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Abstract
Open-vent, persistently degassing volcanoes—such as Stromboli and Etna (Italy), Villarrica (Chile), Bagana and Manam 
(Papua New Guinea), Fuego and Pacaya (Guatemala) volcanoes—produce high gas fluxes and infrequent violent strombolian 
or ‘paroxysmal’ eruptions that erupt very little magma. Here we draw on examples of open-vent volcanic systems to highlight 
the principal characteristics of their degassing regimes and develop a generic model to explain open-vent degassing in both 
high and low viscosity magmas and across a range of tectonic settings. Importantly, gas fluxes from open-vent volcanoes are far 
higher than can be supplied by erupting magma and independent migration of exsolved volatiles is integral to the dynamics of 
such systems. The composition of volcanic gases emitted from open-vent volcanoes is consistent with its derivation from magma 
stored over a range of crustal depths that in general requires contributions from both magma decompression (magma ascent 
and/or convection) and iso- and polybaric second boiling processes. Prolonged crystallisation of water-rich basalts in crustal 
reservoirs produces a segregated exsolved hydrous volatile phase that may flux through overlying shallow magma reservoirs, 
modulating heat flux and generating overpressure in the shallow conduit. Small fraction water-rich melts generated in the lower 
and mid-crust may play an important role in advecting volatiles to subvolcanic reservoirs. Excessive gas fluxes at the surface 
are linked to extensive intrusive magmatic activity and endogenous crustal growth, aided in many cases by extensional tecton-
ics in the crust, which may control the longevity and activity of open-vent volcanoes. There is emerging abundant geophysical 
evidence for the existence of a segregated exsolved magmatic volatile phase in magma storage regions in the crust. Here we 
provide a conceptual picture of gas-dominated volcanoes driven by magmatic intrusion and degassing throughout the crust.
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Introduction

Open-vent volcanoes are characterised by their persistent 
outgassing and mildly explosive activity between major 
eruptions (Andres and Kasgnoc 1998; Francis et al. 1993; 
Rose et al. 2013; Vergniolle and Métrich 2021). Many are 

well studied because persistent low-level activity allows 
access and collection of extended time series of monitoring 
data. Open-vent volcanoes are found in all tectonic settings 
and are associated with a range of magma compositions and 
bulk viscosities (some examples—not an exhaustive list—
are shown in Fig. 1 and Table S1). Open-vent volcanoes may 
be active over millennia—for example Masaya, Nicaragua 
(Stix 2007), Stromboli, Italy (Allard et al. 1994), Etna, Italy 
(Allard 1997), Villarrica, Chile (Witter et al. 2004), Yasur 
Volcano, Vanuatu (Métrich et al. 2011) and Erebus, Antarc-
tica (Oppenheimer et al. 2011)—or years to decades, such 
as Soufrière Hills, Montserrat (Christopher et al. 2010) and 
Fuego (Lyons et al. 2010) and Santiaguito, Guatemala (Hol-
land et al. 2011).

Volcanoes that transition from being ‘open vent’ to 
‘closed vent’ over years to decades timescales may be clas-
sified as ‘persistently restless’. For example, Telica Volcano, 
Nicaragua, transitions between a ‘weak seal’ and a ‘destabi-
lised’ state, which may produce phreatomagmatic eruptions 
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(Rodgers et al. 2015; Roman et al. 2019). Long-dormant 
volcanoes may also convert to open-system behaviour when 
they reactivate. Reactivation may initiate explosively, as at 
Santa María volcano in Guatemala (now the location of the 
open-vent effusion of the Santiaguito flank volcano) (Lamb 
et al. 2019), or effusively, as at Soufrière Hills volcano, 
Montserrat (Wadge et al. 2014). Following the initiation of 
activity in 1995, Soufrière Hills has outgassed continuously 
for more than 25 years at the time of writing, despite not 
being in a state of eruption for much of that time (Christo-
pher et al. 2015).

Eruptions of open-vent volcanoes are typically gas-rich 
and may be highly hazardous. The nature of the eruptive 
activity varies with magma composition. Mafic stratovol-
canoes exhibiting open-vent behaviour—such as the arche-
typal Stromboli volcano, Italy—exhibit frequent strombolian 
eruptions punctuated by large violent explosions, or ‘par-
oxysms’ (Bertagnini et al. 2011; Métrich et al. 2005; Rosi 
et al. 2006). Persistent degassing from mafic lava lakes may 
persist over decades or longer with accompanying strom-
bolian explosions and/or lake overflows or draining events 
(e.g. Ambrym, Vanuatu; Erta Ale, Ethiopia; Masaya, Nicara-
gua) (Bouche et al. 2010; Lev et al. 2019; Moussallam et al. 
2021). Open-system behaviour in more evolved systems is 
typically accompanied by episodic explosive activity (typi-
cally vulcanian or violent strombolian in style depending on 
the melt composition; Cashman and Sparks 2013), effusion 
of viscous lava flows and domes and/or gas venting episodes 
(Edmonds and Herd 2007). The over-arching characteristics 
of open-vent activity in all settings, however, are that the 
outgassing flux of volatiles far exceeds the volatiles that can 
be supplied from degassing of erupted magma and that high 
levels of outgassing from a central vent continues between 
eruptions (Andres et al. 1991). Open-vent volcanoes may 
therefore be thought of as predominantly gas emitters, with 
the magma that is supplying the outgassing accumulating 
endogenously in the crust beneath (Allard 1997; Anderson 
1975; Francis et al. 1993; Giggenbach 1992; Giggenbach 

1996). Where in the crust the magma accumulates is, how-
ever, an open question.

It has also been shown that open-vent volcanoes are the 
most prodigious volcanic outgassers of volatiles into the 
atmosphere, worldwide (Andres and Kasgnoc 1998; Carn 
et al. 2016). Additionally, extensive records of the outgas-
sing fluxes of open-vent volcanoes from many decades of 
in situ measurements (Arellano et al. 2021; Carn et al. 2016; 
Carn et al. 2017; Fioletov et al. 2016) show that outgas-
sing between eruptions dominates the volcanic gas budget 
(Allard 1997; Carn et al. 2016; Carn et al. 2017). Indeed, 
satellite-based global observations of SO2 flux confirms that 
persistent, or passive, degassing accounts for ~ 90% of the 
global outgassing sulphur flux from volcanoes (Carn et al. 
2016; Carn et al. 2017) and that most of the top 20 volcanic 
outgassers, as quantified from UV sensors total ozone map-
ping spectrometer (TOMS) and ozone mapping instrument 
(OMI), may be classified as ‘open-vent’ (Table S1; Fig. 1) 
(Carn et al. 2017).

Background and aims of this review

Outstanding questions related to outgassing 
from open‑vent volcanoes

The most pressing questions surrounding the outgassing 
of open-vent volcanoes, and the consequent implications 
for both monitoring and understanding how these volca-
noes work, concern the sources and mechanisms of vola-
tile degassing. Volatiles (e.g. H2O, CO2) exsolve from 
magma upon reaching saturation in the silicate melt or by 
partitioning into a pre-existing exsolved phase (e.g. sul-
phur, chlorine) (Aiuppa et al. 2008; Candela 1997; Cash-
man 2004; Edmonds and Wallace 2017; Edmonds and 
Woods 2018; Métrich and Wallace 2008; Wallace 2005) 
(Fig. 2). Volatile degassing from melts occurs during 
decompression (sometimes called ‘first boiling’; Fig. 2a); 

Fig. 1   Global distribution of 
open-vent volcanoes, listed 
in Supplementary table S1, 
encompassing a broad range 
of magma compositions and 
tectonic settings. Superscript 1: 
Average SO2 flux (2005–2015) 
from Carn et al. (2017)
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this drives undercooling and crystallisation (Cashman 
and Blundy 2000) and, as a result of isobaric cooling 
and crystallisation, second boiling in magma reservoirs 
in the crust (Fig. 2b). For open-vent volcanoes, where 
large fluxes of gases are sustained with comparatively 
little magma erupted (Table S1), key questions include 
(1) the extent to which exsolved volatiles derive from 
first and/or second boiling, (2) mechanisms of volatile 
transfer upward through the magmatic system (i.e. as 
an exsolved magmatic volatile phase (hereafter MVP) 
or retained within volatile-rich melts) and (3) the effect 
of the volatile transfer mechanism on resulting volcanic 
activity (Fig. 2).

Degassing in the volcanic conduit

A popular model to explain the high observed outgassing 
fluxes of water, sulphur, CO2 and halogen species at mafic 
open-vent volcanoes is bimodal flow driven by convection, 
whereby buoyant, volatile-rich magma rises up a conduit 
and degasses; then, the denser, gas-free magma sinks over 
vertical length scales of several kilometres (Kazahaya 
et al. 1994; Palma et al. 2011; Shinohara 2008; Steven-
son and Blake 1998) (Fig. 3a). Convective flow has been 
reproduced in both analogue and numerical experiments 
(Beckett et al. 2011; Cardoso and Woods 1999; Huppert 
and Hallworth 2007; Molina et al. 2012). A simple Poi-
seuille flow model of buoyancy-driven ascent of magma 
in a conduit is given by:
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Fig. 2   Schematic illustration of a volcanic system to illustrate 
potential sources of outgassing volatiles. Magmas degas volatiles in 
response to A decompression during transit to the surface. The plot 
shows the concentrations of water (red) and carbon dioxide (blue) in a 
basaltic melt during decompression to the surface from a pressure of 
200 MPa (modelled using MagmaSat; (Ghiorso and Gualda 2015b). 
The green shaded area shows the amount of exsolved volatile phase 
produced during degassing. In this case, the basalt has a bulk con-
centration of 2 wt% H2O and a range in CO2 concentrations from 0.1 
to 1 wt%. The exsolved volatile phase thus produced may outgas to 

the atmosphere during eruptions. Magmas also degas in response to B 
crystallisation in magma reservoirs in the crust. Crystallisation drives 
up the concentrations of volatiles in the residual melt and causes the 
formation of a substantial exsolved volatile phase after differentiation 
of the magma to highly evolved compositions. In this closed system, 
degassing model involving crystallisation occurring at pressures of 
80 to 350 MPa, a primitive basalt begins (at F = 1) with 1 wt% H2O 
and 0.1 wt% CO2. After 50% crystallisation, the magma has reached 
basaltic andesite composition and, after 80%, approximately dacite 
composition
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(Kazahaya et al. 1994) where Qascend is the volume flux 
of ascending magma, g is the gravitational constant, Δρd − a 
is the density difference between the bubble-rich magma at 
depth and the shallow degassed magma, ra is the effective 
conduit radius for ascending magma and μa is the viscosity 
of ascending magma. If no magma is erupted, then Qascend 
must be balanced by the volume flux of descending magma 
minus the volume of the volatiles released to the surface 

(1)Qascend =
�Δ�d−agr

4

a

8�a

,

(Kazahaya et al. 1994; Stevenson and Blake 1998). SO2 
fluxes of 102–103 tonnes per day (typical of many of the 
volcanoes highlighted in Fig. 1 and table S1), for example 
require magma fluxes in the conduit of ~ 1–10 m3/s. Magma 
flux, in turn, is controlled by the conduit radius (assuming a 
cylindrical geometry) and the flow velocity, which is a func-
tion of magma viscosity and density. If the gas is transported 
with the magma, maintaining the same gas supply (assum-
ing similar exsolved gas contents) requires magma with a 
viscosity of 108 Pa s to occupy a conduit approximately ten 
times wider than magma with a viscosity of 104 Pa s.
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Fig. 3   Conceptual frameworks to understand the magmatic volatile 
phase (MVP) segregation from magmas in conduits (a, b, c) and in 
reservoirs (d, e, f) that may be relevant to open-vent volcanic sys-
tems. In conduits, a convection is driven by density differences, with 
volatile-rich melts ascending, vesiculating, outgassing, then sinking 
(Kazahaya et al. 2004; Palma et al. 2011; Shinohara et al. 1995; Ste-
venson and Blake 1998). Crystals are generated by degassing-induced 
crystallisation in degassed, sinking melts (Beckett et al. 2014). b For 
open-vent volcanoes exhibiting strombolian activity, volcanic gases 
may accumulate in a shallow, crystal-rich plug made up of degassed 
and crystallised magma (Barth et al. 2019; Belien et al. 2010; Gurioli 
et al. 2014; Oppenheimer et al. 2015; Suckale et al. 2016; Woitischek 
et  al. 2020); explosions may be caused by overpressure in the gas 
pockets overcoming the local yield strength in the crystal pack. c At 
low confining pressures and high magma viscosities, there may be 
sufficient strain at the conduit walls to induce brittle failure, with gas 

loss along permeable channels (e.g. Santiaguito, Mount St Helens 
2004-2006) (Dingwell 1996; Edmonds and Herd 2007; Gonnermann 
and Manga 2003; Tuffen and Dingwell 2005). In crustal magma 
reservoirs, it has been proposed that the MVP may segregate under 
different regimes depending on magma crystal content. d In crystal-
poor melt lenses, the dominant regime may be buoyant bubble rise, 
the timescale for which is governed by the density difference between 
melt and MVP, the melt viscosity and the bubble size (Parmigiani 
et  al. 2016). e In more crystal-rich mobile mushes, the MVP may 
rise buoyantly by viscous fingering, forming interconnected channels 
which may allow potentially much faster MVP segregation (Parmi-
giani et  al. 2016). f In crystal-rich, melt-poor mush, the MVP may 
become trapped in pore spaces, becoming mobilised once a critical 
overpressure is reached inside the pores, which may induce capillary 
fracturing (Degruyter et al. 2019; Parmigiani et al. 2016)
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Critically, however, H2O-rich magmas do not maintain 
constant viscosities as they ascend, because they undergo 
extensive decompression-induced degassing and conse-
quent crystallisation (Cashman and Blundy 2000; Lipman 
et al. 1985; Métrich and Rutherford 1998). The addition 
of crystals may increase the magma viscosity by orders 
of magnitude (Lejeune and Richet 1995). Ultimately, it is 
likely that slowly-rising water-rich magmas will entirely 
crystallise, as observed in lava domes, and therefore, con-
vection is unlikely. In lower viscosity magmas, changing 
the viscosity contrast between the down- and upwelling 
liquids can affect the geometry of the exchange flow 
(Beckett et al. 2014). It has been suggested that magma 
may overturn at various depths before reaching the surface 
(e.g. Masaya, Nicaragua; Aiuppa et al. 2018; Stix 2007). 
Regardless of the exact location, however, magma overturn 
within the shallow system requires that degassed magmas 
accumulate in subsurface storage regions. At Etna, Italy, 
for example there is evidence for endogenous accumula-
tion of degassed magma at a rate of 22.9 ± 13.7 × 106 m3 
year−1 in a storage region between 3 and 10 km beneath 
the surface (Coppola et al. 2019); whether this magma 
crystallised in situ or degassed higher in the system is not 
known, a topic debated by a range of authors in the past 
(Allard 1997; Steffke et al. 2011).

Alternative models to explain the outgassing flux from 
open-vent volcanoes invoke the permeable flow of an 
exsolved volatile phase through magma in the conduit. 
In viscous magmas, gas flow is governed by bubble con-
nectivity and the development of permeability. In the 
absence of crystals, permeability development during 
decompression of a hydrous melt depends on decompres-
sion rate, magma composition (viscosity) and shear (e.g. 
Giachetti et al. 2019; Hurwitz and Navon 1994; Lindoo 
et al. 2016; Okumura et al. 2006, 2008, 2013). Experi-
mentally determined vesicularity thresholds for perme-
ability development vary from ~ 30 to 80%, depending on 
the deformation regime (Okumura et al. 2008). Experi-
mental data suggest that efficient, channelised gas flow 
may occur at depths of a few kilometres through rhyo-
lite melt containing 5 wt% H2O when subject to a shear 
strain > 8 (Okumura et al. 2008). The addition of crystals 
may substantially reduce the percolation threshold for 
system-scale connectivity during vesiculation and may 
promote efficient gas loss from conduits even at low gas 
fractions (Colombier et al. 2020; Collombet et al. 2021; 
deGraffenried et al. 2019; Lindoo et al. 2017; Fig. 3b). 
Degassing-induced rheological changes in shallow conduit 
magma may promote brittle fracturing at the conduit walls, 
providing transient, highly permeable pathways for gas 
loss (Gaunt et al. 2014; Gonnermann and Manga 2003; 
Rust et al. 2004; Tuffen and Dingwell 2005) (Fig. 3c) and 

generating low-frequency seismicity (Iverson 2008; Neu-
berg et al. 2006).

In crystal-rich magmas, gas may be trapped in pore 
spaces between crystals, where it may accumulate until the 
overpressure generated overcomes the local yield strength 
of the crystal framework (Belien et al. 2010; Oppenheimer 
et al. 2015); this presents a mechanism by which gases may 
accumulate in crystal-rich plugs and subsequently trigger 
strombolian eruptions (Oppenheimer et al. 2020; Suckale 
et al. 2016; Woitischek et al. 2020) (Fig. 3b). Gas ‘hold-up’ 
(accumulation of gas within the magma) occurs when gas 
supply from depth is balanced by gas loss from the system 
and may be implicated as a triggering mechanism for parox-
ysmal eruptions more generally. For example, paroxysmal 
eruptions are often preceded by increases in the height of 
the magma column which may be caused by gas retention; 
the resulting lava effusion from either flank (Stromboli) or 
summit (Fuego) vents may then trigger decompression of 
the shallow conduit (Calvari et al. 2011; Liu et al. 2020b; 
Ripepe et al. 2015). Similarly, correlations between lava lake 
surface elevations and gas flux at Villarrica (Johnson et al. 
2018), Erta Ale (Bouche et al. 2010) and Masaya (Aiuppa 
et al. 2018; Williams-Jones et al. 2003), for example suggest 
that temporal fluctuations in deep (> 1–2 km) gas supply 
may be important in modulating surface activity at open-
vent volcanoes and in advecting heat to maintain an open 
state.

Degassing throughout the magmatic system

The introduction of gas into shallow (top few km) reservoirs 
and conduits derived from deeper (> 2–3 km) in the system 
requires a mechanism of deep volatile exsolution. The prin-
cipal source of that deep MVP is crystallisation and second 
boiling, which can generate the equivalent of several weight 
percentages for andesite and dacite magmas (Fig. 2b). The 
MVP will initially be CO2 rich, with increasing water for 
higher degrees of crystallisation (Fig. 2b). Once formed, 
the MVP can migrate upward and out of the crystal-rich 
magma reservoir and rise towards the surface (Degruyter 
et al. 2019; Huber et al. 2010; Parmigiani et al. 2017). Given 
that the ratio of intrusive to extrusive magmatism is thought 
to be high in all tectonic settings (from an average of 3:1 
to 10:1 or higher in many arc regions) (Crisp 1984; White 
et al. 2006) and that plutonic rocks are generally volatile-
poor (Bachmann et al. 2007), it follows that the volatiles 
outgassed persistently by open-vent volcanoes likely have 
their source, at least in part, in second boiling processes in 
crustal reservoirs. Evidence for this deep (> 2–3 km and 
perhaps extending into the mid or lower crust in some cases) 
MVP is provided by the ‘excess sulphur’ emissions accom-
panying large explosive eruptions of arc volcanoes, which 
have been explained by sulphur partitioning into substantial 
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accumulations of an exsolved MVP in magma reservoirs 
(Andres et al. 1991; Rose et al. 1982; Scaillet and Pichavant 
2003; Wallace and Gerlach 1994; Webster and Botcharnikov 
2011; Zajacz et al. 2012). A deep-derived MVP is also 
implicated in gas fluxing observed in the volatile systematics 
of many melt inclusion suites (Blundy et al. 2010; Caricchi 
et al. 2018; Métrich and Wallace 2008), as well as in the dif-
fuse degassing of CO2 along rifts (Foley and Fischer 2017) 
and other volcanic centres (Werner et al. 2019). Questions 
remain as to the MVP source depth and mechanism(s) by 
which a deep-derived MVP segregates and migrates through 
crustal magma storage regions.

At low melt viscosities and low crystal fractions, bubbles 
may accumulate in foam layers at the roof zones of eruptible 
melt lenses (Jaupart and Vergniolle 1989; Vergniolle and 
Jaupart 1986) and on foam collapse, bubbly plumes may be 
generated (Degruyter et al. 2019; Parmigiani et al. 2016) 
(Fig. 3d). At intermediate crystal fractions in more evolved 
systems, the MVP generated through deep (> 2–3 km) crys-
tallisation and periodic influx from mafic recharge may rise 
buoyantly through crystal-rich mush via viscous elongate 
fingering channels, which produce high permeability path-
ways for a deep MVP phase to percolate (Fig. 3e) (Degruyter 
et al. 2019; Parmigiani et al. 2016). MVP accumulation in 
melt-rich caps or lenses may aid eruption of crystal-poor 
rhyolites (Bachmann and Bergantz 2004). At high crystal 
fractions, the MVP may become trapped and accumulate 
in pore spaces between crystals; it may escape on ductile or 
brittle deformation (capillary fracturing) when the crystal 
framework is disrupted (Belien et al. 2010; Oppenheimer 
et al. 2015; Parmigiani et al. 2016) (Fig. 3f).

Aims of this paper

It is clear that a universal paradigm is required that applies 
to all open-vent volcanoes, of all magma types (high and 
low viscosity), and which addresses important questions 
such as how and where the MVP forms and its mode of 
its transport through the magmatic system. We review out-
gassing from open-vent volcanoes and lay out the charac-
teristic and generic features common to all settings and all 
magma compositions. In particular, we examine how new 
insight into the dynamic nature of crustal magma systems, 
including conceptual models of volcanic-plutonic systems 
linked by eruptible melt lenses and unstable volatile-rich 
fluids (Cashman et al. 2017; Christopher et al. 2015), help 
us to understand persistent outgassing and gas-rich eruptions 
from open-vent volcanoes. More specifically, we assess the 
contribution of unerupted magmas and extensional tectonics 
to the outgassing fluxes observed at open-vent volcanoes. 
In considering not only the outgassing characteristics, but 
also the available evidence for the form and extent of the 
underlying magmatic system using petrology, geophysics 

and modelling, we outline a generic picture for understand-
ing the volatile budget of these volcanoes.

Key observations of open‑vent volcanic 
outgassing

Outgassing fluxes from open‑vent volcanoes are 
decoupled from eruptions

Recent observations of volcanic outgassing from space have 
highlighted the number and diversity of open-vent volcanoes 
that emit the overwhelming bulk of volcanic gases into the 
atmosphere every year (Fig. 1; Table S1). Global satellite-
based monitoring of volcanic gas emissions demonstrate 
unequivocally that > 90% of the global outgassing fluxes 
of sulphur dioxide are produced during ‘passive degas-
sing’ from an open-vent, where no eruption is taking place 
(Carn et al. 2017; Fioletov et al. 2016; Werner et al. 2019). 
These open-vent volcanoes erupt magmas of a wide range 
of compositions and rheological properties (Table S1), from 
low viscosity basalt to highly viscous crystal-rich andesite. 
Moreover, as our understanding of volcanic outgassing 
increases, it is becoming ever clearer that ‘excess’ volcanic 
gas (over that which can be supplied by erupting magma) 
is the norm, rather than the exception (Andres et al. 1991; 
Francis et al. 1993). Here we review the gas emission sys-
tematics from a number of persistently degassing volcanoes 
with a wide range in magma compositions and rheological 
properties, eruptive style and setting.

The flux of sulphur dioxide is commonly used as a proxy 
for the total volatile flux from a volcano (Aiuppa et al. 2008). 
In most cases, SO2 makes up 1–10 mol% of the gas phase 
from open-vent volcanoes, with the bulk of the gas com-
posed of water and CO2 in variable proportions. These two 
major gas species (H2O and CO2) are not easily measured, 
however, owing to their large and variable concentrations in 
the background atmosphere. SO2, in contrast, has a distinct 
and strong absorption in the UV region (Hoff and Millan 
1981) and is not present in the background atmosphere, mak-
ing it ideal for monitoring volcanoes.

Etna Volcano (Italy) is an archetypal ‘open-vent’ volcano. 
It has long been observed that the persistent gas fluxes from 
Etna are too high to be supplied by the erupting magma 
(Allard 1997). SO2 fluxes between 1975 and 1995 varied 
from < 1000 t/day during quiescent degassing to > 10,000 
t/day during fountaining (Allard 1997). Since then, Etna has 
continued to outgas at prodigious rates (Andres and Kasg-
noc 1998; Caltabiano et al. 1994; Salerno et al. 2009), with 
average SO2 outgassing rates from 2005–2015 determined 
from space-based inventories showing an average rate of 
2039 t/day (Carn et al. 2017). Approximately 25–30% of 
that SO2 flux can be accounted for by decompression-driven 
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degassing of erupted magma (Fig. 4). The high rate of vola-
tile outgassing has been attributed to continuous, convective 
bimodal flow, whereby alkali basalts ascend to shallow pres-
sures, degas and then sink back down into the edifice (Allard 
1997; Burton et al. 2003; Kazahaya et al. 1994), although 
there is little definitive geophysical or geochemical evidence 
to support this.

Yasur Volcano (Vanuatu) is a persistent and continuous 
outgasser with small-scale strombolian activity interspersed 
with larger paroxysms (Kremers et al. 2012; Métrich et al. 
2011; Suckale et al. 2016; Woitischek et al. 2020). Anecdo-
tal and historical evidence suggest that continuous degassing 
has been taking place for several centuries (Métrich et al. 
2011). Frequent, strombolian eruptions eject small volumes 
of crystal-rich trachybasalt generated in shallow reservoirs 
by ~ 50% crystallisation of more primitive alkali basalts 
(Métrich et al. 2011). SO2 fluxes ranged from 400–700 t/day 
during field campaigns in 2006, 2010 and 2018, with much 
of the SO2 emitted by passive degassing between explo-
sions (Bani and Lardy 2007; Ilanko et al. 2020; Métrich 
et al. 2011; Woitischek et al. 2020). Again, the gas budget 
cannot be accounted for by degassing of erupted magma 
(Fig. 4); instead, the SO2 flux requires complete degassing 
of 0.04–0.05 km3 per year of unerupted magma, which is ~ 
50 times that erupted (Métrich et al. 2011; Woitischek et al. 
2020). If the recent measurements are extrapolated to the 

past, > 4 km3 degassed magma has accumulated beneath 
Yasur over the past 100 years (Métrich et al. 2011).

Manam, a basaltic stratovolcano in the Western Bis-
marck arc, is one of the most active volcanoes in Papua New 
Guinea. Continuous outgassing from two summit craters has 
been sustained at least over the past few decades (Carn et al. 
2017; Liu et al. 2020a). Sporadic strombolian eruptions pro-
duce low-level ash plumes and are punctuated by occasional 
paroxysmal eruptions involving lava fountaining, lava flows, 
pyroclastic density currents and high ash plumes; five explo-
sive events between August 2018 and June 2019 produced 
> 10-km-high eruption plumes. Manam is among the most 
prolific volcanic outgassers globally, with an average SO2 
flux of 1480 t/day between 2005 and 2015 (Carn et al. 2017) 
and a 2019 campaign measured fluxes ≤ 7660 t/day over 
several days (Liu et al. 2020a). Assuming an undegassed 
magmatic sulphur content of ~ 2000 ppm, this large SO2 
flux requires around 0.33 km3 of magma to degas every year, 
which is likely to be an order of magnitude, and perhaps two, 
more than the erupted volume (the erupted volumes have not 
yet been quantified) (Fig. 4).

Some of the most prolific and/or persistent global out-
gassers are lava lake volcanoes (Carn et al. 2017), includ-
ing Nyiragongo and Nyamuragira (Democratic Republic of 
Congo), Ambrym (Vanuatu), Masaya (Nicaragua), Erebus 
(Antarctica), Erta Ale (Ethiopia) and Kilauea Volcano 
(Hawaii, USA). Degassing from the surface of a lava lake 
takes the form of vigorous bubbling, low fountains, bub-
ble bursting, gas pistoning and overturn and resurfacing 
phenomena (Allard et al. 2016; Bani et al. 2012; Bouche 
et al. 2010; Harris et al. 2005; Oppenheimer et al. 2009; 
Patrick et al. 2016; Swanson et al. 1979), with upwelling 
and divergence zones providing evidence for rapid lateral 
magma motion across the lake’s surface (Harris 2008; Har-
ris et al. 2005; Lev et al. 2019; Pering et al. 2019). These 
observations, as well as the high gas fluxes (a mean of 7356 
t/day SO2 from Ambrym between 2005 and 2015, with 
peaks reaching > 20,000 t/day SO2) (Bani et al. 2009) and 
the necessity for a continuous heat source to keep the lake 
above its solidus temperature, have led to prevailing mod-
els of bimodal flow in the conduit to supply both sufficient 
volatiles and heat (Kazahaya et  al. 1994; Oppenheimer 
et al. 2009; Oppenheimer et al. 2004; Palma et al. 2011). 
Although analogue experiments can reproduce bimodal flow 
(Palma et al. 2011; Witham and Llewellin 2006), we note 
that simple gas fluxing through the lava lake may supply 
sufficient heat and volatiles to satisfy observational require-
ments. For example, degassing at the surface of the Erta Ale 
(Ethiopia) lava lake occurs at fixed positions that are inferred 
to be directly above the conduit (Bouche et al. 2010). Here 
visual, thermal and acoustic observations suggest that spher-
ical cap bubbles rise to burst at the surface; bubbly wakes 
that detach from the bubble bottom generate small fountains 
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flux of degassing magma and geological evidence to infer the magma 
eruption rate (please see papers for detail)
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and hold sufficient heat to ensure that the lava lake does not 
cool over time. In this scenario, a deep (> ~ 1 km) source of 
gas is required, with no requirement for large-scale vertical 
bimodal flow. Moreover, the dynamics of bubble behaviour 
within lava lakes may modulate degassing (Qin et al. 2018).

Intermediate composition magmas can also feed open-
system vents, as illustrated by Soufrière Hills Volcano, 
Montserrat and Santiaguito Volcano, Guatemala. Sou-
friere Hills erupts high viscosity (109–1012 Pas) crystal-
rich andesite (Melnik and Sparks 2002). In contrast to 
the mafic systems, the typical eruptive style is lava dome 
growth interspersed with episodes of vulcanian activity. 
SO2 fluxes here have been sustained since the onset of erup-
tive activity in 1995 (Christopher et al. 2015; Christopher 
et al. 2010; Edmonds et al. 2010; Edmonds et al. 2014) and 
high gas emission rates have continued (to at least 2021) 
since the cessation of eruptive activity in 2011. SO2 fluxes 
have fluctuated between < 100 and > 2500 t/day through-
out the eruption (Christopher et al. 2015; Nicholson et al. 
2013), with the highest SO2 fluxes observed immediately 
after large dome collapses that exposed the conduit (e.g. 
July 1998, July 2003) (Herd et al. 2005). SO2 fluxes were 
high and sustained during periods of both lava dome growth 
and prolonged (months-years) periods during which the 
eruption paused (Christopher et al. 2015; Edmonds et al. 
2010). Petrological studies indicate that prior to eruption, 
sulphur solubility in the rhyolite melt was low (< 100 ppm) 
(Edmonds et al. 2001), consistent with the partitioning of 
sulphur into an exsolved MVP in the shallow storage region 
beneath the volcano (Clémente et al. 2004; Edmonds et al. 
2001; Edmonds et al. 2002). The high bulk viscosity of the 
magma precludes convective flow as a viable mechanism 
to supply the outgassing fluxes; sustained degassing dur-
ing eruptive pauses therefore requires both persistent per-
meable pathways from depth to the surface and tapping of 
a substantial pre-segregated reservoir of exsolved volatiles 
(Christopher et al. 2015).

Bagana Volcano (Papua New Guinea) has exhibited long-
lived and continuous degassing, perhaps over centuries 
(McCormick et al. 2012; McCormick Kilbride et al. 2019; 
Wadge et al. 2018). Bagana’s edifice is built of crystal-rich 
andesite lava flows and tephra (53–58 wt% SiO2) and erup-
tive activity is characterised by the emplacement of steep-
sided lava flows, pyroclastic density currents and ash-rich 
explosions (Bultitude and Cooke 1981; Wadge et al. 2018). 
Observations (predominantly by satellite radar) indicate 
that eruptive activity is strongly pulsatory, with eruptive 
periods separated by periods of repose, throughout which 
strong degassing continues (Wadge et al. 2018). SO2 fluxes 
at Bagana were first measured in 1983 and reported at > 
3000 t/day (McGonigle et al. 2004). A recent global inven-
tory of volcanic SO2 emissions measured via satellite-
mounted UV sensor (ozone mapping instrument (OMI)) 

reported Bagana’s mean SO2 flux as 1380 t/day for the 
period 2005–2015 (Supplementary Material Table 1), plac-
ing it 3rd in the global ranking of sustained SO2 fluxes (Carn 
et al. 2017). The highest SO2 fluxes occur during eruptive 
periods (up to 10,000 t/day) but gas emissions remain high 
(≤ 2500 t/day) during eruptive pauses (McCormick Kilbride 
et al. 2019). These high gas emissions cannot be supplied by 
the erupted magma, which has a time-averaged eruption rate 
of 1 m3/s (Wadge et al. 2018) (Fig. 4). Instead, the observed 
rates of degassing from 2005–2015 require around 5–6 times 
the observed magma flux when reasonable water and sulphur 
melt concentrations for arc magmas are assumed (McCor-
mick Kilbride et al. 2019).

To summarise, although a model of conduit convection 
may explain persistent degassing at some volcanoes, it does 
not supply a universal explanation. In particular, the conduit 
convection model predicts that high viscosity must be com-
pensated by a larger conduit radius in order to supply gas 
at a similar rate to a lower viscosity system, yet there is no 
observational evidence for a systematic linear relationship 
between magma viscosity and conduit radius. This problem 
is exacerbated by the lower solubility of sulphur in rhyolitic 
melts (Clémente et al. 2004). Additionally, a convective 
model requires large accumulations of degassed magma in 
the shallow crust, which poses a substantial space problem 
for long-lived open-vent systems. Water-rich magmas may 
completely crystallise during slow ascent, severely inhibit-
ing return flow. A more parsimonious explanation for high 
gas flux across all volcano types is that gases are supplied 
from a mixture of shallow (conduit) and deep (> 1–2 km and 
perhaps as deep as the mid-crust) sources. Importantly, the 
flux of gases supplied from deeper magma storage regions 
to the shallow systems has the potential to both modulate 
and trigger eruptive activity and advect heat; this model also 
allows for degassed magma accumulations to be distributed 
over a substantial depth range.

Gas compositions at open‑vent volcanoes are 
consistent with mixing between deep and shallow 
degassing sources

Additional information about how gases are delivered to 
the surface and from what depth they are sourced comes 
from measurements of changes in volcanic gas compositions 
with eruptive activity. There has been immense progress in 
quantifying the composition of volcanic gas emissions over 
the past two decades (specifically the relative abundance of 
H, C, S and Cl species), principally driven by instrumenta-
tion development (Aiuppa et al. 2010; Aiuppa et al. 2006; 
Liu et al. 2020a; Pering et al. 2020; Shinohara et al. 2008). 
Figure 5 shows a compilation of gas composition data from 
a range of volcanoes, many of which have open vents (not 
discriminated on the diagram). Volcanic gases are rich in 
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H2O and CO2 and arc volcanoes are typically richer in Cl 
than rift or intraplate volcanoes. Although we do not con-
sider hydrothermal systems here, we note that gases from 
volcanoes hosting a large hydrothermal system are typically 
depleted in S and HCl and rich in H2O and CO2. Finally, 
Fig. 5 shows the large variability in the molar H2O/CO2, C/S 
and S/Cl ratios measured in volcanic gases at the surface.

Before scrutinising the natural data, it is useful to con-
struct a framework for volcanic gas compositions to under-
stand how gas ratios may evolve during (a) decompressional 
degassing (with some crystallisation) and (b) isobaric equi-
librium crystallisation in a magma storage region in the crust 
(second boiling). We use MagmaSat (Ghiorso and Gualda 
2015b) to model the solubility of H2O and CO2 under dif-
ferent pressure, temperature and oxygen fugacity conditions 
(as shown in Fig. 2). Three examples are considered—Yasur, 
Stromboli and Soufrière Hills—using appropriate basaltic 
and andesitic compositions (typical erupted magma compo-
sitions for three examples are given in table S2, supplemen-
tary material). For example, to initialise a decompressional 
degassing model for Yasur trachybasalt (Fig. 6a), we use a 
water content of 1 wt% and a CO2 content of 0.2 wt%, con-
sistent with petrological studies of melt inclusion composi-
tions (Métrich et al. 2011). Initial melt volatile contents are 
further modified by crystallisation during magma ascent, 
which we model using RhyoliteMelts (Ghiorso and Gualda 
2015a). We model chlorine and sulphur exsolution using 
both a closed- and open-system partitioning model (see sup-
plementary material for details).

We use a suite of DCl (fluid-melt partition coefficient 
for chlorine) values collated from the literature (Kilinc and 
Burnham 1972; Lesne et al. 2011; Shinohara 1994; Tattitch 
et al. 2021; Webster et al. 1999; Webster et al. 2017). DCl is 
low (< 10) for basaltic compositions and decreases as pres-
sure decreases (Tattitch et al. 2021), although the solubility 
behavior of Cl is complex and varies with melt composition 

(Métrich and Rutherford 1992; Métrich and Rutherford 
1998; Signorelli and Carroll 2002), fluid composition 
(Botcharnikov et al. 2004), temperature, oxygen fugacity and 
pressure (Botcharnikov et al. 2004; Webster et al. 2009); a 
review is presented in the supplementary material. Some 
studies have postulated an inverse relationship between DCl 
and pressure, i.e. that DCl decreases with increased pressure 
(Alletti et al. 2009; Shinohara 2009); this is explained by the 
large and negative pressure dependence of NaCl partitioning 
into a melt and the HCl–NaCl exchange reaction between 
a silicate melt and an aqueous fluid, which favours HCl in 
aqueous fluids at lower pressures (Shinohara 2009). These 
pressure dependencies cause chlorine to appear as HCl in 
low pressure (~ 0.1 MPa) volcanic gases and NaCl in high 
pressure (~ 50 MPa) fluids. More work is required, how-
ever, to fully understand the implications of Cl speciation 
on fluid-melt partitioning (Shinohara 2009).

We use DS (fluid-melt partition coefficient for sulphur) 
values derived from experiments at high pressure and tem-
perature using natural basalt samples from Masaya and 
Stromboli (Lesne et al. 2011), which range from 1 to 5 at 
pressures > 200 MPa and > 100 for pressures < 50 MPa 
(Fig. 6a). Lesne et al. (2011) used synthetic samples based 
on natural Stromboli melts with an initial volatile inventory 
representing the most volatile-rich melt inclusions from each 
volcano. For more evolved compositions, we use partition 
coefficients derived from experiments (Botcharnikov et al. 
2004; Botcharnikov et al. 2015; Webster and Botcharnikov 
2011). These indicate that the fluid-melt partition coefficient 
for sulphur increases with melt differentiation, reaching val-
ues of > 500 for rhyolitic melts, and likely increases as the 
melt water content decreases during decompression (Moune 
et al. 2009). Model results for Yasur, Stromboli and Sou-
friere Hills are shown in tables S3, S4, S5.

A second set of models (a Yasur example is shown in 
Fig. 6b) simulates isobaric, closed-system degassing during 
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crystallisation for four example pressures between 80 and 
350 MPa, thus representing magma stored in the crust that 
undergoes second boiling (details of the model are given in 

the supplementary material; results are shown in tables S6, 
S7 and S8). The melt concentrations of H2O, CO2, Cl and 
S, together with the molar fractions of each in the exsolved 
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basalt from Yasur is accompanied by the exsolution of water and CO2 
(using Magmasat (Ghiorso and Gualda 2015a) from initial values of 1 
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leads to second boiling through enrichment of the melt in volatiles. 
Shown here are fluid-melt partition coefficients for Cl and S (i), melt 
volatile concentrations (ii) and the composition of the exsolved vola-
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The pressures of crystallisation are marked to show how the range 
in compositions links to pressure. Details of the models are given 
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et al. 2011) and volcanic gas compositions (Oppenheimer et al. 2006; 
Woitischek et al. 2020) are marked on a and b 
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volatile phase, are shown in Fig. 6(v) and 6(vi) as a function 
of melt fraction. The observed compositions of the volcanic 
gas at Yasur are shown in Fig. 6(iii) and 6(vi) for compari-
son (Métrich et al. 2011; Woitischek et al. 2020), and glass 
compositions are shown in Fig. 6(ii) and 6(v) (Métrich et al. 
2011). It is important to note that the models shown here 
incorporate a significant amount of uncertainty; we use them 
to define the general trends expected for magma degassing 
under a range of conditions.

The degassing behaviour of Yasur magmas (Fig. 6) shows 
an exsolved volatile phase that evolves from carbon- and 
chlorine-rich compositions at high pressures, to sulphur- and 
water-rich compositions at low pressures, consistent with 
our understanding of the effect of pressure on solubility and 
partitioning (Fig. 6a, b; table S3). Exsolved volatile phase 
C/S ratios attain a maximum (of > 300 for closed-system 
degassing and ~ 10 for open-system degassing) at pres-
sures of 100–230 MPa (Fig. 6(iii)). Sulphur is preferen-
tially exsolved over Cl at low pressures, leading to a sharp 
increase in exsolved volatile phase S/Cl ratios and a sharp 
drop in the S/Cl ratios of melts at P < ~ 100 MPa (Fig. 6(ii, 
iii)). The ranges in XS

melt
 and XCl

melt
 thus derived match well 

with ranges of these elements preserved in melt inclusions 
and matrix glasses from Yasur (Fig. 6(ii)) (Métrich et al. 
2011). More generally, model predictions are consistent with 
published measurements of volatile concentrations in melt 
inclusion and groundmass glasses at Stromboli, Yasur and 
Etna (Métrich et al. 2011; Métrich et al. 2010; Métrich and 
Wallace 2008; Spilliaert et al. 2006) and observed in the 
closed-system experiments of Lesne et al. (2011).

The exsolved volatile phase is expected to have a molar 
C/S of 10–100 at pressures > 100 MPa, decreasing from ~ 
10 at 80 MPa to ~ 1 at the surface. Volcanic gases at Yasur 
have a molar C/S of ~ 2–3 (Métrich et al. 2011; Woitischek 

et al. 2020), consistent with gases being sourced from inte-
grated, open-system degassing of the entire magma column 
to a pressure of 80 MPa (< 3 km depth). Open-system degas-
sing is expected; the basalt has a low viscosity (< 1000 Pa 
s (Giordano et al. 2008)) and bursting of large bubbles at 
the surface is the dominant style of activity (Kremers et al. 
2012; Woitischek et al. 2020). Volcanic gases have a molar 
S/Cl ratio of ~ 0.5 to 30 (Woitischek et al. 2020; Métrich 
et al. 2011; Oppenheimer et al. 2006); this is again consistent 
with open-system degassing of the entire magma column to 
a pressure of 80 MPa (Fig. 6(iii)).

Importantly, observations of volcanic gases, whilst con-
sistent with models of decompressional degassing, are also 
consistent with a fraction of the gases being derived from 
a deep (> 2–3 km) exsolved volatile phase generated dur-
ing prolonged crystallisation (Fig. 6b). In this scenario, as 
magma evolves from basalt to trachybasalt (at 80 MPa, after 
about 50% crystallisation), it generates ~ 0.6 wt% exsolved 
fluids. The exsolved volatile phase is carbon and chlorine-
rich at melt fractions ≥ ~ 0.7 (Fig. 6(vi)), then crystallise 
at molar C/S ratios of ~ 1.5–2.5 and molar S/Cl ratios of 
1–2. These values are consistent with volcanic gas compo-
sitions observed at the surface (Fig. 7a), which raises the 
possibility that some, and perhaps a large fraction, of the 
gases fluxing through the conduit and into the atmosphere 
may be derived from the fluids produced during equilib-
rium crystallisation of basalts at depths of ~ 3 km or deeper. 
Indeed, Métrich et al. (2011) concluded from melt inclusion 
geochemistry that primitive basalts pond at ~ 3-km depth 
where they fractionate during ~ 50–60% crystallisation to 
form trachybasalts with 56–60 wt% SiO2. 50% equilibrium 
crystallisation would produce ~ 1000 ppm exsolved S, ~ 
1000 ppm exsolved Cl and 0.3 to 0.6 wt% H2O (Table S2; 
Supplementary Material); this would require the intrusion of 
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0.04–0.09 km3 magma/year, similar to the volume required 
for the postulated vertical large-scale convection to shal-
low depths necessary to supply outgassed SO2 and HCl. 
Furthermore, the latent heat generated by extensive shallow 
magma crystallisation may be sufficient to thermally buffer 
the magma reservoir and to maintain a hot conduit (Métrich 
et al. 2011). Ascent of a deep-derived exsolved volatile 
phase, possibly with subsidiary melt, could advect heat to 
the conduit, allowing it to remain at a constant temperature 
over decadal timescales.

Importantly, fluids generated by second boiling would 
be relatively water-poor owing to the relatively low water 
content of Yasur basalts and the high solubility of water in 
silicate melts. The high water contents of Yasur volcanic 
gases (Métrich et al. 2011; Woitischek et al. 2020) would 
thus seem to be good evidence for some decompressional 
degassing and magma convection. The water content of the 
volcanic gases is, however, an order of magnitude higher 
than expected from decompressional degassing alone, which 
may suggest a contribution from meteoric waters. In sum-
mary, it is likely that the volcanic gases emitted to the atmos-
phere record mixing between exsolved volatiles generated by 
deep (> 2–3 km) isobaric second boiling and by decompres-
sion degassing accompanying convection, with the possible 
addition of shallow meteoric water, although this is not well 
constrained (Fig. 7a).

Gas data for Stromboli volcano (Fig. 7b) illustrate the 
wide range of gas compositions observed during eruptive 
activity (Aiuppa et al. 2010; Allard 2010; Burton et al. 
2007; Tamburello et al. 2012). Stromboli’s volcanic gases 
are dominated by H2O (48 to 98 mol%, mean 80 mol%) and 
also contain CO2 (2–50 mol%, mean 17 mol%) and SO2 (0.2 
to 14 mol%, mean 3 mol%). During paroxysms and strom-
bolian explosions, the carbon content of the emitted gases 
extends to 50 mol% CO2 with a molar C/S of > 10 and up 
to 47, a low molar H2O/CO2 (typically 1–3) and high S/Cl 
ratios (mean 4.7 ± 0.08). Between explosions, the gas molar 
C/S is < 15, H2O/CO2 is 1.5 to 6.5 and S/Cl is 1–1.5. Strom-
boli is fed by magmas with a much higher volatile content 
than at Yasur, as evidenced by studies of melt inclusions 
(Métrich et al. 2010). As an approximation of the Stromboli 
system, we use a starting basalt composition (Supplementary 
Table S1) with 3 wt% H2O, 2 wt% CO2, 0.2 wt% Cl and 0.25 
wt% S (Métrich et al. 2010) for the modelling (details given 
in supplementary material).

As for Yasur, and consistent with previous studies 
(Aiuppa et al. 2010; Allard 2010; Métrich et al. 2010), we 
find that decompressional degassing of the exsolved vola-
tile phase for Stromboli compositions causes the C/S ratio 
to decrease from > 100 at pressures between 240 and 100 
MPa to ~ 1–2 at the surface (Fig. 7b; table S4). Also, sim-
ilar to Yasur, the volcanic gas molar S/Cl ratio increases 
with decreasing pressure from < 0.1 at depth to 1–10 at 

the surface, governed by the relative partitioning behaviour 
of Cl and S with pressure (Lesne et al. 2011; Tattitch et al. 
2021). The fluids generated during isobaric crystallisation 
(second boiling), in contrast, initially have low C/S and S/
Cl but converge on C/S ~ 5–8 and S/Cl ~ 1–2 after 50% 
crystallisation.

The high molar CO2 content of the gases during strom-
bolian explosions and paroxysms suggest triggering by a 
deep-derived gas phase (Aiuppa et al. 2010; Allard 2010; 
Burton et al. 2007; Métrich et al. 2010), with the gases emit-
ted during quiescent degassing fed by more shallowly-equili-
brated gases. However, a comparison of gas compositions to 
a decompressional degassing model (Fig. 7b) shows that the 
SO2/HCl systematics (Burton et al. 2007) are not obviously 
consistent with such an interpretation. Indeed, decompres-
sional degassing models predict ‘deeper’-equilibrated gases 
to have a lower S/Cl than shallow-equilibrated gases; this 
trend reflects the decrease in the fluid-melt partition coef-
ficient for Cl with decreasing pressure, in tandem with a 
dramatic increase in the fluid-melt partition coefficient for 
sulphur (Lesne et al. 2011). As noted above, we have only 
a limited understanding of the chlorine systematics in vol-
canic gases. However, a likely explanation is that degassing 
during paroxysms is more ‘closed’ than during persistent 
degassing, consistent with the higher observed molar S/Cl 
as well as the high molar C/S. The observed S/Cl ratio of ~ 
2 of the quiescent plume at Stromboli (Burton et al. 2007), 
which accounts for the bulk of the outgassing flux (Allard 
et al. 2008), is equally consistent with an exsolved vola-
tile phase being generated by decompression degassing or 
by second boiling processes at depth or a mixture of both 
sources (Fig. 7b).

Petrological studies provide additional constraints on 
the Stromboli magmatic system. Stromboli is fed by primi-
tive, volatile-rich high K2O (HK) basalts with 49–51 wt% 
SiO2 and CaO/Al2O3 > 0.6 (Métrich et al. 2010) stored at 
depths of 7–10-km beneath the summit (Bertagnini et al. 
2003; Métrich et al. 2010). Large paroxysms erupt this low-
density CO2-rich HK basalt as ‘golden pumice’ (Pichavant 
et al. 2009; Rosi et al. 2000), with little evidence for mixing 
with shallow-stored magma, consistent with rapid and pri-
marily closed-system decompression (Métrich et al. 2021; 
Pichavant et al. 2009). Eponymous strombolian activity, in 
contrast, ejects crystal-rich, degassed shoshonitic basalt 
(51–54 wt% SiO2) stored at 2–4-km beneath the summit and 
produced by 20–30% fractional crystallisation of HK basalts 
at depth (Landi et al. 2004; Métrich et al. 2010; Métrich et al. 
2001; Métrich et al. 2005; Vergniolle and Métrich 2021). 
Deep and shallow magmas mix only during smaller parox-
ysms (LaFelice and Landi 2011a). CO2-rich fluids derived 
from ponding and crystallising basalts at depth, in contrast, 
flux through the shallow system, dehydrating the overlying 
magma and promoting extensive crystallisation within the 
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shallow conduit (Landi et al. 2004; Métrich et al. 2001). 
Resulting crystal networks may trap rising fluids to form 
gas pockets; the release of these accumulated gases when 
they overcome the forces holding the crystals together (the 
effective yield strength) may explain the ‘normal’ strombo-
lian activity (Barth et al. 2019; Belien et al. 2010; Oppen-
heimer et al. 2015; Suckale et al. 2016; Woitischek et al. 
2020) that produces highly degassed, crystalline and high 
viscosity bombs, remnants of the degassed ‘plug’ (Carac-
ciolo et al. 2021; Gurioli et al. 2014; Lautze and Houghton 
2007). Triggers for paroxysmal activity, in contrast, are 
debated. One suggestion is that they may be triggered by 
rapid (days) ascent of HK magma (La Felice and Landi 
2011; Métrich et al. 2010; Métrich et al. 2021) caused by 
increases in overpressure in the deep storage area or by the 
greater buoyancy of gas-rich basaltic magma (Allard 2010; 
Métrich et al. 2005; Métrich et al. 2021). A ‘top-down’ trig-
ger has been suggested for paroxysms preceded by high gas 
hold-up and lava effusion, which promote decompression of 
the shallow conduit (Calvari et al. 2011; Ripepe et al. 2015). 
These contrasting scenarios raise interesting questions about 
the role of deep volatiles in modulating eruptive activity.

Volcanic gas compositions measured at Mount Etna 
(Italy) reveal that paroxysmal phases of ash emission and 
lava fountaining during 2001 (Aiuppa et al. 2002) and mid- 
and late November 2002 (Aiuppa et al. 2004) were accom-
panied by volcanic gases with low molar S/Cl ratios (< 1) 
and high SO2 fluxes (15,000 t/day). Conversely, a trend of 
increasing S/Cl ratios and decreasing SO2 flux accompanied 
the transition of volcanic activity towards mild strombolian 
activity and finally passive degassing with minor effusive 
activity. A sulphur and halogen degassing model developed 
to explain these trends (Aiuppa 2009) suggest that the S/Cl 
ratio in the gas phase increases by decompression degas-
sing as magma nears the surface because of the increas-
ing preference of Cl for the melt and of S for the gas (see 
Fig. 7b), as observed in geochemical studies (Spilliaert et al. 
2006). The Cl-rich gas emitted during the paroxysms may 
therefore represent a deeper exsolved volatile phase, perhaps 
generated through second boiling processes at depth. Such a 
fluid phase would fuel the development of deep, volatile-rich 
melts co-existing with the Cl-rich exsolved volatile phase 
implicated in driving paroxysms at Etna. Evidence of high 
S/Cl ratios in volcanic gases during fountaining (Allard et al. 
2005), in contrast, may record a large shallow influx of unde-
gassed magma accompanied by relatively shallow degassing 
at low pressures.

Now that gas geochemical monitoring is commonplace, 
and often automated, trends prior to explosive eruptions at 
open-vent volcanoes are increasingly well characterised. 
Pulses of CO2 are often observed prior to paroxysms and 
other forms of an explosive eruption, manifest as increases 
in the C/S ratio days to weeks prior to eruption (Aiuppa 

et al. 2017; Aiuppa et al. 2007; de Moor et al. 2017). At Vil-
larrica volcano, Chile, for example, an increase in volcanic 
gas C/S after January 2015 preceded the 3 March 2015 par-
oxysm (Aiuppa et al. 2017). The same pre-eruptive period 
saw an increase of > 50 m in the height of the persistent lava 
lake (from 27 February; Johnson et al. 2018), suggesting 
increased gas hold-up. Similar signals preceded explosive 
activity at Turrialba Volcano, Costa Rica, in 2014 and 2015, 
where pulses of deeply derived CO2-rich gas (C/Stotal > 4.5) 
have been observed up to 2 weeks before eruptions (de Moor 
et al. 2016). These signals of ‘deep-derived’ exsolved vola-
tiles, arriving at the surface in the absence of (or preceding) 
magma, provide further evidence of a significant, exsolved 
and segregated exsolved volatile phase at a depth that is 
capable of fluxing up through the shallow plumbing system 
prior to and during explosive eruptions, including parox-
ysms, supported by studies of gas fluxes and scoria textures, 
which illustrate degassing-driven mingling between deeper 
hotter melt and degassed, more crystallined magma derived 
from the upper parts of the conduit (Gurioli et al. 2008).

At intermediate open-vent volcanic systems, evolved 
melts with high fractions of exsolved volatiles may dominate 
the magma reservoir and the contribution of second boiling 
to the exsolved volatile phase may be far more significant. 
Although few long time series of volcanic gas compositions 
exist for these systems, one exception is Asama Volcano in 
central Japan, a persistently degassing volcano that erupts 
every few years (Shinohara et al. 2015). Here, periods of 
high gas flux coincide with periods of eruptions and ele-
vated seismic activity. Low SO2 emission rates characterise 
periods of low eruptive activity. SO2/HCl ratios in the gas 
are high during eruptive periods and lower during eruptive 
pauses, a pattern consistent with eruptive periods dominated 
by decompressional degassing (Shinohara et al. 2015). There 
is no clear variation in C/S between active and inactive 
periods (Shinohara et al. 2015). In contrast, Soufrière Hills 
Volcano, which erupted crystal-rich andesite episodically 
between 1995 and 2011, showed a clear pattern of molar S/
Cl > 1 during eruptive pauses and S/Cl < 1 during eruptive 
episodes dominated by lava dome building that remained 
consistent over many years of observation (Christopher et al. 
2010; Edmonds et al. 2001). These gas characteristics can be 
explained by cessation of gaseous HCl flux during eruptive 
pauses whilst a near constant (or slowly declining) SO2 flux 
is sustained (Christopher et al. 2010). The data are insuf-
ficient to assess whether systematic temporal variations in 
molar C/S exist.

Volcanic gas compositions arising from models of 
decompressional degassing versus isobaric second boiling 
are compared with observations in Fig. 8. The Soufrière 
Hills andesite is crystal rich with a rhyolitic carrier liquid; 
fluid-melt partition coefficients for chlorine and sulphur 
are estimated to be ~ 20–30 and ~ 200–500, respectively, 
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at the pressures of storage prior to eruption; with decreas-
ing pressure, DCl decreases to ~ 1 and Ds increases to > 
1000 (Tattitch et al. 2021; Webster and Botcharnikov 2011) 
(Tables S5, S8). Bulk chlorine and sulphur contents are 
poorly constrained; we use 0.15 wt% for Cl (informed by 
melt inclusion studies (Edmonds et al. 2001) and 0.3 wt% 
S for initializing the isobaric degassing models at F = 1. 
In general, the deep MVP generated by second boiling has 
an initially high molar C/S ratio, which then decreases and 
converges on composition of ~ 1–2 after ~ 60% crystalli-
sation at a range of pressures (Table S8) and an initially 
low molar S/Cl ratio that increases and converges on val-
ues between 2 and 3 (Fig. 8a). These values yield Cl and S 
melt concentrations of 700–1000 ppm Cl and 50–100 ppm 

S after 90% crystallisation, consistent with melt inclusion 
studies of SHV rhyolitic melt inclusions (Edmonds et al. 
2001) (Table S3, supplementary material). After the 90% 
crystallisation required to generate rhyolite melt, there is 
4–7 wt% exsolved water-rich MVP (supplementary material 
table S8) with a molar C/S of ~ 1. Rhyolitic melts beneath 
Soufrière Hills Volcano are therefore likely to have signifi-
cant fractions of MVP that must be migrating to the surface, 
even during eruptive pauses, to supply the outgassing flux 
(Christopher et al. 2015).

Rhyolitic melt starting with 8 wt% H2O, 1 wt% CO2, 0.1 
wt% Cl and 0.01 wt% S (consistent with the melt concen-
trations measured in melt inclusions, table S3) subjected 
to slow degassing-induced crystallisation yields a Cl-rich 
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Fig. 8   Mixing between a deep-derived MVP, generated through 
extensive second boiling, and an MVP derived from decompressional 
degassing may explain the gas systematics at Soufrière Hills Volcano, 
where high SO2 fluxes and low S/Cl are observed during dome build-
ing and high SO2 fluxes and high S/Cl during eruptive pauses. a The 
molar S/Cl of the MVP varies with S outgassed (in wt% of the melt 
+ exsolved volatile phase) for isobaric degassing during second boil-
ing and for decompressional degassing of S-poor rhyolite. Melt frac-
tion remaining, F, is marked onto the trajectories for isobaric second 
boiling. Note the composition of the ‘deep’ MVP in equilibrium with 
rhyolite will differ if different bulk magma compositions of sulphur 
and chlorine are used, but the relative trends shown in the figure will 

remain the same. b The volcanic gas compositions at the surface may 
be explained well by a mixing model whereby a deep MVP generated 
through second boiling mixes with an MVP generated during decom-
pressional degassing and crystallisation of sulphur-poor crystal-rich 
andesite (with a rhyolitic melt phase). Depending on the relative sizes 
of the two MVP reservoirs, the effect of mixing on the volcanic gas 
composition changes. For equal-sized reservoirs in terms of the mass 
of the MVP phase per unit of magma, a scenario might be envisaged 
whereby during dome building the shallow MVP dominates, generat-
ing Cl-rich gases, and during eruptive pauses (open-vent degassing), 
the deep MVP dominates, generating high S/Cl gases and a high SO2 
flux
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volcanic gas (Fig. 8a; table S5), consistent with the S-poor 
melt. Variable mixing between the deep (> 2–3 km) MVP 
generated during second boiling and a decompression-
derived MVP during eruptions could thus yield a volcanic 
gas with a low S/Cl ratio during eruptive periods (contri-
butions from both deep- and decompression-derived MVP) 
and a high SO2 flux with a high S/Cl ratio during eruptive 
pauses (contributions dominated by the deep MVP gener-
ated through second boiling), which is precisely what we 
observe (Christopher et al. 2010; Fig. 8b). This example 
clearly demonstrates the importance of a segregated deep 
MVP in sustaining outgassing at more evolved open-vent 
volcanoes; this mechanism may be generic to other, similar 
volcanic systems globally (e.g. Tungurahua and Reventador, 
Ecuador; Bagana volcano, Papua New Guinea).

Geophysical evidence for the decoupled flow 
of an exsolved magmatic volatile phase in the crust

Seismicity related to shallow degassing and eruption

Low-frequency (LF, or long period, LP) earthquakes are a 
common feature of active volcanoes (McNutt and Roman 
2015). When LP earthquakes are closely spaced in time, 
the signals may merge to form a continuous tremor signal. 
LP earthquakes (and tremor) are thought to be caused by 
fluid pressurisation, including the resonant response of fluids 
in conduits or dykes (Chouet 1996; Neuberg et al. 2000). 
Very-long-period (VLP) and ultra-long-period (ULP) events 
detected using broadband seismometers originate at shal-
low depths (≤ 1.5 km) and are associated with eruptions 
or vigorous fumarolic activity (McNutt and Roman 2015; 
Sanderson et al. 2010). Although the specific interpretations 
of VLP and ULP events vary, there is general agreement 
that they provide evidence of short-term deformation accom-
panying eruptive activity (Chouet et al. 1999; James et al. 
2006; Oppenheimer et al. 2020; Ripepe et al. 2015; Suckale 
et al. 2016). Recent studies highlight links between seismic 
signals and degassing flux at many open-system volcanoes 
(Zuccarello et al. 2013). A direct link between VLP signals 
and strombolian activity was first identified at Stromboli 
volcano: very-long-period (VLP) signals sourced from a 
few hundred metres depth in the conduit were thought to 
originate from the rise and bursting of large slugs of gas 
within the conduit (Chouet et al. 1999). More recent data 
clearly show a VLP signal preceding each event together 
with synchronous thermal and SO2 flux signals accompa-
nying each explosion (Gurioli et al. 2014; Tamburello et al. 
2012). Although the form of gas transport up the conduit 
linked to these seismic (and infrasound) signals has long 
been interpreted as a rising gas slug (Blackburn et al. 1976; 
Jaupart and Vergniolle 1988; Ripepe et al. 2001), an alterna-
tive model calls for gas accumulation in, and release from, 

a crystal-rich, shallow plug (Del Bello et al. 2015; Gurioli 
et al. 2014; Oppenheimer et al. 2015; Suckale et al. 2016). 
Correlations between VLP events and degassing have also 
been observed at Etna (Zuccarello et  al. 2013), Merapi 
(Hidayat et al. 2002), Asama (Kazahaya et al. 2011) and 
Erebus (Aster et al. 2008). Similarly, episodic explosive 
activity modulated by accumulation and release of a gas 
phase beneath a rigid or semi-rigid plugs may explain shal-
low (~ 300 m) VLP signals at Fuego (Waite et al. 2013) and 
inflation-deflation cycles and periodic explosions at San-
tiaguito (Bluth and Rose 2004; Johnson et al. 2014).

Seismicity and strain signals related to the migration 
of volatiles at depth

Deeper geophysical signals related to the movement or pres-
surisation by an MVP are limited. MVP-related seismic sig-
nals in the upper crust have been observed at Popocatepetl 
volcano, where VLP signals accompany volcanic degas-
sing bursts at a depth of ~ 1.5 km. One interpretation is 
that these signals record the opening of an escape pathway 
for an exsolved volatile phase that accumulated because of 
second boiling in a shallow sill (Chouet et al. 2005). Sharper 
pressure transients associated with expanding gas pockets 
may generate VLP signals to depths of ≤ 3 km (Arciniega-
Ceballos et al. 2008). Another example of the upper crus-
tal movement of MVP comes from Soufrière Hills, where 
strain signals observed during vulcanian explosions and gas 
emission events record inflation of a shallow conduit and 
near-simultaneous contraction of deeper magma reservoirs 
(> 5-km depth) (Hautmann et al. 2014). This strain pattern 
has been interpreted as rapid upward migration of a buoyant 
MVP, initiated by a sudden destabilisation of large pockets 
of already segregated fluid in the magma reservoirs (Chris-
topher et al. 2015; Hautmann et al. 2014; Linde et al. 2010).

Deep long-period earthquakes (DLPs) associated with 
volcanoes have been observed in the mid-lower crust or 
mantle (Aso and Tsai 2014; Melnik et al. 2020; Wech et al. 
2020). Although their origin is enigmatic, some studies have 
linked DLPs to an exsolved MVP. A striking example is 
Mauna Kea, Hawai’i, where more than a million DLPs have 
been recorded in the past 19 years (Wech et al. 2020). These 
events are not linked to eruptions but have been ascribed to 
the second boiling of deep (near-Moho) magma intrusions. 
Other interpretations of DLPs include thermal stresses set up 
by cooling magmas (Aso and Tsai 2014) and rapid changes 
of magmatic pressure in the lower crust caused by rapid 
nucleation and growth of gas bubbles in response to the slow 
upwelling of volatile-saturated magma (Melnik et al. 2020). 
The latter explanation for the Klyuchevskoy volcanic group 
relates to primary melts that may contain ≤ 4 wt% H2O and 
0.6 wt% CO2, which would cause volatile saturation at 800 
MPa (~ 30 km). Alternatively, these DLPs may record the 
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pressurisation of a deep reservoir and the consequent trans-
fer of the magma towards the surface. The relatively fast 
upward migration of long-period activity at Klyuchevskoy 
(months) suggests that a hydraulic connection is maintained 
between deep and shallow magmatic reservoirs (Shapiro 
et al. 2017) and the upward transport includes a large fluid 
component (Koulakov et al. 2013).

Seismic tomography within the crust beneath volcanoes 
yields a picture of how melt versus MVP-rich areas may be 
distributed (Kuznetsov et al. 2017; Londoño and Kumagai 
2018; Vargas et al. 2017). A porous medium saturated with 
gas has a low compression modulus that yields low-veloc-
ity P-waves but no decrease in S-wave velocity (a low Vp/
Vs ratio). High P-wave velocities and low S-wave velocity 
(high Vp/Vs ratios) may, in contrast, indicate the presence 
of melts, i.e. an active magma reservoir (Kuznetsov et al. 
2017). In this way, repeat tomographic studies can monitor 
temporal changes in the structure of magmatic systems. At 
Nevado del Ruiz, Colombia, for example the distribution of 
low and high Vp/Vs regions changes on yearly timescales 
(Londoño and Kumagai 2018; Vargas et al. 2017). Nevado 
del Ruiz is an open-vent volcano with considerable fluxes of 
SO2 emitted continuously (Lages et al. 2018). Here a high 
Vp/Vs anomaly 2-4 km prior to 2010 is interpreted as a 
volatile-rich melt reservoir, the lower boundary of which 
moved upward in 2011–2012 and was replaced by a region 
of low Vp/Vs, interpreted as a gas-rich region undergoing 
second boiling; this was associated with intense, persistent 
outgassing at the surface (Vargas et al. 2017). Tomographic 
studies of Mt. Spurr, an intermittently open-vent volcano, 
show finger-shaped seismic anomalies with a high Vp/
Vs ratio beneath the location of intensive fumarolic activ-
ity in 2004–2005 that are interpreted to represent separate 
conduits of magma and volatiles (Koulakov et al. 2018). 

A shallow (0–2 km) region of low Vp/Vs directly above is 
interpreted as a large-scale degassing event, whereby gases 
were segregated and migrated up to the surface (Koulakov 
et al. 2018). Although limited, these studies illustrate the 
potential for future monitoring of volatile and melt distribu-
tions beneath open volcanic systems.

Open‑vent persistent volcanic outgassing 
is promoted in complex, extensional tectonic 
regions

Open-vent volcanoes that generate high outgassing fluxes 
(Fig. 1) are often located in regions of complex tectonics and 
local extension. The correspondence between the locations 
of open-vent volcanoes and major crustal extensional struc-
tures highlights the role of tectonics in promoting magma 
intrusion, MVP segregation and MVP migration to the sur-
face. Although the processes that modulate MVP behaviour 
are not well known, the association of persistent degassers 
with extensional regions suggests that (a) extension leads to 
high intrusive/extrusive magma ratios and therefore provides 
large upward fluxes of exsolved volatiles through second 
boiling; (b) extension may promote the gravitational seg-
regation of low-density MVP phases in shallow reservoirs, 
allowing their migration and outgassing and/or (c) faults and 
shear zones in extensional regions may become permeable 
pathways for deep fluids (Fig. 9).

Many persistently degassing open-vent volcanoes—
Popocatepetl (Mexico), Fuego and Pacaya (Guatemala), 
Turrialba and Poas (Costa Rica) and Telica and Masaya 
(Nicaragua)—are located within grabens along the Cen-
tral American Volcanic Arc (CAVA) and Trans-Mexican 
Volcanic Belt (TMVB). For example, the open-vent vol-
cano Masaya lies within a large arc-parallel basin—the 
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Nicaraguan graben—that contains Lake Nicaragua and Lake 
Managua (Morgan et al. 2008) (Fig. 1; 9a). Masaya exhib-
its cycles of intense outgassing that coincide with lava lake 
activity (Delmelle et al. 1999; Stoiber et al. 1986) (Delmelle 
et al. 1999; Stoiber et al. 1986) but few eruptions—there has 
been no major effusive activity since 1965 (Harris 2009)—
although Masaya has a history of large basaltic Plinian erup-
tions (at 6 ka, 2.1 ka, 1.9 ka; (Pérez et al. 2020; Walker 
et al. 1993; Williams 1983). Presently, there is a lava lake 
at Masaya and evidence for a shallow subvolcanic reser-
voir (Aiuppa et al. 2018); petrological studies have recon-
structed the equilibration pressure of the superhydrous melts 
responsible for explosive activity to below the seismic Moho 
(Pérez et al. 2020). The extension rate in Nicaragua has been 
estimated from the initiation of arc splitting and dating of 
volcanic products (Plank et al. 2002). The observed crustal 
thickness of 30–35 km greatly exceeds the ~ 10 km expected 
for the estimated 100-km extension over 15 Ma, suggesting 
that intrusive magmatism has infilled the space created by 
extension at a rate of 90–180 km3/km/Ma (Morgan et al. 
2008). Moreover, the estimated intrusive flux for Nicaragua 
is ~ 100 times the estimated volcanic output rate (Carr et al. 
2003). This intrusive/extrusive ratio is much larger than the 
global average, which is ~ 5:1 (with a range of 1:1 to > 
35:1) (Crisp 1984; White et al. 2006). Over the entire arc, 
regions of greatest extension also have the highest magma 
productivity and the strongest geochemical slab signature 
(as demonstrated by geochemical indices Ba/La and Yb/
La (Burkart and Self 1985; Carr et al. 2003)). Nicaragua, 
specifically, has the largest magma productivity (intrusive 
and extrusive together), the highest rates of extension and 
slab flux and the strongest slab melting and source melting 
signals (Carr et al. 2003). Although it is unclear whether 
the large magma fluxes are a cause or an effect of upper 
plate extension, the large fluxes of intrusive magmas beneath 
the Managua graben allow ample opportunity for extensive 
second boiling and decompression degassing and produc-
tion of a deep exsolved MVP. Venting of these deep-derived 
fluids advects heat to the shallow system and maintains a 
hot conduit.

Ambrym, a top-ranking volcanic open-vent outgasser 
(Figs. 1 and 4) located in the New Hebrides arc (Fig. 9b), 
is situated in the transition zone between a compres-
sional regime in the central arc (Calmant et al. 2003) and 
an extensional regime in the south (Beier et al. 2018). 
The relative motion between the central and neighbour-
ing northern and southern arc segments, respectively, 
is accommodated by dextral strike-slip zones (Pelletier 
et al. 1998). Ambrym, with its 12-km-wide caldera and 
the resurgent domes of Marum and Benbow, is located 
exactly at the transition from regional subsidence to strike-
slip faulting (Picard et al. 1994). Changes in the stress field 

from compression to extension (plus rotation) has created 
a complex polybaric magmatic system (Beier et al. 2018), 
including accumulation of large intrusive volumes, crystal-
lisation in shallow reservoirs and resulting large fluxes of 
exsolved volatiles that contribute to the persistent outgas-
sing observed at Ambrym (Allard et al. 2016).

Etna has developed on the margin of the Hyblean 
plateau, the foreland to the Late Tertiary Maghrebian-
Calabrian thrust belt, a compressional regime that started 
extending at ~ 0.5 Ma (Hirn et al. 1997; Laigle and Hirn 
1999) (Fig. 9c). Crustal-scale normal faults imaged by 
reflection seismology extend over 20 km; their size, depth, 
location and evidence of activity suggests that these faults 
are the source of large earthquakes, which are associated 
with enhanced volcanism in time and space (Hirn et al. 
1997). The specific location of Etna might be related to 
extension within a narrow zone of active normal faulting 
that stretches from the Hyblean Plateau in eastern Sicily 
to northern Calabria (Monaco et al. 1997). A high seismic 
velocity zone with a lateral dimension of ~ 6 km has been 
imaged beneath the summit at 9–18-km depth (Hirn et al. 
1997). This body probably comprises cumulates produced 
from intrusive magmas, fragments of which are occasion-
ally erupted as cognate xenoliths (Corsaro et al. 2014). 
This cumulate body likely contains significant volumes 
of volatile-rich melts generated through second boiling as 
well as regions dominated by an exsolved volatile phase. 
These fluids may mix with intruding basalts and ascend 
to shallow levels in the plumbing system shortly before 
eruptions, contributing to the large and persistent outgas-
sing fluxes of Etna.

Persistently outgassing volcanoes in extensional (con-
tinental) regions include Erta Ale, Oldoinyo Lengai, 
Nyiragongo and Nyamuragira in the East African Rift 
and Erebus in the West Antarctic Rift system. A global 
link between outgassing and tectonics was suggested by 
Tamburello et al. (2018) to explain the distribution of 
high CO2-emitting volcanic areas, which are focused in 
the extensional regions of arcs and in continental rifts. 
However, oceanic regions of extension are conspicuous 
for their lack of persistent volcanic outgassers. Iceland, 
for example, sits astride the Mid-Atlantic Ridge and has 
frequent eruptions but has no lava lakes or persistently 
outgassing conduits. Instead, frequent eruptions follow 
short periods of unrest (including increased outgassing) 
and return rapidly to closed-system behaviour once the 
eruption is over, although diffuse CO2 degassing between 
eruptions may be linked to magma intrusions at depth (Ily-
inskaya et al. 2018). In this respect, activity is more simi-
lar to other ocean islands such as Reunion, Galapagos or 
the Canary Islands, where sulphur-rich degassing occurs 
during, but not between, eruptions (Di Muro et al. 2016).
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Depth‑integrated magma degassing drives 
persistent outgassing and eruptive activity 
at open‑vent volcanoes

A conclusion that can be drawn from the data and mod-
els presented above is that open-vent volcanoes may be 
thought of as predominantly gas, rather than lava, emitters. 
A corollary is that degassed magmas accumulate in the 
crust beneath open-vent volcanoes, thereby growing the 
crust endogenously. Open-vent volcanoes often occur in 
regions of crustal extension, which yield the accommo-
dation space for large volumes of intruded magmas that 
ultimately form dry plutons once they crystallise, exsolve 
and lose their volatiles. Open-vent volcanoes are active for 
decades to millennia; their longevity may be controlled by 
the tectonics of the crust, which may cause different arc 
segments to ‘switch on and off’ over time (de Moor et al. 
2017). Eruptions of open-vent volcanoes may be triggered 
by the ascent of segregated exsolved volatiles that flux 
through the shallow system or by volatile-rich melts that 

migrate rapidly from deeper levels in the crust, exsolv-
ing large volumes of volatiles as they ascend. Therefore, 
although traditionally it has been assumed that magma is 
the ‘carrier’ for advecting volatiles—requiring mass bal-
ance in the upper crust to account for open-vent outgas-
sing fluxes (i.e. the convection model)—we have shown 
instead that large volumes of intruded magma at depth, 
stored at multiple levels throughout the crust, provide a 
potential source of segregated exsolved volatiles, which 
inevitably must contribute to the large outgassing fluxes 
at open-vent volcanoes. The framework model described 
here both removes the necessity for the volatiles to be sup-
plied by continuous, large-vertical-scale bimodal flow and 
alleviates the space problem caused by the need to store 
large volumes of degassed magma within the shallowest 
parts of the crust.

For basalt-dominated open-vent volcanoes (Fig. 10a) with 
basalt or alkali basalt lava lakes or open vents (e.g. Strom-
boli, Yasur, Villarrica, Masaya, Fuego), volatiles may be 
delivered to the atmosphere through a combination of deep 
and shallow mechanisms, both consistent with the volcanic 
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Fig. 10   Schematic diagram to illustrate the principal mechanisms of 
magma degassing at persistently active open-vent volcanoes. a At 
basalt-dominated volcanoes, magmas rise to shallow storage regions 
in the crust to form shallow basic plutons. Some magma may rise and 
convect in the conduit. The exsolved volatile phase that outgasses 
quasi-continuously from the volcano is sourced from a mix of deep 
(second boiling) and shallow (convective degassing) sources. Vol-
canic activity at these volcanoes is dominated by gas-driven strom-
bolian activity and paroxysms, and there may be a semi-stable lava 
lake. b At andesite and dacite-dominated volcanoes, magmas undergo 
multi-level fractionation in the crust to form evolved melts which rise 

to shallow storage regions, exsolving a substantial exsolved volatile 
phase through second boiling. The persistent outgassing observed at 
these volcanoes is sourced principally from the second boiling pro-
cess, which takes place during the solidification of hybrid and felsic 
plutons at depth. In both cases, magma intrusion and open-vent out-
gassing are promoted by crustal extension, which provides accommo-
dation space for magma intrusion at depth and for the gravitational 
segregation of lower density exsolved volatile phases to the upper 
parts of the storage region. Deep generation of superhydrous melts 
may advect volatiles up to subvolcanic reservoirs
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gas compositions observed at these volcanoes (Figs. 5, 6 and 
7). Primitive basalts (which may be saturated in an exsolved 
volatile phase even at mantle depths in some cases) typi-
cally undergo ≥ 50% crystallisation in the crust to produce 
basaltic andesites or trachybasalts that dominate the shallow 
storage regions beneath these volcanoes. Exsolved volatiles 
generated through second boiling may migrate via capillary 
flow in crystal-rich mush in mid- and upper crustal magma 
storage regions, accumulating and segregating, perhaps giv-
ing rise to pockets of exsolved volatiles that may ascend 
rapidly to the surface and trigger paroxysms (Fig. 3). Primi-
tive melts may be drawn into the conduit in the wake of 
these pockets of exsolved fluids. Although conduit convec-
tion may allow magmas to ascend to near atmospheric pres-
sure, outgas and then sink, convection likely acts in tandem 
with the fluxing of deep-derived exsolved volatiles through 
the shallow conduit system. Together these processes may 
explain much of the outgassing volatile flux, as exempli-
fied by Stromboli (Fig. 7b). The balance between convective 
degassing and deep MVP fluxing likely differs between vol-
canoes depending on both the depth of magma storage and 
crystallisation and the total volatile content of the magma. 
Volatile-rich magmas stored at relatively shallow depths are 
likely to produce a large volume of exsolved volatiles dur-
ing even modest amounts of crystallisation. We note that 
this concept of exsolved volatiles being integrated over large 
depth ranges in the crust to supply open-vent outgassing is 
consistent with geochemical evidence from volcanic rocks 
that suggest that melt as well as crystals in magmas mingle 
over similarly large depth ranges (Cashman and Edmonds 
2019; Ruth et al. 2018). A high magma intrusion rate will 
buffer the melt composition in the subvolcanic reservoir to 
produce monotonous erupted compositions and long-lived 
outgassing. The latent heating generated by extensive sub-
volcanic crystallisation combined with the rise of deep-
derived exsolved volatiles (which efficiently advect heat) 
may produce sufficient heat to maintain hot conduits and 
lava lakes.

For intermediate composition open-vent volcanoes (dom-
inated by andesites and dacites) (Fig. 10b) (e.g. Bagana, 
Soufrière Hills, Santiaguito, Anatahan), magma crystalli-
sation over long timescales generates extensive regions of 
mush. The crystallisation of basalts at lower crustal depths 
may generate low viscosity hydrous or even ‘superhy-
drous’ basaltic andesite or andesite melts, as inferred for 
Kamchatka (Goltz et al. 2020). These melts may be fur-
ther enriched in incompatible elements (including volatiles) 
upon mixing with highly evolved water-rich melt lenses in 
deep crustal mush. Petrological and experimental studies 
suggest mid-crustal water contents of 5–11 wt% in basaltic 
andesites from the Lesser Antilles (Edmonds et al. 2016; 
Melekhova et al. 2017). These volatile-rich melts may rise 
up to the mid and upper crust through percolation along 

grain boundaries or by the channelised reactive flow. The 
intrusion of volatile-rich basaltic andesite into shallower, 
more evolved mush-dominated reservoirs can induce partial 
melting, gas sparging (Bachmann and Bergantz 2006) and/
or trigger gravitational destabilisation or eruption (Chris-
topher et al. 2015). The volatile-rich melts may generate 
substantial fractions of exsolved volatiles in mid and upper 
crustal mush-dominated reservoirs, which may accumulate 
and segregate from their rhyolitic melt lenses over millennia. 
These volatile-rich lenses may be later tapped by eruptions 
and drive persistent and long-lived volcanic outgassing. 
Importantly, bimodal flow and convective degassing are 
precluded in volcanoes dominated by crystal-rich, hydrous 
intermediate composition magma because of extensive 
decompression-induced crystallisation and resulting high 
bulk viscosity of the magma. In these systems, persistent 
degassing requires volatile migration that is independent of 
magma migration.

A generic model for the degassing regime at open-vent 
volcanoes brings together our understanding of magmatic 
crystallisation, mixing and storage processes with our obser-
vations of volcanic gas flux and composition at open-vent 
volcanoes. Intrusive, unerupted magmas crystallising at a 
range of crustal depths generate a substantial exsolved vola-
tile phase, which is fluxed into the overlying system and up 
through conduits. Volatile fluxing advects heat and brings 
with it small volumes of primitive melts that replenish the 
melt resident in the shallow magma storage and conduit 
systems. Although basalt-dominated reservoirs may also 
experience subsidiary convection, convection is unlikely in 
more evolved, mush-dominated magmatic systems, where 
the outgassing flux will instead be dominated by the fluxing 
of a deep-derived MVP generated through second boiling. 
In this model, large bodies of crystal-rich mush generated 
through extensive crystallisation remain in situ at a range 
of depths, with no requirement for magmas to convect to 
atmospheric pressure and back down again. Volcanic gases 
emitted from these volcanoes are the integrated products of 
the degassing of melts at a range of crustal depths that have 
undergone various degrees of crystallisation and mixing.

Conclusions

1.	 Open-vent volcanoes produce large outgassing fluxes, 
much greater than can be supplied by erupting magmas. 
Open-vent volcanoes may be thought of as gas vents 
connecting the mantle and/or crust to the atmosphere.

2.	 Open-vent volcanoes produce explosive and gas-rich 
eruptions, e.g. violent strombolian, vulcanian and par-
oxysms, that are triggered by the rise of volatile-rich 
melts and/or fluxing of segregated exsolved volatiles 
from deeper mush-dominated magma storage regions.
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3.	 Volcanic gas compositions at open-vent volcanoes are 
likely derived from a mixture of exsolved volatile pro-
duced from decompressional degassing, whereby mag-
mas degas during their ascent to atmospheric pressure, 
and isobaric (or polybaric) second boiling in the crust, 
which generates a substantial volume of exsolved vola-
tiles during crystallisation.

4.	 High fluxes of deep exsolved volatiles are sourced from 
the second boiling of intrusive magmas in the mid to 
lower crust. These deep-derived exsolved volatiles flux 
through shallow volcanic systems, advecting heat, sus-
taining persistent degassing and triggering eruptions. 
These processes are particularly important for more 
evolved, water-rich volcanic systems.

5.	 Bimodal flow and magma convection may operate in low 
viscosity basaltic systems, which brings magma up to 
near atmospheric pressure to outgas and then sink back 
down, but this mechanism acts in tandem with fluxing by 
a deeper-derived volatile phase. Convection is not likely 
to be important in more water-rich, more evolved vol-
canic systems, due to the extensive degassing-induced 
crystallisation in the conduit, which will stall magma 
return flow by viscous inhibition.

6.	 Intrusion and degassing of magma into the crust beneath 
open-vent volcanoes is accommodated by extensional 
tectonics and the extension plays a role in allowing 
exsolved fluids to migrate up to the shallow volcanic 
systems. The location and longevity of open-vent vol-
canic outgassing and activity are likely controlled by 
tectonics.

7.	 Open-vent volcanic outgassing is an integrated product 
of the degassing of a vertically-protracted magmatic 
storage and transport system, not merely a shallow 
magma reservoir. A great challenge for volcano moni-
toring in the future will be to detect and understand both 
geochemical and geophysical signals from the mid and 
lower crust to enhance eruption forecasting.

8.	 Accurate measurements of outgassing volatile and 
magma fluxes from individual volcanoes and from vol-
canic regions may greatly improve existing estimates of 
intrusive/extrusive magma fluxes and their link to tec-
tonics.
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