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altered brain functional connectome
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Impulsive and compulsive problem behaviours are associated
with a variety of mental disorders. Latent phenotyping indicates
the expression of impulsive and compulsive problem behaviours
is predominantly governed by a transdiagnostic ‘disinhibition’
phenotype. In a cohort of 117 individuals, recruited as part of the
Neuroscience in Psychiatry Network (NSPN), we examined how
brain functional connectome and network properties relate to
disinhibition. Reduced functional connectivity within a subnet-
work of frontal (especially right inferior frontal gyrus), occipital
and parietal regions was linked to disinhibition. Findings provide
insights into neurobiological pathways underlying the emer-
gence of impulsive and compulsive disorders.
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It is increasingly acknowledged that psychiatric symptoms are
underpinned by common latent constructs that manifest in an
inappropriate or maladaptive manner.1 Specifically, ‘impulsivity’
and ‘compulsivity’ are two such critical constructs that typify a
range of disorder presentation, e.g. substance dependence and
obsessive–compulsive disorders. Impulsivity encompasses a predis-
position toward poorly conceived actions, taking undue risks, and a
lack of consideration when making decisions.2 Compulsivity is
thought of as an inappropriate and maladaptive persistence of
repetitive behaviour, undertaken according to rigid rules and/or
as a means of avoiding perceived negative consequences.2

Although features of impulsive and/or compulsive behaviour exist
in a dimensional fashion within the general population, reflecting
a lack of control over thoughts and behaviour, more extreme patho-
logical manifestations underpin a range of psychiatric disorders.2

Impulsive and compulsive problems are often examined separ-
ately as disparate constructs, but the cooccurrence and fluidity by
which the two constructs may transition from one to the other
suggest that some shared variance, and common brain mechanisms,
contribute to both.2 Recent work demonstrated that >70% of
symptom expression across 33 impulsive and compulsive beha-
viours (as measured by the Impulsive-Compulsive Behaviours
Checklist (ICBC)) could be statistically accounted for by a trans-
diagnostic ‘disinhibition’ phenotype.3 Conceptually, disinhibition
reflects a lack of top-down executive control, reflected in both cog-
nitive inflexibility-driven compulsivity and impulsivity.2 Yet,
although a wealth of evidence documents brain network reorganisa-
tion across a range of impulsivity- and compulsivity-related mental
disorders, compared with controls, little is known about network
characteristics associated with disinhibition as viewed dimension-
ally along a continuum. Brain network dysregulation has been
demonstrated to cut across diagnostic boundaries of psychiatric dis-
orders, representing individual variability (e.g. impulsivity and
compulsivity) that guide motivated behaviour. In this vein, deci-
phering the link between brain network topology and latent behav-
ioural phenotypes (such as disinhibition) can be considered vital to

clarifying the neurobiology of impulsive and compulsive disorders.2

The primary aim of this study was to use connectomics and graph
theory to identify dysregulated brain networks associated with dis-
inhibition, and therefore implicated as common substrate across
impulsive and compulsive behaviours.

Method

Participants were recruited from a larger cohort of adolescents and
young adults from the Neuroscience in Psychiatry Network (NSPN)
study.4 A detailed description of the recruitment methods and
sample have been previously published.4 In brief, the NSPN was set
up as a demographically representative sample of the UK population,
using a stratified recruitment design. Participants were entered on
the basis of having no history of psychiatric treatment or neurological
disorder, head injury or intellectual disability. Measures of impulsivity
and compulsivity symptomswere collectedwith the ICBC, 3 years after
enrolment. The ICBC assesses for the frequency of 33 common impul-
sive and compulsive problem behaviours (e.g. washing, smoking,
gambling).3,5 In a previous paper, confirmatory factor analysis on
654 participants’ ICBC response identified a single latent factor
(termed ‘disinhibition’) accounting for around 70% of the variance
in participants’ ICBC scores (see Supplementary Table 1 available at
https://doi.org/10.1192/bjp.2021.49, for ICBC checklist items and
loadings).3

Magnetic resonance imaging acquisition and
preprocessing

From the original NSPN cohort, a random subset of participants
completed neuroimaging, of whom data were available from 117
who had also undertaken the subsequent round collecting the
ICBC data. The study was approved by the Cambridge
East Research Ethics Committee (approval number 207190), and
individuals provided informed consent.

The British Journal of Psychiatry (2022)
220, 76–78. doi: 10.1192/bjp.2021.49

76
Downloaded from https://www.cambridge.org/core. 26 Jan 2022 at 14:39:11, subject to the Cambridge Core terms of use.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.cambridge.org/core


Brain scans were conducted at three sites: two at the University
of Cambridge (the Wolfson Brain Imaging Centre and the Medical
Research Council Cognition & Brain Sciences Unit) and one at
University College London (the Wellcome Trust Functional
Imaging Laboratory). All sites had identical 3 T, 32-channel mag-
netic resonance imaging (MRI) systems (Magnetom TIM Trio)
and a unified acquisition sequence. Resting-state functional scans
were obtained with a multi-echo echoplanar imaging sequence.
Scanner detail and preprocessing steps can be found in the study
published by Váša et al.6

Parcellation and network-based statistics analysis

Following preprocessing, functional MRI images were parcellated
by subdividing the Desikan–Killiany anatomical atlas into 308 cor-
tical parcels of approximately equal surface area (around 500 mm2)
and 16 subcortical regions. Blood oxygenation level dependent time
series were estimated from the average over all voxels within each of
the 324 parcels (nodes). Pearson correlation was calculated between
the time series of each pair of nodes, to determine their functional
connectivity strength, resulting in a symmetric 324 × 324 connectiv-
ity matrix for each participant (Fig. 1). The resultant matrices were
Fisher’s r-to-z transformed to improve normality of the correlation
estimates.

The network-based statistics connectome software package
(version 1.2; https://www.nitrc.org/projects/nbs/) was used to
assess for association between interregional connectivity matrix
and disinhibition scores, controlling for age, gender and IQ. IQ
was recorded with the Wechsler Abbreviated Scale of Intelligence
– Second Edition (WASI-II)7. This first included mass univariate
testing at each edge, with a primary component-forming threshold
of P < 0.0001 uncorrected. Each identified component (i.e. topo-
logically connected subnetwork) was then assessed at 10 000 permu-
tations, using a family-wise error rate-corrected level of P < 0.05.

Graph theory analysis

Graph theoretic analysis (i.e. modelling the brain network as a graph
of interconnected regions/nodes) was further used to examine spe-
cific brain connection properties. The Brain Connectivity Toolbox8

was used, and properties examined include local network properties
(nodal degree, normalised betweenness centrality, local efficiency
and clustering coefficient) and global network properties (global
efficiency and transitivity). These properties were examined across
sparsity thresholds of 0.05 to 0.2 (at increments of 0.01). The
areas under the curve across the threshold range for the listed prop-
erties were computed, and partial correlation was used to determine
if any of these network properties were significantly associated with
disinhibition, again controlling for age, gender and IQ. Local and
global properties were assessed at P < 0.000154 and P < 0.025,
respectively (i.e. Bonferroni-corrected for number of nodes and
number of global properties, respectively).

Results

The 117 participants (71 women) had a mean age of 22.6 (s.d. 2.7,
range 18–28) years, and mean IQ of 112.5 (s.d. 10.7).
Disinhibition factor score estimates ranged from −1.38 to 2.28
(mean 0.05, s.d. 0.81). Network-based statistics analysis revealed a
subnetwork of 15 edges across 15 regions, which was significantly
negatively associated with disinhibition scores (family-wise error
rate-corrected P = 0.0203). The connections primarily linked the
right inferior frontal brain region (right pars opercularis) to bilateral
lateral occipital regions (9 out of 15 connections/edges), and the
right lateral occipital region to the right parietal (supramarginal)
region (4 edges). Two other edges connect the right pars opercularis
to the left precentral and left superior frontal gyri. See Fig. 1 for
brain networks, visualised with BrainNet Viewer (version 1.7 for
MacOS; https://www.nitrc.org/projects/bnv/).9 Examination of
local (all P > 0.00039, r < 0.32) and global (all P > 0.016, r < 0.23)
network metrics revealed no other significant association between
network measures and disinhibition scores, at the Bonferroni cor-
rection threshold.

Discussion

This study demonstrates connectome-level variation in brain func-
tional networks associated with disinhibition, providing the first
evidence of common functional substrates contributing to both
impulsive and compulsive behaviour problems. Reduced network
connections across a subnetwork of frontal (specifically right infer-
ior frontal), parietal and occipital regions were observed in associ-
ation with increased disinhibition. Over half of the affected edges
connect the bilateral occipital regions to the right inferior frontal
region – specifically, the pars opercularis. These changes were
regionally specific and did not reflect changes in global network
properties. These data indicate that variation in connectivity is
related to disinhibition, which was driven primarily by connection
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Fig. 1 (a) Average functional magnetic resonance imaging (fMRI)
connectivity matrix. (b) Subnetwork showing reduced functional
connectivity associated with latent disinhibition phenotype,
assessedwith the network-based statistics (NBS) software package
and visualised with BrainNet Viewer. (c) The subnetwork consists of
15 edges across 15 regions, connecting the right pars opercularis (in
deep blue) to bilateral lateral occipital regions (in red and light blue),
the right lateral occipital region to the right supramarginal region (in
pink), and the right pars opercularis to the left precentral (in yellow)
and left superior frontal gyri (in green), respectively. lLOC, left lateral
occipital; lPrg, left precentral gyrus; lSFg, left superior frontal gyrus;
rLOC, right lateral occipital; rPOp, right pars opercularis; rSMg, right
supramarginal.
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to the inferior frontal region (as measured by total number of con-
necting edges). This converges with other studies emphasising the
central role of the inferior frontal brain region in response inhibition
and maladaptive behavioural problems.2 The inferior frontal and
occipital cortices are co-activated, and show marked functional
coupling when inhibitory control is required.10 Additionally,
reduced inhibition-related functional connectivity between frontal
and posterior brain regions constitutes a candidate vulnerability
marker for obsessive–compulsive disorder.11 The current data
suggest that aberrant long-distance resting-state connections
along the anterior-posterior axis may play a role in predisposing
toward disinhibited behaviour.

Limitations and conclusion

The original NSPN cohort was recruited to be epidemiologically
representative of the general UK population. This reduces selection
biases inherent in clinical samples, but may limit the applicability of
findings to those with more severe psychopathology (i.e. higher dis-
inhibition). Another limitation is that the study shows association
not causality. Future work should examine what precise underlying
mechanisms (psychological and biological) contribute to the
observed link between disinhibition and brain dysconnectivity.
However, our findings provide insights into neurobiological pro-
cesses that confer vulnerability to many types of problematic impul-
sive and compulsive behaviours, and therefore may be relevant to
the search for transdiagnostic heuristics. Extending these techniques
into patient populations, and larger imaging cohorts, will ideally
refine our current understanding of the aetiology and course of psy-
chiatric disorders, and the role of common latent phenotypes in the
emergence of psychiatric conditions. This will require the inclusion
of appropriate measurement tools for impulsivity and compulsivity
in large-scale population studies, which have typically overlooked
such dimensional measures in favour of binary measures or interro-
gation of symptoms of discrete disorders (e.g. obsessive–compulsive
disorder).
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