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Abstract

The availability of genomic data is often essential to progress in biomedical re-

search, personalized medicine, drug development, etc. However, its extreme sensi-

tivity makes it problematic, if not outright impossible, to publish or share it.

In this dissertation, we study and build systems that are geared towards privacy

preserving genomic data sharing. We first look at the Matchmaker Exchange, a

platform that connects multiple distributed databases through an API and allows

researchers to query for genetic variants in other databases through the network.

However, queries are broadcast to all researchers that made a similar query in any of

the the connected databases, which can lead to a reluctance to use the platform, due

to loss of privacy or competitive advantage. In order to overcome this reluctance,

we propose a framework to support anonymous querying on the platform.

Since genomic data’s sensitivity does not degrade over time, we analyze the

real-world guarantees provided by the only tool available for long term genomic

data storage. We find that the system offers low security when the adversary has

access to side information, and we support our claims by empirical evidence.

We also study the viability of synthetic data for privacy preserving data shar-

ing. Since for genomic data research, the utility of the data provided is of the utmost

importance, we first perform a utility evaluation on generative models for different

types of datasets (i.e., financial data, images and locations). Then, we propose a

privacy evaluation framework for synthetic data. We then perform a measurement

study assessing state-of-the-art generative models specifically geared for human ge-

nomic data, looking at both utility and privacy perspectives. Overall, we find that

there is no single approach for generating synthetic data that performs well across
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the board from both utility and privacy perspectives.



Impact Statement

The research in this thesis focuses on analyzing existing methods that enable data

sharing in genomics.

First, we look at the Matchmaker Exchange. Being aware that broadcasting

queries might discourage researchers to use the platform due to possible loss of

competitive advantage or privacy, we propose a framework that enables anonymous

queries, AnoniMME. By using reverse private information retrieval as a building

block, we enable queries to support public key encryption of contact details and

add a response phase where users can anonymously reply to queries. Using an

experimental evaluation, we show that AnoniMME is efficient and scalable, and

can bring anonymity to the Matchmaker Exchange with low overhead. Thus, we

are confident that it can be deployed in the wild and further encourage researchers

to share genomic data.

Second, we look at GenoGuard, the only tool proposed for long term encryp-

tion of genomic data. We find that, under a low-entropy password setting, if the

adversary obtains side information about the target sequence, there is a significant

lower bound in their advantage. This shows that the system offers low security

when the adversary has access to side information, and we support our claims by

empirical evidence. In a high-entropy password setting, we quantify the privacy

loss for a user using GenoGuard compared to state-of-the-art inference methods for

genomic data, showing that it is non-negligible. This prompts the need for more

research geared towards the design of long-term encryption tools for genomic data.

Finally, we study whether synthetic data is a viable solution for enabling pri-

vacy preserving data sharing. Since for genomic data research the utility of the
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data provided is of the utmost importance, we first perform a utility evaluation on

generative models for different types of datasets (i.e., financial data, images and lo-

cations). We find that generative models that are purposely built for a specific type

of data yield the best utility. Thus, a successful generic approach able to generate

universally meaningful synthetic data might not be viable. We then propose a pri-

vacy evaluation framework for synthetic data. By treating the generative models as

a black box, we quantify the privacy risk arising from releasing synthetic datasets

under membership inference. Our framework is built as a modular Python library

and is available for use to researchers and practitioners, which can also adapt the

evaluation to any privacy concern specific to the data holder’s case. Overall, we find

that synthetic data is not the silver-bullet solution to privacy problems of microdata

publishing. Last, but not least, we perform a measurement study assessing state-of-

the-art generative models specifically geared for human genomic data, looking at

both utility and privacy perspectives (membership inference). Moreover, we show

that, even without access to the full sequence of a target individual, membership in-

ference attacks are still a threat to individual privacy. Similar to the generic case, we

find that no single approach for generating synthetic data performs well across the

board, thus suggesting that synthetic data without explicit privacy protection might

not be a viable option.
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Chapter 1

Introduction

Advances in genome sequencing and genomics are enabling tremendous progress

in medicine and healthcare, paving the way to making the prevention, diagnosis,

and treatment of diseases tailored to the individual’s specific genetic makeup, thus

becoming cheaper and more effective. Researchers are also gaining a better under-

standing, and developing more successful treatments of rare genetic diseases. How-

ever, even though sequencing costs have plummeted from billions to thousands of

dollars over the past 15 years [11], it is still hard for researchers to gain access to

genomic data, especially those pertaining to rare conditions.

Therefore, seamless progress in genomics research hinges on the ability to

collaborate and share data among different institutions. Numerous initiatives have

been established to support and encourage genomic data sharing, and funding agen-

cies like the National Institutes of Health (NIH) often make it a requirement to fund

grant applications [129]. Successful data sharing programs include the International

HapMap Project [122], which helped identify common genetic variations and study

their involvement in human health and disease, the 1000 Genomes Project [12], and

the 100,000 Genomes Project [63], both aiming to create a catalog of human varia-

tion and genotype data, as well as the European 1+ Million Genomes [157], which

aims to allow for more personalized treatments and provide new impactful research.

More recently, programs like “All of Us”[3] or Genomics England [6] are in

the process of sequencing the genomes of millions of individuals in the US and

in the UK. Aiming to foster collaborations, the Global Alliance for Genomics and
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Health (GA4GH) [73] was established, with core funding from NIH, Wellcome, and

Canada’s CanShare, with the explicit goal of making data sharing between institutes

simple and effective. The GA4GH has developed several platforms, e.g., the Beacon

Project [72], allowing researchers to search if a certain allele exists in a database of

genomic data, as well as the Matchmaker Exchange (MME) [142], which facilitates

rare disease discovery.

Alas, as more and more genomic data is generated, collected, and shared, seri-

ous privacy, security, and ethical concerns also become increasingly relevant. The

genome contains very sensitive information related to, e.g., ethnic heritage, dis-

ease predispositions, and other phenotypic traits [24]. Furthermore, even though

most published genomes have been anonymized, previous work has shown that

anonymization does not provide an effective safeguard for genomic data [79]. While

some individuals choose to donate their genome to science, or even publicly share

it through initiatives like the Personal Genomes Project [141], others might be

concerned about their privacy, or fear discrimination by employers, government

agencies, insurance providers, etc. [36].

Worse yet, consequences of genomic data disclosure are not limited in time or

to the data owner: due to its hereditary nature, access to one’s sequenced genome

inherently implies access to many features that are relevant to their progeny and

their close relatives. A case in point is the story of Henrietta Lacks, a patient who

died of cancer in 1951. Some of her cancerous cells were revealed to be useful for

research because of their ability to keep on dividing. Unbeknownst to her family, the

cells became the most commonly used “immortal cell line,” and their genome was

eventually sequenced and published [106]. This prompted serious privacy concerns

among her family members, even 60 years later [39].

Motivated by these challenges, the research community has produced a large

body of work aiming to protect genomic privacy and enable privacy-preserving

sharing and testing of human genomes [118]. Available solutions mostly rely on

cryptographic tools, including encryption as well as Secure Computation, Homo-

morphic Encryption, Oblivious RAM, etc. [28]. However, modern encryption al-
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gorithms provide security guarantees only against computationally bounded adver-

sary; essentially, their security is assumed to last for 30 to 50 years [161]. While this

timeframe is acceptable for most uses of encryption, it is not for genomic data. In

fact, in a study published by Mittos et. al [118], the long term security of genomic

data has been identified not only as one of the most important problems to solve,

but also one of the most difficult.

More recently, genomics researchers have begun to investigate the possibility

of releasing synthetic datasets, rather than real/anonymized data [155]. This fol-

lows a general trend in healthcare; for instance, the National Health Service (NHS)

in England has recently concluded a project focused on releasing synthetic Emer-

gency Room (“A&E”) records [128]. The intuition is to use generative models to

learn to generate samples with the same characteristics—more precisely, with the

same distribution—of the real data. That is, rather than releasing data of actual in-

dividuals, entities share artificially generated data in such a way that the statistical

properties of the original data are preserved, but minimizing the risk of malicious

inference of sensitive information [61].

1.1 Research Questions and Contributions
Given the existing challenges and the great opportunities related to genomics, we

set the broad goal for this dissertation to evaluate existing methods proposed for ge-

nomic data sharing. Such a goal entails addressing several open research questions,

including:

RQ1. How can we improve existing frameworks that aim to support genomic data

sharing and encourage researchers to collaborate?

RQ2. Can we rely on existing encryption techniques for long term encryption to

enable sharing of encrypted genomic data?

RQ3. Is synthetic data a suitable alternative, both in terms of utility and privacy, for

enabling genomic data sharing?

In this dissertation, we set to shed light on these research questions. More
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specifically, this thesis makes the following contributions:

C1. We propose a framework to support anonymous queries within the genomic

data sharing platform the Matchmaker Exchange, without breaking any of

its current security settings or functionality requirements. We use as our

main building block Reverse Private Information Retrieval(PIR), extending

queries to support public key encryption of contact details and adding a re-

sponse phase so that users can also anonymously reply to queries. We show,

experimentally, that our framework is efficient and scalable, and can bring

anonymity to the Matchmaker Exchange with low overhead.

C2. We analyze the only system proposed to date that aims to provide long-term

security for genomic data, GenoGuard. We show that under a low entropy

password setting, if the adversary obtains side information about the target

sequence, there is a significant lower bound in their advantage. In a high

entropy password setting we quantify the privacy loss for a user as a result of

using GenoGuard compared to state of the art inference methods for genomic

data, showing that the privacy loss is non-negligible.

C3. We assess the suitability of synthetic data for enabling privacy-preserving

data sharing in genomics. We begin our assessment with an utility evaluation

of generative models on different types of datasets such as financial data,

images and locations. We find that a generic approach might not be a viable

option, and that models purposely built for a specific dataset yield the best

utility. Then, we provide a privacy assessment in order to estimate the privacy

risk associated with releasing a synthetic dataset instead of the real dataset.

Finally, we look at state of the art generative models proposed for genomic

data, and provide a measurement study focused on synthetic genomic data,

assessing it from both utility and privacy perspectives.
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1.2 Thesis Outline
The rest of the thesis is as follows. Chapter 2 introduces preliminary notions and

tools used throughout the manuscript. Then, in Chapter 3, we review relevant prior

work. Chapters 4 to 6 cover the contributions of this dissertation. More specifically,

in Chapter 4, we introduce AnoniMME, a framework geared to bring anonymity

to the Matchmaker Exchange (MME) platform. In Chapter 5, we perform a se-

curity analysis of the only tool aimed at long term encryption of genomic data,

GenoGuard. Then, in Chapter 6 we explore the potential of using synthetic data

to aid data sharing in genomics. Finally, Chapter 7 concludes the thesis with a

discussion.
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report [136]. The analysis and the writing of the technical report was done by the
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editorial role with respect to the writing of the paper and planning experiments. The

privacy evaluation framework has been done in collaboration with Theresa Stadler

and Prof. Carmela Troncoso from EPFL, and has been accepted for publication at

USENIX Security 2022 [164]. My main contribution to this paper was the evalu-

ation and analysis of results for the PATE-GAN model, as well as co-writing the

sections of the paper related to this model. The measurement study of state-of-

the-art generative models for human genomic data was done in collaboration with

Georgi Ganev and Prof. Emiliano De Cristofaro, and has been accepted for pub-

lication at NDSS 2022 [135]. The analysis and writing of the paper was done by

the author of the thesis, apart from the analysis of the WGAN model, which was

performed by Georgi Ganev. Prof. De Cristofaro had an advisory and editorial role.



Chapter 2

Background

This chapter provides some relevant background information used throughout the

paper.

2.1 Genomics Primer

Genome. In the nucleus of an organism’s cell, double stranded deoxyribonucleic

acid (DNA) molecules are packaged into thread-like structures called chromosomes.

DNA molecules consist of two long and complementary polymer chains of four

units called nucleotides, described with the letters A, C, G, and T. All chromosomes

together make up the genome, which represents the entirety of the organism’s hered-

itary information; in humans, the genome includes 3.2 billion nucleotides. A gene

is a particular region of the genome that contain the information to produce func-

tional molecules, in particular proteins. For instance, the BRCA2 [188] is a human

tumor suppressor gene (it encodes a protein responsible for repairing the DNA),

and a mutation in that gene increases significantly the risk for breast cancer [69].

Alleles are the different versions of genes, as organisms inherit two alleles for each

gene, one from each parent. The set of genes is also called the genotype. Finally,

the haplotype is a group of alleles in an organisms that are inherited together from

a single parent [50].

SNPs and SNVs. Humans share about 99.5% of the genome, while the rest differs

due to genetic variations. The most common type of variants are Single Nucleotide

Polymorphisms (SNPs) [149], which occur at a single position and in at least 1%
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of the population. More generally, variants at specific positions of a genome are

referred to as Single-Nucleotide Variants (SNVs); they may be due to SNPs, to rare

variants in the population, or to new mutations. Typically, SNPs and SNVs are

encoded with a value in {0,1,2}, with 0 denoting the most common variant (allele)

in the population, and 1 and 2 denoting alternative alleles.

Allele Frequency (AF). The frequency of an allele at a certain position in a given

population is known as Allele Frequency (AF). More specifically, it is the ratio

of the number of times the allele appears in the population over the total number

of copies of the gene. In a nutshell, it shows the genetic diversity of a species’

population.

Linkage Disequilibrium (LD). LD refers to the non-random association of alleles

at two or more positions in the general population, defined as the difference between

the frequency of a particular combination of alleles at different positions and the one

expected by random association.

Recombination Rate (RR). The process of determining the frequency with which

characteristics are inherited together is known as recombination. This is due to two

chromosomes of similar composition coming together and performing a molecular

crossover, thus, exchanging the genetic content. Because recombination can oc-

cur with small probability at any location along the chromosome, the frequency

of recombination between two locations depends on the distance separating them.

Therefore, for genes sufficiently distant on the same chromosome, the amount of

crossover is high enough to destroy the correlation between alleles [112]. The re-

combination rate (RR), as defined in [143], is the probability that a transmitted hap-

lotype constitutes a new combination of alleles different from that of either parental

haplotype. An example of how a haplotype is created by copying parts from the

other haplotypes is illustrated in Figure 2.1.

Genome-Wide Association Studies (GWAS). GWAS are hypothesis-free methods

for identifying associations between genetic regions and traits. A typical GWAS

looks for common variants in a number of individuals, both with and without a

trait, using genome-wide SNP arrays [124, 62].
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Figure 2.1: An example of a haplotype, h4, built as an imperfect mosaic from h1,h2,h3. h4
is created by (imperfectly) “copying” parts from h1,h2, and h3. Each column
of circles represents a SNP locus, with the black and white circles denoting the
two alleles – major and minor. (Adapted from [112]).

2.2 SNV Correlation Modeling

In order to model correlations between SNVs, and perform sequence inference (i.e.

predicting the values of SNVs from a sequence), one can use a few different ap-

proaches (for more details on various SNV correlations, please refer to [156]).

Throughout this thesis we focus on three models, all based on Markov chains; see

next for a description of Markov chains and the three SNV correlation models.

Markov Chains. A Markov chain is a probabilistic model encoding a sequence

of possible events: the probability of each one of them depends only on the state

attained in the previous event [132].

In the context of genomes, a Markov chain can represent a series of SNVs

ordered by their positions. In particular, a k-th order Markov chain, on genome

sequences, can be used to encode a set of SNVs, where the value of each SNVi

depends on the values of the k preceding ones:

Pr(SNVi) = Pr(SNVi|SNVi−1, . . . ,SNVi−k) (2.1)

Most likely genotype. First, we use a correlation model based on the 1st order

Markov chain model from AF and LD. Given allele frequencies (AF) and linkage
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disequilibrium (LD), we predict each SNV using the highest conditional probability

of the SNV occurring. For each SNV, the joint probability matrix is computed

taking into consideration the LD with the previous one and the AF. If a SNV is

not in LD with the previous one, the probability is computed using only the allele

frequency. When this model is used for inference, the highest value from the joint

probability matrix or the highest probability given by the AF is chosen to predict

the specific SNV.

Sampled genotype. The second model is built from the 1st order Markov chain

model from AF and LD. For this model, the conditional probabilities are computed

in a similar way as in the most likely genotype model. The main difference is in

the choice of the value of the SNV, given the three computed probabilities for major

homozygous Pr0, heterozygous Pr1, and minor homozygous allele Pr2. A seed s is

chosen uniformly at random from the interval [0,1). If s< Pr0, then choose the SNV

to be major homozygous; if Pr0 ≤ s < Pr1+Pr0, then the SNV is heterozygous; and

minor homozygous otherwise.

RR Model. This is a high-order correlation model that relates LD patterns to

the underlying recombination rate [112]. Given a set of n sampled haplotypes,

{h1,h2, ...,hn}, the model relates their distribution to the underlying recombination

rate. Given the recombination parameter, ρ , we have:

Pr(h1, ...,hn|ρ) = Pr(h1|ρ) ·Pr(h2|h1;ρ) · . . . ·Pr(hn|h1, . . . ,hn−1;ρ) (2.2)

We use this model to determine the value of a SNP at a given position. At each SNP,

hk is a possibly imperfect copy of one of h1, ...,hk−1. Let Hi denote which haplotype

is copied at a position i. For instance, in the example presented in Figure 2.1, for

h4, we have (H1,H2,H3,H4) = (3,2,2,1). For a generic hk, each Hi can be modeled

as a Markov chain on {1, . . . ,k− 1}. Assuming that one part of hk comes from

hi, the next adjacent part can be copied from any of the k− 1 haplotypes, and the

probability depends on the recombination rates between these two parts. Overall,

the probability of a particular haploid genotype hk can be computed as the sum
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over all possible event sequences of recombination and mutation that could lead

to hk. Let hi, j+1 denote the allele found at position j+ 1 in haplotype i, and hi,≤ j

denote the values of the first j positions of haplotype i (i.e. the prefix sequence of

hi, j+1). Then, we can compute the conditional probability of an allele hk, j+1, given

all preceding alleles as:

Pr(hk, j+1|hk, j, . . .hk,1) =
Pr(hk,≤ j+1)

Pr(hk,≤ j)
(2.3)

2.3 Cryptography Primer

In this subsection, we introduce the main cryptographic notions used throughout

this thesis.

2.3.1 Private Information Retrieval (PIR)

Private Information Retrieval (PIR) is a cryptographic primitive geared to protect

user privacy while querying a public database, i.e., it allows a user to retrieve an

item from the database without revealing which item is being retrieved. A trivial

PIR solution requires the user to download the entire database, and query it locally,

but this obviously does not scale to large databases. There are two kinds of PIR

protocols in literature: information theoretic [48, 74] and computational PIR [47,

137]: in the former, the database is split over multiple non-colluding servers, while,

in the latter, there is a single server and the protocol relies on some computational

assumptions (e.g., the quadratic residuosity problem).

In this thesis, we use information theoretical PIR (IT-PIR), as introduced by

Chor et al. [48], which involves n servers, at least one of which is considered to be

honest. Without loss of generality, assume a user wants to retrieve a single bit xi

from a string x of length l. On input the index i ∈ {1, . . . , l}, and a random input r,

the user produces n queries, one per server, each of length tq. The queries are built

using secret sharing, in the form of sequences of subsets A1,A2, . . .At ⊆ {1, . . . ,n},

such that no single query leaks any information on the index of interest. The servers

send back replies, of length ta, which depend on the contents of the database and
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the corresponding query. The replies consist of corresponding sequence of bits

⊕ j∈A1x j, . . . ,⊕ j∈At x j. Finally, the user can recover the desired item from the replies,

using i and r.

2.3.2 Reverse PIR

Reverse PIR allows a user to write into a database, without revealing at which row,

thus complementing PIR, which lets users privately read a row from a database. It

was introduced by Corrigan-Gibbs et al. [52] as part of an anonymous messaging

system, called Riposte, which enables users to anonymously post messages to a

shared “bulletin board,” maintained at a small number of servers.

Specifically, let us consider a user, on input a private database index i, at which

she wants to write a private value y. As in PIR, she uses secret sharing in order

to split the value y into n shares, one for each server, so that no individual share

leaks any information, and thus offering privacy in the context of all but one servers

colluding with each other. However, all of the shares combined reveal y at index i

of the database. In order to guarantee anonymity, multiple writes to the database are

collected within an epoch (which can be based on either time or number of writes).

At the end of the epoch, the servers aggregate the writes received during that epoch

and update the database with all the processed writes. As a consequence, messages

can be seamlessly posted and read, but there is no direct link between a user and a

certain post.

2.3.3 Honey Encryption

Honey Encryption (HE) [100] is a cryptographic primitive used to provide confi-

dentiality guarantees in the presence of possible brute-force attacks. It is a variant

of Password-Based Encryption (PBE), in that it also uses an arbitrary string (pass-

word) to perform randomized encryption of a plaintext. Its main property is that

all decryptions of a ciphertext will yield a plausible-looking plaintext, which is thus

indistinguishable from the correct one.

The main building block of HE is the Distribution-Transforming Encoder

(DTE). A DTE is a randomized encoding scheme (encode, decode) tailored on
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the target distribution. The encode algorithm takes as input a message M from the

message space M , and outputs a value S in a set S , i.e., the seed space. Whereas,

decode takes a seed S ∈S and outputs a message M ∈M . A DTE scheme is cor-

rect if, for any M ∈M , Pr[decode(encode(M))= M] = 1. The DTE-then-encrypt

scheme presented in [100] applies encode to a message, and then performs encryp-

tion using a secure symmetric encryption scheme (e.g., AES). Similarly, to decrypt

a ciphertext, one first decrypts using the underlying cipher (e.g., AES), and then

applies the decode algorithm.

2.4 Machine Learning Primer

In this section we evaluate machine learning concepts used throughout this disser-

tation.

2.4.1 Generative Models

Generative model are a class of statistical models that can generate new data in-

stances. This model is typically used to estimate probabilities, modeling data points

and distinguishing between classes based on these probabilities. Usually, a system’s

input features and output variables (as well as unobserved variables) are represented

homogeneously by a joint probability distribution. These variables can be discrete

or continuous and may also be multidimensional [97]. The types of generative mod-

els that we use in this thesis include the following models:

Bayesian Networks. Bayesian networks [140] are a widely-used class of proba-

bilistic graphical models. They consist of two parts: a structure and parameters. The

structure of a Bayesian network is a directed acyclic graph with a conditional prob-

ability distribution for each node. Each node in the network represents a domain

variable and each arc between two nodes represents a probabilistic dependency. A

Bayesian network is a compact, flexible and interpretable representation of a joint

probability distribution. It is also a useful tool in knowledge discovery as directed

acyclic graphs allow representing causal relations between variables. Typically, a

Bayesian network is learned from data.
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Generative Adversarial Networks (GANs). A GAN [76] is an unsupervised deep

learning model consisting of two neural networks, a generator and a discriminator,

which compete against each other in the form of a game setting. During training,

the generator’s goal is to produce synthetic data and the discriminator evaluates

them against real data samples in order to distinguish the synthetic from the real

samples. The training objective is to learn the data distribution so that the data

samples produced by the generator cannot be distinguished from real data by the

discriminator.

Variational Autoencoders (VAEs). A VAE [104, 151] comprises of two neural

networks, namely an encoder and a decoder, as well as a loss function. The encoder

is used to compress the data into a latent space, and then the decoder takes the latent

representation output by the autoencoder and uses it to to reconstruct the data as

close to the original input data as possible. The loss function penalizes the network

for creating output data that differs from the input data.

Restricted Boltzmann Machines (RBMs). RBMs [162] are generative models

geared to learn a probability distribution over a set of inputs. RBMs are shallow,

two-layer neural nets: the first layer is known as the “visible” (on input) layer and

the second as the hidden layer. The two layers are connected via a bipartite graph

– i.e., every node in the visible layer is connected to every node in the hidden one,

but no two nodes in the same group are connected to each other, allowing for more

efficient training algorithms. The learning procedure consists of maximizing the

likelihood function over the visible variables of the model. The RBM models re-

create data in an unsupervised manner through many forward and backward passes

between the two layers, corresponding to sampling from the learned distribution.

The output of the hidden layer passes through an activation function, which then

becomes the input for the hidden layer. RBMs are typically used for dimensionality

reduction, classification, regression, collaborative filtering, topic modeling, etc.
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2.4.2 Discriminative Models

In contrast to generative models that model the underlying distribution of the data

and to generate samples based on the underlying probabilistic model, discriminative

models learn the boundaries between classes or labels in a dataset conditional prob-

ability, thus optimizing mappings between the inputs to the desired outputs (e.g. a

discrete class). They are usually used for classification and regression tasks. The

following types of discriminative models are used throughout this thesis:

Support Vector Machines (SVMs). SVMs [131] are one of the classical machine

learning techniques that is still used for classification or regression tasks. An SVM

is an algorithm for maximizing a particular mathematical function with respect to a

given collection of data. The task of an SVM is to determine which category a new

data point belongs to.

Linear Regression. Linear regression is a commonly used type of predictive anal-

ysis. It studies the linear relationship between a continuous, dependent variable and

one or more independent variables (which can be either continuous or categorical.

It uses the mathematical equation y = mx+c that describes the line of best fit for the

relationship between y, the dependent variable and x, the independent variable. The

method that is normally used for estimation of accuracy in for the linear regression

algorithm is the least square estimation.

Logistic Regression. Logistic regression [55] is a classification algorithm com-

monly used for predicting a binary outcome based on a set of variables. In contrast

to linear regression, it is used to predict values of categorical variables. For lo-

gistic regression, the weighted sum of input is passed through a sigmoid activation

function and uses the maximum likelihood estimation for accuracy.

k-Nearest Neighbors (KNN). The KNN algorithm [54] is another standard ma-

chine learning method, based on the idea that observations with similar character-

istics tend to have similar outcomes. KNN is a non-parametric algorithm, meaning

that it can work for both continuous and categorical variables. This method only

requires the choice of k, the number of neighbors to be considered when making the
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classification, which is normally chosen as the value which minimizes the classifi-

cation error on some independent validation data or by cross-validation procedures,

and the distance metric to be used (e.g. Euclidean distance).

Random Forests. A random forest classifier [35] is an ensemble classifier that

produces multiple decision trees. Rather than depending on one decision tree, the

random forest model combines the predictions of multiple decision trees to produce

a more accurate prediction.

2.5 Differential Privacy
In this section, we discuss Differential Privacy (DP) as well as the Moments Ac-

countant method presented in [13] in the context of privacy-preserving deep learn-

ing.

2.5.1 Definitions and Properties

DP addresses the paradox of learning nothing about an individual while learning

useful information about a population [60]. Generally speaking, differential privacy

aims to provide rigorous, statistical guarantees against what an adversary can infer

from learning the result of some randomized algorithm. Typically, differentially

private techniques protect the privacy of individual data subjects by adding random

noise when producing statistics. In a nutshell, differential privacy guarantees that

an individual will be exposed to the same privacy risk whether or not her data is

included in a differentially private analysis.

Definition. Formally, for two non-negative numbers ε,δ , a randomized algorithm

A satisfies (ε,δ )-differential privacy if and only if, for any neighboring datasets D

and D′ (i.e. differing at most one record), and for the possible output S⊆Range(A ),

the following formula holds:

Pr[A (D) ∈ S]≤ eε Pr[A (D′) ∈ S]+δ

The ε,δ parameters. Differential privacy analyses allow for some information

leakage specific to individual data subjects, controlled by the privacy parameter

ε . This measures the effect on each individual’s information on the output of the
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analysis. With smaller values of ε , the dataset is considered to have stronger privacy,

but less accuracy, thus reducing its utility. An intuitive description of the privacy

parameter, along with supporting examples, is available in [130].

If δ = 0, we say that the mechanism is ε-differentially private. This is consid-

ered to be the absolute case, in which one cannot gain more than a small amount of

probabilistic information about a single individual. By contrast, δ > 0 allows for a

small probability of failure, e.g., an output can occur with probability δ > 0 if an

individual is present in the dataset, and never happens otherwise.

As per [60], the values of δ are usually computed as an inverse function of a

polynomial in the size of the dataset. In particular, any values of δ on the order

of 1
|D| , where |D| represents the size of the dataset D, are considered to be very

dangerous: even though this case is “privacy-preserving,” it would still allow the

publication of complete records for a small number of participants. In order to

better understand why values of δ of the order of 1
|D| can be dangerous, consider

an algorithm that simply releases an entry of the dataset |D| uniformly at random.

This algorithm is ε,δ , with ε = ∞ and δ = 1
|D| , and yet obviously does not provide

a meaningful privacy guarantee.

Post-Processing. Differential privacy is “immune” to post-processing, i.e., any

function applied to the output of a differentially private algorithm cannot provide

less privacy guarantees than the original mechanism. More formally, let A be a ran-

domized algorithm that is (ε,δ )-differentially private, and f be an arbitrary map-

ping. Then, f ◦A is also (ε,δ )-differentially private.

Composition. One of the most important properties of differential privacy is its ro-

bustness under composition. When combining multiple differentially private mech-

anisms, composition theorems can be used to account for the total differential pri-

vacy of the system. More precisely, for mechanisms M1, . . .Mn, where each Mi is a

(εi,δi)- differentially private algorithm, we have that M[n](x) = (M1(x), . . .Mn(x))

is (∑n
i=1 εi,∑

n
i=1 δi)- diffentially private.

Strong Composition. Dinur and Nissim [58] and Dwork and Nissim [59] showed

that, under k-fold adaptive composition on a single database, the privacy parameter
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deteriorates less if a negligible loss in δ can be tolerated. This yields the Strong

Composition Theorem:

For every ε > 0, δ ,δ ′ > 0 and k ∈ N, the class of (ε,δ )-differentially private

mechanisms is (ε ′,kδ + δ ′)-differentially private under k-fold adaptive composi-

tion, for

ε ′ =
√

2k ln 1
δ ′ · ε + k · εε0,

where ε0 = eε − 1. This theorem introduces a stronger bound on the expected pri-

vacy loss due to multiple mechanisms, which relaxes the worst-case result given

from the composition theorem.

Sensitivity. The notion of the sensitivity of a function is very useful in the design

of differentially private algorithms, and define the notion of sensitivity of a function

with respect to a neighboring relationship. Given a query F on a dataset D, the

sensitivity is used to adjust the amount of noise required for F(D). More formally,

if F is a function that maps a dataset (in matrix form) into a fixed-size vector of real

numbers, we can define the Li-sensitivity of F as:

Si(F) = max
D,D′
||F(D)−F(D′)||i,

where || · ||i denotes the Li norm, i ∈ {1,2} and D and D′ are any two neighboring

datasets.

The Gaussian Mechanism. One of the most widely used methods to achieve

(ε,δ )-differential privacy is to add Gaussian noise to the result of a query. Given a

function F : D→R over a dataset D, if σ = S2(F)
√

2ln(2/δ )/ε , and N (0,σ2) are

independent and identically distributed Gaussian random variables, the mechanism

M provides (ε,δ )-differential privacy when:

M (D) = f (D)+N (0,σ2)

More specifically, the Gaussian Mechanism with parameter σ adds noise scaled to

N (0,σ2) to each of the components of the output.

Differentially Private Data Generation. One of the applications of differential

privacy is differentially private synthetic data generation. The main idea is that,
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Algorithm 1 Differentially Private SGD

1: Input: Examples {x1, . . . ,xN}, loss function L (θ = 1
N ∑i L (θ ,xi). Param-

eters: learning rate ηt , noise scale σ , group size L, gradient norm bound C,
number of steps T .

2: Initialize θ0 randomly
3: for t = 1 to T −1 do
4: Take a random sample Lt , with sampling probability q = L

N
5: for each i ∈ Lt do
6: gt(xi) = ∇θt L (θt ,xi)

7: gt(xi) =
gt(xi)

max(1, ||gt (xi)||2
C )

8: g̃t =
1
L(∑i gt(xi)+N (0,σ2C2I))

9: θt+1 = θt−ηt g̃t
return θT and compute the overall privacy cost (ε,δ ) using a privacy account-
ing method.

once the data is generated, it can be used for multiple analyses, without the need

to further increase the privacy budget. This is a consequence of the postprocessing

property of differential privacy mentioned above. Incidentally, the National Institute

of Standards and Technology (NIST) launched a differential privacy synthetic data

challenge in 2018 [173], aiming to find synthetic data generation algorithms that

protect individual privacy but provide a high utility of the overall dataset.

2.5.2 Moments Accountant

In [13], Abadi et al. show how to bound the privacy loss of gradient descent-like

computations. They present a privacy-preserving stochastic gradient descent (SGD)

algorithm for training a model with parameters θ by minimizing the loss function

L (θ); see Algorithm 1.

At each step of the algorithm, the gradient is computed for a small subset

of examples (Line 6), then the L2 norm of each gradient is clipped (Line 7) in

order to bound the influence of each individual example. Noise is then added to the

clipped gradient (Line 8) and a step is taken in the opposite direction of the average

noisy gradient. When outputting the model (Line 9), the total privacy loss needs

to be computed, using a privacy accounting method. The composition property of

differential privacy allows to computes the privacy cost at each access to the training
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data, accumulating the cost over all training steps. An initial bound is given by the

strong composition theorem, however, [13] provides a stronger accounting method,

namely the moments accountant, which saves a factor
√

T
δ

in the asymptotic bound.

Formal Description. Next, we provide a formal description of the main techni-

cal aspects of the moments accountant technique, mirroring the presentation in the

original paper [13]. For proofs and details we direct the reader to the supplementary

material of [13].

For any neighboring databases D,D′, a mechanism M , an auxiliary input aux

and a outcome o, the privacy loss at o is defined as:

c(o;M ,aux,D,D′) = log Pr[M (aux,D)=o]
Pr[M (aux,D′)=o]

For a given mechanism M , the λ th moment αM (λ ;M ,aux,D,D′) is defined as:

αM (λ ;M ,aux,D,D′) = logEo∼M (aux,D)[exp(λc(o;M ,aux,D,D′))]

In order to provide the guarantees of the mechanism, all possible αM (λ ;M ,aux,D,D′)

should be bounded, so αM (λ ) is defined as:

αM (λ ) = maxaux,D,D′ αM (λ ;M ,aux,D,D′),

where the maximum is taken over all possible aux and all neighboring datasets D

and D′.

Then, α achieves the following properties:

• Composability: Suppose that a mechanism M consists of a sequence of adap-

tive mechanisms M1 . . .Mk. Then, for any λ :

αM (λ )≤ ∑
k
i=1 αMi(λ ).

Thus, in order to bound the mechanism overall, we need to bound each

αMi(λ ) and sum them.

• Tail Bound: For any ε > 0, the mechanism M is (ε,δ )-differentially private

for
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Algorithm 2 Epsilon Computation

1: Input q,σ ,δ , number of epochs ep, number of orders λ

2: Initialize l =−∞, αlist ,εlist = /0
3: for i = 2 to λ +1 do
4: for j = 2 to ı+1 do
5: l1 = log( i!

j!(i− j)! + j · logq+(i− j) log(1−q)

6: s = l1 +( j2− j)/(sσ2)
7: if l is −∞ then
8: l = s
9: else:

10: l = log(elog(l−s))+ s
11: α = l · ep ·q
12: Append α to αlist

13: i = 2
14: for each α in αlist do:
15: Append (α− log(δ ))/(i−1) to εlist
16: i = i+1
17: ε = min(εlist)
18: return ε

δ = minλ exp(αM (λ )−λε)

The tail bound converts the moments bound to the (ε,δ )-differential privacy

guarantee and gives us a way to compute ε , given a fixed δ as:

ε = minλ

αM (λ )−logδ

λ

Assuming that the training is done over multiple epochs, we can fix the sampling ra-

tio q = L
N , where N is the number of data points in the dataset, and L is the number

of datapoints within a lot. Then, for a Gaussian Mechanism with random sam-

pling, it suffices to compute the probability density function for N (0,σ2) and

N (1,σ2), denoted as µ0 and µ1 respectively. If µ = (1− q)µ0 + qµ1, we have

α(λ ) = logmax(E1,E2), where:

E1 = Ez∼µ0[(
µ0(z)
µ(z) )

λ ]

E2 = Ez∼µ [(
µ(z)
µ0(z)

)λ ]



Chapter 3

Related Work

3.1 Approaches for Privacy and Data

Analysis

Anonymization. In theory, one could try to anonymize data by stripping per-

sonally identifiable information before sharing it. The assumption is that sharing

anonymized records can be done freely, since no one knows who the respective

record belongs to. In practice, however, this assumption has been disproven on mul-

tiple occasions, for numerous datasets. Archie et al. [21] re-identify users from the

Netflix Prize dataset by using publicly available IMDb data. This is an even bigger

problem for more sensitive data, such as genomes, where re-identification of users

has also been proven to be possible. Gymrek et al. [79] demonstrate that recovery

of surnames from genomic data donors can be inferred using data publicly avail-

able from recreational genealogy databases. Additionally, not even k-anonymity,

where generalization techniques are used to mask exact values of attributes, are

safe against inference attacks [17].

Aggregation. Another approach is to share aggregate statistics about a dataset. For

example, one can find the number of people in a certain location at a given time in

order to determine if the location is considered a point of interest [147]. However,

this is also ineffective, due to susceptibility to membership inference attacks. For

instance, Pyrgelis et al. [148] show how to determine whether a user is part of

aggregate location data. Membership inference attacks have also been demonstrated
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in other contexts, e.g., genomic data [89, 177].

Differentially Private Data Release. In order to provide stronger privacy guaran-

tees, techniques that satisfy differential privacy have been more widely proposed

as more effective solutions. Differential privacy, reviewed in Section 2.5, pro-

vides a formal mathematical definition that specifies requirements for controlling

privacy risk, with several properties (e.g., composition, post-processing, etc.) that

facilitate reasoning about privacy and the construction of differentially private algo-

rithms. However, the tension between usability and privacy is inherently complex

and application-dependent, and differentially privacy algorithms have often been

regarded as providing low utility for researchers, as, e.g., in the case of health data

[56].

Privacy-Preserving Synthetic Data Generation. To overcome these limitations,

another approach is to generate realistic synthetic data using generative models.

These yield new samples that follow the same probabilistic distribution of a given

training dataset. The intuition is that entities can train and publish the model, in a

differentially private way, so that anybody can generate a synthetic dataset resem-

bling the data it was trained on, without exposing the training data itself.

Imputation models. One of the first approaches for generating fully synthetic

data has been proposed by Rubin [153]. The idea is to treat all observations from

the sampling frame as missing data and to input them using the multiple imputation

method. Because the synthetic data has no functional link to the original data, it

can preserve the confidentiality of participants. However, as discussed in [53], the

synthetic data generated this way is subject to inferential disclosure risk when the

model used to generate the data is too accurate.

Statistical models. Other approaches attempt to generate a statistical model

based on the original data [190]. The main idea is to generate a low-dimensional

distribution of the original data to help with the data generation process. This ap-

proach, combined with differential privacy, aims to provide privacy guarantees to

the synthetic data.

Generative Models. More recently, generative machine learning models have
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attracted a lot of attention from the research community. A generative model is

a way to learn any kind of data distribution using unsupervised learning, aim-

ing to generate new samples that follow the same probabilistic distribution of a

given dataset. Generative models based on neural networks work by optimizing the

weights of the connections between neurons by back-propagation techniques. For

complex networks, the optimization is usually done by the mini-batch stochastic

gradient descent (SGD) algorithm. Generative models can be used in conjunction

with differential privacy. This is usually done using a differentially private train-

ing procedure, which guarantees that the learned model is differentially private, and

thus any synthetic dataset we can derive from it will also guarantee differential pri-

vacy.

We also look at seed-based generative models [31], which condition the output

of the model based on input data, called the seed. This way, the model will produce

synthetic records similar to the seed, which can increase the quality of the output.

Because of the high correlation between the output and the seed, privacy tests which

provide differential privacy guarantees are introduced.

3.2 Genome Privacy

Re-identification. Genomic data is hard to anonymize, due to the genome’s unique-

ness as well as correlations within different regions. For instance, Gymrek et

al. [79] demonstrate that surnames of genomic data donors can be inferred using

data publicly available from recreational genealogy databases. They also discuss

how, through deep genealogical ties, publishing even a few markers can lead to the

identification of another person who might have no acquaintance with the one who

released their genetic data. In follow-up work, Erlich et al. [64] show that a ge-

netic database which covers only 2% of the target population can be used to find a

third-cousin of nearly any individual.

Membership inference. Homer et al. [89] present a membership inference attack

(MIA) in which they infer the presence of an individual’s genotype within a complex

genomic DNA mixture. Wang et al. [177] improve on the attack using correlation
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statistics of just a few hundreds SNPs, while Im et al. [94] rely on regression coeffi-

cients. Shringarpure and Bustamante [159] perform membership inference against

the Beacon network.1 They use a likelihood-ratio test to predict whether an indi-

vidual is present in the Beacon, detecting membership within a Beacon with 1,000

individuals using 5,000 queries. Also, Von Thenen et al. [174] reduce the number

of queries to less than 0.5%. Their best performing attack uses a high-order Markov

chain to model the SNP correlations, as described in [156]. Note that, as part of the

attacks described in this paper, we use inference methods from [156] as our baseline

inference methods.

Data sharing. Progress in genomics research is dependent on collaboration and

data sharing among different institutions. Given the sensitive nature of the data, as

well as regulatory and ethics constraints, this often proves to be a challenging task.

Kamm et al. [102] propose the use of secret sharing to distribute data among several

entities and, using secure multi-party computations, support privacy-friendly com-

putations across multiple entities. Wang et al. [179] present GENSETS, a genome-

wide, privacy-preserving similar patients querying system using genomic edit dis-

tance approximation and private set difference protocols. Then, Chen et al. [43]

use Software Guard Extensions (SGX) to build a privacy-preserving international

collaboration tool; this enables secure and distributed computations over encrypted

data, thus supporting the analysis of rare disease genetic data across different con-

tinents.

Privacy-friendly testing. Another line of work focuses on protecting privacy in

the context of personal genomic testing, i.e., computational tests run on sequenced

genomes to assess, e.g., genetic susceptibility to diseases, determining the best

course of treatment, etc. Baldi et al. [29] assume that each individual keeps a copy

of their data and consents to tests done in such a way that only the outcome is

disclosed. They present a few cryptographic protocols allowing researchers to pri-

1Beacons are web servers that answer questions e.g. “does your dataset include a genome that has
a specific nucleotide at a specific genomic coordinate?” to which the Beacon responds yes or
no, without referring to a specific individual; see: https://github.com/ga4gh-beacon/
specification.
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vately search mutations in specific genes. Ayday et al. [26] rely on a semi-trusted

party to store an encrypted copy of the individual’s genomic data: using additively

homomorphic encryption and proxy re-encryption, they allow a Medical Center to

privately perform disease susceptibility tests on patients’ SNPs. Naveed et al. [126]

introduce a new cryptographic primitive called Controlled Functional Encryption

(CFE), which allows users to learn only certain functions of the (encrypted) data,

using keys obtained from an authority; however, the client is required to send a

fresh key request to the authority every time they want to evaluate a function on a

ciphertext. Overall, for an overview of privacy-enhancing technologies applied to

genetic testing, we refer the reader to [118].

Long-term security. As the sensitivity of genomic data does not degrade over time,

access to an individual’s genome poses a threat to her descendants, even years after

she has deceased. To the best of our knowledge, GenoGuard [92] is the only attempt

to provide long-term security. GenoGuard, reviewed in Section 5.1, relies on Honey

Encryption [100], aiming to provide confidentiality in the presence of brute-force

attacks; it only serves as a storage mechanism, i.e., it does not support selective

retrieval or testing on encrypted data (as such, it is not “composable” with other

techniques supporting privacy-preserving testing or data sharing). In this thesis, we

provide a security analysis of GenoGuard. In parallel to our work, Cheng et al. [44]

recently propose attacks against probability model transforming encoders, and also

evaluate them on GenoGuard. Using machine learning, they train a classifier to

distinguish between the real and the decoy sequences, and exclude all decoy data

for approximately 48% of the individuals in the tested dataset.

3.3 Honey Encryption

Juels and Ristenpart [100] introduce Honey Encryption (HE) as a general approach

to encrypt messages using low min-entropy keys such as passwords. HE, reviewed

in Section 2.3.3, is designed to yield plausible-looking ciphertexts, called honey

messages, even when decrypted with a wrong password. In a nutshell, it uses a

distribution-transforming-encoder (DTE) to encode a-priori knowledge of the mes-
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sage distribution, aiming to provide message recovery security against computa-

tionally unbounded adversaries. It was originally designed to encrypt credit card

information, RSA secret keys, etc. [172].

Message recovery security can be defined as follows [95]: given a message en-

crypted under a key whose maximum probability of taking on any particular value is

at most 1/2µ , an unbounded adversary’s ability to guess the correct message, even

given the ciphertext, is at most 1/2µ plus a negligible amount. However, Jaeger et

al. [95] discuss deficiencies of message recovery security as per modern security

goals. More specifically, not only they prove the impossibility of known-message

attack security in the case of low-entropy keys, but they also mention that schemes

meeting message recovery security might actually leak a significant amount of in-

formation about the plaintexts, even if the adversary cannot correctly recover the

full message with non-negligible probability. Although this serves as an inspiration

to our work, note that the context of our evaluation is different, as in the low-entropy

setting, we show that a lower bound also applies to the adversary’s advantage when

partial information from the target sequence is available to the attacker, compared

to having pairs of ciphertext and plaintext. Another work studying attacks against

HE is that by Cheng et al. [44], which we have reviewed above.

Honeywords. Before Honey Encryption [100], Juels and Rivest [101] introduced

the concept of “honeywords” to improve the security of password databases. They

propose adding honeywords (false passwords) to a password database together with

the actual password (hashed with salt) of each user. This way, an adversary who

hacks into the password database and inverts the hash function cannot know whether

she has found the password or a honeyword.

Wang et al. [176] present an evaluation of the honeyword system [101], finding

it to be vulnerable to a number of attacks. More specifically, an adversary that wants

to distinguish between real and decoy passwords can do so with a success rate of

30% compared to an expected 5%. In the case of a targeted attack, when the adver-

sary is assumed to know some personal information about the user, they show that

the adversary’s success rate is further improved to about 60%. Our attacks differ
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from those in [176], first, as they target the honeywords system [101], while we fo-

cus on Honey Encryption [100], and in particular its application to GenoGuard [92].

Moreover, their attack only aims to identify the correct password from a given pass-

word pool, while we also examine the case when the correct password is not found

within the tried passwords.

3.4 Machine Learning and Privacy

In this section, we review relevant related work on synthetic data and MIAs against

machine learning models.

Synthetic Data Initiatives. In recent years, researchers have focused on the gener-

ation of synthetic electronic health records (EHR), aiming to facilitate research in

and adoption of machine learning in medicine. Choi et al. [46] use a combination

of an autoencoder with GAN model, called medGAN, to generate high-dimensional

multi-label discrete data. ADS-GAN [187] uses a quantifiable definition for “identi-

fiability” that is combined with the discriminator’s loss to minimize the probability

of patient’s re-identification, while CorGAN [168] combines convolutional GANs

and convolutional autoencoders to capture the correlations between adjacent medi-

cal features. Biswal et al. [34] use variational autoencoder to synthesize sequences

of discrete EHR encounters and encounter features. Other initiatives focus on gen-

erating synthetic data modeled on primary care data [180, 171, 128, 9]. e.g., by

utilizing resampling and probabilistic graphical models (Bayesian networks) with

latent variables.

Researchers have also explored generating synthetic health patient data to de-

tect cancer and other diseases, e.g., RDP-CGAN [169] combines convolutional

GANs and convolutional autoencoders, both trained with Rényi differential pri-

vacy [117]. while Goncalves et al. [75] evaluate probabilistic models, classification-

based imputation models, and GANs. Specific to genomics are the works we have

introduced in Section 6.3.2 and evaluated, in terms of utility and privacy, throughout

Section 6.3 [156, 185, 103].

NHS England is one of the first organizations that explored the potential of
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using synthetic data [128], in order to enable open data release. By using statistical

models, they aim to retain the data characteristics while maintaining patient confi-

dentiality. However, before the statistical models are applied, the data goes through

a sanitization process to remove some granularity and disclosive information. More

recently, the Medicines and Healthcare products Agency (MHRA) has announced

the creation of two new synthetic datasets to support the development of medical

technologies to fight coronavirus (COVID-19) and cardiovascular disease [9].

MIAs against Machine Learning Models. When it comes to the privacy of syn-

thetic data, most models rely solely on differential privacy in order to ensure pri-

vacy preserving properties [111, 144, 184, 14]. MIAs have long been studied in the

context of machine learning. Shokri et al. [158] present the first attack against dis-

criminative models, aiming to identify whether a data record was used in training,

using an approach based on shadow models. They train multiple shadow models,

imitating the behavior of the target model, on datasets of similar distribution as the

original training data. The inference model is then trained to recognize the model’s

prediction on data points that were included in the original training data versus

data points that were not. Hayes et al. [83] present the first MIA against genera-

tive models like GANs; they use a discriminator to output the data with the highest

confidence values as the original training data. The main difference between their

membership inference attack and our current work is the assumption that, for LO-

GAN the attacker has knowledge about the size of the original training dataset ,

n, as well as access to a dataset, D, with datapoints suspected to be in the original

training records. They then parse the dataset D through the discriminator and output

the top n confidence values as their guess for the original training data. In contrast,

our framework takes a target record and outputs a prediction on whether the target

record was used in the synthetic data generation. Hilprecht et al. [85] study MIAs

against both GANs and Variational AutoEncoders (VAEs), They evaluate member-

ship inference under two settings: first, from an adversarial actor perspective, who

aims to identify individual records used to train the model, and second from a regu-

latory actor perspective, where a regulator is given two datasets and needs to decide
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which of the two datasets is a subset of the original training data. Chen et al. [42]

propose a generic MIA model against GANs where the attack is formulated as a

binary classification task using the distance metric between a query sample and its

reconstructed copy from the GAN.

Finally, measurement studies have focused on privacy in machine learning. Ja-

yaraman and Evans [96] evaluate differential privacy to understand the impact that

different choices for privacy parameters have on both utility and privacy. Long et

al. [113] study membership inference attacks on discriminative models, in order

to understand why and how they succeed. They quantify the risk of membership

inference of a record with respect to a classifier and its training data using a mea-

sure called Differential Training Privacy (DTP). For a given classifier trained on a

dataset, the membership leakage of a record is quantified by comparing that classi-

fier’s predictions to those of a classifier trained without that specific record. Yeom et

al. [186] explore the relationship between privacy, overfitting and influence for ma-

chine learning models. More specifically, they formalize privacy leakage in machine

learning models, looking at how much an adversary can infer from a model, for two

types of attacks, namely membership inference and attribute inference attacks. Ja-

yaraman and Evans [96] perform an evaluation of differential privacy mechanisms

for machine learning models. They use the measures previously defined by Yeom

et al. [186] and study the privacy leakage arising from relaxation of the differen-

tial privacy definitions. Finally, other attacks on machine learning models include

memorization attacks [40], model inversion [67, 186], model stealing [170], hyper-

parameter stealing [175] or property inference attacks [23, 70].



Chapter 4

Enabling Anonymous Queries on

Rare Disease Discovery Platform

Advances in genome sequencing and genomics are enabling tremendous progress

in medicine and healthcare, paving the way to making the prevention, diagnosis,

and treatment of diseases tailored to the individual’s specific genetic makeup, thus

becoming cheaper and more effective. Researchers are also gaining a better under-

standing, and developing more successful treatments of rare genetic diseases. How-

ever, even though sequencing costs have plummeted from billions to thousands of

dollars over the past 15 years (see https://www.genome.gov/sequencingcosts/), it is

still hard for researchers to gain access to genomic data, especially those pertaining

to rare conditions.

Therefore, seamless progress in genomics research hinges on the ability to

collaborate and share data among different institutions. Indeed, funding agencies

often require that data sharing is considered in grant applications, and a number of

initiatives have been announced to gather and share genomic data. For instance, the

All Of Us Research Program (formerly known as the Precision Medicine initiative)

was launched in the US in 2015, aiming to collect health and genetic data from

one million citizens. Similar projects exist elsewhere, e.g., in the UK, Genomics

England is sequencing the genomes of 100,000 patients, focusing on rare diseases

and cancer. There are also initiatives specifically targeting data sharing, such as

the NIH’s Genomic Data Commons (GDC), which provides the cancer research
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community with a unified data repository across cancer genomic studies ([1]).

Aiming to foster collaborations, the Global Alliance for Genomics and Health

(GA4GH) [73] was established, with core funding from NIH, Wellcome, and

Canada’s CanShare, with the explicit goal of making data sharing between institutes

simple and effective. The GA4GH has developed several platforms, e.g., the Beacon

Project [72], allowing researchers to search if a certain allele exists in a database of

genomic data, as well as the Matchmaker Exchange (MME) [142], which facilitates

rare disease discovery.

In this chapter, we focus on the latter; The MME platform connects multiple

distributed databases through an API and allows researchers to query for genetic

variants in other databases in the network. That is, MME acts as a portal supporting

simultaneous querying over multiple databases that are members of the exchange.

More specifically, MME allows a researcher to query a specific gene, e.g., “AP3B2”

(a gene where rare mutations have been linked to early-onset epileptic encephalopa-

thy). If a match is found, the researcher is notified of all matches within all databases

in the MME, and can get in touch with the user that submitted the case on which

a match is generated. Note that, querying a gene really implies querying a known

rare variation of that gene.

However, researchers might be reluctant to use the platform since the queries

they make are revealed to other researchers, and this exposes what they are working

on and what kinds of patients they might have, ultimately resulting in loss of privacy

and competitive advantage. Indeed, MME currently requires researchers to submit a

registration application to be given access to the platform, with the goal of prevent-

ing misuse of the system, thus, queries made on this platform are not anonymous

and are revealed to all other researchers with an interest in the same gene.

Problem Statement. This motivates the need to support anonymous querying on

MME, so that a researcher’s interest in a specific gene is not broadcast, but only

communicated to relevant contacts, i.e., researchers with same interests or willing

to collaborate. To this end, we present AnoniMME, a framework letting researchers

anonymously query a gene within the MME, without violating any of MME’s cur-
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rent functionalities and requirements. We build AnoniMME using a cryptographic

primitive called Reverse Private Information Retrieval, using a model similar to that

presented by the anonymous messaging system Riposte [52], while creating queries

and implementing the same functionalities as in MME. In other words, researchers

can perform anonymous queries to the federated platform, in a multi-server set-

ting, by writing their query, along with a public encryption key, anonymously, in a

public database. We also construct AnoniMME to support responses, so that other

researchers can respond to queries by providing their encrypted contact details.

Solution Intuition. We build queries in regular epochs, where the length of each

epoch is based on the number of write requests. In order to anonymously write to

the database, the user selects a random row of the the database, and splits the query,

containing the gene and her public key, into shares, one for each server (which we

denote as node servers). This way, the node servers cannot learn anything about

the write request, if at least one of the them is honest. Then, a master server can

gather queries that have been collected during an epoch from the node servers and

collate them together to recover and publish the actual queries. The MME matching

system can then be used in order to generate matches for the queries, in the usual

manner, and contact details of other researchers/clinicians can be exchanged, en-

crypted using the public key, and published in the same row as the queried gene, in

an adjacent column.

To demonstrate the practicality of AnoniMME, we implement and evaluate

our prototype experimentally in Section 4.2.3. We do so in two different settings,

one involving two node servers and a master server, and another involving six node

servers (and a master server). In both settings, the nodes collect write requests

during an epoch, and then forward them to the master server which collates them

and publishes the final database.

Contributions. In summary, this chapter makes several contributions:

1. We present AnoniMME, a framework enabling anonymous queries within the

Matchmaker Exchange (MME), without breaking any of its current security

and functionality requirements.
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2. We build AnoniMME from Reverse PIR [52], using an information-theoretic

approach, extending queries to support public key encryption of contact de-

tails, and adding a response phase so that users can also anonymously reply

to queries.

3. We show, experimentally, that AnoniMME is efficient and scalable, and can

bring anonymity to MME with low overhead. Therefore, we are confident

that it can be deployed in the wild and further encouraging researchers to

share genomic data.

4.1 Approach
In this section, we first introduce the Matchmaker Exchange together with its func-

tionalities, and then we proceed in presenting our approach for developing an

anonymity overlay to it.

4.1.1 Matchmaker Exchange

As mentioned, the Global Alliance for Genomics and Health (GA4GH) was es-

tablished, in 2013, aiming to support simple mechanisms for sharing data between

institutes. The GA4GH has developed and deployed various systems, including the

Matchmaker Exchange (MME) [142], which facilitates rare disease gene discov-

ery and constitutes the main focus of our work. MME is a federated platform that

facilitates the identification of cases with similar phenotypic and genotypic profiles

through a standardized Application Programming Interface (API). Essentially, it en-

ables searches in multiple databases, without having to query all of them separately

or deposit data in each of them. As of March 2018, it involves seven organiza-

tions with full member status (AGHA Patient Archive, DECIPHER, GeneMatcher,

Matchbox, Monarch Initiative, MyGene2, and PhenomeCentral), and eight addi-

tional participant organizations.

The Matchmaker Exchange Application Programming Interface (MME

API) [38] fully specifies the data format and the protocol for querying databases

to identify individuals with similar phenotypic profiles and genetic variations. To
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ensure the accuracy of the patient comparison, similar phenotypes are determined

by matching identical or ontologically similar with the Human Phenotype Ontol-

ogy (HPO). The MME API also specifies the format of both the query, which is

sent to participating databases (called “matchmaking service”) and the response,

which contains information about matching individuals in the remote database. It is

implemented under a query-by-example methodology: a user can query a specific

gene, e.g., “AP3B2,” and she will be notified of all matches within all databases in

the MME. Note that querying a gene really implies querying a known rare varia-

tion of that gene. If a match is found, the user receives a Case ID for the match,

information about the user that submitted the case on which a match is generated,

such as name, institution and email address, as well as the corresponding candidate

gene or phenotype. In order to query the platform, users must be registered with

one of the member databases, and have a clinician/researcher account. Some of

the member databases allow for patient/family registrations as well, however, the

submissions made by these type of users are excluded from matching via MME,

due to the current MME rules.

The query protocol is illustrated in Figure 4.1. A user, Bob, sends the metadata

(i.e., Case ID, submitter information) as well as the patient data (gene and/or phe-

notype) to Database B. Another user, Alice, submits a similar case to Database A;

Database A then sends an MME API match request to Database B, which performs

the match and returns a list of scored patients, along with relevant metadata, to

Database A. After receiving the match results, Database A informs Alice, providing

contact information for Bob. The result of querying MME yields a list of matches,

where each match has a patient object, i.e., the information on the matched patient,

consisting of the same information as described in the query, and a score object. The

scoring of the patients is done according to how well the results patient matches the

query patient, i.e., it is a numerical value in the range [0,1], where 0.0 is a poor

match and 1.0 a perfect match. Given the current functionality of MME, and the

fact that queries are broadcast to all users which have made with an interest in the

same gene, we propose the addition of functionality that would allow users to make
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Figure 4.1: Visual representation of a MME query sequence.

anonymous queries on the platform.

4.1.2 Entities and Operations

Our proposed framework involves the following entities:

Querying Users: researchers/clinicians who query the system to find other users

that have patients with a rare mutation or an interest in the same gene. As discussed

later, they generate a write request specifying the row at which their query, i.e., the

gene of interest and their public key, will be processed.

Responding Users: researchers/clinicians replying to an existing query. They use

the public key of a querying user to encrypt their contact details and generate a write

request for the same row as the gene of interest including their (encrypted) contact

details.

Nodes: the servers collecting write requests from the users. These are aggregated

until the end of an epoch, based on the maximum number of write requests. Each

node server can be run by one of the current MME members.

Master Server: a server that gathers the databases from each node at the end of an

epoch, and publishes the database with all the write requests revealed. The master

server role can also be assigned to one of the existing MME members, and can be

reassigned to another member at the end of each epoch.
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Overall, AnoniMME implements the following operations:

Query Write Request: On input row i, query gene X , and public key PK, a querying

user generates n write requests, one for each node. Each write request is generated

by encoding the gene and the public key into n vectors, so that all of them combined

will write the gene/public key at index i.

Query Response Request: On input row i, encrypted contact details c, a responding

user generates n write requests, one for each node. Write requests are generated,

once again, by encoding the encrypted contact details into n vectors.

Database Collation: On input n databases, the master server collates them into one

final database, and publishes it.

4.1.3 Security Model

AnoniMME aims to guarantee the following three security goals:

1. Correctness. When all nodes execute the protocols correctly and send data to the

master server at the end of an epoch, the resulting database contains all the write

requests processed as if the requests were directly applied to the final database.

2. Anonymous Write. The probability that an adversary guesses at which particular

row a user has written is only negligibly better than random guessing.

3. Disruption Resistance. An adversary controlling n users can make at most n

write requests (i.e., there is a limit to the number of write requests each user can

make during an epoch).

Threat Model. We assume that the users of the system are untrusted, and may col-

lude with the nodes, the master server, or other users in order to violate the security

properties of the system. Both the master server and the nodes are trusted for avail-

ability and to follow the protocol correctly, under the assumption that at least one

of the nodes is honest (i.e., does not collude with other nodes). We do not consider

external adversaries, since their actions can be mitigated via standard network se-

curity techniques (i.e., using a secure and authenticated communication channel).

Finally, note that the security model of AnoniMME mirrors that of Riposte [52].
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4.1.4 A First Attempt

We now present a first attempt at instantiating AnoniMME, and discuss its limi-

tations, which we address in the actual construction of AnoniMME presented in

Section 4.2.2.

Intuition. We start by attempting to build from a simple extension of Reverse Pri-

vate Information Retrieval (Reverse PIR) [52]. More specifically, we implement the

query phase using the same mechanism of Riposte, i.e., we let users anonymously

submit the gene of interest, along with their public key, with a “write request.”

We then add a response phase, allowing users with an interest in the same gene to

respond—specifically, by encrypting their contact information using the public key

contained in the query, and adding it to another write request.

In the following, we present a construction assuming the presence of 2 servers

(S1 and S2) and a database with l rows.

Query phase. Assume user A wants to anonymously query gene XA. She

builds a write request, consisting of (XA,PKA), where PKA is her public key, and

chooses(randomly) to write this at row i in the database. More specifically, she

picks 2l random numbers, r1,r2, . . . ,rl and s1,s2, . . . ,sl , where l is the size of the

database. The query write request vectors are constructed as follows:

v1 = (r1,r2, . . . ,ri +XA, . . . ,rl),

v′1 = (s1,s2, . . . ,si +PKA, . . . ,sl),

v2 = (−r1,−r2, . . . ,−ri, . . . ,−rl),

v′2 = (−s1,−s2, . . . ,−si, . . . ,−sl).

Note that v1 + v2 = XA · ei, and v′1 + v′2 = PKA · ei, where ei denotes the unit vector

with 0’s at all positions except at position i, where it is equal to 1, and thus the

construction is correct. Then, A sends (v1,v′1) to S1, and (v2,v′2) to S2. Due to the

fact that the user needs to send vectors of the size of the database (l) to each of

the servers, the bandwidth overhead of the querying phase for each user is O(l).
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Our construction also has similarities with trivial secret sharing where all shares are

required in order to recover the secret. As for secret sharing, the random numbers

chosen by the users could also be binary numbers of the same length as the binary

representation of the query gene/ private key and use XOR as the linear operation,

or the random numbers can random integers with well defined overflow semantics

from any field and use any linear operator in that field.

Write requests are collected until the end of an epoch, when the servers com-

bine their local states and publish the database with the queries. Note that the num-

ber of write requests collected during an epoch cannot be more than the size of the

database. As long as the two servers do not collude, none of them can reconstruct

what any given user has written, i.e., none of the servers can recover the gene or

public key of the user sent in the write request. Also, in order to achieve disruption

resistance, one can limit the number of queries to one per user for each phase of the

epoch.

Response phase. After the database with the queries is published, the response

phase begins. Here we can rely on MME’s algorithm to generate matches on exist-

ing MME data, and simply extend it to encrypt the contact details of the relevant

users with an interest in the same gene. This would be inline with the current pri-

vacy policy of the MME, as contact details of researchers with an interest in the

same gene are already shared.

Users can also be given an option to voluntarily provide their contact details

as follows. If user B notices that another researcher (user A) has an interest in the

same gene X, say at row i of the database, she gets A’s public key PKA, and encrypts

her contact information (CB) under PKA and generates a write request as a share of

EncPKA(CB), in a similar manner to the first epoch. More specifically, she chooses

random r′1, . . . ,r
′
l and forms the following vectors:

u1 = (r′1, . . . ,r
′
i +EncPKA(CB), . . . ,r′l),

u2 = (−r′1, . . . ,−r′i, . . . ,−r′l)
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User B then sends u1 to server S1 and u2 to S2. At the end of this epoch, the

results are being published in a column adjacent to the queried gene and the public

encryption key. The querying users can use the database to find the row of interest

(in this case i), decrypt the contact details, and get in touch with the responding

users. Similar to the query phase, the response phase has a bandwith overhead O(l).

Note that one of the key differences between the query and the response phase is

the choice of where to write in the database. For querying users, they choose the

row at which to write their query randomly from the rows of the database, while for

the responding users, they choose the row at which to write their response based on

where the message they want to respond to is in the database.

Correctness and Security. It is straightforward to see that the construction is cor-

rect, since, if all nodes execute the protocols correctly the result of combining all

their local database states at the end of an epoch by the master server will result in

revealing all the write requests processed. An adversary’s advantage of guessing at

which a certain user has written in the final database is the same as random guessing,

hence, the construction guarantees anonymous writes. Disruption resistance can be

also achieved in a straightforward manner since MME requires users to register on

one of the databases, so they can allow maximum one write request per registered

user per epoch.

Limitations. Alas, this construction has the following limitations:

1. Collisions: They might occur for writes generated by honest users, which all

want to write at the same row;

2. Maliciously-formed write requests: A malicious user can easily send a mal-

formed request to the servers, making all the data within the database non

recoverable.

In this chapter we focus on methods for collision handling, and leave the

maliciously-formed write requests as part of future work. However, previous work

done on Reverse PIR [52] suggests that the maliciously-formed write requests can

be handled by either introducing an extra party which acts as an audit server, and
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must not collude with the other servers, or by applying zero-knowledge techniques

which would allow clients to prove that their write requests are correctly formed.

Discussion. We choose to base our construction on Reverse PIR, for several rea-

sons. First, MME is described as a genomic discovery platform, which means that

the querying user will not know the intended recipient of his query. Hence, anony-

mous systems such as mixes, which requires a recipient for the message sent would

not be a suitable choice in this setting. Second, in comparison to Reverse PIR,

anonymity systems such as Tor[165] do not protect against passive network adver-

saries who can correlate network traffic flows. However, it would be possible to

combine both Reverse PIR and Tor (i.e., clients submit the queries to a platform

using reverse PIR via the Tor network) , which would mean that even if all servers

in the Reverse PIR setting colluded, the could not learn which user wrote which

message without also breaking the anonymity of Tor.We leave the study and im-

plementation of this system to future work. Third, even though Invertible Bloom

Lookup Tables(IBLT) [77] might seem like a good candidate for finding the users

which have an interest in the same gene, it would essentially have the similar func-

tionality to the current mode of operation of MME, with the main difference being

that two users could chose to compare their database records to look for similar

records. While the users could choose to compare records only with other users

they trust, and thus eliminate some of the privacy concerns, their queries could

still be vulnerable to intersection attacks. Potentially combining IBLT with secret

sharing could be a viable alternative for obtaining the desired security properties,

however, we also leave this to future work. Finally, e-voting systems could be used

as alternative building block for our system, offering similar privacy guarantees as

Reverse PIR, but we favored the latter construction due to lower overhead compared

to the zero-knowledge proofs used in e-voting.

4.2 Methods

In this section we provide methods for collision handling for our first attempt and

use it to provide a description of the n-server protocol. We also evaluate the pro-
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posed method in terms of time and bandwidth required in order to asses the feasi-

bility of the proposed construction.

4.2.1 Handling Collisions

As discussed previously, collisions might occur whenever multiple users want to

write at the same row. Aiming to address them, we set the database size to be large

enough to accommodate write requests at a 95% non-collision rate. In other words,

5% of the queries will likely fail due to collisions and will need to be re-submitted.

4.2.1.1 Minimizing collisions

Our intuition is to follow a “balls and bins” approach, i.e., if we throw m balls

uniformly and randomly into the l bins, we can estimate how many bins will contain

exactly one ball. In our model, we can associate write requests to the m balls and

the rows of the database to the l bins. Let Bi j be the event that ball i falls into bin j:

for all i and j, we have Pr[Bi j] =
1
l . Then, let O(1)

j be the event that exactly one ball

falls in bin j. We have that:

Pr[O(1)
j ] =

m
l
(1− 1

l
)m−1 ≈ m

l
−
(m

l

)2
+

1
2

(m
l

)3

using the binomial theorem and ignoring low order terms. Then, l Pr[O(1)
j ] is the ex-

pected number of bins with exactly one ball, i.e., the expected number of messages

successfully received. Dividing by m, we get the expected success rate as

E[SuccesRate] =
l
m

Pr[O(1)
j ]≈ 1− m

l
+

1
2

(m
l

)2

Thus, for a 95% expected success rate, we need l ≈ 19.5m.

In AnoniMME, in order to set the size of the database, we need to estimate

the expected number of write requests for each epoch. Looking at the three MME

members which show statistics on the number of users, we find that GeneMatcher

has 4,066 registered users, MyGene2 345 registered families, and Decipher 247

registered projects (users have to be part of a project in order to join Decipher) as of

November 2017. This yields an average of approximately 1,550 users per database.
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Assuming that this is representative of the number of users for all MME databases,

we can approximate the total number of users to be in the order 10,000. We also

need to estimate how many users make queries in each epoch: assuming 5% of

users do so at each epoch, each epoch can run for 500 queries, yielding a database

of size l ≈ 10,000. Further, note that we design AnoniMME’s write request so that

the row number at which we write is determined at random, given the number of

write requests in the epoch as well as the database size, in order to avoid biases

in choosing rows. This method, however, does not provide any way to recover in

the case where a collision occurs, in that case the queries are irrecoverable, and the

users would need to resubmit their queries in a future epoch.

4.2.1.2 Recovering from collisions

We also use a simple technique for recovering from collisions if/when these occur.

Assume α messages have been written at row i, i.e., we have a=m1+m2+. . .+mα .

Inspired by [52], we can modify the way in which the queries are built to recover

each of the individual message m j, for 1≤ j ≤ α; specifically, we can use a system

of α equations, which allows us to solve for each of the colliding messages. Without

loss of generality, we consider the case α = 2 and explain how to recover from

collisions occurring for the gene name, but similar methods can be used for α > 2

and to recover public key and/or encrypted contact details. When a collision occurs

at row i, we have an entry a = XA +XB, where XA is the gene sent by user A, and

XB is the gene sent by user B. If, rather than just sending the queried gene X , users

send (X ,X2), we can recover XA and XB by solving a system of two equations with

two variables.

In this case, we also compute the size of the database needed for an expected

success rate as follows:

E[SuccessRate] =
l
m

Pr[O(1)
j ]+

2l
m

Pr[O(2)
j ],

where l Pr[O(1)
j ] is the expected number of rows with exactly one write request

applied to them, computed as before, and 2l Pr[O(2)
j ] is the expected number of
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rows with exactly two write requests applied to them. Computing Pr[O(2)
j ] =(m

2

) 1
l2 (1− 1

l )
m−2, we obtain the value of the expected success rate as:

E[SuccessRate]≈ 1− 1
2

(m
l

)2
+

1
3

(m
l

)3
.

In this case, for an epoch of m write requests, with a 95% expected success rate, we

need a database with l′ ≈ 2.7 m cells (two columns and l = l′
2 rows ). This implies

that with 500 write requests per epoch, the database needs l′ ≈ 2.7· 500 = 1,350

cells for each vector.

We now generalize for any value of α . Users submit X ,X2, . . . ,Xα for any

gene X to be queried. This allows us to recover from an α-way collision as, in that

case we obtain a system of α equations with α variables. The expected success rate

is:

E[SuccessRate] =
l
m

Pr[O(1)
j ]+

2l
m

Pr[O j(2)]+

+ . . .+
αl
m

Pr[Oα
j ]

where l Pr[O(k)
j ] is the expected number of rows with exactly k write requests applied

to them. Each Pr[O(k)
j ] is computed as Pr[O(k)

j ] =
(m

k

) 1
lk (1− 1

l )
m−k. Hence, we

obtain:

E[SuccessRate]≈ 1+
(−1)α+1

α!
(
m
l
)α +

(−1)α+2

(α +1)!
(
m
l
)α+1

We solve this equation for l, given the expected success rate E[SuccessRate],

the collision recovery factor α and m the number of write requests to be written in

a certain epoch. If this method is used throughout both epochs, colliding requests

from the query phase will have to be recovered before the response phase can begin.

Due to the nature of our query/response model, we can expect collisions to

occur more often in the response phase. Hence, we will build the system using

different collision recovery factors αq for the query phase and αr for the response

phase, with αr ≥ αq.
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Figure 4.2: n-server write request processing. At the end of the epoch the Master Server
publishes the database with all the write requests and the nodes will be reset to
hold an empty database.

4.2.2 N-server Construction

We now present the generalized model for the case with n servers and a database

with l rows. We use collision parameters αq and αr for the query and response

phase, respectively. The various steps of the construction are illustrated in Fig-

ure 4.2.

Query phase. Assume user A wants to query gene XA, but does not

want to reveal that she is the person querying it. As in the construc-

tion presented in Section 4.1.4, A builds her write request, consisting of

(XA,PKA), where PKA is her public key, aiming to write at row i in the

database. She picks random numbers r1,1, . . . ,r1,l,r1,l+1, . . .r1,lαq,r2,1, . . . ,rn,lαq

and r′1,1, . . . ,r
′
1,l,r

′
1,l+1, . . . ,r

′
1,lαq

,r′2,1, . . . ,r
′
n,lαq

, where l is the size of the database,

n the number of nodes the write request will be sent to, and αq the number of

allowed collisions. The query write request vectors are then constructed as follows:



4.2. Methods 62

v1,1 = (r1,1,r1,2, . . . ,r1,i +XA, . . . ,r1,l)

v′1,1 = (r′11,,r
′
1,2, . . . ,r

′
1,i +PKA, . . . ,r′1,l)

v1,2 = (r1,l+1, . . . ,r1,l+i +X2
A, . . . ,r1,2l)

v′1,2 = (r′1,l+1, . . . ,r
′
1,l+i +PK2

A, . . . ,r
′
1,2l)

...
v1,αq=(r1,l(αq−1)+1, . . . ,r1,l(αq−1)+i +Xαq

A , . . . ,r1,lαq)

v′1,αq
=(r′1,l(αq−1)+1, . . . ,r

′
1,l(αq−1)+i +PKαq

A , . . . ,r′1,lαq
)

...

v2,1 = (r2,1,r2,2, . . . ,r2,i, . . . ,r2,l)

v′2,1 = (r′2,1,r
′
2,2, . . . ,r

′
2,i, . . . ,r

′
2,l)

...

vn,1 =−(r1,1,r1,2, . . . ,r1,i, . . . ,r1,l)−
n−1

∑
j=2

v j,1

v′n,1 =−(r′11,,r
′
1,2, . . . ,r

′
1,i, . . . ,r

′
1,l)−

n−1

∑
j=2

v′j,1

...

vn,αq=(r1,l(αq−1)+1, . . . ,r1,l(αq−1)+i, . . . ,r1,lαq)−
n−1

∑
j=2

v j,αq

v′n,αq
=(r′1,l(αq−1)+1, . . . ,r

′
1,l(αq−1)+i, . . . ,r

′
1,lαq

)−
n−1

∑
j=2

v′j,αq
.

The querying user A ends (v j,v′j) to server j for each j, 1 ≤ j ≤ n, where

v j = (v j,1, . . . ,v j,αq), and v′j = (v′j,1 . . . ,v
′
j,αq

) . We also consider the special case of

αq = 1, when there is no recovery for collisions, but, instead, we adjust the database

size according to the minimizing collisions case. The servers collect write requests

until the end of the epoch and then send their local databases to the master server,

which will combine them to reveal the database.

Response Phase. As the database with the queries is published, the response phase

begins. As discussed in Section 4.1.4, we can rely on MME’s algorithm to gener-



4.2. Methods 63

ate matches on existing data from the platform, encrypt the contact details of the

relevant users with an interest in the same gene, and extend it to allow for volun-

tary responses. More specifically, user B can add their contact details CB by send-

ing a write request as a share of c = EncPKA(CB), in a similar manner to the first

epoch. That is, first, she picks random s1,1, . . . ,s1,l,s1,l+1, . . . ,s1,lαr ,s2,1, . . . ,sn,lαr

and forms the following vectors:

u1,1 =(s1,1, . . . ,s1,i + c, . . . ,s1,l),

u1,2 =(s1,l+1, . . . ,s1,l+i + c2, . . . ,s1,2l),

...

u1,αr =(s1,l(αr−1)+1, . . . ,s1,l(αr−1)+i + cαr , . . . ,s1,lαr)

u2,1 =(s2,1, . . . ,r′2,i, . . . ,s2,l)

...

un,1 =− (s1,1,s1,2, . . . ,s1,i, . . . ,s1,l)−
n−1

∑
j=2

u j,1,

...

un,αr =− (s1,l(αr−1)+1, . . . ,s1,l(αr−1)+i, . . . ,s1,lαr) +
n−1

∑
j=2

u j,αr

User B then sends u j =(u j,1, . . .u j,αq) to server S j. At the end of this epoch, the

results are being published in a column adjacent to the queried gene and the public

encryption key. In case of collisions, the individual ciphertexts can be recovered

up to αr collisions. Finally, the querying users can use the database to find the row

of interest (in this case i) and decrypt the contact details received and contact the

person.

4.2.3 Experimental Evaluation

We now present an experimental evaluation of AnoniMME, aiming to demonstrate

its practicality for real-world deployment.

We have implemented the n-server construction (Section 4.2.2) using Python
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3.6 and evaluated our prototype on a Macbook Pro running MacOS Sierra 10.12.6

and equipped with a 2.7GHz Intel i5 processor, and 16GB of RAM. Experiments

are performed in two different settings, with two and six node servers, respectively,

and always averaged over 1,000 executions. We also use three different epoch sizes,

namely, 100, 500, and 1,000 write requests per epoch during the query phase. For

the response phase, we keep the database size fixed from the query phase. Overall,

we evaluate running times needed to generate the write requests and the bandwidth

overhead supporting the recovery of 2, 5, and 10 colliding messages, all on the

client side (i.e. one request per epoch).

The servers run Flask with RESTful interface, so we use HTTP requests to send

the messages, and the payload is built in JSON, therefore, we measure, in bytes,

the size of the JSON payload (plus HTTP headers) to estimate the total bandwidth

required for sending write requests.

On the client side, the cryptographic layer includes generating public/private

keys (done only once) and building the vectors to be sent to the n servers as part

of the write request, which incurs O(n) complexity. Gene name and contact details

are assumed to be no longer than 64 characters, while random numbers used for

vector generation during query phase are up to 1,024 bits long, for αq ∈ {1,2} and

αr = 2. For the response phase, the length of the random values varies according

to the collision recovery factor αr. For αr = 5, their length is 2,560 bits, while for

αr = 10 it is 5,120.

Finally, note that plausible gene queries are generated using the set of gene

symbols (e.g, “BRCA2”) from http://gfuncpathdb.ucdenver.edu/iddrc/iddrc/data/

officialGeneSymbol.html.

4.2.3.1 Two Node Servers

We start with the setting involving two node servers and a master server, considering

epochs of size 100, 500, and 1,000. As mentioned above, we evaluate bandwidth

overhead and running times required for query and response write requests.

The database size required for each of the three test cases is calculated ac-

cording to the method presented in Section 4.2.1 for minimizing collisions, thus,
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Figure 4.3: Two nodes running times for query write request, response write request with
recovery from 2 collisions, response write request with recovery from 5 colli-
sions, response write request with recovery from 10 collisions.

l = 19.5m, where l denotes the number of rows required and m is the number of

write requests for the epoch. It follows that the l amounts to 2,000, 10,000, and

20,000 rows for m equal to 100, 500, and 1,000, respectively.

Running times for both the query write and the response (considering αr ∈

{2,5,10}) are shown in Figure 4.3. Overall, we find that, during the query phase,

with a database size of 2,000 rows, it takes approximately 0.014s to generate vectors

in our testbed. Running times scale linearly, i.e., it takes 0.062s with 10,000 rows

and 0.126s with 20,000 rows. The bandwidth overhead, shown in Figure 4.4, ranges

from 2.5MB for the smallest database size to 25MB for the largest case considered

in our test cases, which can be considered an acceptable amount of traffic expected

from the client side.

For the response phase, we find that, when αr = 2, the results are similar to the

query phase since responding users need to generate two vectors in order to allow

collision recovery, same as for the querying user. When αr equals 5 or 10, we notice

an increase in both running times and bandwidth. Nonetheless, computational com-

plexity is still acceptable, since, even with the largest database size, write request

generation takes less than 0.5s for αr = 5 and less than 1.5s for αr = 10. Communi-
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Figure 4.4: Two nodes bandwidth averages for query write request, response write request
with recovery from 2 collisions, response write request with recovery from 5
collisions, response write request with recovery from 10 collisions.

cation overhead, on the other hand, increases to 160MB and 617MB, respectively,

with the largest database size.

However, one can adjust the collision minimization parameter so that 10-way

collision recovery is not needed.

4.2.3.2 Six Node Servers

We also experiment with an instantiation of AnoniMME using six node servers, thus

mirroring the current MME setting, which involves seven members. Once again, we

consider three settings (100, 500, and 1,000 write requests per epoch), and obtain

the resulting database size based on the recovery from collisions method discussed

in Section 4.2.1. We support recovery from two colliding messages for the query

phase, i.e. αq = 2. Therefore, the number of rows required is l = 2.7m
2 , where m is

the number of write requests for the epoch, thus, l equals 135, 675, and 1,350 for

m = 100, 500, and 1,000, respectively. As per the response phase, we run tests with

different values αr ∈ {2,5,10}, considering the database size fixed as for the query

phase.

Once again, we estimate running times (see Figure 4.5) and the bandwidth

overhead (see Figure 4.6). Even though this requires more vectors to be generated
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Figure 4.5: Six nodes running times for query write request, response write request with
recovery from 2 collisions, response write request with recovery from 5 colli-
sions, response write request with recovery from 10 collisions.

by the users compared to the two-node setting (cf. Section 4.2.3.1), we observe a

considerable decrease in both running times and bandwidth overhead for the same

epoch sizes due to the decreased number of rows in the database. Specifically,

computational complexity is again linear over all test cases, but the write request

generation taking less than half the time. There is also a big improvement in terms of

communication complexity: even in the most bandwidth-heavy case (i.e., αr = 10),

with 1,000 write requests per epoch, we observe a five-fold improvement, with

bandwidth decreasing from 617MB to 125MB.

On the other hand, the query phase is less efficient than the response phase

(with αr = 2), compared to the two-node setting, since the querying user now has

to generate two vectors for each gene so that collision recovery is possible, hence,

four vectors in total; whereas, the responding user only generates two vectors.

4.3 Discussion

This chapter presented AnoniMME, a framework geared to bring anonymity to

Matchmaker Exchange (MME) platform. Specifically, AnoniMME supports anony-

mous queries, by relying on Reverse PIR, while mirroring the functionalities of
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Figure 4.6: Six nodes bandwidth averages for query write request, response write request
with recovery from 2 collisions, response write request with recovery from 5
collisions, response write request with recovery from 10 collisions.

MME. Queries include the gene name as in MME, but also the querying user’s

public key, and are collected during epochs, whose length is based on the num-

ber of write requests, therefore building anonymity sets for the epoch. By tak-

ing advantage of the underlying MME matching protocol, these queries can be

seamlessly responded to, without publicly revealing the contact details of other re-

searchers/clinicians which generated a match, by using the public key provided to

encrypt the match. Also, other users can provide their (encrypted) contact details if

they so wish.

Our experimental evaluation attests to the practicality of using AnoniMME to

bring anonymity to the Matchmaker Exchange. Overall, using the method proposed

in Section 4.2.3.1 to recover write requests in case of collisions yields better running

times and bandwidth complexities, even when the number of nodes increases.

Since AnoniMME is based on Riposte [52], one might want to compare the

two systems; however, Riposte focuses on experimental results from the server’s

perspective, while we evaluate performance from a user perspective.

Also note that the bandwidth overhead in our n-server construction is non-

negligible, especially with a high collision recovery factor and increasing database
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sizes (as discussed in Section 4.2.3.1). A possible solution would be to use dis-

tributed point functions to reduce bandwidth complexity, similar to Riposte. How-

ever, we leave this to future work.

As the anonymity set size in AnoniMME corresponds to the number of users

querying in a given epoch, one could increase it by requiring users to send empty

queries to the system, following a certain probability distribution. The write re-

quests would be formed as discussed in Section 4.2.2, although, instead of inputting

a gene, the public key, or the contact details, the users just send an empty query. This

is also used in Riposte, to minimize statistical disclosure attacks on their platform.

Finally, note that our implementation currently allows for 64 character mes-

sages, thus, queries can also include phenotypes from the Human Phenotype On-

tology (as currently supported by MME), although, to ease of presentation we have

discussed our experiments by only considering gene names. In future work, we

plan to conduct a user study simulating a real-world deployment of AnoniMME

with users of the MME, aiming to evaluate its usability with respect to anonymity

protection, delays introduced by epochs, etc.



Chapter 5

Empirical Analysis of Long-Term

Security for Genomic Data

Over the past two decades, the cost of sequencing the human genome – i.e., deter-

mining a person’s complete DNA sequence – has plummeted from millions to thou-

sands of dollars, and continues to drop [123]. As a result, sequencing has not only

become routine in biology and biomedics research, but is also increasingly used in

clinical contexts, with treatments tailored to the patient’s genetic makeup [22]. At

the same time, the “direct-to-consumer” genetic testing market is booming [183]

with companies like 23andMe and AncestryDNA attracting millions of customers,

and providing them with easy access to reports on their ancestry or genetic predis-

position to health-related conditions. Progress and investments in genomics have

also enabled public initiatives to gather genomic data for research purposes. For

instance, in 2015, the US launched the “All of Us” program [125], which aims to

sequence one million people, while, in the UK, Genomics England is sequencing

the genomes of 100,000 patients with rare diseases or cancer [6].

Alas, as more and more genomic data is generated, collected, and shared, seri-

ous privacy, security, and ethical concerns also become increasingly relevant. The

genome contains very sensitive information related to, e.g., ethnic heritage, dis-

ease predispositions, and other phenotypic traits [24]. Furthermore, even though

most published genomes have been anonymized, previous work has shown that

anonymization does not provide an effective safeguard for genomic data [79]. While
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some individuals choose to donate their genome to science, or even publicly share

it [141], others might be concerned about their privacy, or fear discrimination by

employers, government agencies, insurance providers, etc. [36].

Worse yet, consequences of genomic data disclosure are not limited in time or

to the data owner: due to its hereditary nature, access to one’s sequenced genome

inherently implies access to many features that are relevant to their progeny and

their close relatives.

Motivated by these challenges, the research community has produced a large

body of work aiming to protect genomic privacy and enable privacy-preserving

sharing and testing of human genomes [118]. Available solutions mostly rely on

cryptographic tools, including encryption as well as Secure Computation, Homo-

morphic Encryption, Oblivious RAM, etc. [28]. However, modern encryption al-

gorithms provide security guarantees only against computationally bounded adver-

sary; essentially, their security is assumed to last for 30 to 50 years [161]. While

this timeframe is acceptable for most uses of encryption, it is not for genomic data.

GenoGuard [92]. To address the problem of “long-term security,” Huang et al. [92]

introduce GenoGuard, a tool based on Honey Encryption (HE) [100] to provide

confidentiality of genomic data even in the presence of an adversary who can brute

force all possible encryption keys. GenoGuard uses a distribution transforming

encoder (DTE) together with symmetric (password-based) encryption. In essence,

whenever an attacker would try to decrypt a GenoGuard ciphertext using a wrong

password, the decryption will give a wrong but plausible looking plaintext, which

we denote as a honey sequence.

HE schemes based on DTE-then-encrypt constructions (as is the case for

GenoGuard) only provide security in the message recovery context. That is, having

access to the ciphertext only gives an unbounded adversary a negligible advantage

in guessing the correct plaintext. However, as first discussed by Jaeger et al. [95], ci-

phertexts obtained from DTE-then-encrypt HE might still leak a significant amount

of information about the plaintexts. As an example, the authors say that their honey

encryption scheme would not be able to effectively protect normal HTTPS certifi-
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cate keys due to the fact that the public key associated with the encrypted secret key

being available to the attacker.

Technical Roadmap. We evaluate GenoGuard security by analyzing ciphertexts

obtained using easily guessable (low-entropy) passwords as well as hard (high-

entropy) ones. In other words, in both cases, we decrypt a GenoGuard ciphertext us-

ing a corpus of passwords and analyze the resulting decryptions (honey sequences).

In the low-entropy setting, we consider an adversary who aims to identify the cor-

rect sequence among a pool of honey sequences, whereas, in the high-entropy case,

one that uses the GenoGuard ciphertext in order to obtain more information about

the target sequence when side information is available as opposed to the adversary

using only inference methods for genomic data on that side information..

In our experimental evaluation, we show that, under a low-entropy password

setting, an adversary who has access to side information about the target sequence

can quickly eliminate the decoy sequences in order to have an increased advantage

of guessing the correct sequence. This draws attention to the fact that if the attacker

obtains a list of known passwords for a user (as passwords are often compromised

and/or re-used), together with some side information about the user’s sequence, she

can have a significant advantage in guessing the correct sequence.

In the high-entropy setting, we not only observe that access to the GenoGuard

ciphertext improves an adversary’s accuracy in guessing SNVs from a target se-

quence when 10% or less of the target sequence is available to her as side infor-

mation, but also draws attention to the fact that with enough side information, the

adversary can predict a significant part of the target genome just by using state of

the art inference methods for genomic sequences.

Contributions. In summary, this chapter makes two main contributions. First, un-

der a low-entropy password setting, we formally show that, if the adversary obtains

side information about the target sequence, there is a significant lower bound in her

advantage. This highlights that the system offers low security when the adversary

has access to side information, as supported by empirical evidence. Second, in the

high-entropy password setting, we quantify the privacy loss for a user as a result of
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Figure 5.1: Toy example describing the encoding process for a sequence (1,0,2). The
green dashed line represents the correct encoding of the sequence. When the
final leaf (interval [0.224,0.24]) is reached, a seed is picked at random from
this range.

using GenoGuard, compared to the best inference methods for genomic data; once

again, showing that that it is non-negligible.

Terminology. In the rest of the chapter, to denote sequences decrypted from

GenoGuard, we use the term honey sequences.

5.1 GenoGuard

In this section, we review GenoGuard [92], along with a security analysis of the

framework.

5.1.1 Construction

GenoGuard is a framework providing long-term confidentiality for genomic data

based on Honey Encryption [100]. More specifically, it allows to encode genomic

data, encrypt it using a secret password, and store in a database, in such a way

that its confidentiality is preserved even against an attacker that can brute-force

all possible passwords. In GenoGuard, genomes are represented as a sequence of

single-nucleotide variants (SNVs), i.e., values in {0,1,2}.

Encoding. The construction uses a DTE scheme optimized for genome sequences.

It assigns subspaces of seed space S to the prefixes of a sequence M, i.e., all the

subsequences in the set {M1,i|1≤ i≤ n}, where n is the length of the sequence. For

example, the prefixes of the sequence 01102 are {0,01,011,0110,01102}. The seed
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space S is the interval [0,1), with each seed being a real number in this interval.

Let M be the set of all possible sequences (the plaintext space). To calculate

the cumulative distribution function (CDF) of each sequence, a total order O is

assigned to all sequences in M . For any two different sequences M and M′, we

assume that they start to differ at SNVi and SNV′i. If the value of SNVi is smaller

than that of SNV’i, then, O(M)<O(M′), and O(M)>O(M′) otherwise. The CDF

of a sequence M is then calculated as:

CDF(M) = ∑M′∈M ,O(M′)≤O(M)PrSNV (M′)

where PrSNV (M′) is the probability of the sequence M′.

The encoding of a sequence can be performed using a perfect ternary tree, as

depicted in Figure 5.1. (Note that the plot was generated using code obtained from

GenoGuard’s Github page.1) Each node in the tree represents a prefix of a sequence,

and each leaf a complete sequence. Nodes have an interval [L j
i ,U

j
i ), where i is the

depth of the node in the tree and j its order at a given depth i. The first node has

the interval [L0
0,U

0
0 ) = [0,1). Depending on the value of the SNV at position i+1,

the encoding proceeds from the node that represents M1,i with order j at depth i to

depth i+1 as follows:

• If SNVi+1 = 0, go to the left branch and attach an interval [L3 j
i+1,U

3 j
i+1) =

[L j
i ,L

j
i +(U j

i −L j
i )×Pr(SNVi+1 = 0|M1,i))

• If SNVi+1 = 1, go to the middle branch and attach an interval [L3 j+1
i+1 ,U3 j+1

i+1 )=

[L j
i + (U j

i − L j
i ) × Pr(SNVi+1 = 0|M1,i),L

j
i + (U j

i − L j
i ) × (Pr(SNVi+1 =

0|M1,i +Pr(SNVi+1 = 1|M1,i)))

• If SNVi+1 = 2, go to the right branch and attach an interval [L3 j+2
i+1 ,U3 j+2

i+1 ) =

[L j
i +(U j

i −L j
i )× (Pr(SNVi+1 = 0|M1,i +Pr(SNVi+1 = 1|M1,i)),U

j
i ).

In order to compute the conditional probabilities, Huang et al. [92] consider several

models and compare their goodness of fit for real-world genome datasets. Specifi-

cally, they experiment with Linkage Disequilibrium (LD), Allele Frequencies (AF),

1https://github.com/acs6610987/GenoGuard
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building k-th order Markov chains on the dataset and recombination rates (RR), and

find the latter to perform best.

Finally, when a leaf is reached, a seed is picked uniformly from this range as

the encoding of the corresponding sequence, and then fed into a Password-based

Encryption (PBE) scheme to perform encryption, using a password chosen by the

user.

Decoding. To decode an encoded-then-encrypted sequence, the ciphertext is first

decrypted (as per the PBE scheme) using the user-chosen password; this recovers

the seed. Then, the decoding process proceeds similar to the encoding one. That is,

given the seed S ∈ [0,1), at each step, the algorithm computes three intervals for the

three branches, chooses the interval in which the seed S falls, and moves down the

tree. Once a leaf node is reached, the path from the root to the leaf is outputted as

the decoded sequence.

Finite Precision. Note that the Honey Encryption encoding model, as described in

Section 5.1.1, requires the seed space S to be a real number domain with infinite

precision. In the case of DNA sequences, this would yield a very long floating-

point representation, and thus a high storage overhead. Therefore, GenoGuard uses

a modification of the DTE scheme for finite precision. Specifically, for a sequence

of length n, where each SNV takes three possible values, at least n · log2 3 bits are

needed for storing the sequence. Hence, a storage overhead parameter h > log2 3

is selected, and each sequence is encoded over h · n bits. The algorithm works as

before, by selecting intervals according to the values of the respective SNVs based

on conditional probabilities. The root interval is [0,2hn−1]. At each branch at depth

i, the algorithm will allocate a seed space of size 3n−i−1, and each following step

will segment an input interval into three parts of equal size. Hence, any subinterval

of the j-th node at depth i will contain 3n−i−1 integers.

5.1.2 Security

Huang et al. [92] evaluate the security of GenoGuard vis-à-vis the probability of an

unbounded adversary recovering the encrypted sequence. That is, given the encryp-
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tion of a message, what is the probability of the adversary recovering the correct

message, even if she can brute-force all possible encryption keys for the underlying

PBE scheme?

Upper Bound. More formally, they prove an upper bound to the probability an

adversary recovers the correct message to be:

Prpm,pk ≤ w(1+δ )+
3n +1/w

2(h−log2 3)n
(5.1)

where pm is the original sequence distribution with maximum sequence probability

γ , pk is a key (password) distribution with maximum weight w (i.e., the most prob-

able password has probability w), n is the length of the sequence, h the overhead

parameter, and δ a parameter depending on w and γ .

Let ∆ denote the fraction 3n+1/w
2(h−log2 3)n in Equation 5.1. Note that ∆ is a security

loss term, since the upper bound on plaintext recovery probability should be w, as an

adversary who trivially decrypts the ciphertext with the most probable key and out-

puts the result can recover the original message with probability w. ∆ is essentially

the security lost due to DTE imperfectness when moving to finite precision, i.e.,

given by the difference between the original message distribution and the DTE dis-

tribution. As shown in [92], for n = 20,000, h = 4, w = 1
100 , and γ = 2.89×10−44,

∆ is approximately 2−16600.

Empirical Evaluation. Huang et al. [92] also present an empirical security analysis

based on two experiments. In both, the chromosome 22 of a victim is encrypted

using a password pool consisting of numbers from 1 to 1000, with “539” assumed

to be the correct one. Then, in order to rule out wrong passwords, the interval size

of each of the decrypted sequences is computed. In the first experiment, a genome is

encoded by assuming a uniform distribution (i.e., each branch has weight 1/3 at all

depths), and a PBE scheme is used to encrypt the seed. In the second experiment,

GenoGuard is used to encrypt the victim’s sequence. Hence, the size of the interval

of a leaf in the ternary tree is proportional to the probability of the corresponding

sequence. The results of their experiments, reported in Figure 10 in [92], show
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Symbol Meaning
MR Message recovery
SI Side information
HEnc Honey Encryption
HDec Honey Decryption
K Key space
M Message space
pk Key distribution
pm Message distribution
A Adversary
A SI Adversary with access to side information

Table 5.1: Table of Notation.

that a simple classifier can distinguish the correct sequence in the first experiment,

while, in the second one, it is “buried” among all the decrypted sequences.

5.2 Evaluation Methods

We now describe our evaluation methods, for both low and high-entropy password

settings. Before doing so, we introduce the notation used in the rest of the paper in

Table 5.1.

5.2.1 Low-Entropy vs High-Entropy Password

We use different approaches for evaluating GenoGuard under two different pass-

word types, namely low-entropy and high-entropy passwords. In other words, we

encrypt a sequence with GenoGuard using either an easy to guess, low-entropy

password (≈7 bits), or using a harder password with a higher entropy (≈72 bits).

The difference in the evaluation of the two approaches is given by the adver-

sary’s goal. Specifically, in the low-entropy password case, the adversary attempts

to use the side information in order to distinguish the original encrypted sequence

among a pool of honey sequences. By contrast, in the high-entropy setting, the ad-

versary uses both the honey sequences and the side information in order to predict

the value of each SNV at each position in the target sequence.
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5.2.2 Threat Model

We use the same system and threat model presented in the GenoGuard paper [92],

i.e., we assume a genomic sequence of a user is to be stored, encrypted, at a third-

party database, e.g., a biobank. We consider an adversary that has access to the

encrypted data (for instance, she breaks into the biobank and gets access to the

encrypted database, or the biobank itself is adversarial) and has access to public

knowledge as well as to some side information (as discussed below).

Low-Entropy Password. The main adversarial goal in this case is to identify the

target sequence among a pool of honey sequences, using the side information avail-

able, i.e. “message recovery” with side information (MR-SI).

High-Entropy Password. The main adversarial goal is to obtain as much informa-

tion as possible about the sequence that was encrypted. Note that this adversarial

goal is different from “message recovery,” according to which Huang et al. [92]

evaluate GenoGuard’s security (cf. Section 5.1.2). The main intuition is that, as also

hypothesized by [95], using Honey Encryption might actually leak non-negligible

information about the sequences encrypted using GenoGuard, even if the adversary

cannot correctly recover the full plaintext with non-negligible probability.

5.2.3 Adversary’s Side Information

As mentioned above, the adversary has access to the victim’s encrypted sequence as

well as to public information such as, Linkage Disequilibrium, Allele Frequencies,

Recombination Rate (see Section 2.1). In addition, we assume that the adversary

may have some side information about the victim.

When referring to side information, note that we do not consider knowledge

of common traits from phenotype-genotype associations, e.g., gender, ancestry, or

other information about the victim that could be obtained, e.g., from social media.

In fact, this is covered by GenoGuard’s guidelines, which state that the user should

include as much side information about their genome as possible when performing

the encoding. Whereas, even though assuming the user can knowingly enumerate all

possible side information is quite a strong assumption, we actually consider the case
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where the victim undertakes some specific tests, and the adversary learns additional

information about the victim from the outcome of those tests. Additionally, the

victim might choose to re-encrypt their genome after obtaining the test results in

order to incorporate them in the encoding, and the adversary could use the new

ciphertext to extract information about the old ciphertext.

In the high-entropy password setting, we also evaluate the case where an ad-

versary has no side information about the target sequence, in order to quantify the

information leakage that might occur from using GenoGuard against baseline infer-

ence methods for genomic sequences. Overall, we consider different types of side

information available to the adversary:

1. No Side Information: The adversary has access only to the encrypted se-

quence. (NB: this is only evaluated for the high-entropy password setting)

2. Sparse SNVs: The adversary has access to SNV values sparsely distributed in

the target sequence.

3. Consecutive SNVs: The adversary has access to values from a cluster of con-

secutive SNVs in the target sequence.

5.2.4 Low-Entropy Password

We now formally provide a lower bound for the adversary’s advantage in the case

where she obtains side information about the target sequence and encryption is done

using a low-entropy password.

We present a lower bound on the adversary’s advantage when she has access

to side information about the encrypted sequence and can exhaustively search the

message space. We prove the bound formally, building on [95], which shows the im-

possibility of known-message attack (KMA) security with low-entropy passwords.

However, instead of the adversary having access to message-ciphertext pairs, we

assume that the adversary has access to (position, value) pairs from the encrypted

sequence. The game defining message recovery security with side information is

denoted as MR-SIA
HE,pm,pk

and illustrated in Figure 5.2.
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MR-SIAHE,pm,pk
:

� K∗←pk K
�M∗←pm M
� C∗←$ HEnc(K∗,M∗)
�M←$A SI(C∗)
� If M = M∗: Return 1
Else: Return 0

Figure 5.2: Definition of Message Recovery Security with Side Information (MR-SI).

Adversary A SI(C∗):
� Let q be the number of known SNVs
� Let SI be the set of q pairs (posi,vali) from M∗

� Kq← /0
� For K ∈K :

If(∀i HDec(K,C∗)[posi] = vali):
Kq← Kq∪{K}

� K←$ Kq
� Return HDec(K,C∗)

Figure 5.3: Adversary strategy for MR-SI, having access to q pairs of (position, value) from
the original message.

Given a ciphertext C∗, an adversary A SI , with access to side information, is

allowed to guess the message by brute force. The adversary A SI wins the game if

her output message is the same as the original message.

Our intuition is that the advantage of the adversary A SI (Figure 5.3), for a

number q (q ≤ 2n, where n = [log2 |K |]) of positions and values, from the origi-

nal sequence, is equal to the probability that a randomly chosen key that decrypts

correctly all values at the given positions, will also decrypt the rest of the sequence,

i.e., Advmr−si
HE,pm,pk

(n) = Pr[MR−SIAHE,pm,pk
]. We denote by Kq the number of keys

consistent with the positions and values used as side information.

Hence, we use Lemma 4.2 from [95], as follows:

Lemma 5.2.1. If s0,s1, ...,sn are positive integer-valued random variables such that

s0 ≤ 2n and sq+1 ≤ sq, for q ∈ Zn, then maxq∈Zn E
[
sq+1/sq

]
≥ 1

2n .

Proof. (Reproduced from [95]). Let ε =maxx∈ZE
[
sq+1/sq

]
. We will use an induc-

tive argument to prove that Pr[sq ≥ 2n−q] < 2qε for 1 ≤ q ≤ n. Then, considering

when q is n and nothing that sn ≥ 1 always, we have 1 = Pr[sn ≥ 1]≤ 2nε . Solving
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for ε gives the desired bound.

We now give the inductive argument. First, Markov’s inequality can be used

to bound the probability that sq+1 is at least half of sq by Pr[sq+1/sq ≥ 1/2] ≤

2E
[
sq+1/sq

]
. Rewriting and bounding E

[
sq+1/sq

]
by ε we get:

Pr[sq+1 ≥ (1/2)sq]≤ 2ε (5.2)

for all q ∈ Zn.

Recalling that s0 ≤ 2n, the base case is easily derived by Pr[s1 ≥ 2n−1] ≤

Pr[s1≥ (1/2)s0]≤ 2ε/ Now suppose 1< q≤ n and Pr[sq−1≥ 2n−(q−1)]≤ 2(q−1)ε .

By definition, we have:

Pr[sq ≥ 2n−q] = Pr[sq ≥ 2n−q|sq−1 < 2n−(q−1)]Pr[sq−1 ≥ 2n−(q−1)]

+Pr[sq ≥ 2n−q]Pr[sq ≥ 2n−q|sq−1 < 2n−(q−1)]Pr[sq−1 < 2n−(q−1)]

(5.3)

The first part of the equation can be bounded using our inductive assumption:

Pr[sq ≥ 2n−q|sq−1 < 2n−(q−1)]Pr[sq−1 ≥ 2n−(q−1)]≤ Pr[sq−1 ≥ 2k−(q−1)]

≤ 2(q−1)ε
(5.4)

To bound the second part, note that, conditioned on the fact that sq−1 < 2n−(q−1), it

can only hold that sq is greater than 2n−q if sq is greater than (1/2)sq−1. This gives

us:

Pr[sq ≥ 2n−q|sq−1 < 2n−(q−1)]≤ Pr[sq ≥ (1/2)sq−1|sq−1 < 2n−(q−1)] (5.5)

Then, form the definition of conditional probability and equation (5.2), we get that:

Pr[sq ≥ 2n−q|sq−1 < 2n−(q−1)]Pr[sq−1 < 2n−(q−1)]≤ Pr[sq ≥ (1/2)sq−1]

≤ 2ε.
(5.6)
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Game 1:
� K∗←pk K
�M∗←pm M
� C∗←$ HEnc(K∗,M∗)
� Let q be the number of known SNVs
� Let SI be the set of q pairs (posi,vali) from M∗

� Kq← /0
� For K ∈K :

If(∀i HDec(K,C∗)[posi] = vali):
Kq← Kq∪{K}

� K←$ Kq
�M← HDec(K,C∗)
� If M = M∗: Return 1
Else: Return 0

Figure 5.4: Game 1, used in the proof of Theorem 5.2.2.

Putting the above together, we get Pr[sq ≥ 2n−q] ≤ 2qe, thus completing the proof.

Using Lemma 5.2.1, we can compute the adversary’s advantage as follows:

Theorem 5.2.2. Let HE be an encryption scheme and n = [log2 |K|]. Then, for any

pm, pk, the adversary A SI who obtains at most n−1 positions and values from the

original sequence will have advantage:

Advmr−si
HE,pm,pk

(A SI) ≥ 1
2n2

Proof. The advantage Advmr−si
HE,pm,pk

(A SI), is equal to Pr[Game 1 Retuns 1] where

Game 1 is defined in Figure 5.4. This is due to the fact that Game 1 is MR-SIAHE,pm,pk

together with Adversary A SI(C∗). By applying a few transformations to Game

1 (i.e. take the (∀i HDec(K,C∗)[posi] = vali) check and changing it to a “for”

loop), and changing the final check (i.e. instead of checking if M = M∗ before

returning 0 or 1, it checks if the key K is in the subset that decrypts C∗ to M∗),

we obtain an equivalent game, Game 2 (Figure 5.5). Thus, Pr[Game 1 Returns 1] =

Pr[Game 2 Returns 1].

Since Kq+1 ⊆ Kq, for fixed q, the probability that Game 2 will return 1 is

E
[
|Kq+1|
|Kq|

]
. So we have Pr[Game 2 Returns 1] = ∑

n
q=0

1
n E
[
|Kq+1|
|Kq|

]
.
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Game 2:
� K∗←pk K
�M∗←pm M
� C∗←$ HEnc(K∗,M∗)
� Let q be the number of known SNVs
� Let SI be the set of q pairs (posi,vali) from M∗

� K0←K ;K1,K2, ...Kq+1← /0
� For (posi,vali) ∈ SI:

For K ∈ Ki−1:
If(HDec(K,C∗)[posi] = vali):

Ki← Ki∪{K}
� For K ∈ Kq:

If HDec(K,C∗) = M∗

Kq+1← Kq∪{K}
� K←$ Kq
� If K ∈ Kq+1: Return 1
Else: Return 0

Figure 5.5: Game 2, a transformed version of Game 1.

We then define Experiment 1 (Figure 5.6), which shows that the distribution of

Kq+1 and Kq for q ∈ Zn is the same as the distribution in Game 1. Let sq denote |Kq|

and ε =maxq∈Zn E
[

sq+1
sq

]
, where the expectation is taken in Experiment 1. Since all

Kq contain at least the key K∗, they all are positive. Thus, by applying Lemma 5.2.1

we have ε ≥ 1
2n . Then:

Advmr−si
HE,pm,pk

(A SI) = Pr[Game 2 Returns 1]

= ∑
n
q=0

1
n E
[
|Kq+1|
|Kq|

]
≥ 1

n · ε ≥
1

2n2

This shows that the security of the systems is weak even with a small number of

pairs (position, value) from the target sequence available to the attacker, as opposed

to having multiple known ciphertext-plaintext pairs.

5.2.5 High-Entropy Password

We now give an overview of our inference strategy using the GenoGuard ciphertext

and discuss the baseline inference methods we evaluate our strategy against. Note

that both the baseline inferences as well as our inference strategy assume that the

adversary has access to prior information about the target (i.e., AF, LD, recombina-
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Experiment 1:
� K0←K ;K1,K2, ...Kn← /0
� K∗←pk K
�M∗←pm M
� C∗←$ HEnc(K∗,M∗)
� Let n be the number of known SNVs
� Let SI be the set of n pairs (posi,vali) from M∗

� For (posi,vali) ∈ SI:
For K ∈ Ki−1:
If(HDec(K,C∗)[posi] = vali):

Ki← Ki∪{K}

Figure 5.6: Experiment 1, used in the proof of Theorem 5.2.2.

tion rate), which is available to them as the encoding tree is stored together with the

encrypted sequence.

Baseline Inferences. We compare the performance of our inference strategy to

baselines for genomic sequence inference. For these baselines, we assume that the

adversary has access only to side information, as discussed in Section 5.2.3, but not

the ciphertext resulting from GenoGuard’s encode-then-encrypt method.

As done by Samani et al. [156], we set to infer the value of an unknown SNVi,

given a probabilistic modeling of genome sequences. More specifically, we use the

following models for SNV correlation:

• B1: 1st order Markov chain model from AF and LD: most likely genotype.

• B2: 1st order Markov chain model from AF and LD: sampled genotype.

• B3: RR Model.

GenoGuard Inference Methods. Our method is based on exploiting the similar-

ities between the honey sequences in order to obtain information about the target

sequence. More specifically, we use two strategies:

1. G1. Side information-weighted SNVs: We assign a weight to each of the

honey sequences based on the number of SNVs from the side information

contained. We then consider only the sequences with the highest weight and

output the most common SNVs among them as our candidate SNVs for the
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(a) #Candidate sequences vs % revealed sparse SNVs
from target sequence

(b) Adv’s advantage vs % revealed sparse SNVs from tar-
get sequence

Figure 5.7: Results of our evaluation in the low-entropy setting vis-à-vis an adversary with
access to side information in the form of sparse SNVs from the target sequence.

target sequence. In the case of no side information, we consider the most

common SNVs across all honey sequences.

2. G2. Interval and Side information-weighted SNVs: Similar to the previous

method, however, we also adjust the weight of each sequence when consid-

ering the most common SNVs by the size of the interval that the seed of the

respective sequence will fall into. In the case of no side information, we take

the most common SNVs from all honey sequences, weighted by the previ-

ously mentioned interval size.

5.2.6 Experimental Evaluation

In this section, we present the datasets used for the experimental evaluation and

the results obtained for both evaluation methods, i.e., low-entropy and high-entropy

passwords.

5.2.6.1 Dataset

We use the Phase III data from the HapMap dataset, i.e., the third release from the

HapMap project.2 HapMap was an international project [51], run between 2002 and

2009, aimed at developing a haplotype map of the human genome, and describe the

common patterns of human genetic variation. The HapMap data has been made

publicly available and used for various research purposes, e.g., to research genetic
2https://www.sanger.ac.uk/resources/downloads/human/hapmap3.html
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variants affecting health, disease and responses to drugs and environmental factors,

etc.

The Phase III release increased the number of DNA samples to 1,301 and in-

cluded 11 different populations. In our experiments, we select data from three pop-

ulations:

1. ASW (African ancestry in Southwest USA),

2. CEU (Utah residents with Northern and Western European ancestry from the

CEPH collection),

3. CHB (Han Chinese in Beijing, China).

We sample 50 sequences at random from each of them, for a total of 150 sequences.

For all three populations presented above, we test the same SNVs positions.

5.2.6.2 Low-Entropy Password

Experiment Overview. We use the following strategy for our evaluation:

1. Encrypt a sequence using GenoGuard’s DTE-then-encrypt method: for each

of the 150 sequences, we select and encrypt 1,000 positions from chromo-

some 13, with a storage overhead h = 4 (the same as in the experimental

evaluation of GenoGuard), using a low-entropy password.

2. Decrypt the ciphertext, using the top 10,000 most common passwords re-

leased by Daniel Miessler3 (with the encryption password in the set), to obtain

plausible looking honey sequences;

3. Exclude the sequences which do not contain the side information.

4. Output the number of remaining sequences, given how many of the possible

passwords match the side information.

3https://github.com/danielmiessler/SecLists/blob/master/Passwords/Common-Credentials/10k-most-common.txt
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(a) #Candidate sequences vs % revealed consecutive
SNVs from target sequence

(b) Adv’s advantage vs % revealed consecutive SNVs
from target sequence

Figure 5.8: Results of our evaluation in the low-entropy setting vis-à-vis an adversary with
access to side information in the form of a cluster of consecutive SNVs from
the target sequence.

Adversary’s Advantage. The performance of the adversary is calculated as the

probability of the adversary guessing the target sequence within the remaining pool

of honey sequences.

Sparse SNVs from the Target Sequence. Figure 5.7a illustrates how the log num-

ber of candidate sequences decreases with more side information available. With

1% side information (10 SNVs), the number of sequences that match the side in-

formation reduces to approximately 44 on average across the three populations.

Figure 5.7b shows the increase of the adversary’s advantage, averaged over 1000

rounds, vis-à-vis the number of SNVs available to her. 2.5% side information (25

SNVs) gives the adversary an advantage of approximately 80% on average for the

ASW and CEU populations and close to 90% for the CHB population. With more

side information, the adversary’s advantage increases to over 90% for all popula-

tions.

Consecutive SNVs from the Target Sequence. When the adversary has access to

side information as a cluster of consecutive SNVs, she needs more side information

to achieve comparable results to the Sparse SNVs case. Figure 5.8a shows the de-

crease of the log number of candidate sequences with increasing side information

available. We observe the fastest decrease in the number of sequences with increas-

ing side information available is for the ASW population when less than 10% of the

sequence available. Figure 5.8b shows the increase of the adversary’s advantage,
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(a) ASW (b) CEU

(c) CHB

Figure 5.9: Inference accuracy results in the high-entropy password setting for all three
populations for side information available to the attacker in the form of sparse
SNVs from the target sequence.

averaged over 1000 rounds, vis-à-vis the number of SNVs available to her. The in-

crease in the adversary’s advantage is slower as well, with an average of 70% across

the three populations for 20% of the sequence available to the attacker.

5.2.6.3 High-Entropy Password

Experiment Overview. The brute-force experiment presented in GenoGuard indi-

cates that, when decrypting the same ciphertext with multiple passwords, the correct

sequence would be “buried” among the incorrect ones. Hence, there is some simi-

larity between the original sequence and the honey sequences.

As a result, we set to quantify the corresponding privacy loss, i.e. how much

more information does an adversary obtain via access to ciphertext encrypted

using GenoGuard obtains, compared to one who does not.

Overall, we use the following evaluation strategy:
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Figure 5.10: Difference in accuracy between
the best performing GenoGuard
and baseline inference methods,
vis-à-vis an adversary with side
information of sparse SNVs
from the target sequence, in the
high-entropy password setting.

Figure 5.13: Difference in accuracy between
the best performing GenoGuard
and baseline inference methods,
vis-à-vis an adversary with side
information in the form of con-
secutive SNVs from the target
sequence, in the high-entropy
password setting.

1. Encrypt a sequence using GenoGuard’s DTE-then-encrypt method: for each

of the 150 sequences, we select and encrypt 1,000 positions from chromo-

some 13, with a storage overhead h = 4, using a random, high-entropy pass-

word (approx. 72 bits).

2. Decrypt the ciphertext, using the top 10,000 most common passwords re-

leased by Daniel Miessler, to obtain plausible looking honey sequences;

3. Infer the victim’s sequence using the honey sequences.

Accuracy. To measure the performance and assess the potential leakage that access

to the GenoGuard ciphertext might yield, we measure accuracy as the number of

correctly guessed SNVs over the total number or SNVs guessed.

Sparse SNVs from the Target Sequence. Figure 5.9 shows the inference results in

this case for the three population groups, averaged over 1,000 rounds. In the case

where no side information is available to the attacker, for all populations, the at-

tacker can infer approximately 2% more of the target sequence from the GenoGuard

ciphertext than just by using baseline inferences based on the population. For the
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(a) ASW (b) CEU

(c) CHB

Figure 5.12: Inference accuracy results in the high-entropy password setting for all three
populations for side information available to the attacker in the form of a clus-
ter of consecutive SNVs from the target sequence.

ASW population (Figure 5.9a), over 80% of the target SNVs are guessed correctly

with 2.5% (25 SNVs) or more of the target sequence available to the attacker.

For the CEU population (Figure 5.9b), approximately 79% of the target SNVs are

guessed correctly with 2.5% of the original sequence available to the attacker and

over 83% of the target SNVs are guessed correctly with 5% (50 SNVs) or more

are available. In the case of the CHB population (Figure 5.9c), the accuracy is of

the GenoGuard inference is the lowest among the three populations, with over 73%

accuracy in the cases where 2.5% SNVs are available to the attacker. The accuracy

surpasses 80% for the CHB population when 10% or more of the target SNVs are

available to the attacker.

In Figure 5.10, we illustrate the difference between the best performing in-

ference method using the GenoGuard ciphertext and the best performing baseline

inference method. On average, having access to the GenoGuard ciphertext improves
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the inference accuracy. The peak of the improvement in accuracy (approximately

15%) over the baseline models can be observed when the attacker has access to

5% sparse SNVs from the target sequence. After this, we can see a decline in this

difference with increasing SNVs available for the attacker, as the baseline infer-

ence becomes more accurate with more information available. In fact, for the CHB

population, the best performing baseline (B3) for the case when 20% of the tar-

get sequence is available to the attacker provides an accuracy comparable to the

GenoGuard inferences (≈83.8%).

Consecutive SNVs from the Target Sequence. In Figure 5.12, we illustrate the

accuracy of the inference methods across the three populations when the adversary

obtains, as side information, a cluster of consecutive SNVs, averaged over 1,000

rounds. For the ASW population (Figure 5.12a), the accuracy of inferred SNVs

from the correct sequence using the GenoGuard ciphertext is over 73% for 2.5%

or more of the target SNVs available as side information, and over 80% when 10%

or more of the sequence is available to the attacker. The GenoGuard inference

for the CEU population (Figure 5.12b) is over 70% when 2.5% or more of the

target sequence is available to the attacker. For the CHB population (Figure 5.12c),

the GenoGuard inferences have the lowest accuracy across the three populations,

obtaining 70% or more accuracy only when 5% or more of the target sequence is

available to the attacker.

Figure 5.13 shows the difference between the best performing GenoGuard in-

ference method and the best performing baseline inference method. On average, the

inference using the GenoGuard ciphertext gives better accuracy than the baseline

methods, but overall less than the previous case where sparse SNVs are available as

side information. In this case, the peak in the improvement of accuracy compared to

the baseline methods is approximately 7%, on average, across the three populations,

when 5% of the target SNVs are available to the attacker. For the CHB population,

when 20% of the sequence is available as side information to the attacker, we ob-

serve, as in the case of sparse SNVs, that the best performing baseline inference

method (B3) obtains a comparable accuracy to that of the GenoGuard inferences
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(≈73%).

For this high entropy password case, while we do not truly break the security

of GenoGuard in the cryptographic sense, recall that our goal was to determine how

much more information does an adversary with access to the ciphertext encrypted

using GenoGuard obtains, compared to an adversary who does not. We find that

having access to just the GenoGuard-encrypted ciphertext does not significantly

increase the adversary’s inference power. The intuition behind the increase in in-

ference accuracy in this case is that it is due to the finite precision of the encoding.

However, with access to even as little as 2.5% increases the inference accuracy of

the adversary by 12.5% on average for random SNVs as side information and by

5% on average for the consecutive SNVs case. By focusing on the honey sequences

that contain the most side information, we leverage the fact that due to the high cor-

relation between SNVs within the genomes, knowing one correct SNV will increase

the accuracy of inferring the values of SNVs at close positions.

More recent work by Cheng et al. [45], also analyzes the security of

GenoGuard, and shows that, under a random password, a hybrid PCA+SVM model

trained on both real and decoy sequences succeeds achieves more accuracy(at least

76.54%) than the desired security, and manages to exclude the decoy sequences for

47.88% of the targets. They conclude that GenoGuard cannot resist attacks that ex-

ploit the difference between real message distribution and the message probability

model (i.e., the decoy message distribution).

5.2.6.4 Key Takeaways

Overall, our experimental evaluation shows that, when the adversary has access to

some side information, access to a ciphertext encrypted using GenoGuard can help

her recover a remarkably high percentage of the SNVs from the target sequence or

significantly increase her advantage in recovering the correct sequence.

Therefore, users need to include as much side information that could be avail-

able to an adversary as possible when encrypting their genomic sequence. However,

this prompts a parallel problem, with respect to how much that user is willing to

publicly share (as this information is saved together with the ciphertext), consider-
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ing that even without access to the GenoGuard ciphertext, it can enable attackers to

correctly predict most of the target genome.

5.3 Discussion

Motivated by the decreasing cost of genomic sequencing and the related arising

privacy challenges, the research community has produced a large body of work

on genomic privacy. Most of the techniques focus on cryptographic tools, but

fail to address the need for long term confidentiality for genomic data. In fact,

GenoGuard [92] is the only tool available for ensuring the long term encryption

needed for genomic data [118].

In this chapter, we set to determine whether GenoGuard can be safely used as

an encryption tool, quantifying the additional privacy leakage arising from using it.

We analyzed GenoGuard under two scenarios, based on the encryption password,

for an adversary which has access to side information about the target sequence

in the form of some values of SNVs from the target sequence. First, we assumed

that the user encrypts his genomic sequence using a low-entropy, easily guessable

password. In this case, we found that the adversary can easily exclude decoy pass-

words from the pool of possible passwords, and can guess the correct sequence with

high probability by having access to 2.5% sparse SNVs or 20% or more consecutive

SNVs from the target sequence.

Second, we assumed that the user encrypts his sequence using a high-entropy

password. In this case, since elimination of decoy passwords might not yield any

sequence, we use the honey sequences to obtain as much information as possible

from the target sequence, exploiting the similarity between the original sequence

and the honey sequences [92]. We then compared the sequence obtained from the

honey sequences to state-of-the-art methods from genome sequence inference in

order to observe the privacy leakage. Even with no side information available to the

attacker, the sequence obtained from the honey sequences had a 2% improvement

on average over all tested baseline methods. With side information in the form of

sparse SNVs from the target sequence, the improvement in accuracy compared to
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the baseline inference models raises to up to 15% on average when 5% of the target

sequence is available to the attacker, predicting more than 82% (on average) of the

target sequence correctly. When the attacker obtains consecutive SNVs from the

target sequence, the accuracy of the attacker decreases slightly from the previous

case, yielding 73% accuracy when 5% of the target sequence is known, with an

average improvement of 7% over the baseline methods.

In conclusion, we argue that the research community should invest more re-

sources toward the design of long-term encryption tools for genomic data. Overall,

GenoGuard could be a viable solution when the user incorporates all side informa-

tion into the encryption. However, given the fact that all this information needs to

be stored together with the ciphertext, it also prompts the question of how much is

a user willing to disclose, considering that only the baseline methods can predict,

with high accuracy, the correct sequence (e.g. with 20% sparse SNVs available

to the attacker, her accuracy is, on average, over 82%). Users who have already

used GenoGuard for long-term encryption purposes need to be aware that if further

genomic information can be obtained by the attacker, it will severely diminish the

security of the system.



Chapter 6

Suitability of Generative Models for

Genomic Data Applications

Every day over 2.5 quintillion bytes of data are created [115]; however, the value

of this data is maximized only with the ability to analyze it and provide meaningful

insight from it, ultimately facilitating research and meaningful analytics. In this

context, data collection and data sharing often constitute necessary steps to enable

progress of businesses and society. As a result, entities are often willing or com-

pelled to provide access to their datasets, e.g., to enable analysis by third parties.

Alas, data sharing does not come without privacy risks. The GDPR, which was

introduced in the EU, also puts pressure on businesses to be more responsible, more

accountable, and more transparent with respect to personal information and privacy

laws. In an attempt to mitigate these risks, several methods have been proposed,

e.g., anonymizing datasets before sharing them. However, as pointed out on several

occasions [21], in practice, anonymization fails to provide realistic privacy guar-

antees. Another approach has been to release aggregate statistics, but this is also

vulnerable to a number of attacks, e.g., membership inference (where one could

test for the presence of a given individual’s data in the aggregates) [148].

More promising attempts come from providing access to statistics obtained

from the data, while adding noise to the queries’ response, in such a way that “differ-

ential privacy” [60] is guaranteed—we describe differential privacy in Section 2.5.

However, this approach generally lowers the utility of the dataset, especially on
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high dimensional data. Additionally, by allowing unlimited non-trivial queries on

a dataset can reveal the whole dataset, so this approach needs to keep track of the

privacy budget over time.

An alternative approach for addressing these issues is to release realistic syn-

thetic data using privacy-preserving generative models. Generative models yield

new samples that follow the same probabilistic distribution of a given training

dataset. The intuition is that entities can train and publish the model, but not the

original data, so that anybody can generate a synthetic dataset resembling the data

it was trained on. Crucially, the model should be published while also guaranteeing

differential privacy.

In this chapter, our focus is on generative models and the synthetic data out-

put by them. We first analyze state of the art generative models from an utility

perspective on different types of datasets such as financial data, images and loca-

tions. Then, we propose a framework for quantifying the privacy risk arising from

publishing synthetic datasets under membership inference. Finally, we perform a

measurement study focused on state of the art generative models specifically geared

for human genome data, from both utility and privacy perspectives

6.1 Utility of Generative Models
In this section, we investigate the real-world feasibility of four recently proposed

approaches to private synthetic data generation. We evaluate such approaches ex-

tensively on different types of data and data analysis tasks. Moreover, we provide

an empirical evaluation of the moments accountant method, highlighting the range

of privacy guarantees that it yields. Overall, we show that a generic approach appli-

cable across a wide range of datasets and tasks might be too much to ask. However,

our experiments also suggest that satisfactory trade-offs between utility and privacy

for private data synthesis are achievable in specific settings.

6.1.1 A Discussion of the the Moments Accountant Method

In Section 2.5.2, we have defined the moments accountant method proposed in [13].

Before we dive into our utility analysis, we discuss and study the moments accoun-
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tant’s effect on the privacy budget, aiming to provide a better understanding of how

all variables used in the moment accountant influence the overall privacy budget of

the dataset.

The steps for computing the value of ε , given δ , the sampling ratio q, the noise

multiplier σ , the number of epochs ep, and the number of orders for the moment

accountant λ are shown in Algorithm 2. We evaluate the effect of different param-

eters on the minimum value of ε , by varying the value of one of the parameters,

and keeping all the others fixed, for different dataset sizes. For each of the cases,

we also illustrate the values of 32 individual moments, similar to the analysis done

in [13]. Please note that Abadi et al.’s original analysis aimed to find the best possi-

ble (ε,δ ) for each of the datasets tested when testing accuracy on different datasets,

whereas, we aim to provide a better understanding of the privacy budget limitations

when using this method for different dataset sizes.

Effect of the noise multiplier. We begin by evaluating the moments accountant

with respect to σ , the noise multiplier. We set the value of δ = 1
10∗n , where n

represents the size of the different datasets tested, the sampling ratio q = 0.01 and

evaluate over 20 training epochs. From Figure 6.1, we observe that with σ = 2,

the minimum required value for the privacy budget ε is greater than 1 even for the

smallest dataset tested (n = 500). However, when looking at higher values of σ we

can observe that the minimum value for the privacy budget decreases up to the case

σ = 20, after which the epsilon values remain close to each other, even for high

values for sigma (σ = 107). Figure 6.2 illustrates the corresponding value for the

moments α . The correlation between the values of α and the minimum values for

ε is remarkable, as α quickly increases for σ = 2, and for higher values of σ there

is little to no variation between the values of α .

Effect of δ . We then evaluate the effect of δ on the overall privacy budget. Recall

from Section 2.5.1 that δ allows for a small probability of failure in the differential

privacy definition, i.e. with a probability of δ a certain output of a query might

be given if an individual in present in the dataset. As each individual record in

the dataset has this probability of failure, this will happen, on average, δ · n times.
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Figure 6.1: The minimum value of ε , cal-
culated by the moments accoun-
tant, for different dataset sizes,
with δ = 1

10∗n , where n is the
dataset size, for 20 training
epochs, with sampling ratio q =
0.01.

Figure 6.2: The values of the moments ac-
countant αMi(λ ), for the mini-
mum values of ε , with a noise
multiplier of σ = 20.

Hence δ ·n needs to be small, as to not let any users at risk, and δ needs to be chosen

based on the size of the dataset.

Given that ε is computed as a function of δ in the moments accountant, the

privacy budget is highly dependent on the size of the dataset. In this setting, we

evaluate 20 training epochs, with a noise multiplier σ = 20 and a sampling ratio

q = 0.01. From Figure 6.3, we observe that the minimum value for ε increases with

lower values for δ . We also illustrate the corresponding values of the moments, α ,

corresponding to the minimum values of ε over 32 moments in Figure 6.4. These

values are independent of the dataset size, hence independent from δ .

Effect of Number of Epochs. We also studied the effect of the number of epochs

on the privacy budget. However, even though there is a small variation on the pri-

vacy budget for different number of epochs, the effect of this parameter is not as

prominent as the other parameters presented in this section.

Effect of Sampling Ratio. Finally, we look at the effects of different sampling

ratios (q) on the overall privacy budget. In Figure 6.5, we keep the δ parameter

fixed at 1
10·n , the noise multiplier σ = 20, and plot the minimum value of ε when

varying the sampling ratio q. Here we see the increase in the minimum value of

epsilon is also correlated with an increase in the sampling ratio q. The value of
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Figure 6.3: The minimum value of ε , cal-
culated by the moments accoun-
tant, for different dataset sizes,
where n is the dataset size, for
20 training epochs, with the
sampling ratio q = 0.01, and the
noise multiplier σ = 20.

Figure 6.4: The values of the moments ac-
countant αMi(λ ), for the mini-
mum values of ε , with a noise
multiplier σ = 20 and sampling
ratio q = 0.01.

the sampling ratio also affects the value of the moments accountant, as clear from

Figure 6.6. For a small sampling ratio (i.e. q = 0.01 to q = 0.1), we find that the

values of the moments α are close to 0, however, with increasing batch size, these

values increase quickly, making the minimum value of the privacy parameter ε close

to 1 even for small dataset sizes (n≤ 103).

Remarks. The question of how to properly set the privacy parameter has been

present since the introduction of differential privacy and a vast amount of work has

been dedicated to finding ways of setting ε [120, 90, 109]. Overall, our analysis

further emphasizes that differential privacy is not a purely “out-of-the-box” tool,

but a complex process to satisfy a definition where different parameters affects the

overall privacy budget. Therefore, before applying differential privacy to a dataset,

one has to be aware the trade-offs between parameters in practice as well as the

needs of the system with respect to privacy.

6.1.2 State-of-the-Art Approaches for Privacy-Preserving Data

Synthesis

In this section, we describe the state-of-the-art approaches for privacy-preserving

data synthesis, which we evaluate later in Section 6.1.5.
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Figure 6.5: The minimum value of ε , cal-
culated by the moments ac-
countant, for different dataset
sizes, with δ = 1

10∗n , where n
is the dataset size, for 20 train-
ing epochs, with noise multi-
plier σ = 20.

Figure 6.6: The values of the moments ac-
countant αMi(λ ), for the mini-
mum values of ε , with a noise
multiplier of 20.

PrivBayes. PrivBayes [190] is a solution for releasing a high-dimensional dataset

D in an ε-differentially private manner. It involves three phrases:

1. A k-degree Bayesian network N is built over the attributes in D using an
ε

2 -differentially private method (k is a small value, chosen automatically by

PrivBayes).

2. An ε

2 -differentially private algorithm is used to generate a set of conditional

distributions of D, such that for each attribute-parent (AP) pair (X ,Π) in N ,

we have a noisy version of the conditional distribution Pr[Xi|Πi].

3. The Bayesian network N and the d noisy conditional distributions are used

to derive an approximate distribution to generate a synthetic dataset D∗.

The model is first constructed in a non-private manner, using standard notions from

information theory to construct the k-degree Bayesian network N on a dataset D,

containing a set of A attributes. The mutual information between two variables is

denoted as :

I(X ,Π) = ∑
x∈dom(X)

∑
π∈dom(Π)

Pr[X = x,Π = π]log2
Pr[X=x,Π=π]

Pr[X=x]Pr[Π=π] ,
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Algorithm 3 Greedy Bayes
1: Initialize N = /0 and V = /0
2: Randomly select an attribute Xi from A ; add (Xi, /0) to N ; add Xi to V
3: for i = 2 to d do
4: Initialize Ω = /0
5: for each X ∈A \V and each Π ∈

(V
k

)
do

6: Ω = Ω∪ (X ,Π)

7: Select a pair (Xi,Πi) from Ω with maximal mutual information I(Xi,Πi)
8: Add (Xi,Πi) to N ; add Xi to V

return N

where Pr[X ,Π] is the joint distribution of X and Π and Pr[X ] and Pr[Π] are the

marginal distributions of X and Π.

The proposed non-private algorithm “GreedyBayes” – see Algorithm 3 – ex-

tends the Chow and Liu algorithm [49] for higher values of k. The Bayesian network

is built by greedingly picking the next edge based on the maximum mutual infor-

mation. First, the network N is initialized to an empty set of AP pairs. The set of

attributes whose parents were fixed in the previous step (V ) is also initialized to an

empty set. Then an attribute is randomly chosen, and its parent is set to the empty

set. The AP pair obtained is added to N and the attribute to V . For all the next

d− 1 steps, an AP pair is added to N based on the mutual information, i.e. the

edge which maximizes I is selected. Each AP-pair is chosen such that i) the size of

the parent set is less than or equal to k and ii) N contains no edge from the attribute

at the current step to any of the attributes added at previous steps.

However, both I and the best edge are data sensitive, so GreedyBayes is

adapted to be differentially private. Each AP pair (X ,Π) ∈ Ω is inspected and the

mutual information between X and Π is calculated. After that, an AP pair is sam-

pled from Ω such that the sampling probability of any pair (X ,Π) is proportional

to exp( I(X ,Π)
2∆

), where ∆ is the scaling factor. In order for the Bayesian network to

satisfy ε

2 -differential privacy, ∆ is set to

∆ =
2(d−1)S(I)

ε
,

where S1(I) denotes the L1 sensitivity of I. For the mutual information I, we have:
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S1(I(X ,Π)) =


1
n log2 n+ n−1

n log2
n

n−1 , if X or Π is binary

2
n log2

n+1
2 + n−1

n log2
n+1
n−1 , otherwise

However, since S(I)> log2 n
n , the range of S can be quite large compared to the range

of I. Hence, the authors propose the use of a novel function F that maps each AP

pair (X ,Π) to a score, such that i) F’s sensitivity is small (with respect to the range

of F). and ii) if F(X ,Π) is large then I(X ,Π) tends to be large.

In order to define F , first the maximum joint distribution is defined. Given

an AP pair (X ,Π), a maximum joint distribution Pr�[X ,Π] for X and Π is one that

maximizes the mutual information between X and Π. In other words, if |dom(X)| ≤

|dom(Π)|, Pr�[X ,Π] is a maximum joint distribution if and only if i) Pr�[X = x] =
1

|dom(X)| for all x ∈ X , and ii) for all π ∈ dom(Π), there is at most one x ∈ dom(X)

with Pr[X = x,Π = π]> 0.

Let (X ,Π) be an AP pair and P�[X ,Π] be the set of all maximum joint distributions

for X and Π. Then F is defined as:

F(X ,Π) = 1
2 min

Pr�∈P�
||Pr[X ,Π]−Pr�[X ,Π]||1

The function F defined this way has a smaller sensitivity than I, namely S(F) = 1
n .

In order to give a computation of F , let (X ,Π) be an AP pair and |Π|= k. Then, the

joint distribution Pr[X ,Π] can be represented as a 2×2k matrix, where all elements

sum up to 1. In order to identify the minimum L1 distance between Pr[X ,Π] and

a maximum joint distribution Pr�[X ,Π],the distributions in P� are partitioned into

a number of equivalence classes and then F(X ,Π) is computed by processing each

equivalence class individually.

In a nutshell, PrivBayes is an ε-differentially private method for high dimen-

sional data using a Bayesian Network. The network is used to model the distribu-

tion between the attributes of the data. The distribution of the data is approximated

using low dimensional marginals and then noise is added to satisfy differential pri-

vacy. Finally, the samples are drawn from the differentially private data for release.

One of the considered drawbacks of this approach is the addition of too much noise

during the network construction, which might make the approximation of the data
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distribution inaccurate.

The implementation for this method is available from [2].

Priv-VAE. In [16], Acs et al. present a technique for privately releasing genera-

tive models so that they can be used to generate an arbitrary number of synthetic

datasets. It relies on generative neural networks to model the data distribution

on various kinds of data, such as images or transit information. As the training

procedure is differentially private with respect to the training data, any informa-

tion derived from the generative models is also differentially private (by the post-

processing property of differential privacy), including any dataset produced from

them.

More concretely, the non-private version of the proposal works as follows:

the dataset is partitioned into k clusters D̂1, D̂2, . . . , D̂k, which are used to train k

distinct generative models, where the parameters of the resulting models are denoted

θ1, . . . ,θk. The data samples within a cluster are similar. θ1, . . . ,θk are learned using

gradient descent. The generative models are then released, so that they can be used

by third parties to generate synthetic data.

Note that both the clustering step and the training of the generative models

inspect the data, and thus should be made differentially private. The clustering is

performed using a differentially private kernel k-means algorithm which first trans-

forms the data into a low-dimensional representation using the randomized Fourier

feature map and the standard differentially private k-means is applied on these low

dimensional features. To select the number of clusters k, Acs et al. rely on dimen-

sionality reduction algorithms (e.g. t-SNE [114]). Then, to train a generative model

for each cluster, they use the differentially private gradient descent procedure from

Algorithm 1. In particular, authors experiment with Restricted Boltzmann Machines

(RBMs) and Variational Autoencoders (VAEs). They evaluate the clustering accu-

racy of their algorithm on the MNIST dataset (for which they use k = 10) and their

model on both a Call Data Records and a transit dataset, showing that the average

relative error of their model outperforms MWEM [80].

Finally, note that the implementation of this approach is available upon request
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from the authors of [16].

DP-SYN. Abay et al. [14] present a framework combining private convolutional

neural network with the private version of the iterative expectation maximization

algorithm Dp-Em [139]. The dataset is first partitioned according to every instance’s

label, and then an ( ε

2 ,
δ

2 )-differentially private autoencoder is built for each label

group. The private latent representation is then injected into an ( ε

2 ,
δ

2 )-differentially

private expectation maximization function (Dp-Em [139]). The Dp-Em function

detects different latent patterns in the encoded data and generates output data with

similar patterns, which is then decoded to obtain the synthetic data.

DP-SYN uses a different approach to partitioning as opposed to Priv-VAE. The

former partitions the data according to each of the label and the model is then trained

on the labeled partitions, while the latter does so randomly, and uses differentially

private k-means clustering for clustering the data samples.

The authors include an extensive experimental evaluation on nine datasets for

binary classification tasks, comparing their results with four state-of-the-art tech-

niques, including PrivBayes [190] and Priv-VAE [16]. All the experiments are run

for 10 rounds, and only the best results for each algorithm are being recorded.

DP-SYN’s implementation was originally available from https://github.com/

ncabay/synthetic generation, but as of March 2019 it is no longer so.

Synthesis of Location Traces (Syn-Loc). Finally, we look at the work by Bind-

schaedler and Shokri [31], which aims to generate fake, yet semantically plausible

privacy-preserving location traces.

Bindschaedler et al. [32] formalize the concept of plausible deniability in the

context of data synthesis, as a new privacy notion for releasing privacy-preserving

datasets. More precisely, it is presented as a formal privacy guarantee such that an

adversary (with no access to background knowledge) cannot deduce that a particular

datapoint within a dataset was “more responsible” for a synthetic output than a

collection of other datapoints.

More formally, plausible deniability is defined as follows. For any dataset D,

with |D| ≥ k, and any record y generated by a probabilistic generative model M
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such that y = M(d1) for d1 ∈ D, we state that y is releasable with (k,γ) -plausible

deniability if there exist at least k−1 distinct records d2, . . . ,dk ∈D\{d1} such that:

γ−1 ≤ Pr[y=M(di)]
Pr[y=M(d j]

≤ γ ,

for any i, j ∈ {1,2, . . .k}.

In short, a synthetic record provides plausible deniability that the synthetic data

record could have been generated by a number of real data points.

Plausible deniability has been shown to satisfy differential privacy guarantees

if randomness is added to the threshold k. In fact, the authors show that if Laplacian

Noise Lap( 1
ε0
) is added to k, then, their system satisfies (ε,δ ) differential privacy,

with ε = ε0 + log γ

t and δ = e−ε0(k−t), for any integer t, with 1≤ t ≤ k. One of the

main differences between plausible deniability and differential privacy for genera-

tive models is the lack of noise added to the generated data.

In order to describe the data synthesis algorithm, the paper first introduces two

mobility metrics that capture how realistic a synthetic location trace is with respect

to geographical semantic dimensions of human mobility. Then, it constructs a prob-

abilistic generative model that produces synthetic, yet plausible traces. It is built

using a dataset of real locations used as seeds, referred to as the seed dataset. For

each set in the seed dataset, a probabilistic mobility model is computed, represent-

ing the visiting probability of each location and the transition probability between

locations.

Generating the synthetic traces starts by transforming a real trace (taken as

seed) to a semantic trace. The equivalent of semantic classes is created using the

k-means clustering algorithm, where the number of clusters is chosen such that it

optimizes the clustering objective. The seed is then converted to a semantic seed

by replacing each location in the trace with all its semantically equivalent locations.

Then, some randomness is injected into the semantic seed. Any random walk on the

semantic seed trace that travels through the available locations at each time instant

is a valid location trace that is semantically similar to the seed trace. Then, the

semantic trace is decoded into a geographic trace in order to generate traces that are

plausible according to aggregate mobility models. To generate multiple traces for
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each seed, the Viterbi algorithm with added randomness to the trace reconstruction

is used.

Each of the generated traces is tested to ensure statistical dissimilarity and

plausible deniability. Statistical dissimilarity ensures a maximum bounds on both

the similarity between a fake trace and the seed from which it was generated, and

between the intersection of all fake traces generated from a specific seed. Plausible

deniability means that, for any fake trace generated from a seeds, there are at least

a number of alternative seeds that could have generated it.

The most notable difference between this model and the other models pre-

sented in this section is that it is a seed-based model, where it takes a data record

as a seed and generates synthetic data from that data record. In contrast, the other

models model the synthetic data based on the statistical properties of the original

data.

The protocol was evaluated on the Nokia Lausanne Dataset [146], containing

a combination of GPS coordinates, WLAN and GSM identifiers for users, with the

location being reported every 20 minutes. The implementation of the protocol is

available from https://vbinds.ch/node/70.

6.1.3 Datasets

We use several datasets for our experimental evaluation, which we group into 4

categories. For each of the datasets, we also consider different tasks, following

common experiments used in literature.

1. Financial data. We use two of the datasets from the UCI Machine Learning

Datasets [57], namely: i) the German Credit dataset, with anonymized in-

formation of 1,000 customers, having 20 features and classifying customers

as having good or bad credit risk; and ii) the Adult dataset, with information

from 45,222 individuals, extracted from the 1994 US census, with 15 features,

indicating whether the income of an individual exceeds 50,000 US dollars.

2. Images. We use the MNIST dataset [108], a public image dataset, which in-

cludes 28×28-pixel images of handwritten digits, containing 70,000 samples.



6.1. Utility of Generative Models 107

The main classification task usually performed on this data set is dataset is to

correctly classify the handwritten digit in the image.

3. Cyber threat logs. We rely on the DShield [8] data collected over 10 days,

with approximately 5M entries collected each day. Each entry contains the

Id, date, source IP, source port, target port, target IP of an attack, whenever an

alert has been sounded by the firewall. This dataset has been often used in the

context of predictive blacklisting [163], i.e., forecasting which IPs will attack

a target.

4. Location data. We use the San Francisco cabs dataset [146], containing mo-

bility traces recorded by San Francisco taxis. This has often been used to

predict next locations, identifying points of interests, etc. [148].

6.1.4 Experimental Setup and Objectives

We aim to evaluate the performance of the synthetic datasets for different tasks

to give a concrete overview of their usability in practice. Different datasets have

different statistical requirements, hence we aim to provide an extensive analysis to

cover multiple bases. For each of the datasets, we test multiple values for ε , while

keeping δ fixed at 1
10·n , allowing us to analyze the quality of the synthetic data under

different levels of noise.

Classification tasks. We evaluate the synthetic data by training a discriminative

model on it and evaluate its accuracy for classification on real test data. This should

highlight whether the quality of the original data is preserved when using synthetic

data. For this task, we compare our results to two baselines: 1) the original data,

i.e., we evaluate how well the discriminative model performs when trained on the

synthetic data as opposed to being trained on the original dataset; and 2) a model

that would randomly assign a prediction based on the original distributions of the

data. Any of the models that report an accuracy lower than this baseline are con-

sidered unsuitable for any classification task. In our evaluation, we will refer to

the former as “Original Data” and to the latter as “Lower Baseline”. We use this
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methodology to evaluate the financial data dataset and the cyber threats logs, using

an SVM classifier.

Linear regression. We also use the synthetic data generated by each of the models

and train a linear regression model on them. We evaluate the resulting model on

a real testing data, vis-à-vis the accuracy of the predictions made. Similar to the

classification tasks, we use the “Lower Baseline” and “Original Data” as baselines.

We do this for the image and the German Credit dataset.

Prediction. Inspired by the work of Melis et al. [116] in the context of collabora-

tive predictive blacklisting, we aim to analyze the performance of synthetic data in

forecasting future attack sources for the cyber threat logs dataset. We use Melis et

al.’s implementation from https://github.com/mex2meou/collsec.git to evaluate the

synthetic data obtained from each of the models under their k-nearest neighbors ap-

proach. We evaluate the performance of the synthetic data by looking at the true

positive rate for predicting future attacks.

Clustering. For location data, we evaluate if the synthetic data preserves the proper-

ties of the original data, specifically, extracting the points of interest and comparing

the results to the points of interest from the original dataset.

By comparison, the NIST challenge [173] has similar criteria: the submitted

algorithms must be able to preserve the balance of utility and privacy for regression,

classification and clustering, but also for evaluation when the research question is

unknown.

6.1.5 Experimental Evaluation

Financial Data: German Credit. In order to evaluate the categorical attributes of

the German Credit dataset, we use the numeric encoding provided in [57]. We split

the dataset into 70% training data and 30% testing data.

First, we train an SVM model on both synthetic data generated by each of the

algorithms and on the original data, and report the accuracy results of the classifi-

cation in Figure 6.7. The accuracy of the models improves with less noise added

to the model (i.e. higher values for ε), and, among the tested models, DP-SYN
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Figure 6.7: SVM accuracy results for German Credit Dataset with δ fixed at 1
10·n , for vary-

ing values of ε .

obtains the highest accuracy. Priv-VAE has accuracy close to DP-SYN, however,

when constructing the confusion matrices for Priv-VAE, we see that it fails to clas-

sify the German Credit dataset even in less noisy settings, and classifies most data-

points within one class (in this case it classifies most customers as having bad credit

score). For ε ≤ 0.5, the synthetic data obtained from PrivBayes reports less accu-

racy than our lower baseline. Recall from Figure 6.1, that, with our chosen value

of δ , the minimum value of ε for this dataset will be above 0.5, so the we do not

evaluate DP-SYN and Priv-VAE on ε < 0.5.

In Figure 6.7, we also report a setting for ε = ∞. This illustrates the models’

accuracy with very little or no privacy. If the models generate synthetic data under

this setting, the accuracy given is close to the accuracy of the SVM model trained

on the original data.

Second, we tested a logistic regression model on the dataset, and observed the

accuracy. From Figure 6.8, we see that this model fails to correctly classify even

the original data. For the synthetic data, in fact, it reports a better accuracy than

the SVM model, however, when looking at the confusion matrices, we notice that it

fails to classify the dataset, reporting most datapoints as being within one class.
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Figure 6.8: Linear regression accuracy results for German Credit Dataset with δ fixed at
1

10·n , for varying values of ε .

Financial Data: Adult Dataset. We first encode the adult dataset, using One-Hot

Encoding [81], to convert the categorical attributes of the dataset into numerical

attributes. The encoding obtained has 57 attributes as opposed to 13 attributes in

the original dataset. We split the dataset into 70% training data and 30% testing

data.

We train an SVM model on the synthetic data obtained from each of the models

and present the results in Figure 6.9. Note that PrivBayes has better accuracy with

higher noise levels than DP-SYN (ε ≤ 1). Additionally, when ε is greater than

2, the accuracy of DP-SYN decreases, which is perhaps counter-intuitive, as it is

expected for accuracy to increase when less noise is added to the model. Priv-VAE

fails to cluster the data in this test case, often returning empty clusters during the

differentially private k-means clustering. The accuracy of Priv-VAE, even though

higher than the lower baseline used, is lower than the accuracy of the other two

tested models for all tested values of ε .

To observe if an increase in accuracy can be correlated with increasing dataset

size, we also train the SVM model on partial data, while keeping the same test

dataset. In Figure 6.10, we plot the accuracy for ε = 0.9 for DP-SYN (the minimum
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Figure 6.9: SVM accuracy results for Adult Dataset with δ fixed at 1
10·n , for varying values

of ε .

accepted value of ε for this dataset, when δ = 1
10·n ), and ε = 0.8 for PrivBayes. Even

though in this case PrivBayes has more noise added to the model, it reports better

accuracy than DP-SYN, for all partial datasets tested. The increase in accuracy

for PrivBayes with larger dataset sizes is easily observed, from approximately 0.75

accuracy when 10% of the original data was used for generating the synthetic data

to approximately 0.8 when 90% of the data was used. For DP-SYN, the same

correlation cannot be observed, and in fact, the highest accuracy (0.75) is reported

when 80% of the data was used for training.

In Figure 6.11, we increase the value of ε to 1.2. We can observe that PrivBayes

reports better accuracy when less than 40% of the original data was used for generat-

ing the synthetic data, and DP-SYN outperforms PrivBayes with increasing dataset

size. In contrast to Figure 6.10, in this case we observe an improvement in accuracy

for both models with increasing dataset sizes.

In Figure 6.12, we report the accuracy for increasing dataset sizes for ε =

3.2. In this case DP-SYN outperforms PrivBayes, however, neither of the models’

improvement in accuracy can be correlated with increasing dataset sizes.
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Figure 6.10: SVM accuracy results, for training models at a percentage of the original
datasets. For DP-SYN, we have ε = 0.9 (the minimum value for ε for this
dataset, when δ = 1

10·n ), and for PrivBayes ε = 0.8.

Figure 6.11: SVM accuracy results for training models at a percentage of the original
datasets, with ε = 1.2.
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Figure 6.12: SVM accuracy results for training models at a percentage of the original
datasets, with ε = 3.2.

Images: MNIST Dataset. We then evaluate the models on the MNIST dataset. We

use the usual split for training and testing purposes, i.e. 60,000 samples for training

and 10,000 samples for testing. We generate synthetic data with all three methods

and then construct a linear regression model on the synthetic data for evaluating the

accuracy of each of the models.

For each value of ε tested we reconstruct the average image resulted in every

class. When reconstructing the classes for PrivBayes, we can observe that the model

did not correctly reconstruct separate class images.. As shown in Figure 6.13, all the

classes seem similar, even in the lowest privacy case (i.e. ε = 107). Therefore, we

split the data into separate classes and trained on each class separately for generating

the synthetic data.

In Figure 6.14, after splitting, with increasing values of epsilon, we start to

distinguish between different classes. For DP-SYN (see Figure 6.15), the recon-

struction of each of the digit classes is clearer even for small ε , and close to the

average class reconstruction for the original data. Priv-VAE (see 6.16) outputs a

less noisier reconstruction than PrivBayes, but not as clear as DP-SYN. Finally, in

Figure 6.17, we report the accuracy of the linear regression models. As expected
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from the reconstructed samples, the accuracy of PrivBayes is very low for the nois-

ier samples. In fact, not even for the less noisy cases, when accuracy improves,

it does not match the accuracy of the linear regression model when trained on the

original data. Similarly, the accuracy of the synthetic samples generated from Priv-

VAE is correlated with the average class reconstruction, and, in fact, has a better

accuracy than PrivBayes as the value of ε increases. DP-SYN obtains a higher ac-

curacy then both the other two models, however, it still reports lower accuracy that

that of the original dataset.

Figure 6.13: Average class reconstruction for PrivBayes, with no splitting before training.

Cyber Threat Logs: DShield Log Dataset First, we try a classification task for

this dataset. We construct the dataset for this task by using the DShield logs and

classifing the existing logs as threats, and adding as much non-threat traffic to the

dataset. After randomizing, we split the data into 70% training and 30% testing.

We train a discriminative model on the synthetic data for all models, however, none
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Figure 6.14: Average class reconstruction for PrivBayes, with splitting before training.

of them achieved accuracy better than the lower baseline.

Our second approach is to use this data set as both training and testing, using a

5 day sliding window for training the models and obtaining synthetic data, and we

use the real data from the next date for testing. The aim of this is for a model trained

on the synthetic data to generate new samples that could then be used to predict data

found in the testing dataset.

When using the synthetic dataset obtained from PrivBayes to evaluate predic-

tion using the k-NN approach from [116], it failed to produce any samples that

would correlate with the testing data. Hence, we find that no meaningful predic-

tions can be obtained on this synthetic dataset, regardless of noise level. DP-SYN

managed to predict some of the future attacks, however, it reported a lower true

positive rate (less than 50% true positive rate) than the original data. Even for this

dataset, DP-SYN does not perform consistently better with less noise added to the
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Figure 6.15: Average class reconstruction for DP-SYN.

model.

Location Data: San Francisco Cabs Dataset We generate the synthetic datasets

for each of the models and plot the distribution of locations (Figure 6.18). DP-

SYN fails to provide a meaningful distribution of locations, placing all locations

on the same point on the map. The synthetic data generated by PrivBayes, even

though more scattered on the map than DP-SYN, still fails to mimic the distribution

of the original data.The synthetic data generated by Syn-Loc has a more similar

distribution across the map to the original data. This is due to the more specialized

model used for data generation.

We cluster the data using k-means clustering for extracting the points of interest

on the map. We plot the clusters distribution on the map for k = 10 in Figure 6.19.

As expected, the synthetic data generated from DP-SYN is grouped within a single
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Figure 6.16: Average class reconstruction for Priv-VAE.

cluster. The synthetic data from PrivBayes does not generate empty clusters, but

the distribution of clusters on the map does not resemble the distribution of clusters

for the original dataset. The data generated by Syn-Loc provides the most similar

clustering to the original dataset. In Figure 6.20, We plot the distribution of clusters

for k = 20. In this case, not only the data from DP-SYN is grouped within one clus-

ter, but clustering on the synthetic data from PrivBayes also return empty clusters.

Again, Syn-Loc provides the most similar clustering to the original dataset.

6.1.6 Key Takeaways

The main goal of this section was to understand how to evaluate privacy-friendly

synthetic data generation techniques. In other words, we set to determine whether
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Figure 6.17: Linear Regression accuracy results for MNIST Dataset with δ fixed at 1
10·n ,

for varying values of ε .

or not it is possible to privately synthesize data characteristics to yield translational

findings to the original data. In short, the answer to this question depends on the task

at hand, the size of the dataset, as well as the privacy requirements of the synthetic

dataset.

We evaluated three of the privacy-preserving synthetic data generation mod-

els on binary classification tasks on two financial data datasets. The first model,

PrivBayes [190], reported accuracy lower than randomly assigning labels based on

original distributions of the data when trained on noisy synthetic data (i.e., ε ≤ 0.5)

for the German Credit dataset. However, when the same task is performed on a

larger dataset, accuracy is better even for noisier synthetic datasets. Moreover, even

on smaller samples of the adult dataset, the performance is still better than the lower

baseline and reports better accuracy than the other models for noisier datasets. By

contrast, DP-SYN yields better performance overall on the German Credit dataset,

but lower accuracy on the larger dataset for noisy synthetic data (ε < 1). In fact, the

average performance actually decreases for some of the less noisy synthetic datasets

(ε > 2). Priv-VAE generates synthetic data which, even though reports testing accu-

racy comparable to DP-SYN, on closer inspection, classifies most datapoints within



6.1. Utility of Generative Models 119

Figure 6.18: Distribution of locations for the San Francisco Cabs dataset.

one label.

The same models were then evaluated on the MNIST dataset, on a multi-class

classification task. For this dataset, the synthetic data obtained from PrivBayes

performs poorly under classification tasks. In fact, even from the synthetic data

reconstruction of the average sample image for each class, it is easy to observe

that the resulting images have a significant amount of noise. Moreover, we found

that splitting the data into separate classes before training the model is necessary

in order to be able to distinguish between the different classes. The synthetic data

from DP-SYN returns better reconstructed samples, however, the minimum privacy

budget for this dataset is ε = 0.9 for δ = 1
10·n , therefore not allowing too much noise

to be added to the model.

For the cyber threat logs, none of the models tested performed well under the

two tested tasks. The discriminative models trained on the synthetic datasets for

classifying datapoints as threats or as benign all report a lower accuracy than the

lower baseline. Even for the prediction task, none of the models achieve a mean-

ingful true positive rate for predicting future attacks. We think this is due to the

fact that the attack vectors given, based on IP and port, are quite sensitive to noise
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Figure 6.19: 10 Clusters of locations for the San Francisco Cabs dataset.

perturbations, and therefore noisy data can be unsuitable for such tasks.

For location data, the model that returns the distribution most similar to the

original data is Syn-Loc. This is an expected outcome, because of the more special-

ized approach used for this model. DP-SYN fails to generate meaningful synthetic

data, aggregating all synthetic data points within one location point. We believe that

the performance of this model is worse on the location dataset compared to the other

datasets because the model used to split the training data by class and generate syn-

thetic samples for each class separately, whereas the same split is not possible in this

case. PrivBayes managed to generate synthetic samples with a better distribution

than DP-SYN, however not as good as Syn-Loc.

From our evaluation, we can conclude that DP-SYN can be used for image

reconstructions, providing that the training can be done in classes, as it constructed

the images in the MNIST dataset close to the original samples. PrivBayes provides

high accuracy for binary classification tasks on large datasets, when a large noise

perturbation is needed. Syn-Loc manages to simulate real location data distributions

better than the other models due to its focus on location datasets.

Overall, the most encouraging results correspond to image and financial data
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Figure 6.20: 20 Clusters of locations for the San Francisco Cabs dataset.

that, as for settings with good privacy guarantees – where the value of the epsilon

and delta parameters of differential privacy are less than 1, and an order of magni-

tude smaller than the inverse of the size of the dataset, respectively – the evaluated

approaches led to synthetic training datasets on which very basic models for predic-

tion and classification incurred a 5-8 accuracy loss with respect to training on the

non-private original data.

6.2 Privacy Evaluation of Synthetic Data

In this section, we propose a novel evaluation framework that addresses the short-

comings of previous evaluation approaches. It inherently models the risk of infer-

ence attacks, it can be applied to assess any type of generative model, with and

without formal privacy guarantees, and measures the risk of releasing a synthetic

dataset rather than a trained model. We quantitatively assess the privacy properties

of three generative models and two differentially private variants on three realistic

datasets. Our results challenge previous claims about the privacy benefits of syn-

thetic data publishing and demonstrate that generative models often do not provide

robust protection against privacy attacks on the generated datasets.
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6.2.1 Evaluating the privacy gain of synthetic data

We introduce a novel evaluation framework to assess (claims about) the privacy

properties of synthetic data publishing. The framework provides data holders and

researchers with a tool to evaluate whether a synthetic dataset generated by a sta-

tistical model trained on a sensitive dataset protects the confidentiality of individual

records in the raw data. In contrast to previous evaluation approaches, the frame-

work allows to directly assess whether publishing a single copy of synthetic data in

place of the raw data reduces the risk of private information leakage through infer-

ence attacks. Due to its modular nature, the framework is not limited to a unique

threat model [150] but enables data holders to adapt the evaluation to any privacy

concern specific to the data holder’s use case. In contrast to model-specific evalua-

tion techniques [91], our framework treats the data generating mechanism as a com-

plete black-box and evaluates the privacy risks of synthetic data publishing rather

than an adversary’s inference power when given query access to a model [150, 82].

As the proposed evaluation method is independent of the generative model, it can be

applied to synthetic data generated by models trained without any explicit privacy

protection or trained under formal privacy guarantees [15, 33].

In this section, we provide a formal description of the proposed evaluation

framework. In short, the framework measures the privacy gain of publishing a syn-

thetic dataset in-place of the raw data with respect to a specific privacy concern.

Each concern is modeled as a privacy adversary that targets an individual record

and aims to infer a secret about this record. To evaluate privacy gain, the framework

is instantiated under the pre-defined threat model and outputs an estimate about how

much publishing the synthetic data instead of the raw data reduces the privacy loss

of a chosen target record under this threat model.

Throughout this section, we use X ∼Dn to refer to a generic dataset of size n

sampled from an unknown distribution D over the data domain of the population

R. X could either be the raw data R, or a sanitized or synthetic version of R.

Adversarial models. In our framework, we measure the privacy gain of publishing

S instead of R with respect to a specific privacy concern about the potential dis-



6.2. Privacy Evaluation of Synthetic Data 123

closure of a secret ts associated with an individual target record t ∈ R. We model

a privacy concern as an adversary At(X) : X → t̂s who, given access to a dataset

X , optimizes her strategy At() to produce an estimate t̂s of the secret ts of a target

record t. We denote the adversary’s training procedure that outputs the function

At() as AdvTrain(t, ..). The internals of this procedure depend on the privacy con-

cern and the specific threat model. We provide example implementations of this

procedure to address concerns regarding the risk of linkability in Sections 6.2.5.

Privacy loss. We first define the privacy loss for an individual record t under an

adversary At() that is trying to infer secret ts linked to record t given access to

dataset X .

Definition 1 (Individual Record Privacy Loss). Let X ∼Dn be a dataset of size n, t

a random record from R, and ts a secret associated with t. We define the individual

record privacy loss PLt(X) for target t under adversary At(X) as

PLt(X), P [t̂s = ts|X ]−P [ts] , (6.1)

where t̂s is the guess output by At(X), P [t̂s = ts|X ] is the adversary’s success prob-

ability given X, and P [ts] is her prior distribution over ts. If ts is a continuous

attribute and P [ts|X ] defines a probability density function, we calculate Pr[t̂s = ts]

as Pr[t̂s ∈ [ts− ε, ts + ε]] for a small ε .

In this definition, the adversary’s prior and posterior probabilities of success

take values in [0,1], and thus PLt(X) ranges between [−1,1]. PLt(X) = 1 implies

that access to X substantially improves the adversary’s chance of making a correct

guess with respect to her prior. Negative privacy loss values, PLt(X) < 0, indicate

that observing X confuses the adversary, i.e., her success rate is smaller than her

prior.

Privacy gain. We define the privacy gain for an individual record t when publishing

dataset X1 compared to X2 as:
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Definition 2 (Individual Record Privacy Gain). Let X1 ∼Dn and X2 ∼Dm be two

datasets from the same domain, and t a random record from R. The privacy gain

for t of publishing X2 compared to X1 is defined as:

PGt(X2,X1),
PLt(X1)−PLt(X2)

2
, (6.2)

where PLt(X1) and PLt(X2) denote t’s privacy loss under At() given X1 and X2,

respectively. The multiplicative factor 1/2 normalizes PG to the interval [−1,1].

Under most threat models, including our example instantiation of the linkabil-

ity (6.2.5), the adversary’s prior over the target’s secret P [ts] is independent of the

published dataset X . In this case, the record privacy gain can directly be calculated

as

PGt(X2,X1) =
P [t̂s = ts|X1]−P [t̂s = ts|X2]

2
. (6.3)

We use this definition to measure the privacy gain of publishing a synthetic dataset

S sampled from a generative model trained on R instead of R itself. PGt(S,R) > 0

indicates that the synthetic dataset increases the target’s privacy with respect to R,

while PGt(S,R)< 0 indicates that the synthetic dataset actually leaks more informa-

tion about the target to the adversary than R. The extreme case of PGt = 1 indicates

that publishing S in place of R successfully prevents a breach of the target’s pri-

vacy: While publishing R would incur a privacy loss of PLt = 1 to target record t,

the synthetic dataset S successfully mitigates the risk modeled by At(). Vice versa,

PGt = −1 implies that the synthetic dataset S maximizes the target’s privacy risk

while R provides maximum protection against this adversary. If PGt = 0 publishing

S is equivalent to publishing R in terms of privacy for record t.

Framework implementation and practical evaluation. We implemented the

building blocks of the privacy evaluation framework as a Python library [10].

In Section 6.2.5, we use our implementation and instantiate the framework to

assess the expected privacy gain for a set of randomly chosen target records under

five generative model training algorithms (see 6.2.2). The expected record privacy
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gain provides a useful measure to not only assess the overall expected privacy gain

for a dataset R but also to analyze whether privacy gain is distributed uniformly

across target populations.

In our experiments, we use the expected record privacy gain to compare the

privacy protection awarded by different generative models across datasets and target

populations.

Definition 3 (Expected Record Privacy Gain). A target t’s expected privacy gain

under a fixed model training algorithm GM() can be estimated as

PGt = E
R∼Dn

R
f (R)∼GM(R)

S∼Dm
f (R)

[PGt(S,R)] (6.4)

where R is the input dataset of size n, PGt is t’s privacy gain from publishing S

instead of R, and S a synthetic dataset generated by a generative model f (R) that

was obtained by running GM(R).

6.2.2 Generative models

We implemented three generative models without explicit privacy protection and

two models designed to offer DP. We chose models relevant to the tabular data

sharing use case and to cover a wide range of model architectures. We also con-

sidered their computational feasibility and whether a working implementation was

available.

IndHist. We adopted a simple independent histogram model in which each at-

tribute in the tabular input data is modeled independently from Ping et al. [145]. The

IndHist training algorithm extracts marginal frequency counts from each data at-

tribute and generates synthetic datasets S by sampling from each learned histogram

independently. Continuous attributes are binned and the number of bins nbins is

a model parameter.

BayNet. Bayesian networks capture correlations between attributes by factoriz-

ing the joint data distribution as a product of conditionals. The degree of the net-

work model is a model parameter. The trained network provides an efficient way
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to sample synthetic records from the fitted distribution (see Zhang et al. [191] for

details). We use the GreedyBayes implementation provided by Ping et al.’s Data-

Synthesizer [145].

PrivBay. PrivBayes [191] is a differentially private Bayesian network model.

Both, the Bayesian network and the conditional distributions, are learned under

ε-differentially private algorithms. The resulting ε-differentially private model en-

ables to sample synthetic records without any additional privacy budget cost. We

use the GreedyBayes procedure provided by Ping et al. [145] to train a differentially

private version of BayNet.

CTGAN. CTGAN [182] uses mode-specific normalization of tabular data attributes

to improve the approximation of complex distributions through GANs. CTGAN

further uses a conditional generator and training-by-sampling to get better perfor-

mance on imbalanced datasets.

PATEGAN. PATE-GAN builds on the Private Aggregation of Teacher Ensembles

(PATE) framework [138] to achieve DP for GANs [99]. PATE-GAN replaces the

discriminator’s training procedure with the PATE mechanism. The trained model

provides DP with respect to the discriminator’s output.

6.2.3 Datasets

We include three tabular datasets, commonly used in the machine learning (ML)

literature, in our experimental evaluation. Tabular datasets are the most relevant

data type in the synthetic data publishing case. Two datasets contain financial data,

and the third one contains health data:

Adult [105]. The Adult dataset contains information from 45,222 individuals ex-

tracted from the 1994 US Census database. Each entry consists of 15 attributes

among which 6 are continuous attributes and 9 are categorical attributes.

Texas [167]. The Texas Hospital Discharge dataset is a large public use data file

provided by the Texas Department of State Health Services. The dataset we use

consists of 50,000 records uniformly sampled from a pre-processed data file that

contains records from 2013. We retain 18 data attributes of which 11 are categorical
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and 7 continuous attributes.

German [87]. The original German Credit dataset contains data from 1000 indi-

viduals with 20 attributes. We use a pre-processed version of the dataset [7] which

consists of 10 attributes for each individual of which 3 are continuous and 7 are

categorical.

6.2.4 Experimental setup

We describe the experimental procedure we follow in Section 6.2.5 to empirically

evaluate the privacy gain of the five generative models described above regarding

the risks of membership inference using our framework implementation [10].

Worst-case evaluation. We evaluate the individual record privacy gain of a crafted

target tc ∼DR∗. This crafted target is designed to be an outlier, and that represents

a very vulnerable target record due to its unusual distribution of attribute values.

We craft this target by creating a distribution DR∗ as follows: For each categorical

attribute, we assign probability 1 to the least frequent category in the original dataset

R. For each numerical attribute, we assign probability 1 to the maximum attribute

value.

Average case evaluation. We run nR independent tests in which we evaluate the

individual record privacy gain for a fixed set of nT target records: T = (t1, · · · , tnT ).

These records are randomly chosen from the dataset R. In each run, we repeat the

following procedure: (1) We sample a new target training set Rt ∼ Dn
R and use it

as input to obtain five trained target models f (Rt). (2) From each model f (Rt), we

sample nS synthetic test datasets St
1, · · · ,St

nS
of size m. (3) For each t ∈ T , we run an

adversary At() on each synthetic dataset to obtain nS independent estimates of the

target record’s privacy loss PLt(Si). (4) Finally, we estimate a record’s privacy gain

PGt for dataset Rt and trained model f (Rt) as the average gain across all nS synthetic

samples from f (Rt): PGt =
PLt(Rt)−PLt(S)

2 .

Table 6.1 summarizes the parameters used in the evaluation. nA and k are

parameters specific to the adversary that implements the risk of linkability described

in 6.2.5. We set these parameters based on a series of experiments in which we
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Table 6.1: Experimental setup parameters

Dataset n m nT nR nS nA k

Adult 1,000 1,000 50 25 100 10,000 10

Texas 1,000 1,000 50 25 100 10,000 10

German 300 300 50 25 100 500 10

varied each parameter to measure its impact on privacy gain and chose each value

to present a worst-case bound on privacy.

6.2.5 Membership inference on synthetic datasets

We build on existing MIAs on predictive models [158] to develop a generic black-

box attack that is independent of the model architecture. We use this attack model

to evaluate the risk that an attacker can link a target record to a sensitive dataset

given synthetic data sampled from a generative model trained on this sensitive data.

Adversarial model. In contrast to previous attacks on GANs and VAEs [82, 85, 42],

we assume an adversary that, instead of query access, only has access to a single

synthetic dataset output by the target model. We define a privacy adversary MIAt()

that implements a generative model membership inference attack. Given a single

synthetic dataset output by a generative model, this adversary produces a binary

label that predicts whether a target record belongs to the model’s training set or not:

Definition 4 (Membership Inference Attack). Let ts = 1[t ∈ Rt ] be a random

variable that indicates t ∈ Rt where Rt is the training set of a generative target

model f (Rt). A membership inference attack on target t given a synthetic dataset

S∼Dm
f (Rt) is a mapping MIAt(S)→ t̂s, t̂s ∈ {0,1} .

Previous MIAs on predictive models range from ”trivial” approaches, that sim-

ply use a correct or incorrect prediction to assign a membership label [110], to

Bayes-optimal adversaries, that assume perfect knowledge of the underlying prob-

ability distributions [154]. We cast membership inference as a supervised learning

problem [158]. Concretely, our membership inference adversary MIAt() outputs a
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guess according to

MIAt(S), argmax
ts∈{0,1}

P[ts|S] . (6.5)

We estimate the posterior probability P[ts|S] using shadow training: we pro-

duce a set of generative shadow models trained on samples from a reference dataset

Ra of size nA with and without the target t, and train an attack model on synthetic

datasets output by the shadow models labeled as in and out. As in [158], we as-

sume that the adversary has access to the training algorithm GM(), and to a reference

dataset Ra ∼DnA
R that comes from the same distribution as the target model’s train-

ing data Rt ∼Dn
R and may or may not overlap with Rt .

Algorithm 4 MIATrain

Input: GM(), t,R,n,m,nS,k
Output: MIAt()

1: for i = 1, · · · ,k do
2: Ri ∼ Rn

3: fi ∼ GM(Ri)
4: for j = 1, · · · ,nS do
5: S j ∼ fi

6: l j← 0
7: Strain

+← S j

8: ltrain
+← 0

9:

10: R′i← Ri∪ t
11: f ′i ∼ GM(R′i)
12: for j = 1, · · · ,nS do
13: S j ∼ f ′i
14: l j← 1
15: Strain

+← S j

16: ltrain
+← 1

17: MIAt()← Classifier(Strain,ltrain)

We describe the training procedure for the adversary MIAt() in Algorithm 4.

Given a reference dataset R, the adversary repeats the following steps k times. First,

the adversary samples a training set Ri of size n from R (line 2) and trains a gen-

erative model (line 3). The adversary creates a set of nS synthetic datasets of size

m sampled from the trained model and assigns them the label 0 that indicates that

the target record t was not present in the training data (lines 4–7). The adversary
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repeats the same procedure on the same training set, this time including the target,

R′i = Ri∪ t, and assigns the label 1 to the synthetic datasets to indicate that the target

was present (lines 8-13). Finally, the adversary trains a classifier MIAt which, given

a synthetic dataset S, predicts the membership of the target record t in the training

set of the generative model f that produced S (line 14).

Privacy gain with respect to linkage risk. As in previous work [186], we assume

an adversary that has a uniform prior over the target’s membership in R (P [ts] = 0.5).

As the adversary’s prior is equal in both cases regardless of whether the real or the

synthetic data is published, the record privacy gain can be directly calculated as

the difference between the adversary’s chances of success given access to R and

to S (see 6.3). If the adversary has access to R, her probability to correctly guess

whether the target record is present in R is 1 (MIAt(R) = 1). Therefore, the record

privacy gain for a target t with respect to linkability ranges between PGt = 0, when

publishing S leads to the same privacy loss as publishing R, and PGt = 0.5, when the

synthetic data perfectly protects the target from linkage. When publishing S does

not hide nor give new information, the adversary’s success probability to correctly

infer membership is given by her prior knowledge. In this case PGt =
1−MIAt(S)

2 =

1−0.5
2 = 0.25.

Algorithm 5 MIAGain

Input: GM(),Rt
out , t,n,m,nS,Ra,k

Output: PGt
1: fout ∼ GM(Rt

out)
2: for i = 1, · · · ,nS do
3: Si ∼ f m

out

4: Stest
+← Si

5: Rt
in← Rt

out ∪ t
6: fin ∼ GM(Rt

in)
7: for i = 1, · · · ,nS do
8: Si ∼ f m

in

9: Stest
+← Si

10: MIAt()← MIATrain(GM(), t,Ra,n,m,nS,k)
11: PGt← 1−MIAt(Stest)

2

We first create an evaluation set of 2 ∗ nS synthetic datasets Stest . Half of the

datasets are sampled from a generative model fitted to the raw dataset without the
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target Rt
out (lines 1–4); half from a generative model fitted to the raw dataset with

the target record in Rt
in (lines 5–9). We then train a privacy adversary MIAt() on

target t using the model training procedure GM() and a reference dataset Ra (line

10). We use this adversary to infer the presence of t in each of the synthetic datasets

in Stest and we calculate the privacy gain for record t as the difference between the

adversary’s success probability under Rt (P [MIAt(Rt) = ts] = 1) and the average

probability of success under S (line 11). In line 11, we write MIAt(S) as a shorthand

for P [MIAt(S) = ts] and MIAt(Stest) for ∑
Si∈Stest

MIAt(Si)/2∗nS.

Practical considerations and implementation. Mounting a successful black-

box MIA on a generative model is much more challenging than on a predictive

model [82]. MIAs on predictive models leverage patterns in the confidence val-

ues that differ between two classes, members and non-members. MIAs on gener-

ative models need to identify the influence that a single target record has on the

high-dimensional model’s output distribution D f (R). The non-deterministic output

sampling process and the fact that the adversary only has access to a single output

example from the trained model increases the difficulty of this task.

In our attack setup, the adversary needs to be able to distinguish between two

distributions, D f (R) and D f (R∪t), given a single observation S ∼ Dm
f (X). Detecting

the fine differences between D f (R) and D f (R∪t), however, is next to impossible in the

high-dimensional data domain of S. To reduce the effect of high-dimensionality and

sampling uncertainty, the adversary can apply feature extraction techniques before

training the classifier in line 14 of Algorithm 4. This means that, in practice, the

adversary will not use 6.5 but the following attack:

MIAt(F,S) = argmax
ts∈{0,1}

P[ts|F(S)], (6.6)

where F(S) denotes a function F : S→ F that extracts a feature vector F of size nF

from a synthetic dataset S. Under this attack, the adversary effectively maps S back

to a lower dimensional feature space and aims to detect the target’s influence on

these features. Whether the attack using feature set F is successful depends on two

factors: First, whether the target’s presence has a detectable impact on any of the
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features in F, and second, whether the synthetic dataset has preserved these features

from the raw data and hence preserved the target’s signal.

In our evaluation we implement the membership inference adversary MIAt() as

an instantiation of our framework’s PrivacyAttack class. We leverage the object-

oriented structure of the library to create multiple attack versions that share the same

training procedure MIATrain but use different attack models and feature extraction

techniques. We implement the adversary’s feature sets as feature extraction objects

FeatureSet. Each FeatureSet takes in a synthetic dataset S of size m× k and

outputs a vector of size nF×1.

As feature extractors, we implemented a naive feature set with simple summary

statistics FNaive, a histogram feature set that contains the marginal frequency counts

of each data attribute FHist, and a correlations feature set that encodes pairwise

attribute correlations FCorr.

As attack models, we implemented a Logistic Regression, Random Forests

and K-Nearest Neighbors classifier. All attack models yielded similar results with

Random Forests performing best across datasets, generative models, and feature

sets. In the next section, we focus on results obtained using the best performing

attack model, Random Forests, and the attack feature set with the overall highest

success rate FCorr.

6.2.6 Experimental results

We evaluate the expected privacy gain with respect to the risk of membership infer-

ence under all generative models described in 6.2.2, using the procedure described

in 6.2.4. At the beginning of each experiment, we sampled a fixed reference dataset

Ra from R and used it across all test runs and targets. The parameter nA in 6.1 de-

scribes the size of the adversary’s reference dataset and k the number of shadow

models trained by the adversary.

Worst-case privacy gain. We show in 6.21 left the estimated record privacy gain

for a record crafted to represent a worse-case target, i.e., a target likely to be vulner-

able to membership inference due to its unusual combination of attribute values (see
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Figure 6.21: Left: Record privacy gain for a crafted target across datasets and generative
models. Right: Cumulative distribution of record privacy gain across ran-
domly sampled target records for the Texas dataset under three generative
models. Generative models are colour-coded as IndHist BayNet CTGAN.

6.2.4). We plot the estimated record privacy gain of this target for nR = 25 test runs.

In each run, we sample a new target training set Rt i.i.d from R, and compute the

estimated record privacy gain PGt per target training set Rt as specified in Algorithm

5.

For the two bigger datasets (Adult and Texas), the estimated record privacy

gain for a worst-case target consistently lies well below the expected gain of PGt =

0.25 for all three generative models. For the German dataset, we observe that the

estimated gain is much closer to the expected value of 0.25 which indicates that

the adversary improves only slightly over her prior. This is likely due to the small

size of this dataset. A generative model, when trained on such small amounts of

data (< 1000 records per training set Rt) is unlikely to converge. Therefore, models

(both targets and shadows) trained on small samples of the German dataset are not

a robust representation of their input data. The attacker’s strategy to use shadow

models to mimic the target model’s behavior is hence less likely to succeed than on

the two bigger datasets.

More worryingly, there exist training sets Rt for which the record privacy gain

for the crafted target is close to 0. For those targets, publishing a synthetic dataset S

instead of the raw dataset Rt would result in little to no additional privacy protection

against linkage. In particular, for 68% of training sets from the Texas dataset the

target’s gain is smaller than 0.01 for synthetic data produced by IndHist and CTGAN

models, respectively. CTGAN-trained models provide the smallest overall gain with

an expected privacy gain of PGt = 0.02. The low privacy gain in these cases indicates

that the target’s presence has a detectable influence on some of the features used in
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the attack (FCorr) and that the generative model clearly preserves this signal in its

output.

Expected privacy gain across population. The previous results focus on a worst-

case scenario in which the target is a rare outlier, and thus highly vulnerable to

membership inference. In 6.21 right, we compare the expected record privacy gain

PGt (see 3) for 50 randomly chosen targets across 25 test runs on the Texas dataset

(see 6.2.4).

As expected, the average gain for the randomly chosen targets is higher than

the average gain of a worst-case target. However, we still find that for all three mod-

els the expected privacy gain is less than the random guess baseline (PGt = 0.25) for

60% of targets. These records are likely to be vulnerable to linkage independent

of the distribution of records in the training set: Even when assessing the average

gain across target training sets Rt ∼ Dn
R these records have a lower than expected

gain. While in the worst-case CTGAN-produced synthetic data provides the least pro-

tection, BayNet-trained models are more likely to leave a randomly chosen target

record vulnerable to linkage through an attack based on the correlations feature set.

We obtained similar results on the Adult dataset.

High variance, low predictability. Other than the low minimum gain achieved for

some target records, we observe a high variance in the record privacy gain across

training sets for a fixed record (6.21 left) as well as a high variance in the average

gain across target records for a fixed model training algorithm (6.21 right).

A high variance in the record privacy gain across training sets for a fixed target

record demonstrates that it is the combination of training set Rt and target record

t that determines whether the target has a detectable influence on the data features

preserved by the model. This means that it is not possible to predict privacy gain

for a particular target record without fixing the entire training set.

A high variance in the average privacy gain across target records indicates that

the model tends to amplify the signal of some records in the training set while it

actually hides the presence of others, i.e., it gives disparate protection. Experiments

with attack features other than the correlations set FCorr show that the variance in
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privacy gain provided by CTGAN is highest ranging from 0.04 to 0.48 across targets.

6.2.7 Differentially private model training does not increase pri-

vacy gain

In this section, we extend our evaluation to two model training algorithms, PrivBay

and PATEGAN, that provide formal privacy guarantees and assess the expected pri-

vacy gain with respect to the adversary introduced in Subsection 6.2.5.

We used the same attacks and experimental setup as in previous sections to

empirically evaluate whether models trained under DP increase the expected record

privacy gain.

Membership inference. In 6.22, we show the estimated record privacy gain for

a worst-case target under PrivBay and PATEGAN. As in previous experiments we

observed that the German dataset does not provide enough data to obtain good

model fits, we only present results for the Texas and Adult dataset. Neither

differentially private training leads to an increase in average record privacy gain

with respect to the risk of linkability. For instance, for 44% and 28% of training

sets Rt from the Adult dataset the target’s estimated gain is close to 0 (PGt <

0.01) for synthetic data drawn from a PrivBay and PATEGAN model with ε = 0.01,

respectively.

This implies that synthetic data drawn from either privacy-preserving model

carries through enough information about the target’s presence for an attacker to

successfully identify the preserved features and infer the target’s secret. This is

especially surprising in the case of PrivBay under an attack focusing on the cor-

relations feature set. The DP guarantee of the PrivBay procedure should ensure

protection against linkage attacks on these features. Even more surprisingly, the

expected gain of a worst-case target under this model even decreases as the privacy

parameter decreases for both datasets (from PGt = 0.11 for ε = 1 to PGt = 0.04 for

ε = 0.01 in the Adult dataset, statistically significant with p < 0.0001).

No (free) gain. We find that privacy guarantees for the lower-dimensional represen-

tation of the input data learned by differentially private models do not necessarily
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Figure 6.22: Record privacy gain for a crafted target under PrivBay- and PATEGAN-trained
models for four different privacy parameter settings. The ε values are colour-
coded as ε → ∞ ε = 1 ε = 0.1 ε = 0.01

ε → ∞ indicates no noise addition during training. Data shown a Random Forests
attack using the FCorr feature set.

extend to all features of the high-dimensional synthetic data sampled from these

models. Thus, these models do not provide robust protection against linkage at-

tacks on their outputs.

6.2.8 Key takeaways

Our evaluation framework enabled us to study the privacy gain provided by a wide

variety of generative models, from simple statistical models to differentially private

deep networks. Our results challenge the claim that synthetic data is a silver-bullet

solution to the privacy problems of microdata publishing.

First, high-dimensional synthetic datasets often carry more information about

their training data than what is captured by the generative model. Even synthetic

data drawn from simple models often preserves a large number of raw data fea-

tures. Adversaries are not constrained in their choice of feature set and therefore

can use any of the large number of data dimensions replicated in a model’s out-

put to conduct their attack. This reminds of past failures of data anonymization:

“high-dimensional data is inherently vulnerable to de-anonymization” [121]. As it

is not possible to predict neither what information synthetic carries nor what fea-

tures adversaries target, it impossible to predict the privacy gain of synthetic data

publishing.

Second, our results show that DP provides little protection against ML-based

inference attacks on high-dimensional data releases. However, this is more likely
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due to the model’s implementation rather than to the soundness of the differential

privacy definition, as they normally require additional metadata to operate (as, for

example, the ranges of continuous attributes). In fact, this aids the adversary (and

thus lowers the DP privacy guarantee) in practice, even though in theory the models

fulfill the DP definitions.

6.3 Measuring Utility and Privacy of Genomic Data

As previously mentioned, data sharing in genomics is crucial to enable progress in

Precision Medicine [71]. Unsurprisingly, however, this is inherently at odds with

the need to protect individuals’ privacy. Genomic data contains sensitive infor-

mation related to heritage, predisposition to diseases, phenotype traits, etc., which

makes it hard to anonymize [79]. Hiding “sensitive” portions of the genome is not

effective either, as sensitive information can still be inferred via high-order corre-

lation models [156]. For a thorough review of privacy threats in genomics, please

see [25, 178, 127].

As a result, genomics researchers have begun to investigate the possibility of

releasing synthetic datasets, rather than real/anonymized data [155]. This follows a

general trend in healthcare; for instance, the National Health Service (NHS) in Eng-

land has recently concluded a project focused on releasing synthetic Emergency

Room (“A&E”) records [128]. The intuition is to use generative models to learn

to generate samples with the same characteristics—more precisely, with the same

distribution—of the real data. That is, rather than releasing data of actual indi-

viduals, entities share artificially generated data in such a way that the statistical

properties of the original data are preserved, but minimizing the risk of malicious

inference of sensitive information [61].

Generative Models and Genomics. Specific to genomics, previous work has ex-

perimented with both statistical and machine learning generative models. Samani

et al. [156] propose an inference model based on the recombination rate, which can

also be used to generate new synthetic samples. Yelmen et al. [185] use Generative

Adversarial Models (GANs) and Restricted Boltzmann Machines (RMBs) to mimic
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the distribution of real genomes and capture population structures. Finally, Killoran

et al. [103] use ad-hoc training techniques for GANs and architectures for computer

vision tasks.

Motivation. Prior work on generating synthetic data in genomics has thus far only

scratched the surface with respect to assessing their utility, and more specifically

their statistical fidelity. Moreover, we do not really know whether these approaches

actually provide any meaningful privacy guarantees. To address this gap, we intro-

duce a novel evaluation framework and perform a series of measurements geared to

assess both the utility and the privacy of five state-of-the-art models used to generate

human genomic synthetic data.

Experimental Evaluation. Our analysis unfolds along two main axes:

• Utility. We focus on a number of very common computational tasks on ge-

nomic data. We measure how well generative models preserve summary

statistics (e.g., allele frequencies, population statistics), or linkage disequilib-

rium. We also assess how close are the distributions of synthetic data vs. real

data for principal component analysis.

• Privacy. We mount membership inference attacks [89], having an attacker

infer whether a target record was part of the real data used to train the model

producing the synthetic dataset. More precisely, we quantify the privacy

gained (recall from Section 6.2.1,) vis-à-vis this attack, from releasing syn-

thetic data vs. releasing the real dataset. In the process, we also introduce

a novel attack where the adversary only has partial information for a target

individual.

Main Findings. Overall, our evaluation shows that there is no single approach for

generating genomic synthetic data that performs well across the board, both in terms

of utility and privacy. Among other things, we find that:

• A high-order correlation model specifically build for genomic data (Recomb)

has the best utility metrics for small datasets but does so at the cost of privacy,

even against weaker adversaries who only have partial information available.
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• The RBM model has a better performance with increasing dataset sizes, both

in terms of utility and privacy, as targets get stronger privacy protection when

synthetic data is generated using a larger training set.

• Releasing synthetic datasets does not provide robust protection against mem-

bership inference attacks. We find cases where releasing the synthetic dataset

sometimes offers better protection against membership inference attacks.

However, because of the randomness introduced by the generative models,

one cannot meaningfully predict a target’s susceptibility to privacy attacks

without fixing the training set and quantifying the respective privacy loss/gain

for all targets in the set.

6.3.1 Datasets

In our evaluation, we use data from two projects: HapMap [122] and the 1000

Genome Project [12]. More specifically, we use 1,000 SNPs from chromosome 13

from the following three datasets:

1. CEU Population (HapMap). Samples from 117 Utah residents with Northern

and Western European ancestry, released in phase 2 of the HapMap project.

2. CHB Population (HapMap). Samples from 120 Han Chinese individuals from

Beijing, China.

3. 1,000 Genomes. Samples from 2,504 individuals from 26 different popula-

tions released from phase 3 of the 1000 Genomes project.

6.3.2 Synthetic Data Approaches in Genomics

The ability to effectively train statistical models [20] from genomic data is very

important in many applications. As many models suffer from the “curse of dimen-

sionality” [18], i.e., models do not usually perform well on small datasets with high

dimensionality, statistical and generative models have been proposed not only to

mitigate possible privacy concerns of sharing genomic data but also to help “in-

flate” the size of the datasets for more meaningful analysis.
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In this section, we provide an overview of the state-of-the-art models for gen-

erating synthetic genomic data. In particular, we discuss the Recombination model

proposed by Samani et al. [156], the RBM and GAN models proposed by Yelmen

et al. [185], and the WGAN model from Killoran et al. [103]. We also introduce

and consider two other “hybrid” models.

Recombination Model (Recomb). Samani et al. [156] propose the use of a re-

combination model as an inference method for quantifying individuals’ genomic

privacy. This is a statistical model, based on high-order SNV correlation that re-

lates linkage disequilibrium patterns to the underlying recombination rate. Given

a set of sampled haplotypes, the model relates their distribution to the underlying

recombination rate.

Also, [156] shows how to use this method to generate synthetic samples in

order to perform Principal Component Analysis (PCA). The recombination model

yields a distribution closer to the real data than models using only linkage disequi-

librium and allele frequencies. In order to obtain the underlying recombination rate,

the model uses a “genetic map,” which includes the recombination rate. This is pro-

vided with the dataset for the HapMap datasets, but not for the 1000 genomes data.

For the latter, we use the scripts from [5].

Restricted Boltzmann Machines (RBMs). In the context of genomic data, Yelmen

et al. [185] use RBMs to generate synthetic genomic data. In our evaluation, we

follow the same RBM settings as [185]. More specifically, we use a ReLu activation

function, with the visible layer having the same size as the input we considered

(1,000 features) and with the number of hidden nodes set to 100. The learning rate

is set to 0.01, the batch size to 32, and we iterate over 2,000 epochs.

Generative Adversarial Networks (GANs). Again, we use the GAN approach

proposed by Yelmen et al. [185], mirroring their experimental settings. More pre-

cisely, the generator model consists of an input layer with latent dimension set to

600, and two hidden layers, of sizes 512 and 1,024 respectively. The discriminator

consists of an input layer with size equal to the number of SNPs evaluated (1,000),

and two hidden layers of sizes 512 and 256 respectively, as well as an output layer



6.3. Measuring Utility and Privacy of Genomic Data 141

of size 1. The output layer for the generator uses tanh as an activation function and

the output layer for the discriminator uses the sigmoid activation function. For both

the generator and discriminator, we compile them using the Adam optimization and

binary cross-entropy as the loss function.

Recombination RBM (Rec-RBM). To overcome issues caused by low numbers

of training samples, we propose a hybrid approach between the Recomb and the

RBM models. In other words, we use the former to generate extra samples, which

we then use, together with the real data samples, to train the RBM model with the

same parameters as before. We do so to explore whether having more data points

available to train the model improves the utility of the synthetic data.

Recombination GAN (Rec-GAN). Similar to Rec-RBM, we use the Recomb

model to generate extra training samples for the GAN model, using the same param-

eters as before. Again, we want to study whether having a larger dataset available

for training the GAN improves the overall utility of the synthetic data output by it.

Wasserstein GAN (WGAN). Killoran et al. [103] propose an alternative GAN

model by treating DNA sequences as a hybrid between natural language and com-

puter vision data. The sequences are one-hot encoded, the GAN is based on a

WGAN architecture trained with a gradient penalty [78], and both the generator

and discriminator use convolutional neural networks [107] and a residual architec-

ture [84], which includes skip connections that jump over some layers. The authors

also propose a joint method combining the GAN model with an activation max-

imization design [160, 189, 119] in order to tune the sequences to have desired

properties. We do not, however, include the joint model in our evaluation, as we

focus on a range of statistics as opposed to a single desired property.

In our evaluation, we use the WGAN model with the default parameters from

the implementation in [4]. The generator consists of an input layer with dimension

of the latent space set to 100, followed by a hidden layer with size 100 times the

length of the sequence (1,000), which is then reshaped to (length of the sequence,

100), followed by 5 resblocks. Finally, there is a 1-D convolutional layer followed

by the output layer, which uses softmax. The discriminator has a very similar ar-
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Figure 6.23: Major allele frequencies for synthetic data generated by the models, plotted
against the real data, for the CEU population, the CHB population, and the
1000 Genomes dataset.

chitecture but in a different order – i.e., it starts with the input layer to which the

one-hot sequences are fed, that is followed by the 1-D convolutional layer, then

the 5 resblocks, followed by the reshape layer and the output layer of size 1. We

perform 5 discriminator updates for every generator update. Both the generator

and discriminator use Adam optimization and their learning rates are set to 0.0001,

while the loss as mentioned is adjusted by a gradient penalty. We use a batch size

of 64. In our experiments, the WGAN model converges after about 80 iterations;

so, as opposed to the 100,000 proposed by the authors, we train the model for 100

iterations in our evaluation.
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Figure 6.24: Alternate allele correlation for the CEU population, the CHB population, and
the 1000 Genomes dataset.
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Figure 6.25: Frequency spectrum analysis for the CEU population, the CHB population,
and the 1000 Genomes dataset.

6.3.3 Utility Evaluation

We now perform a comprehensive utility evaluation of the synthetic data generated

by the models presented in Section 6.3.2. We look at common summary statistics

used in genome-wide association studies, aiming to assess the accuracy loss due

to the use of synthetic datasets. More specifically, we analyze how well data gen-

erated by the generative models preserves allele frequencies, population statistics,

and linkage disequilibrium, and how close the distribution of the synthetic data is

to the real data for principal component analysis.



6.3. Measuring Utility and Privacy of Genomic Data 144

6.3.3.1 Allele Statistics

Major Allele Frequency (MAF). In population genetics, the major allele frequency

(MAF) is routinely used to provide helpful information to differentiate between

common and rare variants in the population, as it quantifies the frequency at which

the most common allele occurs in a given population. We start our utility analysis

by comparing MAFs in the synthetic data vs. the real data.

In Fig. 6.23, we plot the MAF at each position for the real datasets and for

the synthetic samples, over the CEU and CHB populations, and the 1000 Genomes

dataset. For CEU/CHB (Fig. 6.23a–6.23b), we observe that Recomb and WGAN

replicate best the allele frequencies in the real data. On the other hand, GAN and

Rec-GAN fail to do so, and in fact, the generated samples seem random. The RBM

model, even though not as close to the real frequencies as Recomb, performs better

than the GAN and Rec-GAN models. In fact, RBM further improves when com-

bined with Recomb (see Rec-RBM).

For 1000 Genomes (Fig. 6.23c), Recomb’s MAF distribution is also similar to

the real data’s. However, RBM and Rec-RBM both display MAFs close to the real

data, whereas, even with more training samples available, the GAN and Rec-GAN

models still seem to produce random results. Moreover, WGAN does not match the

MAF distribution for this population as closely. Overall, the difference in the MAF

distributions across datasets is likely to be due to fewer samples available for the

HapMap populations compared to the 1000 Genomes.

Alternate Allele Correlation (AAC). To evaluate whether the real and synthetic

data are genetically different, in Fig. 6.24, we plot the alternate allele correlation

(AAC). The more similar two populations are, the closer the SNPs should be to the

diagonal, as in the leftmost plots, where we have the real data against itself. The

strongest AAC is with the synthetic data generated by Recomb. On the opposite

side of the spectrum, the synthetic data generated by GAN and Rec-GAN have

weak correlations. For the CEU and CHB populations, we find Rec-RBM to yield

stronger AACs than simple RBM and the WGAN. For the 1000 genomes dataset

(Fig. 6.24c), there is a strong correlation between the alternate alleles for the real
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data and Recomb, RBM, Rec-RBM, and WGAN.

Site Frequency Spectrum (SFS). Another summary statistic that captures essential

information about the underlying distribution of the allele frequencies of a given set

of SNPs in a population or sample is the SFS [66, 65]. Basically, it provides a his-

togram whose size depends on the number of sequenced individuals. In Fig. 6.25,

we plot the scaled folded SFS, which is the distribution of counts of minor alleles in

a sample calculated over all segregating sites. We scale this value so that a constant

value is expected across the spectrum for neutral variation and constant population

size, which yields the best visual comparisons. If the distribution of allele frequen-

cies for the synthetic samples matches that for the real data, we would expect to see

the two spectra aligned.

With the HapMap populations (Fig. 6.25a– 6.25b), Rec-GAN suggests an ex-

cess of rare variants for a minor allele frequency around 0.1. Whereas GAN seems

to generate data closer to a neutral expectation, i.e., the synthetic dataset describes

a more stable population. Similarly, for the 1000 Genomes (Fig. 6.25c), Rec-GAN

has an excess of rare variants for a minor allele frequency less than 0.1, and this is

also displayed, at a lower scale, by the GAN-generated data.

We also compute the Kolmogorov-Smirnov (KS) two-sample test [86] for the

goodness of fit on the SFS for each dataset vs. the synthetic data (see Table 6.2). The

test compares the agreement between the cumulative distributions of two indepen-

dent samples. For every two-samples test, the 95% critical value is approximately

0.195 (as we have 100 samples in each dataset), so we can reject the null hypothe-

sis (that there is no difference between the distributions) for all synthetic data above

this value. For both CEU and CHB, we cannot reject the null hypothesis only for the

samples generated by the Recomb and the WGAN models. For the 1000 Genomes

dataset, we reject the null hypothesis for synthetic data generated by the GAN and

Rec-GAN.

6.3.3.2 Population Statistics

Next, we look at population statistics to determine how close to the real dataset is the

synthetic data. In particular, we look at the percentage of heterozygous variants for



6.3. Measuring Utility and Privacy of Genomic Data 146

both real and synthetic samples, at the fixation index, and at the Euclidean Genetic

Distance.

Heterozygosity. The condition of having two different alleles at a locus is denoted

as heterozygosity. The percentage of heterozygous variants is commonly used in

population studies, as a low percentage of heterozygous variants implies less diver-

sity in the population. In Fig. 6.26a–6.26b, we plot the percentage of heterozygous

variants in each sample for the CEU/CHB populations, comparing the real statis-

tics (blue/leftmost bars) vs. those computed on the synthetic data. In both cases,

Recomb and WGAN yield similar percentages to the real dataset. Whereas, with

GAN and RBM, the percentage decreases, suggesting that both models produce

more homozygous variants. Moreover, even though for the major allele frequencies

Rec-RBM produces variants with statistics closer to the real data, the percentage of

heterozygous variants turns out to be the lowest for both populations. By contrast,

Rec-GAN produces a higher percentage of heterozygous variants than GAN, even

though the major allele frequencies are not aligned with the original samples.

With the 1000 Genomes (Fig. 6.26c), the percentage of heterozygous samples

in the real data is lower across all samples. Once again, and in line with previ-

ous results, GAN and the Rec-GAN significantly deviate from the percentages of

heterozygous samples found in the real data.

We also run a Kolmogorov-Smirnov (KS) two-sample test [86] for the good-

ness of fit on the percentage of heterozygous samples for each dataset vs. the syn-

thetic data (see Table 6.2). For both Recomb and WGAN, we do not reject the null

SFS % Heterozygous Samples
CEU CHB 1000 Geno CEU CHB 1000 Geno

Models D p-value D p-value D p-value D p-value D p-value D p-value

Recomb 0.07 0.89 0.07 0.89 0.18 <0.1 0.19 0.47 0.29 <0.001 0.32 <0.001
RBM 0.34 <0.001 0.28 <0.001 0.12 0.44 0.64 <0.001 0.70 <0.001 0.13 0.34
GAN 0.40 <0.001 0.41 <0.001 0.23 <0.01 0.90 <0.001 1.00 <0.001 0.57 <0.001
Rec-RBM 0.26 <0.01 0.23 <0.01 0.06 0.99 0.99 <0.001 1.00 <0.001 0.40 <0.001
Rec-GAN 0.64 <0.001 0.58 <0.001 0.25 <0.01 0.55 <0.001 0.68 <0.001 0.52 <0.001
WGAN 0.09 0.79 0.18 <0.1 0.19 <0.1 0.17 <0.1 0.39 <0.001 0.45 <0.001

Table 6.2: Two-sample (real vs. synthetic data) Kolmogorov-Smirnov test performed on the
SFS and the percentage of heterozygous samples.

hypothesis for the CEU dataset, but we do for the CHB dataset. In fact, for all of
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(c) 1000 Genomes Population

Figure 6.26: Percentage of heterozygous variants in each sample in the dataset for CEU,
CHB populations, and the 1000 Genomes dataset.

the models trained on the CHB dataset, we reject the null hypothesis. For the 1000

Genomes dataset, we do not reject the null hypothesis only for RBM.

Fixation Index (FST ). Another way to assess how different are groups of popula-

tions from each other is to use the fixation index [88]. This provides a comparison

of differences in allele frequency, with values ranging from 0 (not different) to 1

(completely different/no alleles in common). In Fig. 6.27, we compare the fixation

index values for the real data against the synthetic samples. For illustration pur-

poses, we also include FST of the real data against itself, which obviously yields

FST = 0.

Recomb is once again the closest to the real data, which confirms the alignment

from Fig. 6.23 of the allele frequencies of the synthetic recombination data with the

real data. The FST value for the synthetic data produced by RBM is, for both CEU

and CHB populations, less than 0.10, however, the hybrid Rec-RBM model further

reduces this value to less than 0.04, and so does WGAN. For both populations,

data generated by GAN and Rec-GAN has the highest FST , although, for the CHB
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Figure 6.27: Fixation index values for the CEU and CHB populations, and the 1000
Genomes dataset.

population, the latter increases it and for the CEU population reduces it. Finally,

for the 1000 genomes, Recomb, RBM, and Rec-RBM all have FST close to the real

data. While still having a low FST , WGAN has a slightly higher value. Whereas,

with GAN and Rec-GAN, FST significantly deviates from the real data, even with

the increased number of samples of this dataset.

Euclidean Genetic Distance (EGD). Since the fixation index does not easily allow

for pairwise comparisons among populations, in Fig. 6.28, we plot the Euclidean

Genetic Distance (EGD) between the samples in each dataset. EGD is routinely

used as a measure of divergence between populations, and shows the number of

differences, or mutations, between two populations; a distance of 0 means that is no

difference in the results, i.e., there is an exact match. From Fig. 6.28a–6.28b, where

the EGD on the diagonal is 0, we observe that, for both CEU and CHB populations,

the synthetic samples generated by GAN are closer to each other than by the other

models. Rec-GAN generates samples with EGD close to 0, suggesting that there are

very few differences between them, as well as samples with a distance of around

30. As for the other population statistics, Recomb generates samples that match the

differences observed in the real data the closest, for both populations. For RBM,

the samples generated have fewer differences than the real data. Perhaps more

interestingly, Rec-RBM yields samples with a higher divergence than the real data;

this can be a consequence of the low percentage of heterozygous samples found in

the synthetic samples generated by this model (recall Fig. 6.26). The samples from

WGAN match some of the differences observed in the real data, but the model also

yields a few samples with a higher divergence.
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Finally, for the 1000 Genomes (Fig. 6.28c), we find that all samples in the real

data have closer EGDs between each other. In fact, the samples generated by RBM

yield a similar pattern in the EGD distances. Although Recomb, Rec-RBM, and

WGAN do too, they exhibit a lower distance, on average, between samples. As

for CEU/CHB populations, GAN and Rec-GAN models overall fail to capture the

differences between samples.

6.3.3.3 Linkage Disequilibrium (LD) Analysis

Linkage disequilibrium (LD) captures the non-random association of alleles at two

or more positions in a general population – i.e., those alleles do not occur ran-

domly with respect to each other. In Genome-Wide Association Studies, LD allows

researchers to optimize genetic studies, e.g., by preventing genotyping SNPs that

provide redundant information [37]. In Fig. 6.29, we plot the r2 value for LD based

on the Rogers-Huff method [152]. This ranges from 0 (there is no LD between

the 2 SNPs) to 1 (the SNPs are in complete LD, i.e., the two SNPs have not been

separated by recombination and have the same allele frequencies).

For CEU and CHB populations, RBM generates samples that display a stronger

LD than the real data. With more training samples, Rec-RBM yields a weaker

LD, but still stronger than the real data for both models. On the other side of the

spectrum, for Rec-GAN, the LD for the synthetic data is the weakest. For the 1000

Genomes, we find a stronger LD between the real samples than with the other two

datasets. RBM generates samples that are almost indistinguishable from the real

data in terms of LD. The LD in the synthetic datasets generated by Recomb, Rec-

RBM, and WGAN have lower correlations than RBM, with GAN and Rec-GAN

both failing to preserve the LD.

6.3.3.4 Principal Component Analysis (PCA)

Finally, we further study the difference between synthetic and real data by perform-

ing a principal component analysis on the corresponding samples. We extract the

first two principal components and project the real and synthetic datasets on these

two components to show how the synthetic samples are distributed compared to the
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Figure 6.28: Pairwise Euclidean Genetic Distance (EGD) between individuals.

real data.

Fig. 6.30 presents this 2D visualization. Recomb has a close distribution to

the real data for both HapMap populations, which, according to [156], is because

the genetic recombination model considers all the correlations between SNPs and

builds a higher-order model. For the 1000 Genomes, as for the other utility met-

rics studied in Section 6.3.3, the GAN and Rec-GAN models perform quite poorly,

generating samples with a different distribution than the real samples. Therefore,

in Figure 6.30d, we exclude them in order to take a closer look at the non-GAN-

based models. Here, we can better observe that the RBM-generated samples have

the closest distribution to the real data. In contrast to the HapMap populations, the

samples from Recomb are all centered around 0 and fail to simulate the distribution

given by the real data, and similar results are in the case of samples generated by

Rec-RBM.

6.3.3.5 Take-Aways

Our utility evaluation shows that there are only a handful of cases where generative

models produce synthetic genomic data with high utility on popular tasks.

The Recomb model, which is based on high-order SNV correlations, generates

synthetic data preserving most statistical properties displayed by the real data, even

when few samples are available. We get better utility when the genetic map is
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Figure 6.29: Pairwise Linkage Disequilibrium for Real vs. Synthetic Samples.

included with the data rather than generated from the existing data. With RBM,

more training samples improve the quality of the synthetic data, as evidenced by

the difference between the HapMap populations and the 1000 Genomes dataset.

We also find that when few samples are available for training, the hybrid Rec-

RBM model approach helps improve the quality of samples compared to just RBM.

This is clear from the utility of the synthetic data on the two smaller HapMap

datasets. For the 1000 genomes, it is not surprising that Rec-RBM’s performance

is worse than RBM since Recomb does not generate as “useful” samples as for the

other two datasets. Finally, the GAN and the Rec-GAN models generate samples

with the lowest utility, regardless of the number of samples available for training.

However, the data generated by WGAN preserves most statistical properties of the

real data.

Overall, our analysis exposes the limitations, in terms of statistical utility, of

using generative machine learning models to produce synthetic genomic data.

6.3.4 Privacy Evaluation

Next, we quantify the privacy provided by synthetic data by evaluating its vulner-

ability to Membership Inference Attacks (MIAs). More precisely, we compute the
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Figure 6.30: 2D Principal Component Analysis (PCA) visualization of the real and syn-
thetic sequences.

Privacy Gain PG (see Section 6.2.5) obtained by releasing a synthetic dataset in-

stead of the real data. Recall that, if the synthetic data does not hide nor give any

additional information to an MIA attacker, PGt , for a target record t, should have a

value of around 0.25.

We present experiments for both a “standard” MIA and a novel attack, which

we denote as MIA with partial information. The latter essentially assumes that

the adversary only has access to partial data from the target sequence. We exclude

GAN and Rec-GAN from the evaluation since they yield poor utility performance,

so there is not really any point in evaluating their privacy.

Throughout our evaluation, we randomly choose 10 targets from each dataset
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Figure 6.32: Privacy Gain (PG) of different models over the two HapMap populations.

across 10 test runs. In each run, we fix the target and sample a new training cohort.

We train the attack classifier using 5 shadow models, using 100 synthetic training

sets for each of them. We then evaluate the privacy gain on 100 synthetic datasets,

with a split of 50 sets generated from a training set including the target, and 50 sets

generated without. Finally, we report the PG for each test and each target as the

average PG across all synthetic datasets tested.

6.3.4.1 Privacy Gain Under Membership Inference Attack

We use three adversarial classifiers: K-Nearest Neighbor (KNN), Logistic Regres-

sion (LogReg), and Random Forest (RandForest). We use four feature sets, as de-

scribed in Section 6.2.5: Naive ( FNaive), Histogram ( FHist ), Correlations ( FCorr),

and an Ensemble feature set ( FEns).

HapMap Populations

In Fig. 6.32, we report the PG value for targets randomly chosen from the two

HapMap populations.

KNN. For CEU, using KNN (Fig. 6.32a, left), we find that over 74% of the targets

in the synthetic dataset generated by Recomb have a PG lower than the random

baseline (0.25) for the Ensemble, Correlations, and Histogram feature sets. With

RBM, there are between 84% and 88% of the targets, depending on the feature
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set, that have a PG of 0.25; in other words, for these targets, the probability of the

adversary inferring their presence in the training set is the same as random guessing.

However, between 10% and 15% of the targets have no PG at all, whereas, there are

between 1% and 4% of the targets, depending on the feature set, for which the

synthetic data perfectly protects the target from MIA (PG=0.5). With Rec-RBM, at

least 59% of the targets have a PG of 0.25 under the four feature sets. With WGAN,

at least 48% of the targets have a PG of 0.25, depending on the feature set.

For the CHB population (Fig. 6.32b, left), we find that over 60% of the targets

generated by the Recomb, with all features, have PG below the random guess base-

line. With RBM, between 89% and 97% of targets have PG of exactly 0.25 across

all feature sets, i.e. the synthetic dataset generated by the RBM for these targets

does not hide nor give new information to the attacker about their membership to

the synthetic dataset. Interestingly, for the Correlations feature set, there is no target

that has PG lower than 0.25. As for the CEU population, about 50% of the targets

across all feature sets have a PG of 0.25 for data from Rec-RBM, and at least 47%

of targets from WGAN.

LogReg. Using LogReg, both Recomb and RBM have the lowest PG among all

attack classifiers, for both HapMap populations. For CEU (Fig. 6.32a, middle), us-

ing the Histogram feature set, 94% (resp., 96%) of the targets from Recomb (resp.,

RBM) have PG below 0.25, which is the random guess baseline. Under Corre-

lations, 99% (resp., 97%) of the targets in Recomb (resp., RBM) have PG below

0.25, while, for the Ensemble feature set, 96% (resp., 98%) of the targets from Re-

comb (resp., RBM) have PG below 0.25. With Rec-RBM, we find that between

52% and 56% of the targets across all feature sets have PG above 0.25, and with

WGAN, between 50% and 57% of the targets across all feature sets have PG above

0.25. Moreover, for the Rec-RBM and WGAN-generated data, there is no target

that consistently has a lower PG than the random guess baseline across all test runs.

For CHB (Fig. 6.32b, middle), with synthetic data generated by Recomb, the

average PG is below the random baseline (0.25) for 99% of the targets in the His-

togram feature set, 97% for Correlations, and for 96% for Ensemble. For RBM,
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79% of the targets in the Histogram feature set have a PG below 0.25. Under the

Ensemble feature set, 84% of the targets have PG below 0.25. For synthetic data

generated by Rec-RBM, we find that 54% of the targets from the Histogram and En-

semble feature sets have PG lower than 0.25 and 46% have PG over 0.25. For the

Naive and Correlations feature sets, respectively, 45% and 47% of the targets have

PG lower than the random guess baseline. For WGAN-generated data, Correlations

feature set yields most targets (55%) with PG<0.25.

RandForest. When using RandForest as the attack classifier on data from the CEU

population (Fig. 6.32a, right), with RBM-generated data, 73% of the targets from

both Correlation and Histogram feature sets have lower PG than the random base-

line. This is for 69% and 62% of the targets with, respectively, Ensemble and Naive

feature sets. For the synthetic data generated by Rec-RBM, about 51% of targets

have a PG of over 0.25, and 49% of the targets have PG of less than 0.25, across all

feature sets. For WGAN, between 46% and 59% of the targets from all feature sets

have a PG less than the random guess baseline (0.25), with the Correlations feature

set having the least percentage of vulnerable targets (59%).

For CHB (Fig. 6.32b, right), the lowest privacy gain for the samples generated

by Recomb: over 79% of all targets for each of the four feature sets have PG lower

than the random baseline. For the synthetic samples from RBM, 71%, 61%, and

53% of the targets under the Naive, Histogram, respectively, Ensemble feature sets

have PG lower than 0.25. However, for the Correlations feature sets, we find that

55% of the targets have a PG of 0.25, meaning that, those targets are protected

from MIA. For the synthetic samples generated by Rec-RBM, 54% of the targets

from the Histogram and Ensemble feature sets and 47 and 45% of the targets from

the Correlations and Naive, respectively, have PG lower than 0.25. Finally, for the

WGAN, we find that between 44% and 53% of the targets have PG>0.25 across all

four feature sets.
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Figure 6.33: Privacy Gain (PG) of RBM over the 1000 Genomes dataset.

1000 Genomes Population

For the 1000 Genomes population, we focus our analysis on the RBM model, as it

generated synthetic data closest to the real data across all utility metrics evaluated.

Random Target. In Figure 6.33a, we plot the PG for the synthetic data generated

by RBM, for randomly chosen targets. With the RandForest MIA classifier, we

observe that 56%, 75%, 92%, and 50% of the targets have PG higher than the ran-

dom guess baseline (PG≥0.25) for, respectively, Naive, Histogram, Correlations,

and Ensemble feature sets. The high percentage of targets that have a PG≥0.25 for

the Correlations suggests that the impact of a single target in the training dataset of

the RBM on the correlations of the synthetic dataset is minimal.

Then, with the LogReg classifier, we find a high variation in PG, similar to the

HapMap populations in the case of Rec-RBM. Under the Naive feature set, half of

the targets have PG gain below the random guess baseline. Similarly, 43%, 45%,

and 43% of targets have a PG lower than 0.25 for, respectively, the Correlations,

Histogram, and Ensemble feature sets.

Finally, for the KNN classifier, over 94% of the targets have a PG of 0.25 across

all feature sets.

Outlier Target. To better understand whether, with more training data, a target’s

signal in the synthetic dataset is diluted, we also test an “extreme” outlier case. That

is, we craft an outlier target that has only minor alleles at all positions. While we

are aware that this case would be extremely rare in a real-world scenario, our goal

is to observe whether, and how much, this impacts PG.

To this end, in Figure 6.33b, we plot the PG of this outlier case across 10 test
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runs.

With RandForest, we find that, under the Ensemble feature set, PG is below

0.25 for 8 of the 10 test runs. In fact, this is the only combination between attack

classifier and feature set for which a greater percentage of the targets have a lower

privacy gain than in the random target case. For the Naive feature set, in only 3 of

the test runs, PG is below the random baseline. For the Correlations and Histogram

feature sets, all test runs yield PG of 0.25 or above. while for the Histogram feature

set the privacy gain is above 0.25 across all test runs.

With LogReg, 4 out of 10 of the test runs for the Naive, Histogram, and Cor-

relations feature sets yield PG below 0.25. For Ensemble, this happens for 6 test

runs. Finally, with KNN, across all feature sets, PG for all test runs is 0.25, i.e., the

synthetic data does not disclose any membership information regarding the outlier.

While there are differences across classifiers and feature sets, the PG, for all

test runs in this outlier target case, is centered around 0.25. This evident from

Figure 6.33b, which implies that, across all test runs, the accuracy of the MIA is not

much better than random guessing.

Take-Aways The different combinations of datasets, attack classifiers, and feature

sets, yield varied results with respect to privacy. This is due to two main reasons:

first, not all classifiers have the same accuracy on tasks for the same dataset, as

shown in previous work [19]. Second, the features that the generative model pre-

serves after training will “reflect” in the synthetic data; thus, this will impact the PG

based on the feature extraction method.

On the HapMap populations, while the utility evaluation shows that Recomb-

generated synthetic data is “closest” to the real data, it does so with a significant

privacy loss in comparison to the other models. The RBM-generated synthetic data

is the most vulnerable under the LogReg classifier, with at least 70% of the targets

across both populations and all feature sets having PG below the random guess

baseline. This suggests that, with few data samples available for training, the RBM

model is likely to overfit and is thus susceptible to MIAs.

For Rec-RBM and WGAN, the attacker cannot reliably predict membership,
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i.e., the addition of extra samples from the Recomb model in the training of the

Rec-RBM dilutes the target’s signal in the training data. However, for both models,

we still find combinations of targets and training sets for the attack classifier for

which PG is significantly lower than the random guess baseline; i.e., the synthetic

data will still expose membership information about the respective targets.

On the 1000 Genomes, PG values have a higher variation overall when the tar-

get is chosen randomly from the dataset than for the two smaller HapMap datasets.

The results for RBM data confirm our hypothesis that the target’s influence is di-

luted within larger datasets. However, once again, this does not mean that mem-

bership inference is not possible for both Rec-RBM and WGAN, depending on the

combination of target, training set, attack classifier, and feature set.

However, in the case of an “extreme” outlier (i.e., a target which has minor

alleles at all positions), the synthetic data generated by RBM does not have a big

impact on PG. In this case, across all test runs, the PG is actually close to the random

guess baseline across all test runs.

We find that targets get very different levels of privacy protection, based on

the combination of target and training set used to generate the synthetic data. For

a privacy mechanism to provide good privacy protection, it needs to be predictable,

i.e., all targets should have a privacy gain above the random guess baseline, which

our evaluation shows it is not the case for the data generated by the models we have

evaluated.

6.3.4.2 Privacy Gain under Membership Inference Attack with Par-

tial Information

Next, we introduce a novel attack, which we denote as MIA with Partial Information

(MIA-PI). Basically, we only give the attacker access to a fraction of SNVs from the

target sequence, chosen at random. The attacker then uses the Recombination model

from [156] as an inference method to predict the rest of the sequence. Compared to

the previous attack, the adversary trains their (attack) classifier using the sequence

inferred from the partial data. Thus, the PG formula also needs to be adjusted to
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account for how likely an adversary is to identify a target from partial information.

PG for MIA-PI. Assuming the attacker has partial information t ′ as a fraction of

the SNVs from t, they first use the Recomb model, as an inference algorithm, to

predict the rest of the SNVs from the target sequence, which we denote by tp. The

privacy gain is computed as:

PGt =
MIAtp(Rt)−MIAtp(Stest)

2
, where

MIAtp(Stest) = ∑
Si∈Stest

Pr[MIAtp(Si) = 1]
2∗ns

, and

MIAtp(Rt) = ∑
Ri∈Rt

Pr[MIAtp(Ri) = 1]
2∗ns

.

That is, the privacy gain, in this case, is computed as the difference between the

probability that the attacker, who has partial information about the target record,

correctly identifies that the target is part of the real dataset versus the target being

part of the training set used to generate the synthetic dataset.

As a result, PG now ranges between -0.5 and 0.5, where 0.5 means that hav-

ing the real dataset R and the partial information t ′ about the target allows the

adversary to infer the membership of t in R, while the synthetic dataset reduces

the adversary’s chance of success (i.e. MIAtp(Rt) = 1 and MIAtp(Stest) = 0). A

negative PG value means that publishing the synthetic data, instead of the real

data, improves the adversary’s chance to correctly infer membership of the tar-

get t (i.e. MIAtp(Rt) < MIAtp(Stest)). If publishing the synthetic data does not

increase nor decrease the adversary’s inference powers, we should have PG=0 (i.e.

MIAtp(Rt) = MIAtp(Stest)).

Experiments. From the experiments presented in Section 6.3.4.1, we find that the

attack classifier that yields the lowest PG is Logistic Regression; thus, we only

experiment with that one to ease presentation. In the following, we present the

results of the MIA-PI experiments for the CEU population, focusing on the Recomb

and RBM models (as mentioned, with a LogReg attack classifier). We do so as these

two models yield the lowest PG in Section 6.3.4.1.
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Recomb. In Figure 6.34, we plot the Cumulative Distribution Function (CDF) of

the accuracy of the attack for Recomb when the adversary has access to the full

sequence vs. partial information, specifically, a ratio of 0.05, 0.1, and 0.2 of the

total SNVs from the target sequence. Interestingly, even when only 0.05 of the

target SNVs are available to the attacker, for 90% and 91% of the targets from the

Histogram and respectively Ensemble feature sets, the attacker’s accuracy is still

above the random guess baseline (50% accuracy). Our intuition is that many targets

are vulnerable to the attack, even with little partial information, since we use the

Recomb model not only for the attack but also as an inference method to predict the

rest of the sequence.

To explore how much of the MIA-PI vulnerability is due to the release of syn-

thetic datasets, and not only by how much information the attacker has available,

in Figure 6.35, we plot the CDF of the PG with MIA-PI. In line with the accuracy

results, we find that the PG is greater than 0 for at least 88% of the targets for all

ratios of partial information tested in the case of the Correlations feature set. How-

ever, for the other three feature sets, releasing the synthetic dataset instead of the

real data decreases the privacy gain (i.e., PG<0) for the majority of targets. When

the adversary has access to just 5% of the SNVs from the target, there is a negative

PG for 61% of the targets under the Histogram and 62% of the targets under the

Ensemble feature sets. With 10% of the target sequence available, 54% and 60%

of the targets under, respectively, the Histogram and the Ensemble feature sets have

negative PG, and with 20%, these numbers go up to 64% and 67%. There are more

targets with negative PG with increasing partial information available to the attacker

for the Naive feature set, i.e., 59%, 70%, and 84% with, respectively, 5%, 10%, and

20% of the target sequence available. Overall, this shows that releasing the syn-

thetic dataset instead of the real data does not fully mitigate privacy concerns, even

when the attacker does not have access to the full sequence.

RBM. In Figure 6.36, we plot the CDF for the accuracy of the attack for the RBM

model for both full and partial information about the target record available to the

attacker. Across all feature sets, there is an increase in the accuracy of the attack



6.3. Measuring Utility and Privacy of Genomic Data 161

Figure 6.34: Accuracy of the Membership Inference Attack with access to full sequence
and partial information (0.05, 0.1, and 0.2 ratio) for Recomb.
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Figure 6.35: Privacy Gain (PG) for synthetic samples generated by Recomb.

with more information available to the attacker, as is expected. We also look at CDF

for the PG in the case of partial information available to the attacker in Figure 6.37.

Once again, under the Naive feature set, increasing the partial information available

to the attacker negatively correlates with the percentage of targets with a negative

PG. Under all other feature sets, for most targets, releasing the synthetic dataset

instead of the real data yields a positive PG, meaning that releasing the synthetic

dataset instead of the real dataset improves the PG.

Takeaways. We find that not even decreasing the attacker’s power by only giving

him partial information from the target sequence mitigates privacy for the Recomb-

generated synthetic data. This is likely because, using the Recomb model as a gen-

erative model and an inference model, the adversary’s inference power is increased

since the feature set extracted from the synthetic data will be closer to the feature

set for the predicted target.

However, in this case, for RBM, we see an increase in the privacy gained by

releasing synthetic data instead of real data. This implies that, even if the RBM

is likely to overfit when few samples are available for training, it does so on the

predicted sequence of the target rather than on the full sequence and thus decreases
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Figure 6.36: Accuracy of the Membership Inference Attack with access to full sequence
and partial information (0.05, 0.1, and 0.2 ratio) for RBM.
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Figure 6.37: Privacy Gain (PG) for synthetic samples generated by RBM.

the accuracy of the MIA.

Overall, not even with partial data from the target sequence, we obtain privacy

gain values constantly better than random guessing, which, as mentioned before,

indicates that synthetic data is not really a reliable privacy defense.

6.3.4.3 Privacy Gain vs. FST

To provide a quick visualization of the trade-offs between privacy and utility, we

also plot the FST (see Section 6.3.3.2) against the PG in Figure 6.38 for the two

smaller HapMap Populations. For this set of experiments, we randomly sample 10

targets from each dataset. We train a Logistic Regression attack classifier using 5

shadow models, using 100 synthetic datasets for each of them. We then compute

the PG and FST on 100 synthetic datasets, with a split of 50 sets generated from a

training set including the target and 50 sets generated without. We report the PG

and FST as the average across all targets and synthetic datasets.

Recall that the lower the value of the FST the closer the synthetic samples are to

the real data, and that the PG should be above the random guess baseline of 0.25 for

the synthetic data to offer better privacy protection than releasing the real dataset.

In other words, the ideal “place” in the plots in Figure 6.38 is the top left.
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Figure 6.38: Fixation index values vs Privacy gain for the HapMap populations.

For the CEU population (Figure 6.38a), the samples generated by the Recomb

model have the best overall utility; however, the average privacy gain is below the

random guess baseline. In line with our utility evaluation, we find that the hybrid

model Rec-RBM model generates samples with a FST value closer to the real data

than the RBM model. The interesting point observation here is that while for His-

togram, Correlation, and Ensemble feature sets, the PG for the Rec-RBM is close to

0.25, there is a significant privacy loss for the Naive feature set. In contrast, for the

samples generated by the RBM, the Naive feature set yields the highest PG across

all feature sets. The samples generated by the WGAN also have a FST value close to

0; however, for the Histogram, Correlation and Ensemble, the PG values are below

0.25.

For the CHB population (Figure 6.38b), the utility results are similar to the

CEU population. However, all values of PG apart from the ones generated by the

RecRBM have a lower PG than the CEU population. This reiterates the fact that

one cannot reliably use synthetic data as a good privacy mechanism, as the value of

PG is unpredictable and can fluctuate based on target and training set combinations

chosen.

6.3.5 Key Takeaways

This section presented an in-depth measurement study of state-of-the-art methods

to generate synthetic genomic data. We did so vis-à-vis 1) their utility, with respect
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to a number of common analytical tasks performed by researchers, as well as 2) the

privacy protection they provide compared to releasing real data.

High-quality synthetic data must accurately capture the relations between data

points, however, this can enable attackers to infer sensitive information about the

training data used to generate the synthetic data. This was illustrated by the per-

formance of the Recomb model on the HapMap datasets: while it achieves the best

utility, it does so at the cost of significantly reducing privacy.

Overall, there is no single method that outperforms the others for all metrics

and all datasets. However, we did find that models based on a simple GAN architec-

ture (i.e., GAN and Rec-GAN) are not a good fit to genomic data, as they provide

the lowest utility across the board.

Our analysis revealed that the size of the training dataset matters, especially

in the case of generative models. Not only we saw an improvement in utility with

the addition of samples in the hybrid Rec-RBM approach for the smaller HapMap

datasets, and for RBM and WGAN for the 1000 Genomes dataset, but we also

measured a decrease in the number of targets exposed to membership inference.

Finally, we are confident that our techniques can be used by practitioners to

assess the risks of deploying synthetic genomic data in the wild and serve as a

benchmark for future work.

6.4 Discussion

In this chapter we took a critical look at synthetic data generation methods and

provided an analysis both from an utility and a privacy perspective.

From a utility perspective, our initial experimental evaluation suggests that a

generic approach which would successfully be able to generate universally mean-

ingful synthetic datasets might not be viable. This is due to the complexity and

varied nature of the datasets used in the wild. Hence, it remains up to the data

provider to decide if the offset in utility associated with privacy-preserving syn-

thetic data satisfies their needs. Overall, there is no “best” model among the ones

we tested, as they all exhibit different performances on different datasets.
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When it comes to privacy, we find that synthetic data is not the silver bullet

solution it was assumed to be. In fact, synthetic data does not prevent membership

inference, i.e., an adversary can infer whether a particular record was in the raw

dataset. These attacks are (mostly) possible regardless of the model used to generate

the data, and in some cases synthetic data even increases the inference power of the

adversary. Protection from these attacks can only be achieved if the generative

model does not accurately reproduce certain features of the raw data which implies

a necessary loss in utility.

Finally, in our experimental evaluation on generative models purposely pro-

posed for genomic data, again, we conclude that there is no single approach for

generating genomic synthetic data that performs well across the board, both in terms

of utility and privacy. As expected, the generative model that output the “best” util-

ity metrics, did so at the cost of privacy, even against weaker adversaries who only

have partial information available. Although there are cases where releasing the

synthetic dataset sometimes offers better protection against membership inference

attacks, because of the randomness introduced by the generative models, one can-

not meaningfully predict a target’s susceptibility to privacy attacks without fixing

the training set and quantifying the respective privacy loss/gain for all targets in the

set. Hence, releasing synthetic datasets does not provide robust protection against

membership inference attacks.



Chapter 7

Conclusion

Motivated by the quick progress in genomics sequencing, the research community

has produced a large body of work on genomic data, to which this thesis aims to

contribute.

First, we look at one of the existing genomic data sharing platforms, MME,

and propose a framework geared to bring anonymity to the platform, AnoniMME

(Chapter 4). By relying on reverse PIR, AnoniMME is compatible with the require-

ment of MME, but adds anonymous queries with a low overhead, as we demonstrate

empirically. Thus, we are confident that AnoniMME can eventually be deployed in

the wild and further encourage researcher to share genomic data, by minimizing the

possibility of exposing confidential research when using MME.

Then, knowing that consequences of genomic data disclosure are not limited in

time or to the data owner, we empirically evaluate the only tool proposed for long-

term encryption of genomic data, GenoGuard, which is based on Honey Encryption

(Chapter 5). We show that in the case of low entropy passwords, the attacker can

easily exclude decoy passwords from the pool of possible passwords, and can guess

the correct sequence with high probability. We also evaluate GenoGuard for high-

entropy passwords, and find that with access to a GenoGuard encrypted ciphertext,

the attacker has a non-negligible advantage compared to using state of the art infer-

ence methods.

Next, we study the feasibility of genomic synthetic data. Keeping in mind that,

in the case of genomic data, high-quality synthetic data is needed in order to enable
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research, we start our study by looking at generic datasets to understand the utility

of synthetic data from privacy preserving generative models. We find that there is

no model that performs well for all types of datasets, and that in order to obtain

better utility from the synthetic data, synthesis procedures that are more specialized

to concrete data types are preferred. We then proceed to a privacy assessment of the

same models, quantifying the privacy loss associated with publishing the synthetic

datasets. Last but not least, present an in-depth measurement study of state-of- the-

art methods to generate synthetic genomic data. We do so vis-à-vis their utility,

with respect to several common analytical tasks performed by researchers and the

privacy protection they provide compared to releasing real data. Overall, we find

that there is no single generative method that yields both high utility and strong

privacy across the board.

Finally, we hope that the research presented in this thesis will inspire further

work on privacy-preserving techniques for genomic data sharing, thus enabling re-

searchers to further progress in biomedical research, personalized medicine and

drug development.

Limitations. Before we conclude this thesis we present some limitations of our

current work.

The work presented in Chapter 4 proposes a framework to support anonymous

queries within the genomic data sharing platform Matchmaker Exchange. While we

experimentally show that our framework is scalable and efficient, it would benefit

from a user-study simulating a real-world deployment of AnoniMME with users

of the MME, aiming to evaluate its usability with respect to anonymity protection,

delays introduced by epochs. Additionally, our framework could benefit by an ex-

tension to allow the execution of the response phase over multiple query epochs,

and further reduction in bandwidth.

In Chapter 5, we analyze the only system designed for long-term encryption

of genomic data. While we show that there exists leakage of information arising

from the GenoGuard ciphertext, we did not explore any methods that would help

mitigate this risk. Additional work can be done in exploring the privacy leakage of
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GenoGuard for side information arising from kinship associations.

In Chapter 6, our evaluation focuses on existing generative methods for

synthetic genomic data; thus, we have not engaged in fine-tuning the (hyper-

)parameters of the models evaluated. Moreover, one might argue that the tech-

niques we evaluate were not designed with privacy in mind, unlike previous work

on differentially private generative models for images or clinical data [16, 30, 41].

That is, it is not entirely surprising that they yield small privacy gains. However,

to the best of our knowledge, no differentially private generative model has been

proposed for genomic data, which is the focus of our study. In fact, prior work

has shown that, for precision medicine applications, the high dimensionality of the

data tends to be a major limitation, resulting in poor utility for differentially private

mechanisms [27, 68, 99, 184, 181]. Differentially private techniques for GWAS are

also known to yield poor accuracy as the number of features is large, relative to the

number of patients in a study [98].

Future work. Finally, we conclude this thesis by highlighting open research prob-

lems and items for future work.

Long-term security of genomic data. As also identified by Mittos et al. [118],

genomic privacy literature has not sufficiently dealt with long term security. Even

though Huang et al. [92] made some steps in the right direction, our evaluation

shows that the problem of long term security for genomic data is far from being

solved. However, this is not an easy problem to solve as pointed out by the vast

array of answers from the experts interviewed in [118]: from using post-quantum

cryptography or information theoretic solutions to “maybe cryptography is not the

answer. Perhaps setting up an environment with different ways of controlling how

the data is managed in order to provide more transparency” .

Privacy-Preserving Synthetic Genomic Data. Even though at the time of writing

this thesis, no privacy-preserving generative models for genomic data have been

proposed, it would be interesting to experiment with the possible adaptation of

differentially private models to genomic data and evaluate them in future work.

Finally, another interesting research topic would be to extend our privacy evalua-
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tion to understand how much the privacy loss stemming from releasing (synthetic)

genomic datasets affects the relatives of those included in the training set of the

corresponding generative models [93, 166].
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