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ABSTRACT

Automated analysis of tissue sections allows a better un-
derstanding of disease biology, and may reveal biomarkers
that could guide prognosis or treatment selection. In digital
pathology, less abundant cell types can be of biological signif-
icance, but their scarcity can result in biased and sub-optimal
cell detection model. To minimize the effect of cell imbal-
ance on cell detection, we proposed a deep learning pipeline
that considers the abundance of cell types during model train-
ing. Cell weight images were generated, which assign larger
weights to less abundant cells and used the weights to reg-
ularize Dice overlap loss function. The model was trained
and evaluated on myeloma bone marrow trephine samples.
Our model obtained cell detection F1-score of 0.78, a 2%
increase compared to baseline models, and it outperformed
baseline models at detecting rare cell types. We found that
scaling deep learning loss function by the abundance of cells
improves cell detection performance. Our results demonstrate
the importance of incorporating domain knowledge on deep
learning methods for pathological data with class imbalance.

Index Terms— Deep learning, convolutional neural net-
work, cell detection, class imbalance, digital pathology, mul-
tiplex immunohistochemistry.

1. INTRODUCTION

In digital pathology, cell detection and classification are
the first step to assessing tumour load, surrounding micro-
environment and immune phenotypes [1]. Multiplex im-
munohistochemistry (mIHC) is a staining method that allows
simultaneous examination of multiple cell markers in a single
image, where each cell is represented by a unique color or
color combinations (Fig. 1). Intrinsically, some cell types
are fewer compared to others. For example, in bone marrow
trephine samples, the number of CD4+/FOXP3- effector and
CD4+/FOXP3+ regulatory T cells is lower than that of CD8+
T cells ( Fig. 1). This imbalance causes instability and bias

on the performance of discriminative models.
Recently, different deep learning techniques have been

proposed to address the issue of class imbalance in medical
image data. Some methods focus on sampling, and/or aug-
mentation [2]. The sampling method reduces variability of
the data [2]. Both methods are suited for segmentation (for
example, background vs. foreground segmentation) and clas-
sification applications because a training sample for such ap-
plications has fewer number of instances/labels. However, in
a patch based cell detection, there might be hundreds of cells
in a small patch belonging to different classes. Thus, patch
level sampling and augmentation approaches might increase
the degree of imbalance in the context of single cell detec-
tion. Other methods focused on developing a robust training
loss function [2, 3]. Folk et al. [3] proposed an approach that
assigns cell weight from cell segmentation. However, collect-
ing manual single cell segmentation is costly.

Fig. 1. Samples mIHC image showing class imbalance. The
number of CD8+ cells (red) are higher than CD4+/FOXP3-
(brown) and CD4+/FOXP3+ (dark blue) cells.

In this work, we proposed a new class balancing approach
in the context of single cell detection from single cell dot an-
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Table 1. Distribution of dataset. number of slides (Ns)
– Ns CD8+ CD4+/FOXP3- CD4+/FOXP3+

Training 5 2244 997 243
Validation 3 1555 689 140
Test 3 1306 702 138

notation. Our work has the following contributions:
• We implemented cell detection and classification deep

learning framework that uses class balancing technique
of Dice overlap in dataset with class imbalance.

• We implemented an algorithm that generates cells
weight image from expert dot annotation based on the
relative abundance of cell types in the training data.

• We implemented and compared performance of differ-
ent cell weighting strategies.

2. MATERIAL

Our dataset contains 11 newly diagnosed myeloma bone
marrow mIHC whole slide images. It contains CD8+,
CD4+/FOXP3- and CD4+/FOXP3+ cell types (Fig. 2a).
To train and evaluate the proposed method, a total of 8014
cells were annotated in different regions of the whole slide
images by experts by putting a dot at the center of a cell (Fig.
2b). Table 2 shows training, validation, and testing split.

3. METHODOLOGY

3.1. Cell detection training data preparation

For training, the annotated regions were divided into 256x256
x3 patches. Let n be the number of training patches, the train-
ing data, Td is represented by a set Td = {I, R, W)} =
{(I1, R1,W 1), (I2, R2, W 2), (I3, R3, W 3), ..., (In, Rn,
Wn)} , where Ii ∈ R256 x 256 x 3,W i ∈ R256 x 256 x 1, and
Ri ∈ R256 x 256 x 1 are the ith input, weight, and reference
images, respectively. Sample I, R and W images are shown in
Fig. 2b.

Reference image: it is an artificial image generated from
the expert single cell dot annotation using Equation (1).

R(i, j) =

{
1 if d < r

0 otherwise
(1)

where R(i, j) is pixel value at (i, j) and d is an Euclidean
distance from (i, j) to the closest cell center. The value of r
was set to 4 pixels( 1.768 µ m). The value of r was chosen
empirically, making sure blobs in R don’t touch each other
(Fig. 2b).

Weight image: it assigns a weight to every cell in the
input image (Fig. 2b). The weights are inferred from the rel-
ative abundance of each cell type in the training data. Rare
cells are given larger weight. Let n be the number of cell
types in the training dataset, let C = {c1, c2, c3, ..., cn} be
the n cell types, and let Nk be the number of ck cells in the
training data. Then, N = {N1, N2, N3, ..., Nn} represent
a set of abundance of cells for the n cell types. Weight im-
age is generated using information from N and location of
cells. We implemented three cell abundance weighting func-
tions: RatioWeight (Equation 2), ExpWeightType1 (Equation
3), and ExpWeightType2 (Equation 4).

W (i, j) =

{
max(N)

Nk if dk < r

1 otherwise
(2)

W (i, j) =

{
exp− Nk

max(N) if dk < r

exp−1 otherwise
(3)

W (i, j) =

{
exp−( Nk

max(N) )
2 if dk < r

exp−1 otherwise
(4)

where dk is an Euclidean distance from (i, j) to the kth cell
type center. The value of r was set to 4 pixels( 1.768 µm).

For our dataset, C = {CD8+, CD4+/FOXP3-, CD4+/
FOXP3+ }, N = {2244, 997, 243} and these values are used
to generate the weights using Equation (2 - 4).

Fig. 2. Training data preparation. a) Sample patches for all
cell types. b). Sample annotated, reference (R) and weight
(W) images for an input image (I). In W, less abundant cell
type is assigned larger weight. CD4+/FOXP3+ cells have
larger weight than CD4+/FOXP3- and CD8 cells.



Fig. 3. Schematic of cell detection model. The number on the top and side of the blocks indicate the size and spatial dimension
of the features, respectively. The loss function is computed using model output, reference and weight images.

3.2. Cell detection model

Our proposed cell detection pipeline is shown in Fig. 3. It is
a U-net [4] convolutional neural network (CNN) inspired by
inception V3. We applied inception V3 blocks which extracts
multi-scale features at a given layer. The model has encoder
and decoder part. The encoder learns low dimensional rep-
resentation of the input image, and the decoder reconstruct a
target image. The 1x1 convolutional layer at the end of the
architecture transforms 256x256x16 dimensional features to
256x256x1, size of reference image (R). Parameters were ini-
tialized using uniform glorot [5], and optimized using Adam
[6] with learning rate of 10−4. ReLU activation was applied
to all layers, but Sigmoid to the last layer to transform the
output to probability.

3.3. Cell detection loss function

To minimize the effect of class imbalance, we applied
weighted dice overlap loss. The loss was computed as

l = 1−2
∑j=w

j=0

∑i=h
i=0 W (i, j)Y (i, j)R(i, j) + ε∑j=w

j=0

∑i=h
i=0 W (i, j)(Y (i, j) +R(i, j)) + ε

(5)

where W , R and Y are the weight, reference and output im-
ages, respectively. w and h represent width and height of
input image respectively. ε = 10−5 was added to ensure com-
putational stability.

3.4. Cell classification model

To train a cell classification model, we extracted 28x28x3
patches as shown in Fig. 2a. We applied VGG [7] style
architecture, which contains three convolutional layers with
{16, 32, 64} filters followed by two dense layers with {200, 3}
neurons. ReLU activation was applied to all layer, but Soft-
max for the last layer to transform the tensors to probabilities.
Parameters were initialized using uniform glorot [5], and
optimized using Adam [6] with learning rate of 10−4. We
applied categorical cross entropy loss with class weighting
explained in Equation (2 - 4).

4. RESULTS AND DISCUSSION

To evaluate the performance of the proposed different weight-
ing strategy based cell detection models and compare with
other state of the art U-Net [4] and CONCORDe-Net [8], we
measured precision, recall, and f1-score on separately held
test images. CONCORDe-Net [8] is cell count regularized
CNN designed for cell detection for mIHC images.

F1-score of 0.78 was obtained using ExpWeightType1
and RatioWeight models, a 2% increase compared to U-net
and 1% increase compared to CONCORDe-Net [8] as shown
in Table 2. Moreover, recall of ExpWeightType2 model was
higher than baseline models by at least 5%. For ExpWeight-
Type1 model, a detection was considered as true positive if it



is within 10 pixels (4.42µm) Euclidean distance to a ground
truth annotation. For all models, the distance was optimized
independently maximizing F1-score. This suggests class
weighting improves cell detection performance.

Table 2. Cell detection performance of different models. U-
net [4] model is a model in Fig. 3 trained without applying
weights.

Method Precision Recall F1-score
ExpWeightType1 0.82 0.75 0.78
RatioWeight 0.80 0.75 0.78
ExpWeightType2 0.78 0.77 0.77
CONCORDe-Net [8] 0.81 0.72 0.76
U-net [4] 0.80 0.70 0.76

To measure classification performance, we measured area
under the curve (AUC) and accuracy on a separately held test
images. For cell classification, there was no significant dif-
ference on AUC for the different weighting strategies. Fig.
4a shows the performance of cell classifier with ExpWeight-
Type1 weighting. AUC was greater than 0.995 for all cell
types. Overall accuracy of 0.97 was achieved.

To visualize separability of cell types using deep learnt
features and to scrutinize miss-classified cell types, we
applied uniform manifold approximation and projection
(UMAP) dimensionality reduction (Figure 4b). The different
cell types are mapped into different UMAP space in 2D. CD8
cells in the same space with CD4 cells are cells expressing
both CD4 and CD8 proteins.

Fig. 4. Cell classification model performance evaluation. a)
Receiver operating characteristics curve and area under the
curve (AUC). b) UMAP visualization of 200 dimensional
deep learned features.

In our dataset, compared to CD8+ cells there are less num-
ber of CD4+/FOXP3+ cells. The visualization in Fig. 5 indi-
cates a model with ExpWeightType1 detected CD4+/FOXP3+
cells, which were under-represented in the training dataset,
while the model trained without any weight (U-net) missed
some of these cells. For CD8+ cells, the detection results re-
main similar with and without cell weighting. However, we
observed that the weighted model sometimes failed to detect
large (in size) CD4+/FOXP3+ cells. This could be because

Fig. 5. Samples results from different cell detection methods.

of under-representation such type of cells in the training data.
This indicates the proposed weighting method introduces as
attention mechanism to the model to detect rare cell types and
thus improve overall cell detection performance.

For reproducibility, model was trained using a Docker im-
age within Singularity container on HPC cluster. Code is
available at https://github.com/YemanBrhane/AwareNet. The
docker image is available on at yhagos/tf2gpu:concordenet on
Docker Hub.

Our study has limitations. Our samples were collected
from different hospitals with potential differences in process-
ing and fixation, but they were stained and scanned using the
same protocols and platform. We trained and validated the
model on small scale dataset.

Overall, our results demonstrate the importance of incor-
porating domain knowledge for deep learning training on a
dataset with class imbalance. In the future, we will apply the
model on a larger cohort of bone marrow samples, to under-
stand the composition of the bone marrow immune microen-
vironment, and the changes imposed by malignant disease.

5. CONCLUSION

In this paper, to minimize the effect of cell imbalance in cell
detection, we proposed a deep learning method that considers
abundance of cells during training. Cell weight images were
generated by assigning larger weights to less abundant cell
types and applied the weights to regularize Dice overlap loss
function. Using negative exponential weighting, we obtained
a 2% increase in cell detection F1-score, and better rare cells



detection compared to baseline models.
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