in predicting the

directional price movements, the successful modelling of the zeroes should have

helped with the overdispersion, but it would seem from Table 4.4 that it is clearly

not sufficient. Also, looking at the 0.9 quantile, it can be observed that overall the

deep learning models have a lesser tendency to overpredict compared to both

benchmarks. Comparing the different deep mixture models, it is observed that

ZTP tends to overpredict more often, which may be due to the fact that zeroes

are truncated in its likelihood (i.e. distributions model yi,m > 0).

Finally, to remark on the relative performance of the benchmark models,

it would seem that Benchmark 1 suffers slightly from over-predicting compared

to Benchmark 2, from observing the 0.9 quantile loss. However, both bench-

mark models underperform at about the same rate in the volatile Bubble period

compared to the Pre-Bubble period.

As before, though Table 4.4 clearly shows the better performance of the

deep learning models, a more rigorous analysis is performed using one-tailed

Welch t-tests. For each test, the null hypothesis is stated as H0 : B <= A where

B is the mean quantile loss measured on one of the deep learning models across

the holdout set, while A is the means for a given benchmark model. If the null

hypothesis is rejected, then the alternative hypothesis H1 : B > A is supported.

The results of the statistical tests are presented in Table 4.5. As expected,

it is observed that the null hypothesis is rejected for each test at a very high

confidence interval.

100 Chapter 4. Deep Probabilistic Modelling of Price Movements

q=0.5
Model Benchmark 1 Benchmark 2
Poisson 0.00 0.00
Negative Binomial 0.00 0.00
Zero-Truncated Poisson 0.00 0.00

q=0.9
Model Benchmark 1 Benchmark 2
Poisson (Baseline) 0.00 0.00
Negative Binomial 0.00 0.00
Zero-Truncated Poisson 0.00 0.00

Table 4.5: For quantiles 0.5 and 0.9, the results for one-tailed Welch t-tests on the null
hypothesis that the means of the quantile loss for the model in each row are
less than or equal to the means of the models in each column, rounded to
two decimal places.

4.7 Comparing Against Two Separate Models

In this section the joint modelling approach in the deep mixture model will be

defended by comparing its performance with the obvious alternative of two deep

recurrent models, predicting the direction and the size of the price movements

respectively. Both of these component models are supplied with exactly the

same dataset as the deep mixture model.

The first model is the deep recurrent model used in Chapter 3, and de-

scribed in Section 2.2.2, for predicting the direction the price movements. Here

there is an additional currency pair categorical variable, since now the model is

trained using a dataset containing all the currency pairs combined. This model

is essentially just the recurrent component of the architecture of this chapter,

without the mixture or static components, but with a softmax output and the

cross-entropy loss described in Section 2.2.3.

For predicting the size of the price movements, the same recurrent model in

Chapter 3 is used once again, along with the currency pair categorical variable

addition as with the directional price prediction model above. However, the loss

function here is changed to the Negative Binomial loss, which provides a proba-

bilistic output to model the size of the price movements. This loss is defined as

follows:

4.7. Comparing Against Two Separate Models 101

`NB(y|µ,α) = log(
Γ(|y|+ 1

α
)

Γ(|y|+1)Γ(1
α
)
η2)

(
1

1+αµ

) 1
α
(

αµ

1+αµ

)|y|
, (4.15)

where, α and µ are parameters to be estimated by the deep recurrent model.

4.7.1 Results

It can be observed from Table 4.6, showing the mean MCC for the Bubble and

Pre-Bubble period of the holdout set, that the architecture of this chapter does

provides a small advantage in predicting the directional price movement. For

the novel architecture, the table only shows the best MCC between the three

different forms of the novel architecture. The statistical significance of the results

here is proven using once again the one-tailed Welch t-test. The null hypothesis

here is H0 : B <= A where B is the mean MCC of the novel architecture across

the holdout set, while A is the means for the benchmark. The resulting p-value

was found to be 0.02, meaning that the results are reasonably significant.

Model Pre-Bubble Bubble
Novel Architecture 0.16 0.14
Non-Mixture Benchmark 0.15 0.14

Table 4.6: Mean MCC comparison between best of the novel architecture and non-
mixture benchmark the bubble and pre-bubble holdout periods.

Next, Table 4.7 shows the quantile loss of the novel architecture scaled

to the quantile loss of the deep negative binomial model, as a baseline. The

table only shows the best loss between the three different form of the novel

architecture. Here, a stark difference to the direction prediction is observed. The

architecture of this chapter provides a large improvement to the probabilistic size

predictions and this is especially clear during the Bubble period. A reason for

the better performance of the novel architecture points to the fact that the size

of price movements, especially near and during volatile periods, can be very

dependent on the direction of the price movements. By jointly modelling the

direction, the novel architecture is able to better learn the magnitude of the price

102 Chapter 4. Deep Probabilistic Modelling of Price Movements

movements. The results in Table 4.7 are shown to be significant with p-values

very close to zero using the one-tailed Welch t-test. The null hypothesis here is

H0 : B <= A where B is the mean quantile loss of the novel architecture across

the holdout set, while A is the means for the benchmark.

Model
q=0.5 q=0.9

Pre-Bubble Bubble Pre-Bubble Bubble
Novel Architecture 0.81 0.64 0.73 0.60
(Baseline) (1.00) (1.00) (1.00) (1.00)

Table 4.7: 0.5 and 0.9 quantile loss of the novel architecture, scaled to those of the non-
mixture benchmark (as a baseline), in the bubble and pre-bubble holdout
periods.

4.8 Application to a Simulated Trading Scenario
In this section, the practical use of the novel architecture and the benchmark

models is evaluated by using the models in a simulated trading scenario. Pre-

viously in Section 4.6, a compromise was made in order to properly establish a

baseline comparison by evaluating the models using standard measures. Here

the profitability potential of the full direction-size probabilistic forecasts of each

model is demonstrated by using the predictions within a simple automated trad-

ing strategy. Simpler trading strategies here are desirable to prevent this chapter

from being impeded by any complexity in implementation, and also to improve

the transparency of the result analysis. For similar reasons the simulated trading

environment will be kept simple as well.

4.8.1 Trading Strategy

Here, an optimal betting approach using the Kelly Criterion [95] with uneven

payoffs is used as the simple trading strategy for testing the models. Based

on the uncertainties surrounding the direction and size of the price movements,

the Kelly Criterion determines the optimal proportion of the capital should be

allocated to an investment such that the potential profit is maximised and the

potential risk to the total capital are simultaneously minimised. If there is too

much uncertainty, a smaller proportion will be allocated and vice-versa. Let’s

4.8. Application to a Simulated Trading Scenario 103

denote the proportion of capital X0 allocated to a bet on the movements of the

asset as f . Also, let’s take the perspective of a long strategy. If the bet bet is won

then the capital becomes X0(1+ b), and f the bet is lost then capital becomes

X0(1− a). Therefore the amount of capital after n bets can be computed as

follows:

Xn = X0(1−a)Ln(1+b f)Wn, (4.16)

where, Ln and Wn are the number of times the bet is lost or won in the n bets

respectively. Then, assuming an exponential rate of increase during each bet,

the overall profit is:

g(f) = q log(1−a f)+ p log(1+b f), (4.17)

where, q = Ln
n is the probability of losing the bet and p = Wn

n is the probability of

winning the bet. Taking the derivative of Equation 4.17 to maximise g(f) on f

gives the Kelly Criterion as follows:

f ∗ =
p
a
− q

b
, (4.18)

Since a long strategy perspective is taken here, p and q are the probability

of an upward and downward price movement respectively. Hence, π2 and π1

from the model in Section 4.3 can be substituted in. Similarly, a can be computed

by taking ŷ1

s where, ŷ1 is the expected value of the price change if the price were

to go down as predicted by the model, and s is the current price of the asset.

Conversely, b can be computed by ŷ2

s . Then the overall trading strategy at time

t can be expressed by:

ft = st(
π2

t+τ

ŷ1
t+τ

−
π1

t+τ

ŷ2
t+τ

)ε, (4.19)

where, ε serves as the risk aversion constant.

Since the above is formulated from the point of view of taking the long

strategy, the sign of ft determines the position to take in the investment. A

104 Chapter 4. Deep Probabilistic Modelling of Price Movements

positive value of ft indicates a long position should be taken while a negative

value indicates a short position. For simplicity, a few assumptions are made.

The first assumption made is that the strategies are able to leverage risk-free

loans to invest in the given trading opportunity if | ft | > 1. To simplify analysis it

is also assumed that the strategies are able to exit the position cost-free after τ

seconds before the trading signal at time t +1 comes in. Finally, an assumption

is made that the market does not react to the trading activities of the strategies

due to the simple nature of the simulation environment.

4.8.2 Experimental Method

The simulation environment is achieved through a sampling approach, from the

holdout set described in Section 4.5. Each strategy starts off with an assigned

capital of $10,000. Also it is assumed that the assigned model has been already

fitted on the training and validation sets.

To run the experiments, first the datapoints in the holdout sets are sorted

by timestamp. Due to the way the datasets are created, no two points are as-

sociated with a single point in time. The random sampling of the datapoints is

done monotonically such that, if a datapoint at time t has been sampled, then

datapoints timestamped before t are exempted from the subsequent sampling

process. In each iteration, the sorted holdout sets are sampled and the sam-

pled datapoint for each dataset is then fed to the appropriate strategies. Taking

the sampled as a trading signal indicating investment opportunity, each strat-

egy computes the Kelly Criterion to determine what proportion of the capital to

invest in this trading opportunity such that the long-term growth of the capital

is sustained. This is repeated until T iterations are achieved. This algorithmic

procedure from t = 0 to T is referred to here as a scenario. Multiple scenarios

are run to ensure statistical significance of the results.

4.8.3 Results

The described procedure is used to simulate trading scenarios by random sam-

pling of the datasets with T = 500 iterations in each scenario, and K = 10,000

4.8. Application to a Simulated Trading Scenario 105

scenarios. Figure 4.2 shows the empirical distribution of the capital held by

each model at the end of each trading scenario. The values are scaled to a

hypothetical baseline model that makes a perfect prediction at each iteration.

It can be observed from the figure that the deep models overall do better than

the benchmark models. Although the mode of the benchmark model distribu-

tions is comparable to those of the deep learning models, the smaller peaks and

slight right skew indicates that the benchmark models are often less profitable

compared to the deep learning models.

Figure 4.2: Empirical distribution of the final capital held by each model after 500 iter-
ations of trading across 10000 trading scenarios, scaled to a hypothetical
perfect prediction baseline model.

To assess the significance of the results in Figure 4.2, paired Student t-

tests are performed on the distributions. For each test, the null hypothesis is

stated as H0 : B <= A where B is the mean of the final capital of one of the deep

learning models, while A is the final capital means for a given benchmark model.

If the null hypothesis is rejected, then the alternative hypothesis H1 : B > A is

supported. As shown in Table 4.8, the null hypothesis for each test is rejected

with very high confidence interval.

To take a closer look at why and how the deep learning models performed

better in the trading scenarios, Figure 4.3 illustrates the start-to-end instance of

one of the K scenarios. Observing the trajectories before the t = 300 mark, the

strategy running Benchmark 2 seems like it would be performing better than the

106 Chapter 4. Deep Probabilistic Modelling of Price Movements

Models Benchmark 1 Benchmark 2
Poisson 0.00 0.00
Negative Binomial 0.00 0.00
Zero-Truncated Poisson 0.00 0.00

Table 4.8: The p-values of paired Student t-tests on the null hypotheses that the profit
distribution for a given benchmark model is no different to the those of a deep
mixture model, rounded up to two decimal places.

deep mixture models. However, at around t = 318, due to an over-estimation of

the Kelly Criterion caused by sub-optimal probabilistic estimations in Benchmark

2, the strategy allocates too much capital into a risky trading opportunity and

ends up losing much of its capital. Around the same time, it can be observed

that the deep ZTP mixture model also wrongly predicts the direction of the trade

but does not suffer as much loss due to a good probabilistic prediction of the

price change when computing the Kelly Criterion.

Figure 4.3: A single sample of the simulated trading scenario showing the change in
capital due to the trading decisions made by the models at each iteration.

4.9. Summary 107

4.9 Summary

In this chapter, a novel deep learning architecture is introduced for the prob-

abilistic direction-size forecast of high-frequency price movements in order to

improve the utility of deep recurrent models in automated trading strategies.

The novel architecture implements a deep mixture model, which is a middle

ground bridging parametric and non-parametric approaches in modelling price

formation. To test the novelty and significance of the deep learning models,

the results from three different experiments were presented. All results were

benchmarked against carefully chosen state-of-the-art models derived from the

literature on modelling high-frequency price movements.

The main experiment compared the performance of the novel architecture

against the benchmark models using a two-step procedure assessing both the

directional risk and size risk using standard performance measures. In Section

4.6 it was shown that the novel architecture outperforms the benchmark models

when measured with the Matthews Correlation Coefficient and the quantile loss

with high statistical significance as shown in Table 4.3 and Table 4.5. Then, in

Section 4.7, the value of the novel mixture model approach is demonstrated by

comparing it against two separate deep recurrent models predicting the direc-

tion and size respectively. As can be seen in Table 4.7, the performance of the

novel architecture is better than the model described in Chapter 3, which was

itself established to outperform the state-of-the-art, with confidence. Finally, the

practical utility of the novel architecture is demonstrated by examining its profit

potential in a simulated trading environment. The probabilistic forecasts pro-

duced by the novel architecture result in a higher profit when implemented into

an automated trading strategy, the statistically significance of which is shown

Table 4.8.

In chapters so far, it has been shown deep learning models that are trained

on order flow data have tremendous potential in modelling the price formation

process by directly learning to predict high-frequency price movements. To fur-

ther reach towards the main research objective of improving deep price forma-

108 Chapter 4. Deep Probabilistic Modelling of Price Movements

tion models, an inspiration is taken from previous work in zero-intelligence mod-

els where the order flow sequences themselves are modelled directly. There-

fore, the next chapter will introduce the deep generative modelling approach that

learns to model the order flow sequences directly, such that the price formation

model can constructed in a bottom-up manner.

Chapter 5

Deep Generative Modelling of

Order Flow Sequences

This chapter introduces a novel application of a Generative Adversarial

Network (GAN) for the generative modelling of order flow sequences. The

problem of the generative modelling of order flow sequences is formulated,

and the method of applying GANs to the problem is presented. Since the

generative modelling of order flow sequences using machine learning has

not been previously studied, a suitable order flow model is selected from

the theory-driven literature. Sequence similarity algorithms are used to

measure how well the each of the models are able to reproduce the real

order flow sequences. Then, an analysis of the macro-behaviour of the

generated order flow sequences is performed, by studying how well the

generated sequences are able to reproduce the statistical behaviours of

mid-price time-series that have been reported in the literature.

5.1 Introduction

In the taxonomy of machine learning models, one of the many kinds of model

classifications categorises models as either discriminative models, or genera-

tive models. Discriminative models directly estimate the posterior probability

p(y|x) of the output y conditioned on the input x. Such models can be employed

to predict the price movements of an asset, given some predictive features, as

110 Chapter 5. Deep Generative Modelling of Order Flow Sequences

demonstrated in previous chapters. On the other hand, generative models es-

timate the joint probability of the data p(y,x), or p(x) if the data has no labels.

Though generative models can also be used for prediction tasks by using Bayes’

rule to compute the conditional probability of the output, discriminative models

are generally preferable. The reason for this is that discriminative models di-

rectly solve the classification or regression task of concern, without needing

intermediate steps such as modelling the likelihood to compute the posterior for

in a generative model, for instance [105]. However, because generative models

include the distribution of the data itself, they can be queried for the probability

of the data and hence are able to generate new data instances, i.e. simulate an

order flow sequence.

In the application of machine learning to asset trading, the focus of the

majority of the work in the literature is the use of discriminative models for the

prediction of asset prices. This general focus on predicting price movements

is completely justifiable as the very basis of trading is to buy low and sell high.

However, there exist a number of machine learning tasks for facilitating trading

that would require the use of generative models. The situations in which these

are needed may not be as obvious as the prediction of price movements, but

they can have as much of an impact. The most common example of tasks that

would utilise generative model, would be the modelling of financial sequences

to generate realistic simulated sequences. Such simulated sequences have a

number of practical uses in quantitative trading, with a few examples as follows:

• The simulated order flow sequences can be used to predict price move-

ments at any desired timescales. Using the simulated sequences as input

to an existing order book that has been tracking the order flow, prices can

be observed throughout the length of the simulated sequence. This will not

only provide the mid-price, but potentially the spread series, the bid-ask

and other price series as well. In addition, multiple runs of the simulated

order flow can be sampled to produce a probability distribution of these

prices over time.

5.1. Introduction 111

• Another potential use for simulated order flow sequences in quantitative

trading would be to estimate probable order intensities at future points

in time. These order intensities are important factors for estimating the

prices at which the bid and ask limit orders should be posted when com-

puting market making strategies [13], which are the most common type of

strategy employed by high-frequency traders. Order intensities also play

an important role in computing the optimal policies [16] of optimal exe-

cution algorithms. These order intensities could definitely be predicted

directly using discriminative models, but the formulation of such a problem

could be a lot more difficult since the order intensities might be needed for

hundreds of price levels on either side of the book.

• If a deep generative model is able to model order flow sequences well

enough to produce realistic order flow sequences, then it would be very in-

teresting to interrogate such models using black-box explainer algorithms

to provide useful insights into how order flow sequences are formed. Sim-

ilar to the work in Section 3.7, where a deep recurrent model was shown

to have promising results in modelling the price formation based on the or-

der flow, interesting machine learning insight into how the order flow affect

price formation could be obtained.

• Simulated order flow sequences can be used for evaluating and back-

testing trading strategies [106, 107]. Back-testing strategies on histor-

ical data might not be as productive since historical data do not react

to the actions taken through the strategy policies - especially in high-

frequency trading, actions taken via trading strategies could result in very

dynamic changes in the market that need to be accounted for when eval-

uating these strategies. Also, generative models could be used for pro-

ducing different market scenarios through the simulated order flow. In this

case, sequences related to hypothetical scenarios could be observed from

the scenario-conditioned simulations and used for stress-testing trading

strategies.

112 Chapter 5. Deep Generative Modelling of Order Flow Sequences

Therefore, it is fair to say that problem of modelling order flow sequences

using deep learning model is an interesting and valuable one. Indeed in quan-

titative finance literature, the research into modelling order flow sequences is

quite advanced, as can be observed from the previous work detailed in Section

2.3.3. However, there is currently a gap in the machine learning literature in ap-

plying deep learning, or any machine learning models at all, to modelling order

flow sequences. The work in this chapter aims to fill this niche.

Towards this end, a novel application of deep generative adversarial net-

work is introduced in this chapter to address the challenge of generative mod-

elling order flow sequences. Section 5.2 provides the general background on

the deep generative models and the Sequence Generative Adversarial Net-

work (SeqGAN) framework used for the experiments in this chapter. Then, the

methodology for applying the SeqGAN framework for generative modelling of

the order flow is outlined in Section 5.3. Since there are currently no previous

work related to this topic in machine learning literature, Section 5.4 details the

model chosen from the quantitative finance literature for benchmarking the per-

formance of the SeqGAN approach for generating modelling order flow. To train

these models, Section 5.5 details the dataset extracted from the Bitcoin order

flow obtained in Section 3.4. The output of this model is however not straight-

forward to evaluate since the order flow is by nature non-deterministic. Two

order flow sequences that are not exactly equal may have the same affect on

trading algorithm when evaluating the algorithm on each of the two sequences.

Or, order intensities computed from these two order flow sequences may both

result in the same value. There is a similar issue in NLP regarding the issue of

evaluating natural language generation [108].

Therefore, the experiments in this chapter will evaluate the output of the

generative models from two angles. First, to examine how well the SeqGAN

model and the benchmark model are fitted to the order flow data, the output of

the models is subjected to sequence similarity tests. This is to determine how

well each model is able to reproduce the real order flow. Section 5.6 describes

5.2. Technical Background 113

this experiment. Next, a macro-behaviour analysis is performed in Section 5.7 to

investigate how well the emerging properties of the simulated order flow match

the statistical properties of the real order flow. This is achieved by comparing

various statistical properties of the mid-price resulting from the simulated order

flow against the real order flow. These statistical properties are chosen from the

financial literature as important descriptors of financial data.

5.2 Technical Background

5.2.1 Deep Generative Models

There have been great strides in the field of deep learning, using deep genera-

tive models, for solving the problem of generating artificial sequential data that

imitates real data. This includes application areas from the leviathan that is natu-

ral image generation [109, 110, 111, 112], to network security [113], or medicine

[114], and even dentistry [115]. In the area of sequence generation, the work

on deep generative models is focused mainly on natural language generation

[116, 44, 117, 118]. In the econometric domain of machine learning, which is

more closely related to the work in this thesis, there exists little work on the

application of deep generative models for generating artificial sequential data

that imitates real data. The reason for this could be lack of obvious use for the

generated data compared to other areas such as image generation or natural

language generation. There exist papers in the econometric machine learn-

ing literature describing the use of generative models for producing sequences

[100, 119], but the objective of the work in these papers is the multi-horizon

prediction of the future, rather than generating imitation data.

Similarly, there exist some papers on applying generative models for finan-

cial data, but focused on the objective of multi-horizon forecasting rather than

generating artificial data [120, 121]. An exception here is [122], where the au-

thors aim to study the ability of GANs to generate realistic financial time series,

by observing various statistical properties and stylised facts of the artificial time-

series generated by their models. However, the authors in [122] focused on

114 Chapter 5. Deep Generative Modelling of Order Flow Sequences

financial time series, while the work in this chapter aims to model the order flow.

Due to the aforementioned diversity of potential applications, deep genera-

tive models are an active area of research which has drawn a significant amount

of attention. In fact, generative models were studied even before the current ex-

plosion of research in deep learning. The authors in [123] first demonstrated the

potential of deep architectures by proposing the generative modelling approach

of using the contrastive divergence algorithm to efficiently train deep belief nets.

Later research into generative models includes de-noising autoencoders [124]

and variational autoencoders [125]. These generative models are trained by

maximising the likelihood of the training data, which suffers from tractability

problems in probabilistic computation.

An alternative framework for training generative models, called the genera-

tive adversarial net (GAN), is proposed by the authors of [126]. The GAN frame-

work involves a minimax game between a discriminator model and a generative

model to train the generative models. This circumvents the problems associ-

ated with maximum likelihood learning in previous generative models. While

the standard GAN and its later variants has been shown to be able to generate

very convincing images, there were challenges to applying GANs to generate

discrete token-based sequences, such as those of natural language, or in the

case of this chapter, the order flow. To deal with such data, the SeqGAN frame-

work is proposed by the authors in [34]. The SeqGAN framework is also an

improvement over existing approaches in generating token sequences since it

does not incur any exposure bias [127] between the training phase and the in-

ference phases, when generating sequences. Besides SeqGAN, there exists

another related GAN framework specially designed for sequences, more specif-

ically for generating time-series [128]. However, it is not suited to the objective

in this chapter since the order flow is not a typical time-series.

5.2.2 The SeqGAN Framework

Like all generative adversarial networks (GAN) [126] frameworks, SeqGAN is

made up of a generator Gθ and discriminator Dφ , parameterised by θ and

5.2. Technical Background 115

φ respectively. The generator Gθ is trained to produce a sequence Y1:T =

(y1, . . . ,yT), where yt ∈Y and Y is some set of discrete tokens. The discrimina-

tor Dφ is then a binary classifier trained to distinguish the generated sequence

Y1:T from a real sequence X1:T . The probability Dφ (Y1:T) of how likely the gen-

erated sequence is to a real sequence is used as a feedback for guidance on

further improving Gθ . In the problem of generating a simulated order flow, Y

would be O and Y1:T would be an order flow sequence. In SeqGAN, the learning

of the generator Gθ is treated as a reinforcement learning (RL) problem. At any

given timestep t, the state s is the sequence produced thus far y1, . . . ,yt−1. The

action a is then which token to select as yt from Y . The action to be taken in

a given state is determined by the generator Gθ (yt |Y1:t−1), which is a stochastic

policy parameterised by θ . The generator is updated via policy gradient utilising

rewards in the form of the output of the discriminator Dφ .

There are two phases in the SeqGAN framework, the pre-training phase

and the adversarial training phase. In the pre-training phase, given a dataset

of real sequences, the parameters of the generator are fitted using maximum

likelihood estimation (MLE). The pre-trained generator is then used to produce

negative examples for pre-training the discriminator. Using these negative ex-

amples, along with positive examples from real sequences, the parameters of

the discriminator are fitted using by minimising the cross-entropy (CE). The ob-

jectives when optimising for the CE are described in Section 2.2.3. After pre-

training both models, the adversarial training phase can then commence. In

the adversarial training phase, the objective of the generator or policy Gθ is to

maximise the expected end reward Rt from the initial state s0. This is essentially

the state-value function V Gθ

Dφ
(s0) of the RL problem. The objective can then be

expressed as follows:

J(θ) =V Gθ

Dφ
(s0) = E[Rt |s0,θ],

= ∑
y1∈Y

Gθ (y1|s0) ·QGθ

Dφ
(s0,y1),

(5.1)

116 Chapter 5. Deep Generative Modelling of Order Flow Sequences

where QGθ

Dφ
(s,a) is the action-value function of the RL problem. Though it may

seem as if the generator is being optimised on just y1, this is not the case for the

following reason. Because the state transition is deterministic, and the interme-

diate reward is set to zero, the following relation can be derived:

QGθ

Dφ
(s = Y1:t−1,a = yt) =V Gθ

Dφ
(s = Y1:T), (5.2)

Given this relation, the action-value function QGθ

Dφ
(s0,y1) inside Equation 5.1 can

be rolled out as follows:

QGθ

Dφ
(s0,y1) =V Gθ

Dφ
(Y1:1),

= ∑
y2∈Y

Gθ (y2|Y1:1) ·QGθ

Dφ
(Y1:1,y2),

(5.3)

where Y1:1 is the state s1. The Equation in 5.3 can be further rolled out recur-

sively in the same way to unroll the whole sequence. This manner of rolling out

the objective function is then used by the authors in [34] to obtain the derivative

of the objective for learning θ via policy gradient update. Combined with the

likelihood ratio trick, the derivative of J(θ) is computed as follows:

∇θ J(θ)≈
T

∑
t=1

∇θ logGθ (yt |Y1:t−1) ·QGθ

Dφ
(Y1:t−1,yt), (5.4)

The derivative for policy gradient update relies on the action-value function

QGθ

Dθ
(s,a). To estimate QGθ

Dθ
(s,a), the estimated probability of the generated se-

quence being labelled as real by the discriminator Dφ is used. The action value

is defined by the authors as follows:

QGθ

Dφ
(s = Y1:t−1,a = yt) =

1
N ∑

N
n=1 Dφ (Y n

1:T), where Y n
1:T ∈MCGθ (Y1:t ;N) if t < T,

Dφ (Y1:t), if t = T,

(5.5)

where MCGβ (Y1:t ;N) represents an N-times Monte Carlo search [129] algorithm

5.2. Technical Background 117

for sampling the unknown last T − t tokens using the generator Gθ as the rollout

policy, and Y n
1:T is a sampled sequence.

After improving the generator via policy gradient update for a number of

epochs, the discriminator is then re-trained using negative examples produced

from the improved generator. The re-training of the discriminator is achieved by

simply minimising the binary cross-entropy loss as follows:

min
φ
−EY∼pdata [logDφ (Y)]−EY∼Gθ

[log(1−Dφ (Y)], (5.6)

where pdata is the dataset of positive examples of real sequences. After the

discriminator is improved, then the generator is once again updated using the

rewards from the improved discriminator. This adversarial training where the

generator and discriminator try to out-do one another is repeated until conver-

gence.

5.2.3 Convolutional Neural Network

The work in this chapter makes use of the Convolutional Neural Network (CNN)

in the SeqGAN framework. Therefore, an introduction to the architecture for

the standard convolutional neural network [130, 131] will briefly presented as

follows.

The input to the CNN is a sequence of k-dimensional embedded tokens

x1, . . . ,xT , where xt ∈ Rk. This input sequence is first assembled into a matrix

representation as follows:

ε1:T = x1⊕ x2 . . .xT , (5.7)

where ⊕ is the vertical concatenation operator for assembling the matrix ε1:T ∈

RT×k. Then, a convolutional operation with a window size of l is applied using a

kernel w ∈ Rl×k to produce a new feature map:

ci = g(w⊗ εi:i+l−1 +b), (5.8)

118 Chapter 5. Deep Generative Modelling of Order Flow Sequences

where ⊗ is an operator indicating the summation of element-wise product, b is

some parameter to be fitted and g is some non-linear activation function. Here,

the architecture is not limited to a single kernel. Multiple kernels of different

sizes can be used to learn different feature representations. A given kernel w of

size l will produce the following vector of feature maps:

c = [c1, . . . ,cT−l+1], (5.9)

and a max-pooling layer with output c̃ = max{c} is applied for all kernels, result-

ing in a vector of pooled features c̃. To enhance the optimisation of the CNN,

the highway architecture [132] is added after the max-pooling layer as follows:

τ = σ(WT · c̃+bT),

C̃ = τ ·H(c̃,WH)+(1− τ) · c̃,
(5.10)

where WT , bT , WH are network parameters to be fitted, H denotes an affine

transformation followed by some non-linear activation function, and σ is the sig-

moid function. Finally, to obtain the output probability ŷ that the given input

sequence is real, a fully-connected layer with a sigmoid activation function is

used at the output:

ŷ = σ(Wo · C̃+bo), (5.11)

where, Wo and bo are more CNN parameters to be fitted by gradient-descent.

5.3 Method

5.3.1 Problem Formulation

The work in this chapter uses a different form to represent the order flow and

the order events, in comparison to previous chapters. Here, order events are

defined in the form of discrete event tokens representing bid and ask market,

limit and cancellation orders at up to Q relative prices away from the best bid

5.3. Method 119

and best asks respectively. Let O be this set of event tokens. The set O can

then be defined as follows:

O ∈ {L ∪M ∪C ∪E },

L ∈ {lB,1, . . . , lB,Q, lA,1, . . . , lA,Q},

C ∈ {cB,1, . . . ,cB,Q,cA,1, . . . ,cA,Q},

M ∈ {µB,µA},

E ∈ {ηB,ηA},

where L is the set of all limit order event tokens, M is the set of all the market

order event tokens, C is the set of all cancellation event tokens, and E is the

set of all other event tokens. Each event token in L , M , C , and E , can be

described as follows. The token lB,q represents bid limit order at relative price

q from the best ask, while lA,q represents ask limit order at relative price q from

the best bid. Using similar notation, cB,q and cA,q are tokens for cancellation

of active bid and ask limit orders. All limit and cancellation orders not within Q

relative prices are represented by a single token ηA for the ask side and ηB for

the bid side of the book respectively. Finally, market orders arriving at the best

bid and best ask are represented by µB and µA respectively. For the limit and

cancellation orders, prices more than Q ticks away from the best bid and ask

are not considered since trading activities that impact the market occur mostly

at prices closer to the best bid and best ask [73, 72]. Given this set O of order

event tokens, the order flow in this chapter is defined as a finite-length sequence

denoted as O1:T = {o1, . . . ,oT}, where ot ∈ O is a token indicating the type of

order event arriving at a given relative price. The sequence generation problem

can now be formally described below.

As has been previously noted, generative models are models trained to es-

timate the joint probability p(y,x) of the data, as opposed to the more commonly

used discriminative models, which estimate the posterior probability p(y|x) di-

120 Chapter 5. Deep Generative Modelling of Order Flow Sequences

rectly. The exact approach to estimating the joint probability of the data is quite

varied and hence the term ”generative models” can be used to refer to a wide

variety of models. To address the problem of generating simulated order flow in

this thesis, the term ”generative models” refers to models that are described as

follows [133]. Given a training set consisting of samples drawn from some distri-

bution, a generative model learns to represent a distribution which estimates the

given training distribution. To produce a novel sequence of order event tokens

O′1:T = {o′1, . . . ,o′T}, a generative model is trained on a set of real sequences

O1:T such that probabilistic difference between the generated sequence and

real sequences is minimised.

The deep learning models implementing recurrent neural networks (RNN)

architectures in previous chapters could be used as both discriminative and gen-

erative models. RNNs essentially model the joint probability of the data by de-

composing it into the conditional probabilities for each point in the sequence,

given the previous steps. This is essentially a ”tractable density” [133] generative

model. The training of RNNs is typically performed by by maximising the likeli-

hood of the conditional probability in each step of the sequence [134]. However,

this maximum likelihood approach suffers from exposure bias [127], which is the

discrepancy between the training and inference stages. The model generates a

new step of the sequence conditioned on the previous steps, but the previous

steps may not have been observed in the training data since these models are

usually tasked to generate novel but realistic sequences. Amongst the proposed

solutions for alleviating this problem, one of the currently most interesting and

promising is by using the Generative Adversarial Net (GAN) framework [126] to

train the generative models. However, standard GANs are not suitable for prob-

lems involving sequences with discrete tokens, such as the order flow as noted

in Section 5.2.1. This is because the generator in standard GANs needs to

be able adjust the output continuously, which does not work when a sequence

consists of discrete tokens. The state-of-the-art approach for addressing this

problem of adversarial learning of structure sequences is the SeqGAN frame-

5.3. Method 121

work introduced in Section 5.2.2.

5.3.2 SeqGAN Modelling of Order Flow Sequences

The algorithm for training the generator Gθ and discriminator Dφ to generate

simulated order flow is described in Algorithm 1. For the work in this thesis, re-

current neural network (RNN) with LSTM cells is implemented as the generator

model Gθ , with θ being the parameters of the network. As for the discriminator,

Dθ is implemented by a convolutional neural network (CNN) with parameters φ .

In both networks, the tokens (y1, . . . ,yT) are embedded into a continuous space

(x1, . . . ,xT) using a fully connected layer. The embedding layer and RNN archi-

tectures are the same as those implemented in previous chapters, as described

in Section 2.2.

In [34], the start state s0 in the SeqGAN framework is meant to be a special

token defining the start of a sequence, commonly used in natural language pro-

cessing datasets. For the work in this chapter, it is proposed that the start state

is a sequence of order flow. The reason for this is that it would be unnatural for

an order flow to abruptly start, unlike text sentences. Therefore, to generate an

order flow O′1:T , a start sequence is defined as O−T+1:0 = {o−T+1,−T+2,...,o0},

where the length of the start sequence is set to be the same as the length of the

sequence to be generated. The reason for the notation is as follows. A given

start sequence is always associated with a positive example of the order flow

such that O−T+1:0 concatenated with a positive example O1:T forms a continu-

ous sequence of order flow that exists in real data. Then, when generating a

simulated sequence O′1:T , to obtain the start state, the set of start sequences

can either be iterated through, or uniformly sampled from with replacement.

GANs in general are very difficult to train due to the adversarial situation

where the improvements in one model will degrade the performance of the

other, leading to training instability. For the work in this chapter, the following

approaches were found to help the generator and discriminator to converge.

• Before adversarial training, Bayesian hyperparameter tuning [83] is imple-

mented to determine the hyperparameters such as the number of layers or

122 Chapter 5. Deep Generative Modelling of Order Flow Sequences

Algorithm 1: Algorithm for training the SeqGAN generator and dis-
criminator on the order flow.

Input:
Order flow real sequences X = {O1:T}1:N ;
Order flow start sequences S = {O−T+1:0}1:N

1 Initialise Gθ and Dφ with random parameters θ and φ ;
2 Pre-train Gθ using MLE on X with starting sequences S;
3 Generate samples using Gθ using starting state S;
4 Pre-train Dθ by minimising CE on generated samples as negative

examples and X as positive examples;
5 repeat
6 for g-steps do
7 Uniformly sample starting sequence s from S;
8 Generate o′1, . . . ,o

′
T using Gθ with starting state s;

9 for t in 1 : T do
10 Compute Q(a = o′t ,s = O′1:t−1) using Eq. 5.5;

11 Update θ using Eq. 5.4;

12 for d-steps do
13 for each s in S do
14 Generate sequence sample using Gθ with starting state s;
15 Append sequence sample to array of negative examples;

16 Uniformly sample equal number of negative examples and
positive examples X ;

17 Use bootstrapped data to train Dθ for a number of epochs given
by Eq. 5.5;

18 until SeqGAN converges;

the number of hidden units for Gθ and Dφ , or the kernel sizes and number

for the Dφ . Hyperparameter tuning is applied only during the pre-training

phase. Also, when tuning the number of layers, the number of layers in

the discriminator is set to be much deeper than the generator.

• During adversarial training, the following was found to work best:

– The number for the d-step parameter in Algorithms 1 is set to be

much larger than g-step.

– For backpropogating the gradients, the Adam optimiser is used for

the generator, while the Adagrad optimiser is used for the discrimina-

tor. The algorithms for both these optimisers are described in Section

5.4. Benchmark Model 123

2.2.3.

– For the generator, dropout is used both when training the generator

itself, and when generating sequences for training the discriminator.

5.4 Benchmark Model

Since the current application of machine learning to generate simulated order

flow sequences is novel, no direct comparison with existing machine learning

approaches in literature can be made. However, there exist in the quantitative

finance literature some very well-established stochastic process approaches for

the modelling of order flow to simulate a dynamic limit order book. Among them,

the Poisson process framework is the most well-established method for order

flow simulation, and will be used in this chapter as the benchmark for the deep

generative modelling approach for generating the order flow. Though there ex-

ists other more complex models such as the queue-reactive model [135], or the

Hawkes process framework [10], the simplicity in fitting stable models makes

the Poisson process framework more desirable as a reliable benchmark.

The Poisson framework used as the benchmark is the multiple Poisson

process described in Chapter 2.3.2. Though Hawkes processes could better

simulate the jumps found in real mid-price time-series, as mentioned in Chap-

ter 2.3.1, the kernel of the Hawkes process tend to be difficult to fit, leading to

computation issues. In the multiple Poisson model, one process is added for

each of the order event token that was described in Section 5.3.1. After the

arrival rate parameters for the processes are fitted, the procedure for generat-

ing a sequence of order event tokens is quite straightforward. For each order

event token representing an event type at a given price, the arrival times of the

token can obtained by simply sampling from the process representing the to-

ken. Then, all of the generated token sequences are concatenated into a single

data-structure and sorted by time to obtain the generated order flow.

124 Chapter 5. Deep Generative Modelling of Order Flow Sequences

5.5 Dataset

The experiments again make use of BTC-USD data from captured from Coin-

base just as described in Section 3.4. As previously described, these are raw

JSON messages that needs to be transformed into a dataset suitable for ma-

chine learning using an implemented limit order book and matching engine. Un-

like in Chapter 3 and Chapter 4 however, no capture of the target variables are

required since here the sequence of order flow its self is used for training and

testing.

The order flow between 4 Nov and 29 Nov is used for training. In this

period, the order flow is partitioned into slices of 400 events. Each of the slices

is split equally into two to obtain the real order flow sequence Ô1:T and the start

sequence Ô−T+1:0. All of the real order flow sequences are concatenated into

a single dataset for training the discriminator Dφ , while the start sequences are

concatenated into a dataset to be used for generating a sequence of order flow

in the generator Gθ

For sequence similarity testing, the order flow between 30 Nov and 1 Dec

is used. Within this period, the real order flow in the test period is split into over-

lapping slices of 400 events. Unlike in the case of the training data, here the last

200 events of a given slice overlap with the first 200 events of the next slice. In

other words, the first sequence of events o1:200 is used as the start sequence

to generate a simulated order flow o′1:200, and the remaining sequence of or-

ders o201:400 is used for micro-behaviour analysis of o′1:200. Then, the sequence

is used as the start sequence for generating o′201:400, and o401:600 is used for

analysing o′201:400, and so on.

The period between 30 Nov and 1 Dec is also used for investigating the

macro-behaviour of the simulated order flow. The dataset for the investigation

is obtained by capturing the mid-price at every 1-minute interval when the raw

JSON messages were used to build the order flow sequence dataset using the

implemented limit order book and matching engine.

5.6. Sequence Similarity 125

5.6 Sequence Similarity

In this section, the ability of the SeqGAN model and the benchmark model to

continue a given start sequence is tested. Each start sequence in real data

would have an ensuing sequence, and a perfect model should be able to re-

peatedly generate this ensuing sequence with perfect similarity to real data.

The sequence similarity test set described in Section 5.5 will be used for this ex-

periment. Each point in the test set contains a sequence 400 events long. The

first half of the sequence is used as the start sequence to generate a sequence

o′. The second half for is used to evaluate o′. Note that the main objective of the

work in this chapter is to learn a model that is able to generate simulated order

flow sequences, and not to reproduce any given order flow sequence perfectly.

Nevertheless, the test described in this section is important in evaluating the

ability of each model in generating correct sequences of the order flow.

Sequences similarity metrics are employed here to measure how well the

SeqGAN model and the benchmark model are able to realistic order flow. In lit-

erature, there exist a large number of algorithms which computes the similarity

between multiple sequences, the choice of which depends largely on the appli-

cation. Two sequence similarity measures are identified as suitable for evaluat-

ing the output of the deep generative model, and the benchmark model. These

measures are the Levenshtein distance [136] and the Jaccard index [137]:

• The Levenshtein distance between two discrete sequences is computed

using an algorithm which counts the minimum number of single element

edits that transform one sequence to the other. The edits allowed are

insertions, deletions and substitutions. The Levenshtein distance can be

normalised such that the similarity score is bounded between 0 and 1,

where 1 means both sequences are a perfect match and 0 means the

sequences are as dissimilar as can be.

• The Jaccard index for two discrete sequences computes the ratio between

the number of common single tokens between both sequences, and the

126 Chapter 5. Deep Generative Modelling of Order Flow Sequences

total number of unique single tokens in both sequences. Thus, the Jaccard

index is also bounded between 0 and 1.

For evaluating the simulated order flow produced by the deep generative

model and the benchmark model, the features of the Levenhstein distance and

the Jaccard index complement one another. The Levenshtein distance provides

a more granular view of how each element and its neighbours in the generated

sequence are similar to the real sequence, while, the Jaccard index provides

an overall view of how well the set of order events in the generated sequence

matches up with the real sequence.

For the deep generative model, the generator Gθ is trained on the dataset

in the training period as described in Section 5.5. Then it is given the start

sequences of 200 event length from the test set to generate the simulated order

flow sequences. On the other hand, the benchmark model is always trained

from the last 600 order events when simulating for each point in the test set.

It was found that this is much better for the benchmark model than using the

whole training period parameter fitting. The multiple Poisson model used in the

benchmark is small model consisting of only one parameter for each process,

and a large data training set (such as that in the training period) would have

saturating effect on the models very quickly. Also, by using the latest 600 events

in the order flow, the parameters of the benchmark model would be fitted to

the latest data. This helps mitigates the weakness of the benchmark model in

regime shifting situations, and thus strengthening the standards against which

the deep generative model is compared.

The sequence similarity between each model and the order flow in the test

period is then evaluated as follows. For each datapoint in the test set, the mod-

els will generate 100 simulated sequences each. These multiple samples are

necessary for evaluation rather than generating just one sequence due to the

randomness in the generative models. Then, for each of the 100 simulated se-

quences, the Levenshtein distance and Jaccard index are computed between

the simulated sequence and the real sequence.

5.6. Sequence Similarity 127

5.6.1 Results

Table 5.1 shows the overall mean of both similarity measures, for both models,

taken across all the simulated sequences, and across the whole of the test set.

It can be observe that overall the ability of either model in producing realistic

order flow sequences is weak. The Jaccard indices for both models are much

larger than their Levenshtein distances. This implies that the simulated order

flow generated by both models contains at least somewhat-correct assortment,

even-though the arrangement of the events in the sequences themselves are

not as good.

SeqGAN Model Benchmark Model
Levenshtein Distance 0.04 0.01
Jaccard Index 0.19 0.06

Table 5.1: Average Levenshtein distance and Jaccard index across multiple samples of
simulated order flow, and across the whole test set, rounded to two decimal
places.

But, the results observed in Table 5.1 are not unexpected since there are

a very large number of price levels, with Q set to 3000 based on the median

of the relative prices. Financial market datasets are in general very hard to

predict, let alone at the order flow level with so many different price levels. The

more important question to ask here is if the deep learning approach statistically

significantly improves on the benchmark.

To this end, the distribution of the average distances between simulated

and actuals, for each point in the test set, is computed for each model. The

distribution for the SeqGAN model here are denoted just for now as A, and the

distribution for the benchmark model as B. Then both distributions are tested

against each other using the one-tailed Welch t-test under the null hypothesis

H0 : B ≥ A. The resulting p-value of very close to 0 implies that the SeqGAN

model indeed significantly outperforms the benchmark model in the test of se-

quence similarity to actuals.

Next, it is interesting to loosen the requirements and test if both the Se-

qGAN model and benchmark models are at least generating the correct order

128 Chapter 5. Deep Generative Modelling of Order Flow Sequences

type and order direction. For this purpose, all tokens in both the simulated and

real sequences are binned such that the price elements are stripped from the

token. For instance, the tokens for buy limit orders at each price q are binned to

a single token for just buy limit order. Such sequences could still be very use-

ful since order type and order direction are important for anticipating any price

movements. Readers are reminded that in Chapter 3, the order type and order

direction were found to contain strong predictive power in forecasting the direc-

tional price movements. Thus, the experiment is repeated here with the binned

sequences, and the results are presented in Table 5.2. The Jaccard index is now

perfect, but it should be noted that the reason for this is that the cardinality of

the binned tokens is now quite small (= 7). Since the simulated sequences are

quite long (= 200), it is not difficult for a given simulated sequence to contain all

the binned tokens. The Levenshtein distance, on the other hand, is also shown

to have massively improved, and this is more meaningful. It implies that the

order type and direction of the events in the simulated sequences have some

semblance to real data, albeit at incorrect price levels.

SeqGAN Model Benchmark Model
Levenshtein Distance 0.39 0.16
Jaccard Index 1.00 1.00

Table 5.2: Average Levenshtein distance and Jaccard index across multiple samples of
simulated order flow, and across the whole test set, after binning rounded to
two decimal places.

This section is concluded by noting that the SeqGAN model is shown here

in Table 5.2 to yet again have statistically significantly better performance than

the benchmark model. The Welch-test with the same hypothesis as before is

applied to this results in this experiment, with the null hypothesis of H0 : B ≥ A

being rejected with very high confidence.

5.7 Macro-Behaviour Analyses
In real markets, the flow of orders into the limit order book results in a random

fluctuation of the mid-price. Take for instance an order flow sequence that is

5.7. Macro-Behaviour Analyses 129

generated by either model. If the simulated sequence is a realistic reproduction

of real order flow sequences, the resulting mid-price time-series should have

comparable statistical properties to the real mid-price series in the same pe-

riod. This section presents the investigation of these statistical properties and

stylised fact in the mid-price time series produced from the simulated order flow

sequences, and the mid-price time-series from the real data.

Recall that both the deep learning and benchmark model produce only the

tokenised form of the order flow. To simulate the mid-price time series from

the simulated order flow, two additional components need to be estimated for

the SeqGAN model, and one for the benchmark model. For both models, the

order size of each order event needs to be estimated, and for just the SeqGAN

model, the inter-arrival times between each event in the sequence need to be

estimated as well. The order size for each simulated event can obtained by

sampling from empirical distributions. The order size empirical distributions Vµ ,

Vl , Vc for market, limit and cancellation orders respectively are fitted from the

training data in the period between 23 Nov 2017 and 1 Dec 2017. Similarly,

the inter-arrival times are obtained by sampling from an empirical distribution,

though with only one distribution U being fitted for all order types. The inter-

arrival time is not needed for the benchmark model as each Poisson process

directly models the arrival rate of the associated order event.

One thing to note here is the treatment of cancellation order events in the

implementation. In reality, each arriving cancellation order is paired to an active

limit order in the LOB, since it is that paired limit order that is being cancelled.

In both the SeqGAN model and the benchmark, arriving cancellation orders at

price q are simply events stating that the volume at price q should be removed,

and are not paired to any active limit order due to the unnecessary complexity

in modelling such relationships. In this case, if there are active limit orders

resting at price q, they are removed. Otherwise, nothing happens. Also, since

cancellation orders more than Q relative prices away from the best bid and best

ask are not explicitly modelled, when the mid-price moves, any active limit orders

130 Chapter 5. Deep Generative Modelling of Order Flow Sequences

with relative prices larger than Q are automatically cancelled. Correspondingly,

any token in the simulated order flow which represents limit orders with price

larger than Q are discarded.

Algorithm 2: Algorithm for sampling a single 1-minute mid-price time
series from SeqGAN model.

Input:
Real order flow start sequence O1:200;
Generator model Gθ ;
Empirical distributions Vµ , Vl , Vc, U ;
Warmed-up limit order book object L;
Total time in seconds T ;

Output: 1-minute mid-price time series S
1 Initialise empty list P;
2 Initialise empty list O′;
3 Initialised total time in milliseconds t = 0;
4 Initialise start sequence r = O1:200;
5 repeat
6 Initialise empty list o′;
7 for i in {1 : 200} do
8 Sample event token o′i from Gθ using r and o′i−1;
9 Sample order sizes vi from either Vµ , Vl or Vc depending on

order type of o′i;
10 Sample inter-arrival times τi from U ;
11 Append (o′i,vi,τi) to o′

12 Extend list O′ with o′;
13 t← t +∑i τi;
14 r← o′;
15 until until t = T ;
16 Initialised total time in milliseconds t = 0;
17 for (o′,v,τ) in O′ do
18 Input o′,v into order book L;
19 t← t + τ ;
20 if t ≥ 60000 then
21 Capture mid-price s;
22 Append s to S;
23 t← 0

The approach for sampling a regular interval mid-price time series from the

SeqGAN model is then described in Algorithm 2. For the work in this section,

an interval of 1 minute is set for the mid-price time-series, with the length of the

5.7. Macro-Behaviour Analyses 131

mid-price series totalling 48 hours. An interval of 1-minute sets a good balance

between being large enough for statistical tests, and small enough to be rele-

vant to the price formation process, which is the primary objective of this thesis.

Using a start sequence of real order flow with 200 events, the generator Gθ is

used to generate a simulated sequence of 200 events. Then, this first sequence

is in turn used to generate further simulated sequences. This approach is taken

instead of having Gθ continually generating order flow events in a single se-

quence because the length of the order flow sequence needed to produce the

mid-price time-series can get very large. The average inter-arrival time between

orders is 13 milliseconds, meaning about 277200 order events need to be gen-

erated to produce a time-series length of just 1 hour. And recall here that, a 48

hour time-series is needed here to cover the period in the test set. Although not

described in Algorithm 2, a memory management procedure is implemented to

efficiently handle a data structure of that size.

Another thing to note in Algorithm 2 is that the limit order book object L

needed for processing the order flow sequence into the mid-price time-series

has to be ”warmed up”. The warming up procedure feeds the limit order book

object with a sufficiently long sequence of real order flow to ensure the book is

properly populated at the right price levels.

Using Algorithm 2, 100 random simulation paths of the order flow are then

generated from the SeqGAN model to produce 1 minute interval mid-price time

series for a period of 48 hours. The same number of samples of the order flow

is produced from the benchmark model for a period of 48 hours. A number of

investigations are then performed on the simulated mid-price and the real mid-

price series to allow for comparison between the deep learning and benchmark

models. The aim of these analyses is to discover how well the emerging prop-

erties of the order flow from each of these models matches the statistical prop-

erties of the real mid-price time-series in the test set. The rest of the section will

therefore present an analysis of the mid-price log-returns distribution, and the

mid-price volatility, between the mid-price simulations produced by each of the

132 Chapter 5. Deep Generative Modelling of Order Flow Sequences

SeqGAN model and benchmark models, and the real mid-price from the test set.

Both the log-returns distribution and volatility are important statistical properties

of a financial time-series, and close re-production of these macro-behaviours is

important to ensure the simulated order flow sequences are realistic.

5.7.1 Macro-Behaviour 1: Mid-Price Returns Distribution

In the first investigation the log-returns from the simulated samples are com-

pared to the log-returns of real mid-price time series. The aim of this investi-

gation is to discover of how realistic are the 1 minute interval mid-price returns

produced from the order flow sequences generated by each model. To compare

the empirical log-returns distributions of a simulated mid-price series, to the real

mid-price series, the two-sample Kolmogorov-Smirnov (K-S) test [138] is em-

ployed. Denoting the dataset of log-returns computed from one of the simulated

time series as A, and the dataset of log-returns from the real mid-price series

as B. The K-S test is then performed under the null hypothesis that datasets A

and B are sampled from the same distribution. Since 100 simulated order flow

sequences were obtained for each of the SeqGAN model and the benchmark

model, the K-S test has to be performed 100 times for each model.

However, when performing these tests, the issue of multiple comparison

becomes relevant since the more simulated mid-prices are generated, the more

likely one would pass the K-S test. To avoid this, a control procedure needs to

be applied to the family-wise error rate of the tests. Specifically, the Hochberg’s

step-up procedure [139] is implemented as an additonal step to control the out-

come of the multiple K-S tests. The procedure sorts the hypotheses of the 100

K-S test performed by p-value, and determines which of these hypotheses with

the lowest p-value should be rejected for the SeqGAN model and the benchmark

model respectively. For the tests performed in this section, a larger than usual

significance level of 0.1 is chosen since simulating noisy financial time-series is

quite an immense challenge. Between the SeqGAN model and the benchmark,

the one with least number of hypotheses rejected by the Hochberg’s step-up

procedure is then the model that is the more likely to produce an order flow with

5.7. Macro-Behaviour Analyses 133

realistic macro-behaviour.

Time-Series Length SeqGAN Model Benchmark Model
1 Hour 73 86
6 Hours 88 91
48 Hours 98 100

Table 5.3: Number of Kolmogorov-Smirnov test hypotheses (out of 100 samples each)
that are rejected in the Hochberg’s step-up procedure. The time-series
length column refers to the first 1, 6 and 48 hours for each of the 100 sam-
ples.

Table 5.3 below shows the number of hypotheses rejected for the SeqGAN

model and benchmark model, with the experiments replicated for the first 1 hour,

6 hours and 48 hours of the mid-price time-series. It can be observed from the

table that as the time-series length is increased, the similarity between the log-

return distributions of the simulated order flow and the real order deteriorates,

as expected. For the longer time-series, quite a large number of the samples are

rejected for both models, but this is to be expected as high-frequency financial

time-series are extremely challenging to realistically replicate, especially for long

time periods.

Recall that the simulated order flow for the mid-price time series are pro-

duced iteratively where, initially, a new simulated sequence is generated from

a starting sequence of real order flow. Then this generated sequence is fed-

back as a starting sequence to generate another new sequence, and so on.

The performance for time-series of different lengths in Table 5.3 would suggest

that as each new sequence is generated, conditioned on a previously generated

sequence, the resulting statistical behaviour of the mid-price log-returns starts

to deviate from the actuals. Although Generative Adversarial Networks in the-

ory mitigate this exposure bias problem, it seems as if for this experiment the

problem even so persists in the long run.

Nonetheless, Table 5.3 shows the simulated order flow produced by the

SeqGAN model is better at reproducing the mid-price log-returns of real data

compared to the multiple Poisson benchmark model. This observation applies

to all three time-series lengths in the experiment.

134 Chapter 5. Deep Generative Modelling of Order Flow Sequences

5.7.2 Macro-Behaviour 2: Mid-Price Returns Tail-Exponent

Next, the tails of the absolute log-returns distributions for the simulated mid-price

of each of the models are compared to those of the real data. Empirical studies

have reported strong evidence of power law behaviour [140, 141, 142] in the

absolute log-return distributions of financial time series. Power law probability

distributions are “heavy-tailed”, meaning the right tails of the distributions still

contain a great deal of probability. This implies that financial time series tend

to have a higher probability of extreme returns events [143], which may be for

better or worse depending on whether the return is positive or negative. Power

law distributions are probability distributions with the form p(x) ∝ x−α , and it is

the tail-exponent α that is the subject of this analysis in this section.

The Jarque-Bera test [144] is employed on the real mid-price series, for

the first 1 hour, 6 hours and 48 hours, to determine if there are heavy tails in the

absolute log-returns distribution. From Table 5.4, it can be observed that the kur-

tosis of the test distributions is much larger than 3, indicating heavy tails, and the

Jarque-Bera null hypotheses of Normal-distribution kurtosis and skewness are

rejected with very high significance. Therefore, it appears the real mid-price se-

ries in the test period shows heavy-tail behaviour in its absolute log-returns. The

computed tail-exponents are also presented in Table 5.4. These tail-exponents

are on the lighter end of what is observed from the literature, where empirical

studies of stock returns present strong evidence of exponents between 2 and

3 [145, 146, 147]. There is some evidence in the literature pointing to lighter

tails as well, however. The work in [141] argued for a lighter tail, between that of

an exponential distribution and a power law. Also, in [148] the authors reported

that returns at 1-minute time scales exhibit tail-exponents larger than 3, which

correlates with the findings in Table 5.4.

Next, an investigation is performed to determine if the tails observed in the

simulated mid-price series replicate those of the real time-series. The procedure

is as follows. First, the absolute log-returns of the simulated mid-price series are

tested for heavy-tail behaviour. Table 5.5 shows the aggregated results of the

5.7. Macro-Behaviour Analyses 135

Time-Series Length Tail-Exponent Kurtosis Jarque-Bera p-value
1 Hour 3.67 8.79 0.00
6 Hour 2.98 8.46 0.00
48 Hour 3.30 10.98 0.00

Table 5.4: The kurtosis and p-values from the Jarque-Bera test, and the computed tail-
exponents, for the real mid-price time-series absolute log-returns in the test
period. The time-series length column refers to the first 1, 6 and 48 hours of
the real mid-price time series.

Jarque-Bera test across the 100 samples generated by the SeqGAN model and

benchmark model respectively. The measured kurtoses are averaged, and the

Hochberg Step-Up procedure described in Section 5.7.1 is applied to determine

the proportion of tests to be accepted at a 1% significance, after controlling

for repetition bias. It can be observed in Table 5.5 that the average kurtosis is

much larger than 3, and the null hypotheses of the Jarque-Bera test across all

samples are rejected. The results strongly indicates that the simulated mid-price

series for both the SeqGAN model and the benchmark model do replicate the

heavy-tail behaviour reported in the literature real financial time-series.

Length Metric SeqGAN Model Benchmark Model

1 Hour
Mean Kurtosis 7.31 6.97
Rejection Count 0 0

6 Hours
Mean Kurtosis 7.49 7.19
Rejection Count 0 0

48 Hours
Mean Kurtosis 8.80 7.53
Rejection Count 0 0

Table 5.5: The mean kurtosis from the Jarque-Bera test, and the number of Jarque-
Bera tests rejected by the Hochberg Step-Up proceduure, across the 100
mid-price time-series samples generated by the SeqGAN model and bench-
mark model respectively. The length column refers to the first 1, 6 and 48
hours for each of the 100 samples.

Next, the absolute log-returns tail-exponents of the simulated mid-price

series produced by the two models are compared to the results in Table 5.4.

The distribution of tail-exponents are computed across the sampled mid-price

time-series of each model. Then, the one-sample two-tailed Student t-test is

employed with the null hypothesis H0 : A = B, where A is the mean of a tail-

136 Chapter 5. Deep Generative Modelling of Order Flow Sequences

exponent distribution, and B is the tail-exponent in the real time-series data

given in Table 5.4. Table 5.6 shows the resulting p-value and t-statistics. The

null hypotheses of the tests for both models are rejected with high confidence.

This implies that neither of the models has produced mid-price time-series with

realistic tail-exponents in the absolute log-returns. It can also be observed from

the t-statistics that the distribution tails of both models are lighter than those of

the real returns distribution. However, the t-statistics of the SeqGAN model are

observed to be much much smaller that those of the benchmark model. This

indicates that the SeqGAN model generate order flow sequences that produces

mid-prices with closer tail-exponents to those of the real data.

Length Metric SeqGAN Model Benchmark Model

1 Hour
p-value 0.00 0.00
t-statistic 2.66 3.29

6 Hours
p-value 0.00 0.00
t-statistic 2.84 4.05

48 Hours
p-value 0.00 0.00
t-statistic 2.23 3.71

Table 5.6: Results of one-sample two-tailed Student t-test for the tail-exponent distri-
butions of each model against the real tail-exponents computed in the test
period, rounded to two decimal places. The time-series length column refers
to the first 1, 6 and 48 hours for each of the 100 samples.

5.7.3 Macro-Behaviour 3: Mid-Price Volatility

Next, the volatility in the mid-price produced by the two models is compared to

the volatility of the real mid-price in the test set. Volatility is one of the most

important measures of an asset’s value [149]. It measures the risk that would

be undertaken when trading the security and is crucial in the construction of

optimal portfolios [150]. There are a number of measures of volatility defined in

the literature [151], and the choice depends on the purpose. For high-frequency

price movements, the following volatility measures are found to have significant

importance [152, 153]:

• Given a time-series of absolute log-returns r = {rt1, . . . ,rtk}, its realised

volatility is the standard deviation of the values in the series, which can be

5.7. Macro-Behaviour Analyses 137

computed as follows:

vr =

√
∑(ri−µ)2

k
, (5.12)

where µ is the mean of the values in the series r.

• Let r = {rt1, . . . ,rtk} be a time-series of absolute log-returns, where ti is the

arrival of the ith market order between t1 and tk. Then, its realised volatility

per trade is the standard deviation of the values in the series, which can

be computed as follows:

vp =

√
∑(ri−µ)2

k
, (5.13)

where µ is the mean of the values in the series r.

• Given a price series s = {st1, . . . ,stk}, its intraday volatility is computed by:

vd = log
(

max(s)
min(s)

)
, (5.14)

Time-Series Length vr vp vd

1 Hour 0.00177 0.00149 0.0308
6 Hours 0.00186 0.00153 0.099
48 Hours 0.00257 0.00211 0.178

Table 5.7: The different volatility measures computed from the real mid-price time-
series in the test period. vr refers to the realised volatility, vp refers to the
realised volatility per trade, and vd refers to the intraday volatility. The time-
series length column refers to the first 1, 6 and 48 hours for each of the 100
samples.

Table 5.7 shows each of the volatility measures computed from the real

mid-price in the test period. Then, the comparison of the mid-price volatility be-

haviour between the SeqGAN model and the benchmark model is performed

as follows. First, the empirical distributions of the volatility measures are com-

puted across the simulated mid-price series produced by each of the models.

Then, a one-sample two-tailed Student t-test is employed with the null hypoth-

esis H0 : A = B, where A is the volatility of the empirical distribution, and B is

138 Chapter 5. Deep Generative Modelling of Order Flow Sequences

the volatility computed from the mid-price in the test period, as shown in Table

5.7. The alternative hypothesis is H1 : A 6= B. The results from the tests are

presented in Table 5.8, where it can be observed that the null hypotheses for

all the tests are rejected with high confidence. This implies that the order flow

generated by both models is not able to reproduce the volatility of the real mid-

price time series. The negative t-statistics imply that the simulated mid-price

time-series actually have much lower volatility compared to the real time-series.

Comparing the SeqGAN model and the benchmark model, it can be observed

from the t-statistics in Table 5.8 that the volatility of the mid-price is in general

better replicated by the SeqGAN model. An exception to this would be the intra-

day volatility for time-series lengths 6 hours and 48 hours, which the t-statistics

show it was reproduced much more closely by the benchmark model than the

SeqGAN model.

Length Volatility
SeqGAN Model Benchmark Model

t-statistics p-value t-statistics p-value

1 Hour
vr -0.92 0.00 -0.99 0.00
vp -0.99 0.00 -1.10 0.00
vd -0.89 0.00 -0.93 0.00

6 Hours
vr -1.04 0.00 -1.13 0.00
vp -0.99 0.00 -1.19 0.00
vd -1.11 0.00 -0.95 0.00

48 Hours
vr -1.32 0.00 -1.46 0.00
vp -1.27 0.00 -1.43 0.00
vd -1.18 0.00 -1.03 0.00

Table 5.8: The p-value and t-statistics of the one-sample two tailed Student t-test be-
tween different volatility distributions of the SeqGAN model and the bench-
mark model, against the real volatility measures, rounded to two decimal
places. vr refers to the realised volatility, vp refers to the realised volatility per
trade, and vd refers to the intraday volatility. The length column refers to the
first 1, 6 and 48 hours for each of the 100 samples.

5.8 Summary
In this chapter, a novel application of deep generative adversarial networks

(GANs) for generating simulated order flow sequences was proposed. First, the

problem of generating order flow sequences using Sequence GANs (SeqGAN)

5.8. Summary 139

was formulated. The method for training the SeqGAN generator and discrim-

inator for modelling the order flow sequences was described. And, a suitable

model was also selected from the literature to act as a benchmark against the

SeqGAN model. Then in Section 5.6, an experiment was performed to evaluate,

using sequence similarity distance measures, the ability of the SeqGAN model

to reproduce the real order flow sequences in the test period. It was shown

from the resulting Levenshtein Distance and Jaccard Index that the SeqGAN

model is able to better reproduce the real sequences in the test sets than the

benchmark. Then, in Section 5.7 an investigation into the macro-behaviour of

the mid-price movements created by the generated order flow was performed by

measuring how well the statistical properties of the simulated mid-price series

replicate those of the real mid-price series in the test period. It was shown that

the mid-price time-series from the SeqGAN model is statistically significantly

better able to replicate the overall returns distribution, the returns distribution tail

and the volatility of the real mid-price time-series, compared to the benchmark

model.

However, the results revealed that there is still much work to be done in

terms of improving the approach for the generative model of the order flow. The

objective of this chapter is quite ambitious as financial in general sequences

are hard to predict, let alone simulate. Although the SeqGAN model is shown

to outperform the benchmark, the current level of performance is not yet ideal

for adopting the model in practice. From Section 5.6, the average Levenshtein

distance of between the sequences generated by the SeqGAN model, and the

real sequences, illustrates that the SeqGAN model is not likely to produce an

order flow with events arriving in the right order. Although, the Jaccard index be-

tween the sequence generated by the SeqGAN model, and the real sequences,

indicates that the set of events in the generated order flow corresponds quite

well to real order flow sequences. This positive results suggests that it could be

applied for computing order intensity measures. Additionally, when the events in

the order flow were binned by collapsing all prices into order type and direction,

140 Chapter 5. Deep Generative Modelling of Order Flow Sequences

and the sequence similarity experiments were repeated, the SeqGAN model

showed better performance. This suggests that the generative learning of the

order flow sequences were at least partly achieved, but not the right price levels.

Finally, in the analysis of the macro-behaviours of the generated order flow in

Section 5.7, showed that the mid-price series resulting from the SeqGAN model

generated order flow is much less volatile on average, and have much lighter

tails in the log-returns distribution than the real data. On a positive note, the

heavy tails in the absolute log-returns of the real mid-price, which is an impor-

tant statistical behaviour of the mid-price time-series, is successfully reproduced

by the SeqGAN model.

Chapter 6

Conclusion

This chapter concludes the work in this thesis. First, a summary and dis-

cussion of the main contributions of this thesis are presented. Then, future

work and possible extensions to the work of this thesis are proposed.

6.1 Discussion and Summary of Contributions

The primary research objective of this thesis was to use order flow data in deep

learning models to improve price prediction models, and to provide a data-driven

approach to learning the price formation process. Here, the key contributions

of the thesis towards this objectives are summarised. Though dataset from a

single exchange, Coinbase, is used to draw conclusions leading to the key con-

tributions in this thesis, they remain valid and not limited to only cryptocurrency

assets. Coinbase is the second largest cryptocurrency exchange globally and is

therefore a very liquid market in terms of the order flow behaviour. Results ex-

tracted from this data source should therefore generalise to other liquid markets

such as other foreign exchange and stock markets. Also, the results in this the-

sis are relative and anchored on some baseline models, as will be recapitulated

in the following summaries.

The work in Chapter 3 demonstrated why deep learning models should

utilise order flow data for learning price prediction models, as opposed to previ-

ous work in which deep price prediction models are trained from data that are

derived from the order flow, such as the order imbalance and the price levels in

142 Chapter 6. Conclusion

the order book. For this purpose, a novel approach to training a deep recurrent

neural network (RNN) using the order flow was introduced, with the objective

of predicting the directional mid-price movements. Models from previous work

were used to benchmark the deep order flow model and illustrate the improve-

ments to prediction performance. The results show the deep order flow model

to be statistically significantly outperforming the benchmark model in terms of its

ability to predict the directional movement of the mid-price. Further analysis of

the results revealed that the deep order flow model has additionally managed to

learn a stationary price formation model: the experiments make use of a large

test period, which overlaps with a market crash event, and subsequent volatile

trading period; even so, the deep order flow model maintains its ability to main-

tain the mid-price, while the performance of the benchmark models degrade

throughout the test period. Due to the encouraging performance of the deep

order flow model, a black-box interpretation algorithm was used to investigate

what features of the order flow had contributed to the learning of the price forma-

tion process. The results of the investigation are interesting as they both support

and conflict with existing research on the price formation process. Some factors

that were reported to have significant impact on price formation in the literature,

such as such as inter-arrival times and order size, were revealed to not be a

huge factor here for learning the directional movements of the mid-price. Other

factors, however, agree with the findings in previous work. The overall result of

the investigation of this chapter illustrates the potential of data-driven models,

even black-box models, in studying the market microstructure.

In Chapter 4, the focus turned to improving the price modelling capabil-

ity of the deep RNN model that was implemented in Chapter 3, by introducing

an extension to the model architecture. This extended architecture combines

deep neural networks and mixture modelling, with the objective of producing

probabilistic predictions of price movement, and jointly modelling the direction

and size of the movements. A deep learning model that produces such output

for predicting high-frequency price movements is entirely novel, and therefore

6.1. Discussion and Summary of Contributions 143

suitable models from other areas of research had to be chosen to provide a

benchmark. Results show that the deep mixture model outperforms the bench-

mark models in its ability to reduce the directional risk and size risk of the price

predictions. Similarly to in Chapter 3, the large test period in the dataset used

here overlaps with a market crash event. Here, once again, the deep mixture

model is shown to be able to significantly maintain its predictive power much

better than the benchmark models. A further experiment was conducted which

showed that the joint modelling of the price movements size and direction in the

deep mixture model is an improvement over a more straightforward approach

that uses two separate deep neural network, each predicting the probabilistic

size and direction of the price movements respectively. Finally, a simulated trad-

ing scenario, that uses real order flow data taken from the the test period of the

dataset, is implemented, which further illustrates the potential of deep mixture

model. The outputs of the models are integrated into separate trading algo-

rithms that implements the same trading strategy. Multiple runs of the trading

scenarios were then performed, demonstrating that the deep mixture model was

statistically significantly more profitable than the benchmark models.

Chapter 5 then further improves on the deep learning approach to mod-

elling price formation by introducing deep generative adversarial networks

(GAN) for modelling the order flow sequences themselves. Similarly to work with

zero-intelligence models described in Section 2.3.1, price movements can then

be obtained from the generated order flow sequences in a bottom-up way. Cur-

rently, there exists no previous work that uses deep learning models to model the

order flow directly, and study the resulting price formation. Therefore, to bench-

mark the performance of the SeqGAN model that was introduced in this chapter,

a well-known stochastic process model of the order flow from the quantitative fi-

nance literature was selected as a suitable benchmark. Then, the sequence

similarity between real order flow sequences and the output of the models was

investigated. When a starting order flow sequence was given to the SeqGAN

model, it was shown to be able to produce sequences that are statistically sig-

144 Chapter 6. Conclusion

nificantly better than the sequences produced by the benchmark models in two

ways. First, the arrangement of order events in the sequences generated by the

SeqGAN model was shown to be much closer to the real sequences than the

benchmark. Then, the set of order events in the SeqGAN generated sequences

was shown to overlap with the set of events in real data much more than the

benchmark sequences. Finally, an analysis of the macro-behaviour of the order

flow was performed to study the mid-prices that are dynamically formed by the

order flow. Statistical testing revealed that the distributions of the mid-price log-

returns for the SeqGAN model was closer to real mid-price time-series, than in

the case of the benchmark. In addition, the important behaviour of heavy-tails

was replicated in the mid-price log-returns distribution of the SeqGAN model,

and the computed tail-exponent of the SeqGAN mid-price log-returns distribu-

tion was found to be closer to real data than was the true for the benchmark.

The volatility of the model generated mid-price was also compared to the volatil-

ity of the real mid-price time series. The advantage of the SeqGAN model is

further reinforced here as different volatility measures of the real mid-price time-

series were better replicated in the order flow generated by the SeqGAN model,

compared to the benchmark.

6.2 Future Work

Due to the novelty of the research area, and the promising results from the work

described in the thesis, many possible extensions to the work can be suggested.

The more straightforward, though less exciting, continuation of the work of this

thesis would of course be direct improvements to the deep learning models.

More suitable model architectures, better neural network layer formulation, im-

proved loss functions and learning algorithms could be proposed through deep

dive analyses of the model predictions. The generative model in Chapter 5 in

particular, though it outperformed the benchmark, could benefit from such an

analysis and the resulting improvement to the model, generating better order

flow sequences. Other than these kinds of direct model improvements, select

6.2. Future Work 145

extensions that are potentially more interesting for future work are proposed as

follows.

6.2.1 Universality Property of the Order Flow Models

In Section 3.6.2, a brief analysis of the possible universality property of the deep

order flow model is presented with a caveat: the datasets used in the analy-

sis are extracted from currencies that are known to move together, which de-

tracts the observation that the price formation model learned from an order flow

dataset can be transferred across to other order flow datasets. Such universal-

ity properties have been reported for deep learning models of stock time-series

across different symbols [33]. Therefore, it would be interesting to investigate if

the universality observed in Section 3.6.2 would persist when the model is trans-

ferred to datasets extracted from other currencies or financial securities. If the

transferred model were not immediately usable on the new dataset, then there

would also be the valid question of how close it is to being usable, by measuring

how much effort it would take for the transferred model to converge, compared

to a new model trained entirely on the new dataset. Such work could reveal if

deep learning models are able to partly or fully learn universal models of the

price formation process in complex financial markets from order flow data.

6.2.2 Representation Learning of Order Flow Features

One of the core concepts of deep learning is that abstract representations of

given input data are learnt in each layer of the hierarchical deep neural network

architecture. The abstract representation that is learnt in each layer is the trans-

formation of the input of the layer into features that make it easier for the model to

learn the predictive task at hand. Due to the promising results of the deep order

flow model, it is of interest to investigate how powerful is the representation that

has been learnt by the model. In application domains such as image classifica-

tion, such representations can be visualised [154] and inspected by manually by

eye. However, such visualisation is currently not possible for econometric data

such as the order flow. An experiment can however be conducted by making

146 Chapter 6. Conclusion

use of the output of the last recurrent layer as features for training other types

of models, such as random forest. The performance of other models trained on

these features can be compared against training with the order flow data directly,

to investigate the power of the learnt representation.

6.2.3 Generative Modelling of Full Order Flow

In Chapter 5, the order flow had to be tokenised into price-direction events so

that could can be used with the introduced model. When studying the price

formation, the inter-arrival time between the orders, and the size of the order,

had to be sampled from empirical distributions that were fitted on data. Given

this, it would be of interest to develop a framework that would be able to learn to

jointly model all the features of the order flow for generating the full order flow.

It would be of interest to test whether such an approach, with its possible added

complexities, would be better than the current disjointed approach. The vanilla

RNN might be able to achieve this, but the effects of exposure bias could be a

major disadvantage when generating longer sequences. Certain kinds of GANs

could potentially solve this problem, such as that described in [128]. However,

the full order flow sequence contains both categorical tokens and continuous

variables and the handling of tokens in the adversarial training is still an open

question in these models.

6.2.4 Generating Synthetic Data for Training Models

One of the interesting uses proposed for the SeqGAN model in Chapter 5,

though not directly related to learning the price formation, is to generate syn-

thetic data for training models. Order flow data is notoriously expensive, and

even for the relatively small dataset used for the experiments in this thesis, it

had taken significant resources in terms of monetary costs and time. Synthetic

data generated by generative models such as the SeqGAN could democratise

research by providing order flow data that could otherwise be unobtainable to

many researchers. If time had permitted, it would have been interesting to revisit

the experiments in Chapter 3 and Chapter 4 with the synthetic data generated

6.2. Future Work 147

by the SeqGAN model. Although the performance of the SeqGAN model is

yet ideal, it would nonetheless have been interesting to perform such an ex-

periment, comparing the synthetic data against real data, in training a model to

predict price movements in the test period.

6.2.5 Concluding Remarks

The work in this thesis have opened up new avenues for research by being the

first application of deep learning to order flow data for modelling and studying the

price formation process. Although promising results have been demonstrated

in this thesis, the modelling of complex financial markets remain however, a

highly challenging research area. There is much potential to build on the pre-

sented work, as has been discussed in the preceding section on Future Work.

It is hoped that the research community in computational finance will be able to

make productive use of this new avenue in the deep learning of price formation

models for further research, and equally as important, for profit.

Bibliography

[1] Melanie Mitchell. Complex systems: Network thinking. Artificial Intelli-

gence, 170(18):1194–1212, 2006.

[2] Marcus G Daniels, J Doyne Farmer, László Gillemot, Giulia Iori, and Eric

Smith. Quantitative model of price diffusion and market friction based

on trading as a mechanistic random process. Physical review letters,

90(10):108102, 2003.

[3] Eric Smith, J Doyne Farmer, L szl Gillemot, Supriya Krishnamurthy, et al.

Statistical theory of the continuous double auction. Quantitative finance,

3(6):481–514, 2003.

[4] J Doyne Farmer, Paolo Patelli, and Ilija I Zovko. The predictive power

of zero intelligence in financial markets. Proceedings of the National

Academy of Sciences, 102(6):2254–2259, 2005.

[5] Linqiao Zhao. A model of limit-order book dynamics and a consistent

estimation procedure, 2010.

[6] Ioane Muni Toke. “market making” in an order book model and its impact

on the spread. In Econophysics of order-driven markets, pages 49–64.

Springer, 2011.

[7] Emmanuel Bacry, Khalil Dayri, and Jean-François Muzy. Non-parametric

kernel estimation for symmetric hawkes processes. application to high

frequency financial data. The European Physical Journal B-Condensed

Matter and Complex Systems, 85(5):1–12, 2012.

150 Bibliography

[8] Rama Cont and Adrien De Larrard. Price dynamics in a markovian limit

order market. SIAM Journal on Financial Mathematics, 4(1):1–25, 2013.

[9] Emmanuel Bacry and Jean-François Muzy. Hawkes model for price and

trades high-frequency dynamics. Quantitative Finance, 14(7):1147–1166,

2014.

[10] Emmanuel Bacry, Iacopo Mastromatteo, and Jean-François Muzy.

Hawkes processes in finance. Market Microstructure and Liquidity,

1(01):1550005, 2015.

[11] Emmanuel Bacry, Thibault Jaisson, and Jean-François Muzy. Estimation

of slowly decreasing hawkes kernels: application to high-frequency order

book dynamics. Quantitative Finance, 16(8):1179–1201, 2016.

[12] Robert Almgren and Neil Chriss. Optimal execution of portfolio transac-

tions. Journal of Risk, 3:5–40, 2001.

[13] Marco Avellaneda and Sasha Stoikov. High-frequency trading in a limit

order book. Quantitative Finance, 8(3):217–224, 2008.

[14] Olivier Guéant, Charles-Albert Lehalle, and Joaquin Fernandez-Tapia.

Dealing with the inventory risk: a solution to the market making problem.

Mathematics and financial economics, 7(4):477–507, 2013.

[15] Alvaro Cartea, Sebastian Jaimungal, and Jason Ricci. Buy low, sell high:

A high frequency trading perspective. SIAM Journal on Financial Mathe-

matics, 5(1):415–444, 2014.

[16] Alvaro Cartea and Sebastian Jaimungal. Optimal execution with limit and

market orders. Quantitative Finance, 15(8):1279–1291, 2015.

[17] Álvaro Cartea, Sebastian Jaimungal, and José Penalva. Algorithmic and

high-frequency trading. Cambridge University Press, 2015.

Bibliography 151

[18] Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A

unified embedding for face recognition and clustering. In Proceedings of

the IEEE conference on computer vision and pattern recognition, pages

815–823, 2015.

[19] Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior Wolf. Deep-

face: Closing the gap to human-level performance in face verification.

In Proceedings of the IEEE conference on computer vision and pattern

recognition, pages 1701–1708, 2014.

[20] Brandon Amos, Bartosz Ludwiczuk, Mahadev Satyanarayanan, et al.

Openface: A general-purpose face recognition library with mobile appli-

cations. CMU School of Computer Science, 6(2), 2016.

[21] Hyeonwoo Noh, Seunghoon Hong, and Bohyung Han. Learning decon-

volution network for semantic segmentation. In Proceedings of the IEEE

international conference on computer vision, pages 1520–1528, 2015.

[22] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional

networks for semantic segmentation. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages 3431–3440,

2015.

[23] Cicero Dos Santos and Bianca Zadrozny. Learning character-level rep-

resentations for part-of-speech tagging. In International Conference on

Machine Learning, pages 1818–1826. PMLR, 2014.

[24] Christopher D Manning. Part-of-speech tagging from 97% to 100%: is

it time for some linguistics? In International conference on intelligent

text processing and computational linguistics, pages 171–189. Springer,

2011.

[25] Sunil Kumar Sahu. Neural architectures for named entity recognition and

relation classi cation in biomedical and clinical texts. PhD thesis, Indian

Institute of Technology Guwahati, 2018.

152 Bibliography

[26] Jason PC Chiu and Eric Nichols. Named entity recognition with bidirec-

tional lstm-cnns. Transactions of the Association for Computational Lin-

guistics, 4:357–370, 2016.

[27] Luheng He, Kenton Lee, Mike Lewis, and Luke Zettlemoyer. Deep seman-

tic role labeling: What works and what’s next. In Proceedings of the 55th

Annual Meeting of the Association for Computational Linguistics (Volume

1: Long Papers), pages 473–483, 2017.

[28] Avraam Tsantekidis, Nikolaos Passalis, Anastasios Tefas, Juho Kanni-

ainen, Moncef Gabbouj, and Alexandros Iosifidis. Using deep learning to

detect price change indications in financial markets. In Signal Processing

Conference (EUSIPCO), 2017 25th European, pages 2511–2515. IEEE,

2017.

[29] Avraam Tsantekidis, Nikolaos Passalis, Anastasios Tefas, Juho Kanni-

ainen, Moncef Gabbouj, and Alexandros Iosifidis. Forecasting stock

prices from the limit order book using convolutional neural networks. In

2017 IEEE 19th Conference on Business Informatics (CBI), volume 1,

pages 7–12. IEEE, 2017.

[30] Matthew Dixon. Sequence classification of the limit order book using re-

current neural networks. Journal of computational science, 24:277–286,

2018.

[31] Nikolaos Passalis, Anastasios Tefas, Juho Kanniainen, Moncef Gabbouj,

and Alexandros Iosifidis. Temporal bag-of-features learning for predicting

mid price movements using high frequency limit order book data. IEEE

Transactions on Emerging Topics in Computational Intelligence, 2018.

[32] Justin A Sirignano. Deep learning for limit order books. Quantitative Fi-

nance, 19(4):549–570, 2019.

Bibliography 153

[33] Justin Sirignano and Rama Cont. Universal features of price formation in

financial markets: perspectives from deep learning. Quantitative Finance,

19(9):1449–1459, 2019.

[34] Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. Seqgan: Sequence

generative adversarial nets with policy gradient. In Proceedings of the

AAAI conference on artificial intelligence, volume 31, 2017.

[35] Martin D Gould, Mason A Porter, Stacy Williams, Mark McDonald,

Daniel J Fenn, and Sam D Howison. Limit order books. Quantitative

Finance, 13(11):1709–1742, 2013.

[36] Bruno Biais, Pierre Hillion, and Chester Spatt. An empirical analysis of

the limit order book and the order flow in the paris bourse. the Journal of

Finance, 50(5):1655–1689, 1995.

[37] Jean-Philippe Bouchaud, Marc Mézard, Marc Potters, et al. Statistical

properties of stock order books: empirical results and models. Quantita-

tive finance, 2(4):251–256, 2002.

[38] Ilija Zovko, J Doyne Farmer, et al. The power of patience: a behavioural

regularity in limit-order placement. Quantitative finance, 2(5):387–392,

2002.

[39] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. Overview of su-

pervised learning. In The elements of statistical learning, pages 9–41.

Springer, 2009.

[40] Yoshua Bengio, Aaron C Courville, and Pascal Vincent. Unsupervised

feature learning and deep learning: A review and new perspectives.

CoRR, abs/1206.5538, 1:2012, 2012.

[41] Martin Längkvist, Lars Karlsson, and Amy Loutfi. A review of unsuper-

vised feature learning and deep learning for time-series modeling. Pattern

Recognition Letters, 42:11–24, 2014.

154 Bibliography

[42] Daniel Svozil, Vladimir Kvasnicka, and Jiri Pospichal. Introduction to multi-

layer feed-forward neural networks. Chemometrics and intelligent labora-

tory systems, 39(1):43–62, 1997.

[43] Larry R Medsker and LC Jain. Recurrent neural networks. Design and

Applications, 5, 2001.

[44] Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan Černockỳ, and San-

jeev Khudanpur. Recurrent neural network based language model. In

Eleventh annual conference of the international speech communication

association, 2010.

[45] Sagar Sharma and Simone Sharma. Activation functions in neural net-

works. Towards Data Science, 6(12):310–316, 2017.

[46] P Sibi, S Allwyn Jones, and P Siddarth. Analysis of different activation

functions using back propagation neural networks. Journal of theoretical

and applied information technology, 47(3):1264–1268, 2013.

[47] Raymond E Wright. Logistic regression. Reading and understanding mul-

tivariate statistics, 1995.

[48] Lingxue Zhu and Nikolay Laptev. Deep and confident prediction for time

series at uber. In 2017 IEEE International Conference on Data Mining

Workshops (ICDMW), pages 103–110. IEEE, 2017.

[49] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Effi-

cient estimation of word representations in vector space. arXiv preprint

arXiv:1301.3781, 2013.

[50] Sepp Hochreiter. The vanishing gradient problem during learning recur-

rent neural nets and problem solutions. International Journal of Uncer-

tainty, Fuzziness and Knowledge-Based Systems, 6(02):107–116, 1998.

Bibliography 155

[51] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term

dependencies with gradient descent is difficult. IEEE transactions on neu-

ral networks, 5(2):157–166, 1994.

[52] Felix A Gers, Nicol N Schraudolph, and Jürgen Schmidhuber. Learning

precise timing with lstm recurrent networks. Journal of machine learning

research, 3(Aug):115–143, 2002.

[53] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Ben-

gio. Empirical evaluation of gated recurrent neural networks on sequence

modeling. arXiv preprint arXiv:1412.3555, 2014.

[54] Klaus Greff, Rupesh K Srivastava, Jan Koutnı́k, Bas R Steunebrink, and

Jürgen Schmidhuber. Lstm: A search space odyssey. IEEE transactions

on neural networks and learning systems, 28(10):2222–2232, 2016.

[55] Sebastian Ruder. An overview of gradient descent optimization algo-

rithms. arXiv preprint arXiv:1609.04747, 2016.

[56] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic opti-

mization. arXiv preprint arXiv:1412.6980, 2014.

[57] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient meth-

ods for online learning and stochastic optimization. Journal of machine

learning research, 12(7), 2011.

[58] D. M. W. Powers. Evaluation: From precision, recall and f-measure

to ROC., informedness, markedness & correlation. Journal of Machine

Learning Technologies, 2(1):37–63, 2011.

[59] Christine A Parlour and Duane J Seppi. Limit order markets: A survey.

Handbook of financial intermediation and banking, 5:63–95, 2008.

[60] Dhananjay K Gode and Shyam Sunder. Allocative efficiency of markets

with zero-intelligence traders: Market as a partial substitute for individual

rationality. Journal of political economy, 101(1):119–137, 1993.

156 Bibliography

[61] Daniel Kahneman, D Kahneman, A Tversky, et al. Experienced utility and

objective happiness: A moment-based approach. 2000, pages 673–692,

2000.

[62] Thomas Lux and Frank Westerhoff. Economics crisis. Nature Physics,

5(1):2–3, 2009.

[63] Per Bak, Maya Paczuski, and Martin Shubik. Price variations in a stock

market with many agents. Physica A: Statistical Mechanics and its Appli-

cations, 246(3-4):430–453, 1997.

[64] Nicholas F Britton et al. Reaction-diffusion equations and their applica-

tions to biology. Academic Press, 1986.

[65] Sergei Maslov. Simple model of a limit order-driven market. Physica A:

Statistical Mechanics and its Applications, 278(3-4):571–578, 2000.

[66] Damien Challet and Robin Stinchcombe. Analyzing and modeling 1+ 1d

markets. Physica A: Statistical Mechanics and its Applications, 300(1-

2):285–299, 2001.

[67] Robert F Engle and Jeffrey R Russell. Autoregressive conditional dura-

tion: a new model for irregularly spaced transaction data. Econometrica,

pages 1127–1162, 1998.

[68] Rama Cont, Sasha Stoikov, and Rishi Talreja. A stochastic model for

order book dynamics. Operations research, 58(3):549–563, 2010.

[69] Mark Paddrik, Roy Hayes, Andrew Todd, Steve Yang, Peter Beling, and

William Scherer. An agent based model of the e-mini s&p 500 applied to

flash crash analysis. In Computational Intelligence for Financial Engineer-

ing & Economics (CIFEr), 2012 IEEE Conference on, pages 1–8. IEEE,

2012.

Bibliography 157

[70] Andrei Kirilenko, Albert S Kyle, Mehrdad Samadi, and Tugkan Tuzun. The

flash crash: High-frequency trading in an electronic market. The Journal

of Finance, 72(3):967–998, 2017.

[71] Luc Bauwens and Nikolaus Hautsch. Modelling financial high frequency

data using point processes. In Handbook of financial time series, pages

953–979. Springer, 2009.

[72] Rama Cont, Arseniy Kukanov, and Sasha Stoikov. The price impact of

order book events. Journal of financial econometrics, 12(1):47–88, 2014.

[73] Zoltan Eisler, Jean-Philippe Bouchaud, and Julien Kockelkoren. The price

impact of order book events: market orders, limit orders and cancellations.

Quantitative Finance, 12(9):1395–1419, 2012.

[74] Leo Breiman et al. Statistical modeling: The two cultures (with comments

and a rejoinder by the author). Statistical science, 16(3):199–231, 2001.

[75] Scott M Lundberg and Su-In Lee. A unified approach to interpreting model

predictions. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,

S. Vishwanathan, and R. Garnett, editors, Advances in Neural Informa-

tion Processing Systems 30, pages 4765–4774. Curran Associates, Inc.,

2017.

[76] Alec N Kercheval and Yuan Zhang. Modelling high-frequency limit or-

der book dynamics with support vector machines. Quantitative Finance,

15(8):1315–1329, 2015.

[77] Darryl Shen. Order Imbalance Based Strategy in High Frequency Trading.

PhD thesis, oxford university, 2015.

[78] Dat Thanh Tran, Alexandros Iosifidis, Juho Kanniainen, and Moncef Gab-

bouj. Temporal attention-augmented bilinear network for financial time-

series data analysis. IEEE transactions on neural networks and learning

systems, 30(5):1407–1418, 2018.

158 Bibliography

[79] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature,

521(7553):436, 2015.

[80] Alexandre Bérard, Christophe Servan, Olivier Pietquin, and Laurent Be-

sacier. Multivec: a multilingual and multilevel representation learning

toolkit for nlp. In Proceedings of the Tenth International Conference on

Language Resources and Evaluation (LREC’16), 2016.

[81] Hossein Azizpour, Ali Sharif Razavian, Josephine Sullivan, Atsuto Maki,

and Stefan Carlsson. From generic to specific deep representations for

visual recognition. In Proceedings of the IEEE conference on computer

vision and pattern recognition workshops, pages 36–45, 2015.

[82] Jan Chorowski, Ron J Weiss, Samy Bengio, and Aäron van den Oord. Un-

supervised speech representation learning using wavenet autoencoders.

IEEE/ACM transactions on audio, speech, and language processing,

27(12):2041–2053, 2019.

[83] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical

bayesian optimization of machine learning algorithms. arXiv preprint

arXiv:1206.2944, 2012.

[84] H Eugene Stanley, LAN Amaral, P Gopikrishnan, P Ch Ivanov, TH Keitt,

and V Plerou. Scale invariance and universality: organizing principles in

complex systems. Physica A: Statistical Mechanics and its Applications,

281(1-4):60–68, 2000.

[85] Jerome L Kreuser and Didier Sornette. Bitcoin bubble trouble. Forthcom-

ing in Wilmott Magazine, pages 18–24, 2018.

[86] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[87] Nikolaus Hautsch and Ruihong Huang. Limit Order Flow, Market Impact,

and Optimal Order Sizes: Evidence from NASDAQ TotalView-ITCH Data,

chapter 6, pages 137–161. John Wiley & Sons, Ltd, 2012.

Bibliography 159

[88] Takatoshi Ito and Yuko Hashimoto. Intraday seasonality in activities of

the foreign exchange markets: Evidence from the electronic broking sys-

tem. Journal of the Japanese and International Economies, 20(4):637–

664, 2006.

[89] Joel Hasbrouck. Measuring the information content of stock trades. The

Journal of Finance, 46(1):179–207, 1991.

[90] Fabrizio Lillo, J Doyne Farmer, and Rosario N Mantegna. Master curve

for price-impact function. Nature, 421(6919):129–130, 2003.

[91] Wei-Xing Zhou. Universal price impact functions of individual trades in an

order-driven market. Quantitative Finance, 12(8):1253–1263, 2012.

[92] Jean-Philippe Bouchaud and Marc Potters. Theory of financial risk and

derivative pricing: from statistical physics to risk management. Cambridge

university press, 2003.

[93] Nikitas Goumatianos, Ioannis Christou, and Peter Lindgren. Stock selec-

tion system: building long/short portfolios using intraday patterns. Proce-

dia Economics and Finance, 5:298–307, 2013.

[94] Philippe Jorion. Value at risk. McGraw-Hill Professional Publishing, 2000.

[95] Edward O Thorp. The kelly criterion in blackjack sports betting, and the

stock market. In The Kelly Capital Growth Investment Criterion: Theory

and Practice, pages 789–832. World Scientific, 2011.

[96] Rasitha R Jayasekare, Ryan Gill, and Kiseop Lee. Modeling discrete stock

price changes using a mixture of poisson distributions. Journal of the

Korean Statistical Society, 45(3):409–421, 2016.

[97] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approxima-

tion: Representing model uncertainty in deep learning. In international

conference on machine learning, pages 1050–1059, 2016.

160 Bibliography

[98] Iti Chaturvedi, Yew-Soon Ong, and Rajesh Vellore Arumugam. Deep

transfer learning for classification of time-delayed gaussian networks. Sig-

nal Processing, 110:250–262, 2015.

[99] Ruofeng Wen, Kari Torkkola, Balakrishnan Narayanaswamy, and Dhruv

Madeka. A multi-horizon quantile recurrent forecaster. arXiv preprint

arXiv:1711.11053, 2017.

[100] David Salinas, Valentin Flunkert, Jan Gasthaus, and Tim Januschowski.

Deepar: Probabilistic forecasting with autoregressive recurrent networks.

International Journal of Forecasting, 2019.

[101] Hongyuan Mei and Jason M Eisner. The neural hawkes process: A neu-

rally self-modulating multivariate point process. In Advances in Neural

Information Processing Systems, pages 6754–6764, 2017.

[102] Geoffrey J McLachlan and David Peel. Finite mixture models. John Wiley

& Sons, 2004.

[103] Stefany Coxe, Stephen G West, and Leona S Aiken. The analysis of

count data: A gentle introduction to poisson regression and its alterna-

tives. Journal of personality assessment, 91(2):121–136, 2009.

[104] Martin Ridout, Clarice GB Demétrio, and John Hinde. Models for count

data with many zeros. In Proceedings of the XIXth international biometric

conference, volume 19, pages 179–192. International Biometric Society

Invited Papers. Cape Town, South Africa, 1998.

[105] Andrew Y Ng and Michael I Jordan. On discriminative vs. generative clas-

sifiers: A comparison of logistic regression and naive bayes. In Advances

in neural information processing systems, pages 841–848, 2002.

[106] Rui Hu and Stephen M Watt. An agent-based financial market simulator

for evaluation of algorithmic trading strategies. In 6th International Confer-

ence on Advances in System Simulation, pages 221–227. Citeseer, 2014.

Bibliography 161

[107] Jianling Wang, Vivek George, Tucker Balch, and Maria Hybinette. Stock-

yard: A discrete event-based stock market exchange simulator. In 2017

Winter Simulation Conference (WSC), pages 1193–1203. IEEE, 2017.

[108] Thibault Sellam, Dipanjan Das, and Ankur P Parikh. Bleurt: Learning

robust metrics for text generation. arXiv preprint arXiv:2004.04696, 2020.

[109] Emily Denton, Soumith Chintala, Arthur Szlam, and Rob Fergus. Deep

generative image models using a laplacian pyramid of adversarial net-

works. arXiv preprint arXiv:1506.05751, 2015.

[110] Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu, Chao Dong,

Yu Qiao, and Chen Change Loy. Esrgan: Enhanced super-resolution gen-

erative adversarial networks. In Proceedings of the European Conference

on Computer Vision (ECCV) Workshops, pages 0–0, 2018.

[111] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-

image translation with conditional adversarial networks. In Proceedings of

the IEEE conference on computer vision and pattern recognition, pages

1125–1134, 2017.

[112] Rui Huang, Shu Zhang, Tianyu Li, and Ran He. Beyond face rotation:

Global and local perception gan for photorealistic and identity preserving

frontal view synthesis. In Proceedings of the IEEE international confer-

ence on computer vision, pages 2439–2448, 2017.

[113] Weiwei Hu and Ying Tan. Generating adversarial malware examples for

black-box attacks based on gan. arXiv preprint arXiv:1702.05983, 2017.

[114] Thomas Schlegl, Philipp Seeböck, Sebastian M Waldstein, Ursula

Schmidt-Erfurth, and Georg Langs. Unsupervised anomaly detection with

generative adversarial networks to guide marker discovery. In Interna-

tional conference on information processing in medical imaging, pages

146–157. Springer, 2017.

162 Bibliography

[115] Jyh-Jing Hwang, Sergei Azernikov, Alexei A Efros, and Stella X Yu. Learn-

ing beyond human expertise with generative models for dental restora-

tions. arXiv preprint arXiv:1804.00064, 2018.

[116] Alex Graves. Generating sequences with recurrent neural networks. arXiv

preprint arXiv:1308.0850, 2013.

[117] Tsung-Hsien Wen, Milica Gasic, Nikola Mrksic, Pei-Hao Su, David

Vandyke, and Steve Young. Semantically conditioned lstm-based nat-

ural language generation for spoken dialogue systems. arXiv preprint

arXiv:1508.01745, 2015.

[118] William Fedus, Ian Goodfellow, and Andrew M Dai. Maskgan: better text

generation via filling in the . arXiv preprint arXiv:1801.07736, 2018.

[119] Yuyang Wang, Alex Smola, Danielle Maddix, Jan Gasthaus, Dean Foster,

and Tim Januschowski. Deep factors for forecasting. In International

Conference on Machine Learning, pages 6607–6617. PMLR, 2019.

[120] Kang Zhang, Guoqiang Zhong, Junyu Dong, Shengke Wang, and Yong

Wang. Stock market prediction based on generative adversarial network.

Procedia computer science, 147:400–406, 2019.

[121] Xingyu Zhou, Zhisong Pan, Guyu Hu, Siqi Tang, and Cheng Zhao. Stock

market prediction on high-frequency data using generative adversarial

nets. Mathematical Problems in Engineering, 2018, 2018.

[122] Shuntaro Takahashi, Yu Chen, and Kumiko Tanaka-Ishii. Modeling finan-

cial time-series with generative adversarial networks. Physica A: Statisti-

cal Mechanics and its Applications, 527:121261, 2019.

[123] Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. A fast learn-

ing algorithm for deep belief nets. Neural computation, 18(7):1527–1554,

2006.

Bibliography 163

[124] Yoshua Bengio, Li Yao, Guillaume Alain, and Pascal Vincent. Gener-

alized denoising auto-encoders as generative models. arXiv preprint

arXiv:1305.6663, 2013.

[125] Diederik P Kingma and Max Welling. Auto-encoding variational bayes.

arXiv preprint arXiv:1312.6114, 2013.

[126] Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David

Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Gen-

erative adversarial networks. arXiv preprint arXiv:1406.2661, 2014.

[127] Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. Sched-

uled sampling for sequence prediction with recurrent neural networks.

arXiv preprint arXiv:1506.03099, 2015.

[128] Jinsung Yoon, Daniel Jarrett, and Mihaela van der Schaar. Time-series

generative adversarial networks. In H. Wallach, H. Larochelle, A. Beygelz-

imer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neu-

ral Information Processing Systems, volume 32. Curran Associates, Inc.,

2019.

[129] Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lu-

cas, Peter I Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez,

Spyridon Samothrakis, and Simon Colton. A survey of monte carlo tree

search methods. IEEE Transactions on Computational Intelligence and AI

in games, 4(1):1–43, 2012.

[130] Xiang Zhang and Yann LeCun. Text understanding from scratch. arXiv

preprint arXiv:1502.01710, 2015.

[131] Ye Zhang and Byron Wallace. A sensitivity analysis of (and practitioners’

guide to) convolutional neural networks for sentence classification. arXiv

preprint arXiv:1510.03820, 2015.

164 Bibliography

[132] Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber. High-

way networks. arXiv preprint arXiv:1505.00387, 2015.

[133] Ian Goodfellow. Nips 2016 tutorial: Generative adversarial networks.

arXiv preprint arXiv:1701.00160, 2016.

[134] Ruslan Salakhutdinov. Learning deep generative models. Annual Review

of Statistics and Its Application, 2:361–385, 2015.

[135] Weibing Huang, Charles-Albert Lehalle, and Mathieu Rosenbaum. Simu-

lating and analyzing order book data: The queue-reactive model. Journal

of the American Statistical Association, 110(509):107–122, 2015.

[136] Li Yujian and Liu Bo. A normalized levenshtein distance metric. IEEE

transactions on pattern analysis and machine intelligence, 29(6):1091–

1095, 2007.

[137] Paul Jaccard. The distribution of the flora in the alpine zone. 1. New

phytologist, 11(2):37–50, 1912.

[138] Frank J Massey Jr. The kolmogorov-smirnov test for goodness of fit. Jour-

nal of the American statistical Association, 46(253):68–78, 1951.

[139] Charles W Dunnett and Ajit C Tamhane. A step-up multiple test proce-

dure. Journal of the American Statistical Association, 87(417):162–170,

1992.

[140] Abhay K Singh, David E Allen, and Powell J Robert. Extreme market

risk and extreme value theory. Mathematics and computers in simulation,

94:310–328, 2013.

[141] Yannick Malevergne*, Vladilen Pisarenko, and Didier Sornette. Empirical

distributions of stock returns: between the stretched exponential and the

power law? Quantitative Finance, 5(4):379–401, 2005.

Bibliography 165

[142] Francois M Longin. The asymptotic distribution of extreme stock market

returns. Journal of business, pages 383–408, 1996.

[143] John B Taylor and John C Williams. A black swan in the money market.

American Economic Journal: Macroeconomics, 1(1):58–83, 2009.

[144] Carlos M Jarque and Anil K Bera. Efficient tests for normality, ho-

moscedasticity and serial independence of regression residuals. Eco-

nomics letters, 6(3):255–259, 1980.

[145] A Assaf. Extreme observations and risk assessment in the equity markets

of mena region: Tail measures and value-at-risk. International Review of

Financial Analysis, 18(3):109–116, 2009.

[146] Manfred Gilli and Evis Këllezi. An application of extreme value theory

for measuring financial risk. Computational Economics, 27(2):207–228,

2006.

[147] Ramazan Gencay and Faruk Selcuk. Extreme value theory and value-at-

risk: Relative performance in emerging markets. International Journal of

Forecasting, 20(2):287–303, 2004.

[148] S Drożdż, M Forczek, J Kwapień, P Oświe, R Rak, et al. Stock market re-

turn distributions: From past to present. Physica A: Statistical Mechanics

and its Applications, 383(1):59–64, 2007.

[149] Ole E Barndorff-Nielsen and Neil Shephard. Volatility. Encyclopedia of

Quantitative Finance, 2010.

[150] Roger W Klein and Vijay S Bawa. The effect of estimation risk on optimal

portfolio choice. Journal of Financial Economics, 3(3):215–231, 1976.

[151] Neil Shephard. Stochastic volatility. Oxford University, 2005.

[152] Yacine Aı̈t-Sahalia, Per A Mykland, and Lan Zhang. Ultra high fre-

quency volatility estimation with dependent microstructure noise. Journal

of Econometrics, 160(1):160–175, 2011.

166 Bibliography

[153] Torben G Andersen and Viktor Todorov. Realized volatility and multipower

variation. Encyclopedia of Quantitative Finance, 2010.

[154] Matthew D Zeiler and Rob Fergus. Visualizing and understanding con-

volutional networks. In European conference on computer vision, pages

818–833. Springer, 2014.

	Introduction
	Motivations from the Literature and Industry
	Research Objectives
	Major Contributions
	Thesis Outline

	Background and Related Work
	Order-Driven Markets
	The Limit Order Book
	Matching Engine
	Limit Order Book Implementation
	Order Flow and Mid-Price Movements

	Deep Learning
	Feedforward Layer
	Recurrent Layer
	Optimisation
	Performance Metrics

	Related Work
	Theory-Driven Models
	Multiple Poisson Models
	Data-Driven Models

	Deep Modelling of Price Formation Using the Order Flow
	Introduction
	Deep Order Flow Model
	Benchmark Models
	Data Source
	Dataset
	Results
	Comparison of Model Performance
	Analysis of Stationarity
	Brief Investigation of Universality in the Order Flow Model

	Impact of Order Flow Features on Price Formation
	Inter-Arrival Time Between Order
	Order Buy/Sell Direction
	Order Price
	Order Type
	Other Features

	Summary

	Deep Probabilistic Modelling of Price Movements
	Introduction
	Method
	Problem Formulation
	Network Architecture for Probabilistic Modelling
	Covariates and Target Variable

	Mixture Likelihoods
	Benchmark Models
	Benchmark 1: Poisson Mixture GLM
	Benchmark 2: Multiple Poisson Process

	Dataset
	Main Experimental Results
	Results 1: Directional Risk
	Results 2: Size Risk

	Comparing Against Two Separate Models
	Results

	Application to a Simulated Trading Scenario
	Trading Strategy
	Experimental Method
	Results

	Summary

	Deep Generative Modelling of Order Flow Sequences
	Introduction
	Technical Background
	Deep Generative Models
	The SeqGAN Framework
	Convolutional Neural Network

	Method
	Problem Formulation
	SeqGAN Modelling of Order Flow Sequences

	Benchmark Model
	Dataset
	Sequence Similarity
	Results

	Macro-Behaviour Analyses
	Macro-Behaviour 1: Mid-Price Returns Distribution
	Macro-Behaviour 2: Mid-Price Returns Tail-Exponent
	Macro-Behaviour 3: Mid-Price Volatility

	Summary

	Conclusion
	Discussion and Summary of Contributions
	Future Work
	Universality Property of the Order Flow Models
	Representation Learning of Order Flow Features
	Generative Modelling of Full Order Flow
	Generating Synthetic Data for Training Models
	Concluding Remarks

	Bibliography

